Science.gov

Sample records for air dry biomass

  1. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  2. Design of drying chamber and biomass furnace for sun-biomass hybrid rice-drying machine

    NASA Astrophysics Data System (ADS)

    Satria, Dhimas; Haryadi, Austin, Ruben; Kurniawan, Bobby

    2016-03-01

    In most Asian countries, rice drying is carried out manually by exposing rice to sunlight. However, problem occurs when rain season comes. Lack of sunlight deters the drying process. This paper proposes a design of mechanical rice drying machine with hybrid sun-biomass energy source. Pahl & Beitz method, which consists of four steps process: function planning and clarification, design concept, design prototype, and design details; are used as design methodology. Based on design result and calculation, in this paper propose specifications for drying machine and biomass furnace. Drying chamber is a continuous flow system with pneumatic-conveyor as blower. This hybrid utilizes two types of energy sources, sun and biomass. The proposed machine has capacity of 500 kilograms per cycle using 455 Watt of energy, which is more efficient than ordinary heater. Biomass furnace utilizes heat transfer by means of arranging 64 pieces of stainless steel pipes of 0.65 diameters in parallel.

  3. HAZARDOUS AIR POLLUTANTS: DRY-DEPOSITION PHENOMENA

    EPA Science Inventory

    Dry-deposition rates were evaluated for two hazardous organic air pollutants, nitrobenzene and perchloroethylene, to determine their potential for removal from the atmosphere to three building material surfaces, cement, tar paper, and vinyl asbestos tile. Dry-deposition experimen...

  4. High strength air-dried aerogels

    DOEpatents

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  5. The effect of drying temperature on the composition of biomass

    SciTech Connect

    Houghton, T.P.; Stevens, D.N.; Wright, C.T.; Radtke, C.W.

    2008-05-01

    The compositional quality of different lignocellulosic feedstocks influences their performance and potential demand at a biorefinery. Many analytical protocols for determining the composition or performance characteristics of biomass involve a drying step, where the drying temperature can vary depending on the specific protocol. To get reliable data, it is important to determine the correct drying temperature to vaporize the water without negatively impacting the compositional quality of the biomass. A comparison of drying temperature between 45 degrees C and 100 degrees C was performed using wheat straw and corn stover. Near-infrared (NIR) spectra were taken of the dried samples and compared using principal component analysis (PCA). Carbohydrates were analyzed using quantitative saccharification to determine sugar degradation. Analysis of variance was used to determine if there was a significant difference between drying at different temperatures. PCA showed an obvious separation in samples dried at different temperatures due to sample water content. However, quantitative saccharification data shows, within a 95% confidence interval, that there is no significant difference in sugar content for drying temperatures up to 100 degrees C for wheat straw and corn stover.

  6. Biomass Estimation of Dry Tropical Woody Species at Juvenile Stage

    PubMed Central

    Chaturvedi, R. K.; Raghubanshi, A. S.; Singh, J. S.

    2012-01-01

    Accurate characterization of biomass in different forest components is important to estimate their contribution to total carbon stock. Due to lack of allometric equations for biomass estimation of woody species at juvenile stage, the carbon stored in this forest component is ignored. We harvested 47 woody species at juvenile stage in a dry tropical forest and developed regression models for the estimation of above-ground biomass (AGB). The models including wood-specific gravity (ρ) exhibited higher R2 than those without ρ. The model consisting of ρ, stem diameter (D), and height (H) not only exhibited the highest R2 value but also had the lowest standard error of estimate. We suggest that ρ-based regression model is a viable option for nondestructive estimation of biomass of forest trees at juvenile stage. PMID:22448139

  7. Airborne Measurements of Carbonaceous Aerosols in Southern Africa during the Dry Biomass Burning Season

    NASA Technical Reports Server (NTRS)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2003-01-01

    Particulate matter collected aboard the University of Washington's (UW) Convair-580 research aircrafi over southem Afiica during the dry biomass burning season was analyzed for total carbon (TC), organic carbon (OC), and black carbon (BC) contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the TC collected. Consequently, conclusions derived from the data are greatly dependent on whether or not OC concentrations are corrected for this artifact. For example, the estimated aerosol coalbedo (1 - single scattering albedo (SSA)), which is a measure of aerosol absorption, of the biomass smoke samples is 60% larger using corrected OC concentrations. Thus, the corrected data imply that the biomass smoke is 60% more absorbing than do the uncorrected data. The BC to (corrected) OC mass ratio (BC/OC) of smoke plume samples (0.18 plus or minus 0.06) is lower than that of samples collected in the regional haze (0.25 plus or minus 0.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three quarters of the aerosol burden in the regional haze, while other souxes (e.g., fossil fuel burning) contribute the remainder.

  8. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    SciTech Connect

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  9. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass

    PubMed Central

    Al-Homaidan, Ali A.; Alabdullatif, Jamila A.; Al-Hazzani, Amal A.; Al-Ghanayem, Abdullah A.; Alabbad, Aljawharah F.

    2015-01-01

    Cadmium is one of the most toxic substances found in aquatic ecosystems. This metal tends to accumulate in photosynthetic plants and fish and is transferred to humans causing many diseases. It has to be removed from our environment to reduce any health risks. Dry biomass of the microalga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of cadmium ions (Cd2+) from aqueous solutions. The effects of different levels of pH (3–9), biomass concentration (0.25–2 g), temperature (18–46 °C), metal concentration (40–200 mg/l) and contact time (30–120 min) were tested. Batch cultures were carried out in triplicate in an orbital shaker at 150 rpm. After centrifuging the biomass, the remaining levels of cadmium ions were measured in the supernatant by Atomic Absorption Spectrometer. Very high levels of removal, reaching up to 87.69% were obtained. The highest percentage of removal was reached at pH 8, 2 g of biosorbent, 26 °C, and 60 mg/l of cadmium concentration after 90 min of contact time. Langmuir and Freundlich isotherm models were applied to describe the adsorption isotherm of the metal ions by S. platensis. Langmuir model was found to be in better correlation with experimental data (R2 = 0.92). Results of this study indicated that S. platensis is a very good candidate for the removal of heavy metals from aquatic environments. The process is feasible, reliable and eco-friendly. PMID:26587009

  10. Adsorptive removal of cadmium ions by Spirulina platensis dry biomass.

    PubMed

    Al-Homaidan, Ali A; Alabdullatif, Jamila A; Al-Hazzani, Amal A; Al-Ghanayem, Abdullah A; Alabbad, Aljawharah F

    2015-11-01

    Cadmium is one of the most toxic substances found in aquatic ecosystems. This metal tends to accumulate in photosynthetic plants and fish and is transferred to humans causing many diseases. It has to be removed from our environment to reduce any health risks. Dry biomass of the microalga (cyanobacterium) Spirulina platensis was used as biosorbent for the removal of cadmium ions (Cd(2+)) from aqueous solutions. The effects of different levels of pH (3-9), biomass concentration (0.25-2 g), temperature (18-46 °C), metal concentration (40-200 mg/l) and contact time (30-120 min) were tested. Batch cultures were carried out in triplicate in an orbital shaker at 150 rpm. After centrifuging the biomass, the remaining levels of cadmium ions were measured in the supernatant by Atomic Absorption Spectrometer. Very high levels of removal, reaching up to 87.69% were obtained. The highest percentage of removal was reached at pH 8, 2 g of biosorbent, 26 °C, and 60 mg/l of cadmium concentration after 90 min of contact time. Langmuir and Freundlich isotherm models were applied to describe the adsorption isotherm of the metal ions by S. platensis. Langmuir model was found to be in better correlation with experimental data (R (2) = 0.92). Results of this study indicated that S. platensis is a very good candidate for the removal of heavy metals from aquatic environments. The process is feasible, reliable and eco-friendly. PMID:26587009

  11. 7 CFR 29.3503 - Air-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Air-dried. 29.3503 Section 29.3503 Agriculture... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3503 Air-dried. The condition of unfermented tobacco as customarily prepared for...

  12. 7 CFR 29.3503 - Air-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Air-dried. 29.3503 Section 29.3503 Agriculture... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3503 Air-dried. The condition of unfermented tobacco as customarily prepared for...

  13. 7 CFR 29.3503 - Air-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Air-dried. 29.3503 Section 29.3503 Agriculture... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3503 Air-dried. The condition of unfermented tobacco as customarily prepared for...

  14. 7 CFR 29.3503 - Air-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Air-dried. 29.3503 Section 29.3503 Agriculture... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3503 Air-dried. The condition of unfermented tobacco as customarily prepared for...

  15. 7 CFR 29.3503 - Air-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-dried. 29.3503 Section 29.3503 Agriculture... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3503 Air-dried. The condition of unfermented tobacco as customarily prepared for...

  16. 70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING NORTH AT SOUTH CORNER. FAN ROOM WITH STEAM HEATER IN FOREGROUND RIGHT. COOPER ELBOW VENTS ON ROOF ARE FROM DRYING ROOMS. STEAM LINE IN FOREGROUND, POWDER WAS DRIED ON RACKS IN DRYING ROOMS VENTILATED WITH HOT AIR. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  17. Dry Air Entrainment into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary J.; Atkinson, Robert J.; Hood, Robbie E.; LaFontaine, Frank J.

    2000-01-01

    Hurricane Earl formed in the Gulf of Mexico in September 1998. It quickly was upgraded from a tropical disturbance to tropical storm status and then to a hurricane. Earl possessed hybrid (tropical and extratropical) characteristics throughout its lifetime. The system maintained and erratic track, which led to wide variability in the operational track forecasts. It eventually made landfall on the Florida panhandle on 2 September and raced northeastward. During August and September 1998, NASA conducted the third Convection and Moisture Experiment (CAMEX-3). The experiment was focused on studying hurricanes with an emphasis toward developing a better understanding of their intensification and motion. Earl provides a unique opportunity to utilize high spatial and temporal resolution data collected from the DC-8 and high altitude ER-2 NASA platforms, which flew over Earl as it made landfall. These data can also be put into broader view provided by other instruments from the Geosychronous Operational Environmental Satellites (GOES) and the Tropical Rainfall Measuring Mission (TRMM) satellites. Hurricane Earl was affected by entrainment of dry air from the northwest. Hurricane Isis was intensifying and approaching the Mexican Pacific coast with its associated outflow potentially affecting the inflow into Earl as the storm neared Florida. In addition, a longwave synoptic trough circulation was present over the eastern U.S. Either or both of these could be responsible for the dry air into the system. This paper will focus on identifying the source of the dry by using upper-level wind and moisture fields derived from the GOES 6.7 um water vapor imagery. We will attempt to relate the large-scale observations to those from the NASA aircraft. An infrared instrument onboard the ER-2 also has a similar wavelength and may be able to confirm some of the GOES findings. In addition, a microwave radiometer with 4 channels focused on measuring precipitation and its associated ice

  18. Precision of sugarcane biomass estimates in pot studies using fresh and dry weights

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane (Saccharum spp.) field studies generally report fresh weight (FW) rather than dry weight (DW) due to logistical difficulties in drying large amounts of biomass. Pot studies often measure biomass of young plants with DW under the assumption that DW provides a more precise estimate of treatm...

  19. Ultrasound-Assisted Hot Air Drying of Foods

    NASA Astrophysics Data System (ADS)

    Mulet, Antonio; Cárcel, Juan Andrés; García-Pérez, José Vicente; Riera, Enrique

    This chapter deals with the application of power ultrasound, also named high-intensity ultrasound, in the hot air drying of foods. The aim of ultrasound-assisted drying is to overcome some of the limitations of traditional convective drying systems, especially by increasing drying rate without reducing quality attributes. The effects of ultrasound on drying rate are responsible for some of the phenomena produced in the internal and/or external resistance to mass transfer.

  20. 7 CFR 29.3003 - Air-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Air-dried. 29.3003 Section 29.3003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Air-dried. The condition of unfermented tobacco as customarily prepared for storage under...

  1. 7 CFR 29.2502 - Air-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Air-dried. 29.2502 Section 29.2502 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2502 Air-dried. The condition of...

  2. 7 CFR 29.2502 - Air-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Air-dried. 29.2502 Section 29.2502 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2502 Air-dried. The condition of...

  3. 7 CFR 29.2502 - Air-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Air-dried. 29.2502 Section 29.2502 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2502 Air-dried. The condition of...

  4. 7 CFR 29.3003 - Air-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Air-dried. 29.3003 Section 29.3003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Air-dried. The condition of unfermented tobacco as customarily prepared for storage under...

  5. 7 CFR 29.3003 - Air-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Air-dried. 29.3003 Section 29.3003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Air-dried. The condition of unfermented tobacco as customarily prepared for storage under...

  6. 7 CFR 29.3003 - Air-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Air-dried. 29.3003 Section 29.3003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Air-dried. The condition of unfermented tobacco as customarily prepared for storage under...

  7. 7 CFR 29.2502 - Air-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Air-dried. 29.2502 Section 29.2502 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2502 Air-dried. The condition of...

  8. 7 CFR 29.3003 - Air-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-dried. 29.3003 Section 29.3003 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Air-dried. The condition of unfermented tobacco as customarily prepared for storage under...

  9. 7 CFR 29.2502 - Air-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-dried. 29.2502 Section 29.2502 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2502 Air-dried. The condition of...

  10. 74. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, DETAIL OF WOODEN DRYING ROOM DOORS WITH WOODEN HINGES AND BOLTS FOR SPARK PREVENTION. RINGS BY DOORS TURN ON HOT AIR FLOW TO DRYING ROOMS. NOTE GROUNDING WIRE FROM RING BRACKETS. RECORDING MACHINES BY DOORS RECORD HUMIDITY IN DRYING ROOMS. DRYING ROOMS ILLUMINATED ONLY BY EXPLOSION-PROOF LIGHTING LOCATED OUTSIDE OF ROOMS. NOTE WOODEN RAILROAD RAILS IN BACKGROUND FOR 3 FT. GUAGE CARS. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  11. Distributions of Trace Gases and Aerosols during the Dry Biomass Burning Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-01-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 micrograms /cubic meter and 13.2 and 14.3 micrograms/cubic meter). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 micrograms/cubic meter, and per 6400 cubic meter , respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 3 10 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 +/- 8 ppmv), CO (261 +/- 81 ppbv), SO2 (2.5 +/- 1.6 ppbv), O3 (64 +/- 13 ppbv), black particulate carbon (2.3 +/- 1.9 microgram/cubic meter), organic particulate carbon (6.2 +/- 5.2 microgram/cubic meter), total particle mass (26.0 +/- 4.7 microgram/cubic meter), and potassium particles (0

  12. 75. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, INTERIOR OF DRYING ROOM NO. 2, SHOWING COPPER EXHAUST VENT DUCT IN CORNER, HOT AIR INLET VENT IN CEILING. TWO TYPICAL DRYING RACKS LEANING AGAINST WALL, BOTTOM SIDE SHOWING ON LEFT RACK, TOP SIDE ON RIGHT RACK. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  13. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  15. Biomass control in waste air biotrickling filters by protozoan predation

    SciTech Connect

    Cox, H.H.J.; Deshusses, M.A.

    1999-01-20

    Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 kg in a control biotrickling filter to 11.795 kg in a biotrickling filter enriched with protozoa. The average toluene vapor elimination capacity at 1 g/m{sup 3} toluene and 64 m{sup 3}/(m{sup 3} {center_dot} h) was 31.1 g(m{sup 3} {center_dot} h) in the control and 32.2 g(m{sup 3} {center_dot} h) in the biotrickling filter enriched with protozoa. At higher toluene inlet concentrations, toluene degradation rates increased and were slightly higher in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addition of protozoa was due to an increase of carbon mineralization. Apparent biomass yield coefficients in the control and enriched trickling filter were 0.72 and 0.59 g dry biomass/g toluene, respectively. The results show that protozoan predation may be a useful tool to control biomass in biotrickling filters, however, further stimulation of predation of the biomass immobilized in the reactor is required to ensure long-term stability of biotrickling filters.

  16. Energy conservation by partial recirculation of peanut drying air

    SciTech Connect

    Young, J.H.

    1983-06-01

    Conventional, recirculating, and intermittent type peanut dryers were compared in a three-year study. Comparisons indicate that partial recirculation of peanut drying air may reduce energy consumption per unit of water removed by approximately 25% while also reducing required drying time and maintaining high quality.

  17. 73. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, NORTHEAST ELEVATION, EACH COOPER ELBOW VENT ON THE ROOF COMES FROM A DRYING ROOM. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  18. Model assessing the impact of biomass burning on air quality and photochemistry in Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Wiedinmyer, C.; Yokelson, R. J.; Molina, L. T.

    2010-12-01

    Biomass burning is a major global emission source for trace gases and particulates. Various multi-platform measurements during the Mexico City Metropolitan Area (MCMA)-2003 and Megacity Initiative: Local and Global Research Observations (MILAGRO)-2006 campaigns suggest significant influences of biomass burning (BB) on air quality in Mexico City during the dry season, and the observations show emissions from BB impose viable yet highly variable impacts on organic aerosols (OA) in and around Mexico City. We have developed emission inventories for forest fires surrounding Mexico City based on measurement-estimated emission factors and MODIS fire counts, and for garbage fires in Mexico City based on in situ-measured emission factors and the population distribution and socioeconomic data. In this study, we will comprehensively assess the impact of biomass burning on the aerosol loading, chemical composition, OA formation and photochemistry in Mexico City using WRF-Chem. Analysis of the model results, in conjunction with concurrent field measurements, will be presented.

  19. Life Cycle Cost of Solar Biomass Hybrid Dryer Systems for Cashew Drying of Nuts in India

    NASA Astrophysics Data System (ADS)

    Dhanushkodi, Saravanan; Wilson, Vincent H.; Sudhakar, Kumarasamy

    2015-12-01

    Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.

  20. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    SciTech Connect

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  1. Research of Woody Biomass Drying Process in Pellet Production

    NASA Astrophysics Data System (ADS)

    Selivanovs, Jevgenijs; Blumberga, Dagnija; Ziemele, Jelena; Blumberga, Andra; Barisa, Aiga

    2012-12-01

    This paper presents results of experimental research on wood chips and sawdust drying in a rotary dryer. Empirical models for the assessment of two dependent parameters of the drying process were created based on the results of experimental data. The mathematical description of the relationship between the independent variable - reduced sawdust moisture content - and dependent variable - specific fuel consumption - is represented by a linear equation.

  2. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  3. Distributions of trace gases and aerosols during the dry biomass burning season in southern Africa

    NASA Astrophysics Data System (ADS)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Blake, Donald R.; Gao, Song; Kirchstetter, Thomas W.

    2003-09-01

    Vertical profiles in the lower troposphere of temperature, relative humidity, sulfur dioxide (SO2), ozone (O3), condensation nuclei (CN), and carbon monoxide (CO), and horizontal distributions of twenty gaseous and particulate species, are presented for five regions of southern Africa during the dry biomass burning season of 2000. The regions are the semiarid savannas of northeast South Africa and northern Botswana, the savanna-forest mosaic of coastal Mozambique, the humid savanna of southern Zambia, and the desert of western Namibia. The highest average concentrations of carbon dioxide (CO2), CO, methane (CH4), O3, black particulate carbon, and total particulate carbon were in the Botswana and Zambia sectors (388 and 392 ppmv, 369 and 453 ppbv, 1753 and 1758 ppbv, 79 and 88 ppbv, 2.6 and 5.5 μg m-3, and 13.2 and 14.3 μg m-3). This was due to intense biomass burning in Zambia and surrounding regions. The South Africa sector had the highest average concentrations of SO2, sulfate particles, and CN (5.1 ppbv, 8.3 μg m-3, and 6400 cm-3, respectively), which derived from biomass burning and electric generation plants and mining operations within this sector. Air quality in the Mozambique sector was similar to the neighboring South Africa sector. Over the arid Namibia sector there were polluted layers aloft, in which average SO2, O3, and CO mixing ratios (1.2 ppbv, 76 ppbv, and 310 ppbv, respectively) were similar to those measured over the other more polluted sectors. This was due to transport of biomass smoke from regions of widespread savanna burning in southern Angola. Average concentrations over all sectors of CO2 (386 ± 8 ppmv), CO (261 ± 81 ppbv), SO2 (2.5 ± 1.6 ppbv), O3 (64 ± 13 ppbv), black particulate carbon (2.3 ± 1.9 μg m-3), organic particulate carbon (6.2 ± 5.2 μg m-3), total particle mass (26.0 ± 4.7 μg m-3), and potassium particles (0.4 ± 0.1 μg m-3) were comparable to those in polluted, urban air. Since the majority of the measurements

  4. Dry deposition of polycyclic aromatic hydrocarbons in ambient air

    SciTech Connect

    Sheu, H.L.; Lee, W.J.; Su, C.C.; Chao, H.R.; Fan, Y.C.

    1996-12-01

    Dry deposition and air sampling were undertaken, simultaneously, in the ambient air of an urban site and a petrochemical-industry (PCI) plant by using several dry deposition plates and PS-1 samplers from January to May 1994 in southern Taiwan. The dry deposition plate with a smooth surface was always pointed into the wind. Twenty-one polycyclic aromatic hydrocarbons (PAHs) were analyzed by a gas chromatography/mass spectrometer (GC/MSD). The dry deposition flux of total-PAHs in urban and PCI sites averaged 166 and 211 {micro}g/m{sup 2}{center_dot}d, respectively. In general, the PAH dry deposition flux increased with increases in the PAH concentration in the ambient air. The PAH pattern of dry deposition flux in both urban and PCI sites were similar to the pattern measured by the filter of the PS-1 sampler and completely different from the PAH pattern in the gas phase. The higher molecular weight PAHs have higher dry deposition velocities. This is due to the fact that higher molecular weight PAHs primarily associated with the particle phase are deposited mostly by gravitational settling, while the gas phase PAHs were between 0.001 and 0.010 cm/s, only the lower molecular-weight PAHs--Nap and AcPy--had a significant fraction of dry deposition flux contributed by the gas phase. All the remaining higher molecular-weight PAHs had more than 94.5% of their dry deposition flux resulting from the particle phase. This is due to the fact that higher molecular weight PAHs have a greater fraction in the particle phase and the dry deposition velocities of particulates are much higher than those of the gas phase.

  5. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices

    NASA Astrophysics Data System (ADS)

    Doymaz, İbrahim

    2016-03-01

    The effects of air drying temperature, slice thickness and pre-treatment application on the drying kinetics of carrot slices during convective drying in the range 50-70 °C were investigated. Results indicated that drying time, rehydration ratio and colour characteristics of carrot slices were more affected by drying air temperature, followed by pre-treatment applications. Five thin-layer drying models were applied to describe the drying kinetics. Midilli et al. model was the best model to characterize the drying kinetics of carrot slices. The moisture effective diffusivity calculated from the second Fick's law of diffusion ranged from 3.46 × 10-10 to 1.02 × 10-9 m2/s. The values of activation energy determined from the slope of the Arrhenius plot, ln(D eff ) versus 1/(T + 273.15), were 35.53, 43.42, and 37.75 kJ/mol for blanch, potas and control samples, respectively.

  6. Osmo-air drying of aloe vera gel cubes.

    PubMed

    Pisalkar, P S; Jain, N K; Jain, S K

    2011-04-01

    Aloe vera (Aloe barbadensis Miller) cubes of 12.5 × 12.5 × 12.5 mm thick were osmosed for 4 h in sugar syrup of 30, 40 and 50°Brix concentration and temperatures of 30 and 50°C at constant syrup to fruit ratio of 5:1. Osmosed and unosmosed aloe vera samples were hot air dried at 50, 60, 70 and 80°C with constant air velocity of 1.5 m/s. The water loss, solid gain and convective drying behaviour were recorded during experiments. It was observed that water loss and solid gain ranged from 39.2 to 71.3 and 2.7 to 6.3%, respectively during osmo-drying. The moisture diffusivity varied from 2.9 to 8.0 × 10(-9) m²/s and 2.7 to 4.6 × 10(-9) m²/s during air drying of osmosed and unosmosed aloe vera samples, respectively. Drying air temperature and osmosis as pre-treatment affected the water loss, solid gain, diffusivity at -p ≤ 0.01. PMID:21350589

  7. Measurements of CO in an aircraft experiment and their correlation with biomass burning and air mass origin in South America

    NASA Astrophysics Data System (ADS)

    Boian, C.; Kirchhoff, V. W. J. H.

    Carbon monoxide (CO) measurements are obtained in an aircraft experiment during 1-7 September 2000, conducted over Central Brazil in a special region of anticyclonic circulation. This is a typical transport regime during the dry season (July-September), when intense biomass burning occurs, and which gives origin to the transport of burning poluents from the source to distant regions. This aircraft experiment included in situ measurements of CO concentrations in three different scenarios: (1) areas of fresh biomass burning air masses, or source areas; (2) areas of aged biomass burning air masses; and (3) areas of clean air or pristine air masses. The largest CO concentrations were of the order of 450 ppbv in the source region near Conceicao do Araguaia (PA), and the smallest value near 100 ppbv, was found in pristine air masses, for example, near the northeast coastline (clean air, or background region). The observed concentrations were compared to the number of fire pixels seen by the AVHRR satellite instrument. Backward isentropic trajectories were used to determine the origin of the air masses at each sampling point. From the association of the observed CO mixing ratios, fire pixels and air mass trajectories, the previous scenarios may be subdivided as follows: (1a) source regions of biomass burning with large CO concentrations; (1b) regions with few local fire pixels and absence of contributions by transport. Areas with these characteristics include the northeast region of Brazil; (1c) regions close to the source region and strongly affected by transport (region of Para and Amazonas); (2) regions that have a consistent convergence of air masses, that have traveled over biomass burning areas during a few days (western part of the Cerrado region); (3a) Pristine air masses with origin from the ocean; (3b) regions with convergent transport that has passed over areas of no biomass burning, such as frontal weather systems in the southern regions.

  8. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. PMID:22858662

  9. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    PubMed

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%). PMID:27390647

  10. 7 CFR 29.2252 - Air-dried.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Air-dried. 29.2252 Section 29.2252 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2252...

  11. 7 CFR 29.2252 - Air-dried.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Air-dried. 29.2252 Section 29.2252 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2252...

  12. 7 CFR 29.2252 - Air-dried.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Air-dried. 29.2252 Section 29.2252 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2252...

  13. 7 CFR 29.2252 - Air-dried.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Air-dried. 29.2252 Section 29.2252 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2252...

  14. 7 CFR 29.2252 - Air-dried.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Air-dried. 29.2252 Section 29.2252 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Official Standard Grades for Virginia Fire-Cured Tobacco (u.s. Type 21) § 29.2252...

  15. A dry platform for separation of proteins from biomass-containing polysaccharides, lignin, and polyphenols.

    PubMed

    Barakat, Abdellatif; Jérôme, François; Rouau, Xavier

    2015-04-13

    License to mill: Proteins were continuously extracted from polysaccharides, lignin, and polyphenol by combining ultrafine milling with electrostatic separation. Such a fractionation process does not involve any solvent, catalyst, or external source of heating. In addition, this dry process is compatible with downstream enzymatic reactions, thus opening an attractive route for producing valuable chemicals from biomass. PMID:25760796

  16. Dry coolers and air-condensing units (Review)

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  17. The effect of pretreatments on air drying characteristics of persimmons

    NASA Astrophysics Data System (ADS)

    Demiray, Engin; Tulek, Yahya

    2016-03-01

    In this study, whole and peeled persimmons were dried in the ranges of 55-75 °C of drying temperature in a hot air dryer. The effect of drying temperature and pretreatments on the drying characteristics was determined. Immersing in a solution of 20 % sucrose resulted in an increase in the drying rate of persimmons. A non-linear regression procedure was used to fit five thin-layer drying models available in the literature to the experimental moisture loss data. The Page and Modified Page models have shown a better fit to the experimental drying data as compared to other models. The effective diffusivity was determined to be 9.237 × 10-10-10.395 × 10-10 m2 s-1 for the blanched persimmons and 7.755 × 10-10-9.631 × 10-10 m2 s-1 for immersed sucrose solution persimmons. The activation energies for diffusion were calculated to be 56.09 kJ mol-1 (for blanched) and 10.28 kJ mol-1 (for immersed sucrose solution).

  18. Domestic air pollution from biomass burning in Kenya

    NASA Astrophysics Data System (ADS)

    Boleij, Jan S. M.; Ruigewaard, Pieter; Hoek, Fred; Thairu, H.; Wafula, E.; Onyango, F.; de Koning, Henk

    Biomass fuels, mainly wood, are burned under often primitive and inefficient conditions by about half the world's population as the major source of domestic energy. In a rural area in Kenya, air pollution measurements were carried out inside dwellings during the rainy season in connection with a WHO epidemiologic survey to the incidence of acute respiratory infections among children aged below 5 years. Respirable particles and NO 2 were found in the order of, respectively, 10 times higher (mean 1400 μg m -3) and as high (mean 180 μg m -3) as recommended air quality guidelines for the general population. Also the levels of polycyclic aromatic hydrocarbons were very high. No relation could be detected between the number of acute respiratory infection episodes of the children and indoor air quality. This could be explained by the fact that the concentrations were very homogeneously distributed among the population.

  19. Dry deposition modelling of air pollutants over urban areas

    NASA Astrophysics Data System (ADS)

    Cherin, N.; Roustan, Y.; Seigneur, C.; Musson Genon, L.

    2012-04-01

    More than one-half of the world's inhabitants lives in urban areas. Consequently, the evolution of pollutants inside these urban areas are problems of great concern in air quality studies. Though the dry deposition fluxes of air pollutants, which are known to be significant in the neighborhood of sources of pollution, like urban areas, have not been modeled precisely until recently within urban areas. By reviewing the physics of the processes leading to the dry deposition of air pollutants, it is clear that atmosphere turbulence is crucial for dry deposition. Urban areas, and particularly buildings, are known to significantly impact flow fields and then by extension the dry deposition fluxes. Numerous urban schemes have been developed in the past decades to approximate the effect of the local scale urban elements on drag, heat flux and radiative budget. The most recent urban canopy models are based on quite simple geometries, but sufficiently close to represent the aerodynamic and thermal characteristics of cities. These canopy models are generally intended to parameterize aerodynamic and thermal fields, but not dry deposition. For dry deposition, the current classical "roughness" approach, uses only two representative parameters, z0 and d, namely the roughness length and the zero-plane displacement height to represent urban areas. In this work, an innovative dry deposition model based on the urban canyon concept, is proposed. It considers a single road, bordered by two facing buildings, which are treated separately. It accounts for sub-grid effects of cities, especially a better parameterization of the turbulence scheme, through the use of local mixing length and a more detailled description of the urban area and key parameters within the urban canopy. Three different flow regimes are distinguished in the urban canyon according to the height-to-width ratio: isolated roughness flow, wake interference flow and skimming flow regime. The magnitude of differences in

  20. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  1. Impact of precipitation patterns on biomass and species richness of annuals in a dry steppe.

    PubMed

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  2. Impact of Precipitation Patterns on Biomass and Species Richness of Annuals in a Dry Steppe

    PubMed Central

    Yan, Hong; Liang, Cunzhu; Li, Zhiyong; Liu, Zhongling; Miao, Bailing; He, Chunguang; Sheng, Lianxi

    2015-01-01

    Annuals are an important component part of plant communities in arid and semiarid grassland ecosystems. Although it is well known that precipitation has a significant impact on productivity and species richness of community or perennials, nevertheless, due to lack of measurements, especially long-term experiment data, there is little information on how quantity and patterns of precipitation affect similar attributes of annuals. This study addresses this knowledge gap by analyzing how quantity and temporal patterns of precipitation affect aboveground biomass, interannual variation aboveground biomass, relative aboveground biomass, and species richness of annuals using a 29-year dataset from a dry steppe site at the Inner Mongolia Grassland Ecosystem Research Station. Results showed that aboveground biomass and relative aboveground biomass of annuals increased with increasing precipitation. The coefficient of variation in aboveground biomass of annuals decreased significantly with increasing annual and growing-season precipitation. Species richness of annuals increased significantly with increasing annual precipitation and growing-season precipitation. Overall, this study highlights the importance of precipitation for aboveground biomass and species richness of annuals. PMID:25906187

  3. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  4. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  5. Optimization of microwave-assisted transesterification of dry algal biomass using response surface methodology.

    PubMed

    Patil, Prafulla D; Gude, Veera Gnaneswar; Mannarswamy, Aravind; Cooke, Peter; Munson-McGee, Stuart; Nirmalakhandan, Nagamany; Lammers, Peter; Deng, Shuguang

    2011-01-01

    The effect of microwave irradiation on the simultaneous extraction and transesterification (in situ transesterification) of dry algal biomass to biodiesel was investigated. A high degree of oil/lipid extraction from dry algal biomass and an efficient conversion of the oils/lipids to biodiesel were demonstrated in a set of well-designed experimental runs. A response surface methodology (RSM) was used to analyze the influence of the process variables (dry algae to methanol (wt/vol) ratio, catalyst concentration, and reaction time) on the fatty acid methyl ester conversion. Based on the experimental results and RSM analysis, the optimal conditions for this process were determined as: dry algae to methanol (wt/vol) ratio of around 1:12, catalyst concentration about 2 wt.%, and reaction time of 4 min. The algal biodiesel samples were analyzed with GC-MS and thin layer chromatography (TLC) methods. Transmission electron microscopy (TEM) images of the algal biomass samples before and after the extraction/transesterification reaction are also presented. PMID:20933395

  6. Biomass production chamber air analysis of wheat study (BWT931)

    NASA Technical Reports Server (NTRS)

    Batten, J. H.; Peterson, B. V.; Berdis, E.; Wheeler, E. M.

    1993-01-01

    NASA's Controlled Ecological Life Support System (CELSS) biomass production chamber at John F. Kennedy Space Center provides a test bed for bioregenerative studies using plants to provide food, oxygen, carbon dioxide removal, and potable water to humans during long term space travel. Growing plants in enclosed environments has brought about concerns regarding the level of volatile organic compounds (VOC's) emitted from plants and the construction materials that make up the plant growth chambers. In such closed systems, the potential exists for some VOC's to reach toxic levels and lead to poor plant growth, plant death, or health problems for human inhabitants. This study characterized the air in an enclosed environment in which wheat cv. Yocora Rojo was grown. Ninty-four whole air samples were analyzed by gas chromatography/mass spectrometry throughout the eighty-four day planting. VOC emissions from plants and materials were characterized and quantified.

  7. Removing particulates from aspiration air during coke dry quenching

    SciTech Connect

    Stefanenko, V.T.; Lysenko, T.v.; Voronkova, T.I.; Gracheva, O.L.

    1983-01-01

    The characteristics of recovery of coke dust are due to the relatively large size of the particles and their highly abrasive nature. The use of wet dust traps is not feasible due to the difficulties arising from the necessity of treating the sludge water. It is feasible to use dry methods of purifying the aspiration air. As dust traps one may recommend type SDK-TsN-33 or SK-TsN-34 conical cyclones, as well as vertical electrofilters.

  8. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  9. 72. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING SOUTHWEST AT NORTH CORNER. 3 FT. GUAGE RAILROAD TRACK IN FOREGROUND. WOODEN RAILS SUBSTITUTED FOR STEEL RAILS FOR TRACKS ENTERING BUILDING TO PREVENT SPARKING. EXPLOSION-PROOF LIGHTING MOUNTED ON BUILDING EXTERIOR. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  10. 71. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING SOUTH AT NORTH CORNER, WITH DRAIN BOX FROM BUILDING FLOOR DRAIN IN FOREGROUND. TROUGH IS LEAD-LINED. BOX PRESUMABLY SETTLED OUT ANY NITRO-COTTON OR POWDER FROM WASTE WATER FROM RECOVERY PURPOSES. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  11. Influence of Biomass Burning Aerosols on Southeast Asia Air Quality

    NASA Astrophysics Data System (ADS)

    Lee, Hsiang-He; Bar-Or, Rotem; Wang, Chien

    2016-04-01

    Biomass burning activities in Southeast Asia have become a major concern of general public as well as governments in the region. This is because that aerosols emitted from such fires can cause long-lasting haze events under favorite weather conditions in downwind locations such as Singapore, degrading air quality and causing human health issues. In order to improve our understanding of the spatiotemporal coverage and influence of biomass burning aerosols in Southeast Asia, we have used the Weather Research and Forecasting (WRF) model with a smoke aerosol module to conduct multi-year simulations covering the period from 2002 to 2014, driven by the biomass burning emissions from the Fire INventory from NCAR (FINN) version 1.5. To attribute the aerosol influences over various target regions to specific fire locations, we have also partitioned aerosols emitted from five major fire regions of Southeast Asia in the simulations. Based on the simulation results, we have examined the influences of various meteorological regimes on the aerosol transport and wet removal. We find that the transport and scavenging of biomass burning aerosols are strongly modulated by the Southeast Asian monsoon wind field and precipitation. We also identified that in the past decade, smoke aerosols are responsible for a substantial fraction of low visibility events in the major metropolitan areas of the region: 35% in Bangkok, 25% in Kuala Lumpur, 16% in Singapore, and 22% in Jakarta. The fires in the Indochina peninsula account for the largest percentage of the total fire enhancement to PM2.5 in Bangkok (98.9%), and fires in Sumatra were the major contributor in Kuala Lumpur (49%), Singapore (39%), and Jakarta (48%).

  12. Zinc tolerance and zinc removal ability of living and dried biomass of Desmodesmus communis.

    PubMed

    Novák, Zoltán; Jánószky, Mihály; B-Béres, Viktória; Nagy, Sándor Alex; Bácsi, István

    2014-12-01

    Effects of zinc on growth, cell morphology, oxidative stress, and zinc removal ability of the common phytoplankton species Desmodesmus communis were investigated at a concentration range of 0.25-160 mg L(-1) zinc. Cell densities and chlorophyll content decreased in treated cultures, changes in coenobia morphology and elevated lipid peroxidation levels appeared above 2.5 mg L(-1) zinc. The most effective zinc removal was observed at 5 mg L(-1) zinc concentration, while maximal amount of removed zinc appeared in 15 mg L(-1) zinc treated culture. Removed zinc is mainly bound on the cell surface. Dead biomass adsorbed more zinc than living biomass relative to unit of dry mass, but living biomass was more effective, relative to initial zinc content. This study comprehensively examines the zinc tolerance and removal ability of D. communis and demonstrates, in comparison with published literature, that these characteristics of different isolates of the same species can vary within a wide range. PMID:25193446

  13. Biomass of Speckled Alder on an Air-Polluted Mountain Site and its Response to Fertilization

    NASA Astrophysics Data System (ADS)

    Kuneš, Ivan; Baláš, Martin; Koňasová, Tereza; Špulák, Ondřej; Balcar, Vratislav; Millerová, Kateřina Bednářová; Kacálek, Dušan; Jakl, Michal; Zahradník, Daniel; Vítámvás, Jan; Š´astná, Jaroslava; Jaklová Dytrtová, Jana

    2014-12-01

    The article summarizes outcomes of a biomass study conducted in a young speckled alder plantation on a cold mountain site. At this location, the previously existing old forest was clear felled because of damage from air pollution, and present-day surface humus is in need of restoration. The intention of this study was to quantify the biomass and nutrients accumulated by alders and their components and assess whether the initial fertilization resulted in increased biomass production and nutrient accumulation in the biomass. Besides the control, two fertilized treatments were installed. In the surface treatment (SUT), the amendment was applied as a base dressing in small circles around trees. In the planting-hole treatment (PHT), the amendment was incorporated into soil inside the planting holes. Five growth seasons after planting and fertilization, six alders from each treatment were harvested including roots. Their biomass was quantified and analyzed for macroelements. The greatest pool of dry mass (DM) was branches in the control and stem wood in the fertilized treatments. The greatest pools of macroelements were leaves and branches. The most pronounced effects of fertilization were recorded in the DM and consequently in the absolute quantities of nutrients. The DM of an average tree in the control, SUT, and PHT was 85, 226, and 231 g, respectively. The absolute contents of nutrients per tree in the fertilized treatments showed the following increases, as compared with the control: (N) 2.5-2.6 times; (P) 1.6-2.4 times; (K) 1.8-2.1 times; and (Mg) 1.8-2.0 times, respectively. Speckled alder responded positively to fertilization.

  14. Biomass of speckled alder on an air-polluted mountain site and its response to fertilization.

    PubMed

    Kuneš, Ivan; Baláš, Martin; Koňasová, Tereza; Spulák, Ondřej; Balcar, Vratislav; Millerová, Kateřina Bednářová; Kacálek, Dušan; Jakl, Michal; Zahradník, Daniel; Vítámvás, Jan; Stastná, Jaroslava; Jaklová Dytrtová, Jana

    2014-12-01

    The article summarizes outcomes of a biomass study conducted in a young speckled alder plantation on a cold mountain site. At this location, the previously existing old forest was clear felled because of damage from air pollution, and present-day surface humus is in need of restoration. The intention of this study was to quantify the biomass and nutrients accumulated by alders and their components and assess whether the initial fertilization resulted in increased biomass production and nutrient accumulation in the biomass. Besides the control, two fertilized treatments were installed. In the surface treatment (SUT), the amendment was applied as a base dressing in small circles around trees. In the planting-hole treatment (PHT), the amendment was incorporated into soil inside the planting holes. Five growth seasons after planting and fertilization, six alders from each treatment were harvested including roots. Their biomass was quantified and analyzed for macroelements. The greatest pool of dry mass (DM) was branches in the control and stem wood in the fertilized treatments. The greatest pools of macroelements were leaves and branches. The most pronounced effects of fertilization were recorded in the DM and consequently in the absolute quantities of nutrients. The DM of an average tree in the control, SUT, and PHT was 85, 226, and 231 g, respectively. The absolute contents of nutrients per tree in the fertilized treatments showed the following increases, as compared with the control: (N) 2.5-2.6 times; (P) 1.6-2.4 times; (K) 1.8-2.1 times; and (Mg) 1.8-2.0 times, respectively. Speckled alder responded positively to fertilization. PMID:25294419

  15. Combined Grinding and Drying of Biomass in One Operation Phase I

    SciTech Connect

    Sokhansanj, S

    2008-06-26

    First American Scientific Corporation (FASC) has developed a unique and innovative grinder/dryer called KDS Micronex. The KS (Kinetic Disintegration System) combines two operations of grinding and drying into a single operation which reduces dependence on external heat input. The machine captures the heat of comminution and combines it will centrifugal forces to expedite moisture extraction from wet biomass. Because it uses mechanical forces rather than providing direct heat to perform the drying operation, it is a simpler machine and uses less energy than conventional grinding and drying operations which occur as two separate steps. The entire compact unit can be transported on a flatbed trailer to the site where biomass is available. Hence, the KDS Micronex is a technology that enables inexpensive pretreatment of waste materials and biomass. A well prepared biomass can be used as feed, fuel or fertilizer instead of being discarded. Electricity and chemical feedstock produced from such biomass would displace the use of fossil fuels and no net greenhouse gas emissions would result from such bio-based operations. Organic fertilizers resulting from the KS Micronex grinding/drying process will be pathogen-free unlike raw animal manures. The feasibility tests on KS during Phase I showed that a prototype machine can be developed, field tested and the technology demonstrated for commercial applications. The present KDS machine can remove up to 400 kg/h of water from a wet feed material. Since biomass processors demand a finished product that is only 10% moist and most raw materials like corn stover, bagasse, layer manure, cow dung, and waste wood have moisture contents of the order of 50%, this water removal rate translates to a production rate of roughly half a ton per hour. this is too small for most processors who are unwilling to acquire multiple machines because of the added complexity to the feed and product removal systems. The economics suffer due to small

  16. Use of cheese whey for biomass production and spray drying of probiotic lactobacilli.

    PubMed

    Lavari, Luisina; Páez, Roxana; Cuatrin, Alejandra; Reinheimer, Jorge; Vinderola, Gabriel

    2014-08-01

    The double use of cheese whey (culture medium and thermoprotectant for spray drying of lactobacilli) was explored in this study for adding value to this wastewater. In-house formulated broth (similar to MRS) and dairy media (cheese and ricotta whey and whey permeate) were assessed for their capacity to produce biomass of Lactobacillus paracasei JP1, Lb. rhamnosus 64 and Lb. gasseri 37. Simultaneously, spray drying of cheese whey-starch solution (without lactobacilli cells) was optimised using surface response methodology. Cell suspensions of the lactobacilli, produced in in house-formulated broth, were spray-dried in cheese whey-starch solution and viability monitored throughout the storage of powders for 2 months. Lb. rhamnosus 64 was able to grow satisfactorily in at least two of the in-house formulated culture media and in the dairy media assessed. It also performed well in spray drying. The performance of the other strains was less satisfactory. The growth capacity, the resistance to spray drying in cheese whey-starch solution and the negligible lost in viability during the storage (2 months), makes Lb. rhamnosus 64 a promising candidate for further technological studies for developing a probiotic dehydrated culture for foods, utilising wastewaters of the dairy industry (as growth substrate and protectant) and spray drying (a low-cost widely-available technology). PMID:24666842

  17. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-06-17

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

  18. Entrainment of Upper Level Dry Air into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovee, Gary J.; Hood, Robbie E.; Atkinson, Robert J.; LaFontaine, Frank J.

    2000-01-01

    Hurricane Earl developed from a tropical wave that moved into the Gulf of Mexico, which triggered abundant convection. On 1 Sept. 1998, the wave was upgraded directly to a tropical storm. Earl reached hurricane status the next morning. The system moved erratically as it interacted with an upper level short wave trough rotating around a long wave trough to the northeast. The storm made landfall near 0600 UTC on 3 September near Panama City, FL. During August and September 1998, NASA conducted the Third Convection and Moisture Experiment (CAMEX-3). It focused on studying the intensity, track, and impacts at landfall of hurricanes. On the afternoon of 2 September 1998, the NASA ER2 high-altitude aircraft flying at 65,000 feet in tandem with the NASA DC-8 flying at 35,000 feet flew over and through, respectively, the eastern rainbands of Earl near the Florida Panhandle as the storm neared landfall in the region. Two approaches to studying Earl are undertaken here: first, an examination of the source and height of the dry air region using GOES-8 water vapor data and, second, a look into the impact of the dry air entrainment on the system using aircraft remote sensing data.

  19. Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes.

    PubMed

    Verma, V K; Tewari, Saumyata; Rai, J P N

    2008-04-01

    In this study, potentials of oven dried biomass of Eichhornia crassipes, Valisneria spiralis and Pistia stratiotes, were examined in terms of their heavy metal (Cd, Ni, Zn, Cu, Cr and Pb) sorption capacity, from individual-metal and multi-metal aqueous solutions at pH 6.0+/-0.1 (a popular pH of industrial effluent). V. spiralis was the most and E. crassipes was the least efficient for removal of all the metals. Cd, Pb and Zn were efficiently removed by all the three biomass. Cd was removed up to 98% by V. spiralis. Sorption data for Cr, Ni and Cd fitted better to Langmuir isotherm equation, while, the sorption data for Pb, Zn and Cu fitted better to Freundlich isotherm equation. In general, the presence of other metal ions did not influence significantly the targeted metal sorption capacity of the test plant biomasses. Ion exchange was proven the main mechanism involved in bio-sorption and there was a strong ionic balance between adsorbed (H(+) and M(2+)) to the released ions (Na(+) and K(+)) to and from the biomass. No significant difference was observed in the metal exchanged amount, by doubling of metal concentration (15-30 mg/l) in the solution and employing individual-metal and multi-metal solutions. PMID:17513104

  20. Effects of Air Drying on Soil Available Phosphorus in Two Grassland Soils

    NASA Astrophysics Data System (ADS)

    Schaerer, M.; Frossard, E.; Sinaj, S.

    2003-04-01

    Mobilization of P from the soil to ground and surface water is principally determined by the amount of P in the soil and physico-chemical as well as biological processes determining the available P-pool that is in equilibrium with soil solution. Soil available P is commonly estimated on air dry soil using a variety of methods (extraction with water, dilute acids and bases, anion exchange resin, isotopic exchange or infinite sinks). Recently, attempts have been made to use these measurements to define the potential for transport of P from soil to water by overland flow or subsurface flow. The effect of air drying on soil properties in general, and plant nutrient status in particular, have been subject of a number of studies. The main objective of this paper was to evaluate the effect of air-drying on soil properties and available P. For this experiment, grassland soils were sampled on two study sites located on slopes in the watershed of Lake Greifensee, 25 km south-east of Zurich. Both soils (0-4 cm depth) are rich in P with 1.7 and 1.3 g kg-1 total P at site I and site II, respectively. The concentrations on isotopically exchangeable P within 1 minute (E1min, readily available P) for the same depth were also very high, 58 and 27 mg P kg soil-1 for the site I and II, respectively. In the present study both field moist and air dried soil samples were analyzed for microbial P (Pmic), resin extractable P (P_r), isotopically exchangeable P (E1min) and amorphous Al and Fe (Alox, Feox). Generally, the microbial P in field moist soils reached values up to 120 mg P/kg soil, whereas after drying they decreased by 73% in average for both soils. On the contrary to Pmic, available P estimated by different methods strongly increased after drying of the soil samples. The concentration of phosphate ions in the soil solution c_p, E1min and P_r were 4.2, 2.2 and 2 times higher in dry soils than in field moist soils. The increase in available P shows significant semilogarithmic

  1. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  2. Impact of biomass burning sources on seasonal aerosol air quality

    NASA Astrophysics Data System (ADS)

    Reisen, Fabienne; Meyer, C. P. (Mick); Keywood, Melita D.

    2013-03-01

    In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little data on the significance of the impact. The aim of the study was to quantitatively assess the seasonal atmospheric particle loadings in the Huon Valley and determine the impact of smoke pollution. The study monitored fine (PM2.5) and coarse (PM10) particle concentrations and their chemical composition at two locations in the Huon Valley, Geeveston, an urban site and Grove, a rural site, between March 2009 and November 2010. The monitoring program clearly showed that biomass burning was a significant source of PM2.5 in the Huon Valley, leading to exceedences of the 24 h PM2.5 Ambient Air Quality National Environment Protection Measures advisory standard on a number of occasions. Significant increases of PM2.5 concentrations above background occurred during periods of prescribed burning as well as during the winter season. Although the intensity of emissions from prescribed burns (PB) and residential woodheaters (WH) was similar, emissions from WH were the largest source of PM2.5, with a contribution of 77% to the ambient PM2.5 load compared to an 11% contribution from PB. The results have also shown a greater impact on air quality at the urban site than at the rural site, indicating that PM2.5 concentrations are primarily influenced by localised sources rather than by regional pollution. The potential impact on local residents of the high PM concentrations during the PB and WH season was assessed. WH pollution is largely a persistent night-time issue in contrast to PB events which generally occur during the day and are of short duration. Due to the long persistence of high PM concentrations in winter, indoor PM concentrations are unlikely to be substantially lower than

  3. Assessment of the microbial biomass using the content of phospholipids in soils of the dry steppe

    NASA Astrophysics Data System (ADS)

    Khomutova, T. E.; Demkin, V. A.

