Science.gov

Sample records for air emissions calculations

  1. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  2. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  3. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  4. NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS (NESHAP) SUBPART H RADIONUCLIDES POTENTIAL TO EMIT CALCULATIONS

    SciTech Connect

    EARLEY JN

    2008-07-23

    This document provides an update of the status of stacks on the Hanford Site and the potential radionuclide emissions, i.e., emissions that could occur with no control devices in place. This review shows the calculations that determined whether the total effective dose equivalent (TEDE) received by the maximum public receptor as a result of potential emissions from any one of these stacks would exceed 0.1 millirem/year. Such stacks require continuous monitoring of the effluent, or other monitoring, to meet the requirements of Washington Administrative code (WAC) 246-247-035(1)(a)(ii) and WAC 246-247-075(1), -(2), and -(6). This revised update reviews the potential-to-emit (PTE) calculations of 31 stacks for Fluor Hanford, Inc. Of those 31 stacks, 11 have the potential to cause a TEDE greater than 0.1 mrem/year.

  5. Development and deployment of AQUIS: A PC-based emission inventory calculator and air information management system

    SciTech Connect

    Smith, A.E.; Tschanz, J.; Monarch, M.; Narducci, P.; Bormet, S.

    1995-06-01

    The Air Quality Utility Information System (AQUIS) is a database management system. AQUIS assists users in calculation emissions, both traditional and toxic, and tracking and reporting emissions and source information. With some facilities having over 1200 sources and AQUIS calculating as many as 125 pollutants for a single source, tracking and correlating this information involve considerable effort. Originally designed for use at seven facilities of the Air Force Material Command, the user community has expanded to over 50 facilities since last reported at the 1993 Air and Waste Management Association (AWMA) annual meeting. This expansion in the user community has provided an opportunity to test the system under expanded operating conditions and in applications not anticipated during original system design. User feedback is used to determine needed enhancements and features and to prioritize the content of new releases. In responding to evolving user needs and new emission calculation procedures, it has been necessary to reconfigure AQUIS several times. Reconfigurations have ranged from simple to complex. These changes have necessitated augmenting quality assurance (QA) and validation procedures.

  6. 40 CFR 1065.940 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission calculations. 1065.940 Section 1065.940 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... Emission calculations. Perform emission calculations as described in § 1065.650 to calculate...

  7. Air emissions testing

    SciTech Connect

    Johnson, L.D.

    1993-01-01

    The article presents a brief overview of air emission sampling methods and analysis procedures related to stationary sources such as incinerators, power plants, and industrial boilers. It is intended primarily for the laboratory chemist or manager who is familiar with samples and methods associated with water or waste sources, but not with those associated with air and stack gas emissions.

  8. Model Calculations of the Impact of NO(x) from Air Traffic, Lightning and Surface Emissions, Compared with Measurements

    NASA Technical Reports Server (NTRS)

    Meijer, E. W.; vanVelthoven, P. F. J.; Thompson, A. M.; Pfister, L.; Schlager, H.; Schulte, P.; Kelder, H.

    1999-01-01

    The impact of NO(x) from aircraft emissions, lightning and surface contributions on atmospheric nitrogen oxides and ozone has been investigated with the three-dimensional global chemistry transport model TM3 by partitioning the nitrogen oxides and ozone according to source category. The results have been compared with POLINAT II and SONEX airborne measurements in the North Atlantic flight corridor in 1997. Various cases have been investigated: measurements during a stagnant anti-cyclone and an almost cut-off low, both with expected high aircraft contributions, a southward bound flight with an expected strong flight corridor gradient and lightning contributions in the South, and a transatlantic flight with expected boundary layer pollution near the U.S. coast. The agreement between modeled results and measurements is reasonably good for NO and ozone. Also, the calculated impact of the three defined sources were consistent with the estimated exposure of the sampled air to these sources, obtained by specialized back-trajectory model products.

