Science.gov

Sample records for air electrode supported

  1. Development of self-supporting air electrode SOFC

    SciTech Connect

    Nagata, M.; Iwasawa, C.; Yamaoka, S.; Seino, Y.; Ono, M.

    1995-12-31

    The authors are studying a self-supporting SOFC using the spray coating method, etc. A high-performance self-supporting air electrode has successfully been produced by the extrusion-sintering method, and a cell with its electrolyte and fuel electrode manufactured by the plasma spray coating method on the air electrode proved to have good performance. The maximum output density of a single cell is 0.31W/cm{sup 2}. Furthermore, the authors are developing a FGM (Functionally Gradient Material) film as the fuel electrode produced by the plasma spray coating method.

  2. Carbon cloth supported electrode

    DOEpatents

    Lu, Wen-Tong P.; Ammon, Robert L.

    1982-01-01

    A flow-by anode is disclosed made by preparing a liquid suspension of about to about 18% by weight solids, the solids comprising about 3.5 to about 8% of a powdered catalyst of platinum, palladium, palladium oxide, or mixtures thereof; about 60 to about 76% carbon powder (support) having a particle size less than about 20 m.mu.m and about 20 to about 33% of an inert binder having a particle size of less than about 500 m.mu.m. A sufficient amount of the suspension is poured over a carbon cloth to form a layer of solids about 0.01 to about 0.05 cm thick on the carbon cloth when the electrode is completed. A vacuum was applied to the opposite side of the carbon cloth to remove the liquid and the catalyst layer/cloth assembly is dried and compressed at about 10 to about 50 MPa's. The binder is then sintered in an inert atmosphere to complete the electrode. The electrode is used for the oxidation of sulfur dioxide in a sulfur based hybrid cycle for the decomposition of water.

  3. Improved zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.

  4. Zinc electrode and rechargeable zinc-air battery

    SciTech Connect

    Ross, P.N. Jr.

    1989-06-27

    This patent describes an improved zinc electrode for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed.

  5. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOEpatents

    Ross, P.N. Jr.

    1988-06-21

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same. 3 figs.

  6. Novel air electrode for metal-air battery with new carbon material and method of making same

    NASA Astrophysics Data System (ADS)

    Ross, Philip N., Jr.

    1988-06-01

    This invention relates to a rechargeable battery or fuel cell. More particularly, this invention relates to a novel air electrode comprising a new carbon electrode support material and a method of making same.

  7. Zinc electrode and rechargeable zinc-air battery

    DOEpatents

    Ross, Jr., Philip N.

    1989-01-01

    An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.

  8. Low circumferential voltage gradient self supporting electrode for solid oxide fuel cells

    SciTech Connect

    Reichner, Philip

    1989-01-01

    The porous, self-supporting, elongated electrode is made, having at least two chambers through its axial length, the chambers separated by an electronically conductive member. This electrode can be an air electrode of a fuel cell, having a superimposed solid electrolyte and fuel electrode.

  9. Oxide modified air electrode surface for high temperature electrochemical cells

    DOEpatents

    Singh, Prabhakar; Ruka, Roswell J.

    1992-01-01

    An electrochemical cell is made having a porous cermet electrode (16) and a porous lanthanum manganite electrode (14), with solid oxide electrolyte (15) between them, where the lanthanum manganite surface next to the electrolyte contains a thin discontinuous layer of high surface area cerium oxide and/or praseodymium oxide, preferably as discrete particles (30) in contact with the air electrode and electrolyte.

  10. Method of making an air electrode material having controlled sinterability

    DOEpatents

    Vasilow, Theodore R.; Kuo, Lewis J. H.; Ruka, Roswell J.

    1994-01-01

    A tubular, porous ceramic electrode structure (3) is made from the sintered admixture of doped lanthanum manganite and an additive containing cerium where a solid electrolyte (4), substantially surrounds the air electrode, and a porous outer fuel electrode (7) substantially surrounds the electrolyte, to form a fuel cell (1).

  11. Novel air electrode for metal-air battery with new carbon material and method of making same

    DOEpatents

    Ross, Jr., Philip N.

    1990-01-01

    A novel carbonaceous electrode support material is disclosed characterized by a corrosion rate of 0.03 wt. %/hour or less when measured a5 550 millivolts vs. a Hg/HgO electrode in a 30 wt. % KOH electrolyte a5 30.degree. C. The electrode support material comprises a preselected carbon black material which has been heat-treated by heating the material to a temperature of from about 2500.degree. to about 3000.degree. C. over a period of from about 1 to about 5 hours in an inert atmosphere and then maintaining the preselected carbon black material at this temperature for a period of at least about 1 hour, and preferably about 2 hours, in the inert atmosphere. A carbonaceous electrode suitable for use as an air electrode in a metal-air cell may be made from the electrode support material by shaping and forming it into a catalyst support and then impregnating it with a catalytically active material capable of catalyzing the reaction with oxygen at the air electrode of metal-air cell.

  12. Air Risk Information Support Center

    SciTech Connect

    Shoaf, C.R.; Guth, D.J.

    1990-12-31

    The Air Risk Information Support Center (Air RISC) was initiated in early 1988 by the US Environmental Protection Agency`s (EPA) Office of Health and Environmental Assessment (OHEA) and the Office of Air Quality Planning and Standards (OAQPS) as a technology transfer effort that would focus on providing information to state and local environmental agencies and to EPA Regional Offices in the areas of health, risk, and exposure assessment for toxic air pollutants. Technical information is fostered and disseminated by Air RISCs three primary activities: (1) a {open_quotes}hotline{close_quotes}, (2) quick turn-around technical assistance projects, and (3) general technical guidance projects. 1 ref., 2 figs.

  13. Spray deposition of Nafion membranes: Electrode-supported fuel cells

    NASA Astrophysics Data System (ADS)

    Bayer, Thomas; Pham, Hung Cuong; Sasaki, Kazunari; Lyth, Stephen Matthew

    2016-09-01

    Fuel cells are a key technology for the successful transition towards a hydrogen society. In order to accelerate fuel cell commercialization, improvements in performance are required. Generally, polymer electrolyte membrane fuel cells (PEFCs) are membrane-supported; the electrocatalyst layer is sprayed onto both sides of the membrane, and sandwiched between carbon-based gas diffusion layers (GDLs). In this work we redesign the membrane electrode assembly (MEA) and fabricate an electrode-supported PEFC. First the electrocatalyst layer is sprayed onto the GDL, and then Nafion dispersion is sprayed over the top of this to form a thin membrane. This method has the advantage of simplifying the fabrication process, allowing the fabrication of extremely thin electrolyte layers (down to ∼10 μm in this case), and reducing the amount of ionomer required in the cell. Electrode-supported PEFCs operate at significantly increased power density compared to conventional membrane-supported PEFCs, with a maximum of 581 mW/cm2 at 80 °C (atmospheric pressure, air at the cathode). Impedance spectroscopy confirmed that the origin of the improved performance was an 80% reduction in the membrane resistance due the thinner Nafion layer. This novel fabrication method is a step towards cheaper, thinner, fully printable PEFCs with high power density and efficiency.

  14. Electrode With Porous Three-Dimensional Support

    DOEpatents

    Bernard, Patrick; Dauchier, Jean-Michel; Simonneau, Olivier

    1999-07-27

    Electrode including a paste containing particles of electrochemically active material and a conductive support consisting of a three-dimensional porous material comprising strands delimiting contiguous pores communicating via passages, characterized in that the average width L in .mu.m of said passages is related to the average diameter .O slashed. in .mu.m of said particles by the following equation, in which W and Y are dimensionless coefficients: wherein W=0.16 Y=1.69 X=202.4 .mu.m and Z=80 .mu.m

  15. Air plasma jet with hollow electrodes at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-15

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 1 mm diam. The plasma jet device is operated by injecting pressurized air into the electrode hole. The air plasma jet device at average powers less than 5 W exhibits a cold plasma jet of about 2 cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  16. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    NASA Astrophysics Data System (ADS)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  17. Polyaniline-Supported Atomic Gold Electrodes: Comparison with Macro Electrodes

    SciTech Connect

    Schwartz, Ilana; Jonke, Alex P.; Josowicz, Mira A.; Janata, Jiri

    2012-11-01

    Under precisely controlled conditions, atomic gold electrodes with even or odd number of Au atoms per polyaniline repeat unit (Pt/PANI/AuN for 0 electrodes is compared with that of macro gold and PANI coated platinum electrodes by testing electrochemical oxidation of n-propanol and iso-propanol. This study allowed us to separate the behavior dominated by that of macroscopic gold in strongly alkaline medium and by that of the quantized odd–even effect of atomic gold. Within this overarching scope, there is a specific oxidation pattern attributable to the structural differences between the two isomers of propanol. The significance of this research lies in the recognition of high specific catalytic activity of atomic gold, which is at least three orders of magnitude higher than that of bulk gold for the oxidation of alcohols. It points to a substantial saving of the precious metal without the loss of catalytic activity, which is important in fuel cells and in other energy conversion device applications.

  18. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure.

  19. Hierarchically porous graphene as a lithium-air battery electrode.

    PubMed

    Xiao, Jie; Mei, Donghai; Li, Xiaolin; Xu, Wu; Wang, Deyu; Graff, Gordon L; Bennett, Wendy D; Nie, Zimin; Saraf, Laxmikant V; Aksay, Ilhan A; Liu, Jun; Zhang, Ji-Guang

    2011-11-01

    The lithium-air battery is one of the most promising technologies among various electrochemical energy storage systems. We demonstrate that a novel air electrode consisting of an unusual hierarchical arrangement of functionalized graphene sheets (with no catalyst) delivers an exceptionally high capacity of 15000 mAh/g in lithium-O(2) batteries which is the highest value ever reported in this field. This excellent performance is attributed to the unique bimodal porous structure of the electrode which consists of microporous channels facilitating rapid O(2) diffusion while the highly connected nanoscale pores provide a high density of reactive sites for Li-O(2) reactions. Further, we show that the defects and functional groups on graphene favor the formation of isolated nanosized Li(2)O(2) particles and help prevent air blocking in the air electrode. The hierarchically ordered porous structure in bulk graphene enables its practical applications by promoting accessibility to most graphene sheets in this structure. PMID:21985448

  20. Metal | polypyrrole battery with the air regenerated positive electrode

    NASA Astrophysics Data System (ADS)

    Grgur, Branimir N.

    2014-12-01

    Recharge characteristics of the battery based on the electrochemically synthesized polypyrrole cathode and aluminum, zinc, or magnesium anode in 2 M NH4Cl are investigated. It is shown that polypyrrole electrode can be regenerated by the reoxidation with the dissolved oxygen from the air. Using the polypyrrole synthesized on high surface graphite-felt electrode under modest discharge conditions, stable discharge voltage of 1.1 V is obtained. Such behavior is explained by the complex interaction of polypyrrole and hydrogen peroxide produced by the oxygen reduction reaction. The electrochemical characteristics are compared with the zinc-manganese dioxide and zinc-air systems.

  1. Symmetrical, bi-electrode supported solid oxide fuel cell

    NASA Technical Reports Server (NTRS)

    Cable, Thomas L. (Inventor); Sofie, Stephen W. (Inventor)

    2009-01-01

    The present invention is a symmetrical bi-electrode supported solid oxide fuel cell comprising a sintered monolithic framework having graded pore electrode scaffolds that, upon treatment with metal solutions and heat subsequent to sintering, acquire respective anodic and cathodic catalytic activity. The invention is also a method for making such a solid oxide fuel cell. The graded pore structure of the graded pore electrode scaffolds in achieved by a novel freeze casting for YSZ tape.

  2. Air plasma jet with hollow electrodes at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-01

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 5W exhibits a cold plasma jet of about 2cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  3. Characterization of gas diffusion electrodes for metal-air batteries

    NASA Astrophysics Data System (ADS)

    Danner, Timo; Eswara, Santhana; Schulz, Volker P.; Latz, Arnulf

    2016-08-01

    Gas diffusion electrodes are commonly used in high energy density metal-air batteries for the supply of oxygen. Hydrophobic binder materials ensure the coexistence of gas and liquid phase in the pore network. The phase distribution has a strong influence on transport processes and electrochemical reactions. In this article we present 2D and 3D Rothman-Keller type multiphase Lattice-Boltzmann models which take into account the heterogeneous wetting behavior of gas diffusion electrodes. The simulations are performed on FIB-SEM 3D reconstructions of an Ag model electrode for predefined saturation of the pore space with the liquid phase. The resulting pressure-saturation characteristics and transport correlations are important input parameters for modeling approaches on the continuum scale and allow for an efficient development of improved gas diffusion electrodes.

  4. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  5. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  6. Bifunctional air electrodes containing elemental iron powder charging additive

    DOEpatents

    Liu, Chia-tsun; Demczyk, Brian G.; Gongaware, Paul R.

    1982-01-01

    A bifunctional air electrode for use in electrochemical energy cells is made, comprising a hydrophilic layer and a hydrophobic layer, where the hydrophilic layer essentially comprises a hydrophilic composite which includes: (i) carbon; (ii) elemental iron particles having a particle size of between about 25 microns and about 700 microns diameter; (iii) an oxygen evolution material; (iv) a nonwetting agent; and (v) a catalyst, where at least one current collector is formed into said composite.

  7. Novel configuration of bifunctional air electrodes for rechargeable zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Li, Po-Chieh; Chien, Yu-Ju; Hu, Chi-Chang

    2016-05-01

    A novel configuration of two electrodes containing electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) pressed into a bifunctional air electrode is designed for rechargeable Zn-air batteries. MOC/25BC carbon paper (MOC consisting of α-MnO2 and XC-72 carbon black) and Fe0.1Ni0.9Co2O4/Ti mesh on this air electrode mainly serve as the cathode for the ORR and the anode for the OER, respectively. The morphology and physicochemical properties of Fe0.1Ni0.9Co2O4 are investigated through scanning electron microscopy, inductively coupled plasma-mass spectrometry, and X-ray diffraction. Electrochemical studies comprise linear sweep voltammetry, rotating ring-disk electrode voltammetry, and the full-cell charge-discharge-cycling test. The discharge peak power density of the Zn-air battery with the unique air electrode reaches 88.8 mW cm-2 at 133.6 mA cm-2 and 0.66 V in an alkaline electrolyte under an ambient atmosphere. After 100 charge-discharge cycles at 10 mA cm-2, an increase of 0.3 V between charge and discharge cell voltages is observed. The deep charge-discharge curve (10 h in each step) indicates that the cell voltages of discharge (1.3 V) and charge (1.97 V) remain constant throughout the process. The performance of the proposed rechargeable Zn-air battery is superior to that of most other similar batteries reported in recent studies.

  8. Thin tubular self-supporting electrode for solid oxide electrolyte electrochemical cells

    DOEpatents

    Carlson, William G.; Ruka, Roswell J.

    1992-01-01

    A self-supporting, gas-permeable air electrode tube (16) is made having a sintered structure of calcium-doped LaMnO.sub.3, a density of from 60% to 85% of theoretical density, and a Coefficient of Thermal Expansion of from 10.2.times.10.sup.-6 /.degree.C. to 10.8.times.10.sup.-6 /.degree.C., where one end is open and the other end is sealed with a plug (30).

  9. Electrode support for gas arc welding torch having coaxial vision

    NASA Technical Reports Server (NTRS)

    Richardson, Richard W. (Inventor)

    1987-01-01

    An improved electrode mounting structure for a gas tungsten arc welding torch having a coaxial imaging system. The electrode mounting structure includes a support having a central hub and a plurality of spokes which extend from the hub generally radially with respect to the axis of the torch into supporting engagement with the interior walls of the torch. The spaces between the spokes are optical passages for transmission of light to form the image. A tubular collet holder is threadedly engaged at its upper end to the hub and extends downwardly toward the open end of the torch. The collet holder has an inwardly tapering constriction near its lower end. An electrode-retaining, tubular collet is mounted within the collet holder and has a longitudinally split and tapered end seating against the tapered constriction. A spring seats against the upper end of the collet and forces the split end against the tapered constriction to wedge the split end radially inwardly to grip the electrode within the collet.

  10. Performance Assessment of Single Electrode-Supported Solid Oxide Cells Operating in the Steam Electrolysis Mode

    SciTech Connect

    X. Zhang; J. E. O'Brien; R. C. O'Brien; N. Petigny

    2011-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production. Results presented in this paper were obtained from single cells, with an active area of 16 cm{sup 2} per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes ({approx}10 {mu}m thick), nickel-YSZ steam/hydrogen electrodes ({approx}1400 {mu}m thick), and modified LSM or LSCF air-side electrodes ({approx}90 {mu}m thick). The purpose of the present study is to document and compare the performance and degradation rates of these cells in the fuel cell mode and in the electrolysis mode under various operating conditions. Initial performance was documented through a series of voltage-current (VI) sweeps and AC impedance spectroscopy measurements. Degradation was determined through long-term testing, first in the fuel cell mode, then in the electrolysis mode. Results generally indicate accelerated degradation rates in the electrolysis mode compared to the fuel cell mode, possibly due to electrode delamination. The paper also includes details of an improved single-cell test apparatus developed specifically for these experiments.

  11. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes

    PubMed Central

    Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon

    2016-01-01

    We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance. PMID:26813852

  12. PEDOT:PSS as multi-functional composite material for enhanced Li-air-battery air electrodes

    NASA Astrophysics Data System (ADS)

    Yoon, Dae Ho; Yoon, Seon Hye; Ryu, Kwang-Sun; Park, Yong Joon

    2016-01-01

    We propose PEDOT:PSS as a multi-functional composite material for an enhanced Li-air-battery air electrode. The PEDOT:PSS layer was coated on the surface of carbon (graphene) using simple method. A electrode containing PEDOT:PSS-coated graphene (PEDOT electrode) could be prepared without binder (such as PVDF) because of high adhesion of PEDOT:PSS. PEDOT electrode presented considerable discharge and charge capacity at all current densities. These results shows that PEDOT:PSS acts as a redox reaction matrix and conducting binder in the air electrode. Moreover, after cycling, the accumulation of reaction products due to side reaction in the electrode was significantly reduced through the use of PEDOT:PSS. This implies that PEDOT:PSS coating layer can suppress the undesirable side reactions between the carbon and electrolyte (and/or Li2O2), which causes enhanced Li-air cell cyclic performance.

  13. Carbon-based air electrodes carrying MnO 2 in zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Wei, Zidong; Huang, Wenzhang; Zhang, Shengtao; Tan, Jun

    Catalysts prepared from the carbon black impregnated with manganous nitrate solution and then heated at temperature from 270°C to 450°C were investigated. It was found that the impregnated catalysts heated at temperature of 340°C exhibited the best catalytic activity for oxygen reduction in alkaline electrolyte. It was also found that the XRD spectra of pyrolytic MnO 2 from manganous nitrate over 340°C were different from those below 340°C. The enhanced catalysis of air electrodes was ascribed to the formation of MnO 2 crystal with d-value of 2.72 Å as the impregnated-catalysts was heated at temperature of 340°C. The other factors in preparation of air electrodes were also discussed.

  14. Zinc/air battery R and D research and development of bifunctional oxygen electrode: Tasks I and II, Final report

    SciTech Connect

    Klein, M.; Viswanathan, S.

    1986-12-01

    Studies were conducted of the bifunctional oxygen electrode. The development of a rechargeable metal-oxygen (air) cell has been hampered to a great extent by the lack of a stable and cost effective oxygen electrode capable of use during both charge and discharge. The first type of bifunctional electrode consists of two distinct catalytifc layers. The oxygen reduction catalyst layer containing a supported gold catalyst is in contact with a hydrophilic nickel layer in which evolution of oxygen takes place. Loadings of gold from 0.5 to 1.0 mg/cm/sup 2/ were investigated; carbon, graphite, metal, and spinel oxides were evaluated as substrates. The second part of the research effort was centered on developing a reversible oxygen electrode containing only one catalytic layer for both reduction and evolution of oxygen. The work was directed specifically to the study of perovskite type of oxides with the composition AA/sup 1/BO/sub 3/ where A is an element of the lanthanide series, A/sup 1/ is an alkaline earth metal and B, a first row transition element. Initial polarization data obtained in unscrubbed air gave a value of approximately 200 millivolts vs Hg/HgO reference electrode at a current density of 50 ma/cm/sup 2/. Electrodes were made both by roll-bonding and by pelletizing techniques and tested for polarization and cycle life. This study also indicates the optimum process conditions for the manufacture of oxides and fabrication of electrodes.

  15. Performance of Single Electrode-Supported Cells Operating in the Electrolysis Mode

    SciTech Connect

    J. E. O'Brien; G. K. Housley; D. G. Milobar

    2009-11-01

    An experimental study is under way to assess the performance of electrode-supported solid-oxide cells operating in the steam electrolysis mode for hydrogen production over a temperature range of 800 to 900ºC. Results presented in this paper were obtained from single cells, with an active area of 16 cm2 per cell. The electrolysis cells are electrode-supported, with yttria-stabilized zirconia (YSZ) electrolytes (~10 µm thick), nickel-YSZ steam/hydrogen electrodes (~1400 µm thick), and manganite (LSM) air-side electrodes. The experiments were performed over a range of steam inlet mole fractions (0.1 – 0.6), gas flow rates, and current densities (0 to 0.6 A/cm2). Steam consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation. On a molar basis, the steam consumption rate is equal to the hydrogen production rate. Cell performance was evaluated by performing DC potential sweeps at 800, 850, and 900°C. The voltage-current characteristics are presented, along with values of area-specific resistance as a function of current density. Long-term cell performance is also assessed to evaluate cell degradation. Details of the custom single-cell test apparatus developed for these experiments are also presented.

  16. Bi-functional air electrodes for metal-air batteries. Final report, September 15, 1993--December 14, 1994

    SciTech Connect

    Swette, L.L.; Manoukian, M.; LaConti, A.B.

    1995-12-01

    The program was directed to the need for development of bifunctional air electrodes for Zn-Air batteries for the consumer market. The Zn-Air system, widely used as a primary cell for hearing-aid batteries and as a remote-site power source in industrial applications, has the advantage of high energy density, since it consumes oxygen from the ambient air utilizing a thin, efficient fuel-cell-type gas-diffusion electrode, and is comparatively low in cost. The disadvantages of the current technology are a relatively low rate capability, and the lack of simple reversibility. {open_quotes}Secondary{close_quotes} Zn-Air cells require a third electrode for oxygen evolution or mechanical replacement of the Zinc anodes; thus the development of a bifunctional air electrode (i.e., an electrode that can alternately consume and evolve oxygen) would be a significant advance in Zn-Air cell technology. Evaluations of two carbon-free non-noble metal perovskite-type catalyst systems, La{sub 1-x}CA{sub x}CoO{sub 3} as bifunctional catalysts for potential application in Zn-air batteries were carried out. The technical objectives were to develop higher-surface-area materials and to fabricate reversible electrodes by modifying the hydrophobic/hydrophilic balance of the catalyst-binder structures.

  17. AIRS Mission Support from GES DISC

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Hearty, Thomas; Savtchenko, Audrey; Ding, Feng; Esfandiari, Ed; Theobald, Mike; Vollmer, Bruce; Kempler, Steve

    2015-01-01

    This talk will describe the support and distribution of AIRS (Atmospheric Infra Red Sounding) data products that are archived and distributed from the Goddard Earth Sciences Data and Information Services Center. Along with data stewardship, an important mission of GES DISC is to enhance the usability of data and broaden the user base. We will provide a brief summary of the current online archive and distribution metrics for the AIRS v5 and v6 products. We will also describe collaborative data sets and services (e.g., visualization and potential science applications) and solicit feedback for potential future services.

  18. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  19. Gradient porous electrode architectures for rechargeable metal-air batteries

    DOEpatents

    Dudney, Nancy J.; Klett, James W.; Nanda, Jagjit; Narula, Chaitanya Kumar; Pannala, Sreekanth

    2016-03-22

    A cathode for a metal air battery includes a cathode structure having pores. The cathode structure has a metal side and an air side. The porosity decreases from the air side to the metal side. A metal air battery and a method of making a cathode for a metal air battery are also disclosed.

  20. Highly Conductive, Air-Stable Silver Nanowire@Iongel Composite Films toward Flexible Transparent Electrodes.

    PubMed

    Xiong, Weiwei; Liu, Hongliang; Chen, Yongzhen; Zheng, Meiling; Zhao, Yuanyuan; Kong, Xiangbin; Wang, Ying; Zhang, Xiqi; Kong, Xiangyu; Wang, Pengfei; Jiang, Lei

    2016-09-01

    A new type of flexible transparent electrode is designed, by employing wettability-induced selective electroless-welding of silver nanowire (AgNW) networks, together with a thin conductive iongel as the protective layer. The obtained electrode exhibits high optical transmittance, and excellent air-stability without sacrificing conductivity. PMID:27296551

  1. Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell

    NASA Astrophysics Data System (ADS)

    Devrim, Yilser; Albostan, Ayhan

    2016-08-01

    The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.

  2. Rechargeable aqueous lithium-air batteries with an auxiliary electrode for the oxygen evolution

    NASA Astrophysics Data System (ADS)

    Sunahiro, S.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N.

    2014-09-01

    A rechargeable aqueous lithium-air cell with a third auxiliary electrode for the oxygen evolution reaction was developed. The cell consists of a lithium metal anode, a lithium conducting solid electrolyte of Li1+x+yAlx(Ti,Ge)2-xSiyP3-yO12, a carbon black oxygen reduction air electrode, a RuO2 oxygen evolution electrode, and a saturated aqueous solution of LiOH with 10 M LiCl. The cell was successfully operated for several cycles at 0.64 mA cm-2 and 25 °C under air, where the capacity of air electrode was 2000 mAh gcathod-1. The cell performance was degraded gradually by cycling under open air. The degradation was reduced under CO2-free air and pure oxygen. The specific energy density was calculated to be 810 Wh kg-1 from the weight of water, lithium, oxygen, and carbon in the air electrode.

  3. Stability in alkaline aqueous electrolyte of air electrode protected with fluorinated interpenetrating polymer network membrane

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Messaoudi, Houssam; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    We developed original anion exchange membranes to protect air electrodes operating in aqueous lithium-air battery configuration, i.e. supplied with atmospheric air and in concentrated aqueous lithium hydroxide. These protective membranes have an interpenetrating polymer network (IPN) architecture combining a hydrogenated cationic polyelectrolyte network based on poly(epichlorohydrin) (PECH) and a fluorinated neutral network based on perfluoropolyether (Fluorolink® MD700). Two phases, each one rich in one of the polymer, are co-continuous in the materials. This morphology allows combining their properties according to the weight proportions of each polymer. Thus, PECH/Fluorolink IPNs show ionic conductivity varying from 1 to 2 mS cm-1, water uptake from 30 to 90 wt.% and anionic transport number from 0.65 to 0.80 when the PECH proportion varies from 40 to 90 wt.%. These membranes have been systematically assembled on air electrodes. Air electrode protected with PECH/Fluorolink 70/30 IPN shows outstanding stability higher than 1000 h, i.e. a 20-fold increase in the lifetime of the non-modified electrode. This efficient membrane/air electrode assembly is promising for development of alkaline electrolyte based storage or production energy systems, such as metal air batteries or alkaline fuel cells.

  4. Manx: Close air support aircraft preliminary design

    NASA Technical Reports Server (NTRS)

    Amy, Annie; Crone, David; Hendrickson, Heidi; Willis, Randy; Silva, Vince

    1991-01-01

    The Manx is a twin engine, twin tailed, single seat close air support design proposal for the 1991 Team Student Design Competition. It blends advanced technologies into a lightweight, high performance design with the following features: High sensitivity (rugged, easily maintained, with night/adverse weather capability); Highly maneuverable (negative static margin, forward swept wing, canard, and advanced avionics result in enhanced aircraft agility); and Highly versatile (design flexibility allows the Manx to contribute to a truly integrated ground team capable of rapid deployment from forward sites).

  5. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOEpatents

    Vasilow, T.R.; Zymboly, G.E.

    1991-12-17

    An electrode is deposited on a support by providing a porous ceramic support tube having an open end and closed end; masking at least one circumferential interior band inside the tube; evacuating air from the tube by an evacuation system, to provide a permeability gradient between the masked part and unmasked part of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating over the unmasked support part and a tapered coating over the masked part. 2 figures.

  6. Applying a tapered electrode on a porous ceramic support tube by masking a band inside the tube and drawing in electrode material from the outside of the tube by suction

    DOEpatents

    Vasilow, Theodore R.; Zymboly, Gregory E.

    1991-01-01

    An electrode is deposited on a support by providing a porous ceramic support tube (10) having an open end (14) and closed end (16); masking at least one circumferential interior band (18 and 18') inside the tube; evacuating air from the tube by an evacuation system (30), to provide a permeability gradient between the masked part (18 and 18') and unmasked part (20) of the tube; applying a liquid dispersion of solid electrode particles to the outside surface of the support tube, where liquid flows through the wall, forming a uniform coating (42) over the unmasked support part (20) and a tapered coating over the masked part (18 and 18').

  7. Support-electrode torque on a spherical superconducting gyroscope

    SciTech Connect

    Holdeman, L.B.; Holdeman, J.T. Jr.

    1982-01-01

    In 1960, L.I. Schiff observed that precise measurement of the precession of a spherical gyroscope orbiting the earth could provide a test of general relativity. The current effort to implement this experiment was initiated shortly thereafter by W.M. Fairbank. The gyroscope will be a fused-quartz sphere coated with superconductive niobium. The spinning superconducting coating generates a small magnetic field (the London field) which outside the rotor is that of a magnetic dipole and inside is uniform and parallel to the spin axis. The magnetic flux that this field produces in superconducting loops encompassing the rotor will change as the gyroscope precesses; the precession of the gyroscope will be measured by measuring the change in flux. Because the anticipated relativistic precession is extremely small, it is essential that no significant torques be coupled to the gyroscope through its London field. The torque on a superconducting sphere rotating in an arbitrary magnetic field can be expressed in terms of the l = 1 coefficients of the expansion of the field in spherical harmonic functions. In general, a boundary-value problem must be solved in order to obtain these coefficients. The diamagnetic torque produced by superconducting support electrodes is calculated. (WHK)

  8. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  9. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  10. A study of the glow discharge characteristics of contact electrodes at atmospheric pressure in air

    SciTech Connect

    Liu, Wenzheng Sun, Guangliang Li, Chuanhui; Zhang, Rongrong

    2014-04-15

    Electric field distributions and discharge properties of rod-rod contact electrodes were studied under the condition of DBD for the steady generation of atmospheric pressure glow discharge plasma (APGD) in air. We found that under the effect of the initial electrons generated in a nanometer-scale gap, the rod-rod cross-contact electrodes yielded APGD plasma in air. Regarding the rod-rod cross-contact electrodes, increasing the working voltage expanded the strong electric field area of the gas gap so that both discharge area and discharge power increased, and the increase in the number of contact points kept the initial discharge voltage unchanged and caused an increase in the plasma discharge area and discharge power. A mesh-like structure of cross-contact electrodes was designed and used to generate more APGD plasma, suggesting high applicability.

  11. Scorpion: Close Air Support (CAS) aircraft

    NASA Technical Reports Server (NTRS)

    Allen, Chris; Cheng, Rendy; Koehler, Grant; Lyon, Sean; Paguio, Cecilia

    1991-01-01

    The objective is to outline the results of the preliminary design of the Scorpion, a proposed close air support aircraft. The results obtained include complete preliminary analysis of the aircraft in the areas of aerodynamics, structures, avionics and electronics, stability and control, weight and balance, propulsion systems, and costs. A conventional wing, twin jet, twin-tail aircraft was chosen to maximize the desirable characteristics. The Scorpion will feature low speed maneuverability, high survivability, low cost, and low maintenance. The life cycle cost per aircraft will be 17.5 million dollars. The maximum takeoff weight will be 52,760 pounds. Wing loading will be 90 psf. The thrust to weight will be 0.6 lbs/lb. This aircraft meets the specified mission requirements. Some modifications have been suggested to further optimize the design.

  12. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery

    NASA Astrophysics Data System (ADS)

    Hummelshøj, J. S.; Blomqvist, J.; Datta, S.; Vegge, T.; Rossmeisl, J.; Thygesen, K. S.; Luntz, A. C.; Jacobsen, K. W.; Nørskov, J. K.

    2010-02-01

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li2O2 electrode and show that in the presence of Li vacancies Li2O2 becomes a conductor.

  13. An investigation of zinc electrodes relevant to zinc-air batteries

    SciTech Connect

    Choi, H.S.

    1986-12-01

    The particulate electrode (fluidized bed electrode or moving bed electrode) has been studied to evaluate its possible application to energy storage. The first part of this study is concerned with the effect of current fluctuation on the morphology of zinc electrodeposited on the rotating disc electrode from alkaline zincate electrolyte. The effect of the fluctuation on the morphology was examined by scanning electron microscopy. The deposits under the condition of fluctuating current density were smoother than those formed under constant current density. The second part is concerned with the electrodeposition of zinc from alkaline electrolyte with the cell employing a fluidized bed electrode which simulates the recharge process of the secondary battery employing a particulate electrode. Except at high current density, energy consumption per unit production was less than 3 to 4 kWh/kg which is the characteristic value of conventional electrowinning from acidic solution. A laboratory cell with a particulate zinc electrode and an air counter electrode was constructed and discharge characteristics were studied to evaluate the cell. Energy efficiencies during discharge at 5 and 2.5A were about 20 and 30% respectively.

  14. Characteristics of radio-frequency, atmospheric-pressure glow discharges with air using bare metal electrodes

    SciTech Connect

    Wang Huabo; Sun Wenting; Li Heping; Bao Chengyu; Zhang Xiaozhang

    2006-10-16

    In this letter, an induced gas discharge approach is proposed and described in detail for obtaining a uniform atmospheric-pressure glow discharge with air in a {gamma} mode using water-cooled, bare metal electrodes driven by radio-frequency (13.56 MHz) power supply. A preliminary study on the discharge characteristics of the air glow discharge is also presented in this study. With this induced gas discharge approach, radio-frequency, atmospheric-pressure glow discharges using bare metal electrodes with other gases which cannot be ignited directly as the plasma working gas, such as nitrogen, oxygen, etc., can also be obtained.

  15. Metal/Diamond Composite Thin-Film Electrodes: New Carbon Supported Catalytic Electrodes

    SciTech Connect

    Greg M. Swain, PI

    2009-03-10

    The DOE-funded research conducted by the Swain group was focused on (i) understanding structure-function relationships at boron-doped diamond thin-film electrodes, (ii) understanding metal phase formation on diamond thin films and developing electrochemical approaches for producing highly dispersed electrocatalyst particles (e.g., Pt) of small nominal particle size, (iii) studying the electrochemical activity of the electrocatalytic electrodes for hydrogen oxidation and oxygen reduction and (iv) conducting the initial synthesis of high surface area diamond powders and evaluating their electrical and electrochemical properties when mixed with a Teflon binder. (Note: All potentials are reported versus Ag/AgCl (sat'd KCl) and cm{sup 2} refers to the electrode geometric area, unless otherwise stated).

  16. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  17. Modified carbon-free silver electrodes for the use as cathodes in lithium-air batteries with an aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Wittmaier, Dennis; Wagner, Norbert; Friedrich, K. Andreas; Amin, Hatem M. A.; Baltruschat, Helmut

    2014-11-01

    Gas diffusion electrodes with silver catalysts show a high activity towards oxygen reduction reaction in alkaline media but a rather poor activity towards oxygen evolution reaction. For the use in future lithium-air batteries with an aqueous alkaline electrolyte the activity of such electrodes must be improved significantly. As Co3O4 is a promising metal oxide catalyst for oxygen evolution in alkaline media, silver electrodes were modified with Co3O4. For comparison silver electrodes were also modified with IrO2. Due to the poor stability of carbon materials at high anodic potentials these gas diffusion electrodes were prepared without carbon support to improve especially the long-term stability. Gas diffusion electrodes were electrochemically investigated in an electrochemical half-cell arrangement. In addition to cyclic voltammograms electrochemical impedance spectroscopy (EIS) was carried out. SEM and XRD were used for the physical and morphological investigations. Investigations showed that silver electrodes containing 20 wt.% Co3O4 exhibited the highest performance and highest long-term stability. For comparison, rotating - ring - disc - electrode experiments have been performed using model electrodes with thin catalyst layers, showing that the amount of hydrogen peroxide evolved is negligible.

  18. Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air Force Station, Florida. Drawing 86K01547, Maurice H. Connell & Associates, February, 1961. OPERATIONS SUPPORT BUILDING SITE PLAN. Sheet 2 of 34 - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  19. Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air Force Station, Florida. Drawing 86K01547, Maurice H. Connell & Associates, February, 1961. OPERATIONS SUPPORT BUILDING ELEVATIONS AND SECTION. Sheet 5 of 34 - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  20. Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air Force Station, Florida. Drawing 86K01547, Maurice H. Connell & Associates, February, 1961. OPERATIONS SUPPORT BUILDING ROOF PLAN, REFLECTED CEILING PLAN, AND DETAILS. Sheet 7 of 34 - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  1. Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of drawing. OPERATIONS SUPPORT BUILDING. NASA, Cape Canaveral Air Force Station, Florida. Drawing 86K01547, Maurice H. Connell & Associates, February, 1961. OPERATIONS SUPPORT BUILDING FLOOR PLAN AND SCHEDULES. Sheet 4 of 34 - Cape Canaveral Air Force Station, Launch Complex 34, Operations Support Building, Freedom Road, Southwest of Launch Stand CX-34, Cape Canaveral, Brevard County, FL

  2. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, Lewis J. H.; Singh, Prabhakar; Ruka, Roswell J.; Vasilow, Theodore R.; Bratton, Raymond J.

    1997-01-01

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators.

  3. Characteristics of a nanosecond discharge in atmospheric air with a liquid electrolytic electrode

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Shevera, I. V.; Kozak, Ya. Yu.; Kentesh, G. V.

    2014-06-01

    The spatial, electric, and radiative characteristics of a pulse-periodic nanosecond discharge between an electrode based on a system of blades and the distilled water surface as well as an aqueous solution of zinc sulfate in atmospheric air are considered.

  4. Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells

    DOEpatents

    Kuo, L.J.H.; Singh, P.; Ruka, R.J.; Vasilow, T.R.; Bratton, R.J.

    1997-11-11

    A low cost, lanthanide-substituted, dimensionally and thermally stable, gas permeable, electrically conductive, porous ceramic air electrode composition of lanthanide-substituted doped lanthanum manganite is provided which is used as the cathode in high temperature, solid oxide electrolyte fuel cells and generators. The air electrode composition of this invention has a much lower fabrication cost as a result of using a lower cost lanthanide mixture, either a natural mixture or an unfinished lanthanide concentrate obtained from a natural mixture subjected to incomplete purification, as the raw material in place of part or all of the higher cost individual lanthanum. The mixed lanthanide primarily contains a mixture of at least La, Ce, Pr, and Nd, or at least La, Ce, Pr, Nd and Sm in its lanthanide content, but can also include minor amounts of other lanthanides and trace impurities. The use of lanthanides in place of some or all of the lanthanum also increases the dimensional stability of the air electrode. This low cost air electrode can be fabricated as a cathode for use in high temperature, solid oxide fuel cells and generators. 4 figs.

  5. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.

    PubMed

    Zhang, Changkun; Yu, Hongmei; Li, Yongkun; Gao, Yuan; Zhao, Yun; Song, Wei; Shao, Zhigang; Yi, Baolian

    2013-04-01

    Hydrogen-treated TiO2 nanotube (H-TNT) arrays serve as highly ordered nanostructured electrode supports, which are able to significantly improve the electrochemical performance and durability of fuel cells. The electrical conductivity of H-TNTs increases by approximately one order of magnitude in comparison to air-treated TNTs. The increase in the number of oxygen vacancies and hydroxyl groups on the H-TNTs help to anchor a greater number of Pt atoms during Pt electrodeposition. The H-TNTs are pretreated by using a successive ion adsorption and reaction (SIAR) method that enhances the loading and dispersion of Pt catalysts when electrodeposited. In the SIAR method a Pd activator can be used to provide uniform nucleation sites for Pt and leads to increased Pt loading on the H-TNTs. Furthermore, fabricated Pt nanoparticles with a diameter of 3.4 nm are located uniformly around the pretreated H-TNT support. The as-prepared and highly ordered electrodes exhibit excellent stability during accelerated durability tests, particularly for the H-TNT-loaded Pt catalysts that have been annealed in ultrahigh purity H2 for a second time. There is minimal decrease in the electrochemical surface area of the as-prepared electrode after 1000 cycles compared to a 68 % decrease for the commercial JM 20 % Pt/C electrode after 800 cycles. X-ray photoelectron spectroscopy shows that after the H-TNT-loaded Pt catalysts are annealed in H2 for the second time, the strong metal-support interaction between the H-TNTs and the Pt catalysts enhances the electrochemical stability of the electrodes. Fuel-cell testing shows that the power density reaches a maximum of 500 mWcm(-2) when this highly ordered electrode is used as the anode. When used as the cathode in a fuel cell with extra-low Pt loading, the new electrode generates a specific power density of 2.68 kWg(Pt) (-1) . It is indicated that H-TNT arrays, which have highly ordered nanostructures, could be used as ordered electrode supports.

  6. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  7. High-performance anode-supported solid oxide fuel cell with impregnated electrodes

    NASA Astrophysics Data System (ADS)

    Osinkin, D. A.; Bogdanovich, N. M.; Beresnev, S. M.; Zhuravlev, V. D.

    2015-08-01

    The 61%NiO + 39%Zr0.84Y0.16O1.92 (NiO-YSZ) and 56%NiO + 44%Zr0.83Sc0.16Ce0.01O1.92 (NiO-CeSSZ) composite powders have been prepared using two-steps and one-step combustion synthesis, respectively. The Ni-YSZ anode substrate with a low level of electrical resistance (less than 1 mOhm cm) and porosity of about 53% in the reduced state was fabricated. The functional layer of the anode with the high level of electrochemical activity was made of NiO-CeSSZ. The single anode-supported solid oxide fuel cell with the bi-layer Ni-cermet anode, Zr0.84Sc0.16O1.92 film electrolyte and the Pt + 3% Zr0.84Y0.16O1.92 cathode was fabricated. The power density and the U-I curves of the fuel cell at initial state and after impregnation of the cathode and anode by praseodymium and cerium oxides, respectively, have been measured at different temperatures. The maximum of power density of the initial fuel cell was 0.35 W cm-2 at conditions of wet hydrogen (air) supply to the anode (cathode) at 900 °C. After the electrodes were impregnated, the value of power density increased by seven times and was approximately 2.4 W cm-2 at 0.6 V. It was suggested that after the electrodes impregnation the polarization resistance of the fuel cell was determined by the gas diffusion in the supported anode.

  8. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO[sub 3], La(Ca)CrO[sub 3], and Y(Ca)CrO[sub 3]. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La[sub 1-x]Sr[sub x]MnO[sub 3]. 5 refs.

  9. SOFC chromite sintering and electrolyte/air-electrode interface reactions

    SciTech Connect

    Bates, J.L.; Chick, L.A.; Youngblood, G.E.

    1992-04-01

    Air sintering of chromites was investigated in La(Sr)CrO{sub 3}, La(Ca)CrO{sub 3}, and Y(Ca)CrO{sub 3}. Effects of alkaline earth dopant level and chromium enrichment/depletion on chromite sintered densities and microstructures are discussed. Ac impedance spectroscopy and dc polarization coupled with an unbonded interface cell were used to examine SOFC (solid oxide fuel cells) electrochemical reactions at solid-solid-gas interfaces, particularly for La{sub 1-x}Sr{sub x}MnO{sub 3}. 5 refs.

  10. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed. PMID:27711259

  11. Recent Progress in Self‐Supported Metal Oxide Nanoarray Electrodes for Advanced Lithium‐Ion Batteries

    PubMed Central

    Zhang, Feng

    2016-01-01

    The rational design and fabrication of electrode materials with desirable architectures and optimized properties has been demonstrated to be an effective approach towards high‐performance lithium‐ion batteries (LIBs). Although nanostructured metal oxide electrodes with high specific capacity have been regarded as the most promising alternatives for replacing commercial electrodes in LIBs, their further developments are still faced with several challenges such as poor cycling stability and unsatisfying rate performance. As a new class of binder‐free electrodes for LIBs, self‐supported metal oxide nanoarray electrodes have many advantageous features in terms of high specific surface area, fast electron transport, improved charge transfer efficiency, and free space for alleviating volume expansion and preventing severe aggregation, holding great potential to solve the mentioned problems. This review highlights the recent progress in the utilization of self‐supported metal oxide nanoarrays grown on 2D planar and 3D porous substrates, such as 1D and 2D nanostructure arrays, hierarchical nanostructure arrays, and heterostructured nanoarrays, as anodes and cathodes for advanced LIBs. Furthermore, the potential applications of these binder‐free nanoarray electrodes for practical LIBs in full‐cell configuration are outlined. Finally, the future prospects of these self‐supported nanoarray electrodes are discussed.

  12. Communications: Elementary oxygen electrode reactions in the aprotic Li-air battery.

    PubMed

    Hummelshøj, J S; Blomqvist, J; Datta, S; Vegge, T; Rossmeisl, J; Thygesen, K S; Luntz, A C; Jacobsen, K W; Nørskov, J K

    2010-02-21

    We discuss the electrochemical reactions at the oxygen electrode of an aprotic Li-air battery. Using density functional theory to estimate the free energy of intermediates during the discharge and charge of the battery, we introduce a reaction free energy diagram and identify possible origins of the overpotential for both processes. We also address the question of electron conductivity through the Li(2)O(2) electrode and show that in the presence of Li vacancies Li(2)O(2) becomes a conductor. PMID:20170208

  13. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems.

  14. Cyclone: A close air support aircraft for tomorrow

    NASA Technical Reports Server (NTRS)

    Cox, George; Croulet, Donald; Dunn, James; Graham, Michael; Ip, Phillip; Low, Scott; Vance, Gregg; Volckaert, Eric

    1991-01-01

    To meet the threat of the battlefield of the future, the U.S. ground forces will require reliable air support. To provide this support, future aircrews demand a versatile close air support aircraft capable of delivering ordinance during the day, night, or in adverse weather with pin-point accuracy. The Cyclone aircraft meets these requirements, packing the 'punch' necessary to clear the way for effective ground operations. Possessing anti-armor, missile, and precision bombing capability, the Cyclone will counter the threat into the 21st Century. Here, it is shown that the Cyclone is a realistic, economical answer to the demand for a capable close air support aircraft.

  15. Supporting electrodes for solid oxide fuel cells and other electrochemical devices

    SciTech Connect

    Sprenkle, Vincent L.; Canfield, Nathan L.; Meinhardt, Kerry; Stevenson, Jeffry W.