    2011-06-01

    Microbiological and biochemical investigations of chestnut soils and solonetzes were conducted in the dry steppe of the southern Privolzhskaya and northern Ergeni uplands. The living biomass of the microbial communities in the soils was estimated based on the content of phospholipids in the soils. Significant correlations were revealed between the contents of phospholipids and the main soil properties (the contents of humus, r = 0.66, P = 0.999; clay, r = -0.41, P = 0.95; physical clay, r = -0.57, P = 0.99; and pH, r = -0.59, P = 0.99). The content of phospholipids varied from 69 to 192 nmol/g of soil in the A1 horizons; with depth it decreased down to 36-135 in the B1 horizon and to 26-79 nmol/g of soil in the B2 horizon. The microbial biomass in the solonetzes was lower by 5 to 38% than that in the chestnut soils. A trend of the decreasing of the microbial biomass in the soils from the north to the south was revealed. Based on the content of phospholipids, the number of living microbial cells was assessed; the weighed averages of their number varied from 0.7-3.2 × 1010 to 7.5-13.6 × 1010.

  4. Entrainment of Upper Level Dry Air Into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary J.; Hood, Robbie E.; Atkinson, Robert J.; LaFontaine, Frank J.

    1999-01-01

    Hurricane Earl formed in the Gulf of Mexico in September 1998. It quickly was upgraded from a tropical disturbance to tropical storm status and then to a hurricane. Earl possessed hybrid (tropical and extratropical) characteristics throughout its lifetime. The system maintained and erratic track, which led to wide variability in the operational track forecasts. It eventually made landfall on the Florida panhandle on 2 September and raced northeastward. During August and September 1998, NASA conducted the third Convection and Moisture Experiment (CAMEX-3). The experiment was focused on studying hurricanes with an emphasis toward developing a better understanding of their intensification and motion. Earl provides a unique opportunity to utilize high spatial and temporal resolution data collected from the DC-8 and high altitude ER-2 NASA platforms, which flew over Earl as it made landfall. These data can also be put into broader view provided by other instruments from the Geosynchronous Operational Environmental Satellites (GOES) and the Tropical Rainfall Measuring Mission (TRMM) satellites. Hurricane Earl was affected by entrainment of dry air from the northwest. Hurricane Isis was intensifying and approaching the Mexican Pacific coast with its associated outflow potentially affecting the inflow into Earl as the storm neared Florida. In addition, a longwave synoptic trough circulation was present over the eastern U.S. Either or both of these could be responsible for the dry air into the system. This paper will focus on identifying the source of the dry by using upper-level wind and moisture fields derived from the GOES 6.7 um water vapor imagery. We will attempt to relate the large-scale observations to those from the NASA aircraft. An infrared instrument onboard the ER-2 also has a similar wavelength and may be able to confirm some of the GOES findings. In addition, a microwave radiometer with 4 channels focused on measuring precipitation and its associated ice

  5. How does mid-tropospheric dry air affect the evolution of supercellular convection?

    NASA Astrophysics Data System (ADS)

    Honda, Takumi; Kawano, Tetsuya

    2015-04-01

    To investigate the influence of mid-tropospheric dry air on the evolution of supercell storms, idealized numerical experiments with several moisture profiles were performed. In an environment with (without) a mid-level dry layer, supercellular convection decays immediately (persists for a long period). A set of trajectory analyses revealed that two suppression processes contribute to the convection decay in the environment with the mid-tropospheric dry layer. One is the entrainment process within the mid-tropospheric dry layer, and the other is the dry-air penetration process. In the latter process, dry air penetrates into the low-level updraft region, so that the supply of warm, moist air for convection is reduced. Neither of the processes contributes effectively in an environment with a dry layer located at a higher altitude. The dependence of the results on the environmental shear profile, evaporation rate, and the amount of convective available potential energy (CAPE) was also examined by additional experiments.

  6. Modelling and prediction of air pollutant transport during the 2014 biomass burning and forest fires in peninsular Southeast Asia.

    PubMed

    Duc, Hiep Nguyen; Bang, Ho Quoc; Quang, Ngo Xuan

    2016-02-01

    During the dry season, from November to April, agricultural biomass burning and forest fires especially from March to late April in mainland Southeast Asian countries of Myanmar, Thailand, Laos and Vietnam frequently cause severe particulate pollution not only in the local areas but also across the whole region and beyond due to the prevailing meteorological conditions. Recently, the BASE-ASIA (Biomass-burning Aerosols in South East Asia: Smoke Impact Assessment) and 7-SEAS (7-South-East Asian Studies) studies have provided detailed analysis and important understandings of the transport of pollutants, in particular, the aerosols and their characteristics across the region due to biomass burning in Southeast Asia (SEA). Following these studies, in this paper, we study the transport of particulate air pollution across the peninsular region of SEA and beyond during the March 2014 burning period using meteorological modelling approach and available ground-based and satellite measurements to ascertain the extent of the aerosol pollution and transport in the region of this particular event. The results show that the air pollutants from SEA biomass burning in March 2014 were transported at high altitude to southern China, Hong Kong, Taiwan and beyond as has been highlighted in the BASE-ASIA and 7-SEAS studies. There are strong evidences that the biomass burning in SEA especially in mid-March 2014 has not only caused widespread high particle pollution in Thailand (especially the northern region where most of the fires occurred) but also impacted on the air quality in Hong Kong as measured at the ground-based stations and in LulinC (Taiwan) where a remote background monitoring station is located. PMID:26797812

  7. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  8. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  9. [Effects of ozone pollution on the accumulation and distribution of dry matter and biomass carbon of different varieties of wheat].

    PubMed

    Kou, Tai-ji; Yu, Wei-wei; Zhu, Jian-guo; Zhu, Xin-kai

    2012-08-01

    Effects of surface ozone pollution on the terrestrial ecosystem and plant growth have drawn great attention. With the support of the free-air ozone concentration enrichment (O3-FACE) system located in Jiangdu City, Jiangsu Province, the effects of elevated atmospheric ozone (pO3) on the accumulation and distribution of dry matter and biomass carbon as well as the C/N ratio of crop residue of five wheat (Tritcium aestivum L.) varieties (Yangmai 15, Yangmai 16, Yannong 19, Yangfumai 2 and Jiaxing 002) were investigated in the Yangtze River delta, the target pO3 of which was 50% higher than the ambient pO3. The results showed that the accumulation and distribution of different wheat varieties responded differently to elevated pO3. Elevated pO3 decreased the biomass of Yangmai 15 and Jiaxing 002, increased the Yangfumai 2 biomass, and had no effects on the total biomass of Yangmai 16 and Yannog 19, among which a significant difference was found for Jiaxing 002. Elevated pO3 significantly increased the ratios of root to shoot for Yangmai 15 and Jiaxing 002 and significantly decreased the root/shoot ratios of Yannong 19 and Yangfumai 2, but had no effect on Yangmai 16, leading to an obvious difference in dry matter distributed among aboveground and belowground parts. O3 enrichment decreased the wheatear weight of Yangmai 15, Yangmai 16 and Jiaxing 002, and had no effect on that of Yannong 19 and Yangfumai 2. Elevated pO3 significantly decreased the proportion of grain weight to ear weight by 8.2%-15.5% for Jiaxing 002, Yannong 19 and Yangfumai 2, whereas the proportion was increased for Yangmai 15 and not affected for Yangmai 16, suggesting that O3 enrichment lead to different decreases in the yield of Jiaxing 002, Yannong 19, Yangfumai 2 and Yangmai 16. Elevated pO3 significantly increased the straw carbon of Yannong 19 and Yanfumai 2 by 14.1%-22.9% and significantly decreased the straw C/N ratio by 10.9%-29.1%. The rising pO3 significantly decreased the straw carbon of

  10. Brown and green sugarcane leaves as potential biomass: How they deteriorate under dry and wet storage conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The current trends to (1) investigate sugarcane leaves as a sustainable biomass feedstock for the production of biofuels and bioproducts and (2) delivery of more leaves to factories for processing with stalks, have made information on how it deteriorates on storage during dry and wet environmental c...

  11. Spontaneous Rayleigh-Brillouin scattering of ultraviolet light in nitrogen, dry air, and moist air.

    PubMed

    Witschas, Benjamin; Vieitez, Maria O; van Duijn, Eric-Jan; Reitebuch, Oliver; van de Water, Willem; Ubachs, Wim

    2010-08-01

    Atmospheric lidar techniques for the measurement of wind, temperature, and optical properties of aerosols rely on the exact knowledge of the spectral line shape of the scattered laser light on molecules. We report on spontaneous Rayleigh-Brillouin scattering measurements in the ultraviolet at a scattering angle of 90 degrees on N(2) and on dry and moist air. The measured line shapes are compared to the Tenti S6 model, which is shown to describe the scattering line shapes in air at atmospheric pressures with small but significant deviations. We demonstrate that the line profiles of N(2) and air under equal pressure and temperature conditions differ significantly, and that this difference can be described by the S6 model. Moreover, we show that even a high water vapor content in air up to a volume fraction of 3.6vol.% has no influence on the line shape of the scattered light. The results are of relevance for the future spaceborne lidars on ADM-Aeolus (Atmospheric Dynamics Mission) and EarthCARE (Earth Clouds, Aerosols, and Radiation Explorer). PMID:20676176

  12. Performance of Silica Gel in the Role of Residual Air Drying

    NASA Technical Reports Server (NTRS)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  13. Hot air drying of apple slices: dehydration characteristics and quality assessment

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-08-01

    The main objectives of the present study were to investigate the drying characteristics and quality attributes of apple slices. The samples were dried at different air temperature levels (50, 60 and 70 °C) and a constant air velocity (1.5 m s-1). It was observed that the drying air temperature affected the dehydration rate significantly. The usefulness of eight different mathematical models to simulate the experimental drying curves was evaluated and the Midilli model provided the best simulation of the samples drying kinetics. The effective moisture diffusivity was determined to be 7.03 × 10-10, 8.48 × 10-10 and 1.08 × 10-9 m2 s-1 for drying air temperatures of 50, 60 and 70 °C, respectively. The shrinkage values of the dried samples at air temperatures of 50, 60 and 70 °C were 74.70, 82.35 and 80.78 %, respectively. The maximum value of rehydration ratio (4.527) and also the minimum value of ∆E (11.27) were obtained for the slices dried at 70 °C.

  14. Hot air drying of apple slices: dehydration characteristics and quality assessment

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2016-08-01

    The main objectives of the present study were to investigate the drying characteristics and quality attributes of apple slices. The samples were dried at different air temperature levels (50, 60 and 70 °C) and a constant air velocity (1.5 m s-1). It was observed that the drying air temperature affected the dehydration rate significantly. The usefulness of eight different mathematical models to simulate the experimental drying curves was evaluated and the Midilli model provided the best simulation of the samples drying kinetics. The effective moisture diffusivity was determined to be 7.03 × 10-10, 8.48 × 10-10 and 1.08 × 10-9 m2 s-1 for drying air temperatures of 50, 60 and 70 °C, respectively. The shrinkage values of the dried samples at air temperatures of 50, 60 and 70 °C were 74.70, 82.35 and 80.78 %, respectively. The maximum value of rehydration ratio (4.527) and also the minimum value of ∆E (11.27) were obtained for the slices dried at 70 °C.

  15. Reduced heat stress in offices in the tropics using solar powered drying of the supply air.

    PubMed

    Gunnarsen, L; Santos, A M B

    2002-12-01

    Many solutions to indoor climate problems known from developed countries may have prohibitive installation and running costs in developing countries. The purpose was to develop a low-cost solution to heat stress in a hot and humid environment based on solar powered drying of supply air. Dry supply air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different combinations of temperature and humidity and led to Personal Units for Ventilation and Cooling (PUVAC) in six cubicles simulating office workplaces. A total of 123 heat acclimatized subjects were exposed 45 min in each of the cubicles. A model for the combined effect of operative temperature of room, moisture content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air is a low-cost alternative to traditional air conditioning in hot and humid regions. PMID:12532757

  16. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  17. Remediation of muddy tidal flat sediments using hot air-dried crushed oyster shells.

    PubMed

    Yamamoto, Tamiji; Kondo, Shunsuke; Kim, Kyung-Hoi; Asaoka, Satoshi; Yamamoto, Hironori; Tokuoka, Makoto; Hibino, Tadashi

    2012-11-01

    In order to prove that hot air-dried crushed oyster shells (HACOS) are effective in reducing hydrogen sulfide in muddy tidal flat sediments and increasing the biomass, field experiments were carried out. The concentration of hydrogen sulfide in the interstitial water, which was 16 mg SL(-1) before the application of HACOS, decreased sharply and maintained almost zero in the experimental sites (HACOS application sites) for one year, whereas it was remained at ca. 5 mg SL(-1) in the control sites. The number of macrobenthos individuals increased to 2-4.5 times higher than that in the control site. Using a simple numerical model, the effective periods for suppression of hydrogen sulfide were estimated to be 3.2-7.6 and 6.4-15.2 years for the experimental sites with 4 and 8 tons per 10 × 10 × 0.2m area, respectively. From these results, it is concluded that HACOS is an effective material to remediate muddy tidal flats. PMID:23017947

  18. Cu(II) binding by dried biomass of red, green and brown macroalgae.

    PubMed

    Murphy, Vanessa; Hughes, Helen; McLoughlin, Peter

    2007-02-01

    Dried biomass of the marine macroalgae Fucus spiralis and Fucus vesiculosus (brown), Ulva spp. (comprising Ulva linza, Ulva compressa and Ulva intestinalis) and Ulva lactuca (green), Palmaria palmata and Polysiphonia lanosa (red) were studied in terms of their Cu(II) biosorption performance. This is the first study of its kind to compare Cu(II) uptake by these seaweeds in the South-East of Ireland. Potentiometric and conductimetric titrations revealed a variety of functionalities on the seaweed surface including carboxyl and amino groups, which are capable of metal binding. It was also found that, of the seaweeds investigated, F. vesiculosus contained the greatest number of acidic surface binding sites while Palmaria palmata contained the least. The metal uptake capacities of the seaweeds increased with increasing pH and kinetic behaviour followed a similar pattern for all seaweeds: a rapid initial sorption period followed by a longer equilibrium period. P. palmata reached equilibrium within 10min of exposure while F. vesiculosus required 60min. Correlation was found between the total number of acidic binding sites and the time taken to reach equilibrium. Fourier transform infra-red (FTIR) analysis of the seaweeds revealed the interaction of carboxyl, amino, sulphonate and hydroxyl groups on the seaweed surface with Cu(2+) ions while time course studies established the relative contribution of each of these groups in metal binding. PMID:17234234

  19. Recovery of aboveground plant biomass and productivity after fire in mesic and dry black spruce forests of interior Alaska

    USGS Publications Warehouse

    Mack, M.C.; Treseder, K.K.; Manies, K.L.; Harden, J.W.; Schuur, E.A.G.; Vogel, J.G.; Randerson, J.T.; Chapin, F. S., III

    2008-01-01

    Plant biomass accumulation and productivity are important determinants of ecosystem carbon (C) balance during post-fire succession. In boreal black spruce (Picea mariana) forests near Delta Junction, Alaska, we quantified aboveground plant biomass and net primary productivity (ANPP) for 4 years after a 1999 wildfire in a well-drained (dry) site, and also across a dry and a moderately well-drained (mesic) chronosequence of sites that varied in time since fire (2 to ???116 years). Four years after fire, total biomass at the 1999 burn site had increased exponentially to 160 ?? 21 g m-2 (mean ?? 1SE) and vascular ANPP had recovered to 138 ?? 32 g m-2 y -1, which was not different than that of a nearby unburned stand (160 ?? 48 g m-2 y-1) that had similar pre-fire stand structure and understory composition. Production in the young site was dominated by re-sprouting graminoids, whereas production in the unburned site was dominated by black spruce. On the dry and mesic chronosequences, total biomass pools, including overstory and understory vascular and non-vascular plants, and lichens, increased logarithmically (dry) or linearly (mesic) with increasing site age, reaching a maximum of 2469 ?? 180 (dry) and 4008 ?? 233 g m-2 (mesic) in mature stands. Biomass differences were primarily due to higher tree density in the mesic sites because mass per tree was similar between sites. ANPP of vascular and non-vascular plants increased linearly over time in the mesic chronosequence to 335 ?? 68 g m-2 y -1 in the mature site, but in the dry chronosequence it peaked at 410 ?? 43 g m-2 y-1 in a 15-year-old stand dominated by deciduous trees and shrubs. Key factors regulating biomass accumulation and production in these ecosystems appear to be the abundance and composition of re-sprouting species early in succession, the abundance of deciduous trees and shrubs in intermediate aged stands, and the density of black spruce across all stand ages. A better understanding of the controls

  20. Comparison of the effects of gamma radiation on hydrated and air dried rye grass seeds

    SciTech Connect

    Worthington, M.

    1988-01-01

    This is a comparative study of the effects of gamma radiation on the growth of hydrated and air dried seeds during the first weeks of primary growth. Four groups of seeds were used in the study: 1) hydrated sweet corn, 2) air dried sweet corn, 3) hydrated rye grass, and 4) air dried rye grass. Each group was then further subdivided and exposed to various levels of gamma radiation using a Cobalt-60 irradiator, except for the control samples of the four groups which received no radiation above background level. All seeds samples were then planted, allowed to grow for approximately 12 days, and harvested. Growth of both shoot and root of each seed was recorded for data analysis according to specific groups. Analyses of data from this study shows that the mean growth of air dried seeds when exposed to gamma radiation prior to planting.

  1. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    NASA Astrophysics Data System (ADS)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  2. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    NASA Astrophysics Data System (ADS)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  3. MEASUREMENT OF INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPY MACHINES

    EPA Science Inventory

    The article provides background information on indoor air emissions from office equipment, with emphasis on dry-process photocopy machines. The test method is described in detail along with results of a study to evaluate the test method using four dry-process photocopy machines. ...

  4. Drying of chilli in a combined infrared and hot air rotary dryer.

    PubMed

    Mihindukulasuriya, Suramya D F; Jayasuriya, Hemantha P W

    2015-08-01

    The investigation of an economical and efficient drying method for chilli is beneficial because it could provide a means of overcoming the drawbacks of traditional drying methods: high operating power and long drying time, which result in a decrease in the quality of the chilli. This study involved the design and development of a combined infrared and hot air laboratory-scale rotary dryer, which consists of three operating modes: hot air, infrared, and combined infrared and hot air. Drying experiments were conducted at five different temperatures (50, 55, 60, 65, and 70 °C). The drying behavior produced with the three operating modes was evaluated. The best mode was determined based on the parameters for evaluating the quality of chilli, the power consumption, and the retention time. The results indicate that the optimal overall drying performance for chilli was achieved at 70, 65, 50 °C drying temperatures in hot air, combined, and IR mode, respectively. A positive correlation was observed between retention time and power consumption with the hot air and the combined modes, while a negative correlation was identified in the IR mode. PMID:26243909

  5. AIR DRYING AND PRETREATMENT EFFECTS ON SOIL SULFATE SORPTION

    EPA Science Inventory

    Drying, freezing, and refrigeration are commonly employed to facilitate the handling and storage of soil samples on which chemical, biological and physical analyses are to be performed. hese laboratory protocol have the potential to alter soil chemical characteristics and may res...

  6. Energy analysis on use of air and superheated steam as drying media

    SciTech Connect

    Tarnawski, W.Z.; Mitera, J.; Borowski, P.; Klepaczka, A.

    1996-10-01

    The physical properties of air and superheated steam were analyzed in a range of temperatures applied in paper and paperboard drying processes. On the basis of tests carried out on a pilot stand the values of energy indices for air and steam drying processes are compared. With the drying media temperature as T{sub M} = 300 C, nozzle velocity {nu} = 60 m/s and using the Huang and Mujumdar model as well as relationships given by Chance a comparative analysis of the results has been carried out. Variation of several indices in the range of temperatures 100--600 C and various nozzle velocities was studied.

  7. Contrasting long-term records of biomass burning in wet and dry savannas of equatorial East Africa.

    PubMed

    Colombaroli, Daniele; Ssemmanda, Immaculate; Gelorini, Vanessa; Verschuren, Dirk

    2014-09-01

    Rainfall controls fire in tropical savanna ecosystems through impacting both the amount and flammability of plant biomass, and consequently, predicted changes in tropical precipitation over the next century are likely to have contrasting effects on the fire regimes of wet and dry savannas. We reconstructed the long-term dynamics of biomass burning in equatorial East Africa, using fossil charcoal particles from two well-dated lake-sediment records in western Uganda and central Kenya. We compared these high-resolution (5 years/sample) time series of biomass burning, spanning the last 3800 and 1200 years, with independent data on past hydroclimatic variability and vegetation dynamics. In western Uganda, a rapid (<100 years) and permanent increase in burning occurred around 2170 years ago, when climatic drying replaced semideciduous forest by wooded grassland. At the century time scale, biomass burning was inversely related to moisture balance for much of the next two millennia until ca. 1750 ad, when burning increased strongly despite regional climate becoming wetter. A sustained decrease in burning since the mid20th century reflects the intensified modern-day landscape conversion into cropland and plantations. In contrast, in semiarid central Kenya, biomass burning peaked at intermediate moisture-balance levels, whereas it was lower both during the wettest and driest multidecadal periods of the last 1200 years. Here, burning steadily increased since the mid20th century, presumably due to more frequent deliberate ignitions for bush clearing and cattle ranching. Both the observed historical trends and regional contrasts in biomass burning are consistent with spatial variability in fire regimes across the African savanna biome today. They demonstrate the strong dependence of East African fire regimes on both climatic moisture balance and vegetation, and the extent to which this dependence is now being overridden by anthropogenic activity. PMID:24677504

  8. Catalytic air oxidation of biomass-derived carbohydrates to formic acid.

    PubMed

    Li, Jiang; Ding, Dao-Jun; Deng, Li; Guo, Qing-Xiang; Fu, Yao

    2012-07-01

    An efficient catalytic system for biomass oxidation to form formic acid was developed. The conversion of glucose to formic acid can reach up to 52% yield within 3 h when catalyzed by 5 mol% of H(5)PV(2)Mo(10)O(40) at only 373 K using air as the oxidant. Furthermore, the heteropolyacid can be used as a bifunctional catalyst in the conversion of cellulose to formic acid (yield=35%) with air as the oxidant. PMID:22499553

  9. BioDry: An Inexpensive, Low-Power Method to Preserve Aquatic Microbial Biomass at Room Temperature

    PubMed Central

    Tuorto, Steven J.; Brown, Chris M.; Bidle, Kay D.; McGuinness, Lora R.; Kerkhof, Lee J.

    2015-01-01

    This report describes BioDry (patent pending), a method for reliably preserving the biomolecules associated with aquatic microbial biomass samples, without the need of hazardous materials (e.g. liquid nitrogen, preservatives, etc.), freezing, or bulky storage/sampling equipment. Gel electrophoresis analysis of nucleic acid extracts from samples treated in the lab with the BioDry method indicated that molecular integrity was protected in samples stored at room temperature for up to 30 days. Analysis of 16S/18S rRNA genes for presence/absence and relative abundance of microorganisms using both 454-pyrosequencing and TRFLP profiling revealed statistically indistinguishable communities from control samples that were frozen in liquid nitrogen immediately after collection. Seawater and river water biomass samples collected with a portable BioDry “field unit", constructed from off-the-shelf materials and a battery-operated pumping system, also displayed high levels of community rRNA preservation, despite a slight decrease in nucleic acid recovery over the course of storage for 30 days. Functional mRNA and protein pools from the field samples were also effectively conserved with BioDry, as assessed by respective RT-PCR amplification and western blot of ribulose-1-5-bisphosphate carboxylase/oxygenase. Collectively, these results demonstrate that BioDry can adequately preserve a suite of biomolecules from aquatic biomass at ambient temperatures for up to a month, giving it great potential for high resolution sampling in remote locations or on autonomous platforms where space and power are limited. PMID:26710122

  10. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING CHEMICALS OF POTENTIAL INTEREST. (R825392)

    EPA Science Inventory

    A protocol was developed to rapidly assess the efficiency of chemical washing for the removal of excess biomass from biotrickling filters for waste air treatment. Although the experiment was performed on a small scale, conditions were chosen to simulate application in full-scale ...

  11. Reaction rate constant for dry air oxidation of K Basin fuel

    SciTech Connect

    Trimble, D.J.

    1998-04-29

    The rate of oxidation of spent nuclear fuel stored in the K Basin water is an important parameter when assessing the processes and accident scenarios for preparing the fuel for dry storage. The literature provides data and rate laws for the oxidation of unirradiated uranium in various environments. Measurement data for the dry air oxidation of K Basin fuel is compared to the literature data for linear oxidation in dry air. Equations for the correlations and statistical bounds to the K Basin fuel data and the literature data are selected for predicting nominal and bounding rates for the dry air oxidation of the K Basin fuel. These rate equations are intended for use in the Spent Nuclear Fuel Project Technical Data book.

  12. The effect of air temperature on the sappan wood extract drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  13. Mathematical modelling of thin layer hot air drying of carrot pomace.

    PubMed

    Kumar, Navneet; Sarkar, B C; Sharma, H K

    2012-02-01

    Thin layer carrot pomace drying characteristics were evaluated in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at 60, 65, 70 & 75 °C and at an air velocity of 0.7 m/s. Mathematical models were tested to fit drying data of carrot pomace. The whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. The average values of effective diffusivity ranged from 2.74 × 10(-9) to 4.64 × 10(-9) m(2)/s for drying carrot pomace. The activation energy value was 23.05 kJ/mol for the whole falling rate period. PMID:23572823

  14. Weather and climate impacts of biomass burning aerosols during the dry season in Amazonia

    NASA Astrophysics Data System (ADS)

    Kolusu, Seshagirirao; Marsham, John; Spracklen, Dominic; Parker, Douglas; Dalvi, Mohit; Johnson, Ben; Mann, Graham

    2016-04-01

    Amazonia is a major global source of biomass burning aerosols (BBA) with impacts on weather and climate. BBA can be represented in weather models, with satellite-observed fires used to provide emissions fields, but such emissions normally require tuning to give realistic aerosol fields in models. Here, we investigate the two-way coupling between BBA and regional weather during the South American Biomass Burning Analysis (SAMBBA) field campaign, using both a set of short-range (2-day) forecasts and nested 20-day runs with the Met Office Unified Model (MetUM). Short-range forecasts with parametrised convection show that BBA exert an overall cooling influence on the Earth-atmosphere system, although some levels of the atmosphere are directly warmed by the absorption of solar radiation: BBA reduce the clear-sky net radiation at the surface by 15 ± 1 W m‑2 and reduces net top-of-atmosphere radiation by 8 ± 1 W m‑2, with a direct atmospheric warming of 7 ± 1 W m‑2. BBA-induced reductions in all-sky radiation are smaller in magnitude, but of the same sign. The differences in heating induced by BBA lead to a more anticyclonic circulation at 700 hPa. BBA cools the boundary layer, but warms air above, reducing the BL depth by around 19 m. Locally, on a 150 km scale, changes in precipitation reach around 4 mm day‑1 due to changes in the location of convection, with BBA leading to fewer rain events that are more intense, which may be linked to the BBA changing the vertical profile of stability in the lower atmosphere. The localised changes in rainfall tend to average out to give a 5 % (0.06 mm day‑1) decrease in total precipitation, but the change in regional water budget is dominated by decreased evapotranspiration from the reduced net surface fluxes (0.2 to 0.3 mm day‑1). The results show that although including BBA either prognostoically, or through a climatology, improves forecasts, but differences between the impacts of prognostic and climatological aerosol

  15. Sub-Pixel Reflectance Unmixing in Estimating Vegetation Water Content and Dry Biomass of Corn and Soybeans Cropland using Normalized Difference Water Index (NDWI) from Satellites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimating vegetation cover, water content and dry biomass from space plays a significant role in a variety of scientific fields including drought monitoring, climate modeling, and agricultural prediction. However, getting accurate and consistent measurements of vegetation is complicated very often ...

  16. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  17. Impacts of South East Biomass Burning on local air quality in South China Sea

    NASA Astrophysics Data System (ADS)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  18. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs. PMID:25560259

  19. Indoor air pollution from biomass fuel smoke is a major health concern in the developing world

    PubMed Central

    Fullerton, Duncan G.; Bruce, Nigel; Gordon, Stephen B.

    2008-01-01

    Summary One-third of the world's population burn organic material such as wood, dung or charcoal (biomass fuel) for cooking, heating and lighting. This form of energy usage is associated with high levels of indoor air pollution and an increase in the incidence of respiratory infections, including pneumonia, tuberculosis and chronic obstructive pulmonary disease, low birthweight, cataracts, cardiovascular events and all-cause mortality both in adults and children. The mechanisms behind these associations are not fully understood. This review summarises the available information on biomass fuel use and health, highlighting the current gaps in knowledge. PMID:18639310

  20. D-0 End Calorimeter Warm Tube/TeV Dry Air Purge

    SciTech Connect

    Leibfritz, J.R.; /Fermilab

    1991-08-14

    This Engineering Note studies the design of the Dry Air Purge that is going to flow through the Warm Tube of the End Calorimeter of the D-O Calorimeter. The Tev tubes through the E.C. can be thought of as a cluster of concentric tubes: The Tev tube, the warm (vacuum vessel) tube, 15 layers of superinsulation, the cold (argon vessel) tube, and the Inner Hadronic center support tube. The Dry Air Purge will involve flowing Dry Air through the annular region between the Warm Tube and the Tev Beam Pipe. This air flow is intended to prevent condensation from forming in this region which could turn to ice under cryogenic temperatures. Any ice formed in this gap, could cause serious problems when these tubes are moved. The Air will flow through a Nylon Tube Fitting -1/4-inch I.D. to 1/8-inch male pipe thread (Cole Palmer YB-06465-15) see Drawing MC-295221 (Appendix A). This fitting will be attached to the Nylon 2-inch Tube-Wiper and Seal Assembly which is clamped to the ends of the Warm Tube (Appendix A). This note includes drawings and calculations that explain the setup of the Dry Air Purge and give the required information on the pressure drops through the setup. The Equations and properties used in the calculations were obtained from the Applied Fluid Dynamics Handbook by Robert D. Blevins and Fluid Dynamics Second Edition by Frank M. White.

  1. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    NASA Astrophysics Data System (ADS)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  2. Effects of Dry Air Intrusion on MJO Initiation during DYNAMO (Invited)

    NASA Astrophysics Data System (ADS)

    Chen, S. S.; Kerns, B. W.; Savarin, A.

    2013-12-01

    One of the challenging issues in MJO initiation over the equatorial Indian Ocean is interaction of convection and environmental moisture. It involves complex, multi-scale processes from entrainment/detrainment of cloud, convective downdraft and cold pools affecting the air-sea interface, to large-scale advection controlled by tropical and extratropical circulation. Observations from the DYNAMO field campaign in 2011 show that dry air intrusion into the equatorial Indian Ocean affects convection on both synoptic and MJO time scales. During mid-late November, a strong MJO event, refereed to as MJO2, developed over the DYNAMO array, which has the best coverage of the observational platforms including two aircraft, two research vessels, and island stations. This study focuses on two aspects of the dry air intrusion during MJO2: 1) convective cold pool structure and recovery related to convective-environmental moisture interaction, and 2) dry air intrusion and synoptic variability in convection/precipitation in MJO initiation. Convective downdraft can be affected by environmental water vapor due to entrainment by the convective clouds. Mid-level dry air observed during the convectively suppressed phase of MJO2 seems to enhance convective downdraft by increasing evaporation and, therefore, the strength of the downdraft and cold pools. We examine the convective cold pool structure and boundary layer recovery using the NOAA P-3 aircraft observations, include flight-level, Doppler radar, and GPS dropsonde data. The depth and strength of convective cold pools are defined by the negative buoyancy from the dropsonde data. Recovery of the cold pools in the boundary layer is determined by not only the strength and depth of the cold pools but also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO2, the aircraft data are stratified by the two different large-scale regimes of MJO2

  3. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    PubMed

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment. PMID:25327023

  4. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    NASA Astrophysics Data System (ADS)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  5. Effects of different biomass drying and lipid extraction methods on algal lipid yield, fatty acid profile, and biodiesel quality.

    PubMed

    Hussain, Javid; Liu, Yan; Lopes, Wilson A; Druzian, Janice I; Souza, Carolina O; Carvalho, Gilson C; Nascimento, Iracema A; Liao, Wei

    2015-03-01

    Three lipid extraction methods of hexane Soxhlet (Sox-Hex), Halim (HIP), and Bligh and Dyer (BD) were applied on freeze-dried (FD) and oven-dried (OD) Chlorella vulgaris biomass to evaluate their effects on lipid yield, fatty acid profile, and algal biodiesel quality. Among these three methods, HIP was the preferred one for C. vulgaris lipid recovery considering both extraction efficiency and solvent toxicity. It had the highest lipid yields of 20.0 and 22.0% on FD and OD biomass, respectively, with corresponding neutral lipid yields of 14.8 and 12.7%. The lipid profiling analysis showed that palmitic, oleic, linoleic, and α-linolenic acids were the major fatty acids in the algal lipids, and there were no significant differences on the amount of these acids between different drying and extraction methods. Correlative models applied to the fatty acid profiles concluded that high contents of palmitic and oleic acids in algal lipids contributed to balancing the ratio of saturated and unsaturated fatty acids and led to a high-quality algal biodiesel. PMID:25588528

  6. Mathematical modelling of thin layer hot air drying of apricot with combined heat and power dryer.

    PubMed

    Faal, Saeed; Tavakoli, Teymor; Ghobadian, Barat

    2015-05-01

    In this study thermal energy of an engine was used to dry apricot. For this purpose, experiments were conducted on thin layer drying apricot with combined heat and power dryer, in a laboratory dryer. The drying experiments were carried out for four levels of engine output power (25 %, 50 %, 75 % and full load), producing temperatures of 50, 60, 70, and 80 ° C in drying chamber respectively. The air velocity in drying chamber was about 0.5 ± 0.05 m/s. Different mathematical models were evaluated to predict the behavior of apricot drying in a combined heat and power dryer. Conventional statistical equations namely modeling efficiency (EF), Root mean square error (RMSE) and chi-square (χ2) were also used to determine the most suitable model. Assessments indicated that the Logarithmic model considering the values of EF = 0.998746, χ 2 = 0.000120 and RMSE = 0.004772, shows the best treatment of drying apricot with combined heat and power dryer among eleven models were used in this study. The average values of effective diffusivity ranged 1.6260 × 10(-9) to 4.3612 × 10(-9) m2/s for drying apricot at air temperatures between 50 and 80 °C and at the air flow rate of 0.5 ± 0.05 m/s; the values of Deff increased with the increase of drying temperature the effective diffusivities in the second falling rate period were about eight times greater than that in the first falling rate period. PMID:25892795

  7. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    PubMed

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  8. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    PubMed Central

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time due to varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory disease. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. PMID:22196520

  9. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    NASA Astrophysics Data System (ADS)

    Wang, Qiaoqiao; Shao, Min; Liu, Ying; William, Kuster; Paul, Goldan; Li, Xiaohua; Liu, Yuan; Lu, Sihua

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K + sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0-16.8% and 4.0-19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.

  10. Enhancement of acidic gases in biomass burning impacted air masses over Canada

    NASA Technical Reports Server (NTRS)

    Lefer, B. L.; Talbot, R. W.; Harriss, R. C.; Bradshaw, J. D.; Sandholm, S. T.; Olson, J. O.; Sachse, G. W.; Collins, J.; Shipham, M. A.; Blake, D. R.

    1994-01-01

    Biomass-burning impacted air masses sampled over central and eastern Canada during the summer of 1990 as part of ABLE 3B contained enhanced mixing ratios of gaseous HNO3, HCOOH, CH3COOH, and what appears to be (COOH)2. These aircraft-based samples were collected from a variety of fresh burning plumes and more aged haze layers from different source regions. Values of the enhancement factor, delta X/delta CO, where X represents an acidic gas, for combustion-impacted air masses sampled both near and farther away from the fires, were relatively uniform. However, comparison of carboxylic acid emission ratios measured in laboratory fires to field plume enhancement factors indicates significant in-plume production of HCOOH. Biomass-burning appears to be an important source of HNO3, HCOOH, and CH3COOH to the troposphere over subarctic Canada.

  11. Estimation of Biomass Burning Influence on Air Pollution around Beijing from an Aerosol Retrieval Model

    PubMed Central

    Mukai, Sonoyo; Nakata, Makiko

    2014-01-01

    We investigate heavy haze episodes (with dense concentrations of atmospheric aerosols) occurring around Beijing in June, when serious air pollution was detected by both satellite and ground measurements. Aerosol retrieval is achieved by radiative transfer simulation in an Earth atmosphere model. We solve the radiative transfer problem in the case of haze episodes by successive order of scattering. We conclude that air pollution around Beijing in June is mainly due to increased emissions of anthropogenic aerosols and that carbonaceous aerosols from agriculture biomass burning in Southeast Asia also contribute to pollution. PMID:25250383

  12. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal

    PubMed Central

    Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G.

    2014-01-01

    The exposure of children to air pollution in low resource settings is believed to be high because of the common use of biomass fuels for cooking. We used microenvironment sampling to estimate the respirable fraction of air pollution (particles with median diameter less than 4 μm) to which 7–9 year old children in southern Nepal were exposed. Sampling was conducted for a total 2649 h in 55 households, 8 schools and 8 outdoor locations of rural Dhanusha. We conducted gravimetric and photometric sampling in a subsample of the children in our study in the locations in which they usually resided (bedroom/living room, kitchen, veranda, in school and outdoors), repeated three times over one year. Using time activity information, a 24-hour time weighted average was modeled for all the children in the study. Approximately two-thirds of homes used biomass fuels, with the remainder mostly using gas. The exposure of children to air pollution was very high. The 24-hour time weighted average over the whole year was 168 μg/m3. The non-kitchen related samples tended to show approximately double the concentration in winter than spring/autumn, and four times that of the monsoon season. There was no difference between the exposure of boys and girls. Air pollution in rural households was much higher than the World Health Organization and the National Ambient Air Quality Standards for Nepal recommendations for particulate exposure. PMID:24533994

  13. Application of a dry-gas meter for measuring air sample volumes in an ambient air monitoring network

    SciTech Connect

    Fritz, Brad G.

    2009-05-24

    Ambient air monitoring for non-research applications (e.g. compliance) occurs at locations throughout the world. Often, the air sampling systems employed for these purposes employee simple yet robust equipment capable of handling the rigors of demanding sampling schedules. At the Hanford Site (near Richland, Washington) concentrations of radionuclides in ambient air are monitored continuously at 44 locations. In 2004, mechanical dry-gas meters were incorporated into the Hanford Site ambient air sample collection system to allow the direct measurement of sample volumes. These meters replaced a portable airflow measurement system that required two manual flow measurements and a sample duration measurement to determine sample volume. A six-month evaluation of the dry-gas meters compared sample volumes calculated using the original flow rate method to the direct sample volume measurement (new method). The results of the evaluation indicate that use of the dry-gas meters result in accurate sample volume measurements and provide greater confidence in the measured sample volumes. In several years of in-network use, the meters have proven to be reliable and have resulted in an improved sampling system.

  14. Method and apparatus for de-watering biomass materials in a compression drying process

    DOEpatents

    Haygreen, John G.

    1986-01-01

    A method and apparatus for more effectively squeezing moisture from wood chips and/or other "green" biomass materials. A press comprising a generally closed chamber having a laterally movable base at the lower end thereof, and a piston or ram conforming in shape to the cross-section of the chamber is adapted to periodically receive a charge of biomass material to be dehydrated. The ram is forced against the biomass material with suffcient force to compress the biomass and to crush the matrix in which moisture is contained within the material with the face of the ram being configured to cause a preferential flow of moisture from the center of the mass outwardly to the grooved walls of the chamber. Thus, the moisture is effectively squeezed from the biomass and flows through the grooves formed in the walls of the chamber to a collecting receptacle and is not drawn back into the mass by capillary action when the force is removed from the ram.

  15. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    PubMed

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation. PMID:26028758

  16. Source of Biomass Cooking Fuel Determines Pulmonary Response to Household Air Pollution

    PubMed Central

    Ingole, Vijendra; Kim, Jung-Hyun; McCormick, Sarah; Negherbon, Jesse; Fallica, Jonathan; Akulian, Jason; Yarmus, Lonny; Feller-Kopman, David; Wills-Karp, Marsha; Horton, Maureen R.; Breysse, Patrick N.; Agrawal, Anurag; Juvekar, Sanjay; Salvi, Sundeep

    2014-01-01

    Approximately 3 billion people—half the worldwide population—are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 μg/m3. We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM–exposed mice. To understand the molecular pathways that trigger biomass PM–induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R–deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases. PMID:24102120

  17. Dry purification of aspirational air in coke-sorting systems with wet slaking of coke

    SciTech Connect

    T.F. Trembach; A.G. Klimenko

    2009-07-15

    Coke transportation after wet slaking is accompanied by the release of dust in the production building and in the surrounding atmosphere. Wet methods are traditionally used to purify very humid air. Giprokoks has developed designs for highly efficient dry dust-removal methods in such conditions.

  18. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    NASA Astrophysics Data System (ADS)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  19. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  20. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  1. EVALUATION OF A TEST METHOD FOR MEASURING INDOOR AIR EMISSIONS FROM DRY-PROCESS PHOTOCOPIERS

    EPA Science Inventory

    A large chamber test method for measuring indoor air emissions from office equipment was developed, evaluated, and revised based on the initial testing of four dry-process photocopiers. Because all chambers may not necessarily produce similar results (e.g., due to differences in ...

  2. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    PubMed

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments. PMID:25796204

  3. Biosorption of Hg(II) and Cu(II) by biomass of dried Sargassum fusiforme in aquatic solution.

    PubMed

    Huang, Shengmou; Lin, Gan

    2015-01-01

    The biosorption of heavy metals Hg(II) and Cu(II) from aquatic solution by biomass of dried Sargassum fusiforme was studied in the paper. The Sargassum fusiforme was able to absorb appreciable amount of mercury and copper from the aquatic solutions within 60 min of contact time with the metal solution and exhibited high removal of mercury and copper at low equilibrium concentrations. The specific adsorption of both Hg(II) and Cu(II) increased at low concentration of biomass and decreased when biomass concentration exceeded 2.0 g/L. The binding of mercury followed Freundlich model while copper supported Langmuir isotherm for adsorption with their r(2) values of 0.971 and 0.923, respectively. The maximum adsorption per unit masses of Sargassum fusiforme (mg/L) at equilibrium (qmax) for Hg(II) and Cu(II) were calculated to be 30.86 and 7.69 mg/g, respectively. The biosorption by Sargassum fusiforme was best described using a pseudo-second-order kinetic model for copper and mercury ions in solution in the study. The adsorption was pH dependent as the maximum mercury biosorption and copper adsorption was happened at solution pH of 8-10. PMID:25806112

  4. Effect of additives and steaming on quality of air dried noodles.

    PubMed

    Gatade, Abhijeet Arun; Sahoo, Akshaya Kumar

    2015-12-01

    Texture is the most important property for consumer acceptance in cooked noodles. The air dried noodles are known to have higher cooking loss and cooking time, to that of instant fried noodles. But the fat content of instant fried noodles is more. In the present work attempts were made to optimize the moisture content so as to obtain a smooth dough for extruded noodle preparation and develop air dried noodles of low fat content with lesser cooking loss and cooking time. To meet the objectives, the effect of various additives and steaming treatment on cooking quality, sensory attributes, textural properties and microstructure of noodles were studied. Dough prepared by addition of 40 ml water to 100 g flour resulted into formation of a soft dough, leading to production of noodles of improved surface smoothness and maximum yield. The use of additives (5 g oil, 0.2 g guar gum, 2 g gluten and 1 ml of 1 % kansui solution for 100 g of flour) and steaming treatment showed significant effect on noodles quality, with respect to cooking characteristics, sensory attributes and textural properties. The microstructure images justified the positive correlation between the effects of ingredients with steaming and quality parameters of noodles. Air dried noodles with reduced cooking loss (~50 % reduction) with marginal reduction in cooking time was developed, which were having similar characteristics to that of instant fried noodles. Compared to the instant fried noodle, the prepared air dried noodle was having substantially reduced fat content (~70 % reduction). Thus the present study will be useful for guiding extrusion processes for production of air dried noodles having less cooking time and low fat content. PMID:26604421

  5. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.

    PubMed

    Le, V N P; Robins, E; Flament, M P

    2010-11-01

    Dry Powder Inhalers have drawn great attention from pharmaceutical scientists in recent years in particular those consisting of low-dose micronized drug particles associated with larger carrier particles and called interactive mixtures. However, there is little understanding of the relation between bulk powder properties such as powder structure and its aerodynamic dispersion performance. The aim of this work was to develop a simple method to measure the air permeability of interactive mixtures used in Dry Powder Inhalers by using Blaine's apparatus--a compendial permeameter and to relate it to the aerodynamic behaviour. The study was done with fluticasone propionate and terbutaline sulphate as drug models that were blended with several lactoses having different particle size distribution thus containing different percentages of fine particle lactose. The quality of the blends was examined by analysing the drug content uniformity. Aerodynamic evaluation of fine particle fraction was obtained using a Twin Stage Impinger. A linear correlation between a bulk property--air permeability of packed powder bed--and the fine particle fraction of drug was observed for the tested drugs. The air permeability reflects the quantity of the free particle fraction in the interparticulate spaces of powder bed that leads to fine particle fraction during fluidization in air flow. A theoretical approach was developed in order to link the air permeability of powder bed and drag force acting on powders during aerosolization process. The permeability technique developed in this study provides a potential tool for screening Dry Powder Inhaler formulations at the development stage. PMID:20854906

  6. Tetrachloroethene air pollution originating from coin-operated dry cleaning establishments.

    PubMed

    Gulyas, H; Hemmerling, L

    1990-10-01

    In 15 coin-operated dry cleaning establishments (CODC), in one building where a CODC had been run and in a private car transporting a dry-cleaned down jacket tetrachloroethene (TCE) indoor concentrations were investigated by air sampling with activated carbon tubes, elution of the carbon with toluene, and subsequent gas chromatographic analysis of the eluate. TCE concentrations in the car transporting the garment were up to 24.8 mg/m3. Within CODC air concentrations between 3.1 and 331 mg/m3 were measured. In the building where a CODC had once been run the TCE concentrations were slowly decreasing after removal of dry cleaning machines. In the basement below the CODC the TCE air concentration was 155 mg/m3 immediately after removal of the machines and 4.5 mg/m3 7.5 months later. TCE migrated from the basement via the staircase to the flats of the second floor where TCE air concentrations were about 1% of the concentrations in the basement. TCE-contaminated building material is shown to be a reservoir causing increased TCE air concentrations for a long time, which is serious considering the carcinogenic and reproductive risks from TCE exposure. PMID:2226380

  7. Tetrachloroethene air pollution originating from coin-operated dry cleaning establishments

    SciTech Connect

    Gulyas, H.; Hemmerling, L. )

    1990-10-01

    In 15 coin-operated dry cleaning establishments (CODC), in one building where a CODC had been run and in a private car transporting a dry-cleaned down jacket tetrachloroethene (TCE) indoor concentrations were investigated by air sampling with activated carbon tubes, elution of the carbon with toluene, and subsequent gas chromatographic analysis of the eluate. TCE concentrations in the car transporting the garment were up to 24.8 mg/m3. Within CODC air concentrations between 3.1 and 331 mg/m3 were measured. In the building where a CODC had once been run the TCE concentrations were slowly decreasing after removal of dry cleaning machines. In the basement below the CODC the TCE air concentration was 155 mg/m3 immediately after removal of the machines and 4.5 mg/m3 7.5 months later. TCE migrated from the basement via the staircase to the flats of the second floor where TCE air concentrations were about 1% of the concentrations in the basement. TCE-contaminated building material is shown to be a reservoir causing increased TCE air concentrations for a long time, which is serious considering the carcinogenic and reproductive risks from TCE exposure.

  8. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    PubMed

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  9. Performance of different dolomites on hot raw gas cleaning from biomass gasification with air

    SciTech Connect

    Orio, A.; Corella, J.; Narvaez, I.

    1997-09-01

    Calcined dolomites (CaO-MgO) from four different quarries have been tested for the upgrading of the hot raw gas from a fluidized bed gasifier of biomass with air. These calcined dolomites have big macropores (900--4,000 {angstrom}) and low (3.8--12 m{sup 2}/g) BET surface areas. They have been tested in a fixed bed of 6 cm i.d. downstream from the air-blown biomass gasifier. The change in gas composition (contents in H{sub 2}, CO, CO{sub 2}, CH{sub 4}, {hor_ellipsis}), tar content, gas heating value, etc., has been studied in different temperatures (780--920 C) as well as space-times for the gas in the bed (0.03--0.10 kg{center_dot}h/m{sup 3}) and the type of dolomite. Increasing the equivalence ratio used in the gasifier and decreasing the H/C ratio of the gas increases the refractoriness of the tars to be eliminated by the calcined dolomite. Activation energies (100 {+-} 20 kJ/mol) and preexponential factors for the overall tar elimination reaction have been calculated for the different dolomites under realistic conditions. The activity of the dolomite for tar elimination can increase by 20% on increasing its pore diameter or its Fe{sub 2}O{sub 3} content. Comparison of results with similar ones obtained in biomass gasification with steam is also presented.