  9. Calculations from compliance emissions of long- and short-term SO/sub 2/ concentrations in the southwest Pennsylvania air quality control region. Final report 1979-80

    SciTech Connect

    Not Available

    1981-05-01

    This report describes the results of dispersion-model calculations of maximum annual, 24-hour and 3-hour average ground-level SO2 concentrations for selected areas in the Southwest Pennsylvania Air Quality Control Region (AQCR). The primary purpose of the model calculations was to assist EPA Region III and the Pennsylvania Department of Environmental Resources in determining the attainment or non-attainment of the National Ambient Air Quality Standards (NAAQS) for SO2 in the Beaver Valley and Monongahela Valley Air Basins exclusive of Allegheny County. All of the dispersion-model calculations were made using the LONGZ and SHORTZ dispersion models with 1980 compliance emissions inventories containing 492 major SO2 sources located within the Southwest Pennsylvania AQCR and in Ohio and West Virginia near the western border of the AQCR. The only calculated maximum that exceeds the NAAQS for SO2 is the maximum annual average concentration at an isolated grid point located on high terrain about 1 kilometer north of the Monessen Plant of Wheeling-Pittsburgh Steel. The model calculations also indicate contributions of major SO2 sources located along the Ohio River in Ohio and West Virginia to the air quality in the Southwest Pennsylvania AQCR.

  10. Calculations from compliance emissions of long and short term SO/sub 2/ concentrations in the southwest Pennsylvania air quality control region. Final report, 1979 - 1980

    SciTech Connect

    Not Available

    1981-05-01

    The results of dispersion model calculations of maximum annual, 24 hour and 3 hour average ground level SO2 concentrations for selected areas in the region (AQOR) is described. The primary purpose of the model calculations was to assist EPA Region III and the Pennsylvania Department of Environmental Resources in determining the attainment or nonattainment of the National Ambient Air Quality Standards (NAAQS) for SO2 in the Beaver Valley and Monongahela Valley Air Basins exclusive of Allegheny County. All of the dispersion model calculations were made using the LONGZ and SHORTZ dispersion models with 1980 compliance emissions inventories containing 492 major SO2 sources located within the AQOR and in Ohio and West Virginia near the western border of the AQOR.

  11. Carbon dioxide emissions from international air freight

    NASA Astrophysics Data System (ADS)

    Howitt, Oliver J. A.; Carruthers, Michael A.; Smith, Inga J.; Rodger, Craig J.

    2011-12-01

    Greenhouse gas emissions from international air transport were excluded from reduction targets under the Kyoto Protocol, partly because of difficulties with quantifying and apportioning such emissions. Although there has been a great deal of recent research into calculating emissions from aeroplane operations globally, publicly available emissions factors for air freight emissions are scarce. This paper presents a methodology to calculate the amount of fuel burnt and the resulting CO 2 emissions from New Zealand's internationally air freighted imports and exports in 2007. This methodology could be applied to other nations and/or regions. Using data on fuel uplift, air freight and air craft movements, and assumptions on mean passenger loadings and the mass of passengers and air freight, CO 2 emissions factors of 0.82 kg CO 2 per t-km and 0.69 kg CO 2 per t-km for short-haul and long-haul journeys, respectively, were calculated. The total amount of fuel consumed for the international air transport of New Zealand's imports and exports was calculated to be 0.21 Mt and 0.17 Mt respectively, with corresponding CO 2 emissions of 0.67 Mt and 0.53 Mt.

  12. 2010 LANL radionuclide air emissions report /

    SciTech Connect

    Fuehne, David P.

    2011-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2010. This report meets the reporting requirements established in the regulations.

  13. 2008 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2009-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2008. This report meets the reporting requirements established in the regulations.

  14. 2009 LANL radionuclide air emissions report

    SciTech Connect

    Fuehne, David P.

    2010-06-01

    The emissions of radionuclides from Department of Energy Facilities such as Los Alamos National Laboratory (LANL) are regulated by the Amendments to the Clean Air Act of 1990, National Emissions Standards for Hazardous Air Pollutants (40 CFR 61 Subpart H). These regulations established an annual dose limit of 10 mrem to the maximally exposed member of the public attributable to emissions of radionuclides. This document describes the emissions of radionuclides from LANL and the dose calculations resulting from these emissions for calendar year 2009. This report meets the reporting requirements established in the regulations.

  15. 40 CFR 91.419 - Raw emission sampling calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Raw emission sampling calculations. 91.419 Section 91.419 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.419 Raw emission sampling calculations....

  16. 40 CFR 98.243 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.243 Section 98.243 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petrochemical Production § 98.243 Calculating GHG emissions. (a) If you route all process vent emissions...