    2008-04-01

    An electrode supported electrolyte membrane includes an electrode layer 630 facing an electrolyte layer 620. The opposing side of the electrode layer 630 includes a backing layer 640 of a material with a thermal expansion coefficient approximately equal to the thermal expansion coefficient of the electrolyte layer 620. The backing layer 640 is in a two dimensional pattern that covers only a portion of the electrolyte layer 630. An electrochemical cell such as a SOFC is formed by providing a cathode layer 610 on an opposing side of the electrolyte layer 620.

  16. Assemblies of protective anion exchange membrane on air electrode for its efficient operation in aqueous alkaline electrolyte

    NASA Astrophysics Data System (ADS)

    Bertolotti, Bruno; Chikh, Linda; Vancaeyzeele, Cédric; Alfonsi, Séverine; Fichet, Odile

    2015-01-01

    Aqueous alkaline metal-air batteries represent promising energy storage devices when supplied with atmospheric air. However, under this condition, the air electrode shows a very short life time (i.e. 50 h of operation in 5 M LiOH at -10 mA cm-2), mainly due to the precipitation of carbonates inside the electrode porosity. The air electrode can then be protected by an anion exchange membrane on the electrolyte side. In this paper, we demonstrate that the efficiency of this protective membrane depends on the assembly method on the electrode. When a modified poly(epichlorohydrin) (PECH) network is synthesized directly on the electrode, the polymer seeps inside the electrode porosity, and a suitable interface inducing negligible additional polarization in comparison with classical pressure-assembled membranes is obtained. This protected electrode shows improved stability of up to 160 h of operation in 5 M LiOH. This performance is improved to 350 h by adjusting the conductivity and the ionic exchange capacity. Finally, the interest of interpenetrating polymer network (IPN) architecture compared to a single network is confirmed. Indeed, an electrode protected with a PECH/poly(2-hydroxyethyl methacrylate) (PHEMA) IPN is stable for 650 h in 5 M LiOH. In addition, degradation process becomes reversible since the assembly can be regenerated, which is not possible for the bare electrode.

  17. Biofunctionalization of conductive hydrogel coatings to support olfactory ensheathing cells at implantable electrode interfaces.

    PubMed

    Hassarati, Rachelle T; Marcal, Helder; John, L; Foster, R; Green, Rylie A

    2016-05-01

    Mechanical discrepancies between conventional platinum (Pt) electrodes and neural tissue often result in scar tissue encapsulation of implanted neural recording and stimulating devices. Olfactory ensheathing cells (OECs) are a supportive glial cell in the olfactory nervous system which can transition through glial scar tissue while supporting the outgrowth of neural processes. It has been proposed that this function can be used to reconnect implanted electrodes with the target neural pathways. Conductive hydrogel (CH) electrode coatings have been proposed as a substrate for supporting OEC survival and proliferation at the device interface. To determine an ideal CH to support OECs, this study explored eight CH variants, with differing biochemical composition, in comparison to a conventional Pt electrodes. All CH variants were based on a biosynthetic hydrogel, consisting of poly(vinyl alcohol) and heparin, through which the conductive polymer (CP) poly(3,4-ethylenedioxythiophene) was electropolymerized. The biochemical composition was varied through incorporation of gelatin and sericin, which were expected to provide cell adherence functionality, supporting attachment, and cell spreading. Combinations of these biomolecules varied from 1 to 3 wt %. The physical, electrical, and biological impact of these molecules on electrode performance was assessed. Cyclic voltammetry and electrochemical impedance spectroscopy demonstrated that the addition of these biological molecules had little significant effect on the coating's ability to safely transfer charge. Cell attachment studies, however, determined that the incorporation of 1 wt % gelatin in the hydrogel was sufficient to significantly increase the attachment of OECs compared to the nonfunctionalized CH.

  18. Air electrode material for high temperature electrochemical cells

    DOEpatents

    Ruka, Roswell J.

    1985-01-01

    Disclosed is a solid solution with a perovskite-like crystal structure having the general formula La.sub.1-x-w (M.sub.L).sub.x (Ce).sub.w (M.sub.S1).sub.1-y (M.sub.S2).sub.y O.sub.3 where M.sub.L is Ca, Sr, Ba, or mixtures thereof, M.sub.S1 is Mn, Cr, or mixtures thereof and M.sub.S2 is Ni, Fe, Co, Ti, Al, In, Sn, Mg, Y, Nb, Ta, or mixtures thereof, w is about 0.05 to about 0.25, x+w is about 0.1 to about 0.7, and y is 0 to about 0.5. In the formula, M.sub.L is preferably Ca, w is preferably 0.1 to 0.2, x+w is preferably 0.4 to 0.7, and y is preferably 0. The solid solution can be used in an electrochemical cell where it more closely matches the thermal expansion characteristics of the support tube and electrolyte of the cell.

  19. A-2000: Close air support aircraft design team

    NASA Technical Reports Server (NTRS)

    Carrannanto, Paul; Lim, Don; Lucas, Evangeline; Risse, Alan; Weaver, Dave; Wikse, Steve

    1991-01-01

    The US Air Force is currently faced with the problem of providing adequate close air support for ground forces. Air response to troops engaged in combat must be rapid and devastating due to the highly fluid battle lines of the future. The A-2000 is the result of a study to design an aircraft to deliver massive fire power accurately. The low cost A-2000 incorporates: large weapons payload; excellent maneuverability; all weather and terrain following capacity; redundant systems; and high survivability.

  20. Multi-Storey Air-Supported Building Construction

    ERIC Educational Resources Information Center

    Pohl, J. G.; Cowan, H. J.

    1972-01-01

    Multistory buildings, supported by internal air pressure and surrounded by a thin, flexible or rigid membrane acting both as structural container and external cladding, are feasible and highly economical for a number of building applications. (Author)

  1. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  2. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  3. Studies on the oxygen reduction catalyst for zinc-air battery electrode

    NASA Astrophysics Data System (ADS)

    Wang, Xianyou; Sebastian, P. J.; Smit, Mascha A.; Yang, Hongping; Gamboa, S. A.

    In this paper, perovskite type La 0.6Ca 0.4CoO 3 as a catalyst of oxygen reduction was prepared, and the structure and performance of the catalysts was examined by means of IR, X-ray diffraction (XRD), and thermogravimetric (TG). Mixed catalysts doped, some metal oxides were put also used. The cathodic polarization curves for oxygen reduction on various catalytic electrodes were measured by linear sweep voltammetry (LSV). A Zn-air battery was made with various catalysts for oxygen reduction, and the performance of the battery was measured with a BS-9300SM rechargeable battery charge/discharge device. The results showed that the perovskite type catalyst (La 0.6Ca 0.4CoO 3) doped with metal oxide is an excellent catalyst for the zinc-air battery, and can effectively stimulate the reduction of oxygen and improve the properties of zinc-air batteries, such as discharge capacity, etc.

  4. Production and study of megawatt air-nitrogen plasmatron with divergent channel of an output electrode

    NASA Astrophysics Data System (ADS)

    Isakaev, E. H.; Chinnov, V. F.; Tyuftyaev, A. S.; Gadzhiev, M. Kh; Sargsyan, M. A.; Konovalov, P. V.

    2015-11-01

    Megawatt generator of high-enthalpy air plasma jet (H ≥ 30 kJ/g) is constructed. Plasmatron belongs to the class of plasma torches with thermionic cathode, tangential swirl flow and divergent channel of an output electrode-anode. Plasma torch ensures the formation of the slightly divergent (2α = 12°) air plasma jet with the diameter D = 50 mm. The current-voltage characteristics of the plasma torch has virtually unchanged voltage relative to its current with enhanced (compared with arcs in cylindrical channels) stable combustion zone. Preliminary analysis of the obtained air plasma spectra shows that at a current of 1500 A near-axis zone of the plasma jet is characterized by a temperature of up to 15000 K, and the peripheral radiating area has a temperature of 8000-9000 K.

  5. Design rules for electrode arrangement in an air-breathing alkaline direct methanol laminar flow fuel cell

    NASA Astrophysics Data System (ADS)

    Thorson, Michael R.; Brushett, Fikile R.; Timberg, Chris J.; Kenis, Paul J. A.

    2012-11-01

    The influence of electrode length on performance is investigated in an air-breathing alkaline direct methanol laminar flow fuel cell (LFFC). Depletion of methanol at the electrode surface along the direction of flow hinders reaction kinetics and consequently also cell performance. Reducing the electrode length can decrease the influence of boundary layer depletion, and thereby, improve both the current and power densities. Here, the effect of boundary layer depletion was found to play a significant effect on performance within the first 18 mm of an electrode length. To further utilize the increased power densities provided by shorter electrode lengths, alternative electrode aspect ratios (electrode length-to-width) and electrode arrangements were explored experimentally. Furthermore, by fitting an empirical model based on experimentally obtained data, we demonstrate that a configuration comprised of a series of short electrodes and operated at low flow rates can achieve higher current and power outputs. The analysis of optimal electrode aspect ratio and electrode arrangements can also be applied to other microfluidic reactor designs in which reaction depletion boundary layers occur due to surface reactions.

  6. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  7. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2001-06-21

    A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

  8. The use of a dynamic hydrogen electrode as an electrochemical tool to evaluate plasma activated carbon as electrocatalyst support for direct methanol fuel cell

    SciTech Connect

    Carmo, Marcelo Roepke, Thorsten; Scheiba, Frieder; Roth, Christina; Moeller, Stephan; Fuess, Hartmut; Poco, Joao G.R.; Linardi, Marcelo

    2009-01-08

    The objectives of this study were to functionalize the carbon black surface by chemically introducing oxygenated groups using plasma technology. This should enable a better interaction of the carbon support with the metallic catalyst nanoparticles, hindering posterior support particle agglomeration and preventing loss of active surface. PtRu/C nanoparticles were anchored on the carbon supports by the impregnation method and direct reduction with hydrazine. Physical characterization of the materials was carried out using energy dispersive X-ray analysis and transmission electron microscopy. The screen printing technique was used to produce membrane electrode assemblies for single cell tests in methanol/air (DMFC). Tests were carried out using the dynamic hydrogen electrode as an electrochemical tool to evaluate the anode and cathode behavior separately.

  9. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Professor Anil V. Virkar

    2003-05-23

    This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid

  10. Simultaneous measurements of wire electrode surface contamination and corona discharge characteristics in an air-cleaning electrostatic precipitator

    SciTech Connect

    Kanazawa, Seiji; Ohkubo, Toshikazu; Nomoto, Yukiharu; Adachi, Takayoshi; Chang, J.S.

    1997-01-01

    Contamination of the corona wire in a wire-to-plate type air-cleaning electrostatic precipitator is studied experimentally. In order to enhance the contamination of wire, air containing dusts is directly supplied to a part of the wire electrode. Spores of Lycopodium and cigarette smoke particles are used as test dusts. Simultaneous measurements of wire electrode optical images and corona discharge modes are carried out during contamination processes. Results show that corona discharge modes and optical emission from the wire electrode change with time due to the surface contamination. In the case of cigarette smoke, after a time elapsed, streamer coronas appear due to the buildup of smoke particles on the wire surface. After the first streamer generation, the corona current fluctuates with time because the formation and diminution of the projections occur alternately at the different parts on the wire electrode surface.

  11. New insights into the electrode mechanism of lithium sulfur batteries via air-free post-test analysis.

    PubMed

    Chen, Lin; Dietz Rago, Nancy L; Bloom, Ira D; Shaw, Leon L

    2016-08-01

    Effects of the volume expansion and shrinkage of Li2S cathodes on electrochemical cycle life are investigated via post-test analysis without exposure to air. The engineered electrodes that confine volume changes within micro-reactors have significantly longer life than the electrodes without the micro-reactor structure, providing the first unambiguous evidence of the importance of confining volume changes for improved battery performance. PMID:27430393

  12. Performance improvement in PEMFC using aligned carbon nanotubes as electrode catalyst support.

    SciTech Connect

    Liu, D. J.; Yang, J.; Kariuki, N.; Geonaga, G.; Call, A.; Myers, D.; Chemical Sciences and Engineering Division

    2008-01-01

    A novel membrane electrode assembly (MEA) using aligned carbon nanotubes (ACNT) as the electrocatalyst support was developed for proton exchange membrane fuel cell (PEMFC) application. A multiple-step process of preparing ACNT-PEMFC including ACNT layer growth and catalyzing, MEA fabrication, and single cell packaging is reported. Single cell polarization studies demonstrated improved fuel utilization and higher power density in comparison with the conventional, ink based MEA.

  13. Electrooxidation of aliphatic alcohols on electrodes consisting of hydrophobicized supports coated with nickel oxides

    SciTech Connect

    Chaenko, N.V.; Kornienko, V.L.; Avrutskaya, I.A.; Fioshin, M.Ya.

    1987-12-01

    Two methods are presented to intensify the electrooxidation of aliphatic alcohols with low water solubility and to simplify end-product separation. One method comprised direct addition of higher nickel oxides to the active material of the electrode to be fabricated; the other involved depositing a layer of higher nickel oxides on a hydrophobicized support consisting of a mixture of a conducting material and the FP-4D hydrophobicizer. Electrolysis was carried out in a diaphragm-free two-compartment cell, one reagent and the other the electrolyte. Results are shown of hexyl alcohol oxidation on various composition supports coated with higher nickel oxides.

  14. Electrode-supported thin α-alumina separators for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Mi, Wanliang; Sharma, Gaurav; Dong, Xueliang; Jin, Yi; Lin, Y. S.

    2016-02-01

    Lithium ion batteries with an inorganic separator offer improved safety and enhanced reliability. The free-standing inorganic separators recently studied for lithium ion batteries are brittle and expensive. To address these issues, this paper reports the synthesis of a new and stable electrode-supported separator using a low-cost ceramic powder. Thin and porous α-Al2O3 separator films of thicknesses down to 40 μm were coated on Li4Ti5O12 (LTO) electrode by blade-coating a slurry of α-Al2O3, water and a small amount of polyvinyl alcohol (PVA). The performance of the LTO/Li cells with coated α-Al2O3 separator improves with decreasing PVA content. Cells with coated α-Al2O3 separator containing 0.4wt% PVA exhibit similar discharge capacity but better rate capability than those with commercial polypropylene (PP) or thick sintered α-Al2O3 separator. The coated α-Al2O3 separator does not react with LTO even after many charge/discharge cycles. Fabrication of the electrode-supported α-Al2O3 separator is scalable and cost-effective, offering high potential for practical application in industrial lithium ion battery manufacturing.

  15. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented. PMID:24182161

  16. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air.

    PubMed

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ~30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  17. Generating diffuse discharge via repetitive nanosecond pulses and line-line electrodes in atmospheric air

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Yun-Long; Ge, Ya-Feng; Bin, Yu; Huang, Jia-Jia; Lin, Fo-Chan

    2013-10-01

    Diffuse discharge in atmospheric air can generate extremely high power density and large-scale non-thermal plasma. An achievable method of generating diffuse discharge is reported in this paper. Based on the resonance theory, a compact high-voltage repetitive nanosecond pulse generator (HRNPG) has been developed as discharge excitation source. The HRNPG mainly consists of repetitive charging circuit, Tesla transformer and sharpening switch. With the voltage lower than 1.0 kV, the primary repetitive charging circuit comprises two fast thyristors as low-voltage switches. A spiral Tesla transformer is designed to provide a peak transformation ratio of more than 100. The HRNPG prototype is capable of generating a pulse with over 100 kV peak voltage and ˜30 ns rise-time at the repetition frequency of 500 Hz. Using the copper line electrodes with a diameter of 0.4 mm, the gaps with highly non-uniform electric field are structured. With the suitable gap spacing and applied pulse, the glow-like diffuse discharge has been generated in line-type and ring-type electrode pairs. Some typical images are presented.

  18. [Electrode configuration as a factor affecting electricity generation in air-cathode microbial fuel cell].

    PubMed

    You, Shi-Jie; Zhao, Qing-Liang; Jiang, Jun-Qiu

    2006-11-01

    In air-cathode microbial fuel cell (ACMFC), oxygen diffused into the reactor from cathode without PEM can be reduced as electron acceptor via aerobic respiration by facultative microorganisms, resulting in either a decreasing of power generation or electron loss. In this study, ACMFC1 and ACMFC2 with different electrode configuration were compared to examine power density and electron recovery from glucose. The results showed that ACMFC1 generated a maximum power density of 3 070mW/m3 with internal resistance of 302.141 and anode potential of -323mV; while maximum power density of 9 800mW/m3 for ACMFC2 was obtained with internal resistance of 107.79omega and anode potential of -442mV. ACMFC2 could sustain generating electricity for nearly 220 h (ERE of 30.1%), comparing with ACMFC1 of less than 50 h (ERE of 9.78%) under batch operation. Therefore, an improved design for electrode configuration of ACMFC can be performed to generate higher power with low internal resistance, meanwhile, achieve increasing electron recovery simultaneously.

  19. Magnetically Diffused Radial Electric-Arc Air Heater Employing Water-Cooled Copper Electrodes

    NASA Technical Reports Server (NTRS)

    Mayo, R. F.; Davis, D. D., Jr.

    1962-01-01

    A magnetically rotated electric-arc air heater has been developed that is novel in that an intense magnetic field of the order of 10,000 to 25,000 gauss is employed. This field is supplied by a coil that is connected in series with the arc. Experimentation with this heater has shown that the presence of an intense magnetic field transverse to the arc results in diffusion of the arc and that the arc has a positive effective resistance. With the field coil in series with the arc, highly stable arc operation is obtained from a battery power supply. External ballast is not required to stabilize the arc when it is operating at maximum power level. The electrode erosion rate is so low that the airstream contamination is no more than 0.07 percent and may be substantially less.

  20. AIRS Data Support at NASA Goddard Earth Science DISC DAAC

    NASA Astrophysics Data System (ADS)

    Cho, S.; Qin, J.; Sharma, A.

    2002-05-01

    The Atmospheric Infrared Sounder (AIRS) is selected by NASA to fly on the second Earth Observing System (EOS) polar orbiting platform, EOS Aqua, which is launched in April 2002. AIRS, together with Advanced Microwave Sounding Unit (AMSU) and Humidity Sounder for Brazil (HSB), is designed to meet the requirements of the NASA Earth Science Enterprise climate research program and the NOAA operational weather forecasting The data products from the AIRS/AMSU/HSB will be archived and distributed at the Goddard Distributed Active Archive Center (GDAAC) located in the NASA Goddard Earth Sciences Data and Information Services Center (GES DAAC) in later 2002. This new dataset consists of radiances, geo-locations and atmospheric products, such as, temperature, humidity, cloud and ozone, providing measurements for temperature at an accuracy of 1 o C in layers 1 km thick and humidity with an accuracy of 20 % in layers 2 km thick in the troposphere. The data will be freely available via WWW interfaces, or an FTP containing subsetted and reformatted data products. The GES DISC DAAC Search and Order allows users to search for data by following particular paths down the hierarchy. This simple point-and- click navigational web interface shows temporal and spatial coverage, item size, description and browse images for AIRS data and one can customize search using spatial,temporal, attribute and parameter search. The EOS Data Gateway (EDG) is another user interface for searching and ordering the AIRS data together with other data products obtained from EOS instruments. The Atmospheric Dynamics Data Support Team (ADDST) at the GES DISC/DAAC will provide various services to assist users in understanding, accessing, and using AIRS data product. The ADDST has been developing tools to read, visualize and analyze the AIRS data, channel/parameter subsetting of AIRS HDF-EOS data products and supplying documentation and readme et al. Other services provided by the ADDST will contain assistance

  1. Film of lignocellulosic carbon material for self-supporting electrodes in electric double-layer capacitors

    NASA Astrophysics Data System (ADS)

    Funabashi, Tsubasa; Mizuno, Jun; Sato, Masamichi; Kitajima, Masao; Matsuura, Makoto; Shoji, Shuichi

    2013-09-01

    A novel thin, wood-based carbon material with heterogeneous pores, film of lignocellulosic carbon material (FLCM), was successfully fabricated by carbonizing softwood samples of Picea jezoensis (Jezo spruce). Simultaneous increase in the specific surface area of FLCM and its affinity for electrolyte solvents in an electric double-layer capacitor (EDLC) were achieved by the vacuum ultraviolet/ozone (VUV/O3) treatment. This treatment increased the specific surface area of FLCM by 50% over that of original FLCM. The results obtained in this study confirmed that FLCM is an appropriate self-supporting EDLC electrode material without any warps and cracks.

  2. 4 kW Test of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect

    J. E. O'Brien; X. Zhang; G. K. Housley; L. Moore-McAteer; G. Tao

    2012-06-01

    A new test stand has been developed at the Idaho National Laboratory for multi-kW testing of solid oxide electrolysis stacks. This test stand will initially be operated at the 4 KW scale. The 4 kW tests will include two 60-cell stacks operating in parallel in a single hot zone. The stacks are internally manifolded with an inverted-U flow pattern and an active area of 100 cm2 per cell. Process gases to and from the two stacks are distributed from common inlet/outlet tubing using a custom base manifold unit that also serves as the bottom current collector plate. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. Treated metallic interconnects with integral flow channels separate the cells and electrode gases. Sealing is accomplished with compliant mica-glass seals. A spring-loaded test fixture is used for mechanical stack compression. Due to the power level and the large number of cells in the hot zone, process gas flow rates are high and heat recuperation is required to preheat the cold inlet gases upstream of the furnace. Heat recuperation is achieved by means of two inconel tube-in-tube counter-flow heat exchangers. A current density of 0.3 A/cm2 will be used for these tests, resulting in a hydrogen production rate of 25 NL/min. Inlet steam flow rates will be set to achieve a steam utilization value of 50%. The 4 kW test will be performed for a minimum duration of 1000 hours in order to document the long-term durability of the stacks. Details of the test apparatus and initial results will be provided.

  3. BiOCl micro-assembles consisting of ultrafine nanoplates: A high performance electro-catalyst for air electrode of Al-air batteries

    NASA Astrophysics Data System (ADS)

    Yuan, Jinlan; Wang, Jin; She, Yiyi; Hu, Jing; Tao, Pengpeng; Lv, Fucong; Lu, Zhouguang; Gu, Yingying

    2014-10-01

    BiOCl micro-assembles appearing spherical and plate-like in shape consisting of ultrafine nanoplates were successfully synthesized by a simple hydrothermal method. The obtained BiOCl micro-assembles were characterized as oxygen reduction reaction (ORR) catalyst for air electrode of aluminum air batteries by using linear polarization and constant-current discharge techniques. The effect of precursor concentration on the electrochemical properties of the air electrodes based on the synthesized BiOCl micro-assembles was intensively investigated. The results demonstrated that the BiOCl catalyst exhibited promising ORR performance. Koutecky-Levich analysis indicated that a two-electron reaction was favored for the ORR mechanism of the BiOCl (0.18) sample.

  4. Silver-Copper Nanoalloy Catalyst Layer for Bifunctional Air Electrodes in Alkaline Media.

    PubMed

    Wu, Xiaoqiang; Chen, Fuyi; Jin, Yachao; Zhang, Nan; Johnston, Roy L

    2015-08-19

    A carbon-free and binder-free catalyst layer composed of a Ag-Cu nanoalloy on Ni foam was used as the air cathode in a zinc-air battery for the first time. The Ag-Cu catalyst was prepared using pulsed laser deposition. The structures of the catalysts were found to consist of crystalline Ag-Cu nanoalloy particles with an average size of 2.58 nm embedded in amorphous Cu films. As observed in the X-ray photoelectron spectra, the Ag 3d core levels shifted to higher binding energies, whereas the Cu 2p core levels shifted to lower binding energies, indicating alloying of the silver and copper. Rotating disk electrode measurements indicated that the oxygen reduction reaction (ORR) proceeded through a four-electron pathway on the Ag50Cu50 and Ag90Cu10 nanoalloy catalysts in alkaline solution. Moreover, the catalytic activity of Ag50Cu50 in the ORR is more efficient than that of Ag90Cu10. By performing charge and discharge cycling measurements, the Ag50Cu50 catalyst layer was confirmed to have a maximum power density of approximately 86.3 mW cm(-2) and an acceptable cell voltage at 0.863 V for current densities up to 100 mA cm(-2) in primary zinc-air batteries. In addition, a round-trip efficiency of approximately 50% at a current density of 20 mA cm(-2) was also obtained in the test. PMID:26200807

  5. Electrode Plate For An Eletrlchemical Cell And Having A Metal Foam Type Support, And A Method Of Obtaining Such An Electrode

    DOEpatents

    Verhoog, Roelof; Precigout, Claude; Stewart, Donald

    1996-05-21

    The electrode plate includes an active portion that is pasted with active material, and a plate head that is made up of three layers of compressed metal foam comprising: a non-pasted portion of height G of the support of the electrode plate; and two strips of non-pasted metal foam of height R on either side of the non-pasted portion of height G of the support and also extending for an overlap height h.sub.2 over the pasted portion of the support. The plate head includes a zone of reduced thickness including a portion that is maximally compressed, and a transitional portion between said maximally compressed portion and the remainder of the electrode which is of thickness e.sub.2. A portion of said plate head forms a connection tab. The method of obtaining the electrode consists in simultaneously rolling all three layers of metal foam in the plate head, and then in cutting matter away from the plates so as to obtain respective connection tabs.

  6. Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Jin, Shuo; Ruan, Jiangjun; Du, Zhiye; Zhu, Lin; Shu, Shengwen

    2016-10-01

    This paper proposes a new method to predict the corona onset voltage for a rod-plane air gap, based on the support vector machine (SVM). Because the SVM is not limited by the size, dimension and nonlinearity of the samples, this method can realize accurate prediction with few training data. Only electric field features are chosen as the input; no geometric parameter is included. Therefore, the experiment data of one kind of electrode can be used to predict the corona onset voltages of other electrodes with different sizes. With the experimental data obtained by ozone detection technology, and experimental data provided by the reference, the efficiency of the proposed method is validated. Accurate predicted results with an average relative less than 3% are obtained with only 6 experimental data. supported by National Natural Science Foundation of China (No. 51477120)

  7. Porous hollow carbon spheres for electrode material of supercapacitors and support material of dendritic Pt electrocatalyst

    NASA Astrophysics Data System (ADS)

    Fan, Yang; Liu, Pei-Fang; Huang, Zhong-Yuan; Jiang, Tong-Wu; Yao, Kai-Li; Han, Ran

    2015-04-01

    Porous hollow carbon spheres (PHCSs) are prepared through hydrothermal carbonization of alginic acid and subsequent chemical activation by KOH. The porosity of the alginic acid derived PHCSs can be finely modulated by varying activation temperature in the range of 600-900 °C. The PHCSs activated at 900 °C possess the largest specific surface area (2421 m2 g-1), well-balanced micro- and mesoporosity, as well as high content of oxygen-containing functional groups. As the electrode material for supercapacitors, the PHCSs exhibit superior capacitive performance with specific capacitance of 314 F g-1 at current density of 1 A g-1. Pt nanodendrites supported on the PHCSs are synthesized by polyol reduction method which exhibit high electrocatalytic activity towards methanol oxidation reaction (MOR). Moreover, CO-poisoning tolerance of the Pt nanodendrites is greatly enhanced owing to the surface chemical property of the PHCSs support.

  8. The Eliminator: A design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Hendrix, Mandy; Hoang, TY; Kokolios, Alex; Selyem, Sharon; Wardell, Mark; Winterrowd, David

    1991-01-01

    The Eliminator is the answer to the need for an affordable, maintainable, survivable, high performance close air support aircraft primarily for the United States, but with possible export sales to foreign customers. The Eliminator is twin turbofan, fixed wing aircraft with high mounted canards and low mounted wings. It is designed for high subsonic cruise and an attack radius of 250 nautical miles. Primarily it would carry 20 500 pound bombs as its main ordnance , but is versatile enough to carry a variety of weapons configurations to perform several different types of missions. It carries state of the art navigation and targeting systems to deliver its payload with pinpoint precision and is designed for maximum survivability of the crew and aircraft for a safe return and quick turnaround. It can operate from fields as short as 1800 ft. with easy maintenance for dispersed operation during hostile situations. It is designed for exceptional maneuverability and could be used in a variety of roles from air-to-air operations to anti-submarine warfare and maritime patrol duties.

  9. Supporting the Future Air Traffic Control Projection Process

    NASA Technical Reports Server (NTRS)

    Davison, Hayley J.; Hansman, R. John, Jr.

    2002-01-01

    In air traffic control, projecting what the air traffic situation will be over the next 30 seconds to 30 minutes is a key process in identifying conflicts that may arise so that evasive action can be taken upon discovery of these conflicts. A series of field visits in the Boston and New York terminal radar approach control (TRACON) facilities and in the oceanic air traffic control facilities in New York and Reykjavik, Iceland were conducted to investigate the projection process in two different ATC domains. The results from the site visits suggest that two types of projection are currently used in ATC tasks, depending on the type of separation minima and/or traffic restriction and information display used by the controller. As technologies improve and procedures change, care should be taken by designers to support projection through displays, automation, and procedures. It is critical to prevent time/space mismatches between interfaces and restrictions. Existing structure in traffic dynamics could be utilized to provide controllers with useful behavioral models on which to build projections. Subtle structure that the controllers are unable to internalize could be incorporated into an ATC projection aid.

  10. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    SciTech Connect

    Kanagasekaran, Thangavel E-mail: Shimotani@m.tohoku.ac.jp Ikeda, Susumu; Kumashiro, Ryotaro; Shimotani, Hidekazu E-mail: Shimotani@m.tohoku.ac.jp Shang, Hui; Tanigaki, Katsumi E-mail: Shimotani@m.tohoku.ac.jp

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  11. An impedimetric study of DNA hybridization on paper-supported inkjet-printed gold electrodes

    NASA Astrophysics Data System (ADS)

    Ihalainen, Petri; Pettersson, Fredrik; Pesonen, Markus; Viitala, Tapani; Määttänen, Anni; Österbacka, Ronald; Peltonen, Jouko

    2014-03-01

    In this study, two different supramolecular recognition architectures for impedimetric detection of DNA hybridization have been formed on disposable paper-supported inkjet-printed gold electrodes. The gold electrodes were fabricated using a gold nanoparticle based ink. The first recognition architecture consists of subsequent layers of biotinylated self-assembly monolayer (SAM), streptavidin and biotinylated DNA probe. The other recognition architecture is constructed by immobilization of thiol-functionalized DNA probe (HS-DNA) and subsequent backfill with 11-mercapto-1-undecanol (MUOH) SAM. The binding capacity and selectivity of the recognition architectures were examined by surface plasmon resonance (SPR) measurements. SPR results showed that the HS-DNA/MUOH system had a higher binding capacity for the complementary DNA target. Electrochemical impedance spectroscopy (EIS) measurements showed that the hybridization can be detected with impedimetric spectroscopy in picomol range for both systems. EIS signal indicated a good selectivity for both recognition architectures, whereas SPR showed very high unspecific binding for the HS-DNA/MUOH system. The factors affecting the impedance signal were interpreted in terms of the complexity of the supramolecular architecture. The more complex architecture acts as a less ideal capacitive sensor and the impedance signal is dominated by the resistive elements.

  12. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  13. A high-power low-temperature air plasma generator with a divergent channel of the output electrode

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.

    2016-01-01

    We have developed and studied a powerful high-enthalpy (H ≥ 20 kJ/g) air plasma jet generator with a divergent channel of the output electrode, which belongs to the class of dc plasmatrons with a thermionic cathode. The plasma generator possesses an efficiency of about 80% and ensures the formation of slightly divergent (2± = 12°) plasma jet with diameter D = 50 mm and a mass-average temperature of 6000-9000 K.

  14. Rechargeable Lithium-Air Batteries: Development of Ultra High Specific Energy Rechargeable Lithium-Air Batteries Based on Protected Lithium Metal Electrodes

    SciTech Connect

    2010-07-01

    BEEST Project: PolyPlus is developing the world’s first commercially available rechargeable lithium-air (Li-Air) battery. Li-Air batteries are better than the Li-Ion batteries used in most EVs today because they breathe in air from the atmosphere for use as an active material in the battery, which greatly decreases its weight. Li-Air batteries also store nearly 700% as much energy as traditional Li-Ion batteries. A lighter battery would improve the range of EVs dramatically. Polyplus is on track to making a critical breakthrough: the first manufacturable protective membrane between its lithium–based negative electrode and the reaction chamber where it reacts with oxygen from the air. This gives the battery the unique ability to recharge by moving lithium in and out of the battery’s reaction chamber for storage until the battery needs to discharge once again. Until now, engineers had been unable to create the complex packaging and air-breathing components required to turn Li-Air batteries into rechargeable systems.

  15. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10-4-10-3 Ω-1·m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  16. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    NASA Astrophysics Data System (ADS)

    Chen, Qi; Yan, Limin; Zhang, Hao; Li, Guoxiu

    2016-05-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V, 0-500 Hz) and DC (0-3300 V) electric fields were studied. I-V curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA, the electron density 1015-1016 m‑3 and further the power dissipation ≤ 0.7 W in the reaction zone. At the same time, the meso-scale premixed flame conductivity 10‑4-10‑3 Ω‑1·m‑1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitude estimate. Moreover, the influence of the collision sheath relating to Debye length (31–98 μm) and the contamination layer of an active electrode on measurements was discussed, based on the combination of simulation and theoretical analysis. As a result, the electrode sheath dimension was evaluated to less than 0.5 mm, which indicated a complex effect of the collision sheath on the current measurements. The surface contamination effect of an active electrode was further analyzed using the SEM imaging method, which showed elements immigration during the contamination layer formation process. supported by National Natural Science Foundation of China (No. 51376021), and the Fundamental Research Fund for Major Universities (No. 2013JBM079)

  17. Air Traffic Control Decision Support Tools for Noise Mitigation

    NASA Technical Reports Server (NTRS)

    Tobias, Leonard

    2001-01-01

    NASA has initiated a new five year program this year, the Quiet Aircraft Technology (QAT) Program, a program which will investigate airframe and engine system noise reduction. QAT will also address community noise impact. As part of this community noise impact component, NASA will investigate air traffic management (ATM) challenges in reducing noise. In particular, controller advisory automation aids will be developed to aid the air traffic controller in addressing noise concerns as he/she manages traffic in busy terminal areas. NASA has developed controller automation tools to address capacity concerns and the QAT strategy for ATM Low Noise Operations is to build upon this tool set to create added advisories for noise mitigation. The tools developed for capacity will be briefly reviewed, followed by the QAT plans to address ATM noise concerns. A major NASA goal in global civil aviation is to triple the aviation system throughput in all-weather conditions while maintaining safety. A centerpiece of this activity is the Center/TRACON Automation System (CTAS), an evolving suite of air traffic controller decision support tools (DSTs) to enhance capacity of arrivals and departures in both the enroute center and the TRACON. Two of these DSTs, the Traffic Management Advisor (TMA) and the passive Final approach Spacing Tool (pFAST), are in daily use at the Fort Worth Center and the Dallas/Fort Worth (DFW) TRACON, respectively, where capacity gains of 5-13% have been reported in recent NASA evaluations. Under the Federal Aviation Administration's (FAA) Free Flight Phase One Program, TMA and pFAST are each being implemented at six to eight additional sites. In addition, other DSTs are being developed by NASA under the umbrella of CTAS. This means that new software will be built upon CTAS, and the paradigm of real-time simulation evaluation followed by field site development and evaluation will be the pathway for the new tools. Additional information is included in the

  18. The Guardian: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Haag, Jonathan; Huber, David; Mcinerney, Kelly; Mulligan, Greg; Pessin, David; Seelos, Michael

    1991-01-01

    One design is presented of a Close Air Support (CAS) aircraft. It is a canard wing, twin engine, twin vertical tail aircraft that has the capability to cruise at 520 knots. The Guardian contains state of the art flight control systems. Specific highlights of the Guardian include: (1) low cost (the acquisition cost per airplane is $13.6 million for a production of 500 airplanes); (2) low maintenance (it was designed to be easily maintainable in unprepared fields); and (3) high versatility (it can perform a wide range of missions). Along with being a CAS aircraft, it is capable of long ferry missions, battlefield interdiction, maritime attack, and combat rescue. The Guardian is capable of a maximum ferry of 3800 nm, can takeoff in a distance of 1700 ft, land in a ground roll distance of 1644 ft. It has a maximum takeoff weight of 48,753 lbs, and is capable of carrying up to 19,500 lbs of ordinance.

  19. Nanosecond-pulse gliding discharges between point-to-point electrodes in open air

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Shao, Tao; Yan, Ping; Zhou, Yuanxiang

    2014-06-01

    In this paper, gliding discharges with a point-to-point electrode geometry were produced by a repetitively pulsed power supply with a rise time of ˜100 ns and a full-width at half-maximum of ˜200 ns. The characteristics of such discharges were investigated by measuring their voltage-current waveforms and taking photographs of their discharge images. Experimental results showed that once the breakdown occurred, the nanosecond-pulse gliding discharges went into a stable stage at all air gaps, behaving in a mode of repetitive sparks. Under certain conditions, a non-stable stage would appear some time after the discharge went into the stable stage, in which the gliding discharges transitioned from repetitive sparks to diffuse discharges. Furthermore, several factors (gap spacing, pulse repetition frequency (PRF) and gas flow rate) influencing the discharge characteristics were investigated. It was observed that both the breakdown voltage and ignition voltage increased with the gap spacing, and a diffuse discharge was absent when the gap spacing was less than 6 mm. The breakdown voltage decreased with the increase in the PRF and its decrease ratio was larger in large gap spacing than in small gap spacing. Discharges would transit from repetitive sparks to diffuse discharges as the flow rate increased. Furthermore, a comparison of nanosecond-pulse and ac gliding discharges was conducted with respect to the power supply. The consumption and energy, the relationship between the power supply and the load, and the time interval between two pulses were three main factors which could lead to different characteristics between the nanosecond-pulse and ac gliding discharges.

  20. Time-lag properties of corona streamer discharges between impulse sphere and dc needle electrodes under atmospheric air conditions

    NASA Astrophysics Data System (ADS)

    Okano, Daisuke

    2013-02-01

    In this study of corona streamer discharges from an impulse generator using a dc power supply, the relationship of the discharge time-lag with the dc bias voltage between the sphere-to-needle electrodes under atmospheric conditions is investigated. Devices utilizing corona discharges have been used to purify air or water, destroy bacteria, and to remove undesirable substances, and in order to achieve fast response times and high power efficiencies in such devices, it is important to minimize the time-lag of the corona discharge. Our experimental results show that (a) the discharge path of a negatively biased needle electrode will be straighter than that of a positively biased needle and (b) the discharge threshold voltage in both the positive and the negative needle electrodes is nearly equal to 33 kV. By expressing the discharge voltage as a power function of time-lag, the extent of corona generation can be quantitatively specified using the exponent of this power function. The observed behavior of a corona streamer discharge between the negative spherical and the positive needle electrodes indicates that the largest power exponent is associated with the shortest time-lag, owing to the reduction in the statistical time-lag in the absence of a formative time-lag.

  1. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  2. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  3. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  4. 32 CFR 644.535 - Support in clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Support in clearance of Air Force lands. 644.535 Section 644.535 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL... Excess Land and Improvements § 644.535 Support in clearance of Air Force lands. Where Air Force...

  5. Specific features of operation of a membrane-electrode assembly of an air-hydrogen fuel cell

    NASA Astrophysics Data System (ADS)

    Nechitailov, A. A.; Glebova, N. V.; Koshkina, D. V.; Tomasov, A. A.; Zelenina, N. K.; Terukova, E. E.

    2013-09-01

    Specific features of the operation of the membrane-electrode assembly with high catalytic activity that are a part of the simplified design of a low-temperature air-hydrogen fuel cell under conditions of forced and natural convection of air on the cathode are studied. The governing effect of water balance on the specific power of the fuel cell in the stationary mode (˜1 h) is shown, and the range of the operating conditions of the cell with self-control is determined. The power of the fuel cell at an efficiency of ˜50% and the surface density of platinum on a cathode of ≈0.2 mg/cm2 is 200-250 and 100 mW/cm2 in the forced and natural air-convection modes, respectively, which is comparable with the advanced results.

  6. Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells.

    PubMed

    Yun, Sining; Pu, Haihui; Chen, Junhong; Hagfeldt, Anders; Ma, Tingli

    2014-02-01

    Mesoporous-graphitic-carbon-supported HfO2 (HfO2 -MGC) nanohybrids were synthesized by using a soft-template route. Characterization and a systematic investigation of the catalytic properties, stability, and catalytic mechanism were performed for HfO2 -MGC counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The new HfO2 -MGC as a CE in DSSCs showed a surprisingly high efficiency of 7.75 % for the triiodide/iodide redox couple and 3.69 % for the disulfide/thiolate redox couple, greater than the Pt electrode in the corresponding electrolyte system, which opens up a possibility for its practical application.

  7. Ferrocene embedded in an electrode-supported hybrid lipid bilayer membrane: a model system for electrocatalysis in a biomimetic environment.

    PubMed

    Hosseini, Ali; Collman, James P; Devadoss, Anando; Williams, Genevieve Y; Barile, Christopher J; Eberspacher, Todd A

    2010-11-16

    An electrode-supported system in which ferrocene molecules are embedded in a hybrid bilayer membrane (HBM) has been prepared and characterized. The redox properties of the ferrocene molecules were studied by varying the lipid and alkanethiol building blocks of the HBM. The midpoint potential and electron transfer rate of the embedded ferrocene were found to be dependent on the hydrophobic nature of the electrolyte and the distance at which the ferrocene was positioned in the HBM relative to the electrode and the solution. Additionally, the ability of the lipid-embedded ferrocenium ions to oxidize solution phase ascorbic acid was evaluated and found to be dependent on the nature of the counterion.

  8. Wind Prediction Accuracy for Air Traffic Management Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Cole, Rod; Green, Steve; Jardin, Matt; Schwartz, Barry; Benjamin, Stan

    2000-01-01

    The performance of Air Traffic Management and flight deck decision support tools depends in large part on the accuracy of the supporting 4D trajectory predictions. This is particularly relevant to conflict prediction and active advisories for the resolution of conflicts and the conformance with of traffic-flow management flow-rate constraints (e.g., arrival metering / required time of arrival). Flight test results have indicated that wind prediction errors may represent the largest source of trajectory prediction error. The tests also discovered relatively large errors (e.g., greater than 20 knots), existing in pockets of space and time critical to ATM DST performance (one or more sectors, greater than 20 minutes), are inadequately represented by the classic RMS aggregate prediction-accuracy studies of the past. To facilitate the identification and reduction of DST-critical wind-prediction errors, NASA has lead a collaborative research and development activity with MIT Lincoln Laboratories and the Forecast Systems Lab of the National Oceanographic and Atmospheric Administration (NOAA). This activity, begun in 1996, has focussed on the development of key metrics for ATM DST performance, assessment of wind-prediction skill for state of the art systems, and development/validation of system enhancements to improve skill. A 13 month study was conducted for the Denver Center airspace in 1997. Two complementary wind-prediction systems were analyzed and compared to the forecast performance of the then standard 60 km Rapid Update Cycle - version 1 (RUC-1). One system, developed by NOAA, was the prototype 40-km RUC-2 that became operational at NCEP in 1999. RUC-2 introduced a faster cycle (1 hr vs. 3 hr) and improved mesoscale physics. The second system, Augmented Winds (AW), is a prototype en route wind application developed by MITLL based on the Integrated Terminal Wind System (ITWS). AW is run at a local facility (Center) level, and updates RUC predictions based on an

  9. Preliminary study on zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction

    NASA Astrophysics Data System (ADS)

    Wen, Yue-Hua; Cheng, Jie; Ning, Shang-Qi; Yang, Yu-Sheng

    A zinc-air battery using zinc regeneration electrolysis with propanol oxidation as a counter electrode reaction is reported in this paper. It possesses functions of both zincate reduction and electrochemical preparation, showing the potential for increasing the electronic energy utilization. Charge/discharge tests and scanning electron microscopy (SEM) micrographs reveal that when a nickel sheet plated with the high-H 2-overpotential metal, cadmium, was used as the negative substrate electrode, the dendritic formation and hydrogen evolution are suppressed effectively, and granular zinc deposits become larger but relatively dense with the increase of charge time. The performance of batteries is favorable even if the charge time is as long as 5 h at the current density of 20 mA cm -2. Better discharge performance is achieved using a 'cavity-opening' configuration for the discharge cell rather than a 'gas-introducing' configuration. The highest energy efficiency is up to 59.2%. That is, the energy consumed by organic electro-synthesis can be recovered by 59.2%. Cyclic voltammograms show that the sintered nickel electrode exhibits a good electro-catalysis activity for the propanol oxidation. The increase of propanol concentration conduces to an enhancement in the organic electro-synthesis efficiency. The organic electro-synthesis current efficiency of 82% can be obtained.

  10. Performance of low cost scalable air-cathode microbial fuel cell made from clayware separator using multiple electrodes.

    PubMed

    Ghadge, Anil N; Ghangrekar, Makarand M

    2015-04-01

    Performance of scalable air-cathode microbial fuel cell (MFC) of 26 L volume, made from clayware cylinder with multiple electrodes, was evaluated. When electrodes were connected in parallel with 100 Ω resistance (R ext), power of 11.46 mW was produced which was 4.48 and 3.73 times higher than individual electrode pair and series connection, respectively. Coulombic efficiency of 5.10 ± 0.13% and chemical oxygen demand (COD) removal of 78.8 ± 5.52% was observed at R ext of 3 Ω. Performance under different organic loading rates (OLRs) varying from 0.75 to 6.0 g CODL(-1)d(-1) revealed power of 17.85 mW (47.28 mA current) at OLR of 3.0 g CODL(-1)d(-1). Internal resistance (R int) of 5.2 Ω observed is among the least value reported in literature. Long term operational stability (14 months) demonstrates the technical viability of clayware MFC for practical applications and potential benefits towards wastewater treatment and electricity recovery. PMID:25693451

  11. Film-based Implants for Supporting Neuron-Electrode Integrated Interfaces for The Brain.

    PubMed

    Tang-Schomer, Min D; Hu, Xiao; Tupaj, Marie; Tien, Lee W; Whalen, Michael; Omenetto, Fiorenzo; Kaplan, David L

    2014-04-01

    Neural engineering provides promise for cell therapy by integrating the host brain with brain-machine-interface technologies in order to externally modulate functions. Long-term interfaces with the host brain remain a critical challenge due to insufficient graft cell survivability and loss of brain electrode sensitivity over time. Here, integrated neuron-electrode interfaces were developed on thin flexible and transparent silk films as brain implants. Mechanical properties and surface topography of silk films were optimized to promote cell survival and alignment of primary rat cortical cells. Compartmentalized cultures of living neural circuit and co-patterned electrode arrays were incorporated on the silk films with built-in wire connections. Electrical stimulation via electrodes embedded in the films activated surrounding neurons evoked calcium responses. In mice brains the silk film implants showed conformal contact capable of modulating host brain cells with minimal inflammatory response and stable indwelling for weeks. The approach of combining cell therapy and brain electrodes could provide sustained functional brain-machine interfaces with ex vivo control of neuron-electrode interface with spatial and temporal precision. PMID:25386113

  12. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  13. Silver nanoparticle-decorated carbon nanotubes as bifunctional gas-diffusion electrodes for zinc-air batteries

    NASA Astrophysics Data System (ADS)

    Wang, T.; Kaempgen, M.; Nopphawan, P.; Wee, G.; Mhaisalkar, S.; Srinivasan, M.