  10. Experimental and predicted approaches for biomass gasification with enriched air-steam in a fluidised bed.

    PubMed

    Fu, Qirang; Huang, Yaji; Niu, Miaomiao; Yang, Gaoqiang; Shao, Zhiwei

    2014-10-01

    Thermo-chemical gasification of sawdust refuse-derived fuel was performed on a bench-scale fluidised bed gasifier with enriched air and steam as fluidising and oxidising agents. Dolomite as a natural mineral catalyst was used as bed material to reform tars and hydrocarbons. A series of experiments were carried out under typical operating conditions for gasification, as reported in the article. A modified equilibrium model, based on equilibrium constants, was developed to predict the gasification process. The sensitivity analysis of operating parameters, such as the fluidisation velocity, oxygen percentage of the enriched air and steam to biomass ratios on the produced gas composition, lower heating value, carbon conversion and cold gas efficiency was investigated. The results showed that the predicted syngas composition was in better agreement with the experimental data compared with the original equilibrium model. The higher fluidisation velocity enhanced gas-solid mixing, heat and mass transfers, and carbon fines elutriation, simultaneously. With the increase of oxygen percentage from 21% to 45%, the lower heating value of syngas increased from 5.52 MJ m(-3) to 7.75 MJ m(-3) and cold gas efficiency from 49.09% to 61.39%. The introduction of steam improved gas quality, but a higher steam to biomass ratio could decrease carbon conversion and gasification efficiency owing to a low steam temperature. The optimal value of steam to biomass ratio in this work was 1.0. PMID:25265865

  11. Biomass production of multipopulation microalgae in open air pond for biofuel potential.

    PubMed

    Selvakumar, P; Umadevi, K

    2016-04-01

    Biodiesel gains attention as it is made from renewable resources and has considerable environmental benefits. The present investigation has focused on large scale cultivation of multipopulation microalgae in open air pond using natural sea water without any additional nutritive supplements for low cost biomass production as a possible source of biofuel in large scale. Open air algal pond attained average chlorophyll concentration of 11.01 µg/L with the maximum of 43.65 µg/L as well as a higher lipid concentration of 18% (w/w) with lipid content 9.3 mg/L on the 10th day of the culture; and maximum biomass of 0.36 g/L on the 7th day of the culture. Composition analysis of fatty acid methyl ester (FAME) was performed by gas chromatography and mass spectrometry (GCMS). Multipopulation of algal biomass had 18% of total lipid content with 55% of total saturated fatty acids (SFA), 35.3% of monounsaturated fatty acids (MUFA) and 9.7% of polyunsaturated fatty acids (PUFA), revealing a potential source of biofuel production at low cost. PMID:27295924

  12. Particulate emissions from combustion of biomass in conventional combustion (air) and oxy-combustion conditions

    NASA Astrophysics Data System (ADS)

    Ruscio, Amanda Deanne

    Oxy-fuel combustion is a viable technology for new and existing coal-fired power plants, as it facilitates carbon capture and thereby, can reduce carbon dioxide emissions. The use of biomass as an energy source is another popular strategy to reduce carbon dioxide emissions as they are considered nearly carbon dioxide neutral. If the use of biomass is combined with oxy-fuel combustion, negative net emissions of carbon dioxide are possible. This work examined the particulate emissions from combustion of pulverized biomass residues burning in either conventional or oxy-fuel environments. Combustion of three biomasses (olive residue, corn residue, and torrefied pine sawdust) occurred in a laboratory-scale laminar-flow drop tube furnace (DTF) heated to 1400 K. The O2 mole fraction was increased from 20% to 60% in N2 environments while a range of 30% to 60% O2 mole fractions were used in CO2 environments to represent plausible dry oxy-fuel combustion conditions. Submicron particulate matter (PM1) emission yields of all three fuels were typically lower in O2/CO2 environments than in O2/N2 environments. When the oxygen mole fraction was increased, the PM1 yields typically increased. The mass fractions of submicron particulate matter (PM1/PM18) collected from biomass combustion were higher than those of coal combustion. PM 1 constituted approximately 50 wt% of the collected ash particles in PM18 in each environment, whereas the corresponding submicron emissions from coal constituted approximately 20 wt%. Changing the background gas had little effect on the chemical composition of the PM1 particles. Unlike the submicron particles collected from coal which contained high amounts of silicon and aluminum, high amounts of alkalis (potassium, calcium, and sodium) and chlorine were the major elements observed in PM1 from the biomasses. In addition, phosphorous and sulfur also existed in high amounts in PM1 of corn residue. Super-micron particles (PM1-18) yields exhibited no clear

  13. Effect of air velocity on kinetics of thin layer carrot pomace drying.

    PubMed

    Kumar, N; Sarkar, B C; Sharma, H K

    2011-10-01

    Carrot pomace is a by-product obtained during carrot juice processing. Thin layer carrot pomace drying was performed in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at the air velocity of 0.5, 0.7 and 1.0 m/s at air temperatures from 60 to 75 °C. It was observed that whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. Mathematical models were tested to fit drying data of carrot pomace. The best fit model was observed on the basis of R², Chi-square and RMSE values. R² values for all the selected models were above 0.9783. The average values of effective diffusivity ranged from 2.61 × 10(-9) to 3.64 × 10(-9) m²/s. PMID:21954311

  14. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2014-05-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled the largest fire-induced haze episode in the past decade (2006) in Indonesia using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). We focused mainly on the evolution of the fire plume composition and its interaction with the urbanized area of the city-state of Singapore, and on comparisons of modeled and measured aerosol and CO concentrations. Two simulations were run with the model using the complex Volatility Basis Set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic, and b iomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent datasets for comparison including airborne measurements of Particulate Matter with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and Aerosol Optical Depth (AOD) column observations from 4 satellite-based sensors. We found reasonable agreement of the model runs with both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while secondary organic aerosol (SOA) concentration slightly increased. The

  15. Transformation of Sulfur Species during Steam/Air Regeneration on a Ni Biomass Conditioning Catalyst

    SciTech Connect

    Yung, M. M.; Cheah, S.; Magrini-Bair, K.; Kuhn, J. N.

    2012-07-06

    Sulfur K-edge XANES identified transformation of sulfides to sulfates during combined steam and air regeneration on a Ni/Mg/K/Al2O3 catalyst used to condition biomass-derived syngas. This catalyst was tested over multiple reaction/regeneration/reduction cycles. Postreaction catalysts showed the presence of sulfides on H2S-poisoned sites. Although H2S was observed to leave the catalyst bed during regeneration, sulfur remained on the catalyst, and a transformation from sulfides to sulfates was observed. Following the oxidative regeneration, the subsequent H2 reduction led to a partial reduction of sulfates back to sulfides, indicating the difficulty and sensitivity in achieving complete sulfur removal during regeneration for biomass-conditioning catalysts.

  16. Optimum dry-cooling sub-systems for a solar air conditioner

    NASA Technical Reports Server (NTRS)

    Chen, J. L. S.; Namkoong, D.

    1978-01-01

    Dry-cooling sub-systems for residential solar powered Rankine compression air conditioners were economically optimized and compared with the cost of a wet cooling tower. Results in terms of yearly incremental busbar cost due to the use of dry-cooling were presented for Philadelphia and Miami. With input data corresponding to local weather, energy rate and capital costs, condenser surface designs and performance, the computerized optimization program yields design specifications of the sub-system which has the lowest annual incremental cost.

  17. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    PubMed

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly. PMID:20492108

  18. Evaluation of biomass burning across North West Europe and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Cordell, R. L.; Mazet, M.; Dechoux, C.; Hama, S. M. L.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; Kos, G. P. A.; Weijers, E. P.; Frumau, K. F. A.; Panteliadis, P.; Delaunay, T.; Wyche, K. P.; Monks, P. S.

    2016-09-01

    Atmospheric particulate pollution is a significant problem across the EU and there is concern that there may be an increasing contribution from biomass burning, driven by rising fuel prices and an increased interest in the use of renewable energy sources. This study was carried out to assess current levels of biomass burning and the contribution to total PM10 across five sites in North-West Europe; an area which is frequently affected by poor air quality. Biomass burning was quantified by the determination of levoglucosan concentrations from PM10 aerosol filters collected over a 14 month period in 2013/2014 and continued for a further 12 months at the UK site in Leicester. Levoglucosan levels indicated a distinct period of increased biomass combustion between November and March. Within this period monthly average concentrations ranged between 23 ± 9.7 and 283 ± 163 ng/m3, with Lille showing consistently higher levels than the sites in Belgium, the Netherlands and the UK. The estimated contribution to PM10 was, as expected, highest in the winter season where the season average percentage contribution was lowest in Wijk aan Zee at 2.7 ± 1.4% and again highest in Lille at 11.6 ± 3.8%, with a PM10 mass concentration from biomass that ranged from 0.56 μg/m3 in Leicester to 2.08 μg/m3 in Lille. Overall there was poor correlation between the levoglucosan concentrations measured at the different sites indicating that normally biomass burning would only affect atmospheric particulate pollution in the local area; however, there was evidence that extreme burning events such as the Easter fires traditionally held in parts of North-West Europe can have far wider ranging effects on air quality. Network validation measurements were also taken using a mobile monitoring station which visited the fixed sites to carry out concurrent collections of aerosol filters; the result of which demonstrated the reliability of both PM10 and levoglucosan measurements.

  19. Study of biomass burning emissions with Aqua/AIRS and MetOp-A/IASI

    NASA Astrophysics Data System (ADS)

    Thonat, T.; Crevoisier, C.; Chédin, A.; Armante, R.; Crépeau, L.; Scott, N. A.

    2012-04-01

    Biomass burning is an important source of CO2 and CO to the atmosphere, and plays a key role in the global carbon budget. However, there are still large discrepancies between existing emission inventories, stressing the need of diverse approaches to improve our knowledge of biomass burning emissions. Hyperspectral infrared sounders such as AIRS and IASI provide information on several gases emitted by fires, with the spatial and temporal coverage needed to improve our knowledge of the biomass burning issue. From IASI, we derive monthly mid-tropospheric integrated content of CO2 and CO by night and day (09:30/21:30 LT) in clear sky conditions, for the period July 2007-present (4.5 years will be available in April 2012). Retrieving simultaneously the two gases from the same instrument allows studying the correlations between their atmospheric distributions and provides important information on the role of fires on the evolution of these gases. For the same period, we also derive mid-tropospheric integrated content of CO from AIRS at 01:30/13:30 LT. Focusing our analysis on Africa and Amazonia, where most of tropical fire emissions are located, and following Chédin et al. (2005, 2008) who revealed the existence of a daily tropospheric excess of CO2 quantitatively related to fire emissions in the tropics, we will show that both daily CO and CO2 are in good agreement with the location and seasonal variations of fires, with fires playing a key role in the interannual variations of these gases. We will also show that combining AIRS (01:30/13:30 LT) and IASI (09:30/21:30 LT) improves the characterisation of the diurnal cycle of CO and its relation with fire emissions, either in the flaming or smoldering phases, and with the vertical transport of fire plumes.

  20. Seasonal variation in the biomass and non-structural carbohydrate content of fine roots of teak (Tectona grandis L. f.) plantations in a dry tropical region.

    PubMed

    Singh, K P; Srivastava, K

    1986-06-01

    Seasonal variation in the biomass and total non-structural carbohydrate content (TNC) of fine roots of teak (Tectona grandis L. f.) were studied in 19- and 29-year-old plantations in a dry tropical region. Fine root TNC content was highest during the dry summer (May), and lowest in the early part of the rainy season (July). Generally, seasonal trends in TNC content were the opposite of those in fine root biomass. The TNC concentration of roots increased with diameter and decreased with soil depth. In the 19-year-old plantation, fine root TNC content was approximately 12% higher than in the 29-year-old plantation. PMID:14975904

  1. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  2. Characterization of Dry-Air Aged Granules of Silver-Functionalized Silica Aerogel

    SciTech Connect

    Matyas, Josef; Fryxell, Glen E.; Robinson, Matthew J.

    2012-09-01

    This is a letter report to complete level 3 milestone "Assess aging characteristics of silica aerogels" for DOE FCRD program. Recently, samples of Ag0-functionalized silica aerogel were aged in flowing dry air for up to 6 months and then loaded with iodine. This dry-air aging simulated the impact of long-term exposure to process gases during process idling. The 6-month aged sample exhibited an iodine sorption capacity of 32 mass%, which was 9 mass % lower than that for an un-aged Ag0-functionalized silica aerogel. In an attempt to understand this decrease in sorption capacity, we characterized physical properties of the aged samples with Brunauer-Emmett-Teller (BET) nitrogen adsorption, X-ray diffraction (XRD), and high resolution scanning electron microscopy (SEM). The results showed no impact of aging on the aerogel microstructure or the silver nanoparticles in the aerogel, including their spatial distribution and morphology.

  3. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  4. The impact of biomass burning in North Korea to the air quality in Seoul, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, I.; Lee, J.; Kim, Y.

    2011-12-01

    South Korea is contiguous to China, Japan and North Koreas, so air pollutants transported from outside South Korea should be investigated. Nevertheless, few researches have dealt with the influences of air pollutants from North Korea to other areas. The objectives of this study are to understand the influences of air pollutants' emission from North Korea to South Korea, especially Seoul, using the chemical mass balance (CMB) model and the backward trajectory analysis. CMB model were applied to analyze the source apportionment of PAHs at Seoul between 2006 and 2007. To understand the transport of air pollutants emitted from North Korea, the backward trajectories in sampling days were classified to four cases depending on which area the trajectories predominantly passed through. Based on the contribution of biomass burning calculated by CMB and the trajectories, the influence of air pollutants from North Korea to Seoul is quantified. In order to strengthen the uncertainty of CMB result, the trend of levoglucosan (1,6-anhydro-b-D-glucopyranose) concentration at Seoul is also discussed depending on the classification of trajectories.

  5. Vertical Profiles of Light Scattering, Light Absorption, and Single Scattering Albedo during the Dry, Biomass Burning Season in Southern Africa and Comparisons of In Situ and Remote Sensing Measurements of Aerosol Optical Depths

    NASA Technical Reports Server (NTRS)

    Magi, Brian I.; Hobbs, Peter V.; Schmid, Beat; Redermann, Jens

    2003-01-01

    Airborne in situ measurements of vertical profiles of aerosol light scattering, light absorption, and single scattering albedo (omega (sub 0)) are presented for a number of locations in southern Africa during the dry, biomass burning season. Features of the profiles include haze layers, clean air slots, and marked decreases in light scattering in passing from the boundary layer into the free troposphere. Frequency distributions of omega (sub 0) reflect the strong influence of smoke from biomass burning. For example, during a period when heavy smoke was advected into the region from the north, the mean value of omega (sub 0) in the boundary layer was 0.81 +/- 0.02 compared to 0.89 +/- 0.03 prior to this intrusion. Comparisons of layer aerosol optical depths derived from the in situ measurements with those measured by a Sun photometer aboard the aircraft show excellent agreement.

  6. PBL Aerosols SE of Mexico City in the dry Season: Biomass Burning and Windblown Dust and its Impact on Photolysis Frequencies

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Grutter, M.; Baumgardner, D.; Steinbrecher, R.

    2007-05-01

    During the dry season in March 2006 airborne investigations on aerosol distributions, ultraviolet actinic radiation and ozone profiles were performed southeast of Mexico City using an ultralight aircraft as a mobile platform. The area investigated covered the rural area southeast of Mexico City, the Chalco Valley, Huexca and Atlixco south of the volcano Popocatepetl, east of Paso de Cortés to the airport of Puebla and the pass between Puebla and Mexico City north of the volcano Ixtachiuatl. The Chalco valley is the main venting valley of the Mexico City basin to the south. Intense biomass burning was observed on both slopes of the volcanoes leading to strong pyrocumulus cloud production in the northern part of the national reserve and above the motorway Puebla-Mexico. Fine particle (> 10 nm) numbers reached up to 80000/cm3 close to the burning plumes with significant reduction to ~ 30-40000/cm3 in the Chalco valley where coarse particles (> 300 nm) dominated the total mass. Dust devils transporting coarse soil particles up to elevations of more than 4000 m a.s.l. were frequently observed. Particles and air masses of pollution sources in the area can be characterized by aerosol size distributions and/or spectral absorption from multi-wavelength aethalometer measurements as well as from ozone mixing ratios and meteorological data measured onboard. The aerosol impact on photolysis rates and air chemistry is derived from vertical profiles of actinic radiation in the JO1D and JNO2 spectral regimes at 300 nm and 380 nm, respectively. Profiles were flown on both sides of the volcano ridge, south of Popocatepetl and above Tenango del Aire where aircraft measurements were supported by ceilometer aerosol vertical profiles.

  7. Influence of drying air parameters on mass transfer characteristics of apple slices

    NASA Astrophysics Data System (ADS)

    Beigi, Mohsen

    2015-12-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  8. Challenges in modeling the impact of biomass burning on air quality in megacities

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-05-01

    Biomass burning (BB) is the largest source of primary carbonaceous aerosols and the second largest source of trace gases in the global troposphere. The trace gases and particulates emitted by or formed in the biomass burning plumes adversely affect human health and have important impacts on atmospheric chemistry, air quality, and climate change in megacities. Chemical transport models provide an independent tool to assess the BB impacts, and more importantly they can be used to assess the impacts during periods when and with large spatial coverage where measurements are not available. However due to the high variable nature of the BB impacts, the uncertainties in the BB emission estimates arising from the emission factors, biomass assumption estimates, spatial and temporal distributions, the bias in predicted dynamic mixing and transport, and the limited availability of measurements, a modeling evaluation of the BB impacts is a difficult and challenging task. In this study we use Mexico City as a case study to illustrate the challenges in simulating the impacts from open fires, biofuel use and trash burning.

  9. Urinary CC16 after challenge with dry air hyperpnoea and mannitol in recreational summer athletes.

    PubMed

    Kippelen, Pascale; Tufvesson, Ellen; Ali, Leena; Bjermer, Leif; Anderson, Sandra D

    2013-12-01

    Airway epithelial injury is regarded as a key contributing factor to the pathogenesis of exercise-induced bronchoconstriction (EIB) in athletes. The concentration of the pneumoprotein club cell (Clara cell) CC16 in urine has been found to be a non-invasive marker for hyperpnoea-induced airway epithelial perturbation. Exercise-hyperpnoea induces mechanical, thermal and osmotic stress to the airways. We investigated whether osmotic stress alone causes airway epithelial perturbation in athletes with suspected EIB. Twenty-four recreational summer sports athletes who reported respiratory symptoms on exertion performed a standard eucapnic voluntary hyperpnoea test with dry air and a mannitol test (osmotic challenge) on separate days. Median urinary CC16 increased from 120 to 310 ρg μmol creatinine(-1) after dry air hyperpnoea (P = 0.002) and from 90 to 191 ρg μmol creatinine(-1) after mannitol (P = 0.021). There was no difference in urinary CC16 concentration between athletes who did or did not bronchoconstrict after dry air hyperpnoea or mannitol. We conclude that, in recreational summer sports athletes with respiratory symptoms, osmotic stress per se to the airway epithelium induces a rise in urinary excretion of CC16. This suggests that hyperosmolarity of the airway surface lining perturbs the airway epithelium in symptomatic athletes. PMID:24120076

  10. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas reinhardtii and Chlorella vulgaris

    PubMed Central

    Chioccioli, Maurizio; Hankamer, Ben; Ross, Ian L.

    2014-01-01

    Dry weight biomass is an important parameter in algaculture. Direct measurement requires weighing milligram quantities of dried biomass, which is problematic for small volume systems containing few cells, such as laboratory studies and high throughput assays in microwell plates. In these cases indirect methods must be used, inducing measurement artefacts which vary in severity with the cell type and conditions employed. Here, we utilise flow cytometry pulse width data for the estimation of cell density and biomass, using Chlorella vulgaris and Chlamydomonas reinhardtii as model algae and compare it to optical density methods. Measurement of cell concentration by flow cytometry was shown to be more sensitive than optical density at 750 nm (OD750) for monitoring culture growth. However, neither cell concentration nor optical density correlates well to biomass when growth conditions vary. Compared to the growth of C. vulgaris in TAP (tris-acetate-phosphate) medium, cells grown in TAP + glucose displayed a slowed cell division rate and a 2-fold increased dry biomass accumulation compared to growth without glucose. This was accompanied by increased cellular volume. Laser scattering characteristics during flow cytometry were used to estimate cell diameters and it was shown that an empirical but nonlinear relationship could be shown between flow cytometric pulse width and dry weight biomass per cell. This relationship could be linearised by the use of hypertonic conditions (1 M NaCl) to dehydrate the cells, as shown by density gradient centrifugation. Flow cytometry for biomass estimation is easy to perform, sensitive and offers more comprehensive information than optical density measurements. In addition, periodic flow cytometry measurements can be used to calibrate OD750 measurements for both convenience and accuracy. This approach is particularly useful for small samples and where cellular characteristics, especially cell size, are expected to vary during growth. PMID

  11. Disease burden due to biomass cooking-fuel-related household air pollution among women in India

    PubMed Central

    Sehgal, Meena; Rizwan, Suliankatchi Abdulkader; Krishnan, Anand

    2014-01-01

    Background Household air pollution (HAP) due to biomass cooking fuel use is an important risk factor for a range of diseases, especially among adult women who are primary cooks, in India. About 80% of rural households in India use biomass fuel for cooking. The aim of this study is to estimate the attributable cases (AC) for four major diseases/conditions associated with biomass cooking fuel use among adult Indian women. Methods We used the population attributable fraction (PAF) method to calculate the AC of chronic bronchitis, tuberculosis (TB), cataract, and stillbirths due to exposure to biomass cooking fuel. A number of data sources were accessed to obtain population totals and disease prevalence rates. A meta-analysis was conducted to obtain adjusted pooled odds ratios (ORs) for strength of association. Using this, PAF and AC were calculated using a standard formula. Results were presented as number of AC and 95% confidence intervals (CI). Results The fixed effects pooled OR obtained from the meta-analysis were 2.37 (95% CI: 1.59, 3.54) for chronic bronchitis, 2.33 (1.65, 3.28) for TB, 2.16 (1.42, 3.26) for cataract, and 1.26 (1.12, 1.43) for stillbirths. PAF varied across conditions being maximum (53%) for chronic bronchitis in rural areas and least (1%) for cataract in older age and urban areas. About 2.4 (95% CI: 1.4, 3.1) of 5.6 m cases of chronic bronchitis, 0.3 (0.2, 0.4) of 0.76 m cases of TB, 5.0 (2.8, 6.7) of 51.4 m cases of cataract among adult Indian women and 0.02 (0.01, 0.03) of 0.15 m stillbirths across India are attributable to HAP due to biomass cooking fuel. These estimates should be cautiously interpreted in the light of limitations discussed which relate to exposure assessment, exposure characterization, and age-specific prevalence of disease. Conclusions HAP due to biomass fuel has diverse and major impacts on women’s health in India. Although challenging, incorporating the agenda of universal clean fuel access or cleaner technology within

  12. Modeling the impacts of biomass burning on air quality in and around Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L.

    2012-09-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), contributing about 60, 22, 33, and 22% to primary OA (POA), secondary OA (SOA), total OA (TOA), and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  13. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana.

    PubMed

    Ofosu, Francis G; Hopke, Philip K; Aboh, Innocent J K; Bamford, Samuel A

    2013-09-01

    The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo. PMID:24151679

  14. Effect of open air drying, LPG based drier and pretreatments on the quality of Indian gooseberry (aonla).

    PubMed

    Gudapaty, Pratibha; Indavarapu, Srinivas; Korwar, Girish R; Shankar, Arun Kumar; Adake, Ravi Kant V; Bandi, Venkateshwarlu; Kanchu, Srinivas Rao

    2010-10-01

    The aonla fruits (whole fruit, pricking, splits, segments) were subjected to pretreatments like blanching, osmotic dehydration with salt (2%) and sugar (40%) in different experiments before drying to obtain a product with better keeping quality. An LPG based drier (CRIDA drier) with capacity to dry 50 kg of fresh Indian gooseberry (aonla) was used. Nutritional quality and rehydration characteristics of CRIDA drier dried products were higher and free from contamination. Drying time was shortest for blanched and osmotically dehydrated segments dried in CRIDA drier and the product had better vitamin C retention, rehydration characteristics and sensory acceptability compared to sun or cabinet drier dried product. The additional expenditure spent on gas in CRIDA drier is compensated by reduced labour cost and higher price for the better quality product. Alternate energy sources like biogas and biomass can be used as fuel in the CRIDA drier. PMID:23572683

  15. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  16. Influence of material structure on air-borne ultrasonic application in drying.

    PubMed

    Ozuna, César; Gómez Álvarez-Arenas, Tomás; Riera, Enrique; Cárcel, Juan A; Garcia-Perez, Jose V

    2014-05-01

    This work aims to contribute to the understanding of how the properties of the material being dried affect air-borne ultrasonic application. To this end, the experimental drying kinetics (40°C and 1m/s) of cassava (Manihot esculenta) and apple (Malus domestica var. Granny Smith) were carried out applying different ultrasonic powers (0, 6, 12, 19, 25 and 31 kW/m(3)). Furthermore, the power ultrasound-assisted drying kinetics of different fruits and vegetables (potato, eggplant, carrot, orange and lemon peel) already reported in previous studies were also analyzed. The structural, textural and acoustic properties of all these products were assessed, and the drying kinetics modeled by means of the diffusion theory. A significant linear correlation (r>0.95) was established between the identified effective diffusivity (DW) and the applied ultrasonic power for the different products. The slope of this relationship (SDUP) was used as an index of the effectiveness of the ultrasonic application; thus the higher the SDUP, the more effective the ultrasound application. SDUP was well correlated (r ⩾ 0.95) with the porosity and hardness. In addition, SDUP was largely affected by the acoustic impedance of the material being dried, showing a similar pattern with the impedance than the transmission coefficient of the acoustic energy on the interface. Thus, soft and open-porous product structures exhibited a better transmission of acoustic energy and were more prone to the mechanical effects of ultrasound. However, materials with a hard and closed-compact structure were less affected by acoustic energy due to the fact that the significant impedance differences between the product and the air cause high energy losses on the interface. PMID:24411471

  17. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  18. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  19. Biomass fuel use and indoor air pollution in homes in Malawi

    PubMed Central

    Fullerton, D G; Semple, S; Kalambo, F; Suseno, A; Malamba, R; Henderson, G; Ayres, J G; Gordon, S B

    2009-01-01

    Background: Air pollution from biomass fuels in Africa is a significant cause of mortality and morbidity both in adults and children. The work describes the nature and quantity of smoke exposure from biomass fuel in Malawian homes. Methods: Markers of indoor air quality were measured in 62 homes (31 rural and 31 urban) over a typical 24 h period. Four different devices were used (one gravimetric device, two photometric devices and a carbon monoxide (HOBO) monitor. Gravimetric samples were analysed for transition metal content. Data on cooking and lighting fuel type together with information on indicators of socioeconomic status were collected by questionnaire. Results: Respirable dust levels in both the urban and rural environment were high with the mean (SD) 24 h average levels being 226 μg/m3 (206 μg/m3). Data from real-time instruments indicated respirable dust concentrations were >250 μg/m3 for >1 h per day in 52% of rural homes and 17% of urban homes. Average carbon monoxide levels were significantly higher in urban compared with rural homes (6.14 ppm vs 1.87 ppm; p<0.001). The transition metal content of the smoke was low, with no significant difference found between urban and rural homes. Conclusions: Indoor air pollution levels in Malawian homes are high. Further investigation is justified because the levels that we have demonstrated are hazardous and are likely to be damaging to health. Interventions should be sought to reduce exposure to concentrations less harmful to health. PMID:19671533

  20. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    PubMed

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K. PMID:18653324

  1. Investigation of drop impact on dry and wet surfaces with consideration of surrounding air

    NASA Astrophysics Data System (ADS)

    Guo, Yisen; Lian, Yongsheng; Sussman, Mark

    2016-07-01

    Numerical simulations were conducted to investigate drop impingement and splashing on both dry and wet surfaces at impact velocities greater than 50 m/s with the consideration of the effect of surrounding air. The Navier-Stokes equations were solved using the variable density pressure projection method on a dynamic block structured adaptive grid. The moment of fluid method was used to reconstruct interfaces separating different phases. A dynamic contact angle model was used to define the boundary condition at the moving contact line. Simulations showed that lowering the ambient gas density can suppress dry surface splashing, which is in agreement with the experiments. A recirculation zone was observed inside the drop after contact: a larger recirculation zone was formed earlier in the higher gas density case than in the lower gas density case. Increasing gas density also enhances the creation of secondary droplets from the lamella breakup. For high speed impact on a dry surface, lowering ambient gas density attenuates splashing. However, ambient air does not significantly affect splashing on a wet surface. Simulations showed that the splashed droplets are primarily from the exiting liquid film.

  2. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  3. Crystallization of spray-dried lactose/protein mixtures in humid air

    NASA Astrophysics Data System (ADS)

    Shawqi Barham, A.; Kamrul Haque, Md.; Roos, Yrjö H.; Kieran Hodnett, B.

    2006-10-01

    An in situ crystallization technique with X-ray diffraction analysis complemented by ex situ scanning electron microscopy and chromatographic analysis of the α/( α+ β) solid-state anomeric ratios has been developed to study the crystallization of lactose/protein mixtures in humid air. This technique was used to determine changes in phase composition and morphology during crystallization. Following an induction period during which water is sorbed, crystallization is rapid and the predominant phase observed using the in situ method in spray-dried lactose/sodium-caseinate, albumin and gelatin is α-lactose monohydrate. However, in the case of spray-dried lactose/whey protein isolate (WPI) the predominant phase that appears is the α/ β mixed phase with smaller amounts of α-lactose monohydrate. With pure lactose the α/ β mixed phase appears as a transient shortly after the onset of crystallization and α-lactose monohydrate and β-lactose both appear as stable crystalline phases at longer times. Another transient phase with 2 θ=12.2°, 20.7° and 21.8° was observed in spray-dried lactose/albumin. This phase decomposed as α-lactose monohydrate developed. Three phases seem to persist in the case of spray-dried lactose/gelatin, namely the phase with peaks at 2 θ=12.2°, 20.7° and 21.8°, α-lactose monohydrate and β-lactose for the duration of the in situ experiment.

  4. [Effect of air humidity on traditional Chinese medicine extract of spray drying process and prediction of its powder stability].

    PubMed

    He, Yan; Xie, Yin; Zheng, Long-jin; Liu, Wei; Rao, Xiao-yong; Luo, Xiao-jian

    2015-02-01

    In order to solve the adhesion and the softening problems of traditional Chinese medicine extract during spray drying, a new method of adding dehumidified air into spray drying process was proposed, and the storage stability conditions of extract powder could be predicted. Kouyanqing extract was taken as model drug to investigate on the wet air (RH = 70%) and dry air conditions of spray drying. Under the dry air condition, the influence of the spray drying result with different air compression ratio and the spray-dried powder properties (extract powder recovery rate, adhesion percentage, water content, angle of repose, compression ratio, particle size and distribution) with 100, 110, 120, 130, 140 °C inlet temperature were studied. The hygroscopic investigation and Tg value with different moisture content of ideal powder were determined. The water activity-equilibrium moisture content (aw-EMC) and the equilibrium moisture content-Tg (EMC-Tg) relationships were fitted by GAB equation and Gordon-Taylor model respectively, and the state diagram of kouyanqing powder was obtained to guide the rational storage conditions. The study found that in the condition of dry air, the extract powder water content decreased with the increase of air compression ratio and the spray drying effect with air compression ratio of 100% was the best performance; in the condition of wet air, the extract powder with high water content and low yield, and the value were 4.26% and 16.73 °C, while, in the dry air condition the values were 2.43% and 24.86 °C with the same other instru- ment parameters. From the analysis of kouyanqing powder state diagram, in order to keep the stability, the critical water content of 3.42% and the critical water content of 0.188. As the water decreased Tg value of extract powder is the major problem of causing adhesion and softening during spray drying, it is meaningful to aid dehumidified air during the process. PMID:26084164

  5. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  6. Biomass and diversity of dry alpine plant communities along altitudinal gradients in the Himalayas

    USGS Publications Warehouse

    Namgail, T.; Rawat, G.S.; Mishra, C.; van Wieren, S.E.; Prins, H.H.T.

    2012-01-01

    A non-linear relationship between phytodiversity and altitude has widely been reported, but the relationship between phytomass and altitude remains little understood. We examined the phytomass and diversity of vascular plants along altitudinal gradients on the dry alpine rangelands of Ladakh, western Himalaya. We used generalized linear and generalized additive models to assess the relationship between these vegetation parameters and altitude. We found a hump-shaped relationship between aboveground phytomass and altitude. We suspect that this is engendered by low rainfall and trampling/excessive grazing at lower slopes by domestic livestock, and low temperature and low nutrient levels at higher slopes. We also found a unimodal relationship between plant species-richness and altitude at a single mountain as well as at the scale of entire Ladakh. The species-richness at the single mountain peaked between 5,000 and 5,200 m, while it peaked between 3,500 and 4,000 m at entire Ladakh level. Perhaps biotic factors such as grazing and precipitation are, respectively, important in generating this pattern at the single mountain and entire Ladakh. ?? 2011 The Author(s).

  7. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    PubMed

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles <400 nm contributing to mass concentrations dangerous to public health, up to 148 μg/m(3). Evidence of potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate. PMID:23750590

  8. Tornado-type convection with moist ascending and dry descending air

    NASA Astrophysics Data System (ADS)

    Rutkevich, P. B.; Rutkevych, B. P.

    2010-05-01

    According to observations the tornado vortex in horizontal direction can be by convention divided into three parts: the internal part, the intermediate moist convective part and the surrounding part. In the convective part the moist air ascends and a big amount of latent heat is released which is the main energy source of formation and maintenance of the vortex. In the other parts of the structure takes place dissipation of this released energy. So in the second intermediate region the vertical temperature distribution is near to moist-adiabatic while in the other regions it is near to the dry- adiabatic. This leads to a complex convective process of the Ostroumov problem type infinite in horizontal direction with two vertical intermediate cylindrical boundaries. To find solution of such a problem it is necessary to make matching of the considered fields on these boundaries. This problem was considered with the use of Navier-Stokes equations and with the necessary matching at the boundaries. It was obtained that radial distribution of air flux depends on the stable vertical temperature distribution in the surrounding area. At strong stable stratification the vertical air velocity is maximal at the central part of the vortex and at weak stratification the almost neutrally stratified air is easily entrained upward by the strong vertical motion of the moist air in the second region.

  9. Effects of impregnated metal ions on air/CO2-gasification of woody biomass.

    PubMed

    Hurley, Scott; Li, Hanning; Xu, Chunbao Charles

    2010-12-01

    Several impregnated metal ions (Fe (III), Co (II), Ni (II), and Ru (IV)) and a raw iron ore (natural limonite) were examined as catalysts for gasification of pine sawdust in air/CO(2) at 700 and 800 degrees C. The yields of char and tar both increased with increasing CO(2) content in the feed gas. All the impregnated metal ions, in particular Ni (II), Co (II) and Ru (IV), were very effective for promoting biomass gasification in CO(2), leading to greatly reduced yields of tar and char accompanied by significantly enhanced formation of CO and H(2). At 800 degrees C, the impregnation of Fe (III), Ni (II), Co (II) or Ru (IV) led to almost complete conversion of the solid biomass into gas/liquid products, producing an extremely low char yield (<1-4 wt.%), and a very high yield of combustible gas (from 51.7 wt.% for Fe to 84 wt.% for Ru). The tar yield reduced from 32.1 wt.% without catalyst to 19-27 wt.% with the impregnated metal ions. PMID:20667716

  10. Dairy Biomass-Wyoming Coal Blends Fixed Gasification Using Air-Steam for Partial Oxidation

    DOE PAGESBeta

    Gordillo, Gerardo; Annamalai, Kalyan

    2012-01-01

    Concenmore » trated animal feeding operations such as dairies produce a large amount of manure, termed as dairy biomass (DB), which could serve as renewable feedstock for thermal gasification. DB is a low-quality fuel compared to fossil fuels, and hence the product gases have lower heat content; however, the quality of gases can be improved by blending with coals. This paper deals with air-steam fixed-bed counterflow gasification of dairy biomass-Wyoming coal blend (DBWC). The effects of equivalence ratio ( 1.6 < Φ < 6.4 ) and steam-to-fuel ratio ( 0.4 < S : F < 0.8 ) on peak temperatures, gas composition, gross heating value of the products, and energy recovery are presented. According to experimental results, increasing Φ and ( S : F ) ratios decreases the peak temperature and increases the H 2 and CO 2 production, while CO production decreases. On the other hand, the concentrations of CH 4 and C 2 H 6 were lower compared to those of other gases and almost not affected by Φ.« less

  11. Dry hair

    MedlinePlus

    ... or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive ... or twice a week Add conditioners Avoid blow drying and harsh styling products

  12. Dry hair

    MedlinePlus

    Some causes of dry hair are: Anorexia nervosa Excessive hair washing, or using harsh soaps or alcohols Excessive blow-drying Dry air Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( ...

  13. When smoke comes to town - effects of biomass burning smoke on air quality down under

    NASA Astrophysics Data System (ADS)

    Keywood, Melita; Cope, Martin; (C. P) Meyer, Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2014-05-01

    Annually, biomass burning results in the emission of quantities of trace gases and aerosol to the atmosphere. Biomass burning emissions have a significant effect on atmospheric chemistry due to the presence of reactive species. Biomass burning aerosols influence the radiative balance of the earth-atmosphere system directly through the scattering and absorption of radiation, and indirectly through their influence on cloud microphysical processes, and therefore constitute an important forcing in climate models. They also reduce visibility, influence atmospheric photochemistry and can be inhaled into the deepest parts of the lungs, so that they can have a significant effect on human health. Australia experiences bushfires on an annual basis. In most years fires are restricted to the tropical savannah forests of Northern Australia. However in the summer of 2006/2007 (December 2006 - February 2007), South Eastern Australia was affected by the longest recorded fires in its history. During this time the State of Victoria was ravaged by 690 separate bushfires, including the major Great Divide Fire, which devastated 1,048,238 hectares over 69 days. On several occasions, thick smoke haze was transported to the Melbourne central business district and PM10 concentrations at several air quality monitoring stations peaked at over 200 µg m-3 (four times the National Environment Protection Measure PM10 24 hour standard). During this period, a comprehensive suite of air quality measurements was carried out at a location 25 km south of the Melbourne CBD, including detailed aerosol microphysical and chemical composition measurements. Here we examine the chemical and physical properties of the smoke plume as it impacted Melbourne's air shed and discuss its impact on air quality over the city. We estimate the aerosol emission rates of the source fires, the age of the plumes and investigate the transformation of the smoke as it progressed from its source to the Melbourne airshed. We

  14. Comparative study of denaturation of whey protein isolate (WPI) in convective air drying and isothermal heat treatment processes.

    PubMed

    Haque, M Amdadul; Aldred, Peter; Chen, Jie; Barrow, Colin J; Adhikari, Benu

    2013-11-15

    The extent and nature of denaturation of whey protein isolate (WPI) in convective air drying environments was measured and analysed using single droplet drying. A custom-built, single droplet drying instrument was used for this purpose. Single droplets having 5±0.1μl volume (initial droplet diameter 1.5±0.1mm) containing 10% (w/v) WPI were dried at air temperatures of 45, 65 and 80°C for 600s at constant air velocity of 0.5m/s. The extent and nature of denaturation of WPI in isothermal heat treatment processes was measured at 65 and 80°C for 600s and compared with those obtained from convective air drying. The extent of denaturation of WPI in a high hydrostatic pressure environment (600MPa for 600s) was also determined. The results showed that at the end of 600s of convective drying at 65°C the denaturation of WPI was 68.3%, while it was only 10.8% during isothermal heat treatment at the same medium temperature. When the medium temperature was maintained at 80°C, the denaturation loss of WPI was 90.0% and 68.7% during isothermal heat treatment and convective drying, respectively. The bovine serum albumin (BSA) fraction of WPI was found to be more stable in the convective drying conditions than β-lactoglobulin and α-lactalbumin, especially at longer drying times. The extent of denaturation of WPI in convective air drying (65 and 80°C) and isotheral heat treatment (80°C) for 600s was found to be higher than its denaturation in a high hydrostatic pressure environment at ambient temperature (600MPa for 600s). PMID:23790837

  15. Application of immobilized and granular dried anaerobic biomass for stabilizing and increasing anaerobic bio-systems tolerance for high organic loads and phenol shocks.

    PubMed

    Massalha, Nedal; Brenner, Asher; Sheindorf, Chaim; Sabbah, Isam

    2015-12-01

    This study focuses on the stability and tolerance of continuous-flow bioreactors inoculated with anaerobic methanogens in three different configurations: (R1) dried granular biomass immobilized in PAC-enriched hydrophilic polyurethane foam, (R2) dried granular biomass, and (R3) wet granular biomass. These systems were tested under two different organic loading rates (OLR) of 6.25 and 10.94 (gCOD/(Lreactor∗d)), using a glucose-based synthetic mixture. The effect of an instantaneous shock load of phenol (5g/L for three days), and of phenol inclusion in the feed (0.5g/L) were also tested. At the lower OLR, all reactors performed similarly, however, increasing the OLR lead to a significant biomass washout and failure of R3. Biomass in R1 was more tolerant to phenol shock load than R2, though activity was recovered in both systems after about one month. PAC provided protection and shortened the adaptation time for 0.5g/L phenol that continuously was fed. PMID:26318929

  16. Cold, dry air is associated with influenza and pneumonia mortality in Auckland, New Zealand.

    PubMed

    Davis, Robert E; Dougherty, Erin; McArthur, Colin; Huang, Qiu Sue; Baker, Michael G

    2016-07-01

    The relationship between weather and influenza and pneumonia mortality was examined retrospectively using daily data from 1980 to 2009 in Auckland, New Zealand, a humid, subtropical location. Mortality events, defined when mortality exceeded 0·95 standard deviation above the mean, followed periods of anomalously cold air (ta.m. = -4·1, P < 0·01; tp.m. = -4·2, P < 0·01) and/or anomalously dry air (ta.m. = -4·1, P < 0·01; tp.m. = -3·8, P < 0·01) by up to 19 days. These results suggest that respiratory infection is enhanced during unusually cold conditions and during conditions with unusually low humidity, even in a subtropical location where humidity is typically high. PMID:26681638

  17. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  18. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass.

    PubMed

    Mishra, Ashutosh; Tripathi, Brahma Dutt; Rai, Ashwani Kumar

    2016-10-01

    The present study represents the first attempt to investigate the biosorption potential of Fenton modified Hydrilla verticillata dried biomass (FMB) in removing chromium(VI) and nickel(II) ions from wastewater using up-flow packed-bed column reactor. Effects of different packed-bed column parameters such as bed height, flow rate, influent metal ion concentration and particle size were examined. The outcome of the column experiments illustrated that highest bed height (25cm); lowest flow rate (10mLmin(-1)), lowest influent metal concentration (5mgL(-1)) and smallest particle size range (0.25-0.50mm) are favourable for biosorption. The maximum biosorption capacity of FMB for chromium(VI) and nickel(II) removal were estimated to be 89.32 and 87.18mgg(-1) respectively. The breakthrough curves were analyzed using Bed Depth Service Time (BDST) and Thomas models. The experimental results obtained agree to both the models. Column regeneration experiments were also carried out using 0.1M HNO3. Results revealed good reusability of FMB during ten cycles of sorption and desorption. Performance of FMB-packed column in treating secondary effluent was also tested under identical experimental conditions. Results demonstrated significant reduction in chromium(VI) and nickel(II) ions concentration after the biosorption process. PMID:27400422

  19. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    NASA Astrophysics Data System (ADS)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  20. Simple Freeze-Drying Procedure for Producing Nanocellulose Aerogel-Containing, High-Performance Air Filters.

    PubMed

    Nemoto, Junji; Saito, Tsuguyuki; Isogai, Akira

    2015-09-01

    Simple freeze-drying of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibril (TOCN) dispersions in water/tert-butyl alcohol (TBA) mixtures was conducted to prepare TOCN aerogels as high-performance air filter components. The dispersibility of the TOCNs in the water/TBA mixtures, and the specific surface area (SSA) of the resulting TOCN aerogels, was investigated as a function of the TBA concentration in the mixtures. The TOCNs were homogeneously dispersed in the water/TBA mixtures at TBA concentrations up to 40% w/w. The SSAs of the TOCN aerogels exceeded 300 m2/g when the TBA concentration in the aqueous mixtures was in the range from 20% to 50% w/w. When a commercially available, high-efficiency particulate air (HEPA) filter was combined with TOCN/water/TBA dispersions prepared using 30% TBA, and the product was freeze-dried, the resulting TOCN aerogel-containing filters showed superior filtration properties. This was because nanoscale, spider-web-like networks of the TOCNs with large SSAs were formed within the filter. PMID:26301859

  1. Neutrophilic inflammatory response and oxidative stress in premenopausal women chronically exposed to indoor air pollution from biomass burning.

    PubMed

    Banerjee, Anirban; Mondal, Nandan Kumar; Das, Debangshu; Ray, Manas Ranjan

    2012-04-01

    The possibility of inflammation and neutrophil activation in response to indoor air pollution (IAP) from biomass fuel use has been investigated. For this, 142 premenopausal, never-smoking women (median age, 34 years) who cook exclusively with biomass (wood, dung, crop wastes) and 126 age-matched control women who cook with cleaner fuel liquefied petroleum gas (LPG) were enrolled. The neutrophil count in blood and sputum was significantly higher (p < 0.05) in biomass users than the control group. Flow cytometric analysis revealed marked increase in the surface expression of CD35 (complement receptor-1), CD16 (F(C)γ receptor III), and β(2) Mac-1 integrin (CD11b/CD18) on circulating neutrophils of biomass users. Besides, enzyme-linked immunosorbent assay showed that they had 72%, 67%, and 54% higher plasma levels of the proinflammatory cytokines tumor necrosis factor-alpha, interleukin-6, and interleukin-12, respectively, and doubled neutrophil chemoattractant interleukin-8. Immunocytochemical study revealed significantly higher percentage of airway neutrophils expressing inducible nitric oxide synthase, while the serum level of nitric oxide was doubled in women who cooked with biomass. Spectrophotometric analysis documented higher myeloperoxidase activity in circulating neutrophils of biomass users, suggesting neutrophil activation. Flow cytometry showed excess generation of reactive oxygen species (ROS) by leukocytes of biomass-using women, whereas their erythrocytes contained a depleted level of antioxidant enzyme superoxide dismutase (SOD). Indoor air of biomass-using households had two to four times more particulate matter with diameters of <10 μm (PM(10)) and <2.5 μm (PM(2.5)) as measured by real-time laser photometer. After controlling potential confounders, rise in proinflammatory mediators among biomass users were positively associated with PM(10) and PM(2.5) in indoor air, suggesting a close relationship between IAP and neutrophil activation. Besides

  2. Modeling the impacts of biomass burning on air quality in and around Mexico City

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  3. Effectiveness of Air Drying and Magnification Methods for Detecting Initial Caries on Occlusal Surfaces Using Three Different Diagnostic Aids.

    PubMed

    Goel, Deepti; Sandhu, Meera; Jhingan, Pulkit; Sachdev, Vinod

    2016-01-01

    Objective-The aim of this study was to assess the effect of magnification and air-drying on detection of carious lesion. Study Design-44 human extracted premolars were selected with sound occlusal surfaces without frank cavitation. The Diagnostic techniques used were Unaided visual examination, Magnifying Loupes (4.2×) and Stereomicroscope (10×, before and after air-drying) and then the teeth were sectioned bucco-lingually and both the surfaces were examined under Stereomicroscope (50×) to assess the presence or absence of carious lesion in the pit and fissures. The scores were compared to obtain Cohen's kappa coefficient (Reproducibility) and subjected to the Friedman Test and Paired t test. Sensitivity, specificity and positive predictive value used to assess accuracy. Results-On Statistical analysis, visual examination before and after air drying had highest specificity but lowest sensitivity compared to different diagnostic techniques. Magnifying loupes after air-drying had highest sensitivity and lowest specificity compared to other diagnostic techniques. Conclusion-Air drying combined with magnifying aids are cost-effective, reliable method for detection of early carious lesion. If used in pediatric clinical practice, any undesirable pain and discomfort to the patient due to invasive procedures and helps in employing preventive measures. PMID:27472570

  4. Relationship among shock-wave velocity, particle velocity, and adiabatic exponent for dry air

    NASA Astrophysics Data System (ADS)

    Kim, In H.; Hong, Sang H.; Jhung, Kyu S.; Oh, Ki-Hwan; Yoon, Yo K.

    1991-07-01

    Using the results of the detailed numerical calculations, it is shown that the relationship between the shock-wave velocity U sub s and the particle velocity U sub p for shock-compressed dry air can be represented accurately by the linear relation U sub s = a(P0) + b(P0)U sub p in a wide range of U sub p (U sub p = 2 to 9 ) km/s and initial pressure P0 = 10 to the -6th to 1 atm, where a and b are given by the cubic polynomials of log10P0. Based on the linear U sub s - U sub p relation, an analytic expression has been obtained for the adiabatic exponent gamma as a function of particle velocity.

  5. Incorporating Detailed Chemical Characterization of Biomass Burning Emissions into Air Quality Models

    NASA Astrophysics Data System (ADS)

    Barsanti, K.; Hatch, L. E.; Yokelson, R. J.; Stockwell, C.; Orlando, J. J.; Emmons, L. K.; Knote, C. J.; Wiedinmyer, C.

    2015-12-01

    Approximately 500 Tg/yr of non-methane organic compounds (NMOCs) are emitted by biomass burning (BB) to the global atmosphere, leading to the photochemical production of ozone (O3) and secondary particulate matter (PM). Until recently, in studies of BB emissions, a significant mass fraction of NMOCs (up to 80%) remained uncharacterized or unidentified. Models used to simulate the air quality impacts of BB thus have relied on very limited chemical characterization of the emitted compounds. During the Fourth Fire Lab at Missoula Experiment (FLAME-IV), an unprecedented fraction of emitted NMOCs were identified and quantified through the application of advanced analytical techniques. Here we use FLAME-IV data to improve BB emissions speciation profiles for individual fuel types. From box model simulations we evaluate the sensitivity of predicted precursor and pollutant concentrations (e.g., formaldehyde, acetaldehyde, and terpene oxidation products) to differences in the emission speciation profiles, for a range of ambient conditions (e.g., high vs. low NOx). Appropriate representation of emitted NMOCs in models is critical for the accurate prediction of downwind air quality. Explicit simulation of hundreds of NMOCs is not feasible; therefore we also investigate the consequences of using existing assumptions and lumping schemes to map individual NMOCs to model surrogates and we consider alternative strategies. The updated BB emissions speciation profiles lead to markedly different surrogate compound distributions than the default speciation profiles, and box model results suggest that these differences are likely to affect predictions of PM and important gas-phase species in chemical transport models. This study highlights the potential for further BB emissions characterization studies, with concerted model development efforts, to improve the accuracy of BB predictions using necessarily simplified mechanisms.

  6. Transmission of Curing Light through Moist, Air-Dried, and EDTA Treated Dentine and Enamel

    PubMed Central

    Uusitalo, E.; Varrela, J.; Lassila, L.; Vallittu, P. K.