  17. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  18. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  19. 40 CFR 98.233 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.233 Section 98.233 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Petroleum and Natural Gas Systems § 98.233 Calculating GHG emissions. You must calculate and report...

  20. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.33 Section 98.33 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING General Stationary Fuel Combustion Sources § 98.33 Calculating GHG emissions. You must calculate CO2...

  1. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Emission calculations. 86.345-79 Section 86.345-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for New Gasoline-Fueled and...

  2. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Calculations; evaporative emissions. 86.1243-96 Section 86.1243-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative Emission Test Procedures for...

  3. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Calculations; evaporative emissions. 86.1243-96 Section 86.1243-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Evaporative Emission Test Procedures for...

  4. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.53 Section 98.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions....

  5. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86.1777-99 Section 86.1777-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Light-Duty Trucks § 86.1777-99 Calculations; exhaust emissions. The provisions of § 86.144 apply to...

  6. 40 CFR 86.143-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; evaporative emissions. 86.143-96 Section 86.143-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Complete Heavy-Duty Vehicles; Test Procedures § 86.143-96 Calculations; evaporative emissions. (a)...

  7. 40 CFR 86.145-82 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.145-82 Section 86.145-82 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Complete Heavy-Duty Vehicles; Test Procedures § 86.145-82 Calculations; particulate emissions. (a)...

  8. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Emission calculations. 86.345-79 Section 86.345-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Emission calculations. (a) The following abbreviations (and units) are used in this section. α =...

  9. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air background...

  10. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air background...

  11. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air background...

  12. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air background...

  13. 40 CFR 1065.667 - Dilution air background emission correction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.667 Dilution air background emission correction. (a) To determine the mass of background emissions to subtract... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air background...

  14. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    EPA Science Inventory

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Envi...

  15. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Emission Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2012-07-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  16. Two reduced form air quality modeling techniques for rapidly calculating pollutant mitigation potential across many sources, locations and precursor emission types

    NASA Astrophysics Data System (ADS)

    Foley, Kristen M.; Napelenok, Sergey L.; Jang, Carey; Phillips, Sharon; Hubbell, Bryan J.; Fulcher, Charles M.

    2014-12-01

    Due to the computational cost of running regional-scale numerical air quality models, reduced form models (RFM) have been proposed as computationally efficient simulation tools for characterizing the pollutant response to many different types of emission reductions. The U.S. Environmental Protection Agency has developed two types of reduced form models based upon simulations of the Community Multiscale Air Quality (CMAQ) modeling system. One is based on statistical response surface modeling (RSM) techniques using a multidimensional kriging approach to approximate the nonlinear chemical and physical processes. The second approach is based on using sensitivity coefficients estimated with the Decoupled Direct Method in 3 dimensions (CMAQ-DDM-3D) in a Taylor series approximation for the nonlinear response of the pollutant concentrations to changes in emissions from specific sectors and locations. Both types of reduced form models are used to estimate the changes in O3 and PM2.5 across space associated with emission reductions of NOx and SO2 from power plants and other sectors in the eastern United States. This study provides a direct comparison of the RSM- and DDM-3D-based tools in terms of: computational cost, model performance against brute force runs, and model response to changes in emission inputs. For O3, the DDM-3D RFM had slightly better performance on average for low to moderate emission cuts compared to the kriging-based RSM, but over-predicted O3 disbenefits from cuts to mobile source NOx in very urban areas. The RSM approach required more up-front computational cost and produced some spurious O3 increases in response to reductions in power plant emissions. However the RSM provided more accurate predictions for PM2.5 and for predictions of very large emission cuts (e.g. -60 to -90%). This comparison indicates that there are some important differences in the output of the two approaches that should be taken under consideration when interpreting results for a

  17. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    NASA Astrophysics Data System (ADS)

    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R.

    2004-12-01

    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000). With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce realistically the observed trends in background ozone, CO, and CH4 concentrations from 1990 to 2002. For the "current legislation" case, both models indicate an increase of the annual average ozone levels in the Northern hemisphere by 5 ppbv, and up to 15 ppbv over the Indian sub

  18. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect

    Barnett, J. Matthew; Rhoads, Kathleen

    2008-09-29

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  19. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect

    Barnett, J. Matthew; Rhoads, Kathleen

    2009-06-11

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  20. 40 CFR 1051.720 - How do I calculate my average emission level or emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false How do I calculate my average emission level or emission credits? 1051.720 Section 1051.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Averaging, Banking, and Trading...