    Thin, lightweight, and flexible gas-diffusion electrodes (GDEs) based on freestanding entangled networks of single-walled carbon nanotubes (SWNTs) decorated with Ag nanoparticles (AgNPs) are tested as the air-breathing cathode in a zinc-air battery. The SWNT networks provide a highly porous surface for active oxygen absorption and diffusion. The high conductivity of SWNTs coupled with the catalytic activity of AgNPs for oxygen reduction leads to an improvement in the performance of the zinc-air cell. By modulating the pH value and the reaction time, different sizes of AgNPs are decorated uniformly on the SWNTs, as revealed by transmission electron microscopy and powder X-ray diffraction. AgNPs with sizes of 3-5 nm double the capacity and specific energy of a zinc-air battery as compared with bare SWNTs. The simplified, lightweight architecture shows significant advantages over conventional carbon-based GDEs in terms of weight, thickness and conductivity, and hence may be useful for mobile and portable applications.

  14. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    PubMed

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  15. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  16. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    PubMed

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs. PMID:26536570

  17. Carbon felt supported carbon nanotubes catalysts composite electrode for vanadium redox flow battery application

    NASA Astrophysics Data System (ADS)

    Wei, Guanjie; Jia, Chuankun; Liu, Jianguo; Yan, Chuanwei

    2012-12-01

    A modified electrode for vanadium redox flow battery (VRFB) has been developed in this paper. The electrode is based on a traditional carbon felt (CF) grafted with the short-carboxylic multi-walled carbon nanotubes (MWCNTs). The microstructure and electrochemical property of the modified electrode as well as the performance of the VRFB single cell with it have been characterized. The results show that the MWCNTs are evenly dispersed and adhere to the surface of carbon fibres in the CF. The electrochemical activities of the modified CF electrode have been improved dramatically and the reversibility of the VO2+/VO2+ and V3+/V2+ redox couples increased greatly. The VRFB single cell with the modified CF exhibits higher coulombic efficiency (93.9%) and energy efficiency (82.0%) than that with the pristine CF. The SEM analysis shows that the MWCNTs still cohere with carbon fibres after charge and discharge test, indicating the stability of the MWCNTs in flowing electrolyte. Therefore, the composite electrode presents considerable potential for the commercial application of CF in VRFB.

  18. Integration of photoswitchable proteins, photosynthetic reaction centers and semiconductor/biomolecule hybrids with electrode supports for optobioelectronic applications.

    PubMed

    Wang, Fuan; Liu, Xiaoqing; Willner, Itamar

    2013-01-18

    Light-triggered biological processes provide the principles for the development of man-made optobioelectronic systems. This Review addresses three recently developed topics in the area of optobioelectronics, while addressing the potential applications of these systems. The topics discussed include: (i) the reversible photoswitching of the bioelectrocatalytic functions of redox proteins by the modification of proteins with photoisomerizable units or by the integration of proteins with photoisomerizable environments; (ii) the integration of natural photosynthetic reaction centers with electrodes and the construction of photobioelectrochemical cells and photobiofuel cells; and (iii) the synthesis of biomolecule/semiconductor quantum dots hybrid systems and their immobilization on electrodes to yield photobioelectrochemical and photobiofuel cell elements. The fundamental challenge in the tailoring of optobioelectronic systems is the development of means to electrically contact photoactive biomolecular assemblies with the electrode supports. Different methods to establish electrical communication between the photoactive biomolecular assemblies and electrodes are discussed. These include the nanoscale engineering of the biomolecular nanostructures on surfaces, the development of photoactive molecular wires and the coupling of photoinduced electron transfer reactions with the redox functions of proteins. The different possible applications of optobioelectronic systems are discussed, including their use as photosensors, the design of biosensors, and the construction of solar energy conversion and storage systems.

  19. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  20. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air. PMID:23181357

  1. Scale Issues in Air Quality Modeling Policy Support

    EPA Science Inventory

    This study examines the issues relating to the use of regional photochemical air quality models for evaluating their performance in reproducing the spatio-temporal features embedded in the observations and for designing emission control strategies needed to achieve compliance wit...

  2. Support-electrode torque on a spherical superconducting gyroscope. [for satellite experiment

    NASA Technical Reports Server (NTRS)

    Holdeman, L. B.; Holdeman, J. T., Jr.

    1984-01-01

    The simplest case of a single electrode is considered. Determination of the mixed boundary condition for this potential leads to dual series equations. Collins' solution to a Fredholm integral equation of the second kind is discussed. This equation is transformed into an infinite set of linear equations from which the coefficients in the dual series equation can be calculated using standard techniques.

  3. Working Electrodes

    NASA Astrophysics Data System (ADS)

    Komorsky-Lovrić, Šebojka

    In electrochemistry an electrode is an electronic conductor in contact with an ionic conductor. The electronic conductor can be a metal, or a semiconductor, or a mixed electronic and ionic conductor. The ionic conductor is usually an electrolyte solution; however, solid electrolytes and ionic melts can be used as well. The term "electrode" is also used in a technical sense, meaning the electronic conductor only. If not specified otherwise, this meaning of the term "electrode" is the subject of the present chapter. In the simplest case the electrode is a metallic conductor immersed in an electrolyte solution. At the surface of the electrode, dissolved electroactive ions change their charges by exchanging one or more electrons with the conductor. In this electrochemical reaction both the reduced and oxidized ions remain in solution, while the conductor is chemically inert and serves only as a source and sink of electrons. The technical term "electrode" usually also includes all mechanical parts supporting the conductor (e.g., a rotating disk electrode or a static mercury drop electrode). Furthermore, it includes all chemical and physical modifications of the conductor, or its surface (e.g., a mercury film electrode, an enzyme electrode, and a carbon paste electrode). However, this term does not cover the electrolyte solution and the ionic part of a double layer at the electrode/solution interface. Ion-selective electrodes, which are used in potentiometry, will not be considered in this chapter. Theoretical and practical aspects of electrodes are covered in various books and reviews [1-9].

  4. XPS analysis of carbon-supported platinum electrodes and characterization of CO oxidation on PEM fuel cell anodes by electrochemical half cell methods

    NASA Astrophysics Data System (ADS)

    Rheaume, J. M.; Müller, B.; Schulze, M.

    An analysis using X-ray induced photoelectron spectroscopy (XPS) on an as received, 20 weight percent (wt.%) Pt/C electrode (E-TEK) indicates the presence of a nanometer thin layer of polytetrafluorethylene (PTFE) on the surface which degrades during potentiodynamic cycling from 0 to 1.5 V RHE. Half cell measurements verify this observation by exhibiting an increase in the transferred charge and thus active surface area. An electrode manufactured by a rolling process containing 20 wt.% Pt/C on a carbon cloth (catalysts powders and cloth from E-TEK) did not have such a layer according to XPS analysis or exhibit such behavior during electrochemical, potentiodynamic cycling. In addition, cyclic voltammetry in a half cell was used to characterize CO oxidation on these two electrodes in addition to one consisting of 20 wt.% Pt-Ru/C catalyst on a carbon backing also produced by the rolling process. Measurements in 0.5 M H 2SO 4 electrolyte of rotating disk electrodes (RDEs) show recognizable CO oxidation during stripping experiments at potentials comparable to those shown by smooth electrodes, although peak definition for supported electrodes is highly inferior. The labyrinth nature of the pore systems of supported electrodes complicated stripping measurements and called into question the benefit of using RDEs for porous electrodes due to undefinable mass transport conditions within the electrode.

  5. LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES

    SciTech Connect

    Anil V. Virkar

    2001-09-26

    Anode-supported solid oxide fuel cells with Ni + yttria-stabilized zirconia (YSZ) anode, YSZ-samaria-doped ceria (SDC) bi-layer electrolyte and Sr-doped LaCoO{sub 3} (LSC) + SDC cathode were fabricated. Fuel used consisted of H{sub 2} diluted with He, N{sub 2}, H{sub 2}O or CO{sub 2}, mixtures of H{sub 2} and CO, and mixtures of CO and CO{sub 2}. Cell performance was measured at 800 C with above-mentioned fuel gas mixtures and air as oxidant. For a given concentration of the diluent, the cell performance was higher with He as the diluent than with N{sub 2} as the diluent. Mass transport through porous Ni-YSZ anode for H{sub 2}-H{sub 2}O, CO-CO{sub 2} binary systems and H{sub 2}-H{sub 2}O-diluent gas ternary systems was analyzed using multicomponent gas diffusion theory. At high concentrations of the diluent, the maximum achievable current density was limited by the anodic concentration polarization. From this measured limiting current density, the corresponding effective gas diffusivity was estimated. Highest effective diffusivity was estimated for fuel gas mixtures containing H{sub 2}-H{sub 2}O-He mixtures ({approx}0.34 cm{sup 2}/s), and the lowest for CO-CO{sub 2} mixtures ({approx}0.07 cm{sup 2}/s). The lowest performance was observed with CO-CO{sub 2} mixture as a fuel, which in part was attributed to the lowest effective diffusivity of the fuels tested.

  6. Application of Paper-Supported Printed Gold Electrodes for Impedimetric Immunosensor Development

    PubMed Central

    Ihalainen, Petri; Majumdar, Himadri; Viitala, Tapani; Törngren, Björn; Närjeoja, Tuomas; Määttänen, Anni; Sarfraz, Jawad; Härmä, Harri; Yliperttula, Marjo; Österbacka, Ronald; Peltonen, Jouko

    2012-01-01

    In this article, we report on the formation and mode-of-operation of an affinity biosensor, where alternate layers of biotin/streptavidin/biotinylated-CRP-antigen/anti-CRP antibody are grown on printed gold electrodes on disposable paper-substrates. We have successfully demonstrated and detected the formation of consecutive layers of supra-molecular protein assembly using an electrical (impedimetric) technique. The formation process is also supplemented and verified using conventional surface plasmon resonance (SPR) measurements and surface sensitive characterization techniques, such as X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The article provides a possible biosensor development scheme, where—(1) fabrication of paper substrate (2) synthesis of gold nanoparticle inks (3) inkjet printing of gold electrodes on paper (4) formation of the biorecognition layers on the gold electrodes and (5) electrical (impedimetric) analysis of growth—all are coupled together to form a test-structure for a recyclable and inexpensive point-of-care diagnostic platform. PMID:25587396

  7. Iron-Air Rechargeable Battery

    NASA Technical Reports Server (NTRS)

    Narayan, Sri R. (Inventor); Prakash, G.K. Surya (Inventor); Kindler, Andrew (Inventor)

    2014-01-01

    Embodiments include an iron-air rechargeable battery having a composite electrode including an iron electrode and a hydrogen electrode integrated therewith. An air electrode is spaced from the iron electrode and an electrolyte is provided in contact with the air electrode and the iron electrodes. Various additives and catalysts are disclosed with respect to the iron electrode, air electrode, and electrolyte for increasing battery efficiency and cycle life.

  8. Air and water quality monitor assessment of life support subsystems

    NASA Technical Reports Server (NTRS)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  9. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    NASA Astrophysics Data System (ADS)

    Teng, Yun; Li, Lee; Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-01

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm3, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  10. Generation of large-scale, barrier-free diffuse plasmas in air at atmospheric pressure using array wire electrodes and nanosecond high-voltage pulses

    SciTech Connect

    Teng, Yun; Li, Lee Liu, Yun-Long; Liu, Lun; Liu, Minghai

    2014-10-15

    This paper introduces a method to generate large-scale diffuse plasmas by using a repetition nanosecond pulse generator and a parallel array wire-electrode configuration. We investigated barrier-free diffuse plasmas produced in the open air in parallel and cross-parallel array line-line electrode configurations. We found that, when the distance between the wire-electrode pair is small, the discharges were almost extinguished. Also, glow-like diffuse plasmas with little discharge weakening were obtained in an appropriate range of line-line distances and with a cathode-grounding cross-electrode configuration. As an example, we produced a large-scale, stable diffuse plasma with volumes as large as 18 × 15 × 15 cm{sup 3}, and this discharge region can be further expanded. Additionally, using optical and electrical measurements, we showed that the electron temperature was higher than the gas temperature, which was almost the same as room temperature. Also, an array of electrode configuration with more wire electrodes had helped to prevent the transition from diffuse discharge to arc discharge. Comparing the current waveforms of configurations with 1 cell and 9 cells, we found that adding cells significantly increased the conduction current and the electrical energy delivered in the electrode gaps.

  11. LONG-TERM PERFORMANCE OF SOLID OXIDE STACKS WITH ELECTRODE-SUPPORTED CELLS OPERATING IN THE STEAM ELECTROLYSIS MODE

    SciTech Connect

    J. E. O'Brien; R. C. O'Brien; X. Zhang; G. Tao; B. J. Butler

    2011-11-01

    Performance characterization and durability testing have been completed on two five-cell high-temperature electrolysis stacks constructed with advanced cell and stack technologies. The solid oxide cells incorporate a negative-electrode-supported multi-layer design with nickel-zirconia cermet negative electrodes, thin-film yttria-stabilized zirconia electrolytes, and multi-layer lanthanum ferrite-based positive electrodes. The per-cell active area is 100 cm2. The stack is internally manifolded with compliant mica-glass seals. Treated metallic interconnects with integral flow channels separate the cells. Stack compression is accomplished by means of a custom spring-loaded test fixture. Initial stack performance characterization was determined through a series of DC potential sweeps in both fuel cell and electrolysis modes of operation. Results of these sweeps indicated very good initial performance, with area-specific resistance values less than 0.5 ?.cm2. Long-term durability testing was performed with A test duration of 1000 hours. Overall performance degradation was less than 10% over the 1000-hour period. Final stack performance characterization was again determined by a series of DC potential sweeps at the same flow conditions as the initial sweeps in both electrolysis and fuel cell modes of operation. A final sweep in the fuel cell mode indicated a power density of 0.356 W/cm2, with average per-cell voltage of 0.71 V at a current of 50 A.

  12. Air Quality Modeling in Support of the Near-road EXposures and effects of Urban air pollutants Study (NEXUS)

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. The Near-road Exposures to Urban air pollutant Study (NEXUS) design includes determining if children in Detroit, MI with asthma living ...

  13. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells

    NASA Astrophysics Data System (ADS)

    Elouarzaki, Kamal; Haddad, Raoudha; Holzinger, Michael; Le Goff, Alan; Thery, Jessica; Cosnier, Serge

    2014-06-01

    Simple and highly efficient glucose fuel cells using abiotic catalysts and different ion exchange membranes were designed. The glucose fuel cells are based on a multi-walled carbon nanotube (MWCNT)-supported cobalt phthalocyanine (CoPc) cathode and a carbon black/platinum (C/Pt) anode. The electrocatalytic activity of the MWCNT/CoPc electrode for oxygen reduction was investigated by cyclic and linear sweep voltammetry. The electrochemical experiments show that CoPc exhibits promising catalytic properties for oxygen reduction due to its high overpotential and efficiency at reduced metal load. The MWCNT/CoPc electrodes were applied to the oxygen reduction reaction as air-breathing cathode in a single-chambered glucose fuel cell. This cathode was associated with a C/Pt anode in fuel cell configurations using either an anion (Nafion®) or a cation (Tokuyama) exchange membrane. The best fuel cell configuration delivered a maximum power density of 2.3 mW cm-2 and a cell voltage of 0.8 V in 0.5 M KOH solution containing 0.5 M glucose using the Tokuyama membrane at ambient conditions. Beside the highest power density per cathodic catalyst mass (383 W g-1), these glucose fuel cells exhibit a high operational stability, delivering 0.3 mW cm-2 after 50 days.

  14. Effect of electrode geometry on high energy spark discharges in air

    NASA Astrophysics Data System (ADS)

    Belmouss, Mounia

    The government, aerospace, and transportation industries are deeply invested in developing new technologies to improve the performance and maneuverability of current and future aircraft while reducing aerodynamic noise and environmental impact. One of the key pathways to meet these goals is through aerodynamic flow control, which can involve suppressing or inducing separation, transition and management of turbulence in boundary layers, increasing the lift and reducing the drag of airfoils, and gas mixing to control fluctuating forces and aerodynamic noise [1]. In this dissertation, the complex flow field following a spark discharge is studied for a range of geometries and discharge characteristics, and the possibilities for using the induced flow for aerodynamic control are assessed. This work shows the influence of the electrode configuration on the fluid dynamics following the spark discharge and how the hot gas evolution gives rise to various physical phenomena (i.e. generation of turbulence, inducing vorticity, and gas mixing) that can be used to modify the flow-field structure near the boundary layer on an aerodynamic surface.

  15. Local-Scale Air Quality Modeling in Support of Human Health and Exposure Research (Invited)

    NASA Astrophysics Data System (ADS)

    Isakov, V.

    2010-12-01

    Spatially- and temporally-sparse information on air quality is a key concern for air-pollution-related environmental health studies. Monitor networks are sparse in both space and time, are costly to maintain, and are often designed purposely to avoid detecting highly localized sources. Recent studies have shown that more narrowly defining the geographic domain of the study populations and improvements in the measured/estimated ambient concentrations can lead to stronger associations between air pollution and hospital admissions and mortality records. Traditionally, ambient air quality measurements have been used as a primary input to support human health and exposure research. However, there is increasing evidence that the current ambient monitoring network is not capturing sharp gradients in exposure due to the presence of high concentration levels near, for example, major roadways. Many air pollutants exhibit large concentration gradients near large emitters such as major roadways, factories, ports, etc. To overcome these limitations, researchers are now beginning to use air quality models to support air pollution exposure and health studies. There are many advantages to using air quality models over traditional approaches based on existing ambient measurements alone. First, models can provide spatially- and temporally-resolved concentrations as direct input to exposure and health studies and thus better defining the concentration levels for the population in the geographic domain. Air quality models have a long history of use in air pollution regulations, and supported by regulatory agencies and a large user community. Also, models can provide bidirectional linkages between sources of emissions and ambient concentrations, thus allowing exploration of various mitigation strategies to reduce risk to exposure. In order to provide best estimates of air concentrations to support human health and exposure studies, model estimates should consider local-scale features

  16. Catalytic wet air oxidation of chlorophenols over supported ruthenium catalysts.

    PubMed

    Li, Ning; Descorme, Claude; Besson, Michèle

    2007-07-31

    A series of noble metal (Pt, Pd, Ru) loaded zirconia catalysts were evaluated in the catalytic wet air oxidation (CWAO) of mono-chlorophenols (2-CP, 3-CP, 4-CP) under relatively mild reaction conditions. Among the investigated noble metals, Ru appeared to be the best to promote the CWAO of CPs as far as incipient-wetness impregnation was used to prepare all the catalysts. The position of the chlorine substitution on the aromatic ring was also shown to have a significant effect on the CP reactivity in the CWAO over 3wt.% Ru/ZrO(2). 2-CP was relatively easier to degradate compared to 3-CP and 4-CP. One reason could be the higher adsorption of 2-CP on the catalyst surface. Further investigations suggested that 3wt.% Ru/ZrO(2) is a very efficient catalyst in the CWAO of 2-CP as far as high 2-CP conversion and TOC abatement could still be reached at even lower temperature (393K) and lower total pressure (3MPa). Additionally, the conversion of 2-CP was demonstrated to increase with the initial pH of the 2-CP solution. The dechlorination reaction is promoted at higher pH. In all cases, the adsorption of the reactants and the reaction intermediates was shown to play a major role. All parameters that would control the molecule speciation in solution or the catalyst surface properties would have a key effect. PMID:17513043

  17. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  18. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium–Oxygen Batteries

    SciTech Connect

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E.; Engelhard, Mark H.; Wang, Chong M.; Zhang, Jiguang

    2015-10-12

    Although lithium-oxygen (Li-O2) batteries have great potential to be used as one of the next generation energy storage systems due to their ultrahigh theoretical specific energy, there are still many significant barriers before their practical applications. These barriers include electrolyte and electrode instability, poor ORR/OER efficiency and cycling capability, etc. Development of a highly efficient catalyst will not only enhance ORR/OER efficiency, it may also improve the stability of electrolyte because the reduced charge voltage. Here we report the synthesis of nano-sheet-assembled ZnCo2O4 spheres/single walled carbon nanotubes (ZCO/SWCNTs) composites as high performance air electrode materials for Li-O2 batteries. The ZCO catalyzed SWCNTs electrodes delivered high discharge capacities, decreased the onset of oxygen evolution reaction by 0.9 V during charge processes, and led to more stable cycling stability. These results indicate that ZCO/SWCNTs composite can be used as highly efficient air electrode for oxygen reduction and evolution reactions. The highly enhanced catalytic activity by uniformly dispersed ZnCo2O4 catalyst on nanostructured electrodes is expected to inspire

  19. In Situ-Grown ZnCo2O4 on Single-Walled Carbon Nanotubes as Air Electrode Materials for Rechargeable Lithium-Oxygen Batteries.

    PubMed

    Liu, Bin; Xu, Wu; Yan, Pengfei; Bhattacharya, Priyanka; Cao, Ruiguo; Bowden, Mark E; Engelhard, Mark H; Wang, Chong-Min; Zhang, Ji-Guang

    2015-11-01

    The development of highly efficient catalysts is critical for the practical application of lithium-oxygen (Li-O2) batteries. Nanosheet-assembled ZnCo2O4 (ZCO) microspheres and thin films grown in situ on single-walled carbon nanotube (ZCO/SWCNT) composites as high-performance air electrode materials for Li-O2 batteries are reported. The in situ grown ZCO/SWCNT electrodes delivered high discharge capacities, decreased the onset of the oxygen evolution reaction by 0.9 V during the charging process, and led to longer cycling stability. These results indicate that in situ grown ZCO/SWCNT composites can be used as highly efficient air electrode materials for oxygen reduction and evolution reactions. The enhanced catalytic activity displayed by the uniformly dispersed ZCO catalyst on nanostructured electrodes is expected to inspire further development of other catalyzed electrodes for Li-O2 batteries and other applications. PMID:26457378

  20. Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode.

    PubMed

    Liu, Nan; Gao, Zhixian; Zhou, HuanYing; Yue, Mingxiang

    2007-04-15

    This work reports a kind of novel bilayer lipid membranes (BLMs) nucleic acid biosensor supported by modified patch-clamp pipette electrode was developed to detect staphylococcus enterotoxins B (SEB) gene. BLMs were formed within 15 min and able to be operated at least 24 h. Hydrophobic dodecane tail (C12) modified 18 bp single-stranded DNA (ssDNA) probe was immobilized on BLMs. The electrochemical currents versus the different concentration of ssDNA probe immobilized on BLMs indicated linearly correlation. The BLMs nucleic acid biosensor was fabricated by selecting the ssDNA probe as the signal sensing element with the concentration of 273.65 ng/mL. The electrochemical performance of the biosensor for the detection of SEB was investigated. The result showed that linear relationship was found between the current and ln(concentration) from 20 to 5000 ng/mL and the detection limit was 20 ng/mL. In addition, the biosensor was specific response to SEB gene and showed no significant current alteration in electrolyte which containing no SEB gene. Finally, Atom Force Microscope (AFM) images could be observed and used to evaluate the superficial microstructure of BLMs, ssDNA immobilized on BLMs and BLMs after hybridization. The BLMs nucleic acid biosensor supported by modified patch-clamp pipette electrode will become a highly sensitive, rapid, selective analytical tool for detection of Staphylococcus aureus, which produce SEB. PMID:17092700

  1. Contact and Support Considerations in the Hydrogen Evolution Reaction Activity of Petaled MoS2 Electrodes.

    PubMed

    Finn, Shane T; Macdonald, Janet E

    2016-09-28

    Petaled MoS2 electrodes grown hydrothermally from Mo foils are found to have an 800 nm, intermediate, MoSxOy layer. Similar petaled MoS2 films without this intermediate layer are grown on Au. X-ray photoelectron and Raman spectroscopies and transmission electron microscopy indicate the resulting petaled multilayer MoS2 films are frayed and exhibit single-layer, 1T-MoS2 behavior at the edges. We compare the electrocatalytic hydrogen evolution reaction activity via linear sweep voltammetry with Tafel analysis as well as the impedance properties of the electrodes. We find that petaled MoS2/Au and petaled MoS2/Mo exhibit comparable overpotential to 10 mA cm(-2) at -279 vs -242 mV, respectively, and similar Tafel slopes of ∼68 mV/decade indicating a similar rate-determining step. The exchange current normalized to the geometric area of petaled MoS2/Au (0.000921 mA cm(-2)) is 3 times smaller than that of petaled MoS2/Mo (0.00290 mA cm(-2)), and is attributed to the lower petal density on the Au support. However, Au supports increase the turnover frequency per active site of petaled MoS2 to 0.48 H2 Mo(-1) s(-1) from 0.25 H2 Mo(-1) s(-1) on Mo supports. Both petaled MoS2 films have nearly ohmic contacts to their supports with uncompensated resistivity Ru of <2.5 Ω·cm(2).

  2. ESD morphology deposition with WZr8 electrode on austenitic stainless steel support

    NASA Astrophysics Data System (ADS)

    Perju, M. C.; Ţugui, C. A.; Nejneru, C.; Axinte, M.; Vizureanu, P.

    2016-06-01

    Stainless steels are used to obtain mechanical parts, working in severe conditions with high dynamic loads in wet, chemically active environments. For this reason, these materials have good corrosion resistance in acidic or basic chemical agents. The main drawback is the relatively low wear and resistance to mechanical stress. This paper proposes a remedy by deposition of the hard thin films of tungsten electrode by spark electro-deposition method (ESD). Tungsten is an alfagen element and causes an increase for the mechanical properties at high and low temperatures for the austenitic stainless steels. Tungsten does not alter the corrosion resistance of stainless steels. The morphology for the obtained layers was analyzed using SEM, in 3D images, and profilographs.

  3. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-06-01

    The nonaqueous lithium oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high energy density, long cycling stability, and low cost, the air electrode structure and the electrocatalysts play important roles. Here, a metal-free, free-standing macroporous graphene@graphitic carbon nitride (g-C3N4) composite air cathode is first reported, in which the g-C3N4 nanosheets can act as efficient electrocatalysts, and the macroporous graphene nanosheets can provide space for Li2O2 to deposit and also promote the electron transfer. The electrochemical results on the graphene@g-C3N4 composite air electrode show a 0.48 V lower charging plateau and a 0.13 V higher discharging plateau than those of pure graphene air electrode, with a discharge capacity of nearly 17300 mA h g(-1)(composite) . Excellent cycling performance, with terminal voltage higher than 2.4 V after 105 cycles at 1000 mA h g(-1)(composite) capacity, can also be achieved. Therefore, this hybrid material is a promising candidate for use as a high energy, long-cycle-life, and low-cost cathode material for lithium oxygen batteries.

  4. Electrochemical sensing of membrane potential and enzyme function using gallium arsenide electrodes functionalized with supported membranes.

    PubMed

    Gassull, Daniel; Ulman, Abraham; Grunze, Michael; Tanaka, Motomu

    2008-05-01

    We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp. Since Cp is governed by the capacitance of semiconductor space charge region CSC, the linear relationships obtained for 1/Cp2 vs Q and 1/Cp2 vs Ubias suggests that Cp can be used to detect the surface charges with a high sensitivity (1 charge per 18 nm2). Furthermore, the kinetics of phospholipids degradation by phospholipase A2 can also be monitored by a significant decrease in diffusion coefficients through the membrane by a factor of 104. Thus, the operation of GaAs membrane composites established here allows for electrochemical sensing of surface potential and barrier capability of biological membranes in a quantitative manner.

  5. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    NASA Technical Reports Server (NTRS)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  6. Investigation on the Charging Process of Li2O2-Based Air Electrodes in Li-O2 Batteries with Organic Carbonate Electrolytes

    SciTech Connect

    Xu, Wu; Viswanathan, Vilayanur V.; Wang, Deyu; Towne, Silas A.; Xiao, Jie; Nie, Zimin; Hu, Dehong; Zhang, Jiguang

    2011-04-15

    The charge processes of Li-O2 batteries were investigated by analyzing the gas evolution by in situ gas chromatography-mass spectroscopy (GC/MS) technique. The mixture of Li2O2/Fe3O4/Super P carbon/polyvinylidene fluoride (PVDF) was used as the starting air electrode material and 1M LiTFSI in carbonate-based solvents was used as electrolyte. It was found that Li2O2 is reactive to 1-methyl-2-pyrrolidinone and PVDF binder used in the electrode preparation. During the 1st charge (up to 4.6 V), O2 was the main component in the gases released. The amount of O2 measured by GC/MS was consistent with the amount of Li2O2 decomposed in the electrochemical process as measured by the charge capacity, indicative of the good chargeability of Li2O2. However, after the cell was discharged to 2.0 V in O2 atmosphere and re-charged to ~ 4.6 V in the second cycle, CO2 was dominant in the released gases. Further analysis of the discharged air electrode by X-ray diffraction and Fourier transform infrared spectroscopy indicated that lithium-containing carbonate species (lithium alkyl carbonate and/or Li2CO3) were the main reaction products. Therefore, compatible electrolyte and electrodes as well as the electrode preparation procedures need to be developed for long term operation of rechargeable Li-O2 or Li-air batteries.

  7. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  8. Electrodes for sealed secondary batteries

    NASA Technical Reports Server (NTRS)

    Boies, D. B.; Child, F. T.

    1972-01-01

    Self-supporting membrane electrode structures, in which active ingredients and graphite are incorporated in a polymeric matrix, improve performance of electrodes in miniature, sealed, alkaline storage batteries.

  9. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  10. 75 FR 30159 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance Requirements To Support Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ...) Out Performance Requirements To Support Air Traffic Control (ATC) Service; Final Rule #0;#0;Federal...--Broadcast (ADS-B) Out Performance Requirements To Support Air Traffic Control (ATC) Service AGENCY: Federal... air traffic control from a radar-based system to a satellite-derived aircraft location system....

  11. Manufacturing of Protected Lithium Electrodes for Advanced Lithium-Air, Lithium-Water & Lithium-Sulfur Batteries

    SciTech Connect

    Visco, Steven J

    2015-11-30

    The global demand for rechargeable batteries is large and growing rapidly. Assuming the adoption of electric vehicles continues to increase, the need for smaller, lighter, and less expensive batteries will become even more pressing. In this vein, PolyPlus Battery Company has developed ultra-light high performance batteries based on its proprietary protected lithium electrode (PLE) technology. The Company’s Lithium-Air and Lithium-Seawater batteries have already demonstrated world record performance (verified by third party testing), and we are developing advanced lithium-sulfur batteries which have the potential deliver high performance at low cost. In this program PolyPlus Battery Company teamed with Corning Incorporated to transition the PLE technology from bench top fabrication using manual tooling to a pre- commercial semi-automated pilot line. At the inception of this program PolyPlus worked with a Tier 1 battery manufacturing engineering firm to design and build the first-of-its-kind pilot line for PLE production. The pilot line was shipped and installed in Berkeley, California several months after the start of the program. PolyPlus spent the next two years working with and optimizing the pilot line and now produces all of its PLEs on this line. The optimization process successfully increased the yield, throughput, and quality of PLEs produced on the pilot line. The Corning team focused on fabrication and scale-up of the ceramic membranes that are key to the PLE technology. PolyPlus next demonstrated that it could take Corning membranes through the pilot line process to produce state-of-the-art protected lithium electrodes. In the latter part of the program the Corning team developed alternative membranes targeted for the large rechargeable battery market. PolyPlus is now in discussions with several potential customers for its advanced PLE-enabled batteries, and is building relationships and infrastructure for the transition into manufacturing. It is likely

  12. Mesoporous nanostructured Nb-doped titanium dioxide microsphere catalyst supports for PEM fuel cell electrodes.

    PubMed

    Chevallier, Laure; Bauer, Alexander; Cavaliere, Sara; Hui, Rob; Rozière, Jacques; Jones, Deborah J

    2012-03-01

    Crystalline microspheres of Nb-doped TiO(2) with a high specific surface area were synthesized using a templating method exploiting ionic interactions between nascent inorganic components and an ionomer template. The microspheres exhibit a porosity gradient, with a meso-macroporous kernel, and a mesoporous shell. The material has been investigated as cathode electrocatalyst support for polymer electrolyte membrane (PEM) fuel cells. A uniform dispersion of Pt particles on the Nb-doped TiO(2) support was obtained using a microwave method, and the electrochemical properties assessed by cyclic voltammetry. Nb-TiO(2) supported Pt demonstrated very high stability, as after 1000 voltammetric cycles, 85% of the electroactive Pt area remained compared to 47% in the case of commercial Pt on carbon. For the oxygen reduction reaction (ORR), which takes place at the cathode, the highest stability was again obtained with the Nb-doped titania-based material even though the mass activity calculated at 0.9 V vs RHE was slightly lower. The microspherical structured and mesoporous Nb-doped TiO(2) is an alternative support to carbon for PEM fuel cells.

  13. The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Noh, Ho-Sung; Yoon, Kyung Joong; Kim, Byung-Kook; Je, Hae-June; Lee, Hae-Weon; Lee, Jong-Ho; Son, Ji-Won

    2014-02-01

    Thin-film electrolytes and nanostructured electrodes are essential components for lowering the operation temperature of solid oxide fuel cells (SOFCs); however, reliably implementing thin-film electrolytes and nano-structure electrodes over a realistic SOFC platform, such as a porous anode-support, has been extremely difficult. If these components can be created reliably and reproducibly on porous substrates as anode supports, a more precise assessment of their impact on realistic SOFCs would be possible. In this work, structurally sound thin-film and nano-structured SOFC components consisting of a nano-composite NiO-yttria-stabilized zirconia (YSZ) anode interlayer, a thin YSZ and gadolinia-doped ceria (GDC) bi-layer electrolyte, and a nano-structure lanthanum strontium cobaltite (LSC)-base cathode, are sequentially fabricated on a porous NiO-YSZ anode support using thin-film technology. Using an optimized cell testing setup makes possible a more exact investigation of the potential and challenges of thin-film electrolyte and nanostructured electrode-based anode-supported SOFCs. Peak power densities obtained at 500 °C surpass 500 mW cm-2, which is an unprecedented low-temperature performance for the YSZ-based anode-supported SOFC. It is found that this critical, low-temperature performance for the anode-supported SOFC depends more on the electrode performance than the resistance of the thin-film electrolyte during lower temperature operation.

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Design and implementation of an air monitoring program in support of a brownfields redevelopment program

    SciTech Connect

    Maisel, B.E.; Hunt, G.T.; Devaney, R.J. Jr.; Gauvin, M.R.

    1998-12-31

    EPA`s Brownfields Economic Redevelopment Initiative has sparked renewal of industrial and commercial parcels otherwise idled or under-utilized because of real or perceived environmental contamination. In certain cases, restoring such parcels to productive economic use requires a redevelopment effort protective of human health and welfare through minimizing offsite migration of environmental contaminants during cleanup, demolition and remediation activities. To support these objectives, an air monitoring program is often required as an integral element of a comprehensive brownfields redevelopment effort. This paper presents a strategic framework for design and execution of an ambient air monitoring program in support of a brownfields remediation effort ongoing in Lawrence, MA. Based on site characterization, the program included sample collection and laboratory analysis of ambient air samples for polychlorinated biphenyls (PCBs), polychlorinated dibenzodioxins and polychlorinated dibenzofurans (PCDDs/PCDFs), total suspended particulate (TSP), inhalable particulate (PM10), and lead. The program included four monitoring phases, identified as background, wintertime, demolition/remediation and post-demolition. Air sampling occurred over a 16 month period during 1996--97, during which time nine sampling locations were utilized to produce approximately 1,500 ambient air samples. Following strict data review and validation procedures, ambient air data interpretation focused on the following: evaluation of upwind/downwind sample pairs, comparison of ambient levels to existing regulatory standards, relation of ambient levels to data reported in the open literature, and, determination of normal seasonal variations in existing background burden, comparison of ambient levels measured during site activity to background levels.

  16. Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposure

    PubMed Central

    2016-01-01

    The wettability of graphene is both fundamental and crucial for interfacing in most applications, but a detailed understanding of its time evolution remains elusive. Here we systematically investigate the wettability of metal-supported, chemical vapor deposited graphene films as a function of ambient air exposure time using water and various other test liquids with widely different surface tensions. The wettability of graphene is not constant, but varies with substrate interactions and air exposure time. The substrate interactions affect the initial graphene wettability, where, for instance, water contact angles of ∼85 and ∼61° were measured for Ni and Cu supported graphene, respectively, after just minutes of air exposure. Analysis of the surface free energy components indicates that the substrate interactions strongly influence the Lewis acid–base component of supported graphene, which is considerably weaker for Ni supported graphene than for Cu supported graphene, suggesting that the classical van der Waals interaction theory alone is insufficient to describe the wettability of graphene. For prolonged air exposure, the effect of physisorption of airborne contaminants becomes increasingly dominant, resulting in an increase of water contact angle that follows a universal linear-logarithmic relationship with exposure time, until saturating at a maximum value of 92–98°. The adsorbed contaminants render all supported graphene samples increasingly nonpolar, although their total surface free energy decreases only by 10–16% to about 37–41 mJ/m2. Our finding shows that failure to account for the air exposure time may lead to widely different wettability values and contradicting arguments about the wetting transparency of graphene. PMID:26900413

  17. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1993-01-01

    The TATSS Project's goal was to develop a design for computer software that would support the attainment of the following objectives for the air traffic simulation model: (1) Full freedom of movement for each aircraft object in the simulation model. Each aircraft object may follow any designated flight plan or flight path necessary as required by the experiment under consideration. (2) Object position precision up to +/- 3 meters vertically and +/- 15 meters horizontally. (3) Aircraft maneuvering in three space with the object position precision identified above. (4) Air traffic control operations and procedures. (5) Radar, communication, navaid, and landing aid performance. (6) Weather. (7) Ground obstructions and terrain. (8) Detection and recording of separation violations. (9) Measures of performance including deviations from flight plans, air space violations, air traffic control messages per aircraft, and traditional temporal based measures.

  18. The SnoDog: Preliminary design of a close air support aircraft

    NASA Technical Reports Server (NTRS)

    Ashbaugh, Scott; Bartel, Kent; Cavalli, J. R.; Chan, John; Chung, Jason; Dimaranan, Liza; Freese, Mike; Levitt, Rick; Soban, Dani

    1991-01-01

    U.S. military forces are presently searching for the next generation Close Air Support aircraft. The following report presents the SnoDog, a low-cost ($14.8 million) aircraft capable of operating from remote battlefields and unimproved airstrips. The configuration consists of a conventional, low aspect-ratio wing, twin booms, twin canted vertical stabilizers along with a high-mounted joined horizontal tail. A supercritical airfoil for the wing enhances aerodynamic performance, while the SnoDog's instability increases maneuverability over current close air support aircraft. Survivability was incorporated into the design by the use of a titanium tub to protect the cockpit from anti-aircraft artillery, as well as, the twin booms and retracted gear disposition. The booms aid survivability by supplying separated, redundant controls, and the landing gear are slightly exposed when retracted to enable a belly landing in emergencies. Designed to fly at Mach .76, the SnoDog is powered by two low-bypass turbofan engines. Engine accessibility and interchangeable parts make the SnoDog highly maintainable. The SnoDog is adaptable to many different missions, as it is capable of carrying advanced avionics pods, carrying external fuel tanks or refueling in-air, and carrying various types of munitions. This makes the SnoDog a multirole aircraft capable of air-to-air and air-to-ground combat. This combination of features make the SnoDog unique as a close air support aircraft, capable of meeting the U.S. military's future needs.

  19. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  20. Informational webinar for EPA STAR RFA on "Air, Climate and Energy (ACE) Centers: Science Supporting Solutions"

    EPA Science Inventory

    The purpose of this webinar presentation is to discuss the application process and required elements for the Air, Climate and Energy (ACE) Centers: Science Supporting Solutions RFA. EPA is seeking research on the development of sound science to systematically inform policy makers...

  1. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS SUPPORTING URBAN AIR QUALITY AND HOMELAND SECURITY

    EPA Science Inventory

    Prior to September 11, 2001 developments of Computational Fluid Dynamics (CFD) were begun to support air quality applications. CFD models are emerging as a promising technology for such assessments, in part due to the advancing power of computational hardware and software. CFD si...

  2. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS IN SUPPORT OF AIR QUALITY STUDIES INVOLVING BUILDINGS

    EPA Science Inventory

    There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...

  3. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  4. Effect of plasma treatments to graphite nanofibers supports on electrochemical behaviors of metal catalyst electrodes.

    PubMed

    Lee, Hochun; Jung, Yongju; Kim, Seok

    2012-02-01

    In the present work, we had studied the graphite nanofibers as catalyst supports after a plasma treatment for studying the effect of surface modification. By controlling the plasma intensity, a surface functional group concentration was changed. The nanoparticle size, loading efficiency, and catalytic activity were studied, after Pt-Ru deposition by a chemical reduction. Pt-Ru catalysts deposited on the plasma-treated GNFs showed the smaller size, 3.58 nm than the pristine GNFs. The catalyst loading contents were enhanced with plasma power and duration time increase, meaning an enhanced catalyst deposition efficiency. Accordingly, cyclic voltammetry result showed that the specific current density was increased proportionally till 200 W and then the value was decreased. Enhanced activity of 40 (mA mg(-1)-catalyst) was accomplished at 200 W and 180 sec duration time. Consequently, it was found that the improved electroactivity was originated from the change of size or morphology of catalysts by controlling the plasma intensity. PMID:22629990

  5. Quantitative characterizations of ultrashort echo (UTE) images for supporting air-bone separation in the head.

    PubMed

    Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S; Tsien, Christina; Feng, Mary; Grodzki, David M; Balter, James M

    2015-04-01

    Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus 'true' regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1 mm air mask expansion yielded AUC increases of 1 and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the

  6. Quantitative characterizations of ultrashort echo (UTE) images for supporting air-bone separation in the head

    NASA Astrophysics Data System (ADS)

    Hsu, Shu-Hui; Cao, Yue; Lawrence, Theodore S.; Tsien, Christina; Feng, Mary; Grodzki, David M.; Balter, James M.

    2015-04-01

    Accurate separation of air and bone is critical for creating synthetic CT from MRI to support Radiation Oncology workflow. This study compares two different ultrashort echo-time sequences in the separation of air from bone, and evaluates post-processing methods that correct intensity nonuniformity of images and account for intensity gradients at tissue boundaries to improve this discriminatory power. CT and MRI scans were acquired on 12 patients under an institution review board-approved prospective protocol. The two MRI sequences tested were ultra-short TE imaging using 3D radial acquisition (UTE), and using pointwise encoding time reduction with radial acquisition (PETRA). Gradient nonlinearity correction was applied to both MR image volumes after acquisition. MRI intensity nonuniformity was corrected by vendor-provided normalization methods, and then further corrected using the N4itk algorithm. To overcome the intensity-gradient at air-tissue boundaries, spatial dilations, from 0 to 4 mm, were applied to threshold-defined air regions from MR images. Receiver operating characteristic (ROC) analyses, by comparing predicted (defined by MR images) versus ‘true’ regions of air and bone (defined by CT images), were performed with and without residual bias field correction and local spatial expansion. The post-processing corrections increased the areas under the ROC curves (AUC) from 0.944 ± 0.012 to 0.976 ± 0.003 for UTE images, and from 0.850 ± 0.022 to 0.887 ± 0.012 for PETRA images, compared to without corrections. When expanding the threshold-defined air volumes, as expected, sensitivity of air identification decreased with an increase in specificity of bone discrimination, but in a non-linear fashion. A 1 mm air mask expansion yielded AUC increases of 1 and 4% for UTE and PETRA images, respectively. UTE images had significantly greater discriminatory power in separating air from bone than PETRA images. Post-processing strategies improved the

  7. Supercapacitor electrode based on mixtures of graphene/graphite and carbon nanotubes fabricated using a new dynamic air-brush deposition technique

    NASA Astrophysics Data System (ADS)

    Bondavalli, P.; Delfaure, C.; Pribat, D.; Legagneux, P.

    2013-09-01

    This contribution deals with the fabrication of electrode and supercapacitor cell using a new dynamic air-brush deposition technique. This method allows to achieve extremely (ou highly) uniform mats with finely tuned thickness and weight in a completely reproducible way. Using this deposition technique, we have analyzed the effect of mixture of CNTs and graphene/graphite on the electrode and cell properties (energy, power and capacitance). using a mixture of 75% of graphene/graphite and 25% of CNTs we increased the power by a factor 2.5 compared to bare CNTs based electrodes. We also analyzed the effect of the weight firstly on the capacitance and specific energy and then on the specific power. We were able to reach a specific power of 200kW/Kg and a specific energy of 9.1Wh/Kg with an electrode having a surface of 2cm2 and a weight of 0.25mg composed by 50% of CNTs and graphene/graphite (using a common aqueous electrolyte). using our deposition technique we are able to achieve supercapacitors with ad-hoc characteristics simply modulating the weight and the concentration of the mixture in a completely reproducible way.

  8. Pressurized Testing of Solid Oxide Electrolysis Stacks with Advanced Electrode-Supported Cells

    SciTech Connect

    J. E. O'Brien; X. Zhang; G. K. Housley; K. DeWall; L. Moore-McAteer; G. Tao

    2012-06-01

    A new facility has been developed at the Idaho National Laboratory for pressurized testing of solid oxide electrolysis stacks. Pressurized operation is envisioned for large-scale hydrogen production plants, yielding higher overall efficiencies when the hydrogen product is to be delivered at elevated pressure for tank storage or pipelines. Pressurized operation also supports higher mass flow rates of the process gases with smaller components. The test stand can accommodate cell dimensions up to 8.5 cm x 8.5 cm and stacks of up to 25 cells. The pressure boundary for these tests is a water-cooled spool-piece pressure vessel designed for operation up to 5 MPa. The stack is internally manifolded and operates in cross-flow with an inverted-U flow pattern. Feed-throughs for gas inlets/outlets, power, and instrumentation are all located in the bottom flange. The entire spool piece, with the exception of the bottom flange, can be lifted to allow access to the internal furnace and test fixture. Lifting is accomplished with a motorized threaded drive mechanism attached to a rigid structural frame. Stack mechanical compression is accomplished using springs that are located inside of the pressure boundary, but outside of the hot zone. Initial stack heatup and performance characterization occurs at ambient pressure followed by lowering and sealing of the pressure vessel and subsequent pressurization. Pressure equalization between the anode and cathode sides of the cells and the stack surroundings is ensured by combining all of the process gases downstream of the stack. Steady pressure is maintained by means of a backpressure regulator and a digital pressure controller. A full description of the pressurized test apparatus is provided in this paper.