    2016-01-01

    Objective. This study measured light transmission through enamel and dentin and the effect of exposed dentinal tubules to light propagation. Methods. Light attenuation through enamel and dentin layers of various thicknesses (1 mm, 2 mm, 3 mm, and 4 mm) was measured using specimens that were (1) moist and (2) air-dried (n = 5). Measurements were repeated after the specimens were treated with EDTA. Specimens were transilluminated with a light curing unit (maximum power output 1869 mW/cm2), and the mean irradiance power of transmitting light was measured. The transmission of light through teeth was studied using 10 extracted intact human incisors and premolars. Results. Transmitted light irradiance through 1 mm thick moist discs was 500 mW/cm2 for enamel and 398 mW/cm2 for dentin (p < 0.05). The increase of the specimen thickness decreased light transmission in all groups (p < 0.005), and moist specimens attenuated light less than air-dried specimens in all thicknesses (p < 0.05). EDTA treatment increased light transmission from 398 mW/cm2 to 439 mW/cm2 (1 mm dentin specimen thickness) (p < 0.05). Light transmission through intact premolar was 6.2 mW/cm2 (average thickness 8.2 mm) and through incisor was 37.6 mW/cm2 (average thickness 5.6 mm). Conclusion. Light transmission through enamel is greater than that through dentin, probably reflecting differences in refractive indices and extinction coefficients. Light transmission through enamel, dentin, and extracted teeth seemed to follow Beer-Lambert's law. PMID:27446954

  7. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  8. Air-dense medium fluidized bed dry beneficiation of coal: Results of 50 MTPH demonstration plant

    SciTech Connect

    Chen Qingru; Yang Yi; Liang Chuncheng; Tao Xiuxiang; Luo Zhenfu

    1993-12-31

    This paper presents the performance results of the 50 MTPH Coal Dry Beneficiation Demonstration Plant constructed in the Heilongjiang Province of northeastern China. The separating media used in this process consists of an air/dense medium (magnetite, or magnetic pearls, a remnant of coal combustion in power plants) fluidized bed controllable at specific gravities ranging from 1.3 to 2.0. That portion of the feedstock with a specific gravity less than the separating gravity floats to the top of the fluidized bed where it is recovered at one end of the vessel. That portion of the feedstock with a specific gravity higher than the separating gravity sinks and is discharged from the other end of the vessel. The process has separating efficiencies similar to a heavy media vessel or cyclone with the additional advantages of (1) can be utilized in an arid region containing insufficient water supply, (2) results in a dry product requiring no additional dewatering and coal slime treatment, and (3) as result of air flow will remove some surface moisture present in the feedstock. As a result of the magnetite used in the fluidized bed and the subsequent downstream recovery of this magnetite, the current demonstration plant utilizes a 6mm bottom size. The topsize of the feed is a function of the size of the system and the site specific ash liberation requirement. The Demonstration Plant commenced operation in September 1992. The mechanical processes of the system including coal feeding, sizing, gravity separation/beneficiation, and medium recovery, functioned as anticipated from the 10 MTPH pilot plant. Preliminary results with separating gravities in the range of 1.3--2.0 showed a probable error as low as 0.05 with magnetite losses of 0.5 kg/MT of feed.

  9. Effect of dry warm air on respiratory water loss in children with exercise-induced asthma.

    PubMed

    Tabka, Z; Ben Jebria, A; Vergeret, J; Guenard, H

    1988-07-01

    The variation in respiratory water loss (RWL) over time, expressed as the mass of water vapor lost per liter (body temperature and pressure, saturated) of ventilation (MH2O), was investigated in two groups: (1) children with exercise-induced asthma; and (2) healthy children. Children were matched for age and sex and went without medication for at least 12 hours before each experiment. The children breathed dry warm air (TI = 28.4 degrees C +/- 0.3 degree C) for 15 minutes while bicycling at constant and moderate work load (50 W). The MH2O was measured by collecting and weighing the expired water vapor (1) at rest breathing in warm conditions of inspired gas (control values), (2) every five minutes during exercise while breathing dry warm air, and (3) four minutes after the end of exercise. Pulmonary function tests were performed before and six minutes after exercise. The results were abnormal only in children with exercise-induced asthma. During exercise, RWL significantly fell (compared to control value) at the tenth and 15th minute in both groups. Whereas normal subjects recovered their initial values for MH2O four minutes after stopping exercise, asthmatic children still had a reduction in respiratory water loss. During exercise, MH2O decreased a little more in healthy than in asthmatic children. The decrease in MH2O in both groups suggests that the means to fully humidify expired gas are overwhelmed by thermal stress. The lack of increase in MH2O in asthmatic children on stopping exercise suggests that the airway mucosa is unable to produce enough water vapor and is thus dehydrated and probably hyperosmotic. PMID:3383660

  10. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees’ resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem–wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (KR) to increase, while KR (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation. PMID:26528318

  11. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    SciTech Connect

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  12. Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying

    NASA Astrophysics Data System (ADS)

    Ortuño, Carmen; Pérez-Munuera, Isabel; Puig, Ana; Riera, Enrique; Garcia-Perez, J. V.

    2010-01-01

    Power ultrasound application on convective drying of foodstuffs may be considered an emergent technology. This work deals with the influence of power ultrasound on drying of natural materials addressing the kinetic as well as the product's microstructure. Convective drying kinetics of orange peel slabs (thickness 5.95±0.41 mm) were carried out at 40 ∘C and 1 m/s with (US) and without (AIR) power ultrasound application. A diffusion model considering external resistance to mass transfer was considered to describe drying kinetics. Fresh, US and AIR dried samples were analyzed using Cryo-SEM. Results showed that drying kinetics of orange peel were significantly improved by the application of power ultrasound. From modeling, it was observed a significant (p¡0.05) increase in both mass transfer coefficient and effective moisture diffusivity. The effects on mass transfer properties were confirmed from microestructural observations. In the cuticle surface, the pores were obstructed by wax components scattering, which evidence the ultrasonic effects on the interfaces. The cells of the flavedo were compressed and large intercellular air spaces were generated in the albedo facilitating water transfer through it.

  13. Influence of specimen size, tray inclination and air flow rate on the emission of gases from biomass combustion

    NASA Astrophysics Data System (ADS)

    Amorim, E. B.; Carvalho, J. A.; Soares Neto, T. G.; Anselmo, E.; Saito, V. O.; Dias, F. F.; Santos, J. C.

    2013-08-01

    Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO.

  14. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    SciTech Connect

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  15. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells.

    PubMed

    Mondal, Nandan K; Dutta, Anindita; Banerjee, Anirban; Chakraborty, Sreeparna; Lahiri, Twisha; Ray, Manas Ranjan

    2009-01-01

    This study investigated the effect of indoor air pollution from biomass-fuel use on the expression of argyrophilic nucleolar organizer regions (AgNORs), an indicator of ribosome biosynthesis, in epithelial cells of oral mucosa. AgNORs were evaluated using cytochemical staining in 62 nonsmoking indian women (median age, 34 years), who cooked exclusively with biomass, and 55 age-matched women, who were from a similar neighborhood and cooked with relatively clean liquefied petroleum gas (LPG). Concentrations of particulate pollutants in indoor air were measured using a real-time aerosol monitor. Compared to the LPG-using controls, biomass-fuel users showed a remarkably increased number of AgNOR dots per nucleus (6.08 +/-2.26 vs 3.16 +/-0.86, p < 0.001), AgNOR size (0.85 +/-0.19 vs 0.53 +/-0.15 mum2, p < 0.001), and percentage of AgNOR-occupied nuclear area (4.88 +/-1.49 vs 1.75 +/-0.13%, p < 0.001). Biomass-using households had 2 to 4 times more particulate pollutants than that of LPG-using households. The changes in AgNOR expression were positively associated with PM10 and PM2.5 levels in indoor air after controlling for potential confounders such as age, kitchen location, and family income. Thus, biomass smoke appears to be a risk factor for abnormal cell growth via upregulation of ribosome biogenesis. PMID:19888913

  16. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency.

    PubMed

    Barbosa, Maria J; Janssen, Marcel; Ham, Nienke; Tramper, Johannes; Wijffels, René H

    2003-04-20

    The slow development of microalgal biotechnology stems from the failure in the design of large-scale photobioreactors where light energy is efficiently utilized. Due to the light gradient inside the reactor and depending on the mixing properties, algae are subjected to certain light/dark cycles where the light period is characterized by a light gradient. These light/dark cycles will determine productivity and biomass yield on light energy. Air-lift reactors can be used for microalgae cultivation and medium-frequency light/dark cycles will be found in these systems. Light/dark cycles are associated with two basic parameters: first, the light fraction, i.e., the ratio between the light period and the cycle time and second, the frequency of the light/dark cycle. In the present work, light/dark cycles found in air-lift reactors were simulated taking into account the light gradient during the light period. The effect of medium-frequency cycle time (10-100 s) and light fraction (0.1-1) on growth rate and biomass yield on light energy of the microalgae Dunaliella tertiolecta was studied. The biomass yield and growth rates were mainly affected by the light fraction, while cycle time had little influence. Response surface methodology was used and a statistical model describing the effect of light fraction and cycle time on growth rate and biomass yield on light energy was developed. The use of the model as a reactor design criterion is discussed. PMID:12584758

  17. Air-Drying of Cells, the Novel Conditions for Stimulated Synthesis of Triacylglycerol in a Green Alga, Chlorella kessleri

    PubMed Central

    Minoda, Ayumi; Tsuzuki, Mikio; Sato, Norihiro

    2013-01-01

    Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w), relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w), relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the algal species. PMID

  18. Comparison of the macroscopic properties of field-accelerated electrons in dry air and in pure oxygen

    NASA Astrophysics Data System (ADS)

    Fournier, G.; Bonnet, J.; Pigache, D.

    1980-06-01

    The numerical solution of the Boltzmann equation for an ionized gas yields the macroscopic properties of electrons accelerated by an electric field in dry air and in pure oxygen. For the purpose of ozone generation, the stronger the field, the better the efficiency of oxygen dissociation. In air, the oxygen dissociation is found to be much less easy than that at the same amount of pure oxygen.

  19. Abatement of indoor air pollution achieved with coal-biomass household briquettes

    NASA Astrophysics Data System (ADS)

    Yamada, Kimiko; Sorimachi, Atsuyuki; Wang, Qingyue; Yi, Jing; Cheng, Shuqun; Zhou, Yanrong; Sakamoto, Kazuhiko

    We investigated the abatement of indoor pollution achieved when two types of coal-biomass briquettes (L-BBs and H-BBs) were used in place of honeycombed coal briquettes (H-coal) in household stoves in rural Chongqing, China. Indoor concentrations of sulfur dioxide (SO 2), carbon monoxide (CO), and gaseous fluoride were measured. Additionally, we evaluated the factors that affected indoor concentrations of these gases, including the amount of fuel used as well as its sulfur content, the sulfur-emission ratio determined from the amount of sulfur retained in the combustion ash, and the combustion temperature in the stoves. The average 8-h and 24-h SO 2 concentrations for L-BBs were nearly equal to or less than the World Health Organization's 40 ppb guideline, whereas those for H-coal and H-BBs exceeded the guideline. The average 8-h SO 2 concentrations for L-BBs were from 63 to 89% lower than those for H-coal, even though the 8-h average weight of fuel and its sulfur content for L-BBs were equal to those of H-coal. A chemical analysis of combustion ash indicated that the sulfur-emission ratio was from 26 to 48% for L-BBs, as compared with 86% for H-coal, and this difference resulted in reduction of indoor SO 2 concentrations for L-BBs as compared with H-coal. Most of the 8-h average concentrations of CO and gaseous fluoride for all fuels were lower than the WHO guidelines. We concluded that BBs are a useful domestic fuel for the abatement of indoor air pollution.

  20. BIOMASS UTILIZATION (ATMOSPHERIC PROTECTION BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    Biomass feedstocks are examined for their potential for forming products of incomplete combustion (PICS)under different thermal conditions. Small (200-5000 kWe) energy conversion technologies fueled with biomass are evaluated and demonstrated for technical, economic, and environm...

  1. Hydrothermal carbonization of biomass residuals: A comparative review of the chemistry, processes and applications of wet and dry pyrolysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reviews chemistry, processes and application of hydrothermcally carbonized biomass wastes. Potential feedstock for the hydrothermal carbonization (HTC) includes variety of the non-traditional renewable wet agricultural and municipal waste streams. Pyrolysis and HTC show a comparable calor...

  2. Population density and total biomass of microbial communities in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region

    NASA Astrophysics Data System (ADS)

    Kashirskaya, N. N.; Khomutova, T. E.; Chernysheva, E. V.; El'tsov, M. V.; Demkin, V. A.

    2015-03-01

    The population density and total biomass of microbial communities were determined in chestnut soils and solonetzes of the dry steppe zone in the Lower Volga region with the use of the methods of sequential fractionation of the soil and direct counting. The mean weighted values of the population density of the microbial communities in the soil profiles (A1 + B1 + B2 horizons) in the studied soils varied within 3.8-8.0 × 1011 cells/g of soil. The total microbial biomass in the soils of the Privolzhskaya Upland reached 0.9-2.4 mg C/g of soil; in the soils of the Ergeni Upland, it was 20 to 75% lower. The microbial cells in the soils of the Privolzhskaya Upland were larger than those in the soils of the Ergeni Upland. Sequential fractionation of the soil prior to direct counting contributed to the more complete assessment of the population density of the microbial communities.

  3. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    NASA Astrophysics Data System (ADS)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  4. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed

  5. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    PubMed Central

    Hall, Bradley D.; Harth, Christina M.; Kim, Jin Seog; Lee, Jeongsoon; Montzka, Stephen A.; Mühle, Jens; Reimann, Stefan; Vollmer, Martin K.; Weiss, Ray F.

    2015-01-01

    The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC-12), trichlorofluoromethane (CFC-11), and 1,1,2-trichlorotrifluoroethane (CFC-113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC-22) and 1-chloro-1,1-difluoroethane (HCFC-142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC-134a), all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%. PMID:26753167

  6. Final report on CCQM-P151: Halocarbons in dry whole air

    NASA Astrophysics Data System (ADS)

    Rhoderick, George; Guenther, Franklin; Duewer, David; Lee, Jeongsoon; Seog Kim, Jin; Hall, Bradley; Weiss, Ray; Harth, Christina; Reimann, Stefan; Vollmer, Martin

    2014-01-01

    The growing awareness of climate change/global warming and continuing concerns regarding stratospheric ozone depletion will require future measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track and control the emissions of these species globally in the atmosphere, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. This report describes the results of a pilot study between National Metrology Institutes and atmospheric research laboratories for several of the more important halocarbons at atmospheric concentration levels. The comparison includes the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC 12), trichlorofluoromethane (CFC 11), and 1,1,2-trichlorotrifluoroethane (CFC 113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC 22) and 1-chloro-1,1-difluoroethane (HCFC 142b); and the hydrofluorocarbon (HFC) 1,1,1,2-tetrafluoroethane (HFC 134a), all in a dried whole air sample. The objective of this key comparison is to compare the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. Main text. To reach the main text of this paper, click on Final Report. The final report has been peer-reviewed and approved for publication by the CCQM.

  7. Final report on international comparison CCQM-K83: Halocarbons in dry whole air

    NASA Astrophysics Data System (ADS)

    Rhoderick, George; Guenther, Franklin; Duewer, David; Lee, Jeongsoon; Moon, Dongmin; Lee, Jinbok; Lim, Jeongsik; Seog Kim, Jin

    2014-01-01

    The growing awareness of climate change/global warming and continuing concerns regarding stratospheric ozone depletion will require future measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track and control the emissions of these species globally in the atmosphere, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. This report describes the results of a key comparison for several of the more important halocarbons at atmospheric concentration levels. The comparison includes the chlorofluorocarbons (CFCs) dichlorodifluoromethane (CFC 12), trichlorofluoromethane (CFC 11), and 1,1,2 trichlorotrifluoroethane (CFC 113); the hydrochlorofluorocarbons (HCFCs) chlorodifluoromethane (HCFC 22) and 1-chloro-1,1-difluoroethane (HCFC 142b); and the hydrofluorocarbon (HFC) 1,1,1,2 tetrafluoroethane (HFC 134a), all in a dried whole air sample. The objective of this key comparison is to compare the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  8. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    SciTech Connect

    Derbenev, I. N.; Filippov, A. V.

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  9. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    NASA Astrophysics Data System (ADS)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  10. A measurement of summertime dry deposition of ambient air particulates and associated metallic pollutants in Central Taiwan.

    PubMed

    Fang, Guor-Cheng; Chiang, Hung-Che; Chen, Yu-Cheng; Xiao, You-Fu; Wu, Chia-Ming; Kuo, Yu-Chen

    2015-04-01

    The purpose of this study is to characterize metallic elements associated with atmospheric particulate matter in the dry deposition plate, total suspended particulate, fine particles, and coarse particles at Taichung Harbor and Gong Ming Junior High School (airport) in central Taiwan at a sampling site from June 2013 to August 2013. The results indicated that: (1) the average concentrations of the metallic elements Cr and Cd were highest at the Gong Ming Junior High School (airport), and the average concentrations of the metallic elements Ni, Cu, and Pb were highest at the Taichung Harbor sampling site. (2) The high smelting industry density and export/import rate of heavily loaded cargos were the main reasons leading to these findings. (3) The average metallic element dry deposition and metallic element PM(2.5-10) all followed the order of Pb > Cr > Cu > Ni > Cd at the two sampling sites. However, the average metallic elements Cu and Pb were found to have the highest dry deposition velocities and concentrations in PM(2.5) for the two sampling sites in this study. (4) The correlation coefficients of ambient air particle dry deposition and concentration with wind speed at the airport were higher than those from the harbor sampling site. The wind and broad open spaces at Taichung Airport were the possible reasons for the increasing correlation coefficients for ambient air particle concentration and dry deposition with wind speed at the Taichung Airport sampling site. PMID:25185928

  11. Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India

    NASA Astrophysics Data System (ADS)

    Bhargava, Anuj; Khanna, R. N.; Bhargava, S. K.; Kumar, Sushil

    In India, a vast majority of rural household burns unprocessed biomass, as an energy source, to cook food. The biomass is burnt indoors in conventionally homemade clay-stoves, called 'Chulha', which results in the generation of a variety of airborne products along with polycyclic aromatic hydrocarbons (PAHs) in an uncontrolled manner. We report here the concentrations and profile of carcinogenic PAHs, co-sampled with respirable suspended particulate matter, in rural indoors during burning of biomass vis-à-vis liquified petroleum gas as the energy source. There is a limited data on the subject in the literature. The seasonal variation has also been studied. Sampling was done in breathing zone and in surrounding areas concurrent with cooking on chulha. PAHs were extracted in methylene chloride and analyzed over HPLC after column clean up on silica gel. Our study revealed that the concentrations of carcinogenic PAHs were fairly high in breathing zone and in surrounding areas while cooking over chulha in rural India. PAHs concentrations increased substantially during biomass combustion. Concentrations were high during CDC combustion and low during LPG combustion or the non-cooking period. This trend was conserved in both the seasons. Concentrations of total PAHs were greater in winter as compared to summer and greatest in the breathing zone. Di-benz( a,h)anthracene, benzo( k)-fluoranthene and chrysene contributed maximum. Benzo( a)pyrene contributed moderately. Maximum concentrations of indoor air benzo( a)pyrene (>1.5 μg/m 3) were found in breathing zone in winter. The daily exposure to high concentrations of carcinogenic PAHs in indoor air environment while cooking food could be impacting for chronic pulmonary illnesses in rural Indian women.

  12. Effect of Indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women

    PubMed Central

    Agrawal, S; Yamamoto, S

    2015-01-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005–2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39 657 women aged 15–49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26–3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. PMID:25039812

  13. Influence of trans-boundary biomass burning impacted air masses on submicron particle number concentrations and size distributions

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Zhang, Zhe; Balasubramanian, Rajasekhar

    2014-08-01

    Submicron particle number concentration (PNC) and particle size distribution (PSD) in the size range of 5.6-560 nm were investigated in Singapore from 27 June 2009 through 6 September 2009. Slightly hazy conditions lasted in Singapore from 6 to 10 August. Backward air trajectories indicated that the haze was due to the transport of biomass burning impacted air masses originating from wild forest and peat fires in Sumatra, Indonesia. Three distinct peaks in the morning (08:00-10:00), afternoon (13:00-15:00) and evening (16:00-20:00) were observed on a typical normal day. However, during the haze period no distinct morning and afternoon peaks were observed and the PNC (39,775 ± 3741 cm-3) increased by 1.5 times when compared to that during non-haze periods (26,462 ± 6017). The morning and afternoon peaks on the normal day were associated with the local rush hour traffic while the afternoon peak was induced by new particle formation (NPF). Diurnal profiles of PNCs and PSDs showed that primary particle peak diameters were large during the haze (60 nm) period when compared to that during the non-haze period (45.3 nm). NPF events observed in the afternoon period on normal days were suppressed during the haze periods due to heavy particle loading in atmosphere caused by biomass burning impacted air masses.

  14. In situ characterization of Zircaloy-4 oxidation at 500 °C in dry air

    NASA Astrophysics Data System (ADS)

    Vermoyal, J. J.; Dessemond, L.; Hammou, A.; Frichet, A.

    2001-10-01

    The in situ oxidation of Zircaloy-4 at 500 °C in dry air was investigated by thermogravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The coating of the alloy by a platinum film as electrode material was observed as not to modify the oxidation kinetic properties. After an initial cubic rate law, a transition to a quasi-linear curve occurs. The independence of the oxidation behavior to the Pt coupling is compatible with oxygen diffusion as the rate-determining step. During the pre-transition step, the rest potential of the cell Pt/oxide/Zy-4, the color of the oxide and the modulus of the single EIS signature indicate the high non-stoichiometry of the oxide. The kinetic transition was proposed to be correlated to the degradation of the film into a partially porous layer. This alteration of the oxide is associated to the appearance of a 1.2 V constant rest potential and the modification of the impedance diagrams in two high modulus contributions. The Cole-Cole representation has been used to demonstrate that the time variation of impedance spectra is related to the oxide growth. An equivalent circuit including two RC loops in series, whose capacitances are frequency dispersed, was proposed to be related to the film structure. Fitted data show that the thickness of the assumed protective layer of the film, close to the metal-oxide interface, is time independent in agreement with a constant oxidation rate. Finally, electrical properties of this inner layer were found to be quite different in pre- and post-transition stage.

  15. Effects of simulated acid rain on the morphology, phenology and dry biomass of a local variety of maize (Suwan-1) in Southwestern Nigeria.

    PubMed

    Macaulay, Babajide Milton; Enahoro, Gloria Ebarunosen

    2015-10-01

    Effects of acid rain on the morphology, phenology and dry biomass of maize (Suwan-1 variety) were investigated. The maize seedlings were subjected to different pH treatments (1.0, 2.0, 3.0, 4.0, 5.0 and 6.0) of simulated acid rain (SAR) with pH 7.0 as the control for a period of 90 days. The common morphological defects due to SAR application were necrosis and chlorosis. It was observed that necrosis increased in severity as the acidity increased whilst chlorosis was dominant as the acidity decreased. SAR encouraged rapid floral and cob growth but with the consequence of poor floral and cob development in pH 1.0 to 3.0 treatments. The result for the dry biomass indicates that pH treatments 2.0 to 7.0 for total plant biomass were not significantly different (P > 0.05) from one another, but were all significantly higher (P < 0.05) than pH 1.0. Therefore, it may be deduced that Suwan-1 has the potential to withstand acid rain but with pronounced morphological and phenological defects which, however, have the capacity to reduce drastically the market value of the crop. Therefore, it may be concluded that Suwan-1 tolerated acid rain in terms of the parameters studied at pH 4.0 to 7.0 which makes it a suitable crop in acid rain-stricken climes. This research could also serve as a good reference for further SAR studies on maize or other important cereals. PMID:26362878

  16. Source indicators of biomass burning associated with inorganic salts and carboxylates in dry season ambient aerosol in Chiang Mai Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Sopajaree, Khajornsak; Chotruksa, Auranee; Wu, Hsin-Ching; Kuo, Su-Ching

    2013-10-01

    PM10 aerosol was collected between February and April 2010 at an urban site (CMU) and an industrial site (TOT) in Chiang Mai, Thailand, and characteristics and provenance of water-soluble inorganic species, carboxylates, anhydrosugars and sugar alcohols were investigated with particular reference to air quality, framed as episodic or non-episodic pollution. Sulfate, a product of secondary photochemical reactions, was the major inorganic salt in PM10, comprising 25.9% and 22.3% of inorganic species at CMU and TOT, respectively. Acetate was the most abundant monocarboxylate, followed by formate. Oxalate was the dominant dicarboxylate. A high acetate/formate mass ratio indicated that primary traffic-related and biomass-burning emissions contributed to Chiang Mai aerosols during episodic and non-episodic pollution. During episodic pollution carboxylate peaks indicated sourcing from photochemical reactions and/or directly from traffic-related and biomass burning processes and concentrations of specific biomarkers of biomass burning including water-soluble potassium, glutarate, oxalate and levoglucosan dramatically increased. Levoglucosan, the dominant anhydrosugar, was highly associated with water-soluble potassium (r = 0.75-0.79) and accounted for 93.4% and 93.7% of anhydrosugars at CMU and TOT, respectively, during episodic pollution. Moreover, levoglucosan during episodic pollution was 14.2-21.8 times non-episodic lows, showing clearly that emissions from biomass burning are the major cause of PM10 episodic pollution in Chiang Mai. Additionally, the average levoglucosan/mannosan mass ratio during episodic pollution was 14.1-14.9, higher than the 5.73-7.69 during non-episodic pollution, indicating that there was more hardwood burning during episodic pollution. Higher concentrations of glycerol and erythritol during episodic pollution further indicate that biomass burning activities released soil biota from forest and farmland soils.

  17. Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer

    NASA Astrophysics Data System (ADS)

    Demiray, Engin; Tulek, Yahya

    2014-06-01

    The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.

  18. The effect of increased air humidity on fine root and rhizome biomass and turnover of silver birch forest ecosystem - a FAHM study.

    NASA Astrophysics Data System (ADS)

    Ostonen, I.; Kupper, P.; Sõber, J.; Aosaar, J.; Varik, M.; Lõhmus, K.

    2012-04-01

    A facility for free air humidity manipulation (FAHM) was established to investigate the effect of increased air humidity on belowground biomass and turnover in silver birch (Betula pendula Roth.) forest ecosystems with respect to rising air humidity predicted for Northern Europe. Fine root and rhizomes are short-lived and recognized as the most important component contributing to below-ground C fluxes in forests. The FAHM system enables air relative humidity to be increased on average 7 units (%) over the ambient level during mist fumigation. The experimental site contains humidified (H) and control (C) plots; each plot contains sectors with diverse "forest" understory and early successional grasses. The trees were planted in 2006, humidification started in spring 2008, and soil cores to study fine root and rhizome biomass and turnover were taken in 2007, 2009 and 2010. In July 2009, total fine root and rhizome biomass was 8 tons per ha in C and 16 tons per ha in H plots. The roots of understory formed 86% in C and 93% H plots, respectively. Our preliminary data suggest that the increased humidity affected more the roots of understory plants: fine root and rhizome biomass and production increased approximately twice by increasing air humidity. However, the tendency was similar for fine root biomass and production of silver birch. Fine root turnover speeded up for both silver birch and understory roots in H plots. Hence, changes in air humidity can significantly affect forest carbon cycling.

  19. Biomass burning emissions over northern Australia constrained by aerosol measurements: II—Model validation, and impacts on air quality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Mitchell, Ross M.; (Mick) Meyer, C. P.; Qin, Yi; Campbell, Susan; Gras, John L.; Parry, David

    This two-part series investigates the emission and transport of biomass burning aerosol (or particulate matter) across the Top End of the Northern Territory of Australia. In Part I, Meyer et al. [2008. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.10.089.] used a fuel load distribution coupled with a satellite-derived imagery of fire scars and hotspots and the diurnal variation of a fire danger index to estimate hourly emission rates of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5) for the dry season April-November 2004 at a spatial resolution of 1 km×1 km. In the present paper, these emission rates are used in TAPM, a three-dimensional meteorological and air pollution model, and the modelled PM 2.5 concentrations and aerosol optical depths are compared with satellite and ground-based measurements. This exercise also seeks to fine-tune and validate the emission calculation methodology, a process through which it is found that cases with hotspots without any corresponding fire scars (e.g. in mountainous terrain), which were initially ignored, need to be included to improve the accuracy of model predictions. Overall, the model is able to describe the measurements satisfactorily, considering the issues associated with the model resolution, emission uncertainty, and modelled meteorology. The model hindcasts numerous exceedences of the advisory maximum PM 2.5 exposure limit across the study region, with large areas in excess of 30 exceedences during the study period. Estimated mean top of atmosphere direct radiative forcing due to aerosol shows a seasonal mean of -1.8 W m -2 with a region of strong enhancement over the western portion of the Top End.

  20. Effect of incorporation of walnut cake (Juglans regia) in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    PubMed Central

    Mir, Mohsin Ahmad; Sharma, R. K.; Rastogi, Ankur; Barman, Keshab

    2015-01-01

    Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05) T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD), truly degradable organic matter (TDOM, mg/200 mg DM), total gas production, microbial biomass production (MBP) and efficiency of microbial biomass production (EMP). Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM), TDOM, MBP, EMP and total gas production in goat. PMID:27047013

  1. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying.

    PubMed

    Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y

    2016-08-01

    Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P < 0.05), with removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P < 0.05). Moreover, prolonged seawater inundation enhanced the release of heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater. PMID:27236846

  2. Implementation of a Biomass Energy Island for a forested Air Force installation. Final report Mar 82-Jan 83

    SciTech Connect

    Huff, W.J.; McConnell, W.V.; Steadman, P.E.

    1983-01-01

    This study examines the silvicultural practices, harvesting methodology and managerial techniques pertinent to the operation of Choctawhatchee sand pine (CSP) plantations on Eglin AFB to establish Eglin as a Biomass Energy Island (BEI). Previous studies have demonstrated: (1) the feasibility of using wood grown on selected Air Force installations as the fuel to supply the energy requirements of each; and (2) the specific adaptability of Eglin AFB as a Biomass Energy Island (BEI). As such, Eglin would satisfy all energy needs of the facility by using 540,000 green tons of wood chips harvested from 90,000 acres of on-base energy plantations to fuel a gasification/combined cycle conversion system. This study concludes: the technology of biomass conversion is appropriate for Eglin; both gasification and direct combustion cogeneration should be used for comparison purposes initially in the light of changing requirements; and the management of wood fuel plantations at Eglin and the phased establishment of the base as a BEI is both economically and technically sound and desirable.

  3. Comparative performance of air-lift partial nitritation processes with attached growth and suspended growth without biomass retention.

    PubMed

    Choi, Jeongdong; Ahn, Youngho

    2014-01-01

    Partial nitritation is an essential first step in anaerobic ammonium oxidation. This study compared the performance of air-lift partial nitritation reactors with attached growth (AG) and suspended growth (SG) without biomass retention using ammonium-rich recirculated liquor produced from the dewatering of anaerobically digested sludge. The steady-state results showed that the AG can effectively retain ammonium-oxidizing bacteria (AOB) with high activity and allow minimizing biomass discharge (approximately 10 mg volatile suspended solids/L) in the effluent. The nitrogen loading (based on the total reactor volume) satisfying the effluent characteristics could be suggested to be 0.42 g N/L/d for the SG, and 0.76 g N/L/d for the AG, respectively. Compared with the SG, the AG achieved a higher ammonium loading rate (approximately 1.8 times), maximal ammonium oxidation activity (48 mg N/L-h based on liquid-phase volume) under a short hydraulic retention time (HRT) and a long solids retention time (SRT > 80 d). The overall performance confirmed that AG is a promising configuration for partial nitritation in terms of the process stability, maximization of the AOB activity and minimization of the effluent biomass under a short HRT and high nitrogen loading rate. PMID:24701930

  4. Differential effects of two strains of Rhizophagus intraradices on dry biomass and essential oil yield and composition in Calamintha nepeta.

    PubMed

    Colombo, Roxana P; Martínez, Alicia; Fernández di Pardo, Agustina; Fernández Bidondo, Laura; van Baren, Catalina; di Leo Lira, Paola; Godeas, Alicia M

    2013-01-01

    The aim of this work was to determine the effects of two geographically different strains of Rhizophagus intraradices (M3 and GA5) on the total biomass and essential oil (EO) yield and composition of Calamintha nepeta, with or without phosphorus (P) fertilization, under greenhouse conditions. The plant biomass was not significantly affected by any of the treatments, showing higher values in control plants. Strains had a differential response in their root colonization rates: M3 reduced these parameters while GA5 did not modify them. Both strains affected EO yield in absence of P fertilization: M3 promoted EO yield in C. nepeta plants and GA5 resulted in negative effects. The percentage composition of EO was not significantly modified by either strain or P fertilization. M3 strain could be a potential fungal bioinoculant for production and commercialization of C. nepeta in the aromatic plant market. PMID:23876274

  5. Air emission regulations for small to moderate sized wood-fired boilers: Final report: Northeast Regional Biomass Program

    SciTech Connect

    Bradley, M.J.; Tennis, M.W.

    1985-01-01

    Potential commercial wood burners in the Northeast hold the general perception that air pollution regulations pose special difficulties for them. This notion is based on incomplete information regarding the regulations in place and their applicability to small to moderate sized commercial faciliaties (ie. <100 mmBtu/hr). This study was commission by the Coalition of Northeastern Governors (CONEG) Policy Research Center, Inc., under the Northeast Regional Biomass Program, to provide a review of the air quality regulations effecting commercial wood burning installations, specifically identifying those regulations applying to the small to medium size units. This report provides an organized regulatory comparison to relate the different state emission rates with various levels of control techniques. 3 refs., 11 figs., 3 tabs.

  6. Influence of drying by convective air dryer or power ultrasound on the vitamin C and β-carotene content of carrots.

    PubMed

    Frias, Juana; Peñas, Elena; Ullate, Mónica; Vidal-Valverde, Concepción

    2010-10-13

    Convective air drying and power ultrasound effects on vitamin C and β-carotene contents in carrots were studied. For convective air drying, a central composite face-centered design fitting temperature between 40 and 65 °C and air flow rate between 2 and 6 × 10(-1) m/s were used; previously, carrots were blanched. Likewise, ultrasound drying was performed on both unblanched and blanched carrots at 20, 40, and 60 °C for 120, 90, and 75 min, respectively. Blanching had a sharp effect on vitamin C and β-carotene degradation (80-92% retentions, respectively), and convective air drying led to further losses (32-50% and 73-90% retentions, respectively). According to the response surface model, a combination of 40 °C and 6 × 10(-1) m/s will maximize vitamin C retention in dried carrots, whereas 40 °C and 3.3 × 10(-1) m/s will ensure the highest β-carotene content. Ultrasound drying caused higher vitamin C and β-carotene retention (82-92% and 96-98%, respectively) than convective air drying. Blanched carrots dehydrated by ultrasound showed retentions of 55% and 88% of vitamin C and β-carotene, respectively. Ultrasound drying at 20 °C for 120 min caused the maximum vitamin C and β-carotene contents. Therefore, power ultrasound may be considered a valuable tool to obtain high nutritive dehydrated carrots. PMID:20843024

  7. Three air quality studies: Great Lakes ozone formation and nitrogen dry deposition; and Tucson aerosol chemical characterization

    NASA Astrophysics Data System (ADS)

    Foley, Theresa

    (arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, and nickel) in the southern Tucson metropolitan area. A Tucson company that uses beryllium oxide to manufacture thermally conductive ceramics has prompted strong citizen concern. This study found that the study area has good air quality with respect to PM10 and metals, with ambient concentrations meeting US Environmental Protection Agency and World Health Organization standards. Beryllium was detected only once (during a dust storm) and was ascribed to naturally-occurring beryllium in the suspended soil. The third paper (to be submitted to the Journal of Great Lakes Research) studies nitrogen dry deposition over Lake Michigan and Lake Superior. Numerous studies have shown that wet and dry deposition of nitrogen has contributed to the eutrophication of coastal waters and declining productivity of marine fisheries. Nitrogen dry deposition over the Great Lakes themselves, as opposed to the shorelines, has not been documented in the peer-reviewed literature. This paper calculates nitrogen dry deposition over Lake Michigan and Lake Superior, using aircraft measurements from the LADCO Aircraft Study, and finds that over-water, nitrogen dry deposition is a significant source of nitrogen to Lake Michigan and Lake Superior.

  8. Effect of indoor air pollution from biomass combustion on prevalence of asthma in the elderly.

    PubMed

    Mishra, Vinod

    2003-01-01

    In this study I examined the effect of cooking smoke on the reported prevalence of asthma among elderly men and women greater than or equal to 60 years old). The analysis is based on 38,595 elderly persons included in India's second National Family Health Survey conducted in 1998-1999. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking (biomass fuels, cleaner fuels, or a mix of biomass and cleaner fuels), on the reported prevalence of asthma were estimated using logistic regression. Because the effects of cooking smoke are likely to be confounded with effects of age, tobacco smoking, education, living standard, and other such factors, the analysis was carried out after statistically controlling for such factors. Results indicate that elderly men and women living in households using biomass fuels have a significantly higher prevalence of asthma than do those living in households using cleaner fuels [odds ratio (OR) = 1.59; 95% confidence interval (95% CI), 1.30-1.94], even after controlling for the effects of a number of potentially confounding factors. Active tobacco smoking was also associated with higher asthma prevalence in the elderly, but not environmental tobacco smoke. Availability of a separate kitchen in the house and a higher living standard of the household were associated with lower asthma prevalence. The adjusted effect of cooking smoke on asthma was greater among women (OR = 1.83; 95% CI, 1.32-2.53) than among men (OR = 1.46; 95% CI, 1.14-1.88). The findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiologic research with better measures of smoke exposure and clinical measures of asthma is needed to validate the findings. PMID:12515681

  9. Air classifier technology (ACT) in dry powder inhalation Part 3. Design and development of an air classifier family for the Novolizer multi-dose dry powder inhaler.

    PubMed

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2006-03-01

    In this study, the design of a multifarious classifier family for different applications is described. The main design and development steps are presented as well as some special techniques that have been applied to achieve preset objectives. It is shown by increasing the number of air supply channels to the classifier chamber (from 2 to 8), that the fine particle losses from adhesion onto the classifier walls can be reduced from 75% to less than 5% of the real dose for soft (spherical) agglomerates. By applying a bypass flow that is arranged as a co-axial sheath of clean air around the aerosol cloud from the classifier, the airflow resistance of the classifier can be controlled over a relatively wide range of values (0.023-0.041 kPa(0.5) min l(-1)). This, without affecting the fine particle dose or increasing the fine particle losses in the inhaler. Moreover, the sheath flow can be modelled to reduce the depositions in the induction port to the cascade impactor or in the patient's mouth, which are the result of back flows in these regions. The principle of powder induced pressure drop reduction across a classifier enables assessment of the amount of powder in the classifier at any moment during inhalation, from which classifier loading (from the dose system) and discharge rates can be derived. This principle has been applied to study the residence time of a dose in the classifier as function of the carrier size fraction and the flow rate. It has been found that this residence time can be controlled in order to obtain an optimal balance between the generated fine particle fraction and the inhalation manoeuvre of the patient. A residence time between 0.5 and 2 s at 60 l/min is considered favourable, as this yields a high fine particle dose (depending on the type of formulation used) and leaves sufficient inhaled volume for particle transport into the deep lung. PMID:16442248

  10. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    SciTech Connect

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  11. Evaluation of the desiccation tolerance of blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomyces)using a lab- scale, air-drying chamber with controlled relative humidity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The stabilization of living microbial agents for use as biological control agents is often accomplished through desiccation. The drying process must be conducive to the survival of the living microbial agent during desiccation and storage. Our air-drying studies with liquid culture-produced blasto...

  12. Dry under water: comparative morphology and functional aspects of air-retaining insect surfaces.

    PubMed

    Balmert, Alexander; Florian Bohn, Holger; Ditsche-Kuru, Petra; Barthlott, Wilhelm

    2011-04-01

    Superhydrophobic surfaces prevent certain body parts of semiaquatic and aquatic insects from getting wet while submerged in water. The air layer on these surfaces can serve the insects as a physical gill. Using scanning electron microscopy, we investigated the morphology of air-retaining surfaces in five insect species with different levels of adaptation to aquatic habitats. We found surfaces with either large and sparse hairs (setae), small and dense hairs (microtrichia), or hierarchically structured surfaces with both types of hairs. The structural parameters and air-film persistence of these surfaces were compared. Air-film persistence varied between 2 days in the beetle Galerucella nymphaea possessing only sparse setae and more than 120 days in the bugs Notonecta glauca and Ilyocoris cimicoides possessing dense microtrichia (up to 6.6 × 10(6) microtrichia per millimeter square). From our results, we conclude that the density of the surface structures is the most important factor that affects the persistence of air films. Combinations of setae and microtrichia are not decisive for the overall persistence of the air film but might provide a thick air store for a short time and a thin but mechanically more stable air film for a long time. Thus, we assume that a dense cover of microtrichia acts as a "backup system" preventing wetting of the body surface in case the air-water interface is pressed toward the surface. Our findings might be beneficial for the development of biomimetic surfaces for long-term air retention and drag reduction under water. In addition, the biological functions of the different air retention capabilities are discussed. PMID:21290417

  13. Coleoptera and microbe biomass in Antarctic Dry Valley paleosols adjacent to the Inland Ice: Implications for Mars

    NASA Astrophysics Data System (ADS)

    Mahaney, William C.; Hart, Kris M.; O'Reilly, Shane S.; Allen, Christopher C. R.; Dohm, James M.; Hancock, Ronald G. V.; Kelleher, Brian P.; Milner, Michael W.

    2012-01-01

    Bulk paleosol samples collected from a Middle to Early Miocene moraine in the New Mountain area of the Dry Valleys, Antarctica, yielded Coleoptera exoskeletons and occasional endoskeletons showing considerable diagenetic effects along with several species of bacteria, all lodged in a dry-frozen but salt-rich horizon at shallow depth to the land surface. The till is at the older end of a chronologic sequence of glacial deposits, thought to have been deposited before the transition from wet-based to cold-based ice (∼15 Ma), and hence, entirely weathered in contact with the subaerial atmosphere. It is possible, though not absolutely verifiable, that the skeletons date from this early stage of emplacement having undergone modifications whenever light snowmelt occurred or salt concentrations lowered the freezing temperature to maintain water as liquid. Correlation of the Coleoptera species with cultured bacteria in the sample and the likelihood of co-habitation with Beauveria bassiani found in two adjacent, although younger paleosols, leads to new questions about the antiquity of the Coleoptera and the source of N and glucose from chitinase derived from the insects. The skeletons in the 831 section may date close to the oldest preserved chitin (Oligocene) yet found on Earth. While harsh Martian conditions make it seemingly intolerable for complex, multicellular organisms such as insects to exist in the near-surface and subaerially, life within similar cold, dry paleosol microenvironments (Cryosols) of Antarctica point to life potential for the Red Planet, especially when considering the relatively diverse microbe (bacteria and fungi) population.

  14. Interactions between Canopy Structure and Herbaceous Biomass along Environmental Gradients in Moist Forest and Dry Miombo Woodland of Tanzania

    PubMed Central

    Shirima, Deo D.; Pfeifer, Marion; Platts, Philip J.; Totland, Ørjan; Moe, Stein R.

    2015-01-01

    We have limited understanding of how tropical canopy foliage varies along environmental gradients, and how this may in turn affect forest processes and functions. Here, we analyse the relationships between canopy leaf area index (LAI) and above ground herbaceous biomass (AGBH) along environmental gradients in a moist forest and miombo woodland in Tanzania. We recorded canopy structure and herbaceous biomass in 100 permanent vegetation plots (20 m × 40 m), stratified by elevation. We quantified tree species richness, evenness, Shannon diversity and predominant height as measures of structural variability, and disturbance (tree stumps), soil nutrients and elevation as indicators of environmental variability. Moist forest and miombo woodland differed substantially with respect to nearly all variables tested. Both structural and environmental variables were found to affect LAI and AGBH, the latter being additionally dependent on LAI in moist forest but not in miombo, where other factors are limiting. Combining structural and environmental predictors yielded the most powerful models. In moist forest, they explained 76% and 25% of deviance in LAI and AGBH, respectively. In miombo woodland, they explained 82% and 45% of deviance in LAI and AGBH. In moist forest, LAI increased non-linearly with predominant height and linearly with tree richness, and decreased with soil nitrogen except under high disturbance. Miombo woodland LAI increased linearly with stem density, soil phosphorous and nitrogen, and decreased linearly with tree species evenness. AGBH in moist forest decreased with LAI at lower elevations whilst increasing slightly at higher elevations. AGBH in miombo woodland increased linearly with soil nitrogen and soil pH. Overall, moist forest plots had denser canopies and lower AGBH compared with miombo plots. Further field studies are encouraged, to disentangle the direct influence of LAI on AGBH from complex interrelationships between stand structure, environmental

  15. Changes in RANKL and osteoprotegerin expression after chronic exposure to indoor air pollution as a result of cooking with biomass fuel.

    PubMed

    Saha, Hirak; Mukherjee, Bidisha; Bindhani, Banani; Ray, Manas Ranjan

    2016-07-01

    The impact of indoor air pollution as a result of cooking with unprocessed biomass on membrane-bound and serum receptor activator of nuclear factor-kappa ligand 1 (RANKL), its soluble decoy receptor osteoprotegerin (OPG) and osteoclast precursor CD14(+) CD16(+) monocytes was investigated. Seventy-four pre-menopausal women from eastern India using biomass and 65 control women who cooked with cleaner liquefied petroleum gas were enrolled. PM10 and PM2.5 levels in their indoor air were measured with real-time aerosol monitors. The levels of membrane-bound RANKL on leukocytes and percentage CD14(+) CD16(+) monocytes in the subjects' blood were assayed by flow cytometry. Soluble RANKL and OPG in serum were measured by ELISA. The results showed that PM10 and PM2.5 levels were significantly higher in the indoor air of biomass-using households. Compared with the control women, the levels of CD4(+) and CD19(+) lymphocytes and circulating granulocytes with elevated levels of membrane-bound RANKL were higher in biomass users. The serum levels of RANKL were increased by 41% whereas serum OPG was reduced by 22% among biomass users. The absolute number of CD14(+) CD16(+) monocytes was significantly increased in biomass users than the control women. After controlling for potential confounders, PM10 and PM2.5 levels were found to be positively associated with leukocyte and serum RANKL and CD14(+) CD16(+) monocyte levels, but negatively with serum OPG. From these results, we can conclude that chronic exposure to biomass smoke increased membrane-bound and soluble RANKL and circulating osteoclast precursors but decreased OPG, suggesting an increased risk of bone resorption and consequent osteoporosis in biomass-exposed women of a child-bearing age. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26691826

  16. Effects of Post-Pyrolysis Air Oxidation of Biomass Chars on Adsorption of Neutral and Ionizable Compounds.

    PubMed

    Xiao, Feng; Pignatello, Joseph J

    2016-06-21

    This study was conducted to understand the effects of thermal air oxidation of biomass chars experienced during formation or production on their adsorptive properties toward various compounds, including five neutral nonpolar and polar compounds and seven weak acids and bases (pKa = 3-5.2) selected from among industrial chemicals and the triazine and phenoxyacetic acid herbicide classes. Post-pyrolysis air oxidation (PPAO) at 400 °C of anoxically prepared wood and pecan shell chars for up to 40 min enhanced the mass-normalized adsorption at pH ∼ 7.4 of all test compounds, especially the weak acids and bases, by up to 100-fold. Both general and specific effects were identified. The general effect results from "reaming" of pores by the oxidative removal of pore wall matter and/or tarry deposits generated during the pyrolysis step. Reaming creates new surface area and enlarges nanopores, which helps relieve steric hindrance to adsorption. The specific effect results from creation of new acidic functionality that provides sites for the formation of very strong, charge-assisted hydrogen bonds (CAHB) with solutes having comparable pKa. The CAHB hypothesis was supported by competition experiments and the finding that weak acid anion adsorption increased with surface carboxyl content, despite electrostatic repulsion from the growing negative charge. The results provide insight into the effects of air oxidation on pollutant retention. PMID:27152745

  17. Predicting seed cotton moisture content from changes in drying air temperature - second year

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A mathematical model was used to predict seed cotton moisture content in the overhead section of a cotton gin. The model took into account the temperature, mass flow, and specific heat of both the air and seed cotton. Air temperatures and mass flows were measured for a second year at a commercial g...

  18. Biomass gasification with air in fluidized bed: Reforming of the gas composition with commercial steam reforming catalysts

    SciTech Connect

    Corella, J.; Orio, A.; Aznar, P.

    1998-12-01

    Four commercial catalysts for steam reforming of higher hydrocarbons (naphthas) and three for steam reforming of light hydrocarbons are tested for hot gas clean up and upgrading in biomass gasification with air in fluidized bed. The catalysts used originate from four manufacturers: BASF, AG, ICI-Katalco, Haldor Topsoe a/s, and United Catalysts Inc. The work is performed in a small pilot plant (1--2 kg of biomass fed/h) with three reactors in series: gasifier, guard bed of dolomite, and full flow catalytic bed. Samples of gas are taken before and after the catalytic bed at different times-on-stream. It is shown how the H{sub 2}, CO, CO{sub 2}, CH{sub 4} and steam contents in the flue gas change because of the catalytic bed approaching contents near to the ones corresponding to the equilibrium state. Variations in the heating value of the gas and gas yield as a result of the catalytic bed are also reported.

  19. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    NASA Astrophysics Data System (ADS)

    Sahu, S. K.; Ohara, T.; Beig, G.; Kurokawa, J.; Nagashima, T.

    2015-09-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr-1, 188 ± 95 Gg yr-1, 43 ± 22 Gg yr-1, 463 ± 240 Gg yr-1 and 47.4 ± 9 Tg yr-1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers.

  20. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    SciTech Connect

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  1. Developing hot air assisted radio frequency drying for in-shell Macadamia nuts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dehydration offers a means of preserving foods in a stable and safe condition as it reduces water activity and extends shelf-life of perishable agricultural products. The purpose of this study was to develop radio frequency (RF) drying protocols for in-shell macadamia nuts based on conventional hot ...

  2. Predicting seed cotton moisture content from changes in drying air temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Having an accurate measurement of seed-cotton moisture content in a cotton gin would help ginners determine how much heat to use to dry the cotton. A mathematical model was used to predict seed cotton moisture content in the overhead section of a gin. The model took into account the temperature, mas...

  3. Forced Hot Air to Dry Feces and Kill Bacteria on Transport Cage Flooring

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to fecal shedding from positive birds, broiler transport cages can be contaminated with human bacterial pathogens leading to cross contamination of previously negative broilers during live haul. Earlier work has shown that drying soiled or washed cages for 24 to 48 hours can lower or even elimi...