  1. 40 CFR 1051.720 - How do I calculate my average emission level or emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false How do I calculate my average emission level or emission credits? 1051.720 Section 1051.720 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Averaging, Banking, and Trading...

  2. Air Emission Inventory for the INEEL -- 1999 Emission Report

    SciTech Connect

    Zohner, Steven K

    2000-05-01

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  3. The impact of air pollutant and methane emission controls on tropospheric ozone and radiative forcing: CTM calculations for the period 1990-2030

    NASA Astrophysics Data System (ADS)

    Dentener, F.; Stevenson, D.; Cofala, J.; Mechler, R.; Amann, M.; Bergamaschi, P.; Raes, F.; Derwent, R.

    2005-07-01

    To explore the relationship between tropospheric ozone and radiative forcing with changing emissions, we compiled two sets of global scenarios for the emissions of the ozone precursors methane (CH4), carbon monoxide (CO), non-methane volatile organic compounds (NMVOC) and nitrogen oxides (NOx) up to the year 2030 and implemented them in two global Chemistry Transport Models. The "Current Legislation" (CLE) scenario reflects the current perspectives of individual countries on future economic development and takes the anticipated effects of presently decided emission control legislation in the individual countries into account. In addition, we developed a "Maximum technically Feasible Reduction" (MFR) scenario that outlines the scope for emission reductions offered by full implementation of the presently available emission control technologies, while maintaining the projected levels of anthropogenic activities. Whereas the resulting projections of methane emissions lie within the range suggested by other greenhouse gas projections, the recent pollution control legislation of many Asian countries, requiring introduction of catalytic converters for vehicles, leads to significantly lower growth in emissions of the air pollutants NOx, NMVOC and CO than was suggested by the widely used and more pessimistic IPCC (Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) scenarios (Nakicenovic et al., 2000), which made Business-as-Usual assumptions regarding emission control technology. With the TM3 and STOCHEM models we performed several long-term integrations (1990-2030) to assess global, hemispheric and regional changes in CH4, CO, hydroxyl radicals, ozone and the radiative climate forcings resulting from these two emission scenarios. Both models reproduce broadly the observed trends in CO, and CH4 concentrations from 1990 to 2002.

    For the "current legislation" case, both models indicate an increase of the

  4. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations;...

  5. 40 CFR 75.83 - Calculation of Hg mass emissions and heat input rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Calculation of Hg mass emissions and... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Hg Mass Emission Provisions § 75.83 Calculation of Hg mass emissions and heat input rate. The owner or operator shall calculate Hg mass...

  6. Radionuclide Air Emission Report for 2007

    SciTech Connect

    Wahl, Linnea; Wahl, Linnea

    2008-06-13

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). The EPA regulates radionuclide emissions that may be released from stacks or vents on buildings where radionuclide production or use is authorized or that may be emitted as diffuse sources. In 2007, all Berkeley Lab sources were minor stack or building emissions sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]), there were no diffuse emissions, and there were no unplanned emissions. Emissions from minor sources either were measured by sampling or monitoring or were calculated based on quantities received for use or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, Version 3.0, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2007 is 1.2 x 10{sup -2} mrem/yr (1.2 x 10{sup -4} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) EPA dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 3.1 x 10{sup -1} person-rem (3.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2007.