  9. A Metal-Free, Free-Standing, Macroporous Graphene@g-C₃N₄ Composite Air Electrode for High-Energy Lithium Oxygen Batteries.

    PubMed

    Luo, Wen-Bin; Chou, Shu-Lei; Wang, Jia-Zhao; Zhai, Yu-Chun; Liu, Hua-Kun

    2015-06-01

    The nonaqueous lithium oxygen battery is a promising candidate as a next-generation energy storage system because of its potentially high energy density (up to 2-3 kW kg(-1)), exceeding that of any other existing energy storage system for storing sustainable and clean energy to reduce greenhouse gas emissions and the consumption of nonrenewable fossil fuels. To achieve high energy density, long cycling stability, and low cost, the air electrode structure and the electrocatalysts play important roles. Here, a metal-free, free-standing macroporous graphene@graphitic carbon nitride (g-C3N4) composite air cathode is first reported, in which the g-C3N4 nanosheets can act as efficient electrocatalysts, and the macroporous graphene nanosheets can provide space for Li2O2 to deposit and also promote the electron transfer. The electrochemical results on the graphene@g-C3N4 composite air electrode show a 0.48 V lower charging plateau and a 0.13 V higher discharging plateau than those of pure graphene air electrode, with a discharge capacity of nearly 17300 mA h g(-1)(composite) . Excellent cycling performance, with terminal voltage higher than 2.4 V after 105 cycles at 1000 mA h g(-1)(composite) capacity, can also be achieved. Therefore, this hybrid material is a promising candidate for use as a high energy, long-cycle-life, and low-cost cathode material for lithium oxygen batteries. PMID:25688745

  10. Production of atmospheric pressure diffuse nanosecond pulsed dielectric barrier discharge using the array needles-plate electrode in air

    SciTech Connect

    Yang Dezheng; Wang Wenchun; Jia Li; Nie Dongxia; Shi Hengchao

    2011-04-01

    In this paper, a bidirectional high pulse voltage with 20 ns rising time is employed to generate an atmospheric pressure diffuse dielectric barrier discharge using the array needles-plate electrode configuration. Both double needle and multiple needle electrode configurations nanosecond pulsed dielectric barrier discharges are investigated. It is found that a diffuse discharge plasma with low gas temperature can be obtained, and the plasma volume increases with the increase of the pulse peak voltage, but remains almost constant with the increase of the pulse repetition rate. In addition to showing the potential application on a topographically nonuniform surface treatment of the discharge, the multiple needle-plate electrode configuration with different needle-plate electrode gaps are also employed to generate diffuse discharge plasma.

  11. Addendum to Air Quality: Decision Support Tools, Partner Plans, Working Groups, Committees

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Frisbie, Troy; Estep, Lee

    2005-01-01

    In the original report dated February 11, 2005, the utility of NASA Earth science data in the air quality activities of other agencies and organizations was assessed by reviewing strategic and mission plans and by conducting personal interviews with agency experts to identify and investigate agencies with the potential for partnership with NASA. The overarching agency strategic plans were reviewed and commonalities such as the desire for partnerships and technology development were noted. This addendum to the original report contains such information about the Tennessee Valley Authority and will be inserted as Section 2.6 of "Air Quality: Decision Support Tools, Partner Plans, Working Groups, Committees."

  12. Addendum to Air Quality: Decision Support Tools, Partner Plans, Working Groups, Committees

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Frisbie, Troy; Estep, Lee

    2005-01-01

    In the original report dated February 11, 2005, the utility of the NASA Earth science data in the air quality activities of other agencies and organizations was assessed by reviewing strategic and mission plans and by conducting personal interviews with agency experts to identify and investigate agencies with the potential for partnership with NASA. The overarching agency strategic plans were reviewed and commonalities such as the desire for partnerships and technology development were noted. The addendum to the original report contains such information about the Tennessee Valley Authority and will be inserted in Section 2.6 of "Air Quality Decision Support Tools, Partner Plans, Working Groups, Committees".

  13. Absolute OH density measurements in an atmospheric pressure dc glow discharge in air with water electrode by broadband UV absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Xiong, Qing; Yang, Zhiqiang; Bruggeman, Peter J.

    2015-10-01

    Spatially resolved absolute OH radical density measurements are performed in an atmospheric pressure glow discharge generated in ambient air with water electrode by broadband UV absorption spectroscopy. The radial distributions of OH density and gas temperature are obtained for the positive column, anode and cathode regions both for water-cathode and water-anode discharges. It is found that for both polarities of the water electrode the radial profiles of the ground state OH density and gas temperature are significantly broader than the total discharge emission intensity and the emission intensity originating from OH(\\text{A}{}2{{\\text{ }Σ\\text{ }}+} ) only. Exceptional large OH densities exceeding 1023 m-3 are found. The OH kinetics are discussed in detail.

  14. Numerical analysis of electrochemical characteristics and heat/species transport for planar porous-electrode-supported SOFC

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhang; Yoshiba, Fumihiko; Watanabe, Takao; Weng, Shilie

    In this work, a fully three-dimensional mathematical model for planar porous-electrode-supported (PES) solid oxide fuel cell (SOFC) has been constructed to simulate the steady state electrochemical characteristics and multi-species/heat transport. The variation of chemical species concentrations, temperature, potential, current and current density for two types of PES-SOFC developed by central research institute of electric power industry (CRIEPI) of Japan are studied in the co-flow pattern. In the numerical computation, the governing equations for continuity, momentum, mass, energy and electrical charge conservation are solved simultaneously using the finite volume method. Activation, ohmic, and concentration polarizations are considered as the main sources of irreversibility. The Butler-Volmer equation, Ohm's law, and Darcy's gas model with constant porosity and permeability are used to determine the polarization over-potential, respectively. The output voltages measured in experiments and calculated using the above models agree well. For the cell using the same material and manufacturing process, the results show the type-II PES-SOFC is with better performance. However, the electrolyte of type-II PES-SOFC should be with higher maximum ionic conductivity. Furthermore, these results will be used to evaluate the overall performance of a PES-SOFC stack, and to significantly help optimize their design and operation in practical applications.

  15. Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays.

    PubMed

    Deng, Yang; Wang, Yini; Holtz, Bryan; Li, Jingyi; Traaseth, Nathan; Veglia, Gianluigi; Stottrup, Benjamin J; Elde, Robert; Pei, Duanqing; Guo, Athena; Zhu, X-Y

    2008-05-14

    As drug delivery, therapy, and medical imaging are becoming increasingly cell-specific, there is a critical need for high fidelity and high-throughput screening methods for cell surface interactions. Cell membrane-mimicking surfaces, i.e., supported lipid bilayers (SLBs), are currently not sufficiently robust to meet this need. Here we describe a method of forming fluidic and air-stable SLBs through tethered and dispersed cholesterol groups incorporated into the bottom leaflet. Achieving air stability allows us to easily fabricate SLB microarrays from direct robotic spotting of vesicle solutions. We demonstrate their application as cell membrane-mimicking microarrays by reconstituting peripheral as well as integral membrane components that can be recognized by their respective targets. These demonstrations establish the viability of the fluidic and air-stable SLB platform for generating content microarrays in high throughput studies, e.g., the screening of drugs and nanomedicine targeting cell surface receptors.

  16. Soil-based filtration technology for air purification: potentials for environmental and space life support application

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Bohn, Hinrich

    Soil biofiltration, also known as Soil bed reactor (SBR), technology was originally developed in Germany to take advantage of the diversity in microbial mechanisms to control gases producing malodor in industrial processes. The approach has since gained wider international acceptance and seen numerous improvements, for example, by the use of high-organic compost beds to maximize microbial processes. This paper reviews the basic mechanisms which underlay soil processes involved in air purification, advantages and limitations of the technology and the cur-rent research status of the approach. Soil biofiltration has lower capital and operating/energetic costs than conventional technologies and is well adapted to handle contaminants in moderate concentrations. The systems can be engineered to optimize efficiency though manipulation of temperature, pH, moisture content, soil organic matter and airflow rates. SBR technology was modified for application in the Biosphere 2 project, which demonstrated in preparatory research with a number of closed system testbeds that soil could also support crop plants while also serving as soil filters with air pumps to push air through the soil. This Biosphere 2 research demonstrated in several closed system testbeds that a number of important trace gases could be kept under control and led to the engineering of the entire agricultural soil of Biosphere 2 to serve as a soil filtration unit for the facility. Soil biofiltration, coupled with food crop produc-tion, as a component of bioregenerative space life support systems has the advantages of lower energy use and avoidance of the consumables required for other air purification approaches. Expanding use of soil biofiltration can aid a number of environmental applications, from the mitigation of indoor air pollution, improvement of industrial air emissions and prevention of accidental release of toxic gases.

  17. Fire hazards analysis of the Radioactive Waste Management Complex Air Support Buildings

    SciTech Connect

    Davis, M.L.; Satterwhite, D.G.

    1989-09-01

    This report describes the methods, analyses, results, and conclusions of a fire hazards risk analysis performed for the RWMC Air Support Buildings. An evaluation of the impact for adding a sprinkler system is also presented. Event and fault trees were used to model and analyze the waste storage process. Tables are presented indicating the fire initiators providing the highest potential for release of radioactive materials into the environment. Engineering insights drawn form the data are also provided.

  18. Proposal for a low cost close air support aircraft for the year 2000: The Raptor

    NASA Technical Reports Server (NTRS)

    Brown, Jerome D.; Dewitt, Ward S.; Mcdonald, Mark; Riley, John W.; Roberts, Anthony E.; Watson, Sean; Whelan, Margaret M.

    1991-01-01

    The Raptor is a proposed low cost Close Air Support (CAS) aircraft for the U.S. Military. The Raptor incorporates a 'cranked arrow' wing planform, and uses canards instead of a traditional horizontal tail. The Raptor is designed to be capable of responsive delivery of effective ordnance in close proximity to friendly ground forces during the day, night, and 'under the weather' conditions. Details are presented of the Raptor's mission, configuration, performance, stability and control, ground support, manufacturing, and overall cost to permit engineering evaluation of the proposed design. A description of the design process and analysis methods used is also provided.

  19. Copper indium disulfide nanocrystals supported on carbonized chicken eggshell membranes as efficient counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Lidan; He, Jianxin; Zhou, Mengjuan; Zhao, Shuyuan; Wang, Qian; Ding, Bin

    2016-05-01

    A domestic waste, chicken eggshell membrane (ESM), is used as a raw material to fabricate carbonized ESM loaded with chalcopyrite CuInS2 nanocrystals (denoted CESM-CuInS2) by a simple liquid impregnation and carbonization method. The CESM-CuInS2 composite possesses a natural three-dimensional macroporous network structure in which numerous CuInS2 nanocrystals with a size of about 25 nm are inlaid in carbon submicron fibers that form a microporous network. The CESM-CuInS2 composite is used as the counter electrode in a dye-sensitized solar cell (DSSC) and its photoelectric performance is tested. The DSSC with a CESM-CuInS2 counter electrode exhibits a short-circuit current density of 12.48 mA cm-2, open-circuit voltage of 0.78 V and power conversion efficiency of 5.8%; better than the corresponding values for a DSSC with a CESM counter electrode, and comparable to that of a reference DSSC with a platinum counter electrode. The favorable photoelectric performance of the CESM-CuInS2 counter electrode is attributed to its hierarchical structure, which provides a large specific surface area and numerous catalytically active sites to facilitate the oxidation of the electrolyte. This new composite material has many advantages, such as low cost and simple preparation, compared with Pt and pure CuInS2 counter electrodes.

  20. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.

    PubMed

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture. PMID:20566288

  1. Scalable air cathode microbial fuel cells using glass fiber separators, plastic mesh supporters, and graphite fiber brush anodes.

    PubMed

    Zhang, Xiaoyuan; Cheng, Shaoan; Liang, Peng; Huang, Xia; Logan, Bruce E

    2011-01-01

    The combined use of brush anodes and glass fiber (GF1) separators, and plastic mesh supporters were used here for the first time to create a scalable microbial fuel cell architecture. Separators prevented short circuiting of closely-spaced electrodes, and cathode supporters were used to avoid water gaps between the separator and cathode that can reduce power production. The maximum power density with a separator and supporter and a single cathode was 75 ± 1 W/m(3). Removing the separator decreased power by 8%. Adding a second cathode increased power to 154 ± 1 W/m(3). Current was increased by connecting two MFCs connected in parallel. These results show that brush anodes, combined with a glass fiber separator and a plastic mesh supporter, produce a useful MFC architecture that is inherently scalable due to good insulation between the electrodes and a compact architecture.

  2. [The main ways of improvement of medical support of the Air Forces in modern conditions].

    PubMed

    Blaginin, A A; Grebeniuk, A N; Lizogub, I N

    2014-02-01

    Blaginin A.A., Grebenyuk A.N., Lizogub LN. - The main ways of improvement of medical support of the Air Forces in modern conditions. Aircrew conducting active hostilities suffers from the whole spectrum of factors and conditions of the combat situation. The main task for the medical service of the Air Force is to carry out preventive and curative action for aviation specialists who are responsible for the combat capability of aircraft formations. The medical service of the Air Force must have forces and facilities for planning, organization and implementation of the treatment of lightly wounded and sick aviation professionals with short periods of recovery, medical rehabilitation of aircrew qfter suffering injuries, diseases, sanatorium therapy of aircrew with partial failure of health, outpatient and inpatient medical examination aircrew - flight commissions, preventive rest of aviation specialists with symptoms of chronic fatigue. Should be trained aviation physicians, including both basic military medical education and in-depth study of the medical aspects of various fields of personnel of the Air Force. PMID:25046924

  3. Closed-loop Habitation Air Revitalization Model for Regenerative Life Support Systems

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1991-01-01

    The primary function of any life support system is to keep the crew alive by providing breathable air, potable water, edible food, and for disposal of waste. In a well-balanced or regenerative life support system, the various components are each using what is available and producing what is needed by other components so that there will always be enough chemicals in the form in which they are needed. Humans are not just users, but also one of the participating parts of the system. If a system could continuously recycle the original chemicals, this would make it virtually a Closed-loop Habitation (CH). Some difficulties in trying to create a miniature version of a CH are briefly discussed. In a miniature CH, a minimal structure must be provided and the difference must be made up by artificial parts such as physicochemical systems that perform the conversions that the Earth can achieve naturally. To study the interactions of these parts, a computer model was designed that simulates a miniature CH with emphasis on the air revitalization part. It is called the Closed-loop Habitation Air Revitalization Model (CHARM).

  4. Understanding and Supporting Web Developers: Design and Evaluation of a Web Accessibility Information Resource (WebAIR).

    PubMed

    Swallow, David; Petrie, Helen; Power, Christopher

    2016-01-01

    This paper describes the design and evaluation of a Web Accessibility Information Resource (WebAIR) for supporting web developers to create and evaluate accessible websites. WebAIR was designed with web developers in mind, recognising their current working practices and acknowledging their existing understanding of web accessibility. We conducted an evaluation with 32 professional web developers in which they used either WebAIR or an existing accessibility information resource, the Web Content Accessibility Guidelines, to identify accessibility problems. The findings indicate that several design decisions made in relation to the language, organisation, and volume of WebAIR were effective in supporting web developers to undertake web accessibility evaluations.

  5. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  6. Measuring critical care air support teams' performance during extended periods of duty.

    PubMed

    Lamb, Di

    2010-01-01

    The Royal Air Force (RAF) Critical Care Air Support Teams (CCASTs) aeromedically evacuate seriously injured service personnel. Long casualty evacuation chains create logistical constraints that must be considered when aeromedically evacuating patients. One constraint is the length of a CCAST mission and its potential effect on team member performance. Despite no evidence of patient care compromise, the RAF has commissioned a study to investigate whether CCAST mission length influences performance. Describing and understanding the role of a CCAST enabled fatigue to be defined. Factors essential to studying fatigue were then identified that were used to develop a theoretical model for designing a study to measure the effects of fatigue on CCAST performance. Relevant factors include the patient's clinical condition, team members' cognition and vigilance levels, and the occupational aviation environment. Further factors influencing overall performance include the duration and complexity of patient interventions, mission length, circadian influences, and fatigue countermeasures. PMID:20683231

  7. [Elevated air temperatures tolerance of chufa (Cyperus esculentus L.), a phototroph component of life support systems].

    PubMed

    Shklavtsova, E S; Ushakova, S A; Shikhov, V N

    2011-01-01

    Resistance of biotechnical life support systems (BTLSS) to stress-factors depends, in addition to some other conditions, on tolerance of higher plants as part of the photosynthesizing component. Purpose of the investigations with chufa Cyperus esculentus L. cultivation on mineralized solid and liquid human wastes (according to Yu. Kudenko) was to test plant tolerance of air temperature rise to 45 degrees C. Tolerance was assessed as a function of nitrogen form in nutrient solutions and PAR intensity during thermal shock. PAR intensity was controlled at 150 W/m2 and air temperature--at 25 degrees C. Thermal shock was induced in 30-day plants with PAR = 150 or 250 W/m2. Twenty hours at 45 degrees C did not cause irreversible damage of the plant photosynthetic apparatus. Higher PAR intensity (250 W/m2) and nitrates in nutrient solution mitigates substantially the damaging effect of the stress factor PMID:21848217

  8. Bridging Oriented Copper Nanowire-Graphene Composites for Solution-Processable, Annealing-Free, and Air-Stable Flexible Electrodes.

    PubMed

    Zhang, Wang; Yin, Zhenxing; Chun, Alvin; Yoo, Jeeyoung; Kim, Youn Sang; Piao, Yuanzhe

    2016-01-27

    One-dimensional flexible metallic nanowires (NWs) are of considerable interest for next-generation wearable devices. The unavoidable challenge for a wearable electrode is the assurance of high conductivity, flexibility, and durability with economically feasible materials and simple manufacturing processes. Here, we use a straightforward solvothermal method to prepare a flexible conductive material that contains reduced graphene oxide (RGO) nanosheets bridging oriented copper NWs. The GO-assistance route can successfully meet the criteria listed above and help the composite films maintain high conductivity and durable flexibility without any extra treatment, such as annealing or acid processes. The composite film exhibits a high electrical performance (0.808 Ω·sq(-1)) without considerable change over 30 days under ambient conditions. Moreover, the Cu NW-RGO composites can be deposited on polyester cloth as a lightweight wearable electrode with high durability and simple processability and are very promising for a wide variety of electronic devices. PMID:26720592

  9. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  10. Preliminary design of a family of three close air support aircraft

    NASA Technical Reports Server (NTRS)

    Cox, Brian; Darrah, Paul; Lussier, Wayne; Mills, Nikos

    1989-01-01

    A family of three Close Air Support aircraft is presented. These aircraft are designed with commonality as the main design objective to reduce the life cycle cost. The aircraft are low wing, twin-boom, pusher turbo-prop configurations. The amount of information displayed to the pilot was reduced to a minimum to greatly simplify the cockpit. The aircraft met the mission specifications and the performance and cost characteristics compared well with other CAS aircraft. The concept of a family of CAS aircraft seems viable after preliminary design.

  11. Zinc-air battery: understanding the structure and morphology changes of graphene-supported CoMn(2)O(4) bifunctional catalysts under practical rechargeable conditions.

    PubMed

    Prabu, Moni; Ramakrishnan, Prakash; Nara, Hiroki; Momma, Toshiyuki; Osaka, Tetsuya; Shanmugam, Sangaraju

    2014-10-01

    Nitrogen-doped/undoped thermally reduced graphene oxide (N-rGO) decorated with CoMn2O4 (CMO) nanoparticles were synthesized using a simple one-step hydrothermal method. The activity and stability of this hybrid catalyst were evaluated by preparing air electrodes with both primary and rechargeable zinc-air batteries that consume ambient air. Further, we investigated the relationship between the physical properties and the electrochemical results for hybrid electrodes at various cycles using X-ray diffraction, scanning electron microscopy, galvanodynamic charge-discharging and electrochemical impedance spectroscopy. The structural, morphological and electrocatalytic performances confirm that CMO/N-rGO is a promising material for safe, reliable, and long-lasting air cathodes for both primary and rechargeable zinc-air batteries that consume air under ambient condition. PMID:25192132

  12. An Air Revitalization Model (ARM) for Regenerative Life Support Systems (RLSS)

    NASA Technical Reports Server (NTRS)

    Hart, Maxwell M.

    1990-01-01

    The primary objective of the air revitalization model (ARM) is to determine the minimum buffer capacities that would be necessary for long duration space missions. Several observations are supported by the current configuration sizes: the baseline values for each gas and the day to day or month to month fluctuations that are allowed. The baseline values depend on the minimum safety tolerances and the quantities of life support consumables necessary to survive the worst case scenarios within those tolerances. Most, it not all, of these quantities can easily be determined by ARM once these tolerances are set. The day to day fluctuations also require a command decision. It is already apparent from the current configuration of ARM that the tighter these fluctuations are controlled, the more energy used, the more nonregenerable hydrazine consumed, and the larger the required capacities for the various gas generators. All of these relationships could clearly be quantified by one operational ARM.

  13. Local Voltage Support from Distributed Energy Resources to Prevent Air Conditioner Motor Stalling

    SciTech Connect

    Baone, Chaitanya A; Xu, Yan; Kueck, John D

    2010-01-01

    Microgrid voltage collapse often happens when there is a high percentage of low inertia air-conditioning (AC) motors in the power systems. The stalling of the AC motors results in Fault Induced Delayed Voltage Recovery (FIDVR). A hybrid load model including typical building loads, AC motor loads, and other induction motor loads is built to simulate the motoring stalling phenomena. Furthermore, distributed energy resources (DE) with local voltage support capability are utilized to boost the local bus voltage during a fault, and prevent the motor stalling. The simulation results are presented. The analysis of the simulation results show that local voltage support from multiple DEs can effectively and economically solve the microgrid voltage collapse problem.

  14. Illustrations and Supporting Texts for Sound Standing Waves of Air Columns in Pipes in Introductory Physics Textbooks

    ERIC Educational Resources Information Center

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-01-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on…

  15. Multi-objective optimization to support rapid air operations mission planning

    NASA Astrophysics Data System (ADS)

    Gonsalves, Paul G.; Burge, Janet E.

    2005-05-01

    Within the context of military air operations, Time-sensitive targets (TSTs) are targets where modifiers such, "emerging, perishable, high-payoff, short dwell, or highly mobile" can be used. Time-critical targets (TCTs) further the criticality of TSTs with respect to achievement of mission objectives and a limited window of opportunity for attack. The importance of TST/TCTs within military air operations has been met with a significant investment in advanced technologies and platforms to meet these challenges. Developments in ISR systems, manned and unmanned air platforms, precision guided munitions, and network-centric warfare have made significant strides for ensuring timely prosecution of TSTs/TCTs. However, additional investments are needed to further decrease the targeting decision cycle. Given the operational needs for decision support systems to enable time-sensitive/time-critical targeting, we present a tool for the rapid generation and analysis of mission plan solutions to address TSTs/TCTs. Our system employs a genetic algorithm-based multi-objective optimization scheme that is well suited to the rapid generation of approximate solutions in a dynamic environment. Genetic Algorithms (GAs) allow for the effective exploration of the search space for potentially novel solutions, while addressing the multiple conflicting objectives that characterize the prosecution of TSTs/TCTs (e.g. probability of target destruction, time to accomplish task, level of disruption to other mission priorities, level of risk to friendly assets, etc.).

  16. Use of UAS to Support Management in Precision Agriculture: The AggieAir Experience

    NASA Astrophysics Data System (ADS)

    McKee, M.; Torres-Rua, A. F.; ELarab, M.; Hassan Esfahani, L.; Jensen, A.

    2015-12-01

    Remote sensing applications for precision agriculture depend on acquiring actionable information at high spatial resolution and at a temporal frequency appropriate for timely responses. Unmanned aerial systems (UAS) are capable of providing such imagery for use in various applications for precision agriculture (yield estimation, evapotranspiration, etc.). AggieAirTM, a UAS platform and sensory array, was designed and developed at Utah State University to acquire high-resolution imagery (0.15m -0.6 m) in the visual, near infrared, red edge, and thermal infrared spectra. Spectral data obtained from AggieAir are used to develop soil moisture, plant chlorophyll, leaf nitrogen and actual evapotranspiration estimates to support management in precision agriculture. This presentation will focus on experience in using the AggieAir system to provide information products of possible interest in precision agriculture. The discussion will include information about the direction and rate of development of UAS technology and the current and anticipated future state of the regulatory environment for use of these systems in the U.S.

  17. Development of an Aura Chemical Reanalysis in support Air Quality Applications

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.; Lenzen, A.; Schaack, T.

    2015-12-01

    We present results of chemical data assimilation experiments utilizing the NOAA National Environmental Satellite, Data, and Information Service (NESDIS), University of Wisconsin Space Science and Engineering (SSEC) Real-time Air Quality Modeling System (RAQMS) in conjunction with the NOAA National Centers for Environmental Prediction (NCEP) Operational Gridpoint Statistical Interpolation (GSI) 3-dimensional variational data assimilation system. The impact of assimilating NASA Ozone Monitoring Instrument (OMI) total column ozone, OMI tropospheric nitrogen dioxide columns, and Microwave Limb Sounder (MLS) stratospheric ozone profiles on background ozone is assessed using measurements from the 2010 NSF High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observation (HIPPO) and NOAA California Nexus (CalNex) campaigns. Results show that the RAQMS/GSI Chemical Reanalysis is able to provide very good estimates of background ozone and large-scale ozone variability and is suitable for use in constraining regional air quality modeling activities. These experiments are being used to guide the development of a multi-year global chemical and aerosol reanalysis using NASA Aura and A-Train measurements to support air quality applications.

  18. An adhesive conducting electrode material based on commercial mesoporous titanium dioxide as a support for Horseradish peroxidase for bioelectrochemical applications.

    PubMed

    Rahemi, Vanoushe; Trashin, Stanislav; Meynen, Vera; De Wael, Karolien

    2016-01-01

    An adhesive conducting electrode material containing of graphite, biocompatible ion exchange polymer nafion(®) and commercial mesoporous TiO2 impregnated with horseradish peroxidase (HRP) is prepared and characterized by amperometric, UV-vis and N2 sorption methods. The factors influencing the performance of the resulting biosensor are studied in detail. The optimal electrode material consists of 45% graphite, 50% impregnated HRP-TiO2 and 5% nafion(®). The optimum conditions for H2O2 reduction are an applied potential of -0.3 V and 0.1 mM hydroquinone. Sensitivity and limit of detection in the optimum conditions are 1 A M(-1) cm(-2) and 1 µM correspondingly. The N2 sorption results show that the pore volume of TiO2 decreases sharply upon adsorption of HRP. The preparation process of the proposed enzyme electrode is straightforward and potentially can be used for preparation of carbon paste electrodes for bioelectrochemical detections. PMID:26695318

  19. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.

    PubMed

    Jabeen, Nawishta; Xia, Qiuying; Yang, Mei; Xia, Hui

    2016-03-01

    Polyaniline (PANI), one of the most attractive conducting polymers for supercapacitors, demonstrates a great potential as high performance pseudocapacitor materials. However, the poor cycle life owing to structural instability remains as the major hurdle for its practical application; hence, making the structure-to-performance design on the PANI-based supercapacitors is highly desirable. In this work, unique core-shell NiCo2O4@PANI nanorod arrays (NRAs) are rationally designed and employed as the electrode material for supercapacitors. With highly porous NiCo2O4 as the conductive core and strain buffer support and nanoscale PANI layer as the electrochemically active component, such a heterostructure achieves favorably high capacitance while maintaining good cycling stability and rate capability. By adopting the optimally uniform and intimate coating of PANI, the fabricated electrode exhibits a high specific capacitance of 901 F g(-1) at 1 A g(-1) in 1 M H2SO4 electrolyte and outstanding capacitance retention of ∼91% after 3000 cycles at a high current density of 10 A g(-1), which is superior to the electrochemical performance of most reported PANI-based pseudocapacitors in literature. The enhanced electrochemical performance demonstrates the complementary contributions of both componential structures in the hybrid electrode design. Also, this work propels a new direction of utilizing porous matrix as the highly effective support for polymers toward efficient energy storage.

  20. Fisk-based criteria to support validation of detection methods for drinking water and air.

    SciTech Connect

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  1. Commentary: Is the Air Pollution Health Research Community Prepared to Support a Multipollutant Air Quality Management Framework?

    EPA Science Inventory

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively “multipollutant” manne...

  2. Capacitive de-ionization electrode

    SciTech Connect

    Daily, III, William D.

    2013-03-19

    An electrode "cell" for use in a capacitive deionization (CDI) reactor consists of the electrode support structure, a non-reactive conductive material, the electrode accompaniment or substrate and a flow through screen/separator. These "layers" are repeated and the electrodes are sealed together with gaskets between two end plates to create stacked sets of alternating anode and cathode electrodes in the CDI reactor.

  3. Coupled modeling of water transport and air-droplet interaction in the electrode of a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Pianese, Cesare; Guezennec, Yann G.

    In this work, an accurate and computationally fast model for liquid water transport within a proton exchange membrane fuel cell (PEMFC) electrode is developed by lumping the space-dependence of the relevant variables. Capillarity is considered as the main transport mechanism within the gas diffusion layer (GDL). The novelty of the model lies in the coupled simulation of the water transport at the interface between gas diffusion layer and gas flow channel (GFC). This is achieved with a phenomenological description of the process that allows its simulation with relative simplicity. Moreover, a detailed two-dimensional visualization of such interface is achieved via geometric simulation of water droplets formation, growth, coalescence and detachment on the surface of the GDL. The model is useful for optimization analysis oriented to both PEMFC design and balance of plant. Furthermore, the accomplishment of reduced computational time and good accuracy makes the model suitable for control strategy implementation to ensure PEM fuel cells operation within optimal electrode water content.

  4. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  5. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes

    PubMed Central

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H+ to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H+, and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m2). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  6. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes.

    PubMed

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-06-23

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter.

  7. A solvent-free microbial-activated air cathode battery paper platform made with pencil-traced graphite electrodes.

    PubMed

    Lee, Seung Ho; Ban, Ju Yeon; Oh, Chung-Hun; Park, Hun-Kuk; Choi, Samjin

    2016-01-01

    We present the fabrication of an ultra-low cost, disposable, solvent-free air cathode all-paper microbial fuel cell (MFC) that does not utilize any chemical treatments. The anode and cathode were fabricated by depositing graphite particles by drawing them on paper with a pencil (four strokes). Hydrophobic parchment paper was used as a proton exchange membrane (PEM) to allow only H(+) to pass. Air cathode MFC technology, where O2 was used as an electron acceptor, was implemented on the paper platform. The bioelectric current was generated by an electrochemical process involving the redox couple of microbial-activated extracellular electron transferred electrons, PEM-passed H(+), and O2 in the cathode. A fully micro-integrated pencil-traced MFC showed a fast start-time, producing current within 10 s after injection of bacterial cells. A single miniaturized all-paper air cathode MFC generated a maximum potential of 300 mV and a maximum current of 11 μA during 100 min after a single injection of Shewanella oneidensis. The micro-fabricated solvent-free air cathode all-paper MFC generated a power of 2,270 nW (5.68 mW/m(2)). The proposed solvent-free air cathode paper-based MFC device could be used for environmentally-friendly energy storage as well as in single-use medical power supplies that use organic matter. PMID:27333815

  8. Effect of pH in a Pd-based ethanol membraneless air breathing nanofluidic fuel cell with flow-through electrodes

    NASA Astrophysics Data System (ADS)

    López-Rico, C. A.; Galindo-de-la-Rosa, J.; Ledesma-García, J.; Arriaga, L. G.; Guerra-Balcázar, M.; Arjona, N.

    2015-12-01

    In this work, a nanofluidic fuel cell (NFC) in which streams flow through electrodes was used to investigate the role of pH in the cell performance using ethanol as fuel and two Pd nanoparticles as electrocatalysts: one commercially available (Pd/C from ETEK) and other synthesized using ionic liquids (Pd/C IL). The cell performances for both electrocatalysts in acid/acid (anodic/cathodic) streams were of 18.05 and 9.55 mW cm-2 for Pd/C ETEK and Pd/C IL. In alkaline/alkaline streams, decrease to 15.94 mW cm-2 for Pd/C ETEK and increase to 15.37 mW cm-2 for Pd/C IL. In alkaline/acidic streams both electrocatalysts showed similar cell voltages (up to 1 V); meanwhile power densities were of 87.6 and 99.4 mW cm-2 for Pd/C ETEK and Pd/C IL. The raise in cell performance can be related to a decrease in activation losses, the combined used of alkaline and acidic streams and these high values compared with flow-over fuel cells can be related to the enhancement of the cathodic mass transport by using three dimensional porous electrodes and two sources of oxygen: from air and from a saturated solution.

  9. Electrode electrolyte interlayers containing cerium oxide for electrochemical fuel cells

    DOEpatents

    Borglum, Brian P.; Bessette, Norman F.

    2000-01-01

    An electrochemical cell is made having a porous fuel electrode (16) and a porous air electrode (13), with solid oxide electrolyte (15) therebetween, where the air electrode surface opposing the electrolyte has a separate, attached, dense, continuous layer (14) of a material containing cerium oxide, and where electrolyte (16) contacts the continuous oxide layer (14), without contacting the air electrode (13).

  10. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOEpatents

    Liu, Di-Jia; Yang, Junbing

    2012-03-20

    A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.

  11. Scalable Fabrication of Nanoporous Carbon Fiber Films as Bifunctional Catalytic Electrodes for Flexible Zn-Air Batteries.

    PubMed

    Liu, Qin; Wang, Yaobing; Dai, Liming; Yao, Jiannian

    2016-04-20

    A flexible nanoporous carbon-fiber film for wearable electronics is prepared by a facile and scalable method through pyrolysis of electrospun polyimide. It exhibits excellent bifunctional electrocatalytic activities for oxygen reduction and oxygen evolution. Flexible rechargeable zinc-air batteries based on the carbon-fiber film show high round-trip efficiency and mechanical stability.

  12. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples. PMID:27619087

  13. 3D nanoporous gold scaffold supported on graphene paper: Freestanding and flexible electrode with high loading of ultrafine PtCo alloy nanoparticles for electrochemical glucose sensing.

    PubMed

    Zhao, Anshun; Zhang, Zhaowei; Zhang, Penghui; Xiao, Shuang; Wang, Lu; Dong, Yue; Yuan, Hao; Li, Peiwu; Sun, Yimin; Jiang, Xueliang; Xiao, Fei

    2016-09-28

    Recent advances in on-body wearable medical apparatus and implantable devices drive the development of light-weight and bendable electrochemical sensors, which require the design of high-performance flexible electrode system. In this work, we reported a new type of freestanding and flexible electrode based on graphene paper (GP) supported 3D monolithic nanoporous gold (NPG) scaffold (NPG/GP), which was further modified by a layer of highly dense, well dispersed and ultrafine binary PtCo alloy nanoparticles via a facile and effective ultrasonic electrodeposition method. Our results demonstrated that benefited from the synergistic effect of the electrocatalytically active PtCo alloy nanoparticles, the large-active-area and highly conductive 3D NPG scaffold, and the mechanically strong and stable GP electrode substrate, the resultant PtCo alloy nanoparticles modified NPG/GP (PtCo/NPG/GP) exhibited high mechanical strength and good electrochemical sensing performances toward nonenzymatic detection of glucose, including a wide linear range from 35 μM- to 30 mM, a low detection limit of 5 μM (S/N = 3) and a high sensitivity of 7.84 μA cm(-2) mM(-1) as well as good selectivity, long-term stability and reproducibility. The practical application of the proposed PtCo/NPG/GP has also been demonstrated in in vitro detection of blood glucose in real clinic samples.

  14. Hygienic support of the ISS air quality (main achievements and prospects)

    NASA Astrophysics Data System (ADS)

    Moukhamedieva, Lana; Tsarkov, Dmitriy; Pakhomova, Anna

    Hygienic preventive measures during pre-flight processing of manned spaceships, selection of polymeric materials, sanitary-hygienic evaluation of cargo and scientific hardware to be used on the ISS and life support systems allow to maintain air quality in limits of regulatory requirements. However, graduate increase of total air contamination by harmful chemicals is observed as service life of the ISS gets longer. It is caused by polymeric materials used on the station overall quantity rise, by additional contamination brought by cargo spacecrafts and modules docking to the ISS and by the cargo. At the same time the range of contaminants that are typical for off-gassing from polymeric materials where modern stabilizers, plasticizers, flame retarders and other additives are used gets wider. In resolving the matters of the ISS service life extension the main question of hygienic researches is to determine real safe operation life of the polymeric material used in structures and hardware of the station, including: begin{itemize} research of polymers degradation (ageing) and its effect on intensity of off gassing and its toxicity; begin{itemize} introduction of polymers with minimal volatile organic compounds off gassing under conditions of space flight and thermal-oxidative degradation. In order to ensure human safety during long-term flight it is important to develop: begin{itemize} real-time air quality monitoring systems, including on-line analysis of highly toxic contaminants evolving during thermo-oxidative degradation of polymer materials and during blowouts of toxic contaminants; begin{itemize} hygienic standards of contaminants level for extended duration of flight up to 3 years. It is essential to develop an automated control system for on-line monitoring of toxicological status and to develop hygienic and engineer measures of its management in order to ensure crew members safety during off-nominal situation.

  15. Support vector data description for detecting the air-ground interface in ground penetrating radar signals

    NASA Astrophysics Data System (ADS)

    Wood, Joshua; Wilson, Joseph

    2011-06-01

    In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest return in an A-scan is from the reflection due to the ground and to use that as the location of the interface. However there are many situations, such as the presence of nose clutter or shallow sub-surface objects, that can cause the global maximum estimate to be incorrect. A Support Vector Data Description (SVDD) is a one-class classifier related to the SVM which encloses the class in a hyper-sphere as opposed to using a hyper-plane as a decision boundary. We apply SVDD to the problem of detection of the air-ground interface by treating each sample in an A-scan, with some number of leading and trailing samples, as a feature vector. Training is done using a set of feature vectors based on known interfaces and detection is done by creating feature vectors from each of the samples in an A-scan, applying the trained SVDD to them and selecting the one with the least distance from the center of the hyper-sphere. We compare this approach with the global maximum approach, examining both the performance on human truthed data and how each method affects false alarm and true positive rates when used as the alignment method in mine detection algorithms.

  16. Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian

    2016-10-01

    High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.

  17. A hierarchical three-dimensional NiCo2O4 nanowire array/carbon cloth as an air electrode for nonaqueous Li-air batteries.

    PubMed

    Liu, Wei-Ming; Gao, Ting-Ting; Yang, Yin; Sun, Qian; Fu, Zheng-Wen

    2013-10-14

    A 3D NiCo2O4 nanowire array/carbon cloth (NCONW/CC) was employed as the cathode for Li-air batteries with a non-aqueous electrolyte. After its discharge, novel porous ball-like Li2O2 was found to be deposited on the tip of NiCo2O4 nanowires. The special structure of Li2O2 and active sites of catalysts are also discussed.

  18. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    SciTech Connect

    Malík, M. Primas, J.; Kopecký, V.; Svoboda, M.

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  19. UV/ozone treated Au for air-stable, low hole injection barrier electrodes in organic electronics

    SciTech Connect

    Rentenberger, S.; Vollmer, A.; Zojer, E.; Schennach, R.; Koch, N.

    2006-09-01

    Ultraviolet and x-ray photoelectron spectroscopies were used to study electronic properties of interfaces between Au substrates and a number of organic semiconductors (small molecules and polymers). Au surface work function ({phi}) values before organic deposition were {approx}4.7 eV (exposed to air), {approx}5.2 eV (atomically clean), and {approx}5.5 eV (UV/ozone treated). The high {phi} obtained for UV/O{sub 3} treated Au was due to Au oxide formation and surface-adsorbed carbon and oxygen species. Au surface morphology remained essentially unchanged by UV/ozone exposure, as observed by atomic force microscopy. Hole injection barriers (HIBs) at interfaces between UV/ozone treated Au and the organic semiconductors were systematically lower than those for untreated Au (both atomically clean and air exposed). Reductions in HIB of up to 1.4 eV (for p-sexiphenyl) were achieved. In addition, good long-term stability of reduced HIBs of such interfaces was observed for air storage of up to several days.

  20. Conceptual air sparging decision tool in support of the development of an air sparging optimization decision tool

    SciTech Connect

    1995-09-01

    The enclosed document describes a conceptual decision tool (hereinafter, Tool) for determining applicability of and for optimizing air sparging systems. The Tool was developed by a multi-disciplinary team of internationally recognized experts in air sparging technology, lead by a group of project and task managers at Parsons Engineering Science, Inc. (Parsons ES). The team included Mr. Douglas Downey and Dr. Robert Hinchee of Parsons ES, Dr. Paul Johnson of Arizona State University, Dr. Richard Johnson of Oregon Graduate Institute, and Mr. Michael Marley of Envirogen, Inc. User Community Panel Review was coordinated by Dr. Robert Siegrist of Colorado School of Mines (also of Oak Ridge National Laboratory) and Dr. Thomas Brouns of Battelle/Pacific Northwest Laboratory. The Tool is intended to provide guidance to field practitioners and environmental managers for evaluating the applicability and optimization of air sparging as remedial action technique.

  1. Compressed air energy storage monitoring to support refrigerated mined rock cavern technology.

    SciTech Connect

    Lee, Moo Yul; Bauer, Stephen J.

    2004-06-01

    This document is the final report for the Compressed Air Energy Storage Monitoring to Support Refrigerated-Mined Rock Cavern Technology (CAES Monitoring to Support RMRCT) (DE-FC26-01NT40868) project to have been conducted by CAES Development Co., along with Sandia National Laboratories. This document provides a final report covering tasks 1.0 and subtasks 2.1, 2.2, and 2.5 of task 2.0 of the Statement of Project Objectives and constitutes the final project deliverable. The proposed work was to have provided physical measurements and analyses of large-scale rock mass response to pressure cycling. The goal was to develop proof-of-concept data for a previously developed and DOE sponsored technology (RMRCT or Refrigerated-Mined Rock Cavern Technology). In the RMRCT concept, a room and pillar mine developed in rock serves as a pressure vessel. That vessel will need to contain pressure of about 1370 psi (and cycle down to 300 psi). The measurements gathered in this study would have provided a means to determine directly rock mass response during cyclic loading on the same scale, under similar pressure conditions. The CAES project has been delayed due to national economic unrest in the energy sector.

  2. Ternary Platinum-Copper-Nickel Nanoparticles Anchored to Hierarchical Carbon Supports as Free-Standing Hydrogen Evolution Electrodes.

    PubMed

    Shen, Yi; Lua, Aik Chong; Xi, Jingyu; Qiu, Xinping

    2016-02-10

    Developing cost-effective and efficient hydrogen evolution reaction (HER) electrocatalysts for hydrogen production is of paramount importance to attain a sustainable energy future. Reported herein is a novel three-dimensional hierarchical architectured electrocatalyst, consisting of platinum-copper-nickel nanoparticles-decorated carbon nanofiber arrays, which are conformally assembled on carbon felt fabrics (PtCuNi/CNF@CF) by an ambient-pressure chemical vapor deposition coupled with a spontaneous galvanic replacement reaction. The free-standing PtCuNi/CNF@CF monolith exhibits high porosities, a well-defined geometry shape, outstanding electron conductivity, and a unique characteristic of localizing platinum-copper-nickel nanoparticles in the tips of carbon nanofibers. Such features render PtCuNi/CNF@CF as an ideal binder-free HER electrode for hydrogen production. Electrochemical measurements demonstrate that the PtCuNi/CNF@CF possesses superior intrinsic activity as well as mass-specific activity in comparison with the state-of-the-art Pt/C catalysts, both in acidic and alkaline solutions. With well-tuned composition of active nanoparticles, Pt42Cu57Ni1/CNF@CF showed excellent durability. The synthesis strategy reported in this work is likely to pave a new route for fabricating free-standing hierarchical electrodes for electrochemical devices. PMID:26784023

  3. Development and case study of a science-based software platform to support policy making on air quality.

    PubMed

    Zhu, Yun; Lao, Yanwen; Jang, Carey; Lin, Chen-Jen; Xing, Jia; Wang, Shuxiao; Fu, Joshua S; Deng, Shuang; Xie, Junping; Long, Shicheng

    2015-01-01

    This article describes the development and implementations of a novel software platform that supports real-time, science-based policy making on air quality through a user-friendly interface. The software, RSM-VAT, uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models. The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits. The case study of contiguous U.S. demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time.

  4. Characterization of organic air emissions from the Certification and Segregation Building and Air Support Weather Shield II at the Radioactive Waste Management Complex

    SciTech Connect

    Shoop, D.S.; Jackson, J.M.; Jolley, J.G.; Izbicki, K.J.

    1994-12-01

    During the latter part of Fiscal Year (FY-92), a task was initiated to characterize the organic air emissions from the Certification and Segregation (C and S) Building [Waste Management Facility (WMF) 612] and the Air Support Weather Shield II (ASWS II or ASB II) (WMF 711) at the Radioactive Waste Management Complex (RWMC). The purpose of this task, titled the RWMC Organic Air Emissions Evaluation Task, was to identify and quantify the volatile organic compounds (VOCS) present in the ambient air in these two facilities and to estimate the organic air emissions. The VOCs were identified and quantified by implementing a dual method approach using two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and SUMMA canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14. The data gathered were used in conjunction with the building`s ventilation rate to calculate an estimated organic air emissions rate. This report presents the data gathered during the performance of this task and relates the data to the relevant regulatory requirements.

  5. Bifunctional alkaline oxygen electrodes

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The authors describe the identification and testing of electrocatalysts and supports for the positive electrode of moderate-temperature, single-unit, rechargeable alkaline fuel cells. Recent work on Na(x)Pt3O4, a potential bifunctional catalyst, is described, as well as the application of novel approaches to the development of more efficient bifunctional electrode structures. The three dual-character electrodes considered here showed similar superior performance; the Pt/RhO2 and Rh/RhO2 electrodes showed slightly better performance than the Pt/IrO2 electrode. It is concluded that Na(x)Pt3O4 continues to be a promising bifunctional oxygen electrode catalyst but requires further investigation and development.

  6. NASA Langley's Formal Methods Research in Support of the Next Generation Air Transportation System

    NASA Technical Reports Server (NTRS)

    Butler, Ricky W.; Munoz, Cesar A.