  4. When smoke comes to town: The impact of biomass burning smoke on air quality

    NASA Astrophysics Data System (ADS)

    Keywood, Melita; Cope, Martin; Meyer, C. P. Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2015-11-01

    Biomass burning aerosols influence the radiative balance of the earth-atmosphere system. They also reduce visibility and impact human health. In addition, trace gases and aerosols emitted to the atmosphere during large biomass burning episodes may have a significant effect on atmospheric chemistry due to the presence of reactive species. Six hundred and ninety wildfires burned more than one million hectares in Victoria, Australia between December 2006 and February 2007. Thick smoke haze was transported to Melbourne (population 3.9 million) on several occasions, causing PM10 (particulate mass less than 10 μm in diameter) concentrations to exceed 200 μg m-3. The presence of elevated total secondary organic aerosol (SOA) and speciated SOA compounds (including pinene and cineole oxidation products), O3, and the larger aerosol mode diameter during smoke impacted periods indicated the presence of photochemical oxidation within the plume. The presence of organosulfate compounds and nitro-oxy organosulfate compounds indicated oxidation may have occurred in the presence of acidic seed aerosol and that oxidation may also have occurred at night. Older smoke plumes (aged 30 h) displayed higher concentrations of a number of gaseous and aerosol species relative to the younger smoke plumes (aged 3 h). SOA compounds made up a greater fraction of speciated organic mass in the old plume than in the young plume where speciated biomass burning compounds dominated. Cineole oxidation products made up a greater fraction of the speciated SOA compounds in the old plume while pinene oxidation products made up a greater fraction of the total SOA speciated mass in the samples from the young plume. This may be a result of the slower reaction rate of cineole with OH. Organosulfate compounds and nitro-oxy organosulfate compounds made up greater fractions of the speciated SOA mass in the old plume consistent with the production of nitro-oxy organosulfate compounds under night time conditions in

  5. Simultaneous decay of contact-angle and surface-tension during the rehydration of air-dried root mucilage

    NASA Astrophysics Data System (ADS)

    Arye, Gilboa; Chen, Fengxian

    2016-04-01

    Plants can extract or exude water and solutes at their root surface. Among the root exudates, the mucilage exhibits a surfactant like properties - depressing the surface-tension (ST, mN/m) at the water-air interface. The amphipathic nature of some of the mucilage molecules (e.g. lipids) is thought to be the reason for its surfactant like behavior. As the rhizosphere dries out, re-orientation and/or re-configuration of amphipathic molecules at the solid-air interface, may impart hydrophobic nature to the rhizosphere. Our current knowledge on the ST of natural and/or model root mucilage is based on measurements of the equilibrium ST. However, adsorption of amphipathic molecules at the water-air interface is not reached instantaneously. The hydrophobic nature of the rhizosphere was deduced from the initial advancing CA, commonly calculated from the first few milliseconds up to few seconds (depending on the method employed). We hypothesized that during the rehydration of the root mucilage; both quantities are dynamic. Processes such as water absorbance and dissolution, may vary the interfacial tensions as a function of time. Consequently, simultaneous reduction of both CA and ST as a function of time can be expected. The main objective of this study was to characterize and quantify the extent, persistency and dynamic of the CA and ST during rehydration of air-dried root mucilage. The study was involved with measurements of dynamic and equilibrium ST using the pedant drop or Wilhelmy plate method, respectively. Glass slides were coated with naturally occurring or model root mucilage and the CA of a sessile drop was measured optically, as a function of time. The results were analyzed based on the Young-Dupré and Young-Laplace equations, from which the simultaneous decay of CA and ST was deduced. The implication for the wettability and water flow in the rhizosphere will be discussed.

  6. IMPACTS OF BIOMASS BURNING EMISSIONS ON AIR QUALITY AND PUBLIC HEALTH IN THE UNITED STATES

    EPA Science Inventory

    Wildfire is a natural disaster that claims human life and property. While most attention has been paid to direct life and health threats, mostly to firefighters, this work focuses on the indirect impact of wildfires on the general population due to degraded air quality. Using an ...

  7. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  8. Air quality assessment in the periurban area of Mexico Megacity during dry hot season in 2011 and 2012

    NASA Astrophysics Data System (ADS)

    Garcia-Reynoso, Agustin; Santos Garcia-Yee, Jose; Barrera-Huertas, Hugo; Gerardo Ruiz-Suárez, Luis

    2016-04-01

    Air quality is a human health threat not only in urbanized areas, it also affects the surrounding zones. Interaction between urban and rural areas can be evaluated by measurements and using models for regional areas that includes in its domain the peri-urban regions. The use of monitoring sites in remote areas is useful however it is not possible to cover all the region the use of models can provide valuable information about the source and fate of the pollution and its transformation. In order to evaluate the influence of the Mexico Megacity in the air quality of the region, two field campaigns were performed during the dry hot season during 2011 and 2012. Meterological and pollutant measurements were made during February and march 2011, in three sites towards the south east of Mexico Megacity, and from march to April 2012 towards the west after the Popocatepetl-Iztaccihuatl mountain range. Air quality modeling were performed by using the National Emissions Inventory 2008 during the studied periods, a comparison between measurements and the air quality model was performed. This type of studies can offer information about the pollutant distribution, the meteorological conditions and the exactness of emissions inventories. The latest can be useful for emissions inventory developers and policy makers.

  9. Air exposure induced characteristics of dry eye in conjunctival tissue culture.

    PubMed

    Lin, Hui; Qu, Yangluowa; Geng, Zhixin; Li, Cheng; Wu, Huping; Dong, Nuo; Liu, Zuguo; Li, Wei

    2014-01-01

    There are several animal models illustrating dry eye pathophysiology. Current study would like to establish an ex vivo tissue culture model for characterizing dry eye. Human conjunctival explants were cultured under airlift or submerged conditions for up to 2 weeks, and only airlifted conjunctival cultures underwent increased epithelial stratification. Starting on day 4, the suprabasal cells displayed decreased K19 expression whereas K10 keratin became evident in airlift group. Pax6 nuclear expression attenuated already at 2 days, while its perinuclear and cytoplasmic expression gradually increased. MUC5AC and MUC19 expression dramatically decreased whereas the full thickness MUC4 and MUC16 expression pattern disappeared soon after initiating the airlift condition. Real time PCR showed K16, K10 and MUC16 gene up-regulated while K19, MUC5AC, MUC19 and MUC4 down-regulated on day 8 and day 14. On day 2 was the appearance of apoptotic epithelial and stromal cells appeared. The Wnt signaling pathway was transiently activated from day 2 to day 10. The inflammatory mediators IL-1β, TNF-α, and MMP-9 were detected in the conditioned media after 6 to 8 days. In conclusion, airlifted conjunctival tissue cultures demonstrated Wnt signaling pathway activation, coupled with squamous metaplasia, mucin pattern alteration, apoptosis and upregulation of proinflammatory cytokine expression. These changes mimic the pathohistological alterations described in dry eye. This correspondence suggests that insight into the pathophysiology of dry eye may be aided through the use of airlifted conjunctival tissue cultures. PMID:24498087

  10. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    SciTech Connect

    Yehia, Ashraf; Mizuno, Akira

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  11. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    NASA Astrophysics Data System (ADS)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  12. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect

    Anuar, S.H.; Keener, H.M.

    1995-12-31

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  13. Biomonitoring of air pollution in a seasonally dry tropical suburban area using wheat transplants.

    PubMed

    Rajput, Madhu; Agrawal, Madhoolika

    2005-02-01

    Air pollution has been identified as a serious problem throughout the world which causes tremendous loss to the crops by affecting plant growth and yield. Earlier, air pollution was restricted to urban and industrial regions. Over the last few decades, however, it has become evident that pollutants can be transported over long distances and hence their impact may be felt widely over rural areas. The present study was conducted to evaluate the impact of urban air pollution on suburban agriculture with respect to the changes in photosynthetic rate, stomatal conductance, water-use efficiency, plant height, numbers of tillers, leaves, ears and seeds, chlorophyll, carotenoid, protein, phenol, ascorbic acid, nitrogen and sulphate-sulphur contents and seed weight of pot-grown wheat plants (Triticum aestivum var. HUW 468) kept at different sites around Varanasi city receiving varying levels of pollution load. Mean concentrations of SO2, NO2 and O3 were monitored. The study clearly showed that plants are negatively affected by the ambient levels of air pollutants. Reduction in various parameters directly corresponded with the air pollution levels at different sites. PMID:15736874

  14. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  15. Modelling air quality impact of a biomass energy power plant in a mountain valley in Central Italy

    NASA Astrophysics Data System (ADS)

    Curci, Gabriele; Cinque, Giovanni; Tuccella, Paolo; Visconti, Guido; Verdecchia, Marco; Iarlori, Marco; Rizi, Vincenzo

    2012-12-01

    In this study, we investigate the potential impact on local air quality of a biomass power plant, which is planned for installation near L'Aquila, a city of 70,000 people located in a mountain valley in Central Italy. The assessment is carried out by applying a one year simulation with the CALPUFF model, following the recommendations of the U. S. Environmental Protection Agency. Meteorological input is produced with CALMET model, fed with both MM5 meteorological fields at 3 km resolution and wind observations from a surface weather station. We estimate small (<0.5 μg m-3) annual average increments to SO2, NO2 and PM10 ambient levels over the domain of interest, but significant (up to 50% for NO2) enhancements and several violations (up to 141 for NO2) of hourly limits for human protection within 1.5 km from the source. These results anticipate a larger negative effect on local air quality than those published by the building firm of the plant. We also suggest that a minimum distance of 5 km from the nearest residential area would represent a significant decrease of population exposure.

  16. Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels

    NASA Astrophysics Data System (ADS)

    Huang, Wei; Baumgartner, Jill; Zhang, Yuanxun; Wang, Yuqin; Schauer, James J.

    2015-03-01

    Particulate matter (PM) from different sources may differentially affect human health. Few studies have assessed the main sources of personal exposure to PM and their contributions among residents of developing countries, where pollution sources differ from those in higher-income settings. 116 daily (24-h) personal PM2.5 exposure samples were collected among 81 women cooking with biomass fuels in two villages in rural Yunnan, China. The PM samples were analyzed for mass and chemical composition, including water-soluble organic carbon (WSOC), black carbon (BC), and molecular markers. We found black carbon, n-alkanes and levoglucosan dominated the most abundant fractions of the total measured species and average personal PM2.5 exposure was higher in winter than that in summer in both villages. The composition data were then analyzed using a positive matrix factorization (PMF) receptor model to identify the main PM emission sources contributing to women's exposures and to assess their spatial (between villages) and seasonal variation in our study setting. The 6-factor solution provided reasonably stable profiles and was selected for further analysis. Our results show that rural Chinese women cooking with biomass fuels are exposed to a variety of sources. The identified factors include wood combustion (41.1%), a cooking source (35.6%), a mobile source (12.6%), plant waxes (6.7%), pyrolysis combustion (3.0%), and secondary organic aerosols (SOA; 1.0%). The mean source contributions of the mobile source, cooking source, and wood combustion factor to PM2.5 exposure were significantly different between women living in the two study villages, whereas the mean SOA, wood combustion, and plant waxes factors differed seasonally. There was no relationship between source contributions and questionnaire-based measurements of source-specific exposures, implying that the impacts of source contributions on exposure are affected by complex spatial, temporal and behavioral patterns

  17. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    NASA Astrophysics Data System (ADS)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  18. Dry eye syndrome

    MedlinePlus

    ... of dry eyes include: Dry environment or workplace (wind, air conditioning) Sun exposure Smoking or second-hand ... NOT smoke and avoid second-hand smoke, direct wind, and air conditioning. Use a humidifier, especially in ...

  19. ANALYSIS OF VOCS IN AMBIENT AIR USING MULTISORBENT PACKINGS FOR VOC ACCUMULATION AND SAMPLE DRYING

    EPA Science Inventory

    Solid multisorbent packings have been characterized for trapping and release efficiency of trace (10-20 ppbv in humidified zero air) volatile organic compounds (VOCs). he use of a two-stage trapping system reduces sample water content typically by more than 95.5% while maintainin...

  20. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    NASA Astrophysics Data System (ADS)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  1. Effect of inhaled budesonide on bronchial reactivity to histamine, exercise, and eucapnic dry air hyperventilation in patients with asthma.

    PubMed Central

    Vathenen, A S; Knox, A J; Wisniewski, A; Tattersfield, A E

    1991-01-01

    BACKGROUND: It has been suggested that inhaled corticosteroids may provide greater protection against constrictor stimuli that act indirectly such as exercise than those that act directly such as histamine. METHODS: The effects of six weeks treatment with inhaled budesonide (800 micrograms twice daily) on bronchial reactivity to histamine, exercise, and eucapnic voluntary hyperventilation of dry air were compared in a double blind, placebo controlled, non-crossover study in 40 subjects with asthma. Change in bronchial reactivity to histamine and eucapnic hyperventilation over the six weeks was measured as change in the provocative dose of histamine or dry air causing a 20% fall in FEV1 (PD20 histamine and PV20 eucapnic hyperventilation (EVH) of dry air); this was not possible for exercise because of the development of refractoriness. To enable the change in response to all three stimuli to be compared, the response (percent fall in FEV1) to a fixed dose was measured for all three challenge tests. RESULTS: After budesonide there was an increase in PD20 histamine from 0.48 to 2.81 mumol and in PV20 EVH from 364 to 639 litres, and a significant correlation between the changes in PD20 histamine and PV20 EVH (r = 0.63). The median percentage fall in FEV1 in response to eucapnic hyperventilation, exercise, and histamine was similar before budesonide (25.5%, 26.6%, and 24.5%); the reduction in the percentage fall in FEV1 with budesonide was also similar for the three challenges (18.9%, 17.5%, and 16.6%), and all differed significantly from the changes following placebo. There was a significant correlation between change in percentage fall in FEV1 after budesonide with the three stimuli (histamine v exercise: r = 0.48; histamine v eucapnic hyperventilation: r = 0.46; exercise v eucapnic hyperventilation: r = 0.63). CONCLUSION: The similar magnitude of change in bronchial reactivity to all three stimuli after budesonide and the within subject correlation obtained between

  2. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  3. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  4. Physiological and Biochemical Responses of Yarrowia lipolytica to Dehydration Induced by Air-Drying and Freezing

    PubMed Central

    Pénicaud, Caroline; Landaud, Sophie; Jamme, Frédéric; Talbot, Pauline; Bouix, Marielle; Ghorbal, Sarrah; Fonseca, Fernanda

    2014-01-01

    Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell’s ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase) and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y. lipolytica

  5. Public Health Hotspots Of Exposure To Air Pollution From Biomass Burning In Southeast Asia

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Defries, R. S.; Kasibhatla, P. S.; Shindell, D. T.; Voulgarakis, A.; Kinney, P. L.; Randerson, J. T.

    2010-12-01

    Fire is one of the most significant instruments of land use change; forests and grasslands are burned to create and maintain agricultural fields or other anthropogenic landscapes. Although fire emissions have been studied for their climatic and atmospheric effects, less is known about their impact on global public health. In this study, we combine satellite-derived fire emissions and atmospheric modeling to estimate exposure in Southeast Asia to particulate matter and ozone, which have a demonstrated detrimental health impact. Regional emissions can vary by a factor of twenty or more interannually due to the combined influence of prolonged drought conditions from El Nino, land use policies, and high fuel loads in tropical forests and peat. High fire years in the region, such as the 1997-1998 El Nino, can have a profound effect on global trace gas and aerosol loads. We conducted daily simulations of surface fine particulate matter and ozone concentrations for the 1997-2007 period using the Global Fire Emissions Database (GFEDv2) within two atmospheric models: Harvard’s GEOS-CHEM and the NASA GISS Global Climate Model. The results from each model are compared and validated by field-based and remote sensing datasets. The public health risk from each pollutant is assessed with current air quality regulations published by the World Health Organization (WHO). Our preliminary results demonstrate that regions experiencing substantial fire activity can increase the percentage of days per year exceeding WHO air quality guidelines by more than 20%. These anomalies are localized in regions close to burning centers, and more so for heavier pollutants like particulate matter. In addition, the population exposed to particulate matter and ozone above WHO guidelines can increase during high fire years by up to 70% and 50% over the decadal mean, respectively. Our results implicate fires as a serious public health risk to cardiovascular diseases, which the WHO estimates are a

  6. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 2: Methane

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Bergamaschi, P.; Peters, W.

    2009-01-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003-2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1). For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1-2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected and

  7. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Reuter, M.; Notholt, J.; Macatangay, R.; Warneke, T.

    2008-07-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003 2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual

  8. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    NASA Astrophysics Data System (ADS)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  9. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    USGS Publications Warehouse

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  10. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    PubMed

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. PMID:26593566

  11. A Numerical Study of the Impacts of Dry Air on Tropical Cyclone Formation: A Development Case and a Non-development Case

    NASA Astrophysics Data System (ADS)

    Fritz, C.; Wang, Z.

    2012-12-01

    The impacts of dry air on tropical cyclone formation are examined in the numerical model simulations of ex-Gaston (2010) and pre-Fay (2008). The former, a remnant low downgraded from a short-lived tropical cyclone, can be regarded as a non-developing system as it failed to redevelop, and the latter developed into a tropical cyclone despite lateral dry air entrainment and a transient upper-level dry air intrusion. Water vapor budget analysis suggests that the mean vertical moisture transport plays the dominant role in moistening the free atmosphere. Backward trajectory analysis and water budget analysis show that vertical transport of dry air from the middle and upper troposphere, where a well-defined wave pouch is absent, contributes to the mid-level drying near the pouch center in ex-Gaston. The mid-level drying suppresses deep convection, reduces moisture supply from the boundary layer, and contributes to the non-development of ex-Gaston. Three-dimensional trajectory analysis based on the numerical model simulation of Fay suggests that dry air entrained at the pouch periphery tends to stay off the pouch center due to the weak mid-level inflow or gets moistened along its path even if being wrapped into the wave pouch. Lateral entrainment in the middle troposphere thus does not suppress convection near the pouch center or prevent the development of Tropical Storm Fay. This study suggests that the upper troposphere is a weak spot of the wave pouch at the early formation stage and that the vertical transport is likely a more direct pathway for dry air to influence moist convection near the pouch center. Fig. 1 (a) 3 km relative humidity and storm relative streamlines for Gaston (2010) at 0800 UTC 05 September 2010 with a group of ensemble forward parcel trajectories (gray); (b) vertical cross section of RH along 17.5°N (contour intervals are set to 15%) and backward trajectories (gray) projected on the longitude-height plane. The box in (a) highlights a pocket of

  12. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    NASA Technical Reports Server (NTRS)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  13. Measured performance of the heat exchanger in the NASA icing research tunnel under severe icing and dry-air conditions

    NASA Technical Reports Server (NTRS)

    Olsen, W.; Vanfossen, J.; Nussle, R.

    1987-01-01

    Measurements were made of the pressure drop and thermal perfomance of the unique refrigeration heat exchanger in the NASA Lewis Icing Research Tunnel (IRT) under severe icing and frosting conditions and also with dry air. This data will be useful to those planning to use or extend the capability of the IRT and other icing facilities (e.g., the Altitude Wind Tunnel-AWT). The IRT heat exchanger and refrigeration system is able to cool air passing through the test section down to at least a total temperature of -30 C (well below icing requirements), and usually up to -2 C. The system maintains a uniform temperature across the test section at all airspeeds, which is more difficult and time consuming at low airspeeds, at high temperatures, and on hot, humid days when the cooling towers are less efficient. The very small surfaces of the heat exchanger prevent any icing cloud droplets from passing through it and going through the tests section again. The IRT heat exchanger was originally designed not to be adversely affected by severe icing. During a worst-case icing test the heat exchanger iced up enough so that the temperature uniformaity was no worse than about +/- 1 deg C. The conclusion is that the heat exchanger design performs well.

  14. An improved high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry method for determination of chlorophylls and their derivatives in freeze-dried and hot-air-dried Rhinacanthus nasutus (L.) Kurz.

    PubMed

    Kao, Tsai Hua; Chen, Chia Ju; Chen, Bing Huei

    2011-10-30

    Rhinacanthus nasutus (L.) Kurz, a traditional Chinese herb possessing antioxidant and anti-cancer activities, has been reported to contain functional components like carotenoids and chlorophylls. However, the variety and amount of chlorophylls remain uncertain. The objectives of this study were to develop a high performance liquid chromatography-photodiode array detection-atmospheric pressure chemical ionization-mass spectrometry (HPLC-DAD-APCI-MS) method for determination of chlorophylls and their derivatives in hot-air-dried and freeze-dried R. nasutus. An Agilent Eclipse XDB-C18 column and a gradient mobile phase composed of methanol/N,N-dimethylformamide (97:3, v/v), acetonitrile and acetone were employed to separate internal standard zinc-phthalocyanine plus 12 cholorophylls and their derivatives within 21 min, including chlorophyll a, chlorophyll a', hydroxychlorophyll a, 15-OH-lactone chlorophyll a, chlorophyll b, chlorophyll b', hydroxychlorophyll b, pheophytin a, pheophytin a', hydroxypheophytin a, hydroxypheophytin a' and pheophytin b in hot-air-dried R. nasutus with flow rate at 1 mL/min and detection at 660 nm. But, in freeze-dried R. nasutus, only 4 chlorophylls and their derivatives, including chlorophyll a, chlorophyll a', chlorophyll b and pheophytin a were detected. Zinc-phthalocyanine was found to be an appropriate internal standard to quantify all the chlorophyll compounds. After quantification by HPLC-DAD, both chlorophyll a and pheophytin a were the most abundant in hot-air-dried R. nasutus, while in freeze-dried R. nasutus, chlorophyll a and chlorophyll b dominated. PMID:22063550

  15. CONCENTRATION OF TETRACHLOROETHYLENE IN INDOOR AIR AT A FORMER DRY CLEANER FACILITY AS A FUNCTION OF SUBSURFACE CONTAMINATION: A CASE STUDY

    EPA Science Inventory

    A field study was performed to evaluate indoor air concentrations and vapor intrusion (VI) of tetrachloroethylene (PCE) and other chlorinated solvents at a commercial retail site in Dallas, TX. The building is approximately 40 years old and once housed a dry cleaning operation. R...

  16. EFFECT OF DRY AIR CHILLING ON WARNER-BRATZLER SHEAR FORCE AND WATER-HOLDING CAPACITY OF BROILER MEAT DEBONED FOUR HOURS POSTMORTEM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    TECHNICAL ABSTRACT Advantages of air chilling (AC) methods over immersion chilling (IC) methods in quality retention and improvement of deboned chicken breast meat depends on experimental conditions, such as deboning time. The objective of this study was to evaluate the effect of a dry-AC method on ...

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000-5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001-0.074). A shortlived increase in NMOCs by a factor of 10 corresponded

  19. Evaluation of the response of tritium-in-air instrumentation to HT in dry and humid conditions and to HTO vapor

    SciTech Connect

    Phillips, H.; Dean, J.; Privas, E.

    2015-03-15

    Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses a P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)

  20. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    PubMed

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  1. Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit.

    PubMed

    Orak, H H; Aktas, T; Yagar, H; İsbilir, S Selen; Ekinci, N; Sahin, F Hasturk

    2012-08-01

    Antioxidant activity, colour and some nutritional properties of hot air and freeze-dried strawberry tree (Arbutus unedo L.) fruits were investigated. Additionally, the effects of two pre-treatments, namely ethyl oleate and water blanching, were compared in terms of drying characteristics. For determination of antioxidant activities in ethanol extracts, two different analytical methods were used: 1,1-diphenyl-2-picrylhydrazyl scavenging activity and β-carotene bleaching activity. As a result, the ethyl oleate pre-treatment shortened the drying time by hot air method and gave a higher 1,1-diphenyl-2-picrylhydrazyl scavenging activity (82.16 ± 0.34%), total phenolic content (7.62 ± 1.09 µg GAE/g extract), ascorbic acid content (236.93 ± 20.14 mg/100 g), besides hydromethylfurfural was not observed. Freeze-dried fruits exhibited higher ascorbic acid content (368.63 ± 17.16 mg/100 g) than those fresh fruits (231.33 ± 19.51 mg/100 g) and nearly 1,1-diphenyl-2-picrylhydrazyl activity (93.52 ± 0.41 %) to fresh fruits (94.03 ± 1.18%). Colour characteristics, sugar content and mineral contents of fruits were significantly affected by pre-treatments and drying methods (p < 0.05). It is concluded that the drying of strawberry tree fruits should bring a valuable and attractive foodstuff to food industry due to the rich nutritional components, antioxidant activity and colour. Another conclusion from this study is that the freeze-drying is the best drying method to keep the nutritional value, antioxidant activity and sensory properties of fruits. PMID:22522307

  2. High-Temperature Oxidation and Decarburization of 14.55 wt pct Cr-Cast Iron in Dry Air Atmosphere

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Lekatou, A.; Karantzalis, A. E.; Efremenko, A. V.

    2016-04-01

    The oxidation and decarburization behavior of 14.55 wt pct Cr-cast iron at 1273 K to 1423 K (1000 °C to 1150 °C) in a dry air atmosphere was studied. A gravimetric investigation showed that intensive oxidation of cast iron takes place at temperatures above 1273 K (1000 °C). It is found that oxidizing heating is accompanied by decarburization, which manifests itself in secondary and eutectic carbide dissolution. The volume fraction of carbides decreases with temperature and holding duration increasing. Decarburization results in the formation of a decarburized layer up to 4 mm in depth. A carbide-free layer in depth up to 100 μm appears in the free surface after 6 to 8 hours holding at 1373 K to 1423 K (1100 °C to 1150 °C). Preliminary activation energy calculations suggested that the eutectic carbide dissolution at the depths of 50 to 400 μm is controlled by carbon diffusion in austenite. The dissolution of eutectic carbides involves a capillarity-induced mechanism, which consists of formation and growth of capillary cavities inside carbides.

  3. Oxidation Behavior of a Pd43Cu27Ni10P20 Bulk Metallic Glass and Foam in Dry Air

    NASA Astrophysics Data System (ADS)

    Kai, W.; Ren, I. F.; Barnard, B.; Liaw, P. K.; Demetriou, M. D.; Johnson, W. L.

    2010-07-01

    The oxidation behavior of both Pd43Cu27Ni10P20 bulk metallic glass (Pd4-BMG) and its amorphous foam containing 45 pct porosity (Pd4-AF) was investigated over the temperature range of 343 K (70 °C) to 623 K (350 °C) in dry air. The results showed that virtually no oxidation occurred in the Pd4-BMG at T < 523 K (250 °C), revealing the alloy’s favorable oxidation resistance in this temperature range. In addition, the oxidation kinetics at T ≥ 523 K (250 °C) followed a parabolic-rate law, and the parabolic-rate constants ( k p values) generally increased with temperature. It was found that the oxidation k p values of the Pd4-AF are slightly lower than those of the Pd4-BMG, indicating that the porous structure contributes to improving the overall oxidation resistance. The scale formed on the alloys was composed exclusively of CuO at T ≥ 548 K (275 °C), whose thickness gradually increased with increasing temperature. In addition, the amorphous structure remained unchanged at T ≤ 548 K (275 °C), while a triplex-phase structure developed after the oxidation at higher temperatures, consisting of Pd2Ni2P, Cu3P, and Pd3P.

  4. Hygrothermal performance of EIFS-clad walls: Effect of vapor diffusion and air leakage on the drying of construction moisture [Exterior Insulation and Finish Systems

    SciTech Connect

    Karagiozis, A.N.; Salonvaara, M.H.

    1999-07-01

    Hydrothermal performance describes the response of the material layers that make up the wall to thermal and moisture loads. Modeling can be applied to determine the drying and wetting potential of walls with various initial construction moisture loads and to test alternative innovations. This paper investigates the drying performance of a particular barrier EIFS clad wall as a function of vapor diffusion control with a specific air leakage path. This investigation was conducted with constant interior temperature and relative humidity. The LATENITE model, developed at NRD, is employed in the investigation. This advanced hydrothermal model can incorporate system and sub-system performances by introducing simulated defects and wall system details derived from laboratory and field measurements. Moisture loads available to the EIFS structure originating either from the interior, the exterior or from initial construction moisture can be included. In this paper the authors present a study to determine the drying potential of a barrier EIFS clad wall for the climate of Wilmington, NC. This climate is characterized by the ASHRAE Handbook of Fundamentals as being mixed. The effect of drying and wetting by airflow was investigated by introducing airflow paths. Hydrothermal performance with three different vapor diffusion control strategies and two air leakage conditions was simulated for a period of one year. Initial oriented strand board (OSB) moisture content was assumed to be very high. The influence of rain water, solar radiation and air movement within the cavity was included in the analysis.

  5. Comparison of VOC emissions between air-dried and heat-treated Norway spruce ( Picea abies), Scots pine ( Pinus sylvesteris) and European aspen ( Populus tremula) wood

    NASA Astrophysics Data System (ADS)

    Hyttinen, Marko; Masalin-Weijo, Marika; Kalliokoski, Pentti; Pasanen, Pertti

    2010-12-01

    Heat-treated wood is an increasingly popular decoration material. Heat-treatment improves dimensional stability of the wood and also prevents rot fungus growth. Although production of heat-treated wood has been rapidly increasing, there is only little information about the VOC emissions of heat-treated wood and its possible influences on indoor air quality. In the present study, VOC emissions from three untreated (air-dried) and heat-treated wood species were compared during a four weeks test period. It appeared that different wood species had clearly different VOC emission profiles. Heat-treatment was found to decrease VOC emissions significantly and change their composition. Especially, emissions of terpenes decreased from softwood samples and aldehydes from European aspen samples. Emissions of total aldehydes and organic acids were at the same level or slightly higher from heat treated than air-dried softwood samples. In agreement with another recent study, the emissions of furfural were found to increase and those of hexanal to decrease from all the wood species investigated. In contrast to air-dried wood samples, emissions of VOCs were almost in steady state from heat treated wood samples even in the beginning of the test.

  6. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    PubMed

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity. PMID:19468951

  7. Detection of PAX8/PPARG and RET/PTC Rearrangements Is Feasible in Routine Air-Dried Fine Needle Aspiration Smears

    PubMed Central

    Ferraz, Carolina; Rehfeld, Christian; Krogdahl, Annelise; Precht Jensen, Eva Magrethe; Bösenberg, Eileen; Narz, Frank; Hegedüs, Laszlo; Eszlinger, Markus

    2012-01-01

    Background The diagnostic limitations of fine needle aspiration (FNA), like the indeterminate category, can be partially overcome by molecular analysis. As PAX8/PPARG and RET/PTC rearrangements have been detected in follicular thyroid carcinomas (FTCs) and papillary thyroid carcinomas (PTCs), their detection in FNA smears could improve the FNA diagnosis. To date, these rearrangements have never been analyzed in routine air-dried FNA smears, but only in frozen tissue, formalin-fixed paraffin-embedded (FFPE) tissue, and in fresh FNA material. Fixed routine air-dried FNA samples have hitherto been judged as generally not suitable for testing these rearrangements in a clinical setting. Therefore, the objective of the present study was to investigate the feasibility of extracting RNA from routine air-dried FNA smears for the detection of these rearrangements with real-time polymerase chain reaction (RT-PCR). Methods A new method for RNA extraction from routine air-dried FNA smears was established, which allowed analysis for the presence of four variants of PAX8/PPARG and RET/PTC 1 and RET/PTC 3, which were analyzed in 106 routine FNA smears and the corresponding surgically obtained FFPE tissues using real-time quantitative PCR (RT-qPCR). To assess RNA quality, an intron-spanning PAX8 cDNA was amplified. Results Acceptable RNA quality was obtained from 95% of the FNA samples and 92% of the FFPE samples. PAX8/PPARG was detected in 4 of 96 FFPEs and in 6 of 96 FNAs. PAX8/PPARG was present in 4 of 10 FTCs and in 3 of 42 follicular adenomas (FAs). Similarly, RET/PTC was found in 3 of 96 FFPEs and in 4 of 96 FNAs. Two of 21 PTC samples and 3 of 42 FA samples carried this rearrangement. Conclusion These data are the first to show the feasibility of extracting RNA from routine air-dried FNA smears for the detection of PAX8/PPARG and RET/PTC rearrangements with RT-qPCR. These promising methodological advances, if confirmed in larger series of FNA and FFPE samples, may lead to

  8. Air-dried cells from the anhydrobiotic insect, Polypedilum vanderplanki, can survive long term preservation at room temperature and retain proliferation potential after rehydration.

    PubMed

    Watanabe, Kazuyo; Imanishi, Shigeo; Akiduki, Gaku; Cornette, Richard; Okuda, Takashi

    2016-08-01

    Pv11, a cell line derived from the anhydrobiotic insect, Polypedilum vanderplanki, was preserved in a dry form (only 6% residual moisture) at room temperature for up to 251 days and restarted proliferating after rehydration. A previous study already reported survival of Pv11 cells after desiccation, but without subsequent proliferation. Here, the protocol was improved to increase survival and achieve proliferation of Pv11 cells after dry storage. The method basically included preincubation, desiccation and rehydration processes and each step was investigated. So far, preincubation in a 600 mM trehalose solution for 48 h before dehydration was the most favourable preconditioning to achieve successful dry preservation of Pv11 cells, allowing about 16% of survival after rehydration and subsequent cell proliferation. Although the simple air-dry method established for Pv11 cells here was not applicable for successful dry-preservation of other insect cell lines, Pv11 is the first dry-preservable animal cell line and will surely contribute not only to basic but also applied sciences. PMID:27207249

  9. Drying characteristics of paddy in an integrated dryer.

    PubMed

    Manikantan, M R; Barnwal, P; Goyal, R K

    2014-04-01

    Drying characteristics of paddy (long grain variety PR-118 procured from PAU, Ludhiana) in an integrated dryer using single as well as combined heating source was studied at different air temperatures. The integrated dryer comprises three different air heating sources such as solar, biomass and electrical. Drying of paddy occurred in falling rate period. It was observed that duration of drying of paddy from 22 to 13 % moisture content (w.b.) was 5-9 h depending upon the source of energy used. In order to select a suitable drying curve, six thin layer-drying models (Newton, Page, Modified Page, Henderson and Pabis, Logarithmic and Wang and Singh) were fitted to the experimental moisture ratio data. Among the mathematical models investigated, Wang and Singh model best described the drying behaviour of paddy using solar, biomass and combined heating sources with highest coefficient of determination (r (2)) values and least chi-square, χ (2), mean bias error (MBE) and root mean square error (RMSE) values. However, Page model adequately described the drying behavior of paddy using electrical heating source. PMID:24741181

  10. The Use of Compensated Aerological No-Lift Balloons to Determine Relatively Long-Term Dry-Air Parcel Trajectories.

    NASA Astrophysics Data System (ADS)

    Terliuc, Benjamin; Asculai, Ephraim; Doron, Eli

    1983-10-01

    A method to compensate the loss of buoyancy due to gas leakage from aerological no-lift balloons is presented. The method is implemented by means of a double vessel device that supplies a constant liquid outflow at constant temperature. It is shown that the average buoyancy loss rate dependence on temperature is almost perfectly matched by the outflow rate dependence on temperature when soya-bean oil is used. The device is simple, inexpensive and can be easily manufactured using standard laboratory equipment.A simple and safe method to carry no-lift systems to prefixed levels is also presented. It is based on a single 30 g pilot balloon provided with a gas leakage nozzle, inflated with H2 to a calibrated initial free-lift. The balloon is totally emptied at the required level, and remains suspended from the no-lift system.The whole system can be easily prepared under field conditions to be used in long travel-time studies of dry-air parcel trajectories in the atmosphere.An example of the use of the improved method over complex terrain is presented. A no-lift system provided with a 1680 MHz radiosonde transmitter, was tracked by two RD-65 radio-theodolites, to investigate the effects of the topographic structure of the Lake Kinneret (Sea of Galilee) area on the Mediterranean sea breeze summer regime. The system was tracked for at least one hour, following a trajectory with severe vertical variations. This increases our confidence in the ability to track much longer trajectories, if required.

  11. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture.

    PubMed

    Khalil, Sadia; Ali, Tasneem Adam; Skory, Chris; Slininger, Patricia J; Schisler, David A

    2016-02-01

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research in locations where obtaining these products is difficult. A less expensive option for providing components essential to microbial growth in liquid culture is the use of extracts of fresh or dried plant products obtained by using hot water extraction techniques. A total of 13 plant extract-based media were prepared from a variety of plant fruits, pods or seeds of plant species including Allium cepa (red onion bulb), Phaseolus vulgaris (green bean pods), and Lens culinaris (lentil seeds). In shake flask tests, cell production by potato dry rot antagonist Pseudomonas fluorescens P22Y05 in plant extract-based media was generally statistically indistinguishable from that in commercially produced tryptic soy broth and nutrient broth as measured by optical density and colony forming units/ml produced (P ≤ 0.05, Fisher's protected LSD). The efficacy of biomass produced in the best plant extract-based media or commercial media was equivalent in reducing Fusarium dry rot by 50-96% compared to controls. In studies using a high-throughput microbioreactor, logarithmic growth of P22Y05 in plant extract-based media initiated in 3-5 h in most cases but specific growth rate and the time of maximum OD varied as did the maximum pH obtained in media. Nutrient analysis of selected media before and after cell growth indicated that nitrogen in the form of NH4 accumulated in culture supernatants, possibly due to unbalanced growth conditions brought on by a scarcity of simple sugars in the media tested. The potential of plant extract-based media to economically produce biomass of microbes active in reducing plant disease is considerable and deserves further research. PMID:26745985

  12. System and process for biomass treatment

    SciTech Connect

    Dunson, Jr., James B; Tucker, III, Melvin P; Elander, Richard T; Lyons, Robert C

    2013-08-20

    A system including an apparatus is presented for treatment of biomass that allows successful biomass treatment at a high solids dry weight of biomass in the biomass mixture. The design of the system provides extensive distribution of a reactant by spreading the reactant over the biomass as the reactant is introduced through an injection lance, while the biomass is rotated using baffles. The apparatus system to provide extensive assimilation of the reactant into biomass using baffles to lift and drop the biomass, as well as attrition media which fall onto the biomass, to enhance the treatment process.

  13. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    PubMed

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air. PMID:12608592

  14. Three-dimensional DEM-CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers.

    PubMed

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-02-01

    Air flow and particle-particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM-CFD (discrete element method-computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  15. Three-dimensional DEM–CFD analysis of air-flow-induced detachment of API particles from carrier particles in dry powder inhalers

    PubMed Central

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2014-01-01

    Air flow and particle–particle/wall impacts are considered as two primary dispersion mechanisms for dry powder inhalers (DPIs). Hence, an understanding of these mechanisms is critical for the development of DPIs. In this study, a coupled DEM–CFD (discrete element method–computational fluid dynamics) is employed to investigate the influence of air flow on the dispersion performance of the carrier-based DPI formulations. A carrier-based agglomerate is initially formed and then dispersed in a uniformed air flow. It is found that air flow can drag API particles away from the carrier and those in the downstream air flow regions are prone to be dispersed. Furthermore, the influence of the air velocity and work of adhesion are also examined. It is shown that the dispersion number (i.e., the number of API particles detached from the carrier) increases with increasing air velocity, and decreases with increasing the work of adhesion, indicating that the DPI performance is controlled by the balance of the removal and adhesive forces. It is also shown that the cumulative Weibull distribution function can be used to describe the DPI performance, which is governed by the ratio of the fluid drag force to the pull-off force. PMID:26579364

  16. Gradient domestication of Haematococcus pluvialis mutant with 15% CO2 to promote biomass growth and astaxanthin yield.

    PubMed

    Cheng, Jun; Li, Ke; Yang, Zongbo; Lu, Hongxiang; Zhou, Junhu; Cen, Kefa

    2016-09-01

    In order to increase biomass yield and reduce culture cost of Haematococcus pluvialis with flue gas from coal-fired power plants, a screened mutant by nuclear irradiation was gradually domesticated with 15% CO2 to promote biomass dry weight and astaxanthin yield. The biomass yield of mutant after 10 generations of 15% CO2 domestication increased to 1.3 times as that with air. With the optimization of nitrogen and phosphorus concentration, the biomass dry weight was further increased by 62%. The astaxanthin yield induced with 15% CO2 and high light of 135 μmol photons m(-2) s(-1) increased to 87.4mg/L, which was 6 times higher than that induced with high light in air. PMID:27259189

  17. Is torrefaction of polysaccharides-rich biomass equivalent to carbonization of lignin-rich biomass?

    PubMed

    Bilgic, E; Yaman, S; Haykiri-Acma, H; Kucukbayrak, S

    2016-01-01

    Waste biomass species such as lignin-rich hazelnut shell (HS) and polysaccharides-rich sunflower seed shell (SSS) were subjected to torrefaction at 300°C and carbonization at 600°C under nitrogen. The structural variations in torrefied and carbonized biomasses were compared. Also, the burning characteristics under dry air and pure oxygen (oxy-combustion) conditions were investigated. It was concluded that the effects of carbonization on HS are almost comparable with the effects of torrefaction on SSS in terms of devolatilization and deoxygenation potentials and the increases in carbon content and the heating value. Consequently, it can be proposed that torrefaction does not provide efficient devolatilization from the lignin-rich biomass while it is relatively more efficient for polysaccharides-rich biomass. Heat-induced variations in biomass led to significant changes in the burning characteristics under both burning conditions. That is, low temperature reactivity of biomass reduced considerably and the burning shifted to higher temperatures with very high burning rates. PMID:26492172

  18. Spouting of biomass particles: a review.

    PubMed

    Cui, Heping; Grace, John R

    2008-07-01

    Recent research on biomass multiphase flow in spouted beds is reviewed, beginning with fundamental work on hydrodynamic parameters, such as minimum spouting velocity, pressure drop and fountain height. We then consider experimental studies on biomass multiphase flow in such processes as pulp drying, liquid spouting of pulp fibres, drying and coating of agricultural biomass, and bioreactors. Finally, we summarize modelling efforts with respect to spouting of biomass particles. PMID:17570657

  19. Atlantic tropical cyclone formation: Pre-genesis evolution of tropical easterly waves and impacts of the middle to upper tropospheric dry air

    NASA Astrophysics Data System (ADS)

    Hankes, Isaac E.

    This study first provides an overview of the dynamic and thermodynamic evolution of tropical easterly waves (TEWs) for 164 named tropical storms over the Atlantic during 1989-2010 July-October. The evolution of precipitation and the low-level convergence suggests that convection begins to organize near the center of the wave critical layer about one day prior to genesis, along with the rapid intensification of vorticity. The composites derived from the ERA-Interim reanalysis reveal higher specific humidity and equivalent potential temperature near the center of the wave critical layer, especially in the middle troposphere within one day prior to genesis. The study then focuses on the formation of the Cape Verde storms over the East Atlantic. There are two groups of easterly waves over West Africa, one to the south and the other to the north of the African Easterly Jet (AEJ), which sometimes merge near the coast of West Africa. Three groups of waves are identified in order to determine the role of wave merger in tropical cyclogenesis over the East Atlantic: non-merger developers, merger developers, and merger non-developers. Relative to non-mergers, it is found that merger developers have a weaker circulation near the surface at the early stages but the merger of a southern wave with a northern wave leads to a stronger and deeper wave pouch, which is more conducive to tropical cyclogenesis. It is also found that dry air intrusion west of the wave trough in the middle and upper troposphere inhibits deep convection and leads to the nondevelopment of some mergers, but that boundary layer dry air in the northern waves moistens quickly over the ocean and does not impede development. The interannual variability of the middle and upper tropospheric dry air and its impacts on tropical cyclone activity over the Atlantic are further examined using the EOF analysis and composite analysis. It is found that the interannual variability of the upper-tropospheric (300-500 hPa) dry

  20. Studies on pulsed Nd:YAG laser cutting of thick stainless steel in dry air and underwater environment for dismantling applications

    NASA Astrophysics Data System (ADS)

    Choubey, Ambar; Jain, R. K.; Ali, Sabir; Singh, Ravindra; Vishwakarma, S. C.; Agrawal, D. K.; Arya, R.; Kaul, R.; Upadhyaya, B. N.; Oak, S. M.

    2015-08-01

    Dismantling of old equipments and structures is an important application in nuclear facilities and shipping industry. This paper presents a study on process optimization during pulsed Nd:YAG laser cutting of thick stainless steel (AISI SS304) sheets having a thickness in the range of 4-20 mm in dry air and underwater environment. Laser cutting experiments have been performed using a 500 W average power long pulse Nd:YAG laser system with fiber optic beam delivery. A water shielded laser cutting nozzle with coaxial gas jet was specifically developed to form a local dry cavity around the laser beam during the cutting experiments in underwater condition. It was found that for a given pulse energy, a higher cutting speed is possible with optimal value of pulse duration, spot overlapping, and assist gas pressure. Cutting speed of 20 mm thick SS sample was enhanced to about three times by means of increase in pulse duration from 14 ms to 20 ms and reduction in the required spot overlapping from a value of 80% to 40% using oxygen as the assist gas. A comparison of the cutting speed and heat affected zone in dry air and underwater environment has been performed. These results will be highly useful in laser based dismantling of old steel structures in radioactive and underwater environment to save time and minimize radiation dose consumption as compared to conventional dismantling methods.

  1. Vancomycin production is enhanced in chemostat culture with biomass-recycle.

    PubMed

    McIntyre, J J; Bunch, A W; Bull, A T

    1999-03-01

    Production of the glycopeptide antibiotic vancomycin by Amycolatopsis orientalis ATCC 19795 was examined in phosphate-limited chemostat cultures with biomass-recycle, employing an oscillating membrane separator, at a constant dilution rate (D= 0. 14 h-1). Experiments made under low agitation conditions (600 rpm) showed that the biomass concentration could be increased 3.9-fold with vancomycin production kinetics very similar to that of chemostat culture without biomass-recycle. The specific production rate (qvancomycin) was maximal when the biomass-recycle ratio (R) was 0.13 (D= 0.087 h-1). When the dissolved oxygen tension dropped below 20% (air saturation), the biomass and vancomycin concentrations decreased and an unidentified red metabolite was released into the culture medium. Using increased agitation (850 rpm), used to maintain the dissolved oxygen tension above 20% air saturation, maximum increases in biomass concentration (7.9-fold) and vancomcyin production 1.6-fold (0.6 mg/g dry weight/h) were obtained when R was 0.44 (D= 0.056 h -1) compared to chemostat culture without biomass-recycle. Moreover, at this latter recycle ratio the volumetric vancomycin production rate was 14.7 mg/L/h (a 7-fold increase compared to chemostat culture without biomass-recycle). These observations encourage further research on biomass-recycling as a means of optimising the production of antibiotics. PMID:10099566

  2. In situ measurements of the desorption of water from a TiO₂ surface under dry air by collecting the photoemission yield with an open counter.

    PubMed

    Yamashita, Daisuke; Ishizaki, Atsushi; Yamamoto, Tomoyuki

    2014-01-01

    We investigated the desorption of water from a TiO2 surface under a dry atmosphere by collecting the photoemission yield spectra with an open counter. For this purpose, a new attachment for the photoemission yield measurement was prepared. This apparatus is capable of detecting, in the open air, low-energy electrons excited by photons under dried atmospheres; the dew point is below -35°C. A significant change in the photoemission yield spectra due to exposure to a dry atmosphere was observed. To gain a better understanding of these results, observations of the change in the photoemission yield spectra caused by the thermal desorption of adsorbed water were also carried out. The results are consistent with those obtained by exposure to a dry atmosphere. Based on the relationship between the photoemission yield and the thickness of the water layer, the time dependence of the change in the thickness was explained by the second-order reaction rate equation. PMID:24813956

  3. Dry Mouth

    MedlinePlus

    ... of this page please turn Javascript on. Dry Mouth What Is Dry Mouth? Dry mouth is the feeling that there is ... when a person has dry mouth. How Dry Mouth Feels Dry mouth can be uncomfortable. Some people ...

  4. Environmental Life Cycle Implications of Fuel Oxygenate Production from California Biomass

    SciTech Connect

    Kadam, K. L.; Camobreco, V. J.; Glazebrook, B. E.; Forrest, L. H.; Jacobson, W. A.; Simeroth, D. C.; Blackburn, W. J.; Nehoda, K. C.

    1999-05-20

    Historically, more than 90% of the excess agricultural residue produced in California (approximately 10 million dry metric tons per year) has been disposed through open-field burning. Concerns about air quality have prompted federal, state, and local air quality agencies to tighten regulations related to this burning and to look at disposal alternatives. One use of this biomass is as an oxygenated fuel. This report focuses on quantifying and comparing the comprehensive environmental flows over the life cycles of two disposal scenarios: (1) burning the biomass, plus producing and using MTBE; and (2) converting and using ETBE.

  5. Soil water retention at varying matric potentials following repeated wetting with modestly saline-sodic water and subsequent air drying

    SciTech Connect

    Browning, L.S.; Hershberger, K.R.; Bauder, J.W.

    2007-07-01

    Coal bed natural gas (CBNG) development in the Powder River (PR) Basin produces modestly saline, highly sodic wastewater. This study assessed impacts of wetting four textural groups (0-11%, 12-22%, 23 -33%, and > 33% clay (g clay/100 g soil) x 100%))with simulated PR or CBNG water on water retention. Soils received the following treatments with each water quality: a single wetting event, five wetting and drying events, or five wetting and drying events followed by leaching with salt-free water. Treated samples were then resaturated with the final treatment water and equilibrated to -10, -33, -100, -500, or -1,500 kPa. At all potentials, soil water retention increased significantly with increasing clay content. Drought-prone soils lost water-holding capacity between saturation and field capacity with repeated wetting and drying, whereas finer textured soils withstood this treatment better and had increased water-retention capacity at lower matric potentials.

  6. Root-to-shoot signalling when soil moisture is heterogeneous: increasing the proportion of root biomass in drying soil inhibits leaf growth and increases leaf abscisic acid concentration.

    PubMed

    Martin-Vertedor, Ana Isabel; Dodd, Ian C

    2011-07-01

    To determine whether root-to-shoot signalling of soil moisture heterogeneity depended on root distribution, wild-type (WT) and abscisic acid (ABA)-deficient (Az34) barley (Hordeum vulgare) plants were grown in split pots into which different numbers of seminal roots were inserted. After establishment, all plants received the same irrigation volumes, with one pot watered (w) and the other allowed to dry the soil (d), imposing three treatments (1 d: 3 w, 2 d: 2 w, 3 d: 1 w) that differed in the number of seminal roots exposed to drying soil. Root distribution did not affect leaf water relations and had no sustained effect on plant evapotranspiration (ET). In both genotypes, leaf elongation was less and leaf ABA concentrations were higher in plants with more roots in drying soil, with leaf ABA concentrations and water potentials 30% and 0.2 MPa higher, respectively, in WT plants. Whole-pot soil drying increased xylem ABA concentrations, but maximum values obtained when leaf growth had virtually ceased (100 nm in Az34, 330 nm in WT) had minimal effects (<40% leaf growth inhibition) when xylem supplied to detached shoots. Although ABA may not regulate leaf growth in vivo, genetic variation in foliar ABA concentration in the field may indicate different root distributions between upper (drier) and lower (wetter) soil layers. PMID:21410712

  7. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  8. Nature of organo-mineral particles across density fractions in a volcanic-ash soil: air-drying and sonication effect

    NASA Astrophysics Data System (ADS)

    Wagai, R.; Kajiura, M.; Shirato, Y.; Uchida, M.