  7. 2006 LANL Radionuclide Air Emissions Report

    SciTech Connect

    David P. Fuehne

    2007-06-30

    This report describes the impacts from emissions of radionuclides at Los Alamos National Laboratory (LANL) for calendar year 2006. This report fulfills the requirements established by the Radionuclide National Emissions Standards for Hazardous Air Pollutants (Rad-NESHAP). This report is prepared by LANL's Rad-NESHAP compliance team, part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being reported to the U.S. Environmental Protection Agency (EPA). The highest effective dose equivalent (EDE) to an off-site member of the public was calculated using procedures specified by the EPA and described in this report. LANL's EDE was 0.47 mrem for 2006. The annual limit established by the EPA is 10 mrem per year. During calendar year 2006, LANL continuously monitored radionuclide emissions at 28 release points, or stacks. The Laboratory estimates emissions from an additional 58 release points using radionuclide usage source terms. Also, LANL uses a network of air samplers around the Laboratory perimeter to monitor ambient airborne levels of radionuclides. To provide data for dispersion modeling and dose assessment, LANL maintains and operates meteorological monitoring systems. From these measurement systems, a comprehensive evaluation is conducted to calculate the EDE for the Laboratory. The EDE is evaluated as any member of the public at any off-site location where there is a residence, school, business, or office. In 2006, this location was the Los Alamos Airport Terminal. The majority of this dose is due to ambient air sampling of plutonium emitted from 2006 clean-up activities at an environmental restoration site (73-002-99; ash pile). Doses reported to the EPA for the past 10 years are shown in Table E1.

  8. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  9. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  10. Radionuclide Air Emission Report for 2008

    SciTech Connect

    Wahl, Linnea

    2009-05-21

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the U.S. Environmental Protection Agency (EPA) radioactive air emission regulations in Code of Federal Regulations (CFR) Title 40, Part 61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2008, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources include more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2008 is 5.2 x 10{sup -3} mrem/yr (5.2 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.1 x 10{sup -1} person-rem (1.1 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2008.

  11. Radionuclide Air Emission Report for 2009

    SciTech Connect

    Wahl, Linnea

    2010-06-01

    Berkeley Lab operates facilities where radionuclides are handled and stored. These facilities are subject to the EPA radioactive air emission regulations in 40CFR61, Subpart H (EPA 1989). Radionuclides may be emitted from stacks or vents on buildings where radionuclide production or use is authorized or they may be emitted as diffuse sources. In 2009, all Berkeley Lab sources were minor sources of radionuclides (sources resulting in a potential dose of less than 0.1 mrem/yr [0.001 mSv/yr]). These minor sources included more than 100 stack sources and one source of diffuse emissions. There were no unplanned emissions from the Berkeley Lab site. Emissions from minor sources (stacks and diffuse emissions) either were measured by sampling or monitoring or were calculated based on quantities used, received for use, or produced during the year. Using measured and calculated emissions, and building-specific and common parameters, Laboratory personnel applied the EPA-approved computer code, CAP88-PC, to calculate the effective dose equivalent to the maximally exposed individual (MEI). The effective dose equivalent from all sources at Berkeley Lab in 2009 is 7.0 x 10{sup -3} mrem/yr (7.0 x 10{sup -5} mSv/yr) to the MEI, well below the 10 mrem/yr (0.1 mSv/yr) dose standard. The location of the MEI is at the University of California (UC) Lawrence Hall of Science, a public science museum about 1500 ft (460 m) east of Berkeley Lab's Building 56. The estimated collective effective dose equivalent to persons living within 50 mi (80 km) of Berkeley Lab is 1.5 x 10{sup -1} person-rem (1.5 x 10{sup -3} person-Sv) attributable to the Lab's airborne emissions in 2009.

  12. Air Emission Inventory for the Idaho National Engineering Laboratory: 1992 emissions report

    SciTech Connect

    Stirrup, T.S.

    1993-06-01

    This report presents the 1992 Air Emission Inventory for the Idaho National Engineering Laboratory. Originally, this report was in response to the Environmental Oversight and Monitoring Agreement in 1989 between the State of Idaho and the Department of Energy Idaho Field Office, and a request from the Idaho Air Quality Bureau. The current purpose of the Air Emission Inventory is to provide the basis for the preparation of the INEL Permit-to-Operate (PTO) an Air Emission Source Application, as required by the recently promulgated Title V regulations of the Clean Air Act. This report includes emissions calculations from 1989 to 1992. The Air Emission Inventory System, an ORACLE-based database system, maintains the emissions inventory.

  13. Regional emissions of air pollutants in China.

    SciTech Connect

    Streets, D. G.