    2008-01-01

    This talk will provide a brief introduction to the formal methods developed at NASA Langley and the National Institute for Aerospace (NIA) for air traffic management applications. NASA Langley's formal methods research supports the Interagency Joint Planning and Development Office (JPDO) effort to define and develop the 2025 Next Generation Air Transportation System (NGATS). The JPDO was created by the passage of the Vision 100 Century of Aviation Reauthorization Act in Dec 2003. The NGATS vision calls for a major transformation of the nation s air transportation system that will enable growth to 3 times the traffic of the current system. The transformation will require an unprecedented level of safety-critical automation used in complex procedural operations based on 4-dimensional (4D) trajectories that enable dynamic reconfiguration of airspace scalable to geographic and temporal demand. The goal of our formal methods research is to provide verification methods that can be used to insure the safety of the NGATS system. Our work has focused on the safety assessment of concepts of operation and fundamental algorithms for conflict detection and resolution (CD&R) and self- spacing in the terminal area. Formal analysis of a concept of operations is a novel area of application of formal methods. Here one must establish that a system concept involving aircraft, pilots, and ground resources is safe. The formal analysis of algorithms is a more traditional endeavor. However, the formal analysis of ATM algorithms involves reasoning about the interaction of algorithmic logic and aircraft trajectories defined over an airspace. These trajectories are described using 2D and 3D vectors and are often constrained by trigonometric relations. Thus, in many cases it has been necessary to unload the full power of an advanced theorem prover. The verification challenge is to establish that the safety-critical algorithms produce valid solutions that are guaranteed to maintain separation

  7. A Method for Making Cross-Comparable Estimates of the Benefits of Decision Support Technologies for Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Lee, David; Long, Dou; Etheridge, Mel; Plugge, Joana; Johnson, Jesse; Kostiuk, Peter

    1998-01-01

    We present a general method for making cross comparable estimates of the benefits of NASA-developed decision support technologies for air traffic management, and we apply a specific implementation of the method to estimate benefits of three decision support tools (DSTs) under development in NASA's advanced Air Transportation Technologies Program: Active Final Approach Spacing Tool (A-FAST), Expedite Departure Path (EDP), and Conflict Probe and Trial Planning Tool (CPTP). The report also reviews data about the present operation of the national airspace system (NAS) to identify opportunities for DST's to reduce delays and inefficiencies.

  8. Gulf of Mexico Air Quality: CALIPSO Support for Gulf of Mexico Air Quality Relating to the Deepwater Horizon Oil Spill

    NASA Technical Reports Server (NTRS)

    Nguyen, Myngoc T.; Lapointe, Stephen; Jennings, Brittney; Zoumplis, Angela

    2011-01-01

    On April 20, 2010, an oil platform belonging to BP exploded and leaked a huge volume of oil into the Gulf of Mexico. In an effort to control the spread of the oil, BP applied dispersants such as Corexit and conducted in-situ burnings of the oil. This catastrophe created a complex chain of events that affected not only the fragile water and land ecosystems, but the humans who breathe the air every day. Thousands of people were exposed to fumes associated with oil vapors from the spill, burning of the oil, and the toxic mixture of dispersants. While aiding in clean-up efforts, local fishermen were directly exposure to fumes when working on the Gulf. A notable amount of Gulf Coast residents were also exposed to the oil fumes as seasonal southeasterly winds blew vapors toward land. The Volatile Organic Compounds (VOC) found in oil vapors include: benzene, toluene, ethyl benzene, xylene, naphthalene, hydrogen sulfide and particulate matter (PM). Increases in water temperature and sunlight due to the summer season allow for these VOCs and PM to evaporate into the air more rapidly. Aside from the VOCs found in oil vapors, the dispersant being used to break up the oil is highly toxic and is thought to be even more toxic than the oil itself (EPA website, 2010). To protect human health, the environment, and to make informed policy decisions relevant to the spill, the EPA Region 6 has continuously monitored the affected areas carefully for levels of pollutants in the outdoor air that are associated with petroleum products and the burning of oil along the coast. In an effort to prevent, prepare for, and respond to future oil spills that occur in and around inland waters of the United States, the EPA has been working with local, state, and federal response partners. Air quality measurements were collected by the EPA at five active monitoring systems stationed along the coast.

  9. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, Carl W.

    1994-01-01

    A dual porosity electrode for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  10. Dual porosity gas evolving electrode

    DOEpatents

    Townsend, C.W.

    1994-11-15

    A dual porosity electrode is described for use in thermoelectrochemical systems where simultaneous transport of gas and liquid into and/or out of the electrode is required. The electrode includes catalytic electrode particles having diameters ranging from about 25 to 100 angstroms. The catalytic electrode particles are anchored to a support network in clusters which have internal pores ranging in size from 25 to 100 angstroms. The pores between the clusters range in size from between about 1 to 20 microns. A method for making the dual porosity electrodes is also disclosed.

  11. Information Requirements for Supervisory Air Traffic Controllers in Support of a Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.

    2008-01-01

    Closely Space Parallel Runway (CSPR) configurations are capacity limited for departures due to the requirement to apply wake vortex separation standards from traffic departing on the adjacent parallel runway. To mitigate the effects of this constraint, a concept focusing on wind dependent departure operations has been developed, known as the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage of the fact that crosswinds of sufficient velocity blow wakes generated by aircraft departing from the downwind runway away from the upwind runway. Consequently, under certain conditions, wake separations on the upwind runway would not be required based on wakes generated by aircraft on the downwind runway, as is currently the case. It follows that information requirements, and sources for this information, would need to be determined for airport traffic control tower (ATCT) supervisory personnel who would be charged with decisions regarding use of the procedure. To determine the information requirements, data were collected from ATCT supervisors and controller-in-charge qualified individuals at Lambert-St. Louis International Airport (STL) and George Bush Houston Intercontinental Airport (IAH). STL and IAH were chosen as data collection sites based on the implementation of a WTMD prototype system, operating in shadow mode, at these locations. The 17 total subjects (STL: 5, IAH: 12) represented a broad-base of air traffic experience. Results indicated that the following information was required to support the conduct of WTMD operations: current and forecast weather information, current and forecast traffic demand and traffic flow restrictions, and WTMD System status information and alerting. Subjects further indicated that the requisite information is currently available in the tower cab with the exception of the WTMD status and alerting. Subjects were given a demonstration of a display supporting the prototype systems and unanimously stated that the

  12. Electrode assembly for a fluidized bed apparatus

    DOEpatents

    Schora, Jr., Frank C.; Matthews, Charles W.; Knowlton, Ted M.

    1976-11-23

    An electrode assembly comprising a high voltage electrode having a generally cylindrical shape and being electrically connected to a high voltage source, where the cylinder walls may be open to flow of fluids and solids; an electrically grounded support electrode supporting said high voltage electrode by an electrically insulating support where both of the electrically grounded and electrically insulating support may be hollow; and an electrically grounded liner electrode arranged concentrically around both the high voltage and support electrodes. This assembly is specifically adapted for use in a fluidized bed chemical reactor as an improved heating means therefor.

  13. Workload-Matched Adaptive Automation Support of Air Traffic Controller Information Processing Stages

    NASA Technical Reports Server (NTRS)

    Kaber, David B.; Prinzel, Lawrence J., III; Wright, Melanie C.; Clamann, Michael P.

    2002-01-01

    Adaptive automation (AA) has been explored as a solution to the problems associated with human-automation interaction in supervisory control environments. However, research has focused on the performance effects of dynamic control allocations of early stage sensory and information acquisition functions. The present research compares the effects of AA to the entire range of information processing stages of human operators, such as air traffic controllers. The results provide evidence that the effectiveness of AA is dependent on the stage of task performance (human-machine system information processing) that is flexibly automated. The results suggest that humans are better able to adapt to AA when applied to lower-level sensory and psychomotor functions, such as information acquisition and action implementation, as compared to AA applied to cognitive (analysis and decision-making) tasks. The results also provide support for the use of AA, as compared to completely manual control. These results are discussed in terms of implications for AA design for aviation.

  14. NASA GES DISC support of CO2 Data from OCO-2, ACOS, and AIRS

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer C; Vollmer, Bruce E.; Savtchenko, Andrey K.; Hearty, Thomas J; Albayrak, Rustem Arif; Deshong, Barbara E.

    2013-01-01

    NASA Goddard Earth Sciences Data and Information Services Centers (GES DISC) is the data center assigned to archive and distribute current AIRS, ACOS data and data from the upcoming OCO-2 mission. The GES DISC archives and supports data containing information on CO2 as well as other atmospheric composition, atmospheric dynamics, modeling and precipitation. Along with the data stewardship, an important mission of GES DISC is to facilitate access to and enhance the usability of data as well as to broaden the user base. GES DISC strives to promote the awareness of science content and novelty of the data by working with Science Team members and releasing news articles as appropriate. Analysis of events that are of interest to the general public, and that help in understanding the goals of NASA Earth Observing missions, have been among most popular practices.Users have unrestricted access to a user-friendly search interface, Mirador, that allows temporal, spatial, keyword and event searches, as well as an ontology-driven drill down. Variable subsetting, format conversion, quality screening, and quick browse, are among the services available in Mirador. The majority of the GES DISC data are also accessible through OPeNDAP (Open-source Project for a Network Data Access Protocol) and WMS (Web Map Service). These services add more options for specialized subsetting, format conversion, image viewing and contributing to data interoperability.

  15. GHG and Air Pollution Co-benefits Analysis to Support Decision Making in Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Guttikunda, S.; Shah, M.

    2008-12-01

    The increasing energy demand in the transport and industrial sectors accounts for a high carbon footprint in Hyderabad, India, and consequently to increasing air pollution. Integrated Environmental Strategies program under US EPA supported the analysis of Andhra Pradesh Pollution Control Board (PCB), to identify the major sources of pollution (local and global) and prioritize a series of strategies to better address mitigation in a cost effective manner. In Hyderabad, under the current trends, PM10 and CO2 emissions in 2020 are estimated to increase ~50 percent, compared to 2006 levels to ~43.5 ktons and ~10.3 million tons respectively. A co-benefits framework was implemented in analyzing the future control scenarios for human health benefits and carbon savings. Overall, implementing a series of interventions ranging from urban planning including better transport planning with bus rapid transport and metro rail, relocation of industries, and waste management, are expected to reduce the local and global emissions below the 2006 levels and yield an estimated ~US 196 million and ~US 492 million, in 2010 and 2020 respectively, in combined benefits of health and carbon savings. The PCB is coordinating the efforts for planning and implementation of these strategies. This paper will focus on presenting the methodology utilized for estimating emissions, pollutant dispersion, and impact on local and global environments, evaluated against the business as usual scenarios.

  16. Illustrations and supporting texts for sound standing waves of air columns in pipes in introductory physics textbooks

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Smith, Chris; Poelzer, G. Herold; Rodriguez, Jennifer; Corpuz, Edgar; Yanev, George

    2014-12-01

    In our pilot studies, we found that many introductory physics textbook illustrations with supporting text for sound standing waves of air columns in open-open, open-closed, and closed-closed pipes inhibit student understanding of sound standing wave phenomena due to student misunderstanding of how air molecules move within these pipes. Based on the construct of meaningful learning from cognitive psychology and semiotics, a quasiexperimental study was conducted to investigate the comparative effectiveness of two alternative approaches to student understanding: a traditional textbook illustration approach versus a newly designed air molecule motion illustration approach. Thirty volunteer students from introductory physics classes were randomly assigned to two groups of 15 each. Both groups were administered a presurvey. Then, group A read the air molecule motion illustration handout, and group B read a traditional textbook illustration handout; both groups were administered postsurveys. Subsequently, the procedure was reversed: group B read the air molecule motion illustration handout and group A read the traditional textbook illustration handout. This was followed by a second postsurvey along with an exit research questionnaire. The study found that the majority of students experienced meaningful learning and stated that they understood sound standing wave phenomena significantly better using the air molecule motion illustration approach. This finding provides a method for physics education researchers to design illustrations for abstract sound standing wave concepts, for publishers to improve their illustrations with supporting text, and for instructors to facilitate deeper learning in their students on sound standing waves.

  17. Public Support for Smoke-Free Air Strategies Among Smokers and Nonsmokers, New York City, 2010–2012

    PubMed Central

    Waddell, Elizabeth Needham; Mandel-Ricci, Jenna; Kansagra, Susan M.

    2014-01-01

    Introduction From 2010 through 2012, the New York City Department of Health and Mental Hygiene engaged in multiple smoke-free-air activities in collaboration with community, institution, and government partners. These included implementing a law prohibiting smoking in all parks and beaches as well as working to increase compliance with existing Smoke-free Air Act provisions. Methods We investigated trends in awareness of existing smoke-free rules publicized with new signage and public support for new smoke-free air strategies by using 3 waves of survey data from population-based samples of smoking and nonsmoking adults in New York City (2010–2012). Analyses adjusted for the influence of sociodemographic characteristics. Results Among both smokers and nonsmokers, we observed increased awareness of smoke-free regulations in outdoor areas around hospital entrances and grounds and in lines in outdoor waiting areas for buses and taxis. Regardless of smoking status, women, racial/ethnic minorities, and adults aged 25 to 44 years were more likely than men, non-Hispanic whites, and adults aged 65 years or older to support smoke-free air strategies. Conclusion New signage was successful in increasing population-wide awareness of rules. Our analysis of the association between demographic characteristics and support for tobacco control over time provide important contextual information for community education efforts on secondhand smoke and smoke-free air strategies. PMID:24480633

  18. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3‑δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3‑δ (SFCN) exhibits a conductivity of 63 Scm‑1and 60 Scm‑1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3‑δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3‑δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3‑δ as the cathode achieved a power density of 423 mWcm‑2 at 700 °C indicating that SFCN is a promising anode for SOFCs.

  19. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells.

    PubMed

    Lan, Rong; Cowin, Peter I; Sengodan, Sivaprakash; Tao, Shanwen

    2016-08-22

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3-δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3-δ (SFCN) exhibits a conductivity of 63 Scm(-1)and 60 Scm(-1) at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3-δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3-δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3-δ as the cathode achieved a power density of 423 mWcm(-2) at 700 °C indicating that SFCN is a promising anode for SOFCs.

  20. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells

    PubMed Central

    Lan, Rong; Cowin, Peter I.; Sengodan, Sivaprakash; Tao, Shanwen

    2016-01-01

    Electrode materials which exhibit high conductivities in both oxidising and reducing atmospheres are in high demand for solid oxide fuel cells (SOFCs) and solid oxide electrolytic cells (SOECs). In this paper, we investigated Cu-doped SrFe0.9Nb0.1O3−δ finding that the primitive perovskite oxide SrFe0.8Cu0.1Nb0.1O3−δ (SFCN) exhibits a conductivity of 63 Scm−1and 60 Scm−1 at 415 °C in air and 5%H2/Ar respectively. It is believed that the high conductivity in 5%H2/Ar is related to the exsolved Fe (or FeCu alloy) on exposure to a reducing atmosphere. To the best of our knowledge, the conductivity of SrFe0.8Cu0.1Nb0.1O3−δ in a reducing atmosphere is the highest of all reported oxides which also exhibit a high conductivity in air. Fuel cell performance using SrFe0.8Cu0.1Nb0.1O3−δ as the anode, (Y2O3)0.08(ZrO2)0.92 as the electrolyte and La0.8Sr0.2FeO3−δ as the cathode achieved a power density of 423 mWcm−2 at 700 °C indicating that SFCN is a promising anode for SOFCs. PMID:27545200

  1. Detection of V-type nerve agent degradation products at electrodes modified by PPy/PQQ using CaCl2 as supporting electrolyte.

    PubMed

    Shulga, Olga V; Palmer, Christopher

    2006-07-01

    Electrochemical detection without derivatization was used to detect thiol-containing degradation products of V-type nerve agents. Electropolymerization of pyrrole was used for entrapment of the biocatalyst PQQ to produce a sensor. Various parameters which affect the detection processes such as the type of the supporting electrolyte used during electrodeposition and the thickness of the polypyrrole film were examined and optimized. Electocatalytic oxidation of thiols by the PPy/PQQ electrode was strongly affected by the presence of Ca2+ cations during electrodeposition of the PPy/PQQ. Cyclic voltammetry, linear sweep voltammetry and amperometry have been used for electrode characterization. Amperometric detection of the V-type nerve agent thiol degradation products 2-(dimethylamino)ethanethiol (DMAET) and 2-(diethylamino)ethanethiol (DEAET) was performed at 0.38 V. Linear calibration plots were observed for these compounds. The detection limits of 4.5 and 3 microM were obtained for DMAET and DEAET respectively, with sensitivities of 1.18 and 1.37 nA microM(-1) cm(-2).

  2. Pilot Study on Alternative Pictorial Representations and Supporting Text of Sound Standing Waves of Air Columns in a Pipe

    NASA Astrophysics Data System (ADS)

    Zeng, Liang; Smith, Chris; Rodriguez, Jennifer; Corpuz, Edgar

    2011-10-01

    Alternative pictorial representations of sound standing waves of air columns in a pipe were drawn for the first three harmonics in an open-open pipe as well as in an open-closed pipe. Supporting text describing air molecule motion over time was also provided. These pictorial representations and supporting text were designed to reveal the main characteristics of the physical mechanisms of sound standing waves of air columns in pipes. Through a pilot study utilizing surveys and interviews, we validated our design and investigated the differences in the effects on student learning of underlying physics concepts between the new design and the existing one in an introductory physics textbook. The implications of our results for teaching were discussed.

  3. Method of fabricating electrode catalyst layers with directionally oriented carbon support for proton exchange membrane fuel cell

    DOEpatents

    Liu, Di-Jia; Yang, Junbing

    2010-07-20

    A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes. The nanotubes are in contact with a portion of the MEA at production or being positioned in contact thereafter. Methods of forming a PEMFC are also disclosed.

  4. Glycerol electro-oxidation over glassy-carbon-supported Au nanoparticles: direct influence of the carbon support on the electrode catalytic activity.

    PubMed

    Gomes, Janaina F; Gasparotto, Luiz H S; Tremiliosi-Filho, Germano

    2013-07-01

    Glycerol is at present abundantly co-produced in the biodiesel fabrication and can be used as fuel in Direct Glycerol Fuel Cells (DGFC) for cogeneration of electricity, value-added chemicals and heat. With this motivation, in the present work, we investigated at a fundamental level the oxidation of glycerol over glassy carbon (GC) supported Au nanoparticles in alkaline medium using cyclic voltammetry. By controlling the Au deposition time, we varied the GC supported Au coverage from 0.4% to 30% maintaining a regular particle size distribution with a mean particle size of about 200 nm. An influence of the carbon support on the activity of the GC-supported Au nanoparticles was evidenced. Results from studies on the oxidation of glycerol and ethylene glycol on Au and Pt nanoparticles supported on a glassy carbon, highly ordered pyrolytic graphite and dimensionally stable anode under different pH conditions indicate that the carbon support participates actively in the oxidation of glycerol and other alcohols. We propose that active oxygenated species are gradually formed on the glassy carbon by potential cycling (up to the saturation of the carbon area) and these oxygenated species are additional oxygen suppliers for the oxidation of glycerol residues adsorbed on the Au particles, following a mechanism consisting of the synergism of two active elements: gold and carbon.

  5. Cube-like α-Fe2O3 supported on ordered multimodal porous carbon as high performance electrode material for supercapacitors.

    PubMed

    Chaudhari, Nitin K; Chaudhari, Sudeshna; Yu, Jong-Sung

    2014-11-01

    Well-dispersed cube-like iron oxide (α-Fe2O3) nanoparticles (NPs) supported on ordered multimodal porous carbon (OMPC) are synthesized for the first time by a facile and efficient glycine-assisted hydrothermal route. The effect of OPMC support on growth and formation mechanism of the Fe2O3 NPs is discussed. OMPC as a supporting material plays a pivotal role of controlling the shape, size, and dispersion of the Fe2O3 NPs. As-synthesized α-Fe2O3/OMPC composites reveal significant improvement in the performance as electrode material for supercapacitors. Compared to the bare Fe2O3 and OMPC, the composite exhibits excellent cycling stability, rate capability, and enhanced specific capacitances of 294 F g(-1) at 1.5 A g(-1), which is twice that of OMPC (145 F g(-1)) and about four times higher than that of bare Fe2O3 (85 F g(-1)). The improved electrochemical performance of the composite can be attributed to the well-defined structure, high conductivity, and hierarchical porosity of OMPC as well as the unique α-Fe2O3 NPs with cube-like morphology well-anchored on the OMPC support, which makes the composite a promising candidate for supercapacitors.

  6. The back-diffusion effect of air on the discharge characteristics of atmospheric-pressure radio-frequency glow discharges using bare metal electrodes

    NASA Astrophysics Data System (ADS)

    Sun, Wen-Ting; Liang, Tian-Ran; Wang, Hua-Bo; Li, He-Ping; Bao, Cheng-Yu

    2007-05-01

    Radio-frequency (RF), atmospheric-pressure glow discharge (APGD) plasmas using bare metal electrodes have promising prospects in the fields of plasma-aided etching, deposition, surface treatment, disinfection, sterilization, etc. In this paper, the discharge characteristics, including the breakdown voltage and the discharge voltage for sustaining a stable and uniform α mode discharge of the RF APGD plasmas are presented. The experiments are conducted by placing the home-made planar-type plasma generator in ambient and in a vacuum chamber, respectively, with helium as the primary plasma-forming gas. When the discharge processes occur in ambient, particularly for the lower plasma-working gas flow rates, the experimental measurements show that it is the back-diffusion effect of air in atmosphere, instead of the flow rate of the gas, that results in the obvious decrease in the breakdown voltage with increasing plasma-working gas flow rate. Further studies on the discharge characteristics, e.g. the luminous structures, the concentrations and distributions of chemically active species in plasmas, with different plasma-working gases or gas mixtures need to be conducted in future work.

  7. Binder-Free and Carbon-Free 3D Porous Air Electrode for Li-O2 Batteries with High Efficiency, High Capacity, and Long Life.

    PubMed

    Luo, Wen-Bin; Gao, Xuan-Wen; Shi, Dong-Qi; Chou, Shu-Lei; Wang, Jia-Zhao; Liu, Hua-Kun

    2016-06-01

    Pt-Gd alloy polycrystalline thin film is deposited on 3D nickel foam by pulsed laser deposition method serving as a whole binder/carbon-free air electrode, showing great catalytic activity enhancement as an efficient bifunctional catalyst for the oxygen reduction and evolution reactions in lithium oxygen batteries. The porous structure can facilitate rapid O2 and electrolyte diffusion, as well as forming a continuous conductive network throughout the whole energy conversion process. It shows a favorable cycle performance in the full discharge/charge model, owing to the high catalytic activity of the Pt-Gd alloy composite and 3D porous nickel foam structure. Specially, excellent cycling performance under capacity limited mode is also demonstrated, in which the terminal discharge voltage is higher than 2.5 V and the terminal charge voltage is lower than 3.7 V after 100 cycles at a current density of 0.1 mA cm(-2) . Therefore, this electrocatalyst is a promising bifunctional electrocatalyst for lithium oxygen batteries and this depositing high-efficient electrocatalyst on porous substrate with polycrystalline thin film by pulsed laser deposition is also a promising technique in the future lithium oxygen batteries research.

  8. 75 FR 37711 - Automatic Dependent Surveillance-Broadcast (ADS-B) Out Performance Requirements To Support Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-30

    ... avionics on aircraft operating in Classes A, B, and C airspace, as well as certain other specified classes... Support Air Traffic Control (ATC) Service'' (75 FR 30160). There are three footnotes in the preamble for... Amendments,'' published October 16, 2009 (74 FR 53368), the FAA revised part 21 subpart O, and Sec....

  9. DEVELOPMENT OF AN AGGREGATION AND EPISODE SELECTION SCHEME TO SUPPORT THE MODELS-3 COMMUNITY MULTISCALE AIR QUALITY MODEL

    EPA Science Inventory

    The development of an episode selection and aggregation approach, designed to support distributional estimation of use with the Models-3 Community Multiscale Air Quality (CMAQ) model, is described. The approach utilized cluster analysis of the 700-hPa east-west and north-south...

  10. “Applying Multi-scale Air Quality Models to Support Epidemiologic Studies”.

    EPA Science Inventory

    The Near-road Exposures and Effects of Urban air pollutant Study (NEXUS) investigating whether children with asthma living near major roadways in Detroit, MI have greater health impacts from air pollutants than those living farther away, particularly near roadways with high diese...

  11. Thirsty Walls: A New Paradigm for Air Revitalization in Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John; Brennecke, Joan; Weislogel, Mark

    2015-01-01

    Carbon Dioxide removal systems on submarines are compact and reliable. They use solubility chemistry. They spray a Carbon Dioxide adsorbing chemical directly into the air stream, and allow the liquid to settle. Carbon Dioxide removal systems on ISS are large and need repair. They use adsorption chemistry. They force air through a bed packed with granular zeolite, and heat the bed to desorb the Carbon Dioxide. The thermal cycles cause the zeolite to dust. New advances in additive manufacturing, and a better understanding of uid behavior in microgravity make it possible to expose a liquid directly to air in a microgravity environment. It is now practical to use submarine style solubility chemistry for atmosphere revitalization in space. It is now possible to develop space systems that achieve submarine levels of reliability. New developments in Ionic Liquid research make it possible to match the solubility performance characteristics of MEA used on submarines - with Ionic Liquids that do not release chemical vapors into the air. "Thirsty Walls" provide gentle, passive contact between ventilation air and Air Revitalization functions of temperature control, relative humidity control, and Carbon Dioxide removal. "Thirsty Walls" eliminates the need of large blowers and compressors that need to force air at high velocities through restrictive Air Revitalization hardware.

  12. Volume-surface barrier discharge in dried air in three-electrode system fed by impulse high voltage with nanosecond rise time

    NASA Astrophysics Data System (ADS)

    Malashin, Maxim; Rebrov, Igor; Nebogatkin, Sergey; Sokolova, Marina; Nikitin, Alexey; Voevodin, Vadim; Krivov, Sergey

    2016-08-01

    Results of experimental investigation of a volume-surface barrier discharge in a three-electrode system under periodic impulse voltage applied to the surface discharge (SD) electrodes and a d.c. potential applied to an additional third electrode are presented. It is shown that there is a strong influence of polarity and amplitude of the d.c. potential on the direct current "extracted" out of the surface discharge plasma layer by electric field of the third electrode. The amount of charged positive species that constitute the "extracted" current prevails under positive impulse voltage for low values of the negative d.c. potential of the third electrode. The amount of negative species prevails with higher values of the positive d.c. positive of the third electrode. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Bifunctional catalytic electrode

    NASA Technical Reports Server (NTRS)

    Cisar, Alan (Inventor); Murphy, Oliver J. (Inventor); Clarke, Eric (Inventor)

    2005-01-01

    The present invention relates to an oxygen electrode for a unitized regenerative hydrogen-oxygen fuel cell and the unitized regenerative fuel cell having the oxygen electrode. The oxygen electrode contains components electrocatalytically active for the evolution of oxygen from water and the reduction of oxygen to water, and has a structure that supports the flow of both water and gases between the catalytically active surface and a flow field or electrode chamber for bulk flow of the fluids. The electrode has an electrocatalyst layer and a diffusion backing layer interspersed with hydrophilic and hydrophobic regions. The diffusion backing layer consists of a metal core having gas diffusion structures bonded to the metal core.

  14. Electrode compositions

    DOEpatents

    Block, Jacob; Fan, Xiyun

    1998-01-01

    An electrode composition for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C.sub.8 -C.sub.15 alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5-4.5 volts.

  15. Electrode compositions

    DOEpatents

    Block, J.; Fan, X.

    1998-10-27

    An electrode composition is described for use as an electrode in a non-aqueous battery system. The electrode composition contains an electrically active powder in a solid polymer and, as a dispersant, a C{sub 8}-C{sub 15} alkyl capped oligomer of a hexanoic acid that is electrochemically inert at 2.5--4.5 volts.

  16. A female pelvic bone shape model for air/bone separation in support of synthetic CT generation for radiation therapy

    NASA Astrophysics Data System (ADS)

    Liu, Lianli; Cao, Yue; Fessler, Jeffrey A.; Jolly, Shruti; Balter, James M.

    2016-01-01

    Separating bone from air in MR data is one of the major challenges in using MR images to derive synthetic CT. The problem is further complicated when the anatomic regions filled with air are altered across scans due to air mobility, for instance, in pelvic regions, thereby the air regions estimated using an ultrashort echo time (UTE) sequence are invalid in other image series acquired for multispectral classification. This study aims to develop and investigate a female pelvic bone shape model to identify low intensity regions in MRI where air is unlikely to be present in support of synthetic CT generation without UTE imaging. CT scans of 30 patients were collected for the study, 17 of them also have corresponding MR scans. The shape model was built from the CT dataset, where the reference image was aligned to each of the training images using B-spline deformable registration. Principal component analysis was performed on B-spline coefficients for a compact model where shape variance was described by linear combination of principal modes. The model was applied to identify pelvic bone in MR images by deforming the corresponding MR data of the reference image to target MR images, where the search space of the deformation process was constrained within the subspace spanned by principal modes. The local minima in the search space were removed effectively by the shape model, thus supporting an efficient binary search for the optimal solution. We evaluated the model by its efficacy in identifying bone voxels and excluding air regions. The model was tested across the 17 patients that have corresponding MR scans using a leave-one-out cross validation. A simple model using the first leading principal mode only was found to achieve reasonable accuracy, where an averaged 87% of bone voxels were correctly identified. Finally dilation of the optimally fit bone mask by 5 mm was found to cover 96% of bone voxels while minimally impacting the overlap with air (below 0.4%).

  17. Method of bonding a conductive layer on an electrode of an electrochemical cell

    DOEpatents

    Bowker, J.C.; Singh, P.

    1989-08-29

    A dense, electronically conductive interconnection layer is bonded onto a porous, tubular, electronically conductive air electrode structure, optionally supported by a ceramic support, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface, without the use of pressure, particles of LaCrO[sub 3] doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300 C to 1,550 C, without the application of pressure, to provide a dense, sintered, interconnection material bonded to the air electrode, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO[sub 3]. A solid electrolyte layer can be applied to the uncovered portion of the air electrode, and a fuel electrode can be applied to the solid electrolyte, to provide an electrochemical cell. 4 figs.

  18. Method of bonding a conductive layer on an electrode of an electrochemical cell

    DOEpatents

    Bowker, Jeffrey C.; Singh, Prabhakar

    1989-01-01

    A dense, electronically conductive interconnection layer 26 is bonded onto a porous, tubular, electronically conductive air electrode structure 16, optionally supported by a ceramic support 22, by (A) providing an air electrode surface, (B) forming on a selected portion of the electrode surface 24, without the use of pressure, particles of LaCrO.sub.3 doped with an element selected from the group consisting of Sr, Mg, Ca, Ba, Co, and mixtures thereof, where the particles have a deposit on their surface comprising calcium oxide and chromium oxide; (C) heating the particles with the oxide surface deposit in an oxidizing atmosphere at from 1,300.degree. C. to 1,550.degree. C., without the application of pressure, to provide a dense, sintered, interconnection material 26 bonded to the air electrode 16, where calcium and chromium from the surface deposit are incorporated into the structure of the LaCrO.sub.3. A solid electrolyte layer 18 can be applied to the uncovered portion of the air electrode, and a fuel electrode 20 can be applied to the solid electrolyte, to provide an electrochemical cell 10.

  19. Magnetohydrodynamic electrode

    DOEpatents

    Boquist, Carl W.; Marchant, David D.

    1978-01-01

    A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.

  20. Data Quality Objectives Summary Report Supporting Radiological Air Surveillance Monitoring for the INL Site

    SciTech Connect

    Haney, Thomas Jay

    2015-05-01

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of the DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.

  1. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations

    EPA Science Inventory

    The US Environmental Protection Agency (EPA) along with state, local, and tribal governments operate Federal Reference Method (FRM) and Federal Equivalent Method (FEM) instruments to assess compliance with US air pollution standards designed to protect human and ecosystem health....

  2. DEVELOPMENT AND APPLICATIONS OF CFD IN SUPPORT OF AIR QUALITY STUDIES OF ROADWAY AND BUILDING MICROENVIRONMENTS

    EPA Science Inventory

    There is a need to develop modeling and data analysis tools to increase our understanding of human exposures to air pollutants beyond what can be explained by "limited" field data. Modeling simulations of complex distributions of pollutant concentrations within roadw...

  3. Editorial input for the right price: tobacco industry support for a sheet metal indoor air quality manual.

    PubMed

    Campbell, Richard; Balbach, Edith

    2013-01-01

    Following legal action in the 1990s, internal tobacco industry documents became public, allowing unprecedented insight into the industry's relationships with outside organizations. During the 1980s and 1990s, the National Energy Management Institute (NEMI), established by the Sheet Metal Workers International Association and the Sheet Metal and Air Conditioning Contractors' National Association, (SMACNA) received tobacco industry funding to establish an indoor air quality services program. But the arrangement also required NEMI to serve as an advocate for industry efforts to defeat indoor smoking bans by arguing that ventilation was a more appropriate solution to environmental tobacco smoke. Drawing on tobacco industry documents, this paper describes a striking example of the ethical compromises that accompanied NEMI's collaboration with the tobacco industry, highlighting the solicitation of tobacco industry financial support for a SMACNA indoor air quality manual in exchange for sanitizing references to the health impact of environmental tobacco smoke prior to publication.

  4. Demonstration of Isothermal Compressed Air Energy Storage to Support Renewable Energy Production

    SciTech Connect

    Bollinger, Benjamin

    2015-01-02

    This project develops and demonstrates a megawatt (MW)-scale Energy Storage System that employs compressed air as the storage medium. An isothermal compressed air energy storage (ICAESTM) system rated for 1 MW or more will be demonstrated in a full-scale prototype unit. Breakthrough cost-effectiveness will be achieved through the use of proprietary methods for isothermal gas cycling and staged gas expansion implemented using industrially mature, readily-available components.The ICAES approach uses an electrically driven mechanical system to raise air to high pressure for storage in low-cost pressure vessels, pipeline, or lined-rock cavern (LRC). This air is later expanded through the same mechanical system to drive the electric motor as a generator. The approach incorporates two key efficiency-enhancing innovations: (1) isothermal (constant temperature) gas cycling, which is achieved by mixing liquid with air (via spray or foam) to exchange heat with air undergoing compression or expansion; and (2) a novel, staged gas-expansion scheme that allows the drivetrain to operate at constant power while still allowing the stored gas to work over its entire pressure range. The ICAES system will be scalable, non-toxic, and cost-effective, making it suitable for firming renewables and for other grid applications.

  5. Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer

    NASA Astrophysics Data System (ADS)

    Shintani, Haruhiko; Kakinuma, Katsuyoshi; Uchida, Hiroyuki; Watanabe, Masahiro; Uchida, Makoto

    2015-04-01

    The performance of practical-sized membrane-electrode assemblies (MEAs) using titanium nitride-supported platinum (Pt/TiN) as the cathode catalysts was evaluated with the use of a practical single cell designed for microscale combined heat and power (CHP) applications. The performance can be controlled by adding acetylene black (AB), with the behavior being dominated by the percolation law. The electrical resistance of the MEAs drastically decreased for AB contents greater than 37 vol%. The Pt utilization percentage was close to 100% for Pt/TiN with percolated AB networks. It was also found that the percolated AB networks supplied effective gas transport pathways, which were not flooded by generated water, thus enhancing the oxygen mass transport. The practical-sized MEA using Pt/TiN + 47 vol% AB showed 1.5 times greater mass activity and a comparable performance under a practical operating condition for micro-CHP applications, compared with the MEA using a commercial graphitized carbon black-supported platinum catalyst.

  6. Ni foam supported three-dimensional vertically aligned and networked layered CoO nanosheet/graphene hybrid array as a high-performance oxygen evolution electrode

    NASA Astrophysics Data System (ADS)

    Yuan, Weiyong; Zhao, Ming; Yuan, Jia; Li, Chang Ming

    2016-07-01

    The sluggish oxygen evolution reaction (OER) represents a major kinetic bottleneck in water splitting. Herein we report the synthesis of a novel Ni foam (NF) supported 3-D vertically aligned and interconnected layered CoO nanosheet array with controlled density, layer thickness, and interlayer spacing, and the conformal self-assembly of graphene on this nanosheet array. The obtained CoO layered nanosheet/graphene hybrid nanoarray was directly used as an OER electrode, showing a current density of 10 mA cm-2 at an overpotential of 330 mV and a Tafel slope of 79 mV dec-1, both of which are much lower than pristine NF and the nanosheet array without graphene, and are among the lowest reported for Co-based OER catalysts and transition metal oxide-based ones measured under the same conditions. In addition, it can retain 92.4% of the current density after 66 h of chronoamperometry testing at a potential of 1.0 V vs. SCE, and 94.3% of the current density at 1.0 V vs. SCE after 200 cyclic voltammetry cycles (0-1.0 V vs. SCE). The excellent catalytic activity and stability toward OER are ascribed to the 3-D NF supported robustly grown networked layered nanosheet array structure and the synergistic effects between CoO layered nanosheets and graphene.

  7. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  8. Decision Support: The Keys to Success. AIR 1986 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Oerly, Diane

    Characteristics of a decision support system (DSS) and factors that influence system design are described, along with a decision support database at the University of Missouri-Columbia. Reasons that the institutional research office is in a unique position to support decision-making are identified. A review of the literature of DSS briefly covers…

  9. The functions of social support as protective factors for suicidal ideation in a sample of air force personnel.

    PubMed

    Bryan, Craig J; Hernandez, Ann Marie

    2013-10-01

    This study examined various functions of social support (i.e., tangible, esteem, belonging, and appraisal) were examined as protective factors for suicidal ideation in a sample of 273 active duty Air Force Security Forces personnel. Generalized linear regression analyses were conducted to determine if various social support functions were differentially associated with the presence and severity of suicidal ideation, both as main effects and as moderators of emotional distress. None of the four social support functions differentiated suicidal from nonsuicidal Airmen, but esteem support (i.e., feeling respected, encouraged, and valued by others) was associated with significantly less severe suicidal ideation (B = -.074, SE = .025, p = .003). A significant interaction of tangible support (i.e., access to material resources) with emotional distress indicated that emotional distress was associated with more severe suicidal ideation only among Airmen reporting low levels of tangible support (B = .006, SE = .003, p = .018). When considered concurrently, both tangible and self-esteem functions of social support are differentially associated with decreased suicidal ideation among Airmen, but belonging (i.e., having someone to do things with) and appraisal (i.e., having someone to talk to about problems) functions were not. Findings suggest that different aspects of social support affect suicidal ideation in different ways.

  10. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  11. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2012-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  12. NASA Earth Observation Systems and Applications for Public Health and Air Quality Models and Decisions Support

    NASA Technical Reports Server (NTRS)

    Estes, Sue; Haynes, John; Omar, Ali

    2013-01-01

    Health and Air Quality providers and researchers need environmental data to study and understand the geographic, environmental, and meteorological differences in disease. Satellite remote sensing of the environment offers a unique vantage point that can fill in the gaps of environmental, spatial, and temporal data for tracking disease. This presentation will demonstrate the need for collaborations between multi-disciplinary research groups to develop the full potential of utilizing Earth Observations in studying health. Satellite earth observations present a unique vantage point of the earth's environment from space, which offers a wealth of health applications for the imaginative investigator. The presentation is directly related to Earth Observing systems and Global Health Surveillance and will present research results of the remote sensing environmental observations of earth and health applications, which can contribute to the public health and air quality research. As part of NASA approach and methodology they have used Earth Observation Systems and Applications for Public Health and Air Quality Models to provide a method for bridging gaps of environmental, spatial, and temporal data for tracking disease. This presentation will provide an overview of projects dealing with infectious diseases, water borne diseases and air quality and how many environmental variables effect human health. This presentation will provide a venue where the results of both research and practice using satellite earth observations to study weather and it's role in public health research.

  13. Discharge electrode wire assembly for electrostatic precipitator

    SciTech Connect

    Ivester, F. D.; Troulias, J. R.

    1985-03-05

    An electrostatic precipitator having a casing defining a precipitation chamber wherein a plurality of discharge electrode frames are disposed alternately between a plurality of collecting electrode plates. Each discharge electrode frame is comprised of a plurality of individual discharge electrode wires tautly strung across a support frame. Individual discharge electrode wires are maintained in a taut condition during operation by tensioning coil springs which interconnect neighboring discharge electrode wires to take-up any lengthening of the discharge electrode wires in a horizontal direction.

  14. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells

    PubMed Central

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-01-01

    Hydrogenated amorphous Si (a­Si:H) solar cells are strongly affected by the well known Staebler–Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a­Si:H and to the stability and motion of H­related species in the a­Si:H lattice. This work has been designed in support of the research article entitled “Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells” in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results. PMID:26966715

  15. Low-cost Cr doped Pt3Ni alloy supported on carbon nanofibers composites counter electrode for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xiao, Junying; Cui, Midou; Wang, Mingkun; Sui, Huidong; Yang, Kun; Li, Ling; Zhang, Wenming; Li, Xiaowei; Fu, Guangsheng; Hagfeldt, Anders; Zhang, Yucang

    2016-10-01

    Pt3Ni alloy supported by carbon nanofibers (CNs) composites (Pt3Ni/CNs) synthesized by a simple solvothermal process was introduced into dye-sensitized solar cells (DSCs) as counter electrode (CE) for the first time, and the DSCs based on Pt3Ni/CNs CE obtained a power conversion efficiency (PCE) of 8.34%. To enhance the catalytic activity of Pt3Ni/CNs composites, transition metal chrome (Cr) was doped in Pt3Ni/CNs to synthesize the composites of Cr-Pt3Ni/CNs using the same method. Due to the high electrocatalytic activity and rapid charge transfer ability, the PCE of the DSCs employing Cr-Pt3Ni/CNs as CE increased to 8.76%, which was much higher than that of Pt CE (7.04%) measured in the same condition. The impressive results along with low cost and simple synthesis process demonstrated transition metal doping was a promising method to produce substitutes for Pt to reduce the cost and increase the PCE of DSCs.

  16. Data supporting the role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells.

    PubMed

    Scuto, Andrea; Valenti, Luca; Pierro, Silvio; Foti, Marina; Gerardi, Cosimo; Battaglia, Anna; Lombardo, Salvatore

    2015-09-01

    Hydrogenated amorphous Si (a-Si:H) solar cells are strongly affected by the well known Staebler-Wronski effect. This is a worsening of solar cell performances under light soaking which results in a substantial loss of cell power conversion efficiency compared to time zero performance. It is believed not to be an extrinsic effect, but rather a basic phenomenon related to the nature of a-Si:H and to the stability and motion of H-related species in the a-Si:H lattice. This work has been designed in support of the research article entitled "Role of electric field and electrode material on the improvement of the ageing effects in hydrogenated amorphous silicon solar cells" in Solar Energy Materials & Solar Cells (Scuto et al. [1]), which discusses an electrical method based on reverse bias stress to improve the solar cell parameters, and in particular the effect of temperature, electric field intensity and illumination level as a function of the stress time. Here we provide a further set of the obtained experimental data results.

  17. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  18. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  19. Airborne lidar mapping of vertical ozone distributions in support of the 1990 Clean Air Act Amendments

    NASA Technical Reports Server (NTRS)

    Uthe, Edward E.; Nielsen, Norman B.; Livingston, John M.

    1992-01-01

    The 1990 Clean Air Act Amendments mandated attainment of the ozone standard established by the U.S. Environmental Protection Agency. Improved photochemical models validated by experimental data are needed to develop strategies for reducing near surface ozone concentrations downwind of urban and industrial centers. For more than 10 years, lidar has been used on large aircraft to provide unique information on ozone distributions in the atmosphere. However, compact airborne lidar systems are needed for operation on small aircraft of the type typically used on regional air quality investigations to collect data with which to develop and validate air quality models. Data presented in this paper will consist of a comparison between airborne differential absorption lidar (DIAL) and airborne in-situ ozone measurements. Also discussed are future plans to improve the airborne ultraviolet-DIAL for ozone and other gas observations and addition of a Fourier Transform Infrared (FTIR) emission spectrometer to investigate the effects of other gas species on vertical ozone distribution.

  20. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth.

  1. Multi-walled carbon nanotubes as electrode material for microbial fuel cells.

    PubMed

    Thepsuparungsikul, N; Phonthamachai, N; Ng, H Y

    2012-01-01

    The microbial fuel cell (MFC) is a novel and innovative technology that could allow direct harvesting of energy from wastewater through microbial activity with simultaneous oxidation of organic matter in wastewater. Among all MFC parts, electrode materials play a crucial role in electricity generation. A variety of electrode materials have been used, including plain graphite, carbon paper and carbon cloth. However, these electrode materials generated only limited electricity or power. Recently, many research studies have been conducted on carbon nanotubes (CNTs) because of their unique physical and chemical properties that include high conductivity, high surface area, corrosion resistance, and electrochemical stability. These properties make them extremely attractive for fabricating electrodes and catalyst supports. In this study, CNT-based electrodes had been developed to improve MFC performance in terms of electricity generation and treatment efficiency. Multi-walled carbon nanotubes (MWCNTs) with carboxyl groups have been employed to fabricate electrodes for single-chamber air-cathode MFCs. The quality of the prepared MWCNTs-based electrodes was evaluated by morphology, electrical conductivity and specific surface area using a field emission scanning electron microscope, four-probe method and Brunauer-Emmerr-Teller method, respectively. The performance of MFCs equipped with MWCNT-based electrodes was evaluated by chemical analysis and electrical monitoring and calculation. In addition, the performance of these MFCs, using MWCNTs as electrodes, was compared against that using commercial carbon cloth. PMID:22437017

  2. Benchmarking, Research, Development, and Support for ORNL Automated Image and Signature Retrieval (AIR/ASR) Technologies

    SciTech Connect

    Tobin, K.W.

    2004-06-01

    This report describes the results of a Cooperative Research and Development Agreement (CRADA) with Applied Materials, Inc. (AMAT) of Santa Clara, California. This project encompassed the continued development and integration of the ORNL Automated Image Retrieval (AIR) technology, and an extension of the technology denoted Automated Signature Retrieval (ASR), and other related technologies with the Defect Source Identification (DSI) software system that was under development by AMAT at the time this work was performed. In the semiconductor manufacturing environment, defect imagery is used to diagnose problems in the manufacturing line, train yield management engineers, and examine historical data for trends. Image management in semiconductor data systems is a growing cause of concern in the industry as fabricators are now collecting up to 20,000 images each week. In response to this concern, researchers at the Oak Ridge National Laboratory (ORNL) developed a semiconductor-specific content-based image retrieval method and system, also known as AIR. The system uses an image-based query-by-example method to locate and retrieve similar imagery from a database of digital imagery using visual image characteristics. The query method is based on a unique architecture that takes advantage of the statistical, morphological, and structural characteristics of image data, generated by inspection equipment in industrial applications. The system improves the manufacturing process by allowing rapid access to historical records of similar events so that errant process equipment can be isolated and corrective actions can be quickly taken to improve yield. The combined ORNL and AMAT technology is referred to hereafter as DSI-AIR and DSI-ASR.

  3. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  4. Advanced Regenerative Environmental Control and Life Support Systems: Air and Water Regeneration

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Wynveen, R. A.; Quattrone, P. D.