    2011-12-01

    Interactions of plant- and microbially-derived organic matter with mineral phases exert significant controls on the stabilization of organic matter (OM) as well as other biogeochemical processes in soil. Density fractionation techniques have been successful in distinguishing soil organo-mineral particles of different degrees of microbial alteration, turnover rate of C, mineral associations. A major methodological difference among the density fractionation studies is the choice of sample pre-treatment. Presence or absence of sonication to disrupt and disperse soil particles and aggregates is a particularly important choice which could significantly alter the nature and distribution of organo-mineral particle and thus the resultant elemental concentration in each density fraction. Soil moisture condition (air-dry vs. field-moist) may also have strong impact especially for soils rich in Fe oxides/hydroxides and/or poorly-crystalline minerals that are prone for (possibly irreversible) aggregation. We thus tested these two effects on the concentration and distribution of C, N, and extractable phases of Fe and Al (by pyrophosphate and acid oxalate) across six density fractions (from <1.6 to >2.5 g/cm^3) using a surface-horizon of volcanic-ash soil which contained large amounts of poorly-crystalline minerals and organo-metal complexes. Compared to field-moist sample, air-drying had little effects on the elemental concentration or distribution across the fractions. In contrast, sonication on air-dried sample at each density cutoff during fractionation process caused significant changes. In addition to well-known increase in low-density material due to the liberation of plant detritus upon aggregate disruption, we found clear increase in C, N, and metals in 2.0-2.3 g/cm^3 fraction, which was largely compensated by the reduction in 1.8-2.0 g/cm^3 and, to a less extent, 2.3-2.5 g/cm^3 particles. Overall, sonication led to the redistribution of C and N by 15-20% and that of

  9. Situational Analysis of Household Energy and Biomass Use and Associated Health Burden of Indoor Air Pollution and Mitigation Efforts in Pakistan

    PubMed Central

    Fatmi, Zafar; Rahman, Asma; Kazi, Ambreen; Kadir, M. Masood; Sathiakumar, Nalini

    2010-01-01

    Biomass fuel burning leads to high levels of suspended particulate matter and hazardous chemicals in the indoor environment in countries where it is in common use, contributing significantly to indoor air pollution (IAP). A situational analysis of household energy and biomass use and associated health effects of IAP was conducted by reviewing published and un-published literature about the situation in Pakistan. In addition to attempt to quantify the burden of ill health due to IAP, this paper also appraises the mitigation measures undertaken to avert the problem in Pakistan. Unfortunately, IAP is still not a recognized environmental hazard in Pakistan and there are no policies and standards to control it at the household level. Only a few original studies related to health effects of IAP have been conducted, mainly on women’s health and birth outcome, and only a few governmental, non-governmental and academic institutions are working to improve the IAP situation by introducing improved stoves and renewable energy technology at a small scale. Control of IAP health hazards in Pakistan requires an initial meeting of the stakeholders to define a policy and an action agenda. Simultaneously, studies gathering evidence of impact of intervention through available technologies such as improved stoves would have favorable impact on the health, especially of women and children in Pakistan. PMID:20717550

  10. Direct quantification of PM{sub 2.5} fossil and biomass carbon within the Northern Front Range Air Quality Study's domain

    SciTech Connect

    Klinedinst, D.B.; Currie, L.A.

    1999-12-01

    Radiocarbon ({sup 14}C) analyses of PM{sub 2.5} (particulate matter with an aerodynamic diameter of 2.5 {micro}m or less) of both ambient and source samples from the Northern Front Range Air Quality Study (NFRAQS) in Colorado were performed. The {sup 14}C analyses were undertaken to provide direct fossil vs modern (biomass) carbon source discrimination data for a subset of summer and winter 1996--1997 samples collected within the Denver metropolitan area. Samples were prepared for {sup 14}C accelerator mass spectrometry measurements using techniques specially developed for small samples, i.e., {lt}100 {mu}g C. For the days and sampling periods analyzed the median and interquartile range of the winter blank corrected fraction of modern carbon was 23% (16--34%) at Welby and 27% (25--37%) at Brighton. The summer samples exhibited a more mixed signature with a median and interquartile range of 47% (9--70%). Source samples yielded {sup 14}C signatures consistent with expectation. The authors conclude fossil-derived sources contribute substantially in both seasons and at both locations; however, the biomass carbon component dominates episodically in the summer.

  11. DRY/WET PERFORMANCE OF A PLATE-FIN AIR COOLED HEAT EXCHANGER WITH CONTINUOUS CORRUGATED FINS

    EPA Science Inventory

    The report describes work to (1) determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet or 'deluge' operation and (2) continue developing the deluge heat/mass transfer model. This work supports the improvement of power ...

  12. Air pollution and rural biomass fuels in developing countries: A pilot village study in India and implications for research and policy

    NASA Astrophysics Data System (ADS)

    Smith, Kirk R.; Aggarwal, A. L.; Dave , R. M.

    The results of a pilot study in four Indian villages of personal exposure to total suspended particulates (TSP) and particulate benzo(a)pyrene (BaP) of women cooking on simple stoves using traditional biomass fuels are presented together with socioeconomic and fuel-use determinations. TSP exposures averaged nearly 7 mg m -3 and BaP about 4000 ng m -3 during the cooking period which occupied 10% of the year. The factors affecting indoor air pollution exposures in rural areas of developing countries are categorized and discussed by reference to the few published field measurements. Comparisons are made with other common exposures in urban and occupational settings. The sparse information indicates that rural exposures are relatively high. Subjects for future research are outlined and general policy implications mentioned.

  13. Evaluation of interventions to reduce air pollution from biomass smoke on mortality in Launceston, Australia: retrospective analysis of daily mortality, 1994-2007

    PubMed Central

    Hanigan, Ivan C; Henderson, Sarah B; Morgan, Geoffrey G

    2013-01-01

    Objective To assess the effect of reductions in air pollution from biomass smoke on daily mortality. Design Age stratified time series analysis of daily mortality with Poisson regression models adjusted for the effects of temperature, humidity, day of week, respiratory epidemics, and secular mortality trends, applied to an intervention and control community. Setting Central Launceston, Australia, a town in which coordinated strategies were implemented to reduce pollution from wood smoke and central Hobart, a comparable city in which there were no specific air quality interventions. Participants 67 000 residents of central Launceston and 148 000 residents of central Hobart (at 2001 census). Interventions Community education campaigns, enforcement of environmental regulations, and a wood heater replacement programme to reduce ambient pollution from residential wood stoves started in the winter of 2001. Main outcome measures Changes in daily all cause, cardiovascular, and respiratory mortality during the 6.5 year periods before and after June 2001 in Launceston and Hobart. Results Mean daily wintertime concentration of PM10 (particulate matter with particle size <10 µm diameter) fell from 44 µg/m3 during 1994-2000 to 27 µg/m3 during 2001-07 in Launceston. The period of improved air quality was associated with small non-significant reductions in annual mortality. In males the observed reductions in annual mortality were larger and significant for all cause (−11.4%, 95% confidence interval −19.2% to −2.9%; P=0.01), cardiovascular (−17.9%, −30.6% to −2.8%; P=0.02), and respiratory (−22.8%, −40.6% to 0.3%; P=0.05) mortality. In wintertime reductions in cardiovascular (−19.6%, −36.3% to 1.5%; P=0.06) and respiratory (−27.9%, −49.5% to 3.1%; P=0.07) mortality were of borderline significance (males and females combined). There were no significant changes in mortality in the control city of Hobart. Conclusions Decreased air pollution from

  14. Biomass Burning

    Atmospheric Science Data Center

    2015-07-27

    Projects:  Biomass Burning Definition/Description:  Biomass Burning: This data set represents the geographical and temporal distribution of total amount of biomass burned. These data may be used in general circulation models (GCMs) and ...

  15. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from temperate fuels common in the United States

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-08-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern United States. A gas chromatograph-mass spectrometer (GC-MS) provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectrometer (OP-FTIR) and 3 different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the U.S. Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana. The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the 3 geographic fuel regions being simulated. Emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 ± 0.12 % of emissions by mole and less than 0.95 ± 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 42-57 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde were the dominant potential SOA precursors. In addition, ambient air measurements of emissions from the Fourmile Canyon Fire

  16. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    NASA Astrophysics Data System (ADS)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  17. Air classification: Potential treatment method for optimized recycling or utilization of fine-grained air pollution control residues obtained from dry off-gas cleaning high-temperature processing systems.

    PubMed

    Lanzerstorfer, Christof

    2015-11-01

    In the dust collected from the off-gas of high-temperature processes, usually components that are volatile at the process temperature are enriched. In the recycling of the dust, the concentration of these volatile components is frequently limited to avoid operation problems. Also, for external utilization the concentration of such volatile components, especially heavy metals, is often restricted. The concentration of the volatile components is usually higher in the fine fractions of the collected dust. Therefore, air classification is a potential treatment method to deplete the coarse material from these volatile components by splitting off a fines fraction with an increased concentration of those volatile components. In this work, the procedure of a sequential classification using a laboratory air classifier and the calculations required for the evaluation of air classification for a certain application were demonstrated by taking the example of a fly ash sample from a biomass combustion plant. In the investigated example, the Pb content in the coarse fraction could be reduced to 60% by separation of 20% fines. For the non-volatile Mg the content was almost constant. It can be concluded that air classification is an appropriate method for the treatment of off-gas cleaning residues. PMID:26268600

  18. New model for the sulfation of marble by dry deposition Sheltered marble—the indicator of air pollution by sulfur dioxide

    NASA Astrophysics Data System (ADS)

    Lan, Tran Thi Ngoc; Nguyen, Thi Phuong Thoa; Nishimura, R.; Tsujino, Y.; Yokoi, M.; Maeda, Y.

    This paper was concerned with evaluating the effect of dry deposition on deterioration of marble. Two types of marble were exposed to atmospheric environment with a rain shelter at four exposure sites in the south of Vietnam for 3-month, 1-year and 2-year periods from July 2001 to September 2003. X-ray diffraction (XRD) and X-ray fluorescent (XRF) methods were applied to study the products of marble deterioration. Ion chromatography was used to analyze dry depositions on marble. The main product of marble deterioration was gypsum (CaSO 4·2H 2O). The amount of sulfate ions deposited on marble was found to be proportional to SO 2 concentration in the air, relative humidity and duration of the exposure. In addition, sulfation of marble caused by SO 2 at a relative humidity lower than 70% is almost half of that at relative humidity higher than 70%. Moreover, marble consisting of calcite (CaCO 3) was more sensitive to SO 2 than marble consisting of dolomite (CaCO 3 and MgCO 3). A good relation between the amount of sulfate ions deposited on marble and SO 2 concentration in the air suggested that marble could serve as an indicator for atmospheric pollution by SO 2.

  19. Process for concentrated biomass saccharification

    DOEpatents

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  20. Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China - Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity

    NASA Astrophysics Data System (ADS)

    Rose, D.; Nowak, A.; Achtert, P.; Wiedensohler, A.; Hu, M.; Shao, M.; Zhang, Y.; Andreae, M. O.; Pöschl, U.

    2010-04-01

    Atmospheric aerosol particles serving as Cloud Condensation Nuclei (CCN) are key elements of the hydrological cycle and climate. We measured and characterized CCN in polluted air and biomass burning smoke during the PRIDE-PRD2006 campaign from 1-30 July 2006 at a rural site ~60 km northwest of the mega-city Guangzhou in southeastern China. CCN efficiency spectra (activated fraction vs. dry particle diameter; 20-290 nm) were recorded at water vapor supersaturations (S) in the range of 0.068% to 1.27%. The corresponding effective hygroscopicity parameters describing the influence of particle composition on CCN activity were in the range of κ≍0.1-0.5. The campaign average value of κ=0.3 equals the average value of κ for other continental locations. During a strong local biomass burning event, the average value of κ dropped to 0.2, which can be considered as characteristic for freshly emitted smoke from the burning of agricultural waste. At low S (≤0.27%), the maximum activated fraction remained generally well below one, indicating substantial portions of externally mixed CCN-inactive particles with much lower hygroscopicity - most likely soot particles (up to ~60% at ~250 nm). The mean CCN number concentrations (NCCN,S) ranged from 1000 cm-3 at S=0.068% to 16 000 cm-3 at S=1.27%, which is about two orders of magnitude higher than in pristine air. Nevertheless, the ratios between CCN concentration and total aerosol particle concentration (integral CCN efficiencies) were similar to the ratios observed in pristine continental air (~6% to ~85% at S=0.068% to 1.27%). Based on the measurement data, we have tested different model approaches for the approximation/prediction of NCCN,S. Depending on S and on the model approach, the relative deviations between observed and predicted NCCN,S ranged from a few percent to several hundred percent. The largest deviations occurred at low S with a simple power law. With a Köhler model using variable κ values obtained from

  1. Bench-scale feasibility testing of pulsed-air technology for in-tank mixing of dry cementitious solids with tank liquids and settled solids

    SciTech Connect

    Whyatt, G.A.; Hymas, C.R.

    1997-09-01

    This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the {open_quotes}V{close_quotes} tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consisted of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing.

  2. Monitoring ambient air pollutants and apply Woods' model in the prediction seasonal dry deposition at Chang-Hua (urban) and Kao-Mei (wetland) county, Taiwan.

    PubMed

    Fang, Guor-Cheng; Chang, Chia-Ying

    2014-09-01

    The main purpose for this study was to monitor ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) in total suspended particulate (TSP) concentration and dry deposition. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and metallic elements (Mn, Fe, Zn, Cr, Cu and Pb) were evaluated using Woods' model at urban and wetland areas for the 2009-2010 period. The results indicated that the mean highest concentrations of metallic elements Mn, Fe, Zn, Cr, Cu and Pb in TSP were found in Chang-Hua (urban) sampling site. And as for the two characteristic sampling sites, the Woods' model exhibits better dry deposition of particulates of 18 µm particle size than the rest of the other particle sizes at any sampling site in this study. The average calculated/measured flux ratios for two seasons (summer and fall) by using Woods model at 2.5, 10 and 18 µm particles sizes were also studied. The results indicated that the average calculated/measured flux ratios orders for two seasons of various particles sizes were all displayed as Fe > Mn > Zn > Cu > Cr > Pb > particle. And these calculated/measured flux ratios orders were Fe > Mn > Cu > Zn > Cr > Pb > particle and were Fe > Mn > Zn > Cu > Cr > particle > Pb, during spring and winter seasons, respectively. Finally, in the spring and summer seasons of Gao-Mei (wetland) sampling site, the average calculated/measured flux ratios using Woods' model was found to be 2.5, 10 and 18 µm, showing the order of the calculated/measured flux ratios to be Fe > Cu > Zn > Mn > Cr > Pb > particle. And the calculated/measured flux ratio orders were Fe > Zn > Mn > Cu > Cr > particle > Pb and were Fe > Cu > Zn > Mn > Cr > particle > Pb for fall and winter season, respectively. PMID:23070636

  3. Time-dependency of mice lung recovery after a 4-week exposure to traffic or biomass air pollutants.

    PubMed

    Mazzoli-Rocha, Flavia; Oliveira, Vinícius Rosa; Barcellos, Bárbara Chaves; Moreira, Dayse Kelly Molina; Saldiva, Paulo Hilário Nascimento; Faffe, Débora Souza; Zin, Walter Araújo

    2016-08-01

    The time-dependency of lung recovery after 3 intranasal instillations per week during four weeks of distilled water (C groups) or particles (15μg) from traffic (U groups) or biomass burning (B groups) was observed in BALB/c mice. Lung mechanics [static elastance (Est), viscoelastic component of elastance (ΔE), lung resistive (ΔP1) and viscoelastic/inhomogeneous (ΔP2) pressures] and histology were analyzed 1 (C1, U1, B1), 2 (C2, U2, B2), 7 (C7, U7, B7) or 14 days (C14, U14, B14) after the last instillation. Est, ΔE, ΔP1 and ΔP2 were higher in U1 and B1 than in C1, returning to control values at day 2, except for ΔP1 that normalized after 7 days. Alveolar collapse, bronchoconstriction index and alveolar lesion were larger in U1 and B1 than in C1, however collapse returned to baseline at 7 days, while the others normalized in 2 days. A 4-week exposure to U and B induced lung impairment that resolved 7 days after the last exposure. PMID:27179431

  4. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  5. Dry/wet performance of a plate-fin air cooled heat exchanger with continuous corrugated fins

    NASA Astrophysics Data System (ADS)

    Hauser, S. G.; Kreid, D. K.; Johnson, B. M.

    1982-04-01

    Work to determine experimentally the performance and operating characteristics of a plate-fin heat exchanger during dry/wet of deluge operation is discussed, as well as the development of the deluge heat/mass transfer model. The work supports the improvement of power plant cooling systems that conserve fresh water in an environmentally and economically viable manner. The experiments identified important trade-offs concerning deluge cooling; these are discussed. The earlier deluge model was refined and extended to the simultaneous calculation of heat transfer and evaporation from wetted surfaces. Experiments showed the model to be an excellent predictor of heat exchanger performance during deluge operation.

  6. Biomass power in transition

    SciTech Connect

    Marshall, D.K.

    1996-12-31

    Electricity production from biomass fuel has been hailed in recent years as an environmentally acceptable energy source that delivers on its promise of economically viable renewable energy. A Wall Street Journal article from three years ago proclaimed wood to be {open_quotes}moving ahead of costly solar panels and wind turbines as the leading renewable energy alternative to air-fouling fossils fuels and scary nuclear plants.{close_quotes} Biomass fuel largely means wood; about 90% of biomass generated electricity comes from burning waste wood, the remainder from agricultural wastes. Biomass power now faces an uncertain future. The maturing of the cogeneration and independent power plant market, restructuring of the electric industry, and technological advances with power equipment firing other fuels have placed biomass power in a competitive disadvantage with other power sources.

  7. Comparison between conventional biofilters and biotrickling filters applied to waste bio-drying in terms of atmospheric dispersion and air quality.

    PubMed

    Schiavon, Marco; Ragazzi, Marco; Torretta, Vincenzo; Rada, Elena Cristina

    2016-01-01

    Biofiltration has been widely applied to remove odours and volatile organic compounds (VOCs) from industrial off-gas and mechanical-biological waste treatments. However, conventional open biofilters cannot guarantee an efficient dispersion of air pollutants emitted into the atmosphere. The aim of this paper is to compare conventional open biofilters with biotrickling filters (BTFs) in terms of VOC dispersion in the atmosphere and air quality in the vicinity of a hypothetical municipal solid waste bio-drying plant. Simulations of dispersion were carried out regarding two VOCs of interest due to their impact in terms of odours and cancer risk: dimethyl disulphide and benzene, respectively. The use of BTFs, instead of conventional biofilters, led to significant improvements in the odour impact and the cancer risk: when adopting BTFs instead of an open biofilter, the area with an odour concentration > 1 OU m(-3) and a cancer risk > 10(-6) was reduced by 91.6% and 95.2%, respectively. When replacing the biofilter with BTFs, the annual mean concentrations of odorants and benzene decreased by more than 90% in the vicinity of the plant. These improvements are achieved above all because of the higher release height of BTFs and the higher velocity of the outgoing air flow. PMID:26406537

  8. Biomass burning source characterization requirements in air quality models with and without data assimilation: challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Zhang, J. L.; Reid, J. S.; Curtis, C. A.; Westphal, D. L.

    2007-12-01

    Quantitative models of the transport and evolution of atmospheric pollution have graduated from the laboratory to become a part of the operational activity of forecast centers. Scientists studying the composition and variability of the atmosphere put great efforts into developing methods for accurately specifying sources of pollution, including natural and anthropogenic biomass burning. These methods must be adapted for use in operational contexts, which impose additional strictures on input data and methods. First, only input data sources available in near real-time are suitable for use in operational applications. Second, operational applications must make use of redundant data sources whenever possible. This is a shift in philosophy: in a research context, the most accurate and complete data set will be used, whereas in an operational context, the system must be designed with maximum redundancy. The goal in an operational context is to produce, to the extent possible, consistent and timely output, given sometimes inconsistent inputs. The Naval Aerosol Analysis and Prediction System (NAAPS), a global operational aerosol analysis and forecast system, recently began incorporating assimilation of satellite-derived aerosol optical depth. Assimilation of satellite AOD retrievals has dramatically improved aerosol analyses and forecasts from this system. The use of aerosol data assimilation also changes the strategy for improving the smoke source function. The absolute magnitude of emissions events can be refined through feedback from the data assimilation system, both in real- time operations and in post-processing analysis of data assimilation results. In terms of the aerosol source functions, the largest gains in model performance are now to be gained by reducing data latency and minimizing missed detections. In this presentation, recent model development work on the Fire Locating and Monitoring of Burning Emissions (FLAMBE) system that provides smoke aerosol

  9. Simple Solutions for Dry Eye

    MedlinePlus

    ... are more concentrated in the tear film of dry eye patients. In hot weather, sleep with the windows shut and keep cool with air conditioning. • Dry eye patients often develop or aggravate allergies. An ...

  10. Dry mouth during cancer treatment

    MedlinePlus

    ... cause dry mouth. Symptoms you may have include: Mouth sores Thick and stringy saliva Cuts or cracks in ... air dry between brushings. If toothpaste makes your mouth sore, brush with a solution of 1 teaspoon of ...

  11. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2016-03-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  12. Substantiation of 25 kGy radiation sterilization dose for banked air dried amniotic membrane and evaluation of personnel skill in influencing finished product bioburden.

    PubMed

    Marsit, Nagi; Dwejen, Samira; Saad, Ibrahim; Abdalla, Sedigh; Shaab, Arej; Salem, Salma; Khanfas, Enas; Hasan, Anas; Mansur, Mohamed; Abdul Sammad, Mohamed

    2014-12-01

    Preparation of amniotic membrane (AM) by air drying method followed by radiation sterilization is simple and valuable approach; sterility and quality of the final AM product are depending on the quality management system at the tissue bank. Validation and substantiation of radiation sterilization dose (RSD) for tissue allografts is an essential step for the development and validation of the standard operating procedures (SOP). Application of SOP is perfectly relying on trained staff. Skills differences among personnel involved in AM preparation could have an effect on microbiological quality of the finished product and subsequently on the RSD required. AM were processed by four different couples of the tissue bank technicians. The AM grafts were randomly selected and subjected to bioburden test to validate and substantiate the 25 kGy RSD. Bioburden test for AM grafts were also useful to evaluate the skill of the tissue bank technicians and thus, to validate the current SOP for air dried AM. Moreover, the effect of placental source on bioburden counts on AM grafts was assessed. Substantiation of the 25 kGy RSD at a sterility assurance level of 10(-1), and sample item portion = 1, was carried out using Method VD max (25) of the International Organization for Standardization, document no. 11137-2 (ISO in Sterilization of healthcare products-radiation-part 2: establishing the sterilization dose, Method VDmax-substantiation of 25 kGy or 15 kGy as the sterilization dose, International Standard Organization, 2006). The results showed that there were no significant differences in the bioburdens of the four batches (α = 1 %), this means no significant differences in the skill of the four couples of the tissue bank technicians in terms of their ability to process AM according to the air dried AM SOP. The 25 kGy RSD was validated and substantiated as a valid sterilization dose for the AM prepared with the current established SOP at the Biotechnology Research Center

  13. Effects of Nitrogen and Desferal Treatments on CROTALARIA's (Crotalaria juncea Roth) Biomass Production

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    920-920 individual plants. Experimental datas were estimated by MANOVA of SPSS. The most important results can be summarised as follows: a., As the N supplies improved the root length (cm), plant height (cm), mean scores (1-5), fresh root weight (t ha-1), green straw+leaf weight (t ha-1), total green biomass weight (t ha-1), air dry root weight (t ha-1), air dry straw+leaf weight (t ha-1), and total air dry biomass weight (t ha-1) increased with an 1.4, 1.3, 4.3, 1.3, 1.8, 1.6, 2.1, 1.9 and 2.0 times compared to the control by the start of flowering. b., As the N doses rised the root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight reaching 34.3 cm, 168.0 cm, 4.3, 14.8 t ha-1, 51.7 t ha-1, 66.5 t ha-1, 7.4 t ha-1, 16.5 t ha-1 and 23.9 t ha-1. c., About three-fourth of the total green biomass and total air dry biomass production at harvest was given by the straw+leaf yield, which ranged between 29.0-51.7 t ha-1 and 8.7-16.5 t ha-1, depending on the N-treatment applied. d., The root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight was increased in average with an 14, 15, 21, 157, 30, 63, 102, 28 and 51% by N+Desferal treatments compared to mean of N doses effects. e., By N+Desferal treatments the root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight achieved 37.0 cm, 173.3 cm, 4.3, 37.8 t ha-1, 64.4 t ha-1, 102.2 t ha-1, 13.8 t ha-1, 19.3 t ha-1 and 33.1 t ha-1. f., Approximately two-third of the total green biomass and total air dry biomass production at harvest was given by the straw+leaf yield, which ranged between 44.7-64.4 t ha-1 and 24.1-33.1 t ha-1

  14. The contributions of emissions and spatial microenvironments to exposure to indoor air pollution from biomass combustion in Kenya.

    PubMed Central

    Ezzati, M; Saleh, H; Kammen, D M

    2000-01-01

    Acute and chronic respiratory diseases, which are causally linked to exposure to indoor air pollution in developing countries, are the leading cause of global morbidity and mortality. Efforts to develop effective intervention strategies and detailed quantification of the exposure-response relationship for indoor particulate matter require accurate estimates of exposure. We used continuous monitoring of indoor air pollution and individual time-activity budget data to construct detailed profiles of exposure for 345 individuals in 55 households in rural Kenya. Data for analysis were from two hundred ten 14-hour days of continuous real-time monitoring of concentrations of particulate matter [less than/equal to] 10 microm in aerodynamic diameter and the location and activities of household members. These data were supplemented by data on the spatial dispersion of pollution and from interviews. Young and adult women had not only the highest absolute exposure to particulate matter (2, 795 and 4,898 microg/m(3) average daily exposure concentrations, respectively) but also the largest exposure relative to that of males in the same age group (2.5 and 4.8 times, respectively). Exposure during brief high-intensity emission episodes accounts for 31-61% of the total exposure of household members who take part in cooking and 0-11% for those who do not. Simple models that neglect the spatial distribution of pollution within the home, intense emission episodes, and activity patterns underestimate exposure by 3-71% for different demographic subgroups, resulting in inaccurate and biased estimations. Health and intervention impact studies should therefore consider in detail the critical role of exposure patterns, including the short periods of intense emission, to avoid spurious assessments of risks and benefits. PMID:11017887

  15. Error estimations of dry deposition velocities of air pollutants using bulk sea surface temperature under common assumptions

    NASA Astrophysics Data System (ADS)

    Lan, Yung-Yao; Tsuang, Ben-Jei; Keenlyside, Noel; Wang, Shu-Lun; Arthur Chen, Chen-Tung; Wang, Bin-Jye; Liu, Tsun-Hsien

    2010-07-01

    It is well known that skin sea surface temperature (SSST) is different from bulk sea surface temperature (BSST) by a few tenths of a degree Celsius. However, the extent of the error associated with dry deposition (or uptake) estimation by using BSST is not well known. This study tries to conduct such an evaluation using the on-board observation data over the South China Sea in the summers of 2004 and 2006. It was found that when a warm layer occurred, the deposition velocities using BSST were underestimated within the range of 0.8-4.3%, and the absorbed sea surface heat flux was overestimated by 21 W m -2. In contrast, under cool skin only conditions, the deposition velocities using BSST were overestimated within the range of 0.5-2.0%, varying with pollutants and the absorbed sea surface heat flux was underestimated also by 21 W m -2. Scale analysis shows that for a slightly soluble gas (e.g., NO 2, NO and CO), the error in the solubility estimation using BSST is the major source of the error in dry deposition estimation. For a highly soluble gas (e.g., SO 2), the error in the estimation of turbulent heat fluxes and, consequently, aerodynamic resistance and gas-phase film resistance using BSST is the major source of the total error. In contrast, for a medium soluble gas (e.g., O 3 and CO 2) both the errors from the estimations of the solubility and aerodynamic resistance are important. In addition, deposition estimations using various assumptions are discussed. The largest uncertainty is from the parameterizations for chemical enhancement factors. Other important areas of uncertainty include: (1) various parameterizations for gas-transfer velocity; (2) neutral-atmosphere assumption; (3) using BSST as SST, and (4) constant pH value assumption.

  16. Removal of formaldehyde by a pulsed dielectric barrier discharge in dry air in the 20 °C to 300 °C temperature range

    NASA Astrophysics Data System (ADS)

    Blin-Simiand, N.; Pasquiers, S.; Magne, L.

    2016-05-01

    The influence of the gas mixture temperature, from 20 °C up to 300 °C, on the removal of formaldehyde, diluted at low concentration (less than 800 ppm) in dry air at atmospheric pressure, by a pulsed dielectric barrier discharge (DBD) is studied by means of Fourier transform infrared spectroscopy and micro gas chromatography. Efficient removal of CH2O is obtained and it is found that the characteristic energy, less than 200 J l‑1, is a decreasing function of the temperature over the whole range of concentration values under consideration. Byproducts issued from the removal are identified and quantified (CO, CO2, HCOOH, HNO3). Experimental results are analysed using a zero-dimensional simplified DBD-reactor model in order to gain insights on the chemical processes involved. It is shown that the dissociation of the molecule competes with oxidation reactions at low temperature, whereas at high temperature oxidation processes dominate.

  17. Study of free and glycosidically bound volatile compounds in air-dried raisins from three seedless grape varieties using HS-SPME with GC-MS.

    PubMed

    Wang, Dong; Cai, Jian; Zhu, Bao-Qing; Wu, Guang-Feng; Duan, Chang-Qing; Chen, Guang; Shi, Ying

    2015-06-15

    Volatile compounds in air-dried raisins from Turpan, China were analysed, with 77 volatiles identified in Flame Seedless, Thompson Seedless, and Crimson Seedless raisins, 37 of which had never been reported as raisin volatiles. Odour activity values (OAVs) of these volatiles were calculated; 20 compounds had OAVs above 1. The aroma characters of the three varieties were quite similar except for some differences in the intensity of each aroma character. The main free-form volatiles were ethyl acetate, hexanoic acid, (E,E)-2,4-heptadienal and geraniol, with β-damascenone, 3-ethyl-2,5-dimethylpyrazine, 1-octen-3-ol and hexanal making the highest contribution to the aroma. Fruity and floral were the main characteristics of the free-form aromas in raisins. The main bound-form volatiles were benzyl alcohol and acetoin, with β-damascenone contributing most to the bound-form aromas, enhancing the floral, fruity and fatty aroma. PMID:25660896

  18. Simultaneous heat and mass transfer inside a vertical tube in evaporating a heated falling alcohols liquid film into a stream of dry air

    NASA Astrophysics Data System (ADS)

    Senhaji, S.; Feddaoui, M.; Mediouni, T.; Mir, A.

    2009-03-01

    A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.

  19. Gas chromatographic-mass spectroscopic determination of benzene in indoor air during the use of biomass fuels in cooking time.

    PubMed

    Sinha, Sukesh Narayan; Kulkarni, P K; Desai, N M; Shah, S H; Patel, G M; Mansuri, M M; Parikh, D J; Saiyed, H N

    2005-02-18

    A gas chromatography-mass spectroscopic method in electron ionization (EI) mode with MS/MS ion preparation using helium at flow rate 1 ml min(-1) as carrier gas on DB-5 capillary column (30 m x 0.25 mm i.d. film thickness 0.25 microm) has been developed for the determination of benzene in indoor air. The detection limit for benzene was 0.002 microg ml(-1) with S/N: 4 (S: 66, N: 14). The benzene concentration for cooks during cooking time in indoor kitchen using dung fuel was 114.1 microg m(-3) while it was 6.6 microg m(-3) for open type kitchen. The benzene concentration was significantly higher (p < 0.01) in indoor kitchen with respect to open type kitchen using dung fuels. The wood fuel produces 36.5 microg m(-3) of benzene in indoor kitchen. The concentration of benzene in indoor kitchen using wood fuel was significantly (p < 0.01) lower in comparison to dung fuel. This method may be helpful for environmental analytical chemist dealing with GC-MS in confirmation and quantification of benzene in environmental samples with health risk exposure assessment. PMID:15782977

  20. BIOMASS-FUELED, SMALL-SCALE, INTEGRATED-GASIFIER, GAS-TURBINE POWER PLANT: PROGRESS REPORT ON THE PHASE 2 DEVELOPMENT

    EPA Science Inventory

    The paper reports the latest efforts to complete development of Phase 2 of a three-phase effort to develop a family of small-scale (1 to 20 MWe) biomass-fueled power plants. The concept envisioned is an air-blown pressurized fluidized-bed gasifier followed by a dry hot gas clean...

  1. Air pollution from biomass burning and asthma hospital admissions in a sugar cane plantation area in Brazil

    PubMed Central

    Arbex, Marcos Abdo; Martins, Lourdes Conceição; de Oliveira, Regiani Carvalho; Pereira, Luiz Alberto Amador; Arbex, Flávio Ferlin; Cançado, José Eduardo Delfini; Saldiva, Paulo Hilário Nascimento; Braga, Alfésio Luís Ferreira

    2007-01-01

    Objective To evaluate the association between the total suspended particles (TSPs) generated from preharvest sugar cane burning and hospital admission due to asthma (asthma hospital admissions) in the city of Araraquara. Design An ecological time‐series study. Total daily records of asthma hospital admissions (ICD 10th J15) were obtained from one of the main hospitals in Araraquara, São Paulo State, Brazil, from 23 March 2003 to 27 July 2004. The daily concentration of TSP (μg/m3) was obtained using Handi‐vol equipment (Energética, Brazil) placed in downtown Araraquara. The local airport provided the daily mean figures of temperature and humidity. The daily number of asthma hospital admissions was considered as the dependent variable in Poisson's regression models and the daily concentration of TSP was considered the independent variable. The generalised linear model with natural cubic spline was adopted to control for long‐time trend. Linear terms were used for weather variables. Results TSP had an acute effect on asthma admissions, starting 1 day after TSP concentrations increased and remaining almost unchanged for the next four days. A 10 μg/m3 increase in the 5‐day moving average (lag1–5) of TSP concentrations was associated with an increase of 11.6% (95% CI 5.4 to 17.7) in asthma hospital admissions. Conclusion Increases in TSP concentrations were definitely associated with asthma hospital admissions in Araraquara and, despite using sugar cane alcohol to reduce air pollution from automotive sources in large Brazilian urban centres, the cities where sugar cane is harvested pay a high toll in terms of public health. PMID:17435205

  2. Cultivation of Chlorella vulgaris in Column Photobioreactor for Biomass Production and Lipid Accumulation.

    PubMed

    Wong, Y K; Ho, K C; Tsang, Y F; Wang, L; Yung, K K L

    2016-01-01

    Microalgae have been used as energy resources in recent decades to mitigate the global energy crisis. As the demand for pure microalgae strains for commercial use increases, designing an effective photobioreactor (PBR) for mass cultivation is important. Chlorella vulgaris, a local freshwater microalga, was used to study the algal biomass cultivation and lipid production using various PBR configurations (bubbling, air-lift, porous air-lift). The results show that a bubbling column design is a better choice for the cultivation of Chlorella vulgaris than an air-lift one. The highest biomass concentration in the bubbling PBR was 0.78 g/L while the air-lift PBR had a value of 0.09 g/L. Key operating parameters, including draft-tube length and bubbling flowrate, were then optimized based on biomass production and lipid yield. The highest lipid content was in the porous air-lift PBR and the air-lift PBR with shorter draft tube (35 cm) was also better than a longer one (50 cm) for algal cultivation, but the microalgae attachment on the inner tube of PBR always occurred. The highest biomass concentration could be produced under the highest gas flowrate of 2.7 L/min, whereas the lowest dry cell mass was under the lowest gas flowrate of 0.2 L/min. PMID:26803025

  3. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new PTR-MS and air quality facility: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2013-12-01

    One seventh of the world population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia. Yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides is not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and meteorological station, was used to quantify in-situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (N. W. IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site, were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May 2012 ranged from 1.2-1.7 nmol mol-1 for aromatic VOCs, 5.9-37.4 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulphur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one minute in-situ data with meteorological parameters and applying chemical tracers (e.g. acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning activity caused massive increases (> 3 times of baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant source

  4. Chemical composition of pre-monsoon air in the Indo-Gangetic Plain measured using a new air quality facility and PTR-MS: high surface ozone and strong influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Sinha, V.; Kumar, V.; Sarkar, C.

    2014-06-01

    One seventh of the world's population lives in the Indo-Gangetic Plain (IGP) and the fertile region sustains agricultural food crop production for much of South Asia, yet it remains one of the most under-studied regions of the world in terms of atmospheric composition and chemistry. In particular, the emissions and chemistry of volatile organic compounds (VOCs) that form surface ozone and secondary organic aerosol through photochemical reactions involving nitrogen oxides are not well understood. In this study, ambient levels of VOCs such as methanol, acetone, acetaldehyde, acetonitrile and isoprene were measured for the first time in the IGP. A new atmospheric chemistry facility that combines India's first high-sensitivity proton transfer reaction mass spectrometer, an ambient air quality station and a meteorological station, was used to quantify in situ levels of several VOCs and air pollutants in May 2012 at a suburban site in Mohali (northwest IGP). Westerly winds arriving at high wind speeds (5-20 m s-1) in the pre-monsoon season at the site were conducive for chemical characterization of regional emission signatures. Average levels of VOCs and air pollutants in May~2012 ranged from 1.2 to 2.7 nmol mol-1 for aromatic VOCs, 5.9 to 37.5 nmol mol-1 for the oxygenated VOCs, 1.4 nmol mol-1 for acetonitrile, 1.9 nmol mol-1 for isoprene, 567 nmol mol-1 for carbon monoxide, 57.8 nmol mol-1 for ozone, 11.5 nmol mol-1 for nitrogen oxides, 7.3 nmol mol-1 for sulfur dioxide, 104 μg m-3 for PM2.5 and 276 μg m-3 for PM10. By analyzing the one-minute in situ data with meteorological parameters and applying chemical tracers (e.g., acetonitrile for biomass burning) and inter-VOC correlations, we were able to constrain major emission source activities on both temporal and diel scales. Wheat residue burning caused massive increases (> 3 times the baseline values) for all the measured VOCs and primary pollutants. Other forms of biomass burning at night were also a significant

  5. Status of Process Development for Pyrolysis of Biomass for Liquid Fuels and Chemicals Production.

    SciTech Connect

    Elliott, Douglas C.

    2010-06-01

    Pyrolysis is one of several thermochemical conversion strategies to produce useful fuels from biomass material . The goal of fast pyrolysis is to maximize liquid product yield. Fast pyrolysis is accomplished by the thermal treatment of the biomass in an air-free environment. Very short heat up and cool-down is a requirement for fast pyrolysis. The typical residence time in the pyrolysis reactor is 1 second. In order to accomplish the fast heatup, grinding the biomass to a small particle size in the range of 1 mm is typical and pre-drying of the biomass to less than 10 weight percent moisture is considered the standard. Recovery of the product liquid, called bio-oil, is accomplished by a variety of methods all of which require a quick quench of the product vapor. A definition of fast pyrolysis bio-oil is provided for the CAS # RN 1207435-39-9 recently issued by ChemAbstracts Services.

  6. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    NASA Astrophysics Data System (ADS)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  7. BIOMASS UTILIZATION

    EPA Science Inventory

    The biomass utilization task consists of the evaluation of a biomass conversion technology including research and development initiatives. The project is expected to provide information on co-control of pollutants, as well as, to prove the feasibility of biomass conversion techn...

  8. Biomass pretreatment

    SciTech Connect

    Hennessey, Susan Marie; Friend, Julie; Elander, Richard T; Tucker, III, Melvin P

    2013-05-21

    A method is provided for producing an improved pretreated biomass product for use in saccharification followed by fermentation to produce a target chemical that includes removal of saccharification and or fermentation inhibitors from the pretreated biomass product. Specifically, the pretreated biomass product derived from using the present method has fewer inhibitors of saccharification and/or fermentation without a loss in sugar content.

  9. Yield mapping of high-biomass sorghum with aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, agricultural production of dedicated biomass crops is required. High-biomass sorghum is advantageous across wide regions because it requires less water per unit dry biomass and can produce very high biomass...

  10. A comparison of air dispersion models for estimating PM2.5 and dry deposition to urban trees

    NASA Astrophysics Data System (ADS)

    Game, Ibrahim Paguedame

    Many cities have public health issues linked to air pollution; various tools are used to assess pollutant distribution and removal by urban trees to help alleviate some of these issues. This research compares the predicted PM2.5 concentrations from the US EPA's AERMOD, the USDA Forest Service's i-Tree-Eco-D, the US EPA's Fused HBM data to short- and long-term monitors in New York City. AERMOD generally performs better than the US EPA's Fuse and i-Tree-Eco-D. On days with lower PM2.5 concentrations, Fuse appears to better capture the spatial distribution of PM2.5 than the other models, though on days with high PM2.5, Fuse had a larger negative bias. i-Tree-Eco-D was improved by raising the height of mobile emissions. Predictions from Fuse lead to higher estimates of PM2.5 removal and human health benefits, while AERMOD produced the lowest; and the removal varied across boroughs in NYC.

  11. The radiative effect of aerosols from biomass burning on the transition from dry to wet season over the Amazon as tested by a regional climate model

    NASA Astrophysics Data System (ADS)

    Zhang, Yan

    2008-10-01

    I have carried out a set of ensemble simulations of a regional climate model with observed radiative forcing for smoke aerosols over the Amazon to investigate the radiative effects of aerosols on clouds, rainfall, and circulation from dry to wet season. I first modified the land surface scheme such that the modeled daily mean and diurnal cycle of the surface sensible and latent heat fluxes are much more realistic over the Amazon rainforest. The results of the ensemble simulations suggest that the radiative effect of the smoke aerosols can reduce daytime surface radiative and sensible fluxes, the depth and instability of the planetary boundary layer (PBL), consequently the clouds in the lower troposphere in early afternoon in the smoke center, where the aerosols optical depth, AOD, exceeds 0.3. The aerosol radiative forcing also appears to weaken moisture transport into the smoke center and increase moisture transport and cloudiness in the region upwind to the smoke center, namely, the northern Amazon. In particular, the absorption of solar radiation by smoke aerosols reduces cloudiness in early afternoon. This reduction of cloud partially compensates for the reduction of surface solar flux by aerosol scattering, shifting the strongest changes of surface flux and the PBL to late morning. The reduction of net solar radiation at the surface by smoke is locally largely compensated by reduction of surface sensible flux; with reduction of latent flux only about 30% as large. This is because, in model, transpiration of the forest canopy response favorably to the reduced leaf temperature by aerosols at local noon, which compensates the reduction of evapotranspiration (ET) in morning and later afternoon. Strong aerosol absorption in the top 1 km of the aerosol layer stabilizes the 2 to 3 km layer immediately above the daytime PBL and consequently cloudiness decreases. This reduced surface solar flux and more stable lapse rate at the top of the PBL stabilize the lower

  12. Biomass Logistics

    SciTech Connect

    J. Richard Hess; Kevin L. Kenney; William A. Smith; Ian Bonner; David J. Muth

    2015-04-01

    Equipment manufacturers have made rapid improvements in biomass harvesting and handling equipment. These improvements have increased transportation and handling efficiencies due to higher biomass densities and reduced losses. Improvements in grinder efficiencies and capacity have reduced biomass grinding costs. Biomass collection efficiencies (the ratio of biomass collected to the amount available in the field) as high as 75% for crop residues and greater than 90% for perennial energy crops have also been demonstrated. However, as collection rates increase, the fraction of entrained soil in the biomass increases, and high biomass residue removal rates can violate agronomic sustainability limits. Advancements in quantifying multi-factor sustainability limits to increase removal rate as guided by sustainable residue removal plans, and mitigating soil contamination through targeted removal rates based on soil type and residue type/fraction is allowing the use of new high efficiency harvesting equipment and methods. As another consideration, single pass harvesting and other technologies that improve harvesting costs cause biomass storage moisture management challenges, which challenges are further perturbed by annual variability in biomass moisture content. Monitoring, sampling, simulation, and analysis provide basis for moisture, time, and quality relationships in storage, which has allowed the development of moisture tolerant storage systems and best management processes that combine moisture content and time to accommodate baled storage of wet material based upon “shelf-life.” The key to improving biomass supply logistics costs has been developing the associated agronomic sustainability and biomass quality technologies and processes that allow the implementation of equipment engineering solutions.

  13. Slow-pyrolysis and -oxidation of different biomass fuel samples.

    PubMed

    Haykiri-Acma, Hanzade; Yaman, Serdar

    2006-01-01

    Pyrolysis and oxidation characteristics of some biomass samples such as almond shell, walnut shell, hazelnut shell, tobacco waste, and rapeseed were investigated using Thermogravimetric Analysis (TGA) technique under slow heating conditions (20 K/min) from ambient to 1173 K. Pyrolysis experiments were carried out under dynamic nitrogen atmosphere of 40 mL/min. Dry air was used at the same rate in the oxidation experiments. The rates of mass losses from the biomass samples regarding temperature were obtained from the Differential Thermogravimetric Analysis (DTG) curves, and these rates were interpreted according to the pyrolysis and oxidation characteristics of the biomass samples. Since the heating rate was relatively very slow, individual peaks on the DTG curves resulting from the pyrolysis or oxidation of the major constituents that forming the complex structure of the biomass samples could be survived and distinguished from the thermograms. The maximum rates of mass losses (dm/dt)max from the oxidation experiments were determined to be higher than those from the pyrolysis experiments. On the other hand, the (dm/dt)max values were determined at about 550 K for pyrolysis, whereas they were below 500 K in case of oxidation irrespective of the type of the biomass samples. PMID:16849135

  14. Comparison of biomass and lipid production under ambient carbon dioxide vigorous aeration and 3% carbon dioxide condition among the lead candidate Chlorella strains screened by various photobioreactor scales.

    PubMed

    Kobayashi, Naoko; Barnes, Austin; Jensen, Travis; Noel, Eric; Andlay, Gunjan; Rosenberg, Julian N; Betenbaugh, Michael J; Guarnieri, Michael T; Oyler, George A

    2015-12-01

    Chlorella species from the UTEX collection, classified by rDNA-based phylogenetic analysis, were screened based on biomass and lipid production in different scales and modes of culture. The lead candidate strains of C. sorokiniana UTEX 1230 and C. vulgaris UTEX 395 and 259 were compared between conditions of vigorous aeration with filtered atmospheric air and 3% CO2 shake-flask cultivation. The biomass of UTEX 1230 produced 2 times higher at 652 mg L(-1) dry weight under both ambient CO2 vigorous aeration and 3% CO2 conditions, while UTEX 395 and 259 under 3% CO2 increased to 3 times higher at 863 mg L(-1) dry weight than ambient CO2 vigorous aeration. The triacylglycerol contents of UTEX 395 and 259 increased more than 30 times to 30% dry weight with 3% CO2, indicating that additional CO2 is essential for both biomass and lipid accumulation in UTEX 395 and 259. PMID:26398668

  15. A Critical Role of Dry Air Intrusion for Propagation of the Madden-Julian Oscillation Based on Multi-model Simulations

    NASA Astrophysics Data System (ADS)

    Jiang, X.

    2015-12-01

    The Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and extreme weather systems. Our current general circulation models (GCMs), however, exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, fundamental physics of the MJO are still elusive. In this presentation, by analyzing 27 climate models that participated in the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS global MJO model inter-comparison project, key processes responsible for realistic MJO simulations are explored based on budget analysis of moist static energy (MSE). Results suggest that horizontal advection of MSE, particularly the dry air intrusion from the west of the MJO convection, plays a crucial role for realistic eastward propagation of the MJO in GCM simulations. Due to model deficiencies in simulating both the MJO circulation and spatial distribution of background MSE, the horizontal advection of MSE is greatly underestimated in the poor MJO models, and largely offset by effects from radiative and surface fluxes, leading to rather weak eastward or even westward propagation of MJO convection in those models.

  16. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions.

    PubMed

    Ozkan, Ozan; Turkoglu Sasmazel, Hilal

    2016-08-01

    In the study presented here, in order to improve the surface functionality and topography of poly (ε-caprolactone) (PCL)/chitosan/PCL hybrid tissue scaffolds fabricated layer by layer with electrospinning technique, an atmospheric pressure nozzle type plasma surface modification was utilized. The optimization of the plasma process parameters was carried out by monitoring the changes in surface hydrophilicity by using contact angle measurements. SEM, AFM and XPS analyses were utilized to observe the changes in topographical and chemical properties of the modified surfaces. The results showed that applied plasma modification altered the nanotopography and the functionality of the surfaces of the scaffolds. The modification applied for 9 min from a distance of 17 cm was found to provide the possible contact angle value (75.163±0.083) closest to the target value which is the value of tissue culture polystyrene (TCPS) petri dishes (∼49.7°), compared to the unmodified samples (84.46±3.86). In vitro cell culture was carried out by L929 mouse fibroblast cell line in order to examine the effects of plasma surface modification on cell-material interactions. Standard MTT assay showed improved cell viability on/within modified scaffolds confirmed with the observations of the cell attachment and the morphology by means of SEM, fluorescence and confocal imaging. The experiments performed in the study proved the enhanced biocompatibility of the nozzle type dry air plasma modified scaffolds. PMID:26906227

  17. State of Washington Department of Health Radioactive air emissions notice of construction phase 1 for spent nuclear fuel project - cold vacuum drying facility, project W-441

    SciTech Connect

    Turnbaugh, J.E.

    1996-08-15

    This notice of construction (NOC) provides information regarding the source and the estimated annual possession quantity resulting from operation of the Cold Vacuum Drying Facility (CVDF). Additional details on emissions generated by the operation of the CVDF will be discussed again in the Phase 11 NOC. This document serves as a NOC pursuant to the requirements of WAC 246-247-060 for the completion of Phase I NOC, defined as the pouring of concrete for the foundation flooring, construction of external walls, and construction of the building excluding the installation of CVDF process equipment. A Phase 11 NOC will be submitted for approval prior to installing and is defined as the completion of the CVDF, which consisted installation of process equipment, air emissions control, and emission monitoring equipment. About 80 percent of the U.S. Department of Energy`s spent nuclear fuel (SNF) inventory is stored under water in the Hanford Site K Basins. Spent nuclear fuel in the K West Basin is contained in closed canisters while the SNF in the K East Basin is in open canisters, which allow free release of corrosion products to the K East Basin water.

  18. Clean Air Slots Amid Atmospheric Pollution

    NASA Technical Reports Server (NTRS)

    Hobbs, Peter V.