    1998-10-05

    As part of the China-MAP program, sponsored by the US National Aeronautics and Space Administration, regional inventories of air pollutants emitted in China are being characterized, in order that the atmospheric chemistry over China can be more fully understood and the resulting ambient concentrations in Chinese cities and the deposition levels to Chinese ecosystems be determined with better confidence. In addition, the contributions of greenhouse gases from China and of acidic aerosols that counteract global warming are being quantified. This paper presents preliminary estimates of the emissions of some of the major air pollutants in China: sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), carbon monoxide (CO), and black carbon (C). Emissions are estimated for each of the 27 regions of China included in the RAINS-Asia simulation model and are subsequently distributed to a 1{degree} x 1{degree} grid using appropriate disaggregation factors. Emissions from all sectors of the Chinese economy are considered, including the combustion of biofuels in rural homes. Emissions from larger power plants are calculated individually and allocated to the grid accordingly. Data for the period 1990-1995 are being developed, as well as projections for the future under alternative assumptions about economic growth and environmental control.

  14. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.173 Section 98.173 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... weights, CO2 to carbon. (Fs) = Annual mass of the solid fuel combusted (metric tons). (Csf) =...

  15. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  16. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  17. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  18. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  19. 40 CFR 98.413 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Calculating GHG emissions. 98.413 Section 98.413 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Industrial Greenhouse Gases § 98.413...

  20. Estimation of glycol air emissions from aircraft deicing

    SciTech Connect

    McCready, D.

    1998-12-31

    Ethylene glycol (EG) and propylene glycol (PG)-based fluids (collectively referred to as glycol) are recognized as effective in removing and preventing snow and ice contamination on aircraft before take-off. Although much work has been done to develop an understanding of the potential impact of spent fluid run-off to water bodies, little attention has been paid to the potential environmental impact, if any, due to air emissions. In order to determine potential impact from air emissions, it is necessary to develop a protocol for estimating the glycol emissions during deicing operations. This paper presents two approaches for estimating glycol air emissions from aircraft deicing fluids (ADF) and aircraft anti-icing fluids (AAF). The first simple approach is based on emission factors and the quantity of fluid applied. The second approach estimates emissions for a typical deicing event based on site-specific parameters. Sample calculations are presented. The predicted glycol evaporation rates are quite low. Calculated emissions from ethylene glycol-based fluids are lower than emissions from PG-based fluids. The calculated air emissions for a typical event are less than a pound for EG-based fluids. The emission rate from PG-based fluids can be two times greater.

  1. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  2. DESTRUCTION OF AIR EMISSIONS USING CATALYTIC OXIDATION

    EPA Science Inventory

    The paper discusses key emission stream characteristics and hazardous air pollutant (HAP) characteristics that affect the applicability of catalytic oxidation as an air pollution control technique in which volatile organic compounds (VOCs) and vapor-phase air toxics in an air emi...

  3. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F

  4. REGIONAL AIR POLLUTION STUDY, EMISSION INVENTORY SUMMARIZATION

    EPA Science Inventory

    As part of the Regional Air Pollution Study (RAPS), data for an air pollution emission inventory are summarized for point and area sources in the St. Louis Air Quality Control Region. Data for point sources were collected for criteria and noncriteria pollutants, hydrocarbons, sul...

  5. AIR TOXIC EMISSIONS FROM IRON FOUNDRIES

    EPA Science Inventory

    The paper presents uncontrolled air toxic emission factors for different process operations in a gray iron foundry. he emission factors are based on the results of on-site test measurements available in the literature. he emission factors are presented for organic and inorganic c...

  6. 40 CFR 1066.925 - Enclosure calculations for evaporative and refueling emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... described in 40 CFR 86.143-96. Calculate emissions for refueling emissions as described in 40 CFR 86.143-96... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Enclosure calculations for evaporative... AGENCY (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Evaporative Emission Test...

  7. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 16 2011-07-01 2011-07-01 false Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. 75.19 Section 75.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.19 Optional SO2, NOX, and...

  8. 40 CFR 75.19 - Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Optional SO2, NOX, and CO2 emissions calculation for low mass emissions (LME) units. 75.19 Section 75.19 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTINUOUS EMISSION MONITORING Monitoring Provisions § 75.19 Optional SO2, NOX, and...

  9. AIR EMISSIONS FROM SCRAP TIRE COMBUSTION

    EPA Science Inventory

    The report discusses air emissions from two types of scrap tire combustion: uncontrolled and controlled. Uncontrolled sources are open tire fires, which produce many unhealthful products of incomplete combustion and release them directly into the atmosphere. Controlled combustion...