    1985-01-01

    Extended manned space missions will require regenerative life support techniques. Past manned missions used nonregenerative expendables, except for a molecular sieve based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The Space Station scheduled to be operational in the 1990's is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The techniques to be used in the requirements for the space station are addressed.

  5. A Life-Cycle Cost Estimating Methodology for NASA-Developed Air Traffic Control Decision Support Tools

    NASA Technical Reports Server (NTRS)

    Wang, Jianzhong Jay; Datta, Koushik; Landis, Michael R. (Technical Monitor)

    2002-01-01

    This paper describes the development of a life-cycle cost (LCC) estimating methodology for air traffic control Decision Support Tools (DSTs) under development by the National Aeronautics and Space Administration (NASA), using a combination of parametric, analogy, and expert opinion methods. There is no one standard methodology and technique that is used by NASA or by the Federal Aviation Administration (FAA) for LCC estimation of prospective Decision Support Tools. Some of the frequently used methodologies include bottom-up, analogy, top-down, parametric, expert judgement, and Parkinson's Law. The developed LCC estimating methodology can be visualized as a three-dimensional matrix where the three axes represent coverage, estimation, and timing. This paper focuses on the three characteristics of this methodology that correspond to the three axes.

  6. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

    2012-11-12

    Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1

  7. Decision Support Systems: An Institutional Research Perspective. AIR Forum 1982 Paper.

    ERIC Educational Resources Information Center

    Sheehan, Bernard S.

    Ideas that have been developed in the decision support systems (DSS) literature that seem particularly relevant to institutional research, planning, and analysis (IRPA) are reviewed. In addition, a survey of practitioners in Canadian universities that provides new information on the rapidly changing current state of information technology,…

  8. GLIMPSE: A decision support tool for simultaneously achieving our air quality management and climate change mitigation goals

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Akhtar, F.; Loughlin, D. H.; Henze, D. K.; Bowman, K. W.

    2012-12-01

    Poor air quality, ecosystem damages, and climate change all are caused by the combustion of fossil fuels, yet environmental management often addresses each of these challenges separately. This can lead to sub-optimal strategies and unintended consequences. Here we present GLIMPSE -- a decision support tool for simultaneously achieving our air quality and climate change mitigation goals. GLIMPSE comprises of two types of models, (i) the adjoint of the GEOS-Chem chemical transport model, to calculate the relationship between emissions and impacts at high spatial resolution, and (ii) the MARKAL energy system model, to calculate the relationship between energy technologies and emissions. This presentation will demonstrate how GLIMPSE can be used to explore energy scenarios to better achieve both improved air quality and mitigate climate change. Second, this presentation will discuss how space-based observations can be incorporated into GLIMPSE to improve decision-making. NASA satellite products, namely ozone radiative forcing from the Tropospheric Emission Spectrometer (TES), are used to extend GLIMPSE to include the impact of emissions on ozone radiative forcing. This provides a much needed observational constraint on ozone radiative forcing.

  9. A sensor based on electrodes supported on ion-exchange membranes for the flow-injection monitoring of sulphur dioxide in wines and grape juices.

    PubMed

    Toniolo, Rosanna; Pizzariello, Andrea; Susmel, Sabina; Dossi, Nicolò; Bontempelli, Gino

    2010-03-15

    A sensitive and fast responding electrochemical sensor is described for the determination of free and total sulphur dioxide in wines and grape juices which prevents interferences coming from ethanol and other natural components. It consists of a cell provided with a porous gold working electrode supported on one face of an ion-exchange membrane, acting as a solid polymer electrolyte (SPE), which allows gaseous electroactive analytes to be detected. This sensor was used as an amperometric detector for a flow injection system in which controlled volumes of headspace equilibrated with samples were injected. This approach was adopted to make also possible the determination of total SO(2), avoiding drawbacks caused by the high relative humidity generated by the sample heating resulting from the neutralization reaction of excess NaOH, whose addition was required to release sulphur dioxide from its combined forms. Factors affecting the detection process were examined and optimised. Under the identified optimal conditions, SO(2) detection resulted in sharp peaks which allowed to infer detection limits for a signal-to-noise ratio of 3, referred to liquid samples, of 0.04 and 0.02 mg L(-1) for free and total SO(2) which were determined at 20 and 35 degrees C, respectively. Moreover, the responses were found to be characterized by good repeatability (+/-2% and +/-4%, respectively) and linear dependence on the SO(2) concentration over a wide range (0.2-500 mg L(-1) for both free and total SO(2)). Finally, the long-term stability of the sensor turned out to be totally satisfactory in that responses changed of +/-9% alone even after long periods of continuous use. The application to some commercial wines and grape juices is also presented.

  10. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    SciTech Connect

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  11. Catalytic wet air oxidation of carboxylic acids on TiO{sub 2}-supported ruthenium catalysts

    SciTech Connect

    Beziat, J.C.; Besson, M.; Gallezot, P.; Durecu, S.

    1999-02-15

    The total oxidation of aqueous solutions of carboxylic acids by air was studied in a slurry reactor over the temperature range 180--100 C and oxygen partial pressure of 0.3--1.8 MPa in the presence of a 2.8%Ru/TiO{sub 2} catalyst. The influence of various parameters is presented: the catalytic wet air oxidation of succinic acid is 0 order with respect to succinic acid; the order with respect to oxygen pressure is 0.4, and the activation energy is ca. 125 kJ/mol. It was found that acetic acid, which is one of the intermediates, and CO{sub 2} have no retarding effect on the total organic carbon abatement rate of succinic acid. Substitution of one hydrogen atom of the methyl group in acetic acid by Cl, OH, or NH{sub 2} gives an increase of the oxidation rate. However, it was proposed that the low activity of acetic acid oxidation is due not only to the difficulty to oxidize the methyl group, but also to the low adsorption coefficient of acetic acid on ruthenium surface. Inorganic salts, such as sodium chloride, only slightly decrease the oxidation rate of acetic acid. The absence of metal ions (Ru, Ti) in the effluents after reaction and the absence of particle sintering indicate also a high stability of the catalyst under the conditions employed. The catalyst can be recycled without loss of activity after the second run. The activity becomes stable after the attainment of a steady-state coverage of the Ru particles by oxygen. The study of the effect of reduction-oxidation treatments of the catalyst showed that the activity depends on the oxidation state of the surface.

  12. Testing an advanced satellite technique for dust detection as a decision support system for the air quality assessment

    NASA Astrophysics Data System (ADS)

    Falconieri, Alfredo; Filizzola, Carolina; Femiano, Rossella; Marchese, Francesco; Sannazzaro, Filomena; Pergola, Nicola; Tramutoli, Valerio; Di Muro, Ersilia; Divietri, Mariella; Crisci, Anna Maria; Lovallo, Michele; Mangiamele, Lucia; Vaccaro, Maria Pia; Palma, Achille

    2014-05-01

    In order to correctly apply the European directive for air quality (2008/50/CE), local Authorities are often requested to discriminate the possible origin (natural/anthropic) of anomalous concentration of pollutants in the air (art.20 Directive 2008/50/CE). In this framework, it's been focused on PM10 and PM2,5 concentrations and sources. In fact, depending on their origin, appropriate counter-measures can be taken devoted to prevent their production (e.g. by traffic restriction) or simply to reduce their impact on citizen health (e.g. information campaigns). In this context suitable satellite techniques can be used in order to identify natural sources (particularly Saharan dust, but also volcanic ash or forest fire smoke) that can be responsible of over-threshold concentration of PM10/2,5 in populated areas. In the framework of the NIBS (Networking and Internationalization of Basilicata Space Technologies) project, funded by the Basilicata Region within the ERDF 2007-2013 program, the School of Engineering of University of Basilicata, the Institute of Methodologies for Environmental Analysis of National Research Council (IMAA-CNR) and the Regional Agency for the Protection of the Environment of Basilicata Region (ARPAB) have started a collaboration devoted to assess the potential of the use of advanced satellite techniques for Saharan dust events identification to support ARPAB activities related to the application of the European directive for air quality (2008/50/CE) in Basilicata region. In such a joint activity, the Robust Satellite Technique (RST) approach has been assessed and tested as a decision support system for monitoring and evaluating air quality at local and regional level. In particular, RST-DUST products, derived by processing high temporal resolution data provided by SEVIRI (Spinning Enhanced Visible and Infrared Imager) sensor on board Meteosat Second Generation platforms, have been analysed together with PM10 measurements performed by the ground

  13. AIR RADIOACTIVITY MONITOR

    DOEpatents

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  14. Eastern Texas Air Quality Forecasting System to Support TexAQS-II and 8-hour Ozone Modeling

    NASA Astrophysics Data System (ADS)

    Byun, D. W.

    2005-12-01

    The main objective of the Second Texas Air Quality Study (TexAQS-II) for 2005 and 2006 is to understand emissions and processes associated with the formation and transport of ozone and regional haze in Texas. The target research area is the more populated eastern half of the state, roughly from Interstate 35 eastward. Accurate meteorological and photochemical modeling efforts are essential to support this study and further enhance modeling efforts for establishing the State Implementation Plan (SIP) by Texas Commission on Environmental Quality (TCEQ). An air quality forecasting (AQF) system for Eastern Texas has been developed to provide these data and to further facilitate retrospective simulations to allow for model improvement and increased understanding of ozone episodes and emissions. We perform two-day air quality forecasting simulations with the 12-km Eastern Texas regional domain, and the 4-km Houston-Galveston area (HGA) domain utilizing a 48-CPU Beowulf Linux computer system. The dynamic boundary conditions are provided by the 36-km resolution conterminous US (CONUS) domain CMAQ simulations. Initial meteorological conditions are provided by the daily ETA forecast results. The results of individual runs are stored and made available to researchers and state and local officials via internet to study the patterns of air quality and its relationship to weather conditions and emissions. The data during the pre- and post-processing stages are in tens of gigabytes and must be managed efficiently during both the actual real-time and the subsequent computation periods. The nature of these forecasts and the time at which the initial data is available necessitates that models be executed within tight deadlines. A set of complex operational scripts is used to allow automatic operation of the data download, sequencing processors, performing graphical analysis, building database archives, and presenting on the web.

  15. Aeronautical System Center's environmental compliance assessment and management program's cost-saving initiatives support the Air Force's acquisition reform initiative

    SciTech Connect

    Meanor, T.

    1999-07-01

    The Environmental Management directorate of ASC (ASC/EM) has the responsibility of providing government oversight for the Government Owned Contractor Operated Aircraft and Missile plants (GOCOs). This oversight is manifested as a landlord role where Air Force provides the funding required to maintain the plant facilities including buildings and utilities as well as environmental systems. By agreement the companies operating the plants are required to operate them in accordance with environmental law. Presently the GOCOs include Air Force Plant (AFP) 6 in Marietta Ga., AFP 4 in Fort Worth, Tx., AFP 44 in Tucson, Az., AFP 42 in Palmdale, Ca., and AFP PJKS in Denver, Co. Lockheed Martin corporation operates AFPs 4,6, PJKS and a portion of AFP 42 while AFP 44 is operated by Raytheon Missile Systems Company. Other GOCOs at AFP 42 are Northrup-Grumman, Boeing, and Cabaco, the facilities engineer. Since 1992 the Environmental Management division has conducted its Environmental Compliance Assessment and Management Program assessments (ECAMP) annually at each of the plants. Using DOD's ECAMP Team Guide and teams comprised of both Air Force and consultant engineering personnel, each plant is assessed for its environmental compliance well being. In the face of rising operational costs and diminishing budgets ASC/EM performed a comprehensive review of its ECAMP. As a result, the basic ECAMP program was improved to reduce costs without compromising on quality of the effort. The program retained its emphasis in providing a snap-shot evaluation of each Air Force plant's environmental compliance health supported by complete but tailored protocol assessments.

  16. Impact of crop production on air quality in life support dynamics in closed habitats

    SciTech Connect

    Volk, T.

    1987-01-01

    Interest in human-designed closed habitats - where the substances needed for human life support are continuously regenerated from waste products - is growing, as apparent from the National Aeronautics and Space Administration's Closed Ecological Life Support Systems Program, the Soviet Union's Bios experiments, and the Biosphere II Project in Arizona. Nuclear-powered bases on the moon and Mars will have food-growing capabilities, and through gas-exchange processes these crops will alter the atmospheric composition. This study focuses on major gases tied to human life support: CO/sub 2/, O/sub 2/, and water vapor. Since actual systems are years and likely decades away, simulation studies can indicate necessary further research and provide instruction about the predicted behavior of such systems. To look at the first-order plant dynamics, i.e., the production of O/sub 2/ and water vapor and the consumption of CO/sub 2/, a simulation model is constructed with crop, human, and waste subsystems. The plant can either share an atmosphere with the humans or be separate, linked by osmotic or mechanical gas exchangers. The crop subsystem is sketched. Stoichiometric equations for the biosynthesis of protein, carbohydrates, and lipids in the edible portion and carbohydrates, fiber, and lignin in the inedible portion govern growth, mimicking that currently observed in the latest hydroponic wheat experiments.

  17. Air-stable supported membranes for single-cell cytometry on PDMS microchips.

    PubMed

    Phillips, K Scott; Kang, Kyung Mo; Licata, Louise; Allbritton, Nancy L

    2010-04-01

    Protein-reinforced supported bilayer membranes (rSBMs) composed of phosphatidylcholine (PC), biotin-PE and Neutravidin were used to coat hybrid microchips composed of polydimethylsiloxane (PDMS) and glass. Since the coatings required a freshly oxidized, hydrophilic substrate, a novel method to rapidly connect reservoirs using plasma oxidation was first developed and found to support up to 5.2 N cm(-2) (1.5 N) pull-off force. rSBMs were then assembled in the oxidized hydrophilic channels. The electroosmotic mobility (mu(eo)) of rSBM-coated channels was measured over a 3 h time to evaluate the stability of the coatings for microchip electrophoresis. rSBM-coated microchips with a simple cross-design had excellent properties for microchip separations, yielding efficiencies of up to 700,000 plates m(-1) for fluorescent dyes and peptides. The separation performance of rSBM and PC-coated channels was evaluated after repeatedly drying and rehydrating the channels. The separation efficiency of fluorescein on PC-coated devices decreased by 40% after one dehydration cycle and nearly 75% after 3 cycles. In contrast for rSBM-coated devices there was no significant change in the fluorescein efficiency until the third cycle (10% decreased efficiency). rSBM-coated channels were also markedly more stable when placed in a dehydrated state during long-term storage compared to PC-coated channels, and showed reduced chip failure and no reduction in performance for up to one month of dehydrated storage. Finally, rSBM-coated devices were used to perform single-cell cytometry. Microchips that had been dehydrated, stored two weeks, and rehydrated prior to use demonstrated similar performance to newly coated devices for the separation of fluorescein and carboxyfluorescein from single cells. Thus rSBM-coated devices were rugged withstanding electric fields, prolonged storage under dehydrated conditions, and biofouling by cellular constituents while maintaining excellent separation

  18. Surface potential distribution and airflow performance of different air-exposed electrode plasma actuators at different alternating current/direct current voltages

    SciTech Connect

    Yang, Liang; Yan, Hui-Jie; Qi, Xiao-Hua; Hua, Yue; Ren, Chun-Sheng

    2015-04-15

    Asymmetric surface dielectric barrier discharge (SDBD) plasma actuators have been intensely studied for a number of years due to their potential applications for aerodynamic control. In this paper, four types of actuators with different configurations of exposed electrode are proposed. The SDBD actuators investigated are driven by dual-power supply, referred to as a fixed AC high voltage and an adjustable DC bias. The effects of the electrode structures on the dielectric surface potential distribution, the electric wind velocity, and the mean thrust production are studied, and the dominative factors of airflow acceleration behavior are revealed. The results have shown that the actions of the SDBD actuator are mainly dependent on the geometry of the exposed electrode. Besides, the surface potential distribution can effectively affect the airflow acceleration behavior. With the application of an appropriate additional DC bias, the surface potential will be modified. As a result, the performance of the electric wind produced by a single SDBD can be significantly improved. In addition, the work also illustrates that the actuators with more negative surface potential present better mechanical performance.

  19. Magnetohydrodynamic electrode

    DOEpatents

    Marchant, David D.; Killpatrick, Don H.

    1978-01-01

    An electrode capable of withstanding high temperatures and suitable for use as a current collector in the channel of a magnetohydrodynamic (MHD) generator consists of a sintered powdered metal base portion, the upper surface of the base being coated with a first layer of nickel aluminide, an intermediate layer of a mixture of nickel aluminide - refractory ceramic on the first layer and a third or outer layer of a refractory ceramic material on the intermediate layer. The sintered powdered metal base resists spalling by the ceramic coatings and permits greater electrode compliance to thermal shock. The density of the powdered metal base can be varied to allow optimization of the thermal conductivity of the electrode and prevent excess heat loss from the channel.

  20. Cermet electrode

    DOEpatents

    Maskalick, Nicholas J.

    1988-08-30

    Disclosed is a cermet electrode consisting of metal particles of nickel, cobalt, iron, or alloys or mixtures thereof immobilized by zirconia stabilized in cubic form which contains discrete deposits of about 0.1 to about 5% by weight of praseodymium, dysprosium, terbium, or a mixture thereof. The solid oxide electrode can be made by covering a substrate with particles of nickel, cobalt, iron, or mixtures thereof, growing a stabilized zirconia solid oxide skeleton around the particles thereby immobilizing them, contacting the skeleton with a compound of praseodymium, dysprosium, terbium, or a mixture thereof, and heating the skeleton to a temperature of at least 500.degree. C. The electrode can also be made by preparing a slurry of nickel, cobalt, iron, or mixture and a compound of praseodymium, dysprosium, terbium, or a mixture thereof, depositing the slurry on a substrate, heating the slurry to dryness, and growing a stabilized zirconia skeleton around the metal particles.

  1. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1992-12-31

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid, polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  2. Catalyzed enzyme electrodes

    SciTech Connect

    Zawodzinski, T.A.; Wilson, M.S.; Rishpon, J.; Gottesfeld, S.

    1993-07-13

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  3. Catalyzed enzyme electrodes

    DOEpatents

    Zawodzinski, Thomas A.; Wilson, Mahlon S.; Rishpon, Judith; Gottesfeld, Shimshon

    1993-01-01

    An enzyme electrode is prepared with a composite coating on an electrical conductor. The composite coating is formed from a casting solution of a perfluorosulfonic acid polymer, an enzyme, and a carbon supported catalyst. The solution may be cast directly on the conductor surface or may be formed as a membrane and applied to the surface. The perfluorosulfonic acid ionomer formed from the casting solution provides an insoluble biocompatible protective matrix for the enzyme and acts to retain the enzyme for long term availability in the electrode structure. The carbon supported catalyst provides catalytic sites throughout the layer for the oxidation of hydrogen peroxide from the enzyme reactions. The carbon support then provides a conductive path for establishing an electrical signal to the electrical conductor. In one embodiment, the electrical conductor is a carbon cloth that permits oxygen or other gas to be introduced to the perfluorosulfonic polymer to promote the enzyme reaction independent of oxygen in the solution being tested.

  4. Calculation Package: Derivation of Facility-Specific Derived Air Concentration (DAC) Values in Support of Spallation Neutron Source Operations

    SciTech Connect

    McLaughlin, David A

    2009-12-01

    Derived air concentration (DAC) values for 175 radionuclides* produced at the Oak Ridge National Laboratory (ORNL) Spallation Neutron Source (SNS), but not listed in Appendix A of 10 CFR 835 (01/01/2009 version), are presented. The proposed DAC values, ranging between 1 E-07 {micro}Ci/mL and 2 E-03 {micro}Ci/mL, were calculated in accordance with the recommendations of the International Commission on Radiological Protection (ICRP), and are intended to support an exemption request seeking regulatory relief from the 10 CFR 835, Appendix A, requirement to apply restrictive DACs of 2E-13 {micro}Ci/mL and 4E-11 {micro}Ci/mL and for non-listed alpha and non-alpha-emitting radionuclides, respectively.

  5. Impact of urban air pollution on the allergenicity of Aspergillus fumigatus conidia: Outdoor exposure study supported by laboratory experiments.

    PubMed

    Lang-Yona, Naama; Shuster-Meiseles, Timor; Mazar, Yinon; Yarden, Oded; Rudich, Yinon

    2016-01-15

    Understanding the chemical interactions of common allergens in urban environments may help to decipher the general increase in susceptibility to allergies observed in recent decades. In this study, asexual conidia of the allergenic mold Aspergillus fumigatus were exposed to air pollution under natural (ambient) and controlled (laboratory) conditions. The allergenic activity was measured using two immunoassays and supported by a protein mass spectrometry analysis. The allergenicity of the conidia was found to increase by 2-5 fold compared to the control for short exposure times of up to 12h (accumulated exposure of about 50 ppb NO2 and 750 ppb O3), possibly due to nitration. At higher exposure times, the allergenicity increase lessened due to protein deamidation. These results indicate that during the first 12h of exposure, the allergenic potency of the fungal allergen A. fumigatus in polluted urban environments is expected to increase. Additional work is needed in order to determine if this behavior occurs for other allergens.

  6. Space Suit Electrocardiographic Electrode Selection: Are commercial electrodes better than the old Apollo technology?

    NASA Technical Reports Server (NTRS)

    Redmond, M.; Polk, J. D.; Hamilton, D.; Schuette, M.; Guttromson, J.; Guess, T.; Smith, B.

    2005-01-01

    The NASA Manned Space Program uses an electrocardiograph (ECG) system to monitor astronauts during extravehicular activity (EVA). This ECG system, called the Operational Bioinstrumentation System (OBS), was developed during the Apollo era. Throughout the Shuttle program these electrodes experienced failures during several EVAs performed from the Space Shuttle and International Space Station (ISS) airlocks. An attempt during Shuttle Flight STS-109 to replace the old electrodes with new commercial off-the-shelf (COTS) disposable electrodes proved unsuccessful. One assumption for failure of the STS-109 COTS electrodes was the expansion of trapped gases under the foam electrode pad, causing the electrode to be displaced from the skin. Given that our current electrodes provide insufficient reliability, a number of COTS ECG electrodes were tested at the NASA Altitude Manned Chamber Test Facility. Methods: OBS disposable electrodes were tested on human test subjects in an altitude chamber simulating an Extravehicular Mobility Unit (EMU) operating pressure of 4.3 psia with the following goals: (1) to confirm the root cause of the flight certified, disposable electrode failure during flight STS-109. (2) to identify an adequate COTS replacement electrode and determine if further modifications to the electrodes are required. (3) to evaluate the adhesion of each disposable electrode without preparation of the skin with isopropyl alcohol. Results: There were several electrodes that failed the pressure testing at 4.3psia, including the electrodes used during flight STS-109. Two electrodes functioned well throughout all testing and were selected for further testing in an EMU at altitude. A vent hole placed in all electrodes was also tested as a possible solution to prevent gas expansion from causing electrode failures. Conclusions: Two failure modes were identified: (1) foam-based porous electrodes entrapped air bubbles under the pad (2) poor adhesion caused some electrodes to

  7. Photoelectrochemical electrodes

    NASA Technical Reports Server (NTRS)

    Williams, R. M.; Rembaum, A. (Inventor)

    1983-01-01

    The surface of a moderate band gap semiconductor such as p-type molybdenum sulfide is modified to contain an adherent film of charge mediating ionene polymer containing an electroactive unit such as bipyridimium. Electron transport between the electrode and the mediator film is favorable and photocorrosion and recombination processes are suppressed. Incorporation of particles of catalyst such as platinum within the film provides a reduction in overvoltage. The polymer film is readily deposited on the electrode surface and can be rendered stable by ionic or addition crosslinking. Catalyst can be predispersed in the polymer film or a salt can be impregnated into the film and reduced therein.

  8. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C, 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  9. Performance of lightweight nickel electrodes

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1988-01-01

    The NASA Lewis Research Center is currently developing nickel electrodes for nickel-hydrogen (Ni-H2) batteries. These electrodes are lighter in weight and have higher energy densities than the heavier state-of-the-art (SOA) sintered nickel electrodes. In the present approach, lightweight materials or plaques are used as conductive supports for the nickel hydroxide active material. These plaques (fiber and felt, nickel plated plastic and graphite) are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. Evaluation is performed in half cells structured in the bipolar configuration. Initial performance tests include capacity measurements at five discharge levels, C/2, 1.0C 1.37C, 2.0C and 2.74C. The electrodes that pass the initial tests are life cycle tested in a low Earth orbit regime at 80 percent depth of discharge. Different formulations of nickel fiber materials obtained from several manufacturers are currently being tested as possible candidates for nickel electrodes. One particular lightweight fiber mat electrode has accumulated over 3000 cycles to date, with stable capacity and voltage. Life and performance data of this electrode were investigated and presented. Good dimensional stability and active material adherence have been demonstrated in electrodes made from this lightweight plaque.

  10. Partially reversible Li2O formation in ZnO: A critical finding supporting realization of highly reversible metal oxide electrodes

    NASA Astrophysics Data System (ADS)

    Park, Min-Gu; Sung, Geon-Kyu; Sung, Nark-Eon; Kim, Jae-Hun; Park, Cheol-Min

    2016-10-01

    The electrochemical reaction mechanism of ZnO is investigated to understand its Li insertion/extraction behavior using ex situ X-ray diffraction, extended X-ray absorption fine structure, and high-resolution transmission electron microscopy. Based on these analyses, an interesting partial recombination reaction of ZnO is discovered, which demonstrates that Li2O formed during Li insertion is partially reversible. Additionally, we discover that the control of the partial recombination reaction of the metal oxide is very important for improving reversibility in the first cycle, which is a key finding for realization of highly reversible oxide-based electrode materials. In addition, to enhance the electrochemical performance of the ZnO electrode, a nanostructured ZnO/C composite is prepared by a simple high-energy mechanical milling process. This process allows the electrochemical performance of the ZnO electrode to be evaluated as an anode for rechargeable Li-ion batteries. Electrochemical tests show that the nanocomposite electrode exhibits a high initial charge capacity of 682 mAh g-1, fast rate capability of 371 mAh g-1 at 2 C, and excellent cyclability over 200 cycles.

  11. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Remedial investigation and feasibility study. Bullen Point Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-03-18

    The United States Air Force (Air Force) has prepared this Remedial investigation/Feasibility Study (RI/FS) report as part of the Installation Restoration Program (IRP) to present results of RI/FS activities at five sites at the Bullen Point radar installation. The IRP provides for investigating, quantifying, and remediating environmental contamination from past waste management activities at Air Force installations throughout the United States.

  12. Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a Sonogel-Carbon material as supporting electrode: electroanalytical study in apple juice for babies.

    PubMed

    Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma

    2013-04-12

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of

  13. Study of the Electrocatalytic Activity of Cerium Oxide and Gold-Studded Cerium Oxide Nanoparticles Using a Sonogel-Carbon Material as Supporting Electrode: Electroanalytical Study in Apple Juice for Babies

    PubMed Central

    Abdelrahim, M. Yahia M.; Benjamin, Stephen R.; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; Hidalgo-Hidalgo de Cisneros, Josè L.; Delgado, Juan Josè; Palacios-Santander, Josè Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL−1)- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10−6 and 5.32 × 10−6 M, and 2.93 × 10−6 and 9.77 × 10−6 M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 μM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM;. The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of

  14. Study of the electrocatalytic activity of cerium oxide and gold-studded cerium oxide nanoparticles using a Sonogel-Carbon material as supporting electrode: electroanalytical study in apple juice for babies.

    PubMed

    Abdelrahim, M Yahia M; Benjamin, Stephen R; Cubillana-Aguilera, Laura Ma; Naranjo-Rodríguez, Ignacio; de Cisneros, José L Hidalgo-Hidalgo; Delgado, Juan José; Palacios-Santander, José Ma

    2013-01-01

    The present work reports a study of the electrocatalytic activity of CeO2 nanoparticles and gold sononanoparticles (AuSNPs)/CeO2 nanocomposite, deposited on the surface of a Sonogel-Carbon (SNGC) matrix used as supporting electrode and the application of the sensing devices built with them to the determination of ascorbic acid (AA) used as a benchmark analyte. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to investigate the electrocatalytic behavior of CeO2- and AuSNPs/CeO2-modified SNGC electrodes, utilizing different concentrations of CeO2 nanoparticles and different AuSNPs:CeO2 w/w ratios. The best detection and quantification limits, obtained for CeO2 (10.0 mg·mL(-1))- and AuSNPs/CeO2 (3.25% w/w)-modified SNGC electrodes, were 1.59 × 10(-6) and 5.32 × 10(-6) M, and 2.93 × 10(-6) and 9.77 × 10(-6) M, respectively, with reproducibility values of 5.78% and 6.24%, respectively, for a linear concentration range from 1.5 µM to 4.0 mM of AA. The electrochemical devices were tested for the determination of AA in commercial apple juice for babies. The results were compared with those obtained by applying high performance liquid chromatography (HPLC) as a reference method. Recovery errors below 5% were obtained in most cases, with standard deviations lower than 3% for all the modified SNGC electrodes. Bare, CeO2- and AuSNPs/CeO2-modified SNGC electrodes were structurally characterized using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). AuSNPs and AuSNPs/CeO2 nanocomposite were characterized by UV-vis spectroscopy and X-ray diffraction (XRD), and information about their size distribution and shape was obtained by transmission electron microscopy (TEM). The advantages of employing CeO2 nanoparticles and AuSNPs/CeO2 nanocomposite in SNGC supporting material are also described. This research suggests that the modified electrode can be a very promising voltammetric sensor for the determination of

  15. Preparation and operation of gas diffusion electrodes for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Pan, Chao; Li, Qingfeng; Jensen, Jens Oluf; He, Ronghuan; Cleemann, Lars N.; Nilsson, Morten S.; Bjerrum, Niels J.; Zeng, Qingxue

    Gas diffusion electrodes for high-temperature PEMFC based on acid-doped polybenzimidazole membranes were prepared by a tape-casting method. The overall porosity of the electrodes was tailored in a range from 38% to 59% by introducing porogens into the supporting and/or catalyst layers. The investigated porogens include volatile ammonium oxalate, carbonate and acetate and acid-soluble zinc oxide, among which are ammonium oxalate and ZnO more effective in improving the overall electrode porosity. Effects of the electrode porosity on the fuel cell performance were investigated in terms of the cathodic limiting current density and minimum air stoichiometry, anodic limiting current and hydrogen utilization, as well as operations under different pressures and temperatures.

  16. Computational Assessment of the GT-MHR Graphite Core Support Structural Integrity in Air-Ingress Accident Condition

    SciTech Connect

    Jong B. Lim; Eung S. Kim; Chang H. Oh; Richard R. Schultz; David A. Petti

    2008-10-01

    The objective of this project was to perform stress analysis for graphite support structures of the General Atomics’ 600 MWth GT-MHR prismatic core design using ABAQUS ® (ver. 6.75) to assess their structural integrity in air-ingress accident conditions where the structure weakens over time due to oxidation damages. The graphite support structures of prismatic type GT-MHR was analyzed based on the change of temperature, burn-off and corrosion depth during the accident period predicted by GAMMA, a multi-dimensional gas multi-component mixture analysis code developed in the Republic of Korea (ROK)/United States (US) International –Nuclear Engineering Research Initiative (I-NERI) project. Both the loading and thermal stresses were analyzed, but the thermal stress was not significant, leaving the loading stress to be the major factor. The mechanical strengths are exceeded between 11 to 11.5 days after loss-of-coolant-accident (LOCA), corresponding to 5.5 to 6 days after the start of natural convection.

  17. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions.

    PubMed

    Lee, Jang-Soo; Park, Gi Su; Lee, Ho Il; Kim, Sun Tai; Cao, Ruiguo; Liu, Meilin; Cho, Jaephil

    2011-12-14

    A composite air electrode consisting of Ketjenblack carbon (KB) supported amorphous manganese oxide (MnOx) nanowires, synthesized via a polyol method, is highly efficient for the oxygen reduction reaction (ORR) in a Zn-air battery. The low-cost and highly conductive KB in this composite electrode overcomes the limitations due to low electrical conductivity of MnOx while acting as a supporting matrix for the catalyst. The large surface area of the amorphous MnOx nanowires, together with other microscopic features (e.g., high density of surface defects), potentially offers more active sites for oxygen adsorption, thus significantly enhancing ORR activity. In particular, a Zn-air battery based on this composite air electrode exhibits a peak power density of ∼190 mW/cm2, which is far superior to those based on a commercial air cathode with Mn3O4 catalysts. PMID:22050041

  18. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  19. Striped Electrodes for Solid-Electrolyte Cells

    NASA Technical Reports Server (NTRS)

    Richter, R.

    1983-01-01

    Striped thick-film platinum electrodes help insure lower overall cell resistance by permitting free flow of gases in gaps between stripes. Thickfilm stripes are also easier to fabricate than porous thin-film electrodes that cover entire surface. Possible applications for improved cells include oxygen production from carbon dioxide, extraction of oxygen from air, small fluidic pumping, sewage treatment, and fuel cells.

  20. Atmospheric air diffuse array-needles dielectric barrier discharge excited by positive, negative, and bipolar nanosecond pulses in large electrode gap

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Yang, De-zheng; Wang, Wen-chun; Liu, Zhi-jie; Wang, Sen; Jiang, Peng-chao; Zhang, Shuai

    2014-09-01

    In this paper, positive, negative, and bipolar nanosecond pulses are employed to generate stable and diffuse discharge plasma using array needles-plate electrode configuration at atmospheric pressure. A comparison study of discharge images, electrical characteristics, optical emission spectra, and plasma vibrational temperature and rotational temperatures in three pulsed polarity discharges is carried on under different discharge conditions. It is found that bipolar pulse is beneficial to the excitation of diffuse dielectric barrier discharge, which can generate a room temperature plasma with more homogeneous and higher discharge intensity compared with unipolar discharges. Under the condition of 6 mm electrode gap distance, 26 kV pulse peak voltage, and 150 Hz pulse repetition rate, the emission intensity of N2 (C3Πu → B3Πg) of the bipolar pulsed discharge is 4 times higher than the unipolar discharge (both positive and negative), while the plasma gas temperature is kept at 300 K, which is about 10-20 K lower than the unipolar discharge plasma.

  1. NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting.

    PubMed

    Tang, Chun; Cheng, Ningyan; Pu, Zonghua; Xing, Wei; Sun, Xuping

    2015-08-01

    Active and stable electrocatalysts made from earth-abundant elements are key to water splitting for hydrogen production through electrolysis. The growth of NiSe nanowire film on nickel foam (NiSe/NF) in situ by hydrothermal treatment of NF using NaHSe as Se source is presented. When used as a 3D oxygen evolution electrode, the NiSe/NF exhibits high activity with an overpotential of 270 mV required to achieve 20 mA cm(-2) and strong durability in 1.0 M KOH, and the NiOOH species formed at the NiSe surface serves as the actual catalytic site. The system is also highly efficient for catalyzing the hydrogen evolution reaction in basic media. This bifunctional electrode enables a high-performance alkaline water electrolyzer with 10 mA cm(-2) at a cell voltage of 1.63 V.

  2. A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies

    PubMed Central

    Arunachalam, Saravanan; Valencia, Alejandro; Akita, Yasuyuki; Serre, Marc L.; Omary, Mohammad; Garcia, Valerie; Isakov, Vlad

    2014-01-01

    Exposure studies rely on detailed characterization of air quality, either from sparsely located routine ambient monitors or from central monitoring sites that may lack spatial representativeness. Alternatively, some studies use models of various complexities to characterize local-scale air quality, but often with poor representation of background concentrations. A hybrid approach that addresses this drawback combines a regional-scale model to provide background concentrations and a local-scale model to assess impacts of local sources. However, this approach may double-count sources in the study regions. To address these limitations, we carefully define the background concentration as the concentration that would be measured if local sources were not present, and to estimate these background concentrations we developed a novel technique that combines space-time ordinary kriging (STOK) of observations with outputs from a detailed chemistry-transport model with local sources zeroed out. We applied this technique to support an exposure study in Detroit, Michigan, for several pollutants (including NOx and PM2.5), and evaluated the estimated hybrid concentrations (calculated by combining the background estimates that addresses this issue of double counting with local-scale dispersion model estimates) using observations. Our results demonstrate the strength of this approach specifically by eliminating the problem of double-counting reported in previous hybrid modeling approaches leading to improved estimates of background concentrations, and further highlight the relative importance of NOx vs. PM2.5 in their relative contributions to total concentrations. While a key limitation of this approach is the requirement for another detailed model simulation to avoid double-counting, STOK improves the overall characterization of background concentrations at very fine spatial scales. PMID:25321872

  3. The influence of the sand-dust environment on air-gap breakdown discharge characteristics of the plate-to-plate electrode

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhang, Gang; Chen, Bangfa; Gao, Naikui; Li, Yaozhong; Peng, Zongren; Jin, Haiyun

    2010-03-01

    The experiments of plane-plane gap discharge was carried out in an environment of artificial sandstorm. By comparing and analyzing the differences in gap breakdown voltage between the sand & dust environment and clean air, some problems were investigated, such as effects of wind speed and particle concentration on the breakdown voltage, differences of gap discharge characteristics between the dust & sand medium and the clean air medium. The results showed that compared with the clean air environment, the dust & sand environment had a decreased gap breakdown voltage. The longer the gap distance, the greater the voltage drop; the breakdown voltage decreased with the increase of particle concentration in flow. With the increase of wind speed, the breakdown voltage decreased at the beginning and rose afterwards. The results of the paper may helpful for further research regarding the unidentified flashover and external insulation characteristics of the HV power grid in the dust & sand environment.

  4. Analysis of SOFCs Using Reference Electrodes

    SciTech Connect

    Finklea, H.; Chen, X.; Gerdes, K.; Pakalapati, S.; Celik, I.

    2013-01-01

    Reference electrodes are frequently applied to isolate the performance of one electrode in a solid oxide fuel cell. However, reference electrode simulations raise doubt to veracity of data collected using reference electrodes. The simulations predict that the reported performance for the one electrode will frequently contain performance of both electrodes. Nonetheless, recent reports persistently treat data so collected as ideally isolated. This work confirms the predictions of the reference electrode simulations on two SOFC designs, and to provides a method of validating the data measured in the 3-electrode configuration. Validation is based on the assumption that a change in gas composition to one electrode does not affect the impedance of the other electrode at open circuit voltage. This assumption is supported by a full physics simulation of the SOFC. Three configurations of reference electrode and cell design are experimentally examined using various gas flows and two temperatures. Impedance data are subjected to deconvolution analysis and equivalent circuit fitting and approximate polarization resistances of the cathode and anode are determined. The results demonstrate that the utility of reference electrodes is limited and often wholly inappropriate. Reported impedances and single electrode polarization values must be scrutinized on this basis.

  5. A Review and Analysis of Remote Sensing Capability for Air Quality Measurements as a Potential Decision Support Tool Conducted by the NASA DEVELOP Program

    NASA Technical Reports Server (NTRS)

    Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.

    2007-01-01

    This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities

  6. Linking Meteorology, Air Quality Models and Observations to Characterize Human Exposures in Support of the Environmental Health Studies

    EPA Science Inventory

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air polluta...

  7. Evaluating the sustainability of space life support systems: case study on air revitalisation systems ARES and BIORAT

    NASA Astrophysics Data System (ADS)

    Suomalainen, Emilia; Erkman, Suren

    Space life support systems can be taken as kinds of miniature models of industrial systems found on Earth. The term "industrial" is employed here in a generic sense, referring to all human technological activities. The time scale as well as the physical scope of space life support systems is reduced compared to most terrestrial systems and so is consequently their complexity. These systems can thus be used as a kind of a "laboratory of sustainability" to examine concerns related to the environmental sustainability of industrial systems and in particular to their resource use. Two air revitalisation systems, ARES and BIORAT, were chosen as the test cases of our study. They represent respectively a physico-chemical and a biological life support system. In order to analyse the sustainability of these systems, we began by constructing a generic system representation applicable to both these systems (and to others). The metabolism of the systems was analysed by performing Material Flow Analyses—MFA is a tool frequently employed on terrestrial systems in the field of industrial ecology. Afterwards, static simulation models were developed for both ARES and BIORAT, focusing, firstly, on the oxygen balances of the systems and, secondly, on the total mass balances. It was also necessary to define sustainability indicators adapted to space life support systems in order to evaluate and to compare the performances of ARES and BIORAT. The defined indicators were partly inspired from concepts used in Material Flow Accounting and they were divided into four broad categories: 1. recycling and material use efficiency, 2. autarky and coverage time, 3. resource use and waste creation, and 4. system mass and energy consumption. The preliminary results of our analyses show that the performance of BIORAT is superior compared to ARES in terms of the defined resource use indicators. BIORAT seems especially effective in reprocessing carbon dioxide created by human metabolism. The

  8. Child maltreatment among U.S. Air Force parents deployed in support of Operation Iraqi Freedom/Operation Enduring Freedom.

    PubMed

    Rabenhorst, Mandy M; McCarthy, Randy J; Thomsen, Cynthia J; Milner, Joel S; Travis, Wendy J; Colasanti, Marie P

    2015-02-01

    This study examined child maltreatment perpetration among 99,697 active-duty U.S. Air Force parents who completed a combat deployment. Using the deploying parent as the unit of analysis, we analyzed whether child maltreatment rates increased postdeployement relative to predeployment. These analyses extend previous research that used aggregate data and extend our previous work that used data from the same period but used the victim as the unit of analysis and included only deploying parents who engaged in child maltreatment. In this study, 2% (n = 1,746) of deploying parents perpetrated child maltreatment during the study period. Although no overall differences were found in child maltreatment rates postdeployment compared to predeployment, several maltreatment-related characteristics qualified this finding. Rates for emotional abuse and mild maltreatment were lower following deployment, whereas child maltreatment rates for severe maltreatment were higher following deployment. The finding that rates of severe child maltreatment, including incidents involving alcohol use, were higher postdeployment suggests a need for additional support services for parents following their return from combat deployment, with a focus on returning parents who have an alcohol use problem. PMID:25424846

  9. Child maltreatment among U.S. Air Force parents deployed in support of Operation Iraqi Freedom/Operation Enduring Freedom.

    PubMed

    Rabenhorst, Mandy M; McCarthy, Randy J; Thomsen, Cynthia J; Milner, Joel S; Travis, Wendy J; Colasanti, Marie P

    2015-02-01

    This study examined child maltreatment perpetration among 99,697 active-duty U.S. Air Force parents who completed a combat deployment. Using the deploying parent as the unit of analysis, we analyzed whether child maltreatment rates increased postdeployement relative to predeployment. These analyses extend previous research that used aggregate data and extend our previous work that used data from the same period but used the victim as the unit of analysis and included only deploying parents who engaged in child maltreatment. In this study, 2% (n = 1,746) of deploying parents perpetrated child maltreatment during the study period. Although no overall differences were found in child maltreatment rates postdeployment compared to predeployment, several maltreatment-related characteristics qualified this finding. Rates for emotional abuse and mild maltreatment were lower following deployment, whereas child maltreatment rates for severe maltreatment were higher following deployment. The finding that rates of severe child maltreatment, including incidents involving alcohol use, were higher postdeployment suggests a need for additional support services for parents following their return from combat deployment, with a focus on returning parents who have an alcohol use problem.

  10. Graphene-based battery electrodes having continuous flow paths

    DOEpatents

    Zhang, Jiguang; Xiao, Jie; Liu, Jun; Xu, Wu; Li, Xiaolin; Wang, Deyu

    2014-05-24

    Some batteries can exhibit greatly improved performance by utilizing electrodes having randomly arranged graphene nanosheets forming a network of channels defining continuous flow paths through the electrode. The network of channels can provide a diffusion pathway for the liquid electrolyte and/or for reactant gases. Metal-air batteries can benefit from such electrodes. In particular Li-air batteries show extremely high capacities, wherein the network of channels allow oxygen to diffuse through the electrode and mesopores in the electrode can store discharge products.

  11. United States Air Force 611th Air Support Group Civil Engineering Squadron, Elmendorf AFB, Alaska. Remedial investigation and feasibility study Point Lay Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-03-04

    The United States Air Force (Air Force) has prepared this Remedial Investigation/Feasibility Study (RI/FS) report to present the results of RI/FS activities at four sites located at the Point Lay radar installation. The remedial investigation (RI) field activities were conducted at the Point Lay radar installation during the summer of 1993. The four sites at Point Lay were investigated because they were suspected of being contaminated with hazardous substances. RI activities were conducted using methods and procedures specified in the RI/FS Work Plan, Sampling and Analysis Plan (SAP), and Health and Safety Plan.

  12. Non-aqueous electrolytes for lithium-air batteries

    DOEpatents

    Amine, Khalil; Chen, Zonghai; Zhang, Zhengcheng

    2016-06-07

    A lithium-air cell includes a negative electrode; an air positive electrode; and a non-aqueous electrolyte which includes an anion receptor that may be represented by one or more of the formulas. ##STR00001##

  13. Air gap winding method and support structure for a super conducting generator and method for forming the same

    DOEpatents

    Hopeck, James Frederick

    2003-11-25

    A method of forming a winding support structure for use with a superconducting rotor wherein the method comprises providing an inner support ring, arranging an outer support ring around the inner support ring, coupling first and second support blocks to the outer support ring and coupling a lamination to the first and second support blocks. A slot is defined between the support blocks and between the outer support ring and the lamination to receive a portion of a winding. An RTV fills any clearance space in the slot.

  14. High specific energy and specific power aluminum/air battery for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Matthies, L.

    2014-06-01

    Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.

  15. Treatment of pretreated coking wastewater by flocculation, alkali out, air stripping, and three-dimensional electrocatalytic oxidation with parallel plate electrodes.

    PubMed

    Wen-wu, Liu; Xiu-ping, Wang; Xue-yan, Tu; Chang-yong, Wang

    2014-10-01

    The coking wastewater generally comprises highly concentrated, recalcitrant, and toxic organic pollutants, so its treatment has been of great importance to prevent living beings and their environment from these hazardous contaminations. The treatment of pretreated coking wastewater by flocculation-coagulation, alkali out, air stripping, and three-dimensional (3-D) electrocatalytic oxidation was performed (gap between the used β-PbO2/Ti anode and titanium cathode, 12 mm; mass ratio of Cu-Mn/granular activated carbon (GAC) to effluent, 1:4; cell voltage, 7 V). The results showed that the pH adjusting from 3.7 to 6.1 was necessary for coagulants; alkali out played an important role because it brought up precipitation containing higher fatty acids as well as other contaminants to decrease the chemical oxygen demand (COD) in the effluent, and it had also forced the reduction of ammonia nitrogen (NH3-N) by incorporating with air stripping; for 3-D electrocatalytic oxidation with a bleaching liquid assisting, the initial pH 8.5 of effluent was suitable for Cu-Mn/GAC; moreover, it was considered that its Cu component was dedicated to the decrease of COD and NH3-N, while the Mn component specialized in the decay of NH3-N. The residual COD and NH3-N values in the final effluent with pH 6.5 were 95.8 and 8.8 mg/L, respectively, demonstrating that the whole processes applied were feasible and low in cost.