    2002-01-01

    Layering in the Earth's atmosphere is most commonly seen where parts of the atmosphere resist the incursion of air parcels from above and below - for example, when there is an increase in temperature with height over a particular altitude range. Pollutants tend to accumulate underneath the resulting stable layers. which is why visibility often increases markedly above certain altitudes. Here we describe the occurrence of an opposite effect, in which stable layers generate a layer of remarkably clean air (we refer to these layers as clean-air 'slots') sandwiched between layers of polluted air. We have observed clean-air slots in various locations around the world, but they are particularly well defined and prevalent in southern Africa during the dry season August-September). This is because at this time in this region, stable layers are common and pollution from biomass burning is widespread.

  19. Catalytic Hydrothermal Gasification of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2008-05-06

    A recent development in biomass gasification is the use of a pressurized water processing environment in order that drying of the biomass can be avoided. This paper reviews the research undertaken developing this new option for biomass gasification. This review does not cover wet oxidation or near-atmospheric-pressure steam-gasification of biomass. Laboratory research on hydrothermal gasification of biomass focusing on the use of catalysts is reviewed here, and a companion review focuses on non-catalytic processing. Research includes liquid-phase, sub-critical processing as well as super-critical water processing. The use of heterogeneous catalysts in such a system allows effective operation at lower temperatures, and the issues around the use of catalysts are presented. This review attempts to show the potential of this new processing concept by comparing the various options under development and the results of the research.

  20. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  1. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling.

    PubMed

    Zhuang, H; Savage, E M; Smith, D P; Berrang, M E

    2009-06-01

    The objective of this study was to evaluate the effect of a dry air-chilling (AC) method on sensory texture and flavor descriptive profiles of broiler pectoralis major (fillet) and pectoralis minor (tender). The profiles of the muscles immersion-chilled and deboned at the same postmortem time and the profiles of the muscles hot-boned (or no chill) were used for the comparison. A total of 108 eviscerated carcasses (6-wk-old broilers) were obtained from a commercial processing line before the chillers. Carcasses were transported to a laboratory facility where they were either i) chilled by a dry AC method (0.7 degrees C, 150 min in a cold room), ii) chilled by immersion chilling (IC; 0.3 degrees C, 50 min in a chiller), or iii) not chilled (9 birds per treatment per replication). Both IC and AC fillets and tenders were removed from the bone at 4 h after the initiation of chilling (approximately 4.75 h postmortem) in a processing area (18 degrees C). The no-chill muscles were removed immediately upon arrival. The sensory properties (21 attributes) of cooked broiler breast meat were evaluated by trained panelists using 0- to 15-point universal intensity scales. The average intensity scores of the 9 flavor attributes analyzed ranged from 0.9 to 4.0. Regardless of breast muscle type, there were no significant differences in sensory flavor descriptive profiles between the 3 treatments. The average intensity scores of the 12 texture attributes ranged from 1.5 to 7.5 and there were no significant differences between the AC and IC samples. The average intensity scores of the texture attributes, cohesiveness, hardness, cohesiveness of mass, rate of breakdown, and chewiness of the no chill fillets and tenders were significantly higher than those of either of the chilled samples. These results demonstrate that chicken breast meat from AC retains sensory flavor profile characteristics but AC results in sensory texture profile differences when compared with no-chill meat. Sensory

  2. Sources for PM air pollution in the Po Plain, Italy: I. Critical comparison of methods for estimating biomass burning contributions to benzo(a)pyrene

    NASA Astrophysics Data System (ADS)

    Belis, C. A.; Cancelinha, J.; Duane, M.; Forcina, V.; Pedroni, V.; Passarella, R.; Tanet, G.; Douglas, K.; Piazzalunga, A.; Bolzacchini, E.; Sangiorgi, G.; Perrone, M.-G.; Ferrero, L.; Fermo, P.; Larsen, B. R.

    2011-12-01

    Particle-bound benzo(a)pyrene (B(a)P) constitutes an air pollution problem in many areas of Europe and has been linked to biomass burning (BB). The present study, conducted in 2007 and 2009 at ten stations in the North Italian Po Plain and Valtelline Valley, examines four methods for the quantification of BB contributions to particle-bound B(a)P using data for 61 predictor compounds in more than 700 ambient PM 10 and PM 2.5 samples. The study was carried out during the heating season - a period of the year with minimal volatilization and atmospheric degradation of B(a)P, which favour source apportionment by receptor modelling. The lowest estimates of the source contribution (SCE) from BB were obtained with the levoglucosan tracer method and multi-linear regression analysis of daily variations in B(a)P concentrations using levoglucosan as the main predictor in combination with a few other predictors including gaseous pollutants and meteorological data. The standard uncertainty of these methods was driven by the uncertainty in the BB emission factor for levoglucosan and mounted to 90% (1 σ). Positive matrix factorization (PMF), using only PAH congeners as predictors, did not produce factors interpretable as emission sources. However, PMF utilizing a broad range of predictor compounds afforded five factors with compositions similar to emission sources. The yielded B(a)P SCEs for BB agreed well with results of chemical mass balance modelling (CMB). Both receptor models gave good predictions (p) of the observed (o) B(a)P concentrations (PMF: p/o = 89 ± 9%, CMB: p/o = 114 ± 17%) with lower uncertainties than the tracer methods (CMB 60%; PMF 54%; 1 σ). The average BB SCEs (mean ± 95% confidence interval) from these models were: 1.0 ± 0.4 ng m -3 at a kerbside in Milan, 1.0 ± 0.2 ng m -3 at six urban background stations in the Po Plain, 0.7 ± 0.3 ng m -3 at two rural background stations in the Po Plain, and 2.1 ± 1.1 ng m -3 at an urban background station in the

  3. Combustion of Micropowdered Biomass

    NASA Astrophysics Data System (ADS)

    Geil, Ethan; Thorne, Robert

    2009-03-01

    Combustion of finely powdered biomass has the potential to replace heating oil, which accounts for a significant fraction of US oil consumption, in heating, cooling and local power generation applications. When ground to 30-150 micron powders and dispersed in air, wood and other biomass can undergo deflagrating combustion, as occurs with gaseous and dispersed liquid fuels. Combustion is very nearly complete, and in contrast to sugar/starch or cellulose-derived ethanol, nearly all of the available plant mass is converted to usable energy so the economics are much more promising. We are exploring the fundamental combustion science of biomass powders in this size range. In particular, we are examining how powder size, powder composition (including the fraction of volatile organics) and other parameters affect the combustion regime and the combustion products.

  4. Experimental study of cassava sun drying

    SciTech Connect

    Njie, D.N.; Rumsey, T.R.

    1997-03-01

    Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.

  5. Enhanced thermal destruction of toxic microalgal biomass by using CO2.

    PubMed

    Jung, Jong-Min; Lee, Jechan; Kim, Jieun; Kim, Ki-Hyun; Kim, Hyung-Wook; Jeon, Young Jae; Kwon, Eilhann E

    2016-10-01

    This work confirmed that dominant microalgal strain in the eutrophic site (the Han River in Korea) was Microcystis aeruginosa (M. aeruginosa) secreting toxins. Collected and dried microalgal biomass had an offensive odor due to microalgal lipid, of which the content reached up to 2±0.2wt.% of microalgal biomass (dry basis). This study has validated that the offensive odor is attributed to the C3-6 range of volatile fatty acids (VFAs), which was experimentally identified by the non-catalytic transformation of triglycerides (TGs) and free fatty acids (FFAs) in microalgal biomass into fatty acid methyl esters (FAMEs). In particular, this study mechanistically investigated the influence of CO2 in the thermal destruction (i.e., pyrolysis) of hazardous microalgal biomass in order to achieve dual purposes (i.e., thermal disposal of hazardous microalgal biomass and energy recovery). The influence of CO2 in pyrolysis of microalgal biomass was identified as 1) the enhanced thermal cracking behaviors of volatile organic compounds (VOCs) from the thermal degradation of microalgal biomass and 2) the direct gas phase reaction between CO2 and VOCs. These identified influences of CO2 in pyrolysis of microalgal biomass significantly enhanced the generation of CO: the enhanced generation of CO in the presence of CO2 was 590% at 660°C, 1260% at 690°C, and 3200% at 720°C. In addition, two identified influences of CO2 (i.e., enhanced thermal cracking and direct gas phase reaction) occurred simultaneously and independently. The identified gas phase reaction in the presence of CO2 was only initiated at temperatures higher than 500°C, which was different from the Boudouard reaction. Lastly, the experimental work justified that exploiting CO2 as a reaction medium and/or chemical feedstock will provide new technical approaches for controlling syngas ratio and in-situ air pollutant control without using catalysts. PMID:27236623

  6. Moving-bed gasification - combined-cycle control study. Volume 1: results and conclusions, Case 1 - air-blown dry-ash operation. Final report

    SciTech Connect

    Ahner, D.J.; Brower, A.S.; Dawes, M.H.; Patel, A.S.

    1981-03-01

    A simulation study has been conducted to investigate the inherent process dynamics and required control strategies for an integrated coal gasification/combined cycle (GCC) power plant to operate successfully under load-changing conditions to meet power system requirements. The simulated GCC plant configuration is similar to the flowsheet developed in earlier EPRI economic studies (RP239), based on an air-blown, dry-ash, moving-bed gasifier of the Lurgi-type. A following GCC plant control study will be based on a Lurgi-type gasifier modified for oxygen-blown, slagging operations such as that being developed by British Gas Corporation. A large ditial computer simulation model of the GCC plant operating on a large utility power system network was developed to examine alternate plant control strategies. Gas turbine-lead and gasifier-lead control modes were evaluated with respect to power system requirements for daily load following, tie-line flow regulation with thermal backup, and frequency regulation. Inherent features of the gasifier led to unique process dynamics for the GCC plant. Sizeable transients were observed during load-changing operations, both in the fuel process and the steam system. However, the plant compensated effectively for such transients with a modified gas turbine-lead control strategy, by making use of fast-responding gas turbine controls and the large inherent volume of the fuel process. The results verify the capability of the GCC plant to operate with the fuel process closely integrated with the combined cycle plant under rapidly changing conditions. Furthermore, a GCC plant control strategy was developed which can successfully meet power sytem requirements within fuel system limitations, allowing an overall plant response rate of four (4) percent per minute.

  7. Contribution to the understanding of the ZrNb(l%)O(0.13%) oxidation mechanism at 500 °C in dry air

    NASA Astrophysics Data System (ADS)

    Vermoyal, J. J.; Frichet, A.; Dessemond, L.

    2004-06-01

    The oxidation of ZrNb(l%)O(0.13%) at 500 °C in dry air was investigated in situ by thermogravimetric analyses and electrochemical impedance spectroscopy. Sheets of the alloy were coated with different noble metals (Pt, Au, Ag) as electrode material. After an initial sub-parabolic rate law, the kinetics of ZrNb(l%)O(0.13%) oxidation are characterized by a transition to another decreasing rate law for different times and thicknesses. Noble metals were observed to clearly modify the oxidation rate, even when a pre-oxidized zirconia film was formed before the deposit and the increase in the oxidation rate was always monitored for thick oxides (30 μm). The kinetic transition is hypothesized to be associated with the microstructural degradation of the oxide film. Localized oxidation rate increases were revealed by scanning electron microscopy at the tip of radial cracks distributed on more than 2% of the total area of the sample. Catalytic effects observed on the oxidation rate after the noble metal deposition suggest that the mechanism controlling the oxidation rate is not a solely one of oxygen diffusion through the oxide layer. The reaction of oxygen reduction at the oxide/metal/gas interface partially controls the oxidation kinetics of ZrNb(l%)O(0.13%). Complex electrical signatures monitored during the oxide growth corroborate this assumption and hence indicate that oxygen reduction is still partially controlling the oxidation rate when noble metal are present on ZrNb(l%)O(0.13%) surface. Finally, a mixed process of interfacial-diffusion mechanism is proposed to be the rate determining step for ZrNb(l%)O(0.13%) oxidation in this environment.

  8. Packaged kiln dried firewood

    SciTech Connect

    Cutrara, A.

    1986-07-01

    A process is described for kiln drying firewood consisting of essentially uniform lengths of split firewood pieces, the process comprising splitting essentially uniform lengths of green tree logs to form firewood pieces, placing the firewood pieces in open mesh bags to provide a plurality of bags of firewood, placing the plurality of bags of green firewood pieces in a kiln drying oven, kiln drying the pieces at temperatures in excess of 150/sup 0/F. by moving heated air over the pieces until the pieces have an overall moisture content ranging from 15% up to 30% by weight, operating the kiln at a temperature below a level which would render the structural characteristics of the bag useless and removing the kiln dried firewood pieces in the plurality of bags from the kiln drying oven.

  9. Biomass mapping using biophysical forest type characterisation of SAR polarimetric images

    NASA Astrophysics Data System (ADS)

    Quiñones, Marcela J.; Hoekman, Dirk H.

    2002-01-01

    Studies on the relationship between biomass and radar backscatter have relied on field data to construct empirical relationships with radar backscatter that can be used for biomass estimations and mapping. In general, inversion of radar data for biomass estimations is limited by the variations on backscatter produced by structural parameters and soil moisture and limited to a certain maximum biomass level dependent on the structural class. In this work we created biomass maps of two study sites at the Colombian Amazon (Guaviare and Araracuara) by using results from polarimetric classification algorithm that combines power, phase and correlation of C, L and P band of AirSAR data. Two different approaches were used. For the Guaviare site, (dry and flat) the biomass classes selected are related to Land Cover types and an empirical relationship between biomass and the average backscatter (LHV+PRR)/2) is used to create the biomass map. High consistency with the cover map is found. For the Araracuara site (hilly and flooded) a biomass map is created by reclassifying a biophysical forest structural map with biomass values obtained from field available data. Field data is used to validate maps and to study the behavior of radar polarimetric signatures according to different forest structures. A new approach of analysis is based on the description of the polarimetric coherence according to a physical explanation of the wave-object interactions. The same type of analysis is used to study systematically the influence of different forest structural parameters and soil moisture conditions on the polarimetric signatures. Simulated radar data from the UTARTCAN backscatter model is used.

  10. Sunflower as a potential biomass crop

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass resources are essential for bioenergy production. There are two major criteria for determining whether a crop is suitable for energy use. The first is the high dry matter yield per land unit and the second is the net gain in energy amount (the amount of energy produced from the biomass shoul...

  11. DRI Renewable Energy Center (REC) (NV)

    SciTech Connect

    Hoekman, S. Kent; Broch, Broch; Robbins, Curtis; Jacobson, Roger; Turner, Robert

    2012-12-31

    The primary objective of this project was to utilize a flexible, energy-efficient facility, called the DRI Renewable Energy Experimental Facility (REEF) to support various renewable energy research and development (R&D) efforts, along with education and outreach activities. The REEF itself consists of two separate buildings: (1) a 1200-ft2 off-grid capable house and (2) a 600-ft2 workshop/garage to support larger-scale experimental work. Numerous enhancements were made to DRI's existing renewable power generation systems, and several additional components were incorporated to support operation of the REEF House. The power demands of this house are satisfied by integrating and controlling PV arrays, solar thermal systems, wind turbines, an electrolyzer for renewable hydrogen production, a gaseous-fuel internal combustion engine/generator set, and other components. Cooling needs of the REEF House are satisfied by an absorption chiller, driven by solar thermal collectors. The REEF Workshop includes a unique, solar air collector system that is integrated into the roof structure. This system provides space heating inside the Workshop, as well as a hot water supply. The Workshop houses a custom-designed process development unit (PDU) that is used to convert woody biomass into a friable, hydrophobic char that has physical and chemical properties similar to low grade coal. Besides providing sufficient space for operation of this PDU, the REEF Workshop supplies hot water that is used in the biomass treatment process. The DRI-REEF serves as a working laboratory for evaluating and optimizing the performance of renewable energy components within an integrated, residential-like setting. The modular nature of the system allows for exploring alternative configurations and control strategies. This experimental test bed is also highly valuable as an education and outreach tool both in providing an infrastructure for student research projects, and in highlighting renewable energy

  12. Optimization of operating conditions in tunnel drying of food

    SciTech Connect

    Dong Sun Lee . Dept. of Food Engineering); Yu Ryang Pyun . Dept. of Food Engineering)

    1993-01-01

    A food drying process in a tunnel dryer was modeled from Keey's drying model and experimental drying curve, and optimized in operating conditions consisting of inlet air temperature, air recycle ratio and air flow rate. Radish was chosen as a typical food material to be dried, because it has the typical drying characteristics of food and quality indexes of ascorbic acid destruction and browning during drying. Optimization results of cocurrent and counter current tunnel drying showed higher inlet air temperature, lower recycle ratio and higher air flow rate with shorter total drying time. Compared with cocurrent operation counter current drying used lower air temperature, lower recycle ratio and lower air flow rate, and appeared to be more efficient in energy usage. Most of consumed energy was shown to be used for sir heating and then escaped from the dryer in the form of exhaust air.

  13. Advanced system demonstration for utilization of biomass as an energy source

    SciTech Connect

    Not Available

    1980-10-01

    The results of the study investigations confirm the feasibility of collecting 1000 oven dry tons of biomass per day to fuel a 510,000 lb/hr boiler operating in a congeneration mode and producing steam and electricity. This study was based on the supply of a significant portion of the facility's biomass fuel by tree harvesting and collection operations within a 50 mile radius of the plant site. These operations, including transporting biomass to the conversion plant, would pose no threat to the environment if good forestry practice is carefully maintained. Other environmental factors relating to air and water discharges from the conversion plant pose no significant technological problems in complying with federal, state, and local regulations at a cost that is competitive with similar costs associated with fossil fueled facilities.

  14. Biomass thermochemical gasification: Experimental studies and modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay

    The overall goals of this research were to study the biomass thermochemical gasification using experimental and modeling techniques, and to evaluate the cost of industrial gas production and combined heat and power generation. This dissertation includes an extensive review of progresses in biomass thermochemical gasification. Product gases from biomass gasification can be converted to biopower, biofuels and chemicals. However, for its viable commercial applications, the study summarizes the technical challenges in the gasification and downstream processing of product gas. Corn stover and dried distillers grains with solubles (DDGS), a non-fermentable byproduct of ethanol production, were used as the biomass feedstocks. One of the objectives was to determine selected physical and chemical properties of corn stover related to thermochemical conversion. The parameters of the reaction kinetics for weight loss were obtained. The next objective was to investigate the effects of temperature, steam to biomass ratio and equivalence ratio on gas composition and efficiencies. DDGS gasification was performed on a lab-scale fluidized-bed gasifier with steam and air as fluidizing and oxidizing agents. Increasing the temperature resulted in increases in hydrogen and methane contents and efficiencies. A model was developed to simulate the performance of a lab-scale gasifier using Aspen Plus(TM) software. Mass balance, energy balance and minimization of Gibbs free energy were applied for the gasification to determine the product gas composition. The final objective was to optimize the process by maximizing the net energy efficiency, and to estimate the cost of industrial gas, and combined heat and power (CHP) at a biomass feedrate of 2000 kg/h. The selling price of gas was estimated to be 11.49/GJ for corn stover, and 13.08/GJ for DDGS. For CHP generation, the electrical and net efficiencies were 37 and 86%, respectively for corn stover, and 34 and 78%, respectively for DDGS. For

  15. Shielding property of natural biomass against gamma rays.

    PubMed

    Mavi, B; Gurbuz, L F; Ciftci, H; Akkurt, I

    2014-01-01

    Algae and cyanobacteria are capable living under harsh conditions in the natural environments and can develop peculiar survival processes. In order to evaluate radiation shielding properties of green algae; Chlorella vulgaris, Scenedesmus obliquus, and cyanobacteria; Synechococcus sp., Planktothrix limnetica, Microcystis aeruginosa, Arthrospira maxima, Anabaena affinis, Phormidium articulatum, and Pseudoanabaena sp. were cultured in batch systems. Air dried biomass was tested for its high tolerance to gamma-radiations in terms of linear attenuation coefficients. In the present work, the linear and mass attenuation coefficients were measured at photon energies of 1173 and 1332 keV. Protection capacity of some biomass was observed to be higher than a 1-cm thick lead standard for comparison. Gamma ray related protection depends not only to thickness but also to density (g/cm3). Hence the effect of biomass density also was tested and significantly found the tested biomass absorbed more of the incoming energy on a density basis than lead. This paper discusses the a new approach to environmental protection from gamma ray. The findings suggest that the test samples, especially cyanobacteria, have a potential for reducing gamma ray more significantly than lead and can be used as shielding materials. PMID:24912221

  16. Biomass Burning

    NASA Technical Reports Server (NTRS)

    Levine, Joel S.; Cofer, Wesley R., III; Pinto, Joseph P.

    1993-01-01

    Biomass burning may be the overwhelming regional or continental-scale source of methane (CH4) as in tropical Africa and a significant global source of CH4. Our best estimate of present methane emissions from biomass burning is about 51.9 Tg/yr, or 10% of the annual methane emissions to the atmosphere. Increased frequency of fires that may result as the Earth warms up may result in increases in this source of atmospheric methane.

  17. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... or under stress. But if you have a dry mouth all or most of the time, it can ...

  18. Dry Mouth

    MedlinePlus

    Dry mouth is the feeling that there is not enough saliva in your mouth. Everyone has a dry mouth once in a while - if they are nervous, ... under stress. But if you have a dry mouth all or most of the time, it can ...

  19. Estimation of Canopy Foliar Biomass with Spectral Reflectance Measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Canopy foliar biomass, defined as the product of leaf dry matter content and leaf area index, is an important measurement for global biogeochemical cycles. This study explores the potential for retrieving foliar biomass in green canopies using a spectral index, the Normalized Dry Matter Index (NDMI)...

  20. Influence of temperature on biomass production of clones of Atriplex halimus

    NASA Astrophysics Data System (ADS)

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes.

  1. Influence of temperature on biomass production of clones of Atriplex halimus.

    PubMed

    Dessena, Leonarda; Mulas, Maurizio

    2016-05-01

    A very effective tool to combat desertification is revegetation. Promising species for this purpose are the evergreen shrubs of the genus Atriplex. The objective of the research was to study the growing responses of Atriplex halimus under different thermal regimes and to evaluate the biomass accumulation of selected clones. The test was carried out in four sites of Sardinia Island (Italy) characterized by different latitude, altitude and air temperature trends along the year. In every site, potted plants of five clones of A. halimus were compared for biomass production as measured by linear growth of plants (central axis and secondary shoots), as well as by dry weight of leaves, shoots and roots per plant. Correlations between sums of hour-degrees under or above the thresholds of critical air temperatures, comprised between 0 and 35 °C, and the plant growth indicators were analysed. Differences among the five clones, with regard to the influence of low temperatures on plant growth and on the biomass production were evaluated. Among five tested clones, GIO1 and SAN3 resulted more sensitive to low temperatures. Clones MAR1, PAL1 and FAN3 resulted less sensitive to low temperatures and in the site characterized by the lowest minimum temperatures also have shown greater adaptability and thus biomass growth in the observed period. The clone PAL1 showed a lower shoot/root biomass ratio as adaptation to cold temperature, and the clone FAN3, the opposite behaviour and a general preference to temperate thermal regimes. PMID:26353974

  2. 7 CFR 58.409 - Drying room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... maximum production of cheese during the flush period. Adequate shelving and air circulation shall be provided for proper drying. Temperature and humidity control facilities should be provided which will promote the development of a sound, dry surface of the cheese....

  3. High-biomass sorghum yield estimate with aerial imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract. To reach the goals laid out by the U.S. Government for displacing fossil fuels with biofuels, agricultural production of dedicated biomass crops is required. High-biomass sorghum is advantageous across wide regions because it requires less water per unit dry biomass and can produce very hi...

  4. Cooling of dried coal

    SciTech Connect

    Siddoway, M.A.

    1988-06-14

    This patent describes a process for noncombustibly drying particulate coal comprising: separating the coal into two wet coal streams; passing one wet coal system into a dryer to form a bed; heating air in a furnace; admitting the heated air to the dryer to fluidize the bed; withdrawing dryer exhaust gas; passing the exhaust gas through a cyclone and withdrawing coal fines from the cyclone; withdrawing a hot, dry coal stream from the dryer; blending the drier hot dry coal stream with the cyclone coal fines; withdrawing cyclone exhaust gas; wet scrubbing the cyclone exhaust gas to form a coal fines slurry and scrubber exhaust gas; passing the coal fines slurry to a sedimentation pool; blending the second wet coal stream with the drier hot dry coal stream and the cyclone coal fines; passing the latter blended stream to a cooler to form a bed; fluidizing the latter bed with ambient air; withdrawing cooler exhaust gas and passing the gas to a cyclone; passing exhaust gas from the latter cyclone to a baghouse and collecting coal fines therein; passing the latter coal fines to the furnace as fuel for heating the air; and withdrawing cooled coal from the cooler and blending the cooled coal with coal fines from the latter cyclone.

  5. Emission reductions from woody biomass waste for energy as an alternative to open burning.

    PubMed

    Springsteen, Bruce; Christofk, Tom; Eubanks, Steve; Mason, Tad; Clavin, Chris; Storey, Brett

    2011-01-01

    Woody biomass waste is generated throughout California from forest management, hazardous fuel reduction, and agricultural operations. Open pile burning in the vicinity of generation is frequently the only economic disposal option. A framework is developed to quantify air emissions reductions for projects that alternatively utilize biomass waste as fuel for energy production. A demonstration project was conducted involving the grinding and 97-km one-way transport of 6096 bone-dry metric tons (BDT) of mixed conifer forest slash in the Sierra Nevada foothills for use as fuel in a biomass power cogeneration facility. Compared with the traditional open pile burning method of disposal for the forest harvest slash, utilization of the slash for fuel reduced particulate matter (PM) emissions by 98% (6 kg PM/BDT biomass), nitrogen oxides (NOx) by 54% (1.6 kg NOx/BDT), nonmethane volatile organics (NMOCs) by 99% (4.7 kg NMOCs/BDT), carbon monoxide (CO) by 97% (58 kg CO/BDT), and carbon dioxide equivalents (CO2e) by 17% (0.38 t CO2e/BDT). Emission contributions from biomass processing and transport operations are negligible. CO2e benefits are dependent on the emission characteristics of the displaced marginal electricity supply. Monetization of emissions reductions will assist with fuel sourcing activities and the conduct of biomass energy projects. PMID:21305889

  6. Biomass energy

    SciTech Connect

    Smil, V.

    1983-01-01

    This book offers a broad, interdisciplinary approach to assessing the factors that are key determinants to the use of biomass energies, stressing their limitations, complexities, uncertainties, links, and consequences. Considers photosynthesis, energy costs of nutrients, problems with monoculture, and the energy analysis of intensive tree plantations. Subjects are examined in terms of environmental and economic impact. Emphasizes the use and abuse of biomass energies in China, India, and Brazil. Topics include forests, trees for energy, crop residues, fuel crops, aquatic plants, and animal and human wastes. Recommended for environmental engineers and planners, and those involved in ecology, systematics, and forestry.

  7. Overview of the South American Biomass Burning Analysis (SAMBBA) field experiment in Brazil during Sept - Oct 2012

    NASA Astrophysics Data System (ADS)

    Johnson, Ben; Haywood, Jim; Longo, Karla; Coe, Hugh; Artaxo, Paulo; Morgan, William; Freitas, Saulo

    2013-04-01

    The South American Biomass Burning Analysis (SAMBBA) is an international research project investigating the impacts of biomass burning emissions on climate, air quality and numerical weather prediction over South America. The project involves a combination of measurements and modelling activities to assess the role of biomass burning and biogenic emissions in the earth system. This international collaboration has been led by a partnership between the Met Office, the Brazilian National Institute for Space research (INPE), the University of Sao Paulo, and a consortium of UK Universities. The measurement program was headed by the deployment of UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft over Brazil during the dry season of September - October 2012. This was co-ordinated with ground-based measurements operated by the University of Sao Paulo and INPE. This successful field experiment now provides an excellent source of observations to build our understanding of biomass burning processes and improve model simulations of biomass burning aerosols and their interactions with biogenic emissions, atmospheric chemistry, clouds, radiation, and the terrestrial biosphere. This talk will summarise the field experiment, including the aircraft measurements and ground-based observations made during the dry season of 2012. Preliminary results will highlight the range of biomass burning and biogenic emissions observed from tropical forest, deforested zones and scrub-land. Case studies will also show infra-red camera images of fire radiative output, the evolution of large smoke plumes and the variable composition of background aerosol and extensive haze layers across the region. The lidar data and aircraft profiles also highlight the prevalence of elevated aerosol layers observed at altitudes of 3 - 7km, presumed to be detrainment from large smoke plumes, pyrocumulus and mid-level convection. The ground-based observations also highlight the

  8. Integration of alternative feedstreams for biomass treatment and utilization

    DOEpatents

    Hennessey, Susan Marie; Friend, Julie; Dunson, Jr., James B.; Tucker, III, Melvin P.; Elander, Richard T.; Hames, Bonnie

    2011-03-22

    The present invention provides a method for treating biomass composed of integrated feedstocks to produce fermentable sugars. One aspect of the methods described herein includes a pretreatment step wherein biomass is integrated with an alternative feedstream and the resulting integrated feedstock, at relatively high concentrations, is treated with a low concentration of ammonia relative to the dry weight of biomass. In another aspect, a high solids concentration of pretreated biomass is integrated with an alternative feedstream for saccharifiaction.

  9. Drying apparatus for photographic sheet material

    NASA Technical Reports Server (NTRS)

    Epstein, P.; Donovan, G.; Lawhite, E. (Inventor)

    1973-01-01

    An elongated drying chamber is provided with transport means for carrying photographic sheet material edgewise with the sheets in end-to-end relationship past a plurality of tubes that issue drying air streams. The tubes are slotted a distance equal to substantially the full width of the sheet material for complete, gentle drying by sheets of air. A common plenum supplies the tubes with heated air; the air is directed from the tube slots at a pronounced angle to the sheet surface to provide for arraying the tubes close to the surface for maximum drying effect while minimizing the danger of mechanical interference between the edges of the sheets and the slots in the tubes. The driver for the transport is housed in an enclosure between the plenum and the drying chamber; an air return duct is provided along another side to complete insulation of the drying chamber from ambient conditions.

  10. Dry socket

    MedlinePlus

    ... care for the dry socket at home: Take pain medicine and antibiotics as directed Apply a cold pack to the outside of your jaw Carefully rinse the dry socket as directed by your dentist If taking antibiotics, avoid smoking or using tobacco and alcohol

  11. Effect of dry-air chilling on sensory descriptive profiles of cooked broiler breast meat deboned four hours after the initiation of chilling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air chilled chicken products are gaining popularity in the USA. It has been claimed that air chilling (AC) results in improved tenderness and flavor of broiler meat compared with immersion chilling (IC). However, there is a lack of published sensory study results to support the claims. The objecti...

  12. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    SciTech Connect

    Granier, Claire; Bessagnet, Bertrand; Bond, Tami C.; D'Angiola, Ariela; Denier van der Gon, Hugo; Frost, G. J.; Heil, Angelika; Kaiser, Johannes W.; Kinne, Stefan; Klimont, Z.; Kloster, Jean; Lamarque, J.-F.; Liousse, Catherine; Masui, Toshihiko; Meleux, Frederik; Mieville, Aude; Ohara, Toshimasa; Raut, Jean-Christophe; Riahi, Keywan; Schultz, Martin; Smith, Steven J.; Thomson, Allison M.; van Aardenne, John; van der Werf, Guido R.; Van Vuuren, Detlef

    2011-08-08

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical emissions developed in support of the simulations for the IPCC AR5 assessment. Emissions for 2005 and 2010 from the Representative Concentration Pathways (RCPs) are also included. Large discrepancies between the global and regional emissions are identified, which shows that there is still no consensus on the best estimates for surface emissions of atmospheric compounds. At the global scale, anthropogenic emissions of CO, NOx and SO2 show the best agreement in most years. The agreement is low for BC emissions, particularly in the period prior to 2000. The best consensus is for NOx emissions for all periods and all regions, except for China where emissions in 1980 and 1990 need to be better defined. Emissions of CO need a better quantification in the USA for all periods; in Central Europe, the evolution of emissions during the past two decades needs to be better determined. The agreement between the different SO2 emissions datasets is rather good for the USA, but better quantification is needed elsewhere, particularly for Central Europe and China. The comparisons performed in this study show that the use of RCP8.5 for the extension of the ACCMIP inventory beyond 2000 is reasonable, until more global or regional estimates become available. Concerning biomass burning emissions, most inventories agree within 50-80%, depending on the year and season. The large differences are due to differences in the estimates of burned areas from the different available products, as well as in the amount of biomass burnt.

  13. Fine grain separation for the production of biomass fuel from mixed municipal solid waste.

    PubMed

    Giani, H; Borchers, B; Kaufeld, S; Feil, A; Pretz, T

    2016-01-01

    The main goal of the project MARSS (Material Advanced Sustainable Systems) is to build a demonstration plant in order to recover a renewable biomass fuel suitable for the use in biomass power plants out of mixed municipal solid waste (MMSW). The demonstration plant was constructed in Mertesdorf (Germany), working alongside an existing mechanical-biological treatment plant, where the MMSW is biological dried under aerobe conditions in rotting boxes. The focus of the presented sorting campaign was set on the processing of fine grain particles minor than 11.5mm which have the highest mass content and biogenic energy potential of the utilized grain size fractions. The objective was to produce a biomass fuel with a high calorific value and a low content of fossil (plastic, synthetic) materials while maximizing the mass recovery. Therefore, the biogenic components of the dried MMSW are separated from inert and fossil components through various classification and sifting processes. In three experimental process setups of different processing depths, the grain size fraction 4-11.5mm was sifted by the use of air sifters and air tables. PMID:26272710

  14. Biotechnology of biomass conversion

    SciTech Connect

    Wayman, M.; Parekh, S.R.

    1990-01-01

    This book covers: An introduction to biomass crops; The microbiology of fermentation processes; The production of ethanol from biomass crops, such as sugar cane and rubbers; The energy of biomass conversion; and The economics of biomass conversion.

  15. Synthetic and Biomass Alternate Fueling in Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Bushnell, Dennis M.

    2009-01-01

    Must use earth's most abundant natural resources - Biomass, Solar, Arid land (43%), Seawater (97%) with nutrients (80%) plus brackish waters and nutrients resolve environmental triangle of conflicts energy-food-freshwater and ultrafine particulate hazards. Requires Paradigm Shift - Develop and Use Solar* for energy; Biomass for aviation and hybrid-electric-compressed air mobility fueling with transition to hydrogen long term.

  16. Biomass shock pretreatment

    DOEpatents

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  17. Production of nickel bio-ore from hyperaccumulator plant biomass: applications in phytomining.

    PubMed

    Boominathan, Rengasamy; Saha-Chaudhury, N M; Sahajwalla, Veena; Doran, Pauline M

    2004-05-01

    An important step in phytomining operations is the recovery of metal from harvested plant material. In this work, a laboratory-scale horizontal tube furnace was used to generate Ni-enriched bio-ore from the dried biomass of Ni hyperaccumulator plants. Prior to furnace treatment, hairy roots of Alyssum bertolonii were exposed to Ni in liquid medium to give biomass Ni concentrations of 1.9% to 7.7% dry weight; whole plants of Berkheya coddii were grown in Ni-containing soil to produce above-ground Ni levels of up to 0.49% dry weight. The concentration of Ca in the Ni-treated B. coddii biomass was about 15 times greater than in A. bertolonii. After furnace treatment at 1200 degrees C under air, Ni-bearing residues with crystalline morphology and containing up to 82% Ni were generated from A. bertolonii. The net weight loss in the furnace and the degree of concentration of Ni were significantly reduced when the furnace was purged with nitrogen, reflecting the importance of oxidative processes in Ni enrichment. Ni in the B. coddii biomass was concentrated by a factor of about 17 to yield a residue containing 8.6% Ni; this bio-ore Ni content is substantially higher than the 1% to 2% Ni typically found in mined ore. However, the B. coddii samples after furnace treatment also contained about 34% Ca, mainly in the form of hydroxyapatite Ca(5)(PO(4))(3)OH. Such high Ca levels may present significant challenges for further metallurgical processing. This work demonstrates the feasibility of furnace treatment for generating Ni-rich bio-ore from hyperaccumulator plants. The results also suggest that minimizing the uptake of Ca and/or reducing the Ca content of the biomass prior to furnace treatment would be a worthwhile strategy for improving the quality of Ni bio-ore produced in phytomining operations. PMID:15083504

  18. Evaluation of economically feasible, natural plant extract-based microbiological media for producing biomass of the dry rot biocontrol strain Pseudomonas fluorescens P22Y05 in liquid culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The production of microbial biomass in liquid media often represents an indispensable step in the research and development of bacterial and fungal strains. Costs of commercially prepared nutrient media or purified media components, however, can represent a significant hurdle to conducting research i...

  19. Biomass gasification with air in fluidized bed. Hot gas cleanup with selected commercial and full-size nickel-based catalysts

    SciTech Connect

    Caballero, M.A.; Corella, J.; Aznar, M.P.; Gil, J.

    2000-05-01

    Three selected commercial, full-size steam-reforming catalysts for naphthas, BASF G1-50, ICI 46-1, and Topsoee R-67, are tested at pilot-scale level for hot gas cleanup in biomass gasification in a fluidized bed. Gas composition and tar content in the flue gas are measured before and after the catalytic bed. Variations of the catalytic bed in H{sub 2}, CO, CO{sub 2}, CH{sub 4}, and H{sub 2}O contents are reported for different operating conditions. Tar conversions and an apparent first-order kinetics constant for the overall tar removal reaction are calculated. Tar contents at the exit of the catalytic reactor as low as 10 mg/m{sub n}{sup 3} are obtained in a test of 50 h-on-stream without noticeable catalyst deactivation. Important variations in tar conversion with space time in the catalytic bed, with H{sub 2}O/C* in the flue gas, and with the equivalence ratio in the upstream gasifier are observed. These results obtained at the pilot-scale level and with the use of full-sized commercial catalysts are an important forward step in demonstrating the technical feasibility of the overall biomass gasification process.

  20. Modeling of air pollutant removal by dry deposition to urban trees using a WRF/CMAQ/i-Tree Eco coupled system.

    PubMed

    Cabaraban, Maria Theresa I; Kroll, Charles N; Hirabayashi, Satoshi; Nowak, David J

    2013-05-01

    A distributed adaptation of i-Tree Eco was used to simulate dry deposition in an urban area. This investigation focused on the effects of varying temperature, LAI, and NO2 concentration inputs on estimated NO2 dry deposition to trees in Baltimore, MD. A coupled modeling system is described, wherein WRF provided temperature and LAI fields, and CMAQ provided NO2 concentrations. A base case simulation was conducted using built-in distributed i-Tree Eco tools, and simulations using different inputs were compared against this base case. Differences in land cover classification and tree cover between the distributed i-Tree Eco and WRF resulted in changes in estimated LAI, which in turn resulted in variations in simulated NO2 dry deposition. Estimated NO2 removal decreased when CMAQ-derived concentration was applied to the distributed i-Tree Eco simulation. Discrepancies in temperature inputs did little to affect estimates of NO2 removal by dry deposition to trees in Baltimore. PMID:23419770

  1. CONTROLLED FIELD STUDY TO DETERMINE THE IMPACT OF DRY AND WET DEPOSITION OF AIR POLLUTANTS ON THE CORROSION RATE OF GALVANIZED STEEL

    EPA Science Inventory

    In the study galvanized steel panels were exposed for 6 months using an automatic covering device at a materials exposure site located at RTP, NC. Galvanized steel panels were boldly exposed to wet and dry deposition. Another set of panels was mounted on a motor-driven rack that ...

  2. Non isothermal drying process optimisation - Drying of clay tiles

    NASA Astrophysics Data System (ADS)

    Vasić, M.; Radojević, Z.

    2015-11-01

    In our previous studies we have developed a model for determination of the variable effective diffusivity and identification of the exact transition points between possible drying mechanisms. The next goal was to develop a drying regime which could in advance characterize the real non isothermal process of drying clay tiles. In order to do this four isothermal experiments were recorded. Temperature and humidity were maintained at 350C / 75%; 450C / 70%; 450C / 60% and 500C / 60%; respectively in each experiment. All experimentally collected data were analyzed and the exact transition points between possible drying mechanisms were detected. Characteristic drying period (time) for each isothermal drying mechanism was also detected. The real, non-isothermal drying process was approximated by 5 segments. In each of these segments approximately isothermal drying condition were maintained. Temperature and humidity of the drying air, in the first four segments, was maintained on the same level as in recorded isothermal experiments while in the fifth segment, it were maintained at 700C / 40%. The duration of the first four segments were calculated from the diagrams Deff - t respectively for each experiment. The clay tile in experiment five was dried without cracking using the proposed non isothermal drying regime.

  3. A comparative study of physical and chemical processes for removal of biomass in biofilters.

    PubMed

    Flores-Valle, Sergio Odín; Ríos-Bernÿ, Omar; Chanona-Pérez, Jorge; Fregoso-Aguilar, Tomas; Morales-González, José A; Prado-Rubianes, Oscar Jesús; Herrera-Bucio, Rafael; López-Albarán, Pablo; Morales-González, Ángel; Garibay-Febles, Vicente; Domínguez, Enrique Godínez; Kennes, Christian; Veiga-Barbazán, Ma Carmen; Mendoza-Pérez, Jorge Alberto

    2011-01-01

    After 6 months of operation a long-term biofilter was stopped for two weeks and then it was started up again for a second experimental period of almost 1.3 years, with high toluene loads and submitted to several physical and chemical treatments in order to remove excess biomass that could affect the reactor's performance due to clogging, whose main effect is a high pressure drop. Elimination capacity and removal efficiency were determined after each treatment. The methods applied were: filling with water and draining, backwashing, and air sparging. Different flows and temperatures (20, 30, 45 and 60 °C) were applied, either with distilled water or with different chemicals in aqueous solutions. Treatments with chemicals caused a decrease of the biofilter performance, requiring periods of 1 to 2 weeks to recover previous values. The results indicate that air sparging with pure distilled water as well as with solutions of NaOH (0.01% w/v) and NaOCl (0.01% w/v) were the treatments that removed more biomass, working either at 20, 30 or 45 °C and at relatively low flow rates (below 320 L h(-1)), but with a high biodegradation inhibition after the treatments. Dry biomass (g VS) content was determined at three different heights of the biofilter in order to carry out each experiment under the same conditions. The same amount of dry biomass when applying a treatment was established so it could be considered that the biofilm conditions were identical. Wet biomass was used as a control of the biofilter's water content during treatments. Several batch assays were performed to support and quantify the observed inhibitory effects of the different chemicals and temperatures applied. PMID:21844842

  4. A statistical approach to optimize the spray drying of starch particles: application to dry powder coating.

    PubMed

    Bilancetti, Luca; Poncelet, Denis; Loisel, Catherine; Mazzitelli, Stefania; Nastruzzi, Claudio

    2010-09-01

    This article describes the preparation of starch particles, by spray drying, for possible application to a dry powder coating process. Dry powder coating consists of spraying a fine powder and a plasticizer on particles. The efficiency of the coating is linked to the powder morphological and dimensional characteristics. Different experimental parameters of the spray-drying process were analyzed, including type of solvent, starch concentration, rate of polymer feeding, pressure of the atomizing air, drying air flow, and temperature of drying air. An optimization and screening of the experimental parameters by a design of the experiment (DOE) approach have been done. Finally, the produced spray-dried starch particles were conveniently tested in a dry coating process, in comparison to the commercial initial starch. The obtained results, in terms of coating efficiency, demonstrated that the spray-dried particles led to a sharp increase of coating efficiency value. PMID:20706878

  5. Design of Biomass Gasification and Combined Heat and Power Plant Based on Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Haydary, Juma; Jelemenský, Ľudovít

    Three types of wooden biomass were characterized by calorimetric measurements, proximate and elemental analysis, thermogravimetry, kinetics of thermal decomposition and gas composition. Using the Aspen steady state simulation, a plant with the processing capacity of 18 ton/h of biomass was modelled based on the experimental data obtained under laboratory conditions. The gasification process has been modelled in two steps. The first step of the model describes the thermal decomposition of the biomass based on a kinetic model and in the second step, the equilibrium composition of syngas is calculated by the Gibbs free energy of the expected components. The computer model of the plant besides the reactor model includes also a simulation of other plant facilities such as: feed drying employing the energy from the process, ash and tar separation, gas-steam cycle, and hot water production heat exchangers. The effect of the steam to air ratio on the conversion, syngas composition, and reactor temperature was analyzed. Employment of oxygen and air for partial combustion was compared. The designed computer model using all Aspen simulation facilities can be applied to study different aspects of biomass gasification in a Combined Heat and Power plant.

  6. Biomass supply logistics and infrastructure.

    PubMed

    Sokhansanj, Shahabaddine; Hess, J Richard

    2009-01-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass. PMID:19768612

  7. Biomass Supply Logistics and Infrastructure

    SciTech Connect

    Sokhansanj, Shahabaddine

    2009-04-01

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the Biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews methods of estimating the quantities of biomass followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and Transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  8. Biomass Supply Logistics and Infrastructure

    NASA Astrophysics Data System (ADS)

    Sokhansanj, Shahabaddine; Hess, J. Richard

    Feedstock supply system encompasses numerous unit operations necessary to move lignocellulosic feedstock from the place where it is produced (in the field or on the stump) to the start of the conversion process (reactor throat) of the biorefinery. These unit operations, which include collection, storage, preprocessing, handling, and transportation, represent one of the largest technical and logistics challenges to the emerging lignocellulosic biorefining industry. This chapter briefly reviews the methods of estimating the quantities of biomass, followed by harvesting and collection processes based on current practices on handling wet and dry forage materials. Storage and queuing are used to deal with seasonal harvest times, variable yields, and delivery schedules. Preprocessing can be as simple as grinding and formatting the biomass for increased bulk density or improved conversion efficiency, or it can be as complex as improving feedstock quality through fractionation, tissue separation, drying, blending, and densification. Handling and transportation consists of using a variety of transport equipment (truck, train, ship) for moving the biomass from one point to another. The chapter also provides typical cost figures for harvest and processing of biomass.

  9. century drying

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Smerdon, Jason E.; Seager, Richard; Coats, Sloan

    2014-11-01

    Global warming is expected to increase the frequency and intensity of droughts in the twenty-first century, but the relative contributions from changes in moisture supply (precipitation) versus evaporative demand (potential evapotranspiration; PET) have not been comprehensively assessed. Using output from a suite of general circulation model (GCM) simulations from phase 5 of the Coupled Model Intercomparison Project, projected twenty-first century drying and wetting trends are investigated using two offline indices of surface moisture balance: the Palmer Drought Severity Index (PDSI) and the Standardized Precipitation Evapotranspiration Index (SPEI). PDSI and SPEI projections using precipitation and Penman-Monteith based PET changes from the GCMs generally agree, showing robust cross-model drying in western North America, Central America, the Mediterranean, southern Africa, and the Amazon and robust wetting occurring in the Northern Hemisphere high latitudes and east Africa (PDSI only). The SPEI is more sensitive to PET changes than the PDSI, especially in arid regions such as the Sahara and Middle East. Regional drying and wetting patterns largely mirror the spatially heterogeneous response of precipitation in the models, although drying in the PDSI and SPEI calculations extends beyond the regions of reduced precipitation. This expansion of drying areas is attributed to globally widespread increases in PET, caused by increases in surface net radiation and the vapor pressure deficit. Increased PET not only intensifies drying in areas where precipitation is already reduced, it also drives areas into drought that would otherwise experience little drying or even wetting from precipitation trends alone. This PET amplification effect is largest in the Northern Hemisphere mid-latitudes, and is especially pronounced in western North America, Europe, and southeast China. Compared to PDSI projections using precipitation changes only, the projections incorporating both

  10. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  11. Drying of fiber webs

    DOEpatents

    Warren, David W.

    1997-01-01

    A process and an apparatus for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquified eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciately stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers.

  12. Drying of fiber webs

    DOEpatents

    Warren, D.W.

    1997-04-15

    A process and an apparatus are disclosed for high-intensity drying of fiber webs or sheets, such as newsprint, printing and writing papers, packaging paper, and paperboard or linerboard, as they are formed on a paper machine. The invention uses direct contact between the wet fiber web or sheet and various molten heat transfer fluids, such as liquefied eutectic metal alloys, to impart heat at high rates over prolonged durations, in order to achieve ambient boiling of moisture contained within the web. The molten fluid contact process causes steam vapor to emanate from the web surface, without dilution by ambient air; and it is differentiated from the evaporative drying techniques of the prior industrial art, which depend on the uses of steam-heated cylinders to supply heat to the paper web surface, and ambient air to carry away moisture, which is evaporated from the web surface. Contact between the wet fiber web and the molten fluid can be accomplished either by submersing the web within a molten bath or by coating the surface of the web with the molten media. Because of the high interfacial surface tension between the molten media and the cellulose fiber comprising the paper web, the molten media does not appreciatively stick to the paper after it is dried. Steam generated from the paper web is collected and condensed without dilution by ambient air to allow heat recovery at significantly higher temperature levels than attainable in evaporative dryers. 6 figs.

  13. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  14. Relationship between Household Air Pollution from Biomass Smoke Exposure, and Pulmonary Dysfunction, Oxidant-Antioxidant Imbalance and Systemic Inflammation in Rural Women and Children in Nigeria

    PubMed Central

    Oluwole, Oluwafemi; Arinola, Ganiyu O.; Ana, Godson R.; Wiskel, Tess; Huo, Dezheng; Olopade, Olufunmilayo I.; Olopade, Christopher O.