  10. National Emission Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers; Guidance for Calculating Efficiency Credits Resulting from Implementation of Energy Conservation Measures

    SciTech Connect

    Cox, Daryl; Papar, Riyaz; Wright, Dr. Anthony

    2013-02-01

    The purpose of this document is to provide guidance for developing a consistent approach to documenting efficiency credits generated from energy conservation measures in the Implementation Plan for boilers covered by the Boiler MACT rule (i.e., subpart DDDDD of CFR part 63). This document divides Boiler System conservation opportunities into four functional areas: 1) the boiler itself, 2) the condensate recovery system, 3) the distribution system, and 4) the end uses of the steam. This document provides technical information for documenting emissions credits proposed in the Implementation Plan for functional areas 2) though 4). This document does not include efficiency improvements related to the Boiler tune-ups.

  11. EPA- NEW ENGLAND AIR FACILITY EMISSIONS

    EPA Science Inventory

    The AirData NET Facility Emissions report displays the amount of air pollution released in a year by individual sources (facilities). Electric power plants, steel mills, factories, and universities are examples of facilities. The main purpose of the report is to compare the emis...

  12. REGIONAL AIR POLLUTION STUDY: HEAT EMISSION INVENTORY

    EPA Science Inventory

    As part of the St. Louis Regional Air Pollution Study (RAPS), a heat emission inventory has been assembled. Heat emissions to the atmosphere originate, directly or indirectly, from the combustion of fossil fuels (there are no nuclear plants in the St. Louis AQCR). With the except...

  13. Controlling air emissions from incinerators

    SciTech Connect

    Foisy, M.B.; Li, R.; Chattapadhyay, A.

    1994-04-01

    Last year, EPA published final rules establishing technical standards for the use and disposal of wastewater biosolids (40 CFR, Part 503). Subpart E specifically regulates the operations of and emissions from municipal wastewater biosolids incinerators.

  14. Savannah River Site radionuclide air emissions annual report for national emission standards for hazardous air pollutants

    SciTech Connect

    Sullivan, I.K.

    1993-12-31

    The radiological air emission sources at the SRS have been divided into three categories, Point, Grouped and Non-Point, for this report. Point sources, analyzed individually, are listed with a listing of the control devices, and the control device efficiency. The sources listed have been grouped together either for security reasons or where individual samples are composited for analytical purposes. For grouped sources the listed control devices may not be on all sources within a group. Point sources that did not have continuous effluent monitoring/sampling in 1993 are noted. The emissions from these sources was determined from Health Protection smear data, facility radionuclide content or other calculational methods, including process knowledge, utilizing existing analytical data. This report also contain sections on facility descriptions, dose assessment, and supplemental information.

  15. SOURCES OF COPPER AIR EMISSIONS

    EPA Science Inventory

    The report gives results of a study to update estimates of atmospheric emissions of copper and copper compounds in the U.S. Source categories evaluated included: metallic minerals, primary copper smelters, iron and steel making, combustion, municipal incineration, secondary coppe...

  16. U.S. DOE 2004 LANL Radionuclide Air Emissions

    SciTech Connect

    K.W. Jacobson

    2005-08-12

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2004.

  17. Incinerator air emissions: Inhalation exposure perspectives

    SciTech Connect

    Rogers, H.W.

    1995-12-01

    Incineration is often proposed as the treatment of choice for processing diverse wastes, particularly hazardous wastes. Where such treatment is proposed, people are often fearful that it will adversely affect their health. Unfortunately, information presented to the public about incinerators often does not include any criteria or benchmarks for evaluating such facilities. This article describes a review of air emission data from regulatory trial burns in a large prototype incinerator, operated at design capacity by the US Army to destroy chemical warfare materials. It uses several sets of criteria to gauge the threat that these emissions pose to public health. Incinerator air emission levels are evaluated with respect to various toxicity screening levels and ambient air levels of the same pollutants. Also, emission levels of chlorinated dioxins and furans are compared with emission levels of two common combustion sources. Such comparisons can add to a community`s understanding of health risks associated with an incinerator. This article focuses only on the air exposure/inhalation pathway as related to human health. It does not address other potential human exposure pathways or the possible effects of emissions on the local ecology, both of which should also be examined during a complete analysis of any major new facility.