  16. DEVELOPMENTS AND APPLICATIONS OF CFD SIMULATIONS OF MICROMETEOROLOGY AND POLLUTION TRANSPORT IN SUPPORT OF AIR QUALITY MODELING

    EPA Science Inventory

    Development and application of computational fluid dynamics (CFD) simulations are being advanced through case studies for simulating air pollutant concentrations from sources within open fields and within complex urban building environments. CFD applications have been under deve...

  17. A Method for Estimating Urban Background Concentrations in Support of Hybrid Air Pollution Modeling for Environmental Health Studies

    EPA Science Inventory

    Exposure studies rely on detailed characterization of air quality, either from sparsely located routine ambient monitors or from central monitoring sites that may lack spatial representativeness. Alternatively, some studies use models of various complexities to characterize local...

  18. High-resolution air pollution modeling for urban environments in support of dense multi-platform networks

    NASA Astrophysics Data System (ADS)

    Berchet, Antoine; Zink, Katrin; Arfire, Adrian; Marjovi, Ali; Martinoli, Alcherio; Emmenegger, Lukas; Brunner, Dominik

    2015-04-01

    As the fraction of people living in urban areas is rapidly increasing worldwide, the impact of air quality on human health in cities is a growing concern not only in developing countries but also in Europe despite the achievements of European air quality legislation. One obstacle to the quantitative assessment of the connections between health and air quality is the very high temporal and spatial variability of air pollutant concentrations within cities. Yet, an important issue for obtaining accurate and spatially highly resolved air pollution data is the trade-off between the high costs of accurate air pollution sensors and the number of such devices required for succinctly monitoring a given geographical area. The OpenSense 2 project aims at establishing air quality data at very high temporal and spatial resolution in the cities of Lausanne and Zurich in Switzerland in order to provide reliable information for epidemiologic studies and for the design of air pollution controls and urban planning. Towards this goal, observations from both stationary reference monitoring stations and low-cost mobile sensors (including sensing platforms anchored on public transport vehicles) are combined with high-resolution air quality modeling throughout the two cities. As a first step, we simulate the 3-dimensional, high-resolution dispersion and distribution of key pollutants using the GRAMM/GRAL modeling system. The GRAMM meteorological meso-scale model calculates wind fields at 100 m resolution accounting for the complex topography and land use within and around the two cities. GRAMM outputs are then used to drive the building-resolving dispersion model GRAL at 5-10m resolution. Further key inputs for GRAL are high resolution emission inventories and the 3-D building structure which are available for both cities. Here, in order to evaluate the ability of the GRAMM/GRAL modeling system to reproduce air pollutant distributions within the two cities of Lausanne and Zurich, we

  19. resterilizable electrode for electrosurgery

    NASA Technical Reports Server (NTRS)

    Engstrom, E. R.; Houge, J. C.

    1979-01-01

    Required properties of flexibility, electrical conductivity, tensile strength, and tear resistance of electrosurgical electrodes is retained through utilization of flexible-polymer/conductive particle composites for electrodes.

  20. Self-Supported Cedarlike Semimetallic Cu3P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions.

    PubMed

    Hou, Chun-Chao; Chen, Qian-Qian; Wang, Chuan-Jun; Liang, Fei; Lin, Zheshuai; Fu, Wen-Fu; Chen, Yong

    2016-09-01

    There has been strong and growing interest in the development of cost-effective and highly active oxygen evolution reaction (OER) electrocatalysts for alternative fuels utilization and conversion devices. We report herein that semimetallic Cu3P nanoarrays directly grown on 3D copper foam (CF) substrate can function as effective electrocatalysts for water oxidation. Specifically, the surface oxidation-activated Cu3P only required a relatively low overpotential of 412 mV to achieve a current density of 50 mA cm(-2) and displayed a small Tafel slope of 63 mV dec(-1) in 0.1 M KOH solution, on account of the collaborative effect of large roughness factor (RF) and semimetallic character. Following that, investigations into the mechanism revealed the formation of a unique active phase during the water oxidation process in which conductive Cu3P was the core covered with a thin copper oxide/hydroxide layer. Moreover, this Cu3P 3D electrode was also applied to the hydrogen evolution reaction (HER) and showed good catalytic performance and stability under the same basic conditions. PMID:27559613

  1. Electrically recharged battery employing a packed/spouted bed metal particle electrode

    DOEpatents

    Siu, Stanley C.; Evans, James W.; Salas-Morales, Juan

    1995-01-01

    A secondary metal air cell, employing a spouted/packed metal particle bed and an air electrode. More specifically a zinc air cell well suited for use in electric vehicles which is capable of being either electrically or hydraulically recharged.

  2. A novel air quality analysis and prediction system for São Paulo, Brazil to support decision-making

    NASA Astrophysics Data System (ADS)

    Hoshyaripour, Gholam Ali; Brasseur, Guy; Andrade, Maria Fatima; Gavidia-Calderón, Mario; Bouarar, Idir

    2016-04-01

    The extensive economic development and urbanization in southeastern Brazil (SEB) in recent decades have notably degraded the air quality with adverse impacts on human health. Since the Metropolitan Area of São Paulo (MASP) accommodates the majority of the economic growth in SEB, it overwhelmingly suffers from the air pollution. Consequently, there is a strong demand for developing ever-better assessment mechanisms to monitor the air quality and to assist the decision makers to mitigate the air pollution in MASP. Here we present the results of an air quality modeling system designed for SEB with focuses on MASP. The Weather Research and Forecast model with Chemistry (WRF-Chem) is used considering the anthropogenic, biomass-burning and biogenic emissions within a 1000×1500 km domain with resolution of 10 km. FINN and MEGAN are used for the biomass-burning and biogenic emissions, respectively. For the anthropogenic emissions we use a local bottom-up inventory for the transport sector and the HTAPv2 global inventory for all other sectors. The bottom-up inventory accounts for the traffic patterns, vehicle types and their emission factors in the area and thus could be used to evaluate the effect of changes in these parameters on air quality in MASP. The model outputs are compered to the satellite and ground-based observations for O3 and NOx. The results show that using the bottom-up or top-down inventories individually can result in a huge deviation between the predictions and observations. On the other hand, combining the inventories significantly enhances the forecast accuracy. It also provides a powerful tool to quantify the effects of traffic and vehicle emission policies on air quality in MASP.

  3. Electrode porosity and effective electrocatalyst activity in electrode-membrane-assemblies (MEAs) of PEMFCs

    SciTech Connect

    Fischer, A.; Wendt, H.

    1996-12-31

    New production technologies of membrane-electrode-assemblies for PEWCs which ensure almost complete catalyst utilization by {open_quotes}wetting{close_quotes} the internal catalyst surface with the ionomeric electrolyte, allow for a reduction of Pt-loadings from prior 4 mg cm{sup -2} to now less than 0.5 mg cm{sup -2}. Such electrodes are not thicker than from 5 to 10 {mu}m. Little has been published hitherto about the detailed micromorphology of such electrodes and the role of electrode porosity on electrode performance. It is well known, that the porosity of thicker fuel cell electrodes, e.g. of PAFC or AFC electrodes is decisive for their performance. Therefore the issue of this investigation is to measure and to modify the porosity of electrodes prepared by typical MEA production procedures and to investigate the influence of this porosity on the effective catalyst activity for cathodic reduction of oxygen from air in membrane cells. It may be anticipated that any mass transfer hindrance of gaseous reactants into porous electrodes would manifest itself rather in the conversion of dilute gases than in the conversion of pure gases (e.g. neat oxygen). Therefore in this investigation the performance of membrane cell cathodes with non pressurized air had been compared to that with neat oxygen at cathodes which had a relatively low Pt-loading of 0.15 mg cm{sup -2}.

  4. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Risk assessment Bullen Point Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-03-18

    This document contains the baseline human health risk assessment and the ecological risk assessment (ERA) for the Bullen Point Distant Early Warning (DEW) Line radar installation. Five sites at the Bullen Point radar installation underwent remedial investigations (RIs) during the summer of 1993. The presence of chemical contamination in the soil, sediments, and surface water at the installation was evaluated and reported in the Bullen Point Remedial Investigation/Feasibility Study (RI/FS) (U.S. Air Force 1996). The analytical data reported in the RI/FS form the basis for the human health and ecological risk assessments. The primary chemicals of concern (COCs) at the five sites are diesel and gasoline from past spills and/or leaks.

  5. [Life support of the Mars exploration crew. Control of a zeolite system for carbon dioxide removal from space cabin air within a closed air regeneration cycle].

    PubMed

    Chekov, Iu F

    2009-01-01

    The author describes a zeolite system for carbon dioxide removal integrated into a closed air regeneration cycle aboard spacecraft. The continuous operation of a double-adsorbent regeneration system with pCO2-dependable productivity is maintained through programmable setting of adsorption (desorption) semicycle time. The optimal system regulation curve is presented within the space of statistical performance family obtained in quasi-steady operating modes with controlled parameters of the recurrent adsorption-desorption cycle. The automatically changing system productivity ensures continuous intake of concentrated CO2. Control of the adsorption-desorption process is based on calculation of the differential adsorption (desorption) heat from gradient of adsorbent and test inert substance temperatures. The adaptive algorithm of digital control is implemented through the standard spacecraft interface with the board computer system and programmable microprocessor-based controllers. PMID:19621802

  6. Information Requirements for Supervisory Air Traffic Controllers in Support of a Mid-Term Wake Vortex Departure System

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.; Trujillo, Anna C.; Johnson, Edward J.; Domino, David A.

    2008-01-01

    A concept focusing on wind dependent departure operations has been developed the current version of this concept is called the Wake Turbulence Mitigation for Departures (WTMD). This concept takes advantage the fact that cross winds of sufficient velocity blow wakes generated by "heavy" and B757 category aircraft on the downwind runway away from the upwind runway. Supervisory Air Traffic Controllers would be responsible for authorization of the Procedure. An investigation of the information requirements necessary to for Supervisors to approve monitor and terminate the Procedure was conducted. Results clearly indicated that the requisite information is currently available in air traffic control towers and that additional information was not required.

  7. Plasma torch with liquid metal electrodes

    SciTech Connect

    Predtechenskii, M.R.; Tukhto, O.M.

    2006-03-15

    In order to eliminate the negative effect of erosion processes on electrodes in arc plasma generators, a new scheme of arc discharge was proposed in which the surface of a molten metal acts as electrodes. A plasma reactor was designed on the basis of this concept. The electrophysical characteristics of such a discharge in steam and air as plasma gases were studied. Experiments on destruction of toxic polychlorinated biphenyls and steam coal gasification were performed.

  8. Ion-Selective Electrodes.

    ERIC Educational Resources Information Center

    Arnold, Mark A.; Meyerhoff, Mark E.

    1984-01-01

    Literature on ion-selective electrodes (ISEs) is reviewed in seven sections: books, conferences, reviews; potentiometric membrane electrodes; glass and solid-state membrane electrodes; liquid and polymer membrane ISEs; coated wire electrodes, ion-selective field effect transistors, and microelectrodes; gas sensors and selective bioelectrode…

  9. Workshop in Support of the Secondary National Ambient Air Quality Standards for Nitrogen (NOx) and Sulfur Oxides (SOx)

    EPA Science Inventory

    EPA is announcing a workshop to discuss policy-relevant science to Inform EPA’s "Review of the Secondary National Ambient Air Quality Standards (NAAQS) for Oxides of Nitrogen and Sulfur" report. The workshop is being organized by EPA’s Office of Research and Development’s, Nation...

  10. “Estimating Regional Background Air Quality using Space/Time Ordinary Kriging to Support Exposure Studies”

    EPA Science Inventory

    Local-scale dispersion models are increasingly being used to perform exposure assessments. These types of models, while able to characterize local-scale air quality at increasing spatial scale, however, lack the ability to include background concentration in their overall estimat...

  11. SITE CHARACTERIZATION OF AREA 6, DOVER AIR FORCE BASE, IN SUPPORT OF NATURAL ATTENUATION AND ENHANCED ANAEROBIC BIOREMEDIATION PROJECTS

    EPA Science Inventory

    A field program for site characterization of targeted study areas at the Dover Air Force Base was conducted between January 16, 1995, and March 9, 1995. The stated objectives of the investigation, "to characterize the stratigraphy, depth to groundwater, groundwater flow directio...

  12. Method for linearizing deflection of a MEMS device using binary electrodes and voltage modulation

    DOEpatents

    Horenstein, Mark N [West Roxbury, MA

    2008-06-10

    A micromechanical device comprising one or more electronically movable structure sets comprising for each set a first electrode supported on a substrate and a second electrode supported substantially parallel from said first electrode. Said second electrode is movable with respect to said first electrode whereby an electric potential applied between said first and second electrodes causing said second electrode to move relative to said first electrode a distance X, (X), where X is a nonlinear function of said potential, (V). Means are provided for linearizing the relationship between V and X.

  13. HSPES membrane electrode assembly

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew (Inventor); Yen, Shiao-Ping (Inventor)

    2000-01-01

    An improved fuel cell electrode, as well as fuel cells and membrane electrode assemblies that include such an electrode, in which the electrode includes a backing layer having a sintered layer thereon, and a non-sintered free-catalyst layer. The invention also features a method of forming the electrode by sintering a backing material with a catalyst material and then applying a free-catalyst layer.

  14. Nanostructured catalyst supports

    SciTech Connect

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2015-09-29

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  15. Nanostructured catalyst supports

    DOEpatents

    Zhu, Yimin; Goldman, Jay L.; Qian, Baixin; Stefan, Ionel C.

    2012-10-02

    The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.

  16. Characterization of composite phthalocyanine-fatty acid films from the air/water interface to solid supports.

    PubMed

    Giancane, G; Manno, D; Serra, A; Sgobba, V; Valli, L

    2011-12-22

    A commercial vanadyl 2,9,16,23-tetraphenoxy-29H,31H-phthalocyanine (VOPc) was dissolved in chloroform and spread on ultrapure water subphase in a Langmuir trough. The floating film was thoroughly characterized at the air-water interface by means of the Langmuir isotherm, Brewster angle microscopy, UV-vis reflection spectroscopy, and infrared measurements carried out directly at the air-water interface. All the results showed the formation of a non-uniform and aggregated floating layer, too rigid to be transferred by the Langmuir-Blodgett (LB) method. For this reason, a mixture of arachidic acid and VOPc was realized, characterized, and transferred by the LB technique on solid substrates. Interface measurements and atomic force microscopy analysis suggested the formation of a uniform arachidic acid film and a superimposed VOPc placed in prone configuration.

  17. New electrosurgical ball electrode with nonstick properties

    NASA Astrophysics Data System (ADS)

    Rondinone, Joseph; Brassell, James; Miller, Scott A., III; Thorne, Jonathan O.; Rondinone, David M.; Safabash, Jason; Vega, Felix

    1998-04-01

    A new electrosurgical ball electrode (SilverBulletTM) has been developed for applying radiofrequency (RF) energy to fuse biological and other materials to tissue surfaces. Specifically, the electrode was developed for use in conjunction with the Fusion Medical Technologies, Inc. gelatin patch (RapiSealTM) for use in pulmonary surgery to seal air leaks, and in solid abdominal organ surgeries to provide hemostatic tamponade. The new electrode allows for the application of RF energy in contact mode without the problems of the electrode sticking to the gelatin patch or the underlying tissue. Designed for use with commercially available electrosurgical handpieces, the electrode consists of a stainless steel connector that fits into the hand- piece, and an electrode assembly made from silver that includes a shank region, and a tip extension extending distally from the shank region. The distal tip of the tip extension is rounded and has a length of about 10 mm. The uniqueness of this electrode is the shank region which has a cross sectional area that is larger than the tip extension. The shank region acts as a heat sink to draw away heat from the tip extension while the tip extension itself remains sufficiently small to access desired target sites and display the desired energy transfer properties. In addition to the physical design, the use of silver as the core element provides a material with high electrical and thermal conductivities. The bulk of the electrode is appropriately insulated.

  18. Cobalt phthalocyanine modified electrodes utilised in electroanalysis: nano-structured modified electrodes vs. bulk modified screen-printed electrodes.

    PubMed

    Foster, Christopher W; Pillay, Jeseelan; Metters, Jonathan P; Banks, Craig E

    2014-11-19

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes L-ascorbic acid, oxygen and hydrazine. It is found that no "electrocatalysis" is observed towards L-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where "electrocatalysis" has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate.

  19. Cobalt Phthalocyanine Modified Electrodes Utilised in Electroanalysis: Nano-Structured Modified Electrodes vs. Bulk Modified Screen-Printed Electrodes

    PubMed Central

    Foster, Christopher W.; Pillay, Jeseelan; Metters, Jonathan P.; Banks, Craig E.

    2014-01-01

    Cobalt phthalocyanine (CoPC) compounds have been reported to provide electrocatalytic performances towards a substantial number of analytes. In these configurations, electrodes are typically constructed via drop casting the CoPC onto a supporting electrode substrate, while in other cases the CoPC complex is incorporated within the ink of a screen-printed sensor, providing a one-shot economical and disposable electrode configuration. In this paper we critically compare CoPC modified electrodes prepared by drop casting CoPC nanoparticles (nano-CoPC) onto a range of carbon based electrode substrates with that of CoPC bulk modified screen-printed electrodes in the sensing of the model analytes l-ascorbic acid, oxygen and hydrazine. It is found that no “electrocatalysis” is observed towards l-ascorbic acid using either of these CoPC modified electrode configurations and that the bare underlying carbon electrode is the origin of the obtained voltammetric signal, which gives rise to useful electroanalytical signatures, providing new insights into literature reports where “electrocatalysis” has been reported with no clear control experiments undertaken. On the other hand true electrocatalysis is observed towards hydrazine, where no such voltammetric features are witnessed on the bare underlying electrode substrate. PMID:25414969

  20. SU-E-T-552: Monte Carlo Calculation of Correction Factors for a Free-Air Ionization Chamber in Support of a National Air-Kerma Standard for Electronic Brachytherapy

    SciTech Connect

    Mille, M; Bergstrom, P

    2015-06-15

    Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or current can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose

  1. High frequency reference electrode

    DOEpatents

    Kronberg, James W.

    1994-01-01

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or "halo" at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes.

  2. High frequency reference electrode

    DOEpatents

    Kronberg, J.W.

    1994-05-31

    A high frequency reference electrode for electrochemical experiments comprises a mercury-calomel or silver-silver chloride reference electrode with a layer of platinum around it and a layer of a chemically and electrically resistant material such as TEFLON around the platinum covering all but a small ring or halo' at the tip of the reference electrode, adjacent to the active portion of the reference electrode. The voltage output of the platinum layer, which serves as a redox electrode, and that of the reference electrode are coupled by a capacitor or a set of capacitors and the coupled output transmitted to a standard laboratory potentiostat. The platinum may be applied by thermal decomposition to the surface of the reference electrode. The electrode provides superior high-frequency response over conventional electrodes. 4 figs.

  3. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  4. Flexible retinal electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.; Christenson, Todd R.

    2006-10-24

    An electrode array which has applications for neural stimulation and sensing. The electrode array can include a large number of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. The electrode array can be formed from a combination of bulk and surface micromachining, with electrode tips that can include an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis where the electrodes can be tailored to provide a uniform gentle contact pressure with optional sensing of this contact pressure at one or more of the electrodes.

  5. Controlled porosity in electrodes

    SciTech Connect

    Chiang, Yet-Ming; Bae, Chang-Jun; Halloran, John William; Fu, Qiang; Tomsia, Antoni P.; Erdonmez, Can K.

    2015-06-23

    Porous electrodes in which the porosity has a low tortuosity are generally provided. In some embodiments, the porous electrodes can be designed to be filled with electrolyte and used in batteries, and can include low tortuosity in the primary direction of ion transport during charge and discharge of the battery. In some embodiments, the electrodes can have a high volume fraction of electrode active material (i.e., low porosity). The attributes outlined above can allow the electrodes to be fabricated with a higher energy density, higher capacity per unit area of electrode (mAh/cm.sup.2), and greater thickness than comparable electrodes while still providing high utilization of the active material in the battery during use. Accordingly, the electrodes can be used to produce batteries with high energy densities, high power, or both compared to batteries using electrodes of conventional design with relatively highly tortuous pores.

  6. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  7. Temperature distribution in a stack of intrinsic Josephson junctions with their CuO-plane electrodes oriented perpendicular to supporting substrate

    NASA Astrophysics Data System (ADS)

    Yurgens, A.; Bulaevskii, L. N.

    2011-01-01

    We numerically study Joule heating in a THz emitter made of Bi2Sr2CaCu2O8 + δ (Bi2212) single crystal with its CuO planes oriented perpendicular to supporting substrate. The single crystal is glued to the substrate by a layer of PMMA. The electrical current is applied in the c-axis direction across many intrinsic Josephson junctions (IJJ's) in Bi2212. The calculations show that the internal temperature increases to an acceptable 10-20 K only above the bath temperature for a Joule power density of ~ 105 W cm - 3 typical for experiments on THz emission from IJJ's. This makes the suggested geometry promising for boosting the output power of the emitter.

  8. High performance cermet electrodes

    DOEpatents

    Isenberg, Arnold O.; Zymboly, Gregory E.

    1986-01-01

    Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.

  9. Method of preparing a positive electrode for an electrochemical cell

    DOEpatents

    Tomczuk, Zygmunt

    1979-01-01

    A method of preparing an electrochemical cell including a metal sulfide as the positive electrode reactant and lithium alloy as the negative electrochemical reactant with an alkali metal, molten salt electrolyte is disclosed which permits the assembly to be accomplished in air. The electrode reactants are introduced in the most part as a sulfide of lithium and the positive electrode metal in a single-phase compound. For instance, Li.sub.2 FeS.sub.2 is a single-phase compound that is produced by the reaction of Li.sub.2 S and FeS. This compound is an intermediate in the positive electrode cycle from FeS.sub.2 to Fe and Li.sub.2 S. Its use minimizes volumetric changes from the assembled to the charged and discharged conditions of the electrode and minimizes electrode material interaction with air and moisture during assembly.

  10. Topography Analysis and Visualization Software Supports a Guided Comparative Planetology Education Exhibit at the Smithsonian's Air and Space Museum

    NASA Technical Reports Server (NTRS)

    Roark, J. H.; Masuoka, C. M.; Frey, H. V.; Keller, J.; Williams, S.

    2005-01-01

    The Planetary Geodynamics Laboratory (http://geodynamics.gsfc.nasa.gov) of NASA s Goddard Space Flight Center designed, produced and recently delivered a "museum-friendly" version of GRIDVIEW, a grid visualization and analysis application, to the Smithsonian's National Air and Space Museum where it will be used in a guided comparative planetology education exhibit. The software was designed to enable museum visitors to interact with the same Earth and Mars topographic data and tools typically used by planetary scientists, and experience the thrill of discovery while learning about the geologic differences between Earth and Mars.

  11. Science Education Supporting Weather Broadcasters On-Air and in the Classroom with NASA "Mini-Education Supplements"

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    NASA-Goddard Space Flight Center has initiated a new project designed to expand on existing news services and add value to classrooms through the development and distribution of two-minute 'mini-supplements' which give context and teach about current weather and Earth research phenomena. The innovative mini-supplements provide raw materials for weather forecasters to build news stories around NASA related missions without having to edit the more traditional and cumbersome long-form video format. The supplements cover different weather and climate topics and include NASA data, animations, video footage, and interviews with scientists. The supplements also include a curriculum package with educational lessons, educator guide, and hand-on activities. One goal is to give on-air broadcasters who are the primary science educators for the general public what they need to 'teach' about the science related to NASA research behind weather and climate news. This goal achieves increasing public literacy and assures higher accuracy and quality science reporting by the media. The other goal is to enable on-air broadcasters to serve as distributors of high quality, standards-based educational curricula and supplemental material when they visit 8-12 grade classrooms. The focus of 'pilot effort' centers around the success of NASA's Tropical Rainfall Measuring Mission (TRMM) but is likely expandable to other NASA earth or space science missions.

  12. Successful trans-Atlantic air ambulance transfer of a patient supported by a bi-ventricular assist device.

    PubMed

    McLean, Neilson; Copeland, Ryan; Casey, Neil; Samoukovic, Gordon; Quigley, Robert

    2011-08-01

    The ventricular assist device (VAD) is a hemodynamic support device that augments cardiac output for patients with severe ventricular dysfunction. With improved reliability and technological advances, the use of VADs to support patients is increasing. Many VAD-dependent patients ultimately require heart transplants that are only available in specialized centers, necessitating an interhospital transfer. To date there are few reports of long-distance fixed wing aeromedical transport of patients dependent on a VAD. Here we describe the successful transfer of a patient supported by a biventricular assist device (BiVAD) from Cambridge, UK, to Durham, NC, via fixed-wing jet aircraft. During this transfer, we observed hemodynamic alterations secondary to gravitational forces, which should be anticipated and may be mitigated with simple maneuvers. With high-level logistical planning and appropriate medical oversight, patients dependant on BiVADs can be safely transported by fixed wing aircraft over long distances.

  13. Improved biomedical electrode

    NASA Technical Reports Server (NTRS)

    Frost, J. D., Jr.

    1972-01-01

    Newly designed electrode is prefilled, disposable, electrolyte-saturated spong. New design permits longe periods of storage without deterioration, and readiness in matter of seconds. Electrodes supply signals for electroencephalogram, electro-oculogram, and electrocardiogram.

  14. Corneal-shaping electrode

    DOEpatents

    Doss, James D.; Hutson, Richard L.

    1982-01-01

    The disclosure relates to a circulating saline electrode for changing corneal shape in eyes. The electrode comprises a tubular nonconductive electrode housing having an annular expanded base which has a surface substantially matched to a subject corneal surface. A tubular conductive electrode connected to a radiofrequency generating source is disposed within the electrode housing and longitudinally aligned therewith. The electrode has a generally hemispherical head having at least one orifice. Saline solution is circulated through the apparatus and over the cornea to cool the corneal surface while radiofrequency electric current emitted from the electrode flows therefrom through the cornea to a second electrode, on the rear of the head. This current heats the deep corneal stroma and thereby effects corneal reshaping as a biological response to the heat.

  15. Dry electrodes for electrocardiography.

    PubMed

    Meziane, N; Webster, J G; Attari, M; Nimunkar, A J

    2013-09-01

    Patient biopotentials are usually measured with conventional disposable Ag/AgCl electrodes. These electrodes provide excellent signal quality but are irritating for long-term use. Skin preparation is usually required prior to the application of electrodes such as shaving and cleansing with alcohol. To overcome these difficulties, researchers and caregivers seek alternative electrodes that would be acceptable in clinical and research environments. Dry electrodes that operate without gel, adhesive or even skin preparation have been studied for many decades. They are used in research applications, but they have yet to achieve acceptance for medical use. So far, a complete comparison and evaluation of dry electrodes is not well described in the literature. This work compares dry electrodes for biomedical use and physiological research, and reviews some novel systems developed for cardiac monitoring. Lastly, the paper provides suggestions to develop a dry-electrode-based system for mobile and long-term cardiac monitoring applications.

  16. A novel zinc-air battery for electric vehicles

    SciTech Connect

    Ross, P.N.

    1995-07-01

    A new type of zinc electrode is matched with new bifunctional air electrodes to produce a zinc-air battery of a novel design. The zinc electrode is a flow-thru type made from copper foam-metal. The air electrode uses corrosion resistant carbon black as a high area support for a highly dispersed spinel oxide electrocatalyst. The battery design employs flowing electrolyte, 12 M KOH saturated or supersaturated with zincate. Single cells as large as 200 cm{sup 2} (1/5 EV design scale) having a capacity of 20 AH have been tested with C/4--C/16 constant current cycling. More extensive and realistic life cycle testing was done with 2 Ah cells, including the Simplified Federal Urban Driving Schedule (SFUDS) cycle. This testing has confirmed that these cells can provide the necessary transient power response required for urban EV applications. The cells achieved an average of 72 SFUDS repetitions (7.2 hrs) per discharge cycle, more than twice the number with a sealed lead acid EV battery in similar testing. The full scale (30 kWh) EV battery design based on these single cell tests indicate an energy density of 90--100 Wh/kg, 60--80 W/kg, and a very low materials cost ($50 per kWh). These results indicate this battery would provide at least twice the vehicle range of a lead acid battery of the same volume at a comparable or even lower materials cost.

  17. Compartmented electrode structure

    DOEpatents

    Vissers, Donald R.; Shimotake, Hiroshi; Gay, Eddie C.; Martino, Fredric J.

    1977-06-14

    Electrodes for secondary electrochemical cells are provided with compartments for containing particles of the electrode reactant. The compartments are defined by partitions that are generally impenetrable to the particles of reactant and, in some instances, to the liquid electrolyte used in the cell. During cycling of the cell, reactant material initially loaded into a particular compartment is prevented from migrating and concentrating within the lower portion of the electrode or those portions of the electrode that exhibit reduced electrical resistance.

  18. The CMG Nickel Electrode

    NASA Technical Reports Server (NTRS)

    Depaul, R. A.; Gutridge, I.

    1981-01-01

    The development and design of the Controlled Microgeometry electrode are described. Advantages of the electrode over others in existance include a higher number of ampere hours per kilogram and the ability to make them over a wide range of thicknesses. The parameters that control the performance of the electrode can be individually controlled over a wide range. Therefore, the electrode may be designed to give the optimum performance for a given duty cycle.

  19. A Fourth-Generation Approach to Decision Support in a Private University. AIR Annual 1984 Forum Paper.

    ERIC Educational Resources Information Center

    Glover, Robert H.

    The demand for decision-support systems (DSSs) at the University of Hartford and the use of current software systems based on an information center approach are discussed. It is noted that declining enrollment demand and financial stress in tuition and enrollment-dependent universities requires a flexible and dynamic DSS for effective planning and…

  20. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment.

    PubMed

    Liran, Oded; Semyatich, Rinat; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo; Yacoby, Iftach

    2016-09-01

    Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, (18)O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604

  1. Microoxic Niches within the Thylakoid Stroma of Air-Grown Chlamydomonas reinhardtii Protect [FeFe]-Hydrogenase and Support Hydrogen Production under Fully Aerobic Environment1[OPEN

    PubMed Central

    Liran, Oded; Milrad, Yuval; Eilenberg, Haviva; Weiner, Iddo

    2016-01-01

    Photosynthetic hydrogen production in the microalga Chlamydomonas reinhardtii is catalyzed by two [FeFe]-hydrogenase isoforms, HydA1 and HydA2, both irreversibly inactivated upon a few seconds exposure to atmospheric oxygen. Until recently, it was thought that hydrogenase is not active in air-grown microalgal cells. In contrast, we show that the entire pool of cellular [FeFe]-hydrogenase remains active in air-grown cells due to efficient scavenging of oxygen. Using membrane inlet mass spectrometry, 18O2 isotope, and various inhibitors, we were able to dissect the various oxygen uptake mechanisms. We found that both chlororespiration, catalyzed by plastid terminal oxidase, and Mehler reactions, catalyzed by photosystem I and Flavodiiron proteins, significantly contribute to oxygen uptake rate. This rate is considerably enhanced with increasing light, thus forming local anaerobic niches at the proximity of the stromal face of the thylakoid membrane. Furthermore, we found that in transition to high light, the hydrogen production rate is significantly enhanced for a short duration (100 s), thus indicating that [FeFe]-hydrogenase functions as an immediate sink for surplus electrons in aerobic as well as in anaerobic environments. In summary, we show that an anaerobic locality in the chloroplast preserves [FeFe]-hydrogenase activity and supports continuous hydrogen production in air-grown microalgal cells. PMID:27443604

  2. Identifying inequitable exposure to toxic air pollution in racialized and low-income neighbourhoods to support pollution prevention.

    PubMed

    Kershaw, Suzanne; Gower, Stephanie; Rinner, Claus; Campbell, Monica

    2013-05-01

    Numerous environmental justice studies have confirmed a relationship between population characteristics such as low-income or minority status and the location of environmental health hazards. However, studies of the health risks from exposure to harmful substances often do not consider their toxicological characteristics. We used two different methods, the unit-hazard and the distance-based approach, to evaluate demographic and socio-economic characteristics of the population residing near industrial facilities in the City of Toronto, Canada. In addition to the mass of air emissions obtained from the national pollutant release inventory (NPRI), we also considered their toxicity using toxic equivalency potential (TEP) scores. Results from the unit-hazard approach indicate no significant difference in the proportion of low-income individuals living in host versus non-host census tracts (t(107) = 0.3, P = 0.735). However, using the distance-based approach, the proportion of low-income individuals was significantly higher (+5.1%, t(522) = 6.0, P <0.001) in host tracts, while the indicator for "racialized" communities ("visible minority") was 16.1% greater (t(521) = 7.2, P <0.001) within 2 km of a NPRI facility. When the most toxic facilities by non-carcinogenic TEP score were selected, the rate of visible minorities living near the most toxic NPRI facilities was significantly higher (+12.9%, t(352) = 3.5, P = 0.001) than near all other NPRI facilities. TEP scores were also used to identify areas in Toronto that face a double burden of poverty and air toxics exposure in order to prioritise pollution prevention.

  3. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, B.E.; Miller, J.L.; Ault, E.R.

    1994-08-23

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window. 2 figs.

  4. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  5. Insulated ECG electrodes

    NASA Technical Reports Server (NTRS)

    Portnoy, W. M.; David, R. M.

    1973-01-01

    Insulated, capacitively coupled electrode does not require electrolyte paste for attachment. Other features of electrode include wide range of nontoxic material that may be employed for dielectric because of sputtering technique used. Also, electrode size is reduced because there is no need for external compensating networks with FET operational amplifier.

  6. Longitudinal discharge laser electrodes

    DOEpatents

    Warner, Bruce E.; Miller, John L.; Ault, Earl R.

    1994-01-01

    The improved longitudinal discharge laser electrode with IR baffle includes an electrode made up of washers spaced along the laser axis in order to form inter-washer spaces for hollow cathode discharge to take place and for IR radiation to be trapped. Additional IR baffles can be placed between the electrode ann the window.

  7. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  8. Fuel cell electrodes

    SciTech Connect

    Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad

    2015-06-23

    A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.

  9. Microresonator electrode design

    DOEpatents

    Olsson, III, Roy H.; Wojciechowski, Kenneth; Branch, Darren W.

    2016-05-10

    A microresonator with an input electrode and an output electrode patterned thereon is described. The input electrode includes a series of stubs that are configured to isolate acoustic waves, such that the waves are not reflected into the microresonator. Such design results in reduction of spurious modes corresponding to the microresonator.

  10. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Li; Kong, Weibang; Wu, Hengcai; Wu, Yang; Wang, Datao; Zhao, Fei; Jiang, Kaili; Li, Qunqing; Wang, Jiaping; Fan, Shoushan

    2015-12-01

    Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability.Mesoporous lithium titanate (LTO) nanoclusters are in situ synthesized in a network of super aligned carbon nanotubes (SACNTs) via a solution-based method followed by heat treatment in air. In the LTO-CNT composite, SACNTs not only serve as the skeleton to support a binder-free electrode, but also render the composite with high conductivity, flexibility, and mechanical strength. The homogeneously dispersed LTO nanoclusters among the SACNTs allow each LTO grain to effectively access the electrolyte and the conductive network, benefiting both ion and electron transport. By the incorporation of LTO into the CNT network, mechanical reinforcement is also achieved. When serving as a negative electrode for lithium ion batteries, such a robust composite-network architecture provides the electrodes with effective charge transport and structural integrity, leading to high-performance flexible electrodes with high capacity, high rate capability, and excellent cycling stability. Electronic supplementary information

  11. Spark gap electrode erosion

    NASA Astrophysics Data System (ADS)

    Krompholz, H.; Kristiansen, M.

    1984-12-01

    The results of a one-year contract on electrode erosion phenomena are summarized. The arc voltage drop in a spark gap was measured for various electrode, gas, and pressure combinations. A previously developed model of self breakdown voltage distribution was extended. A jet model for electrode erosion was proposed and an experimental arrangement for testing the model was constructed. The effects of inhomogeneities and impurities in the electrodes were investigated. Some of the work described here is scheduled for completion in 1985 under a current grant (AFOSR 84-0032). The areas of investigation described here include: (1) Self breakdown voltage distributions; (2) Electrode erosion; (3) Spark gap voltage recovery.

  12. Effectiveness of left anterior right temporal electrode placement in electroconvulsive therapy: 3 case reports.

    PubMed

    Weiss, Alan Micheal; Hansen, Shane Michael; Safranko, Ivan; Hughes, Pequita

    2015-03-01

    Unilateral and bitemporal electrode placement has been the dominant mode of delivery in electroconvulsive therapy. We report 3 patients receiving maintenance electroconvulsive therapy where the use of dominant electrode placements was ineffective. Changing to left anterior right temporal electrode placement resulted in marked clinical improvement. This supports the limited literature on this electrode placement.

  13. Non-Sintered Nickel Electrode

    DOEpatents

    Bernard, Patrick; Dennig, Corinne; Cocciantelli, Jean-Michel; Alcorta, Jose; Coco, Isabelle

    2002-01-01

    A non-sintered nickel electrode contains a conductive support and a paste comprising an electrochemically active material containing nickel hydroxide and a binder which is a mixture of an elastomer and a crystalline polymer. The proportion of the elastomer is in the range 25% to 60% by weight of the binder and the proportion of the crystalline polymer is in the range 40% to 75% by weight of the binder.

  14. Tracking air-dropped drogues and dyes from aircraft in support of ERTS-1 circulation studies. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Wang, H.

    1974-01-01

    The author has identified the following significant results. For two years ERTS-1 has been employed to investigate current circulation patterns in Delaware Bay under different tidal, flow, and wind conditions. Since sufficient numbers of current meters and boats are not available, air-droppable drogues and dye packs have been developed and tested. The drogues consist of a styrofoam float and a line to which is attached a stainless steel biplane. The length of the line determines at what depth currents will be monitored. The floats are color coded to distinguish their movement and mark the depth of the biplanes. Simultaneously floating and anchored dye packs of fluorescein dye have been deployed from aircraft. The movement of the dye and drogues is tracked by sequential aerial photography, using fixed markers on shore or on buoys as reference points to calibrate the scale and direction of drogue movement. The current data obtained by this technique is then used to annotate current circulation maps derived from ERTS-1 imagery.

  15. An Assessment of Hickam Air Force Base's Capability to Support Strategic Airlift Throughput when Operating under an Avian Flu Pandemic

    SciTech Connect

    Brigantic, Robert T.; Campbell, James R.; Doctor, Pamela G.; Johnson, Alan; Coomber, P.

    2006-03-10

    Hickam Air Force Base (AFB), Hawaii provides an ideal waypoint for U.S. strategic airlift aircraft to refuel and receive other services on their way to Northeast and Southeast Asia from the continental United States. Hickam AFB also serves as a critical aerial port of debarkation (APOD) for deploying U.S. forces and equipment to more distant lands as needed. Making use of the United States Transportation Command’s Aerial Port of Debarkation Plus model, this paper examines the ability of Hickam AFB to serve in its important role as an APOD when operating under the effects of a major avian flu pandemic. In this regard, the major influence on Hickam AFB will be a serious degradation to the number of available personnel to service aircraft and operate Hickam AFB’s aerial port. It is noted that the results presented herein are based on simplistic attrition rate assumptions. Nonetheless, it is envisioned that this work is applicable to more realistic input attrition rates as avian flu epidemiological models are refined, as well as attrition associated with other types of contagious pandemic disease or willful biological warfare attack.

  16. Multi-Level Wild Land Fire Fighting Management Support System for an Optimized Guidance of Ground and Air Forces

    NASA Astrophysics Data System (ADS)

    Almer, Alexander; Schnabel, Thomas; Perko, Roland; Raggam, Johann; Köfler, Armin; Feischl, Richard

    2016-04-01

    Climate change will lead to a dramatic increase in damage from forest fires in Europe by the end of this century. In the Mediterranean region, the average annual area affected by forest fires has quadrupled since the 1960s (WWF, 2012). The number of forest fires is also on the increase in Central and Northern Europe. The Austrian forest fire database shows a total of 584 fires for the period 2012 to 2014, while even large areas of Sweden were hit by forest fires in August 2014, which were brought under control only after two weeks of intense fire-fighting efforts supported by European civil protection modules. Based on these facts, the improvements in forest fire control are a major international issue in the quest to protect human lives and resources as well as to reduce the negative environmental impact of these fires to a minimum. Within this paper the development of a multi-functional airborne management support system within the frame of the Austrian national safety and security research programme (KIRAS) is described. The main goal of the developments is to assist crisis management tasks of civil emergency teams and armed forces in disaster management by providing multi spectral, near real-time airborne image data products. As time, flexibility and reliability as well as objective information are crucial aspects in emergency management, the used components are tailored to meet these requirements. An airborne multi-functional management support system was developed as part of the national funded project AIRWATCH, which enables real-time monitoring of natural disasters based on optical and thermal images. Airborne image acquisition, a broadband line of sight downlink and near real-time processing solutions allow the generation of an up-to-date geo-referenced situation map. Furthermore, this paper presents ongoing developments for innovative extensions and research activities designed to optimize command operations in national and international fire

  17. Negative electrode composition

    DOEpatents

    Kaun, Thomas D.; Chilenskas, Albert A.

    1982-01-01

    A secondary electrochemical cell and a negative electrode composition for use therewith comprising a positive electrode containing an active material of a chalcogen or a transiton metal chalcogenide, a negative electrode containing a lithium-aluminum alloy and an amount of a ternary alloy sufficient to provide at least about 5 percent overcharge capacity relative to a negative electrode solely of the lithium-aluminum alloy, the ternary alloy comprising lithium, aluminum, and iron or cobalt, and an electrolyte containing lithium ions in contact with both of the positive and the negative electrodes. The ternary alloy is present in the electrode in the range of from about 5 percent to about 50 percent by weight of the electrode composition and may include lithium-aluminum-nickel alloy in combination with either the ternary iron or cobalt alloys. A plurality of series connected cells having overcharge capacity can be equalized on the discharge side without expensive electrical equipment.

  18. Making Fuel-Cell Electrodes By Electrodeposition

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R.; Surampudi, Subbarao; Halpert, Gerald

    1994-01-01

    Electrodes for direct oxidation of methanol in fuel cells fabricated in process involving room-temperature electro-chemical deposition of platinum-alloy catalysts on commercially available high-surface-area carbon support structures containing polytetrafluoroethylene (PTFE). Process takes 30 to 50 minutes and results in electrodes catalytically active as prepared; no need for additional activation step. Composition of catalytic platinum alloy and sizes of particles in catalytic layers on electrodes varied by changing operating conditions during electrodeposition; process affords additional flexibility in design of electrocatalysts.

  19. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies

    PubMed Central

    Chang, Shih Ying; Vizuete, William; Breen, Michael; Isakov, Vlad; Arunachalam, Saravanan

    2015-01-01

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between −10% to 95%). For pollutants with significant contribution from on-road emission (EC and NOx), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM2.5, due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization. PMID:26670242

  20. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies.

    PubMed

    Chang, Shih Ying; Vizuete, William; Breen, Michael; Isakov, Vlad; Arunachalam, Saravanan

    2015-12-01

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NO(x), PM(2.5), and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between -10% to 95%). For pollutants with significant contribution from on-road emission (EC and NO(x)), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM(2.5), due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization. PMID:26670242

  1. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies.

    PubMed

    Chang, Shih Ying; Vizuete, William; Breen, Michael; Isakov, Vlad; Arunachalam, Saravanan

    2015-12-08

    Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NO(x), PM(2.5), and elemental carbon (EC) during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK), ambient on-road concentration from the Research LINE source dispersion model (R-LINE), a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93%) and individual level (average bias between -10% to 95%). For pollutants with significant contribution from on-road emission (EC and NO(x)), the on-road based indoor metric performs the best at the population level (error less than 52%). At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%). For PM(2.5), due to the relatively low contribution from on-road emission (7%), STOK-based indoor metric performs the best at both population (error below 40%) and individual level (error below 25%). The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization.

  2. Method of depositing a catalyst on a fuel cell electrode

    DOEpatents

    Dearnaley, Geoffrey; Arps, James H.

    2000-01-01

    Fuel cell electrodes comprising a minimal load of catalyst having maximum catalytic activity and a method of forming such fuel cell electrodes. The method comprises vaporizing a catalyst, preferably platinum, in a vacuum to form a catalyst vapor. A catalytically effective amount of the catalyst vapor is deposited onto a carbon catalyst support on the fuel cell electrode. The electrode preferably is carbon cloth. The method reduces the amount of catalyst needed for a high performance fuel cell electrode to about 0.3 mg/cm.sup.2 or less.

  3. Synthesis of Novel Birnessite Type MnO2 Nanochains by Electrospinning and their Application as Supercapacitor Electrodes

    NASA Astrophysics Data System (ADS)

    Shareef, Muhamed; Palei, Milan; Hanumantha Rao, Samerender; Natarajan, Tirupattur; Singh, Gurpreet

    A first time method for the synthesis of continuous nanochains by employing electrospinning and post processes are reported with theoretic support. High aspect ratio electrospun PAN nanofibers were stabilized in air at a specific heating rate followed by functionalization in aqueous KMnO4 solution. The composite membrane was calcined in air in order to remove polymer skeleton along with reduction of KMnO4 into MnO2. The highly crystalline and phase pure birnessite type MnO2 nanochains were characterized by different microscopic and spectroscopic techniques. Electrochemical studies of these nanochains were carried out using three electrode and two electrode set up with 0.5 M Na2SO4 aqueous electrolyte. A possible mechanism for the formation of nanochains was also explained

  4. Preliminary assessment report for Army Aviation Support Facility 2, Installation 25075, Westover Air Force Base, Chicopee, Massachusetts. Installation Restoration Program

    SciTech Connect

    Haffenden, R.; Flaim, S.

    1993-08-01

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Massachusetts Army National Guard (MAARNG) property known as the Army Aviation Support Facility 2 (AASF 2) near Chicopee, Massachusetts. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, quantities of hazardous substances present, and potential pathways by which contamination could affect public health and the environment. The AASF 2 is a 10-acre site located in the western portion of Massachusetts, in the town of Chicopee, in the county of Hampden. The facilities included in this PA are Building 7400, adjacent paved areas, grassy areas, and the hazardous waste drum storage buildings. The environmentally significant operations (ESOS) associated with the property are (1) the waste drum storage area, (2) abandoned underground storage tanks (USTs), and (3) refueling activities.