    2013-01-01

    Background: Exposure to particulate matter from burning biomass fuels is believed to affect oxidant-antioxidant balance and to induce oxidative stress. Methods: Fifty-nine mother-child pairs from 59 households that used firewood exclusively for cooking in three rural communities in southwest Nigeria underwent blood test for albumin, pre-albumin, retinol-binding protein (RBP), superoxide dismutase (SOD), vitamins C, vitamin E, malondialdehyde (MDA) and C-reactive protein (CRP). Spirometry was performed and indoor levels of PM2.5 were determined. Results: Mean age (± SD; years) of mothers and children was 43.0±11.7 and 13.6±3.2, respectively. The median indoor PM2.5 level was 1575.1 µg/m3 (IQR 943.6–2847.0, p<0.001), which is substantially higher than the World Health Organization (WHO) standard of 25 µg/m3. The mean levels of pre-albumin (0.21±0.14 g/dL) and RBP (0.03±0.03 g/dL) in women were significantly lower than their respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Similarly, the mean levels of pre-albumin (0.19±0.13 g/dL) and RBP (0.01±0.01 g/dL) in children were significantly lower than the respective normal ranges (1-3 g/dL and 0.2-0.6 g/dL, respectively, p<0.05). Mean serum concentrations of MDA in children (5.44±1.88 µmol/L) was positively correlated to serum concentrations of CRP (r=0.3, p=0.04) and negatively correlated to lung function (FEV1/FVC) in both mothers and children (both r=-0.3, p<0.05). Also, regression analysis indicates that CRP and SOD are associated with lung function impairment in mothers (-2.55±1.08, p<0.05) and children (-5.96±3.05, p=0.05) respectively. Conclusion: Exposure to HAP from biomass fuel is associated with pulmonary dysfunction, reduced antioxidant defense and inflammation of the airways. Further studies are needed to better define causal relationships and the mechanisms involved. PMID:23777718

  15. Optimization of Biofuel and Biochar Production from the Slow Pyrolysis of Biomass

    NASA Astrophysics Data System (ADS)

    Fang, J.; Gao, B.; Nsf Reu in Water Resources

    2010-12-01

    Slow pyrolysis was performed on biomass samples (i.e., energy cane and air potato) to determine the most energy efficient conditions for producing biofuel and biochar. The potential of air potato as a source of fuel and char was also investigated. Dry biomass samples of 10, 15 and 20 g were heated in a reactor at a final temperatures of 300, 450, or 600 °C, and the minimum amount of time required to complete pyrolysis was recorded. Maximum biochar yield was obtained at 300°C for both energy cane and air potato at all masses, and maximum bio-oil yield was obtained at 450°C for all samples. Pyrolysis required the least amount of time at 450°C. Bio-oil yields for air potato were slightly lower than that of energy cane, while biochar yield was slightly higher. Since air potato showed similar product yields to energy cane, this indicates it has potential to be a good feedstock for biofuel and biochar productions.

  16. Dry aging of beef; Review.

    PubMed

    Dashdorj, Dashmaa; Tripathi, Vinay Kumar; Cho, Soohyun; Kim, Younghoon; Hwang, Inho

    2016-01-01

    The present review has mainly focused on the specific parameters including aging (aging days, temperature, relative humidity, and air flow), eating quality (flavor, tenderness and juiciness), microbiological quality and economic (shrinkage, retail yields and cost) involved beef dry aging process. Dry aging is the process where beef carcasses or primal cuts are hanged and aged for 28 to 55 d under controlling environment conditions in a refrigerated room with 0° to 4 °C and with relative humidity of 75 to 80 %. However there are various opinions on dry aging procedures and purveyors of such products are passionate about their programs. Recently, there has been an increased interest in dry aging process by a wider array of purveyors and retailers in the many countries. Dry aging process is very costly because of high aging shrinkage (6 to15 %), trims loss (3 to 24 %), risk of contamination and the requirement of highest grades meat with. The packaging in highly moisture-permeable bag may positively impact on safety, quality and shelf stability of dry aged beef. The key effect of dry aging is the concentration of the flavor that can only be described as "dry-aged beef". But the contribution of flavor compounds of proteolysis and lipolysis to the cooked dry aged beef flavor is not fully known. Also there are limited scientific studies of aging parameters on the quality and palatability of dry aged beef. PMID:27200180

  17. Experimental Performance of a Thermoelectric Heat-Pump Drying System for Drying Herbs

    NASA Astrophysics Data System (ADS)

    Wongsim, K.; Jamradloedluk, J.; Lertsatitthanakorn, C.; Siriamornpun, S.; Rungsiyopas, M.; Soponronnarit, S.

    2015-06-01

    In this study we investigated thermoelectric (TE) heat-pump drying of laurel clock vine leaves, and the effect of drying-air temperature on the characteristics of the leaves. The TE drying system comprised four TE modules each with its own rectangular fin heat sink. The hot side of each TE module was fixed to its own heat sink; the cold sides were fixed to heat-pipe heat sinks and a drying chamber. The drying time depended on drying-air temperature. The heating capacity and coefficient of performance (COP) increased as the current supplied to the TE modules was increased. Calculated COP for the entire TE heat-pump drying system were 1.28 and 0.81 for drying-air temperatures of 50 and 40°C, respectively.

  18. Mobile Biomass Pelletizing System

    SciTech Connect

    Thomas Mason

    2009-04-16

    This grant project examines multiple aspects of the pelletizing process to determine the feasibility of pelletizing biomass using a mobile form factor system. These aspects are: the automatic adjustment of the die height in a rotary-style pellet mill, the construction of the die head to allow the use of ceramic materials for extreme wear, integrating a heat exchanger network into the entire process from drying to cooling, the use of superheated steam for adjusting the moisture content to optimum, the economics of using diesel power to operate the system; a break-even analysis of estimated fixed operating costs vs. tons per hour capacity. Initial development work has created a viable mechanical model. The overall analysis of this model suggests that pelletizing can be economically done using a mobile platform.

  19. APPLICATION OF A NEW LAND-SURFACE, DRY DEPOSITION, AND PBL MODEL IN THE MODELS-3 COMMUNITY MULTI-SCALE AIR QUALITY (CMAQ) MODEL SYSTEM

    EPA Science Inventory

    Like most air quality modeling systems, CMAQ divides the treatment of meteorological and chemical/transport processes into separate models run sequentially. A potential drawback to this approach is that it creates the illusion that these processes are minimally interdependent an...

  20. Colorful drying.

    PubMed

    Lakio, Satu; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-03-01

    Drying is one of the standard unit operations in the pharmaceutical industry and it is important to become aware of the circumstances that dominate during the process. The purpose of this study was to test microcapsulated thermochromic pigments as heat indicators in a fluid bed drying process. The indicator powders were manually granulated with alpha-lactose monohydrate resulting in three particle-size groups. Also, pellets were coated with the indicator powders. The granules and pellets were fluidized in fluid bed dryer to observe the progress of the heat flow in the material and to study the heat indicator properties of the indicator materials. A tristimulus colorimeter was used to measure CIELAB color values. Color indicator for heat detection can be utilized to test if the heat-sensitive API would go through physical changes during the pharmaceutical drying process. Both the prepared granules and pellets can be used as heat indicator in fluid bed drying process. The colored heat indicators give an opportunity to learn new aspects of the process at real time and could be exploded, for example, for scaling-up studies. PMID:20039220

  1. Dry Eye

    MedlinePlus

    ... surgery, called punctal cautery, is recommended to permanently close the drainage holes. The procedure helps keep the limited volume of tears on the eye for a longer period of time. In some patients with dry eye, supplements or dietary sources (such as tuna fish) of omega-3 fatty ...

  2. Atmospheric Effects of Biomass Burning

    NASA Technical Reports Server (NTRS)

    Thompson, Anne M.

    2000-01-01

    Biomass fires are both natural and anthropogenic in origin. The natural trigger is lightning, which leads to mid- and high-latitude fires and episodes of smoke and pollution associated with them. Lightning is also prominent in tropical regions when the dry season gives way to the wet season and lightning in convective systems ignites dry vegetation. Atmospheric consequences of biomass fires are complex. When considering the impacts of fires for a given ecosystem, inputs of fires must be compared to other process that emit trace gases and particles into the atmosphere. Other processes include industrial activity, fires for household purposes and biogenic sources which may themselves interact with fires. That is, fires may promote or restrict biogenic processes. Several books have presented various aspects of fire interactions with atmospheric chemistry and a cross-disciplinary review of a 1992 fire-oriented experiment appears in SAFARI: The Role of southern African Fires in Atmospheric and Ecological Environments. The IGAC/BIBEX core activity (see acronyms at end of Chapter) has sponsored field campaigns that integrate multiple aspects of fires ground-based measurements with an ecological perspective, atmospheric measurements with chemical and meteorological components, and remote sensing. This Chapter presents two aspects of biomass fires and the environment. Namely, the relationship between biomass burning and ozone is described, starting with a brief description of the chemical reactions involved and illustrative measurements and interpretation. Second, because of the need to observe biomass burning and its consequences globally, a summary of remote sensing approaches to the study of fires and trace gases is given. Examples in this Chapter are restricted to tropical burning for matters of brevity and because most burning activity globally is within this zone.

  3. Biomass torrefaction mill

    DOEpatents

    Sprouse, Kenneth M.

    2016-05-17

    A biomass torrefaction system includes a mill which receives a raw biomass feedstock and operates at temperatures above 400 F (204 C) to generate a dusty flue gas which contains a milled biomass product.

  4. Biomass Energy Research

    SciTech Connect

    Traylor, T.D.; Pitsenbarger, J.

    1996-03-01

    Biomass Energy Research announces on a bimonthly basis the current worldwide research and development (R&D) information available on biomass power systems, alternate feedstocks from biomass, and biofuels supply options.

  5. Biomass analyses for four areas in the Tennessee Valley Authority

    SciTech Connect

    Perry, J.D.

    1985-04-01

    Analyses for four biomass procurement areas in the Tennessee Valley are presented. The Marlow and Perryville, Tennessee, sites can provide 38,000 dry tons of industrial residue annually. Mulberry Creek, Alabama, and Watts Bar, Tennessee, can annually provide 330,000 dry tons of industrial residue and/or forest biomass. Methanol can be produced at the Perryville and Marlow sites and ethanol at Mulberry Creek and Watts Bar. 5 figs., 9 tabs.

  6. Effects of Nitrogen and Desferal Treatments on CROTALARIA's (Crotalaria juncea Roth) Biomass Production

    NASA Astrophysics Data System (ADS)

    László Phd, M., ,, Dr.

    2009-04-01

    920-920 individual plants. Experimental datas were estimated by MANOVA of SPSS. The most important results can be summarised as follows: a., As the N supplies improved the root length (cm), plant height (cm), mean scores (1-5), fresh root weight (t ha-1), green straw+leaf weight (t ha-1), total green biomass weight (t ha-1), air dry root weight (t ha-1), air dry straw+leaf weight (t ha-1), and total air dry biomass weight (t ha-1) increased with an 1.4, 1.3, 4.3, 1.3, 1.8, 1.6, 2.1, 1.9 and 2.0 times compared to the control by the start of flowering. b., As the N doses rised the root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight reaching 34.3 cm, 168.0 cm, 4.3, 14.8 t ha-1, 51.7 t ha-1, 66.5 t ha-1, 7.4 t ha-1, 16.5 t ha-1 and 23.9 t ha-1. c., About three-fourth of the total green biomass and total air dry biomass production at harvest was given by the straw+leaf yield, which ranged between 29.0-51.7 t ha-1 and 8.7-16.5 t ha-1, depending on the N-treatment applied. d., The root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight was increased in average with an 14, 15, 21, 157, 30, 63, 102, 28 and 51% by N+Desferal treatments compared to mean of N doses effects. e., By N+Desferal treatments the root length, plant height, mean scores, fresh root weight, green straw+leaf weight, total green biomass weight, air dry root weight, air dry straw+leaf weight and total air dry biomass weight achieved 37.0 cm, 173.3 cm, 4.3, 37.8 t ha-1, 64.4 t ha-1, 102.2 t ha-1, 13.8 t ha-1, 19.3 t ha-1 and 33.1 t ha-1. f., Approximately two-third of the total green biomass and total air dry biomass production at harvest was given by the straw+leaf yield, which ranged between 44.7-64.4 t ha-1 and 24.1-33.1 t ha-1

  7. Improvement in Storage Stability of Infrared Dried Rough Rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  8. Improvement in storage stability of infrared dried rough rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop infrared drying (IRD) method to improve the stability of physicochemical properties of rough rice during storage. The effect of IRD on the physicochemical properties of stored rough rice was compared with that of hot air drying (HAD) and ambient air drying ...

  9. Real-time monitoring of peanut drying parameters in semitrailers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...

  10. Real-time monitoring of drying parameters in semitrailers during peanut drying

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficient control of drying parameters is essential to ensure that peanuts are dried at the optimal rate, preserving quality and desired flavor. The present peanut drying process has limitations in means for measuring parameters such as temperature and relative humidity of the air being blown in...

  11. Prediction of energy requirements and drying times for surface drying fresh produce

    SciTech Connect

    Miller, W.M.

    1985-01-01

    For numerous fresh fruits and vegetables, drying of surface adhering water is required to facilitate materials handling and wax treatments. Using humidity ratio difference and air flow rates as manipulated variables, a computer program and a graphical approach were developed to predict required drying time. Modeling results were extended to investigate air recycling and the relationship of recycling on energy requirements.

  12. My Biomass, Your Biomass, Our Solution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US is pursuing an array of renewable energy sources to reduce reliance on imported fossil fuels and reduce greenhouse gas emissions. Biomass energy and biomass ethanol are key components in the pursuit. The need for biomass feedstock to produce sufficient ethanol to meet any of the numerous stat...

  13. Effects of dehumidification drying environment on drying speed of one component waterborne wood top coating

    NASA Astrophysics Data System (ADS)

    Lu, Zeguang; Tang, Tong; Zhou, Ge; Jia, Wanda; Wang, Meng; Xu, Jing; Bai, Shihong

    2016-03-01

    In this study, the effects of dehumidification drying environment including air temperature and relative humidity and velocity on drying speed of one component waterborne wood top coating are studied by Orthogonal experimental design and the results are analyzed creatively by Duncan analyses. It is found that during the dehumidification drying process, hard drying time is decreasing with the increasing air temperature and velocity and decreasing relative humidity. Air velocity is extremely significant to hard drying time, which is more significant than relative humidity, and relative humidity is more significant than air temperature. The difference of hard drying time is significant when the difference is 5 min and above, and it is extremely significant when the difference is 10 min and above, which are critical to judge the hard time in practice.

  14. Interaction of humidity and air pollutants on vegetation. Final report, 16 July 1986-30 April 1988

    SciTech Connect

    Thompson, C.R.; Olszyk, D.M.

    1988-03-01

    This study used a humidification system that adds dry steam to open-top field chambers to determine how relative-humidity affects plant responses to air pollutants in the field. There was a definite interaction between humidity and air pollution on leaf injury, with increasing humidity greatly increasing the amount of visible leaf necrosis and senescence from ozone. However, the injury interaction was not associated with any general interaction in terms of crop yield. Ozone caused visible injury to tomatoes, almonds, beans, and melons; reduced yield, growth, and biomass production for tomatoes and beans; and reduced physiological processes for tomatoes, beans, and almonds. Sulfur dioxide reduced growth and biomass production in wheat and lettuce, and yield for wheat. Humidification increased biomass production for tomatoes, carrots, onions, and beans, yield for carrots, onions, and lettuce, but decreased yields in beans.

  15. Biomass resilience of Neotropical secondary forests

    NASA Astrophysics Data System (ADS)

    Poorter, Lourens; Bongers, Frans; Aide, T. Mitchell; Almeyda Zambrano, Angélica M.; Balvanera, Patricia; Becknell, Justin M.; Boukili, Vanessa; Brancalion, Pedro H. S.; Broadbent, Eben N.; Chazdon, Robin L.; Craven, Dylan; de Almeida-Cortez, Jarcilene S.; Cabral, George A. L.; de Jong, Ben H. J.; Denslow, Julie S.; Dent, Daisy H.; Dewalt, Saara J.; Dupuy, Juan M.; Durán, Sandra M.; Espírito-Santo, Mario M.; Fandino, María C.; César, Ricardo G.; Hall, Jefferson S.; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C.; Junqueira, André B.; Kennard, Deborah; Letcher, Susan G.; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A.; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R. F.; Ochoa-Gaona, Susana; de Oliveira, Alexandre A.; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A.; Piotto, Daniel; Powers, Jennifer S.; Rodríguez-Velázquez, Jorge; Romero-Pérez, I. Eunice; Ruíz, Jorge; Saldarriaga, Juan G.; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B.; Steininger, Marc K.; Swenson, Nathan G.; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D. M.; Vester, Hans F. M.; Vicentini, Alberto; Vieira, Ima C. G.; Bentos, Tony Vizcarra; Williamson, G. Bruce; Rozendaal, Danaë M. A.

    2016-02-01

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha-1), corresponding to a net carbon uptake of 3.05 Mg C ha-1 yr-1, 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha-1) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  16. Low-temperature conversion of high-moisture biomass: Topical report, January 1984--January 1988

    SciTech Connect

    Sealock, L.J. Jr.; Elliott, D.C.; Butner, R.S.; Neuenschwander, G.G.

    1988-10-01

    Pacific Northwest Laboratory (PNL) is developing a low-temperature, catalytic process that converts high-moisture biomass feedstocks and other wet organic substances to useful gaseous and liquid fuels. The advantage of this process is that it works without the need for drying or dewatering the feedstock. Conventional thermal gasification processes, which require temperatures above 750/degree/C and air or oxygen for combustion to supply reaction heat, generally cannot utilize feedstocks with moisture contents above 50 wt %, as the conversion efficiency is greatly reduced as a result of the drying step. For this reason, anaerobic digestion or other bioconversion processes traditionally have been used for gasification of high-moisture feedstocks. However, these processes suffer from slow reaction rates and incomplete carbon conversion. 50 refs., 21 figs., 22 tabs.

  17. Drying characteristics and quality of bananas under infrared radiation heating

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hot air (HA) drying of banana has low drying efficiency and results in undesirable product quality. The objectives of this research were to investigate the feasibility of infrared (IR) heating to improve banana drying rate, evaluate quality of the dried product, and establish models for predicting d...

  18. Combustion, pyrolysis, gasification, and liquefaction of biomass

    SciTech Connect

    Reed, T.B.

    1980-09-01

    All the products now obtained from oil can be provided by thermal conversion of the solid fuels biomass and coal. As a feedstock, biomass has many advantages over coal and has the potential to supply up to 20% of US energy by the year 2000 and significant amounts of energy for other countries. However, it is imperative that in producing biomass for energy we practice careful land use. Combustion is the simplest method of producing heat from biomass, using either the traditional fixed-bed combustion on a grate or the fluidized-bed and suspended combustion techniques now being developed. Pyrolysis of biomass is a particularly attractive process if all three products - gas, wood tars, and charcoal - can be used. Gasification of biomass with air is perhaps the most flexible and best-developed process for conversion of biomass to fuel today, yielding a low energy gas that can be burned in existing gas/oil boilers or in engines. Oxygen gasification yields a gas with higher energy content that can be used in pipelines or to fire turbines. In addition, this gas can be used for producing methanol, ammonia, or gasoline by indirect liquefaction. Fast pyrolysis of biomass produces a gas rich in ethylene that can be used to make alcohols or gasoline. Finally, treatment of biomass with high pressure hydrogen can yield liquid fuels through direct liquefaction.

  19. Biomass treatment method

    DOEpatents

    Friend, Julie; Elander, Richard T.; Tucker, III; Melvin P.; Lyons, Robert C.

    2010-10-26

    A method for treating biomass was developed that uses an apparatus which moves a biomass and dilute aqueous ammonia mixture through reaction chambers without compaction. The apparatus moves the biomass using a non-compressing piston. The resulting treated biomass is saccharified to produce fermentable sugars.

  20. Drying Thermoplastics

    NASA Technical Reports Server (NTRS)

    1976-01-01

    In searching for an improved method of removing water from polyester type resins without damaging the materials, Conair Inc. turned to the NASA Center at the University of Pittsburgh for assistance. Taking an organized, thorough look at existing technology before beginning research has helped many companies save significant time and money. They searched the NASA and other computerized files for microwave drying of thermoplastics. About 300 relevant citations were retrieved - eight of which were identified as directly applicable to the problem. Company estimates it saved a minimum of a full year in compiling research results assembled by the information center.

  1. Airflow resistance of selected biomass materials

    SciTech Connect

    Cooper, S.C.; Sumner, H.R.

    1985-01-01

    Pressure drop created when air was forced through beds of selected biomass materials was determined. Materials tested included peanut hulls, peanut hull pellets, maize cobs, and wood shavings, chips and bark. The data were presented as logarithmic plots and equations of pressure drop versus airflow. The airflow resistances of the biomass materials increased with an increase in bulk density and were found to be in the range between values for ear and shelled maize. 12 references.

  2. Drying and recovery of aerobic granules.

    PubMed

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  3. Use of ATP to characterize biomass viability in freely suspended and immobilized cell bioreactors

    SciTech Connect

    Gikas, P.; Livingston, A.G. . Dept. of Chemical Engineering)

    1993-12-01

    This work describes investigations into the viability of cells growing on 3,4-dichloroaniline (34DCA). Two bio-reactors are employed for microbial growth, a continuous stirred tank (CST) bioreactor with a 2-L working volume, and a three-phase air lift (TPAL) bioreactor with a 3-L working volume. Experiments have been performed at several dilution rates between 0.027 and 0.115 h[sup [minus]1] in the CST bioreactor and between 0.111 and 0.500h[sup [minus]1] in the TPAL bioreactor. The specific ATP concentration was calculated at each dilution rate in the suspended biomass in both bioreactors as well as in the immobilized biomass in the TPAL bioreactor. The cultures were inspected under an electron microscope to monitor compositional changes. Results from the CST bioreactor showed that the biomass-specific ATP concentration increases from 0.44 to 1.86 mg ATP g[sup [minus]1] dry weight (dw) as dilution rate increases from 0.027 to 0.115 h[sup [minus]1]. At this upper dilution rate the cells were washed out. The specific ATP concentration reached a limiting average value of 1.73 mg ATP g[sup [minus]1] dw, which is assumed to be the quantity of ATP in 100% viable biomass, In the TPAL bioreactor, the ATP level increased with dilution rat in both the immobilized and suspended biomass. The specific ATP concentration in the immobilized biomass increased from approximately 0.051 mg ATP g[sup [minus]1] dw at dilution rates between 0.111 and 0.200 h[sup [minus]1] to approximately 0.119 mg ATP g[sup [minus]1] dw at dilution rates between 0.300 and 0.500 h[sup [minus]1].

  4. The relationship between rape biomass and narrow-band vegetation indices

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Wang, Yuan; Wang, Fumin; Wang, Xiuzhen

    2004-11-01

    The Relationships between rape biomass and hyperspectral vegetation indices are investigated in this paper. The data for this study comes from field hyperspectral reflectance measurements of rape during 2002-2003 growing period. Reflectance was measured in discrete narrow bands between 350 and 2500 nm. Observed rape biomass included wet biomass (WBM including leaf wet biomass-LWBM, stem wet biomass-SWBM, fruit wet biomass-FWBM), and dry biomass(DBM: including leaf dry biomass-LDBM, stem dry biomass, fruit dry biomass-FDBM). Narrow band normalized difference vegetation index (NBNDVI) and narrow band ratio vegetation index (NBRVI)involving all possible two-band combinations of discrete channels was tested. Special narrow band lambda (λ1) versus lambda (λ2) plots of R2 values illustrate the most effective wavelength combinations (λ1 and λ2) and band-width (Δλ1 and Δλ2) for predicting rape biomass at different development stage. A strong relationship with rape biomass is located in red-edge, the longer portion of red, moisture-sensitive NIR, longer portion of the blue band, the intermediate portion of SWIR, and the longer portion of SWIR.

  5. Harvesting and transporting high-tonnage crops for biomass

    SciTech Connect

    Clayton, J.E.; Eiland, B.R.

    1984-01-01

    Forage and sugarcane harvesters were used for harvesting sweet sorghum and sugarcane for biomass. One system of field transport with capability for dumping into highway trucks was used. Two methods of drying, collecting, densifying and transporting sugarcane residue were tested for providing material for commerical boilers. A method of rapid field drying is needed.

  6. The Relationship Between Soil Air Filled Porosity and Soil Methane Oxidation is Almost Identical in Both Dry and Wet Temperate Eucalypt Forests

    NASA Astrophysics Data System (ADS)

    Fest, B. J.; Wardlaw, T.; Hinko-Najera, N.; Arndt, S. K.

    2015-12-01

    In order to gain a better understanding of the temporal variation in soil methane (CH4) exchange in temperate evergreen eucalypt forests in south-eastern Australia we measured soil CH4 exchange in high temporal resolution (every 2 hours or less) over two consecutive years (Wombat State Forest, Victoria, AUS) and over one year (Warra, Tasmania, AUS) in two temperate Eucalyptus obliqua (L. Her) forests with contrasting annual precipitation (Wombat State Forest = 870 mm yr-1, Warra = 1700 mm yr-1). Both forests were continuous CH4 sinks with the Victorian site having a sink strength of -1.79 kg CH4 ha-1 yr-1 and the Tasmanian site having a sink strength of -3.83 kg CH4 ha-1 yr-1. Our results show that CH4 uptake was strongly controlled by soil moisture at both sites and explained up to 90% of the temporal variability in CH4 uptake. Furthermore, when soil moisture was expressed as soil air filled porosity (AFP) we were able to predict the CH4 uptake of one site by the linear regression between AFP and CH4 uptake from the other site. Soil temperature only had an apparent control over seasonal variation in CH4 uptake during periods when soil moisture and soil temperature were closely correlated. The fluctuation of the generally low soil nitrogen levels did not influence soil CH4 uptake at either site.

  7. Microwave drying of seed cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small lab dryer was designed for use in drying seed cotton with components of a microwave generator mounted thereon. The magnetron emitted radiation directly into the seed cotton and a fan directed air cross-flow to the radiation direction. The microwave components were a 1.1 kW magnetron, trans...

  8. Air Travel Health Tips

    MedlinePlus

    MENU Return to Web version Air Travel Health Tips Air Travel Health Tips How can I improve plane travel? Most people don't have any problems when ... and dosages of all of your medicines. The air in airplanes is dry, so drink nonalcoholic, decaffeinated ...

  9. Dry cleaning of Turkish coal

    SciTech Connect

    Cicek, T.

    2008-07-01

    This study dealt with the upgrading of two different type of Turkish coal by a dry cleaning method using a modified air table. The industrial size air table used in this study is a device for removing stones from agricultural products. This study investigates the technical and economical feasibility of the dry cleaning method which has never been applied before on coals in Turkey. The application of a dry cleaning method on Turkish coals designated for power generation without generating environmental pollution and ensuring a stable coal quality are the main objectives of this study. The size fractions of 5-8, 3-5, and 1-3 mm of the investigated coals were used in the upgrading experiments. Satisfactory results were achieved with coal from the Soma region, whereas the upgrading results of Hsamlar coal were objectionable for the coarser size fractions. However, acceptable results were obtained for the size fraction 1-3 mm of Hsamlar coal.

  10. Airless drying -- Developments since IDS'94

    SciTech Connect

    Stubbing, T.J.

    1999-09-01

    Since its introduction to IDS'94 delegates, significant progress has been made with the development of airless drying technology. The ceramic industry internationally is beginning to benefit from both the energy use and drying time reductions it achieves, while on the basis of further theoretical work carried out since 1993 other industries, including the bioenergy sector, should also soon begin to exploit its advantages. As global warming becomes a reality and oil reserves decline, superheated steam drying and gasification of biomass will contribute to the mitigation of those problems.

  11. Improving the bioconversion yield of carbohydrates and ethanol from lignocellulosic biomass

    NASA Astrophysics Data System (ADS)

    Ewanick, Shannon M.

    Improving the efficiency of lignocellulosic ethanol production is of the utmost importance if cellulosic bioethanol is to be competitive with fossil fuels and first generation bioethanol from starch and sucrose. Improvements in individual processes (pretreatment, saccharification, fermentation) have been ongoing, but few researchers have considered the effect that the incoming raw biomass can have on the process. It is important to understand how biomass can be altered to provide the maximum yield of hydrolysable and fermentable sugars from whatever is available. Since the moisture content is highly variable and easily altered, the effect of drying and rewetting on bioconversion was studied on switchgrass, sugarcane bagasse and hybrid poplar. For switchgrass and sugarcane bagasse, the ethanol yield after simultaneous saccharification and fermentation was improved 18-24% by increasing the moisture content by soaking prior to pretreatment. It was also found that soaking had no effect when the samples were not catalyzed with SO2 confirming that the effect of moisture content is directly related to SO2 uptake and diffusion into the biomass. In hybrid poplar, the results were similar to herbaceous biomass for chips with less than 2% absorbed SO2. However, when the SO2 uptake was increased to 3% even the air dried chips exhibited high digestibility, indicating that increased SO2 uptake can overcome the poor diffusion in dried biomass. Alongside controlling the biomass moisture content, improving knowledge and control of the processes can also increase efficiency and product yields. By monitoring reactions continuously with accurate, robust, on-line sensors, operators can detect when reactions deviate from the norm, and when they are complete. Avoiding process upsets and contamination could be the difference between an economically viable biorefinery and one that struggles to compete. Real time, continuous Raman spectroscopy was used to continuously monitor both a

  12. Hydrothermal Liquefaction of Biomass

    SciTech Connect

    Elliott, Douglas C.

    2010-12-10

    Canada to investigate kelp (seaweed) as a biomass feedstock. The collaborative project includes process testing of the kelp in HydroThermal Liquefaction in the bench-scale unit at PNNL. HydroThermal Liquefaction at PNNL is performed in the hydrothermal processing bench-scale reactor system. Slurries of biomass are prepared in the laboratory from whole ground biomass materials. Both wet processing and dry processing mills can be used, but the wet milling to final slurry is accomplished in a stirred ball mill filled with angle-cut stainless steel shot. The PNNL HTL system, as shown in the figure, is a continuous-flow system including a 1-litre stirred tank preheater/reactor, which can be connected to a 1-litre tubular reactor. The product is filtered at high-pressure to remove mineral precipitate before it is collected in the two high-pressure collectors, which allow the liquid products to be collected batchwise and recovered alternately from the process flow. The filter can be intermittently back-flushed as needed during the run to maintain operation. By-product gas is vented out the wet test meter for volume measurement and samples are collected for gas chromatography compositional analysis. The bio-oil product is analyzed for elemental content in order to calculate mass and elemental balances around the experiments. Detailed chemical analysis is performed by gas chromatography-mass spectrometry and 13-C nuclear magnetic resonance is used to evaluate functional group types in the bio-oil. Sufficient product is produced to allow subsequent catalytic hydroprocessing to produce liquid hydrocarbon fuels. The product bio-oil from hydrothermal liquefaction is typically a more viscous product compared to fast pyrolysis bio-oil. There are several reasons for this difference. The HTL bio-oil contains a lower level of oxygen because of more extensive secondary reaction of the pyrolysis products. There are less amounts of the many light oxygenates derived from the carbohydrate

  13. Sustaining dry surfaces under water.

    PubMed

    Jones, Paul R; Hao, Xiuqing; Cruz-Chu, Eduardo R; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M; Varanasi, Kripa K; Megaridis, Constantine M; Walther, Jens H; Koumoutsakos, Petros; Espinosa, Horacio D; Patankar, Neelesh A

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys - thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  14. Sustaining dry surfaces under water

    PubMed Central

    Jones, Paul R.; Hao, Xiuqing; Cruz-Chu, Eduardo R.; Rykaczewski, Konrad; Nandy, Krishanu; Schutzius, Thomas M.; Varanasi, Kripa K.; Megaridis, Constantine M.; Walther, Jens H.; Koumoutsakos, Petros; Espinosa, Horacio D.; Patankar, Neelesh A.

    2015-01-01

    Rough surfaces immersed under water remain practically dry if the liquid-solid contact is on roughness peaks, while the roughness valleys are filled with gas. Mechanisms that prevent water from invading the valleys are well studied. However, to remain practically dry under water, additional mechanisms need consideration. This is because trapped gas (e.g. air) in the roughness valleys can dissolve into the water pool, leading to invasion. Additionally, water vapor can also occupy the roughness valleys of immersed surfaces. If water vapor condenses, that too leads to invasion. These effects have not been investigated, and are critically important to maintain surfaces dry under water. In this work, we identify the critical roughness scale, below which it is possible to sustain the vapor phase of water and/or trapped gases in roughness valleys – thus keeping the immersed surface dry. Theoretical predictions are consistent with molecular dynamics simulations and experiments. PMID:26282732

  15. Dry Mouth or Xerostomia

    MedlinePlus

    ... or Xerostomia Request Permissions Print to PDF Dry Mouth or Xerostomia Approved by the Cancer.Net Editorial ... a dry mouth. Signs and symptoms of dry mouth The signs and symptoms of dry mouth include ...

  16. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: (a) how the introduction of fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and (b) the effectiveness of ‘airing...

  17. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques.

    PubMed

    Akonor, P T; Ofori, H; Dziedzoave, N T; Kortei, N K

    2016-01-01

    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L (⁎) = 47.4) than the air-oven-dried (L (⁎) = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p < 0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently. PMID:27034924

  18. Drying Characteristics and Physical and Nutritional Properties of Shrimp Meat as Affected by Different Traditional Drying Techniques

    PubMed Central

    Ofori, H.; Dziedzoave, N. T.; Kortei, N. K.

    2016-01-01

    The influence of different drying methods on physical and nutritional properties of shrimp meat was investigated in this study. Peeled shrimps were dried separately using an air-oven dryer and a tunnel solar dryer. The drying profile of shrimp meat was determined in the two drying systems by monitoring moisture loss over the drying period. Changes in color, proximate composition, and rehydration capacity were assessed. The rate of moisture removal during solar drying was faster than the air-oven drying. The development of red color during drying was comparable among the two methods, but solar-dried shrimps appeared darker (L⁎ = 47.4) than the air-oven-dried (L⁎ = 49.0). Chemical analysis indicated that protein and fat made up nearly 20% and 2% (wb) of the shrimp meat, respectively. Protein and ash content of shrimp meat dried under the two dryer types were comparable but fat was significantly (p < 0.05) higher in oven-dried meat (2.1%), compared to solar-dried meat (1.5%). Although rehydration behavior of shrimp from the two drying systems followed a similar pattern, solar-dried shrimp absorbed moisture more rapidly. The results have demonstrated that different approaches to drying may affect the physical and nutritional quality of shrimp meat differently. PMID:27034924

  19. Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery.

    PubMed

    Sultana, Arifa; Kumar, Amit

    2011-11-01

    Biomass availability and transportation are major challenges in establishing a large-scale biorefinery. The objective of this study was to assess the delivery cost of different combinations of multiple forms of lignocellulosic feedstocks including agricultural and woody biomass. Three types of biomass i.e., wheat straw, corn stover and forest biomass were considered in different forms such as loose biomass, bales/bundles, chopped/chipped and pellets. It was found that the delivery cost of a combination of woody and agricultural biomass feedstocks is lower than that for a single type of biomass. The delivery of agricultural residues as bales and woody biomass as chips is an economically attractive option with optimal combination of 30% bales and 70% wood chips to a biorefinery of capacity 5000 dry tonnes per day. The anticipated traffic congestions resulting from biomass supply to a large facility could be significantly reduced by increasing the density of biomass. PMID:21917448

  20. Health impacts of anthropogenic biomass burning in the developed world.

    PubMed

    Sigsgaard, Torben; Forsberg, Bertil; Annesi-Maesano, Isabella; Blomberg, Anders; Bølling, Anette; Boman, Christoffer; Bønløkke, Jakob; Brauer, Michael; Bruce, Nigel; Héroux, Marie-Eve; Hirvonen, Maija-Riitta; Kelly, Frank; Künzli, Nino; Lundbäck, Bo; Moshammer, Hanns; Noonan, Curtis; Pagels, Joachim; Sallsten, Gerd; Sculier, Jean-Paul; Brunekreef, Bert

    2015-12-01

    Climate change policies have stimulated a shift towards renewable energy sources such as biomass. The economic crisis of 2008 has also increased the practice of household biomass burning as it is often cheaper than using oil, gas or electricity for heating. As a result, household biomass combustion is becoming an important source of air pollutants in the European Union.This position paper discusses the contribution of biomass combustion to pollution levels in Europe, and the emerging evidence on the adverse health effects of biomass combustion products.Epidemiological studies in the developed world have documented associations between indoor and outdoor exposure to biomass combustion products and a range of adverse health effects. A conservative estimate of the current contribution of biomass smoke to premature mortality in Europe amounts to at least 40 000 deaths per year.We conclude that emissions from current biomass combustion products negatively affect respiratory and, possibly, cardiovascular health in Europe. Biomass combustion emissions, in contrast to emissions from most other sources of air pollution, are increasing. More needs to be done to further document the health effects of biomass combustion in Europe, and to reduce emissions of harmful biomass combustion products to protect public health. PMID:26405285

  1. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production.

    PubMed

    Kong, Qing-xue; Li, Ling; Martinez, Blanca; Chen, Paul; Ruan, Roger

    2010-01-01

    The objective of this research was to develop large-scale technologies to produce oil-rich algal biomass from wastewater. The experiments were conducted using Erlenmeyer flasks and biocoil photobioreactor. Chlamydomonas reinhardtii was grown in artificial media and wastewaters taken from three different stages of the treatment process, namely, influent, effluent, and centrate. Each of wastewaters contained different levels of nutrients. The specific growth rate of C. reinhardtii in different cultures was monitored over a period of 10 days. The biomass yield of microalgae and associated nitrogen and phosphorous removal were evaluated. Effects of CO(2) and pH on the growth were also studied. The level of nutrients greatly influenced algae growth. High levels of nutrients seem to inhibit algae growth in the beginning, but provided sustained growth to a high degree. The studies have shown that the optimal pH for C. reinhardtii is in the range of 7.5. An injection of air and a moderate amount of CO(2) promoted algae growth. However, too much CO(2) inhibited algae growth due to a significant decrease in pH. The experimental results showed that algal dry biomass yield reached a maximum of 2.0 g L(-1) day(-1) in the biocoil. The oil content of microalgae of C. reinhardtii was 25.25% (w/w) in dry biomass weight. In the biocoil, 55.8 mg nitrogen and 17.4 mg phosphorus per liter per day were effectively removed from the centrate wastewater. Ferric chloride was found to be an effective flocculent that helps the algae settle for easy harvest and separation from the culture media. PMID:19507059

  2. SOURCE ASSESSMENT: DRY BOTTOM INDUSTRIAL BOILERS FIRING PULVERIZED BITUMINOUS COAL

    EPA Science Inventory

    The report describes and assesses the potential impact of air emissions, wastewater effluents, and solid wastes from the operation of dry bottom industrial boilers firing pulverized bituminous coal. Air emissions were characterized by a literature survey and field sampling. Signi...

  3. Biomass resource potential using energy crops

    SciTech Connect

    Wright, L.L.; Cushman, J.H.; Martin, S.A.

    1993-09-01

    Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

  4. Environmental analysis of biomass-ethanol facilities

    SciTech Connect

    Corbus, D.; Putsche, V.

    1995-12-01

    This report analyzes the environmental regulatory requirements for several process configurations of a biomass-to-ethanol facility. It also evaluates the impact of two feedstocks (municipal solid waste [MSW] and agricultural residues) and three facility sizes (1000, 2000, and 3000 dry tons per day [dtpd]) on the environmental requirements. The basic biomass ethanol process has five major steps: (1) Milling, (2) Pretreatment, (3) Cofermentation, (4) Enzyme production, (5) Product recovery. Each step could have environmental impacts and thus be subject to regulation. Facilities that process 2000 dtpd of MSW or agricultural residues would produce 69 and 79 million gallons of ethanol, respectively.

  5. Comparative Evaluation of Physicochemical Properties of Pine Needle Powders Prepared by Different Drying Methods

    PubMed Central

    Chung, Ha-Sook; Lee, Jun Ho

    2015-01-01

    Systematic study of how different drying methods, namely hot-air drying, vacuum-drying, and freeze-drying, affect color, browning index, degree of rehydration, water solubility, and vitamin C content is critical for utilizing pine needle powders (PNP) as a novel ingredient in functional foods. Samples prepared by vacuum-drying showed a significantly higher L*-value, whereas higher a*- and b*-values were detected in the hot-air dried samples (P<0.05). The browning index was significantly higher in samples prepared by vacuum-drying compared to samples prepared by freeze-drying (P<0.05). Freeze-dried PNP exhibited a significantly higher degree of rehydration than hot-air dried samples (P<0.05). Water solubilities of freeze-dried and hot-air dried samples were significantly higher than that of vacuum-dried sample (P<0.05). Vitamin C was less destroyed during freeze-drying compared to hot-air or vacuum-drying (P<0.05). Freeze-dried samples displayed a clear porous structure and appeared to have a bigger space, whereas hot-air dried samples showed lower porosity than vacuum and freeze-dried samples. PMID:26176003

  6. Stability of dry liposomes in sugar glasses.

    PubMed Central

    Sun, W Q; Leopold, A C; Crowe, L M; Crowe, J H

    1996-01-01

    Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation. PMID:8785336

  7. Biomass for Electricity Generation

    EIA Publications

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  8. Energy from Biomass.

    ERIC Educational Resources Information Center

    Carioca, J. O. B.; And Others

    1987-01-01

    Discusses how biomass in the form of fuelwood, crop residues, and animal dung can be converted into fuels such as biogas and ethanol to replace or supplement fossil fuels. Argues for future decentralized, integrated biomass energy development. (TW)

  9. Pretreated densified biomass products

    SciTech Connect

    Dale, Bruce E; Ritchie, Bryan; Marshall, Derek

    2014-03-18

    A product comprising at least one densified biomass particulate of a given mass having no added binder and comprised of a plurality of lignin-coated plant biomass fibers is provided, wherein the at least one densified biomass particulate has an intrinsic density substantially equivalent to a binder-containing densified biomass particulate of the same given mass and h a substantially smooth, non-flakey outer surface. Methods for using and making the product are also described.

  10. Dry sump crankcase

    SciTech Connect

    Berger, A.H.; Dichi, R.E.

    1987-06-23

    A dry sump type crankcase is described for an automotive type internal combustion engine having an intake manifold and a positive crankcase ventilation (PCV) system for automatically and continuously ventilating the crankcase. The system includes an essentially atmospheric pressure fresh air inlet to the engine passing air through to the crankcase and a connection from the oil pan to the vacuum in the intake manifold establishing a constant flow of crankcase vapors. The oil pan has a baffle partitioning it into an inner oil collecting funnel-like crankcase cavity and an outer oil reservoir. The inner cavity has an opening at its lower-most point for communication of oil with the reservoir. The opening is of a controlled vertical height for creating a pressure differential across the baffle during operation of the engine. Means connects the inner cavity to the air inlet pressure side of the PCV System while connecting the reservoir to the vacuum side of the PCV system for establishing a constant pressure differential across the baffle sufficient to displace the oil against gravity and maintain the oil level in the crankcase during operation of the engine at the height of the opening in the baffle. Gravity causes the oil to seek a level higher than the opening upon shutdown of the engine and the consequential decay of vacuum in the intake manifold.

  11. Staying dry under water

    NASA Astrophysics Data System (ADS)

    Jones, Paul; Cruz-Chu, Eduardo; Megaridis, Constantine; Walther, Jens; Koumoutsakos, Petros; Patankar, Neelesh

    2012-11-01

    Lotus leaves are known for their non-wetting properties due to the presence of surface texture. The superhydrophobic behavior arises because of the prevention of liquid water from entering the pores of the roughness. Present superhydrophobic materials rely on air trapped within the surface pores to avoid liquid permeation. This is typically unsustainable for immersed bodies due to dissolution of the air, especially under elevated pressures. Here, molecular dynamics simulations are used to demonstrate the non-wetting behavior of an immersed ten-nanometer pore. This is accomplished by establishing thermodynamically sustained vapor pockets of the surrounding liquid medium. Over 300,000 atoms were used to construct the nanopore geometry and simulate SPC/E water molecules. Ambient pressure was varied along two isotherms (300 K, and 500 K). This approach for vapor-stabilization could offer valuable guidance for maintaining surfaces dry even in a submerged state without relying on trapped air. The approach may be extended to control general phase behavior of water adjacent to textured surfaces. ISEN support is gratefully acknowledged.

  12. Comparison of Biomass and Lipid Production under Ambient Carbon Dioxide Vigorous Aeration and 3% Carbon Dioxide Condition Among the Lead Candidate Chlorella Strains Screened by Various Photobioreactor Scales

    SciTech Connect

    Kobayashi, Naoko; Barnes, Austin; Jensen, Travis; Noel, Eric; Andlay, Gunjan; Rosenberg, Julian N.; Betenbaugh, Michael J.; Guarnieri, Michael T.; Oyler, George A.

    2015-09-01

    Chlorella species from the UTEX collection, classified by rDNA-based phylogenetic analysis, were screened based on biomass and lipid production in different scales and modes of culture. Lead candidate strains of C. sorokiniana UTEX 1230 and C. vulgaris UTEX 395 and 259 were compared between conditions of vigorous aeration with filtered atmospheric air and 3% CO2 shake-flask cultivation. We found that the biomass of UTEX 1230 produced 2 times higher at 652 mg L-1 dry weight under both ambient CO2 vigorous aeration and 3% CO2 conditions, while UTEX 395 and 259 under 3% CO2 increased to 3 times higher at 863 mg L-1 dry weight than ambient CO2 vigorous aeration. The triacylglycerol contents of UTEX 395 and 259 increased more than 30 times to 30% dry weight with 3% CO2, indicating that additional CO2 is essential for both biomass and lipid accumulation in UTEX 395 and 259.

  13. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  14. Small Modular Biomass Systems

    SciTech Connect

    2002-12-01

    This fact sheet provides information about modular biomass systems. Small modular biomass systems can help supply electricity to rural areas, businesses, and the billions of people who live without power worldwide. These systems use locally available biomass fuels such as wood, crop waste, animal manures, and landfill gas.

  15. Biomass Program Biopower Factsheet

    SciTech Connect

    2010-03-01

    Generating electricity and thermal energy from biomass has the potential to help meet national goals for renewable energy. The forest products industry has used biomass for power and heat for many decades, yet widespread use of biomass to supply electricity to the U.S. power grid and other applications is relatively recent.

  16. Biomass Cookstoves Technical Meeting. Summary Report

    SciTech Connect

    none,

    2011-05-01

    In regions where biomass is a traditional fuel for cooking, improved cookstoves can enhance indoor air quality, personal health, livelihoods, and the environment—while substantially reducing greenhouse gas (GHG) emissions. Although ongoing efforts have successfully disseminated improved stoves that achieve many of these benefits, substantially greater emissions reductions are needed to comply with international guidelines for indoor air quality and to limit GHG emissions like black carbon.

  17. Biomass energy analysis for crop dehydration

    SciTech Connect

    Whittier, J.P.; Haase, S.G.; Quinn, M.W.

    1994-12-31

    In 1994, an agricultural processing facility was constructed in southern New Mexico for spice and herb dehydration. Annual operational costs are dominated by energy costs, due primarily to the energy intensity of dehydration. A feasibility study was performed to determine whether the use of biomass resources as a feedstock for a cogeneration system would be an economical option. The project location allowed access to unusual biomass feedstocks including cotton gin trash, pecan shells and in-house residues. A resource assessment of the immediate project area determined that approximately 120,000 bone dry tons of biomass feedstocks are available annually. Technology characterization for the plant energy requirements indicated gasification systems offer fuel flexibility advantages over combustion systems although vendor support and commercial experience are limited. Regulatory siting considerations introduce a level of uncertainty because of a lack of a precedent in New Mexico for gasification technology and because vendors of commercial gasifiers have little experience operating such a facility nor gathering emission data. A public opinion survey indicated considerable support for renewable energy use and biomass energy utilization. However, the public opinion survey also revealed limited knowledge of biomass technologies and concerns regarding siting of a biomass facility within the geographic area. The economic analysis conducted for the study is based on equipment vendor quotations, and indicates there will be difficulty competing with current prices of natural gas.

  18. Miscanthus as cellulosic biomass for bioethanol production.

    PubMed

    Lee, Wen-Chien; Kuan, Wei-Chih

    2015-06-01

    The members of the genus Miscanthus are potential feedstocks for biofuels because of the promising high yields of biomass per unit of planted area. This review addresses species, cultivation, and lignocellulose composition of Miscanthus, as well as pretreatment and enzyme saccharification of Miscanthus biomass for ethanol fermentation. The average cellulose contents in dried biomass of Miscanthus floridulus, Miscanthus sinensis, Miscanthus sacchariflorus, and Miscanthus × giganteus (M × G) are 37.2, 37.6, 38.9, and 41.1% wt/wt, respectively. A number of pretreatment methods have been applied in order to enhance digestibility of Miscanthus biomass for enzymatic saccharification. Pretreatment of Miscanthus using liquid hot water or alkaline results in a significant release of glucose; while glucose yields can be 90% or higher if a pretreatment like AFEX that combines both chemical and physical processes is used. As ethanol is produced by yeast fermentation of the hydrolysate from enzymatic hydrolysis of residual solids (pulp) after pretreatment, theoretical ethanol yields are 0.211-0.233 g/g-raw biomass if only cellulose is taken into account. Simultaneous saccharification and fermentation of pretreated M × G and M. lutarioriparius results in experimental ethanol yields of 0.13 and 0.15 g/g-raw biomass, respectively. Co-production of value-added products can reduce the overall production cost of bioethanol. PMID:26013948

  19. Preparation of gasification feedstock from leafy biomass.

    PubMed

    Shone, C M; Jothi, T J S

    2016-05-01

    Dried leaves are a potential source of energy although these are not commonly used beside to satisfy daily energy demands in rural areas. This paper aims at preparing a leafy biomass feedstock in the form of briquettes which can be directly used for combustion or to extract the combustible gas using a gasifier. Teak (Tectona grandis) and rubber (Hevea brasiliensis) leaves are considered for the present study. A binder-assisted briquetting technique with tapioca starch as binder is adopted. Properties of these leafy biomass briquettes such as moisture content, calorific value, compressive strength, and shatter index are determined. From the study, briquettes with biomass-to-binder ratio of 3:5 are found to be stable. Higher mass percentage of binder is considered for preparation of briquettes due to the fact that leafy biomasses do not adhere well on densification with lower binder content. Ultimate analysis test is conducted to analyze the gasification potential of the briquettes. Results show that the leafy biomass prepared from teak and rubber leaves has calorific values of 17.5 and 17.8 MJ/kg, respectively, which are comparable with those of existing biomass feedstock made of sawdust, rice husk, and rice straw. PMID:26289326

  20. Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass.

    PubMed

    Lu, Xiaoming; Withers, Mitch R; Seifkar, Navid; Field, Randall P; Barrett, Steven R H; Herzog, Howard J

    2015-05-01

    The objective of this study was to assess the costs, energy consumption and greenhouse gas (GHG) emissions throughout the biomass supply chain for large scale biofuel production. Two types of energy crop were considered, switchgrass and loblolly pine, as representative of herbaceous and woody biomass. A biomass logistics model has been developed to estimate the feedstock supply system from biomass production through transportation. Biomass in the form of woodchip, bale and pellet was investigated with road, railway and waterway transportation options. Our analysis indicated that the farm or forest gate cost is lowest for loblolly pine whole tree woodchip at $39.7/dry tonne and highest for switchgrass round bale at $72.3/dry tonne. Switchgrass farm gate GHG emissions is approximately 146kgCO2e/dry tonne, about 4 times higher than loblolly pine. The optimum biomass transportation mode and delivered form are determined by the tradeoff between fixed and variable costs for feedstock shipment. PMID:25710677