  5. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    SciTech Connect

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  6. Uncharged positive electrode composition

    DOEpatents

    Kaun, Thomas D.; Vissers, Donald R.; Shimotake, Hiroshi

    1977-03-08

    An uncharged positive-electrode composition contains particulate lithium sulfide, another alkali metal or alkaline earth metal compound other than sulfide, e.g., lithium carbide, and a transition metal powder. The composition along with a binder, such as electrolytic salt or a thermosetting resin is applied onto an electrically conductive substrate to form a plaque. The plaque is assembled as a positive electrode within an electrochemical cell opposite to a negative electrode containing a material such as aluminum or silicon for alloying with lithium. During charging, lithium alloy is formed within the negative electrode and transition metal sulfide such as iron sulfide is produced within the positive electrode. Excess negative electrode capacity over that from the transition metal sulfide is provided due to the electrochemical reaction of the other than sulfide alkali metal or alkaline earth metal compound.

  7. Installation-Restoration Program. Phase 2. Confirmation/quantification. Stage 1. Problem confirmation study: Otis Air National Guard Base, Massachusetts, Air National Guard Support Center, Andrews Air Force Base, Maryland. Final technical report, November 1983-July 1985

    SciTech Connect

    Kraybill, R.L.; Smart, G.R.; Bopp, F.

    1985-09-04

    A Problem Confirmation Study was performed at seven sites on Otis Air National Guard Base: the Current and Former Training Areas, the Base Landfill, the Nondestructive Inspection Laboratory, the Fuel Test Dump Site, the Railyard Fuel Pumping Station, and the Petrol Fuel Storage Area. The field investigation was conducted in two stages, in November 1983 through January 1984, and in October through December 1984. Resampling was performed at selected locations in April and July 1985. A total of 11 monitor wells were installed and sampled and test-pit investigations were conducted at six sites. In addition, the contents of a sump tank, and two header pipes for fuel-transmission lines were sampled. Analytes included TOC, TOX, cyanide, phenols, Safe Drinking Water metals, pesticides and herbicides, and in the second round, priority-pollutant volatile organic compounds and a GC fingerprint scan for fuel products. On the basis of the field-work findings, it is concluded that, to date, water-quality impacts on ground water from past activities have been minimal.

  8. Air Pollution Training Programs.

    ERIC Educational Resources Information Center

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  9. Nanoscopic electrode molecular probes

    DOEpatents

    Krstic, Predrag S.; Meunier, Vincent

    2012-05-22

    The present invention relates to a method and apparatus for enhancing the electron transport property measurements of a molecule when the molecule is placed between chemically functionalized carbon-based nanoscopic electrodes to which a suitable voltage bias is applied. The invention includes selecting a dopant atom for the nanoscopic electrodes, the dopant atoms being chemically similar to atoms present in the molecule, and functionalizing the outer surface and terminations of the electrodes with the dopant atoms.

  10. ESR Process Instabilities while Melting Pipe Electrodes

    SciTech Connect

    Melgaard, D.K.; Shelmidine, G.J.

    1999-01-06

    With the demonstration of the viability of using the electroslag remelting process for the decontamination of radionuclides, interest has increased in examining the unique aspects associated with melting steel pipe electrodes. These electrodes consist of several nested pipes, welded concentrically to atop plate. Since these electrodes can be half as dense as a solid electrode, they present unique challenges to the standard algorithms used in controlling the melting process. Naturally the electrode must be driven down at a dramatically increased speed. However, since the heat transfer is greatly influenced and enhanced with the increased area to volume ratio, considerable variation in the melting rate of the pipes has been found. Standard control methods can become unstable as a result of the variation at increased speeds, particularly at shallow immersion depths. The key to good control lies in the understanding of the melting process. Several experiments were conducted to observe the characteristics of the melting using two different control modes. By using a pressure transducer to monitor the pressure inside the pipes, the venting of the air trapped inside the electrode was observed. The measurements reveal that for a considerable amount of time. the pipes are not completely immersed in the slag, allowing the gas inside to escape without the formation of bubbles. This result has implications for the voltage swing as well as for the decontamination reactions.

  11. Aluminum-based metal-air batteries

    DOEpatents

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  12. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, Gordon F. (Inventor)

    1982-01-01

    A low-noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free-ranging subject. The electrode comprises a pocket-shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  13. Pocket ECG electrode

    NASA Technical Reports Server (NTRS)

    Lund, G. F. (Inventor)

    1980-01-01

    A low noise electrode suited for sensing electrocardiograms when chronically and subcutaneously implanted in a free ranging subject is described. The electrode comprises a pocket shaped electrically conductive member with a single entrance adapted to receive body fluids. The exterior of the member and the entrance region is coated with electrical insulation so that the only electrolyte/electrode interface is within the member, remote from artifact-generating tissue. Cloth straps are bonded to the member to permit the electrode to be sutured to tissue and to provide electrical lead flexure relief.

  14. Highly compliant transparent electrodes

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger M.; McNamara, Alena; Clarke, David R.

    2012-08-01

    Adaptive optical devices based on electric field induced deformation of dielectric elastomers require transparent and highly compliant electrodes to conform to large shape changes. Electrical, optical, and actuation properties of acrylic elastomer electrodes fabricated with single-walled carbon nanotubes (SWCNTs) and silver nanowires (AgNWs) have been evaluated. Based on these properties, a figure of merit is introduced for evaluating the overall performance of deformable transparent electrodes. This clearly indicates that SWCNTs outperform AgNWs. Under optimal conditions, optical transparency as high as 91% at 190% maximum actuation strain is readily achievable using SWCNT electrodes.

  15. Linear particle accelerator with seal structure between electrodes and insulators

    DOEpatents

    Broadhurst, John H.

    1989-01-01

    An electrostatic linear accelerator includes an electrode stack comprised of primary electrodes formed or Kovar and supported by annular glass insulators having the same thermal expansion rate as the electrodes. Each glass insulator is provided with a pair of fused-in Kovar ring inserts which are bonded to the electrodes. Each electrode is designed to define a concavo-convex particle trap so that secondary charged particles generated within the accelerated beam area cannot reach the inner surface of an insulator. Each insulator has a generated inner surface profile which is so configured that the electrical field at this surface contains no significant tangential component. A spark gap trigger assembly is provided, which energizes spark gaps protecting the electrodes affected by over voltage to prevent excessive energy dissipation in the electrode stack.

  16. Visualization of Charge Distribution in a Lithium Battery Electrode

    SciTech Connect

    Liu, Jun; Kunz, Martin; Chen, Kai; Tamura, Nobumichi; Richardson, Thomas J.

    2010-07-02

    We describe a method for direct determination and visualization of the distribution of charge in a composite electrode. Using synchrotron X-ray microdiffraction, state-of-charge profiles in-plane and normal to the current collector were measured. In electrodes charged at high rate, the signatures of nonuniform current distribution were evident. The portion of a prismatic cell electrode closest to the current collector tab had the highest state of charge due to electronic resistance in the composite electrode and supporting foil. In a coin cell electrode, the active material at the electrode surface was more fully charged than that close to the current collector because the limiting factor in this case is ion conduction in the electrolyte contained within the porous electrode.

  17. Advanced 3D Ni(OH)2/CNT Gel Composite Electrodes for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Cheng, Hanlin; Duong, Hai Minh

    2015-03-01

    In order to enhance the performance of supercapacitors, advanced 3D Porous CNT/Ni(OH)2 gel composite electrodes are developed in this work. Compared with previously reported graphene gel supercapacitors, our electrodes using 1D CNTs have smaller diffusion resistance due to a shorter ion transport path. The developed 3D xerogel composite electrodes demonstrate the success of a careful engineered guest/host materials interface. Initially, the CNT gels are coated on the nickel foam to form a 3D scaffold, which serves as a microscopic electrical conductive network. Then Ni(OH)2 are incorporated using a traditional electrodeposition method. In this work, two types of the 3D CNT-coated nickel foams are investigated. The gels can be used directly as hydrogels or dried in air to form xerogels. Both hydrogels and xerogels present 3D tangled CNT networks. It shows that the hydrogel composite electrodes with unbundled CNTs, though presenting high capacitances of 1400 F/g at low discharge rate, possess lower capacitances at higher discharge rate and a poor cycling performance of less than 23% retention. In contrast, the xerogel composite electrodes can overcome these limitations in terms of a satisfied discharge performance of 1200 F/g and a good cycling retention more than 85% due to a stronger Ni(OH)2/CNT interface. The CNT bundles in the xerogel electrodes formed during the drying process can give a flat surface with small curvature, which facilitate the Ni(OH)2 nucleation and growth. Thanks for the support from the A star R-265-000-424-305.

  18. Long term flight electrodes

    NASA Technical Reports Server (NTRS)

    Mosier, B.

    1975-01-01

    The reproducibility, stability, and methods of preparation for the various types and forms of biomedical electrodes are discussed. A critical and selective compilation of information on biological and/or physiological electrodes is presented. A discussion of plant hydrocolloids, clays, hydrophyllic colloids, synthetic waxes, and acrylic polymers is included.

  19. Electrodes with fiber structure

    NASA Technical Reports Server (NTRS)

    Benczur-Uermoessy, G.; Berger, G.; Haschka, F.

    1986-01-01

    An electrode framework with a fiber structure, universally applicable in alkaline storage battery systems, was developed and readied for production. Storage batteries with these electrodes present higher energy and power densities and are economical to produce. The design is applicable to all rechargable storage batteries and might replace the previous variety of designs.

  20. Membrane Bioprobe Electrodes

    ERIC Educational Resources Information Center

    Rechnitz, Garry A.

    1975-01-01

    Describes the design of ion selective electrodes coupled with immobilized enzymes which operate either continuously or on drop-sized samples. Cites techniques for urea, L-phenylalanine and amygdalin. Micro size electrodes for use in single cells are discussed. (GH)

  1. Hollow Electrode Discharge Triodes

    NASA Astrophysics Data System (ADS)

    Schoenbach, K. H.; Peterkin, F. E.; Tessnow, T.

    1996-10-01

    The current through a direct current micro-hollow electrode (electrode hole diameter: 0.7 mm) discharge in argon was shown to be controllable by means of a third, external electrode placed close to the cathode opening. By increasing the potential of the positively biased control electrode from zero to 30 V the discharge current could be linearly reduced from 5 μA to 0.75 μA, at a discharge voltage of 300 V. The current-voltage characteristic of the micro-hollow electrode discharge was found to have a positive slope, allowing parallel discharge operation without ballast. By drilling holes through a metal-plated, dielectric film, an array of hollow electrode discharges could be generated. It was shown that each discharge responds individually to variations in the potential of the corresponding external control electrode. The simplicity of the electrode configuration and the possibility of linear, electrical control of the individual discharge currents offers the possibility to use these triode arrays in addressable flat panel displays (patent pending).

  2. Method of manufacturing positive nickel hydroxide electrodes

    DOEpatents

    Gutjahr, M.A.; Schmid, R.; Beccu, K.D.

    1975-12-16

    A method of manufacturing a positive nickel hydroxide electrode is discussed. A highly porous core structure of organic material having a fibrous or reticular texture is uniformly coated with nickel powder and then subjected to a thermal treatment which provides sintering of the powder coating and removal of the organic core material. A consolidated, porous nickel support structure is thus produced which has substantially the same texture and porosity as the initial core structure. To provide the positive electrode including the active mass, nickel hydroxide is deposited in the pores of the nickel support structure.

  3. Electrodes for microfluidic applications

    DOEpatents

    Crocker, Robert W.; Harnett, Cindy K.; Rognlien, Judith L.

    2006-08-22

    An electrode device for high pressure applications. These electrodes, designed to withstand pressure of greater than 10,000 psi, are adapted for use in microfluidic devices that employ electrokinetic or electrophoretic flow. The electrode is composed, generally, of an outer electrically insulating tubular body having a porous ceramic frit material disposed in one end of the outer body. The pores of the porous ceramic material are filled with an ion conductive polymer resin. A conductive material situated on the upper surface of the porous ceramic frit material and, thus isolated from direct contact with the electrolyte, forms a gas diffusion electrode. A metal current collector, in contact with the gas diffusion electrode, provides connection to a voltage source.

  4. HIGH VOLTAGE ELECTRODES

    DOEpatents

    Murray, J.J.

    1963-04-23

    S>This patent relates to electrode structure for creating an intense direct current electric field which may have a field strength of the order of two to three times that heretofore obtained, with automatic suppression of arcing. The positive electrode is a conventional conductive material such as copper while the negative electrode is made from a special material having a resistivity greater than that of good conductors and less than that of good insulators. When an incipient arc occurs, the moderate resistivity of the negative electrode causes a momentary, localized decrease in the electric field intensity, thus suppressing the flow of electrons and avoiding arcing. Heated glass may be utilized for the negative electrode, since it provides the desired combination of resistivity, capacity, dielectric strength, mechani-cal strength, and thermal stability. (AEC)

  5. Layered electrode for electrochemical cells

    DOEpatents

    Swathirajan, Swathy; Mikhail, Youssef M.

    2001-01-01

    There is provided an electrode structure comprising a current collector sheet and first and second layers of electrode material. Together, the layers improve catalyst utilization and water management.

  6. Measuring electrode assembly

    DOEpatents

    Bordenick, John E.

    1989-01-01

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture.

  7. Measuring electrode assembly

    DOEpatents

    Bordenick, J.E.

    1988-04-26

    A pH measuring electrode assembly for immersion in a solution includes an enclosed cylindrical member having an aperture at a lower end thereof. An electrolyte is located in the cylindrical member above the level of the aperture and an electrode is disposed in this electrolyte. A ring formed of an ion porous material is mounted relative to the cylindrical member so that a portion of this ring is rotatable relative to and is covering the aperture in the cylindrical member. A suitable mechanism is also provided for indicating which one of a plurality of portions of the ring is covering the aperture and to keep track of which portions of the ring have already been used and become clogged. Preferably, the electrode assembly also includes a glass electrode member in the center thereof including a second electrolyte and electrode disposed therein. The cylindrical member is resiliently mounted relative to the glass electrode member to provide for easy rotation of the cylindrical member relative to the glass electrode member for changing of the portion of the ring covering the aperture. 2 figs.

  8. Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-SDBS composite film.

    PubMed

    Sun, Zhirong; Wei, Xuefeng; Zhang, Huan; Hu, Xiang

    2015-03-01

    Pentachlorophenol (PCP) is a persistent pollutant and a suspected human carcinogen. It can be found in the air, water, and soil and enters the environment through evaporation from treated wood surfaces, industrial spills, and disposal at uncontrolled hazardous waste sites. Ecotoxicity of PCP necessitates the development of rapid and reliable remediation techniques. Electrocatalytic hydrogenolysis (ECH) has been proven as a promising method for detoxification of halogenated wastes, due to its rapid reaction rate, low apparatus cost, mild reaction conditions, and absence of secondary contaminants. Challenge for the application of ECH is to prepare a Pd-coated cathode with high stability, high catalytic activity, and low Pd loading level. In this work, Pd/polypyrrole-sodium dodecyl benzene sulfonate/meshed Ti (Pd/PPy-SDBS/Ti) electrode was prepared and was characterized by cyclic voltammetry, scanning electron microscopy, X-ray diffraction, and inductively coupled plasma-atomic emission spectrometry. Electrochemically reductive dechlorination of PCP on the Pd/PPy-SDBS/Ti electrode in aqueous solution was investigated. Pd microparticles were uniformly dispersed on PPy-SDBS film which was previously electrodeposited on the meshed Ti supporting electrode. The loading of Pd on the electrode was 0.72 mg cm(-2). Electrocatalytic dechlorination of PCP was performed in a two-compartment cell separated by cation-exchange membrane. The PCP removal on the Pd/PPy-SDBS/Ti electrode could reach 100 % within 70 min with dechlorination current 3 mA when PCP initial concentration was 10 mg L(-1) and initial pH was 2.4. Conversion of PCP on the Pd/PPy-SDBS/Ti electrode followed pseudo-first-order kinetics, and the apparent activation energy was 13.0 kJ mol(-1). The removal of PCP still kept 100 % after 70 min dechlorination when the Pd/PPy-SDBS/Ti cathode was reused ten times. The electrode exhibited promising dechlorination potential with high electrocatalytic activity, good stability

  9. Multifunctional reference electrode

    DOEpatents

    Redey, Laszlo; Vissers, Donald R.

    1983-01-01

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  10. Multifunctional reference electrode

    DOEpatents

    Redey, L.; Vissers, D.R.

    1981-12-30

    A multifunctional, low mass reference electrode of a nickel tube, thermocouple means inside the nickel tube electrically insulated therefrom for measuring the temperature thereof, a housing surrounding the nickel tube, an electrolyte having a fixed sulfide ion activity between the housing and the outer surface of the nickel tube forming the nickel/nickel sulfide/sulfide half-cell are described. An ion diffusion barrier is associated with the housing in contact with the electrolyte. Also disclosed is a cell using the reference electrode to measure characteristics of a working electrode.

  11. Electrode for electrochemical cell

    DOEpatents

    Kaun, T.D.; Nelson, P.A.; Miller, W.E.

    1980-05-09

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  12. Electrode for electrochemical cell

    DOEpatents

    Kaun, Thomas D.; Nelson, Paul A.; Miller, William E.

    1981-01-01

    An electrode structure for a secondary electrochemical cell includes an outer enclosure defining a compartment containing electrochemical active material. The enclosure includes a rigid electrically conductive metal sheet with perforated openings over major side surfaces. The enclosure can be assembled as first and second trays each with a rigid sheet of perforated electrically conductive metal at major side surfaces and normally extending flanges at parametric margins. The trays can be pressed together with moldable active material between the two to form an expandable electrode. A plurality of positive and negative electrodes thus formed are arranged in an alternating array with porous frangible interelectrode separators within the housing of the secondary electrochemical cell.

  13. Tolerance of chufa (Cyperus esculentus L.) plants, representing the higher plant compartment in bioregenerative life support systems, to super-optimal air temperatures

    NASA Astrophysics Data System (ADS)

    Shklavtsova, E. S.; Ushakova, S. A.; Shikhov, V. N.; Anishchenko, O. V.

    2013-01-01

    Plants intended to be included in the photosynthesizing compartment of the bioregenerative life support system (BLSS) need to be studied in terms of both their production parameters under optimal conditions and their tolerance to stress factors that might be caused by emergency situations. The purpose of this study was to investigate tolerance of chufa (Cyperus esculentus L.) plants to the super-optimal air temperature of 45 ± 1 °C as dependent upon PAR (photosynthetically active radiation) intensity and the duration of the exposure to the stress factor. Chufa plants were grown hydroponically, on expanded clay, under artificial light. The nutrient solution was Knop's mineral medium. Until the plants were 30 days old, they had been grown at 690 μmol m-2 s-1 PAR and air temperature 25 °C. Thirty-day-old plants were exposed to the temperature 45 °C for 6 h, 20 h, and 44 h at PAR intensities 690 μmol m-2 s-1 and 1150 μmol m-2 s-1. The exposure to the damaging air temperature for 44 h at 690 μmol m-2 s-1 PAR caused irreversible damage to PSA, resulting in leaf mortality. In chufa plants exposed to heat shock treatment at 690 μmol m-2 s-1 PAR for 6 h and 20 h, respiration exceeded photosynthesis, and CO2 release in the light was recorded. Functional activity of photosynthetic apparatus, estimated from parameters of pulse-modulated chlorophyll fluorescence in Photosystem 2 (PS 2), decreased 40% to 50%. After the exposure to the stress factor was finished, functional activity of PSA recovered its initial values, and apparent photosynthesis (Papparent) rate after a 20-h exposure to the stress factor was 2.6 times lower than before the elevation of the temperature. During the first hours of plant exposure to the temperature 45 °C at 1150 μmol m-2 s-1 PAR, respiration rate was higher than photosynthesis rate, but after 3-4 h of the exposure, photosynthetic processes exceeded oxidative ones and CO2 absorption in the light was recorded. At the end of the 6-h exposure

  14. Creating locally-resolved mobile-source emissions inputs for air quality modeling in support of an exposure study in Detroit, Michigan, USA.

    PubMed

    Snyder, Michelle; Arunachalam, Saravanan; Isakov, Vlad; Talgo, Kevin; Naess, Brian; Valencia, Alejandro; Omary, Mohammad; Davis, Neil; Cook, Rich; Hanna, Adel

    2014-12-09

    This work describes a methodology for modeling the impact of traffic-generated air pollutants in an urban area. This methodology presented here utilizes road network geometry, traffic volume, temporal allocation factors, fleet mixes, and emission factors to provide critical modeling inputs. These inputs, assembled from a variety of sources, are combined with meteorological inputs to generate link-based emissions for use in dispersion modeling to estimate pollutant concentration levels due to traffic. A case study implementing this methodology for a large health study is presented, including a sensitivity analysis of the modeling results reinforcing the importance of model inputs and identify those having greater relative impact, such as fleet mix. In addition, an example use of local measurements of fleet activity to supplement model inputs is described, and its impacts to the model outputs are discussed. We conclude that with detailed model inputs supported by local traffic measurements and meteorology, it is possible to capture the spatial and temporal patterns needed to accurately estimate exposure from traffic-related pollutants.

  15. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  16. Treatability study in support of monitored natural attenuation at Site S-1, Zone 5, Kelly Air Force Base, Texas. Final report January--December 1998

    SciTech Connect

    Herrington, T.; Downey, D.

    1999-02-28

    This report presents the results of a treatability study (TS) to evaluate the potential effectiveness of monitored natural attenuation (MNA) as a remedial option for groundwater contaminated with chlorinated benzene compounds at Site S-1, located at Kelly Air Force Base (AFB), Texas. Although other contaminants were found at Site S-1 at relatively low concentrations, this TS will focus on the chlorinated benzene compounds present in the groundwater plume. Hydrogeologic and groundwater chemical data collected for this report can be used to evaluate the effectiveness of various engineered remedial options; however, the results of this TS will be used in support of MNA with long term monitoring (LTM) for restoration of groundwater contaminated with chlorinated benzene compounds. The work performed as part of the TS is not intended to fulfill the requirements of a contamination assessment report, a remedial action plan (RAP), or any other document specified in federal or state regulations; rather, it is provided for the use by the Base, its prime environmental contractors, and regulators to present information on the viability of the MNA alternative for chlorobenzene residuals at Site S-1.

  17. Membrane-electrode assemblies for electrochemical cells

    DOEpatents

    Swathirajan, Sundararajan; Mikhail, Youssef M.

    1993-01-01

    A combination, unitary, membrane and electrode assembly with a solid polymer electrolyte membrane, and first and second electrodes at least partially embedded in opposed surfaces of the membrane. The electrodes each comprise a respective group of finely divided carbon particles, very finely divided catalytic particles supported on internal and external surfaces of the carbon particles and a proton conductive material intermingled with the catalytic and carbon particles. A first group of finely divided carbon particles forming the first electrode has greater water attraction and retention properties, and is more hydrophilic than a second group of carbon particles forming the second electrode. In a preferred method, the membrane electrode assembly of the invention is prepared by forming a slurry of proton conductive material and at least one group of the carbon and catalyst particles. The slurry is applied to the opposed surfaces of the membrane and heated while being pressed to the membrane for a time and at a temperature and compressive load sufficient to embed at least a portion of the particles into the membrane.

  18. Oxygen electrodes for rechargeable alkaline fuel cells, 3

    NASA Technical Reports Server (NTRS)

    Swette, L.; Kackley, N.; Mccatty, S. A.

    1991-01-01

    The investigation and development of electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells is described. Focus is on chemical and electrochemical stability and O2 reduction/evolution activity of the electrode in question.

  19. United States Air Force 611th Air Support Group/Civil Engineering Squadron, Elmendorf AFB, Alaska. Decision document for no further response action planned Oliktok Point Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-06-03

    This Decision Document discusses the selection of no further action as the recommended action for four sites located at the Oliktok Point radar installation. The United States Air Force (Air Force) completed a Remedial Investigation/Feasibility Study and a Risk Assessment for the eight sites located at the Oliktok Point installation (U.S. Air Force 1996a,b). Based on the findings of these activities, four sites are recommended for no further action.

  20. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Decision document for no further response action planned: Barter Island Radar Installation, Alaska. Final report, December 1995-May 1996

    SciTech Connect

    Karmi, S.; Madden, J.; Borsetti, R.

    1996-05-03

    This Decision Document discusses the selection of no further action as the recommended action for nine sites located at the Barter Island radar installation. The United States Air Force (Air Force) completed a Remedial Investigation/Feasibility Study and a Risk Assessment for the 14 sites located at the Barter Island installation (U.S. Air Force 1996a,b). Based on the findings of these activities, nine sites are recommended for no further action.

  1. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  2. Progress in the development of lightweight nickel electrode

    SciTech Connect

    Britton, D.L.

    1992-06-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  3. Quality assessment of electroencephalography obtained from a "dry electrode" system.

    PubMed

    Slater, Jeremy D; Kalamangalam, Giridhar P; Hope, Omotola

    2012-07-15

    This study examines the difference in application times for routine electroencephalography (EEG) utilizing traditional electrodes and a "dry electrode" headset. The primary outcome measure was the time to interpretable EEG (TIE). A secondary outcome measure of recording quality and interpretability was obtained from EEG sample review by two blinded clinical neurophysiologists. With EEG samples obtained from 10 subjects, the average TIE for the "dry electrode" system was 139s, and for the conventional recording 873s (p<0.001). The results support the hypothesis that such a "dry electrode" system can be applied with more than an 80% reduction in the TIE while still obtaining interpretable EEG.

  4. Progress in the development of lightweight nickel electrode

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1992-01-01

    The use of the lightweight nickel electrode, in place of the heavy-sintered state-of-the-art nickel electrode, will lead to improvements in specific energy and performance of the nickel-hydrogen cell. Preliminary testing indicates that a nickel fiber mat is a promising support candidate for the nickel hydroxide active material. Nickel electrodes made from fiber mats, with nickel and cobalt powder added to the fiber, were tested at LeRC. To date, over 8000 cycles have been accumulated, at 40 percent depth-of-discharge, using the lightweight fiber electrode, in a boiler plate nickel-hydrogen cell.

  5. Note: electrode polarization of Galinstan electrodes for liquid impedance spectroscopy.

    PubMed

    Mellor, Brett L; Kellis, Nathan A; Mazzeo, Brian A

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  6. Note: Electrode polarization of Galinstan electrodes for liquid impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Mellor, Brett L.; Kellis, Nathan A.; Mazzeo, Brian A.

    2011-04-01

    Electrode polarization is a significant obstacle in the impedance measurements of ionic liquids. An atomically smooth electrode surface could potentially reduce unwanted impedance contributions from electrode polarization. Liquid metal electrodes were formed by adhering Galinstan to acrylic plates in a parallel-plate capacitor arrangement. Electrode polarization was compared to a similar cell with stainless steel electrodes. The impedance of salt and protein solutions (β-lactoglobulin) was measured from 40 Hz to 110 MHz. Because of oxide layer formation, the performance of the Galinstan electrode is significantly different than the theoretical ideal.

  7. Improved capacitive EKG electrode

    NASA Technical Reports Server (NTRS)

    Day, J. L.; Griffith, M. E.; Portnox, W. M.; Stotts, L. J.

    1979-01-01

    Light, compact electrode monitors heart signals through burn ointment and requires no electrolyte paste for coupling to skin. Innovation is useful because of its ability to monitor heart condition of burn victims.

  8. Negative Electrode For An Alkaline Cell

    DOEpatents

    Coco, Isabelle; Cocciantelli, Jean-Michel; Villenave, Jean-Jacques

    1998-07-14

    The present invention concerns a negative electrode for an alkaline cell, comprising a current collector supporting a paste containing an electrochemically active material and a binder, characterized in that said binder is a polymer containing hydrophilic and hydrophobic groups, said polymer being selected from an acrylic homopolymer, copolymer and terpolymer, an unsaturated organic acid copolymer and an unsaturated acid anhydride copolymer.

  9. Electrostatic precipitator having high strength discharge electrode

    SciTech Connect

    Bakke, E.; Willett, H.P.

    1983-06-21

    There is disclosed an electrostatic precipitator with a discharge electrode having dimensional and configuration characteristics which provide high field strength and high current density particularly in a wet electrostatic precipitator. The round cylindrical collector tube of length (L) and with an inner diameter (D) has a coaxially positioned discharge electrode having an electrode supporting mast of a diameter from 0.25 to 40 D with an electrically conducting closed screw fli secured to the mast. The screw flight has an overall diameter (D) of from 0.33 to 0.67 D with a pitch of from d-d/2 to d-d and an overall length of from one screw revolution to l-(D-d), preferably one-half L or less and most preferably one to two revolutions. The short screw flight is economical and readily adjusted. The screw flight has a thickness of from about 0.05 to 15 inch and has a symmetrically curved outer edge. Collector tube is flared at its lower end to direct water away from the electrode mast as the water is discharged from the tube. The discharge electrode is supported from above and centered by means of adjustable tie rods at its lower end.

  10. Dielectric elastomer bending tube actuators with rigid electrode structures

    NASA Astrophysics Data System (ADS)

    Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.

    2010-04-01

    The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.

  11. Electrostatic precipitator with precipitator electrodes

    SciTech Connect

    Junkers, G.

    1980-12-16

    The invention relates to an electrostatic precipitator with collecting electrodes which are arranged in rows adjacent to each other and in respective pairs at equal distances from a respective discharge electrode with which they cooperate. Spring elements are provided between the collecting electrodes and influence the stiffness and oscillating properties of the array of the collecting electrodes.

  12. Oxygen electrodes for rechargeable alkaline fuel cells

    NASA Technical Reports Server (NTRS)

    Swette, Larry; Giner, Jose

    1987-01-01

    Electrocatalysts and supports for the positive electrode of moderate temperature single unit rechargeable alkaline fuel cells were investigated and developed. The electrocatalysts are defined as the material with a higher activity for the oxygen electrode reaction than the support. Advanced development will require that the materials be prepared in high surface area forms, and may also entail integration of various candidate materials. Eight candidate support materials and seven electrocatalysts were investigated. Of the 8 support, 3 materials meet the preliminary requirements in terms of electrical conductivity and stability. Emphasis is now on preparing in high surface area form and testing under more severe corrosion stress conditions. Of the 7 electrocatalysts prepared and evaluated, at least 5 materials remain as potential candidates. The major emphasis remains on preparation, physical characterization and electrochemical performance testing.

  13. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  14. Aluminum-air battery development: Final report

    SciTech Connect

    Not Available

    1987-11-20

    This paper presents the results of investigations of the performance of aluminum-air battery electrodes. Different electrodes were built and tested, and their performance measured. The authors conclude that the present component development has been successful, and that future research be aimed at system integration. (JDH)

  15. Extracting electrode space charge limited current: Charge injection into conjugated polyelectrolytes with a semiconductor electrode

    NASA Astrophysics Data System (ADS)

    Walker, Ethan M.; Lonergan, Mark C.

    2016-05-01

    Conjugated polyelectrolytes and related mixed ionic-electronic conductors (MIECs) are being explored for energy applications including solid-state lighting and photovoltaics. Fundamental models of charge injection into MIECs have been primarily developed for MIECs contacted with highly conductive or metal electrodes (MEs), despite many potential applications involving semiconductors. We theoretically and experimentally demonstrate that an appropriate semiconductor electrode (SE), n-type for electron or p-type of hole injection, can limit injection into MIECs. When the SE is the injecting electrode and is under accumulation, there is little difference from a ME. When the SE acts as the extracting electrode, however, injection into the MIEC can be limited because a fraction of any applied bias must support charge depletion in the semiconductor rather than charge injection into the MIEC. In a ME/MIEC/SE system, this can lead to significant asymmetry in current-voltage and injected charge-voltage behavior.

  16. Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell

    DOEpatents

    Ruka, Roswell J.; Vora, Shailesh D.

    2001-01-01

    A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

  17. Fuel cell with Pt/Pd electrocatalyst electrode

    DOEpatents

    Stonehart, Paul

    1983-01-01

    An electrode for use in a phosphoric acid fuel cell comprising a graphitized or partially graphitized carbon support having a platinum/palladium electrocatalyst thereon. Preferably, the platinum/palladium catalyst comprises 20 to 65 weight percent palladium.

  18. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  19. The Use of Small-Particle Sized TiO2 Supported on Clays as Photocatalytic Materials: A Low- Cost Alternative Technology for the Degradation of Air Pollutants

    NASA Astrophysics Data System (ADS)

    Kibanova, D.; Trejo, M.; Destaillats, H.; Cervini-Silva, J.

    2007-05-01

    Assisted photocatalysis by TiO2 is an advanced oxidation process that has been employed for air and water remediation. Clays are natural porous materials bearing high surface areas and interlayer spacing that allows entrapment of small-sized particles. Pillared clays exchanged with small-sized TiO2 can constitute materials with interesting photocatalytic properties because high surface area values and large contents of mesospores, which enables analyte trapping. Furthermore, intercalation at the clay interlayer enables TiO2 to become more resistant to aggregation when in solution. Just recently it has been reported that clays can lead to increases in the photocatalytic activity of TiO2 when the mesopores size is adequate to host organic solutes and ensure their effective interaction with the TiO2 particles. In this paper we study the photocatalytic properties of small-sized TiO2 supported on the following clay samples: Montmorillonite [SWy-2, Na0.2Ca0.1Al2Si4O10(OH)2(H2O)10 ] from Crook Country, Wyoming, USA; Hectorite [SHCa-1, Na0.4Mg2.7Li0.3Si4O10(OH)2 ] from San Bernardino. Country, California, USA; Kaolinite [KGa-1b, Al2Si2O5(OH)4 ] from Washington Country, Georgia, USA. Deposition of TiO2 on the clay surface was conducted by using a sol-gel synthetic method. Anatase TiO2 particles transformation at the clay interlayer was achieved by thermic treatment at 180 °C. Material characterization was conducted using FTIR microspectroscopy, Scanning Electron Microscopy (SEM), and XRD analysis. The organic compound used as probe was ethanol

  20. A laboratory study examining the impact of linen use on low-air-loss support surface heat and water vapor transmission rates.

    PubMed

    Williamson, Rachel; Lachenbruch, Charlie; VanGilder, Catherine

    2013-08-01

    Layers of linens are frequently placed under patients to manage moisture and/or assist with positioning immobile patients, including persons placed on a therapeutic surface because they are at risk for developing pressure ulcers. Because skin microclimate is believed to affect pressure ulcer risk, some therapeutic surfaces are designed to manage skin temperature and humidity (microclimate management). The purpose of this study was to measure the effects of linens and underpads on a low-air-loss (LAL) surface's ability to disperse heat and evaporate moisture. Underpads and transfer sheet combinations (grouped by three common linen functions: immobility, moisture management, and immobility and moisture management) were tested using the sweating guarded hot plate method, which allows for the measurement of the evaporative capacity (g H2O/m2*hour) and the total rate of heat withdrawal (Watts/m2) associated with nine different linen configurations placed on the support surface. Total heat withdrawal and evaporative capacity of the LAL surface with a fitted sheet only was used for comparison (P <0.05) Compared with fitted sheet only, heat withdrawal was significantly reduced by five of eight combinations, and evaporative moisture reduction was significantly reduced by six of eight linen combinations (P <0.05). All combinations that included plastic-containing underpads significantly reduced the surface's ability to dissipate heat and evaporate moisture, and use of the maximum number of layers (nine) reduced heat withdrawal to the level of a static, nonLAL surface. The results of this study suggest that putting additional linens or underpads on LAL surfaces may adversely affect skin temperature and moisture, thereby reducing the pressure ulcer prevention potential of these surfaces. Additional studies to examine the effect of linens and underpads as well as microclimate management strategies on pressure ulcer risk are needed.

  1. Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique

    NASA Astrophysics Data System (ADS)

    Lanzini, Andrea; Leone, Pierluigi; Asinari, Pietro

    The paper deals with the microstructural characterization of electrodes of solid oxide fuel cells based on processing of 2D images. The interest relies on finding the reliable description of the structures which determine the microscopic image, by means of parameters involving the morphology, the shape and the size of elementary structures, and the microscopic topology in terms of spatial connectivity functions. The use of detailed mathematical methods allowed one to reconstruct the 3D structure of both fuel and air electrodes having 2D images as input. The analysis was applied to an anode-supported cell with NiO based anode, 8YSZ electrolyte and LSM/YSZ cathode. The microscopic analysis was performed by means of both a SEM and an optical microscope before and after the electrical testing of the cell. The obtained images were processed and a quantitative analysis was performed for achieving information concerning the microstructure and including: phases' fraction, grain size, granulometry law, constituent shape factors, phase spatial organization and descriptive functions. The microstructure features were analyzed by means of one-point and two-point statistics. It was possible to build 3D structures of the electrodes: anode and the double-layer cathode. The work also points out some issues related to the proper use of the observed microscopic parameters and topology functions as inputs for electrodes' modelling. In the work, the results of the image analysis are used with a simple analytical model with the aim to estimate the optimal design of the cathode current functional layer (CFL). It is proved that the actual cell design with 15 μm thick CFL was optimized for a temperature as high as 850 °C, with a charge transfer and total ohmic resistance of around 0.2 Ω cm 2. More generally, results of image analysis can be used efficiently as input in the multi-scale modelling of SOFC electrodes considering macroscopic and mesoscopic models.

  2. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2013-07-09

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  3. High-energy metal air batteries

    DOEpatents

    Zhang, Ji-Guang; Xiao, Jie; Xu, Wu; Wang, Deyu; Williford, Ralph E.; Liu, Jun

    2014-07-01

    Disclosed herein are embodiments of lithium/air batteries and methods of making and using the same. Certain embodiments are pouch-cell batteries encased within an oxygen-permeable membrane packaging material that is less than 2% of the total battery weight. Some embodiments include a hybrid air electrode comprising carbon and an ion insertion material, wherein the mass ratio of ion insertion material to carbon is 0.2 to 0.8. The air electrode may include hydrophobic, porous fibers. In particular embodiments, the air electrode is soaked with an electrolyte comprising one or more solvents including dimethyl ether, and the dimethyl ether subsequently is evacuated from the soaked electrode. In other embodiments, the electrolyte comprises 10-20% crown ether by weight.

  4. Electrochemical impregnation and cycle life of lightweight nickel electrodes for nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Britton, Doris L.

    1990-01-01

    Development of a high specific energy nickel electrode is the main goal of the lightweight nickel electrode program at NASA-Lewis. The approach was to improve the nickel electrode by continuing combined in-house and contract efforts to develop a more efficient and lighter weight electrode for the nickel-hydrogen cell. Lightweight plaques are used as conductive supports for the nickel hydroxide active material. These plaques are commercial products that are fabricated into nickel electrodes by electrochemically impregnating them with active material. The electrodes are life cycle tested in a low Earth orbit regime at 40 and 80 percent depths-of-discharge.

  5. United States Air Force 611th Air Support Group/Civil Engineering Squadron Elmendorf AFB, Alaska. Decision document for no further response action planned: Bullen Point Radar Installation, Alaska. Final report

    SciTech Connect

    Karmi, S.

    1996-05-24

    This Decision Document discusses the selection of no further action as the recommended action for two sites located at the Bullen Point radar installation. The United States Air Force (Air Force) completed a Remedial Investigation/Feasibility Study and a Risk Assessment for the five sites located at the Bullen Point installation (U.S. Air Force 1996a,b). Based on the findings of these activities, two sites are recommended for no further action. Sites at the Bullen Point radar installation recommended for no further action are: Old Landfill/Dump Site East (LF06) and Drum Storage Area (SS10).

  6. Lithium electrode and an electrical energy storage device containing the same

    DOEpatents

    Lai, San-Cheng

    1976-07-13

    An improved lithium electrode structure comprises an alloy of lithium and silicon in specified proportions and a supporting current-collecting matrix in intimate contact with said alloy. The lithium electrode of the present invention is utilized as the negative electrode in a rechargeable electrochemical cell.

  7. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: findings from the International Tobacco Control Southeast Asia Survey.

    PubMed

    Yong, Hua-Hie; Foong, Kin; Borland, Ron; Omar, Maizurah; Hamann, Stephen; Sirirassamee, Buppha; Fong, Geoffrey T; Fotuhi, Omid; Hyland, Andrew

    2010-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA), conducted face-to-face in Malaysia and Thailand (n = 4005), were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops, and karaoke lounges were 40% and 57% in Malaysia and Thailand, respectively. Support for a total ban in air-conditioned venues was high and similar for both countries (82% Malaysian and 90% Thai smokers who believed there was a total ban), but self-reported compliance with bans in such venues was significantly higher in Thailand than in Malaysia (95% vs 51%, P < .001). As expected, reporting a ban in air-conditioned venues was associated with a greater support for a ban in such venues in both countries. PMID:20032039

  8. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: Findings from the International Tobacco Control Southeast Asia Survey

    PubMed Central

    Yong, HH; Foong, K; Borland, R; Omar, M; Hamann, S; Sirirassamee, B; Fong, GT; Fotuhi, O; Hyland, A

    2015-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA) conducted face-to-face in Malaysia and Thailand (n=4005) were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops and karaoke lounges were 40% and 57% in Malaysia and Thailand, respectively. Support for a total ban in air-conditioned venues was high and similar for both countries (82% Malaysian and 90% Thai smokers who believed there was a total ban) but self-reported compliance with bans in such venues was significantly higher in Thailand than in Malaysia (95% versus 51%, p<.001). As expected, reporting a ban in air-conditioned venues was associated with a greater support for a ban in such venues in both countries. PMID:20032039

  9. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: findings from the International Tobacco Control Southeast Asia Survey.

    PubMed

    Yong, Hua-Hie; Foong, Kin; Borland, Ron; Omar, Maizurah; Hamann, Stephen; Sirirassamee, Buppha; Fong, Geoffrey T; Fotuhi, Omid; Hyland, Andrew

    2010-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA), conducted face-to-face in Malaysia and Thailand (n = 4005), were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops, and karaoke lounges were 40% and 57% in Malaysia and Thailand, respectively. Support for a total ban in air-conditioned venues was high and similar for both countries (82% Malaysian and 90% Thai smokers who believed there was a total ban), but self-reported compliance with bans in such venues was significantly higher in Thailand than in Malaysia (95% vs 51%, P < .001). As expected, reporting a ban in air-conditioned venues was associated with a greater support for a ban in such venues in both countries.

  10. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  11. Hydrogen /Hydride/-air secondary battery

    NASA Technical Reports Server (NTRS)

    Sarradin, J.; Bronoel, G.; Percheron-Guegan, A.; Achard, J. C.

    1979-01-01

    The use of metal hydrides as negative electrodes in a hydrogen-air secondary battery seems promising. However, in an unpressurized cell, more stable hydrides that LaNi5H6 must be selected. Partial substitutions of nickel by aluminium or manganese increase the stability of hydrides. Combined with an air reversible electrode, a specific energy close to 100 Wh/kg can be expected.

  12. U.S. ENVIRONMENTAL PROTECTION AGENCY'S PM SUPERSITES PROGRAM - A MAJOR SUCCESSFUL COLLABORATIVE AIR QUALITY PROGRAM SUPPORTING STATES AND REGIONAL ORGANIZATIONS IN THEIR APPROACHES TO REDUCE PM LEVELS IN AIR ON URBAN AND REGIONAL SCALES

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Particulate Matter (PM) Supersites Program (Program) is a nationwide air quality methods, measurement, modeling, and data analysis program initiated through cooperative agreements with leading universities in the United States. The Progr...

  13. Fabrication and characterization of protonic-ceramic fuel cells and electrolysis cells utilizing infiltrated lanthanum nickelate electrodes

    NASA Astrophysics Data System (ADS)

    Babiniec, Sean M.

    High-temperature protonic ceramics (HTPCs) have gained interest as fuel cell and electrolysis cell electrolytes, as well as hydrogen separation membranes. The transport of hydrogen as opposed to oxygen results in several benefits and applications, including higher fuel efficiency, dehydrogenation of fuel streams, and hydrogen-based chemical synthesis. However, limited work has been done in the development of air/steam electrodes for these devices. This work presents the characterization of lanthanum nickelate, La 2NiO4+delta (LN), as a potential air/steam electrode material for use with BaCe0.2Zr0.7Y0.1O3-delta (BCZY27) HTPC electrolytes fabricated by the solid-state reactive sintering technique. Two types of devices were made; a symmetric cell used for electrode characterization, and a full fuel cell/electrolysis cell used for device performance characterization. The symmetric cell consists of a 1 mm thick BCZY27 substrate with identical air/steam electrodes on both sides. Air/steam electrodes were made by infiltrating ˜ 50 nm lanthanum nickelate nanoparticles into a BCZY27 porous backbone. The fuel cell/electrolysis cell consists of a 1mm thick Ni/BCZY27 anode support, a 25 mum thick BCZY27 electrolyte, and a 50 mum thick porous BCZY27 backbone infiltrated with lanthanum nickelate. Through symmetric cell testing, it was found that the electrode polarization resistance decreases with increasing oxygen content, indicating good oxygen reduction reaction characteristics. A minimum polarization resistance was found as 2.58 Ohm-cm2 in 3% humidied oxygen at 700 °C. Full cell testing revealed a peak power density of 27 mW-cm-2 at 700 °C. Hydrogen flux measurements were also taken in the both galvanic/post-galvanic and electrolytic operation. Galvanic/post-galvanic fluxes exhibit a very high faradaic efficiency. However, electrolytic hydrogen fluxes were much lower than the calculated hydrogen faradaic flux, indicating a different charge carrier other than protons is

  14. Composite carbon foam electrode

    DOEpatents

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  15. Composite carbon foam electrode

    DOEpatents

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  16. Liquid-permeable electrode

    DOEpatents

    Folser, George R.

    1980-01-01

    Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

  17. Porous electrode preparation method

    DOEpatents

    Arons, Richard M.; Dusek, Joseph T.

    1983-01-01

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity.

  18. Porous electrode preparation method

    DOEpatents

    Arons, R.M.; Dusek, J.T.

    1983-10-18

    A porous sintered plaque is provided with a bimodal porosity that is especially well suited for use as an electrode within a molten carbonate fuel cell. The coarse porosity is sufficient for admitting gases into contact with the reaction surfaces while the fine porosity is wetted with and retains molten electrolyte on the reaction sites. The electrode structure is prepared by providing a very fine powder of such as nickel oxide and blending the powder with a suitable decomposable binder to form a solid mass. The mass is comminuted into agglomerate size particles substantially larger than the fine oxide particles and formed into a cohesive compact for subsequent sintering. Sintering is carried out at sufficient conditions to bind the agglomerates together into a porous structure having both coarse and fine porosity. Where lithiated nickel oxide cathodes are prepared, the sintering conditions can be moderate enough to retain substantial quantities of lithium within the electrode for adequate conductivity. 2 figs.

  19. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  20. Aluminum reference electrode

    DOEpatents

    Sadoway, Donald R.

    1988-01-01

    A stable reference electrode for use in monitoring and controlling the process of electrolytic reduction of a metal. In the case of Hall cell reduction of aluminum, the reference electrode comprises a pool of molten aluminum and a solution of molten cryolite, Na.sub.3 AlF.sub.6, wherein the electrical connection to the molten aluminum does not contact the highly corrosive molten salt solution. This is accomplished by altering the density of either the aluminum (decreasing the density) or the electrolyte (increasing the density) so that the aluminum floats on top of the molten salt solution.