  18. Working Toward Policy-Relevant Air Quality Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Holloway, T.

    2010-12-01

    Though much work has been done to develop accurate chemical emission inventories, few publicly available inventories are appropriate for realistic policy analysis. Emissions from the electricity and transportation sectors, in particular, respond in complex ways to policy, technology, and energy use change. Many widely used inventories, such as the EPA National Emissions Inventory, are well-suited for modeling current air quality, but do not have the specificity needed to address "what if?" questions. Changes in electricity demand, fuel prices, new power sources, and emission controls all influence the emissions from regional power production, requiring a plant-by-plant assessment to capture the spatially explicit impacts. Similarly, land use, freight distribution, or driving behavior will yield differentiated transportation emissions for urban areas, suburbs, and rural highways. We here present results from three recent research projects at the University of Wisconsin—Madison, where bottom-up emission inventories for electricity, freight transport, and urban vehicle use were constructed to support policy-relevant air quality research. These three studies include: 1) Using the MyPower electricity dispatch model to calculate emissions and air quality impacts of Renewable Portfolio Standards and other carbon-management strategies; 2) Using advanced vehicle and commodity flow data from the Federal Highway Administration to evaluate the potential to shift commodities from truck to rail (assuming expanded infrastructure), and assess a range of alternative fuel suggestions; and 3) Working with urban planners to connect urban density with vehicle use to evaluate the air quality impacts of smart-growth in major Midwest cities. Drawing on the results of these three studies, and on challenges overcome in their execution, we discuss the current state of policy-relevant emission dataset generation, as well as techniques and attributes that need to be further refined in order

  19. Year 2015 Aircraft Emission Scenario for Scheduled Air Traffic

    NASA Technical Reports Server (NTRS)

    Baughcum, Steven L.; Sutkus, Donald J.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional scenario of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons)for projected year 2015 scheduled air traffic. These emission inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Aviation Project (AEAP) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxides, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer altitude grid and delivered to NASA as electronic files.

  20. 2014 LANL Radionuclide Air Emissions Report

    SciTech Connect

    Fuehne, David Patrick

    2015-07-21

    This report describes the emissions of airborne radionuclides from operations at Los Alamos National Laboratory (LANL) for calendar year 2014, and the resulting off-site dose from these emissions. This document fulfills the requirements established by the National Emissions Standards for Hazardous Air Pollutants in 40 CFR 61, Subpart H – Emissions of Radionuclides other than Radon from Department of Energy Facilities, commonly referred to as the Radionuclide NESHAP or Rad-NESHAP. Compliance with this regulation and preparation of this document is the responsibility of LANL’s RadNESHAP compliance program, which is part of the Environmental Protection Division. The information in this report is required under the Clean Air Act and is being submitted to the U.S. Environmental Protection Agency (EPA) Region 6.

  1. Effect of low emission sources on air quality in Cracow

    SciTech Connect

    Nedoma, J.

    1995-12-31

    The paper presents calculation of power engineering low emission and results of stimulation of the effect of this emission on air quality in Cracow, Poland. It has been stated that the segment of low emission in central areas of the town makes up ca. 40% of the observed concentration of sulfur dioxide. Furthermore it has been stated that the capital investment must be concentrated in the central part of the town in order to reach noticeable improvement of air quality in Cracow. Neither the output of a separate power source nor the emission level and its individual harmful effect, but the location of the source and especially packing density of the sources must decide the priority of upgrading actions.

  2. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  3. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  4. Review of maritime transportation air emission pollution and policy analysis

    NASA Astrophysics Data System (ADS)

    Wang, Haifeng; Liu, Dahai; Dai, Guilin

    2009-09-01

    The study of air emission in maritime transportation is new, and the recognition of its importance has been rising in the recent decade. The emissions of CO2, SO2, NO2 and particulate matters from maritime transportation have contributed to climate change and environmental degradation. Scientifically, analysts still have controversies regarding how to calculate the emissions and how to choose the baseline and methodologies. Three methods are generally used, namely the ‘bottom up’ approach, the ‘top down’ approach and the STEEM, which produce very different results, leading to various papers with great uncertainties. This, in turn, results in great difficulties to policy makers who attempt to regulate the emissions. A recent technique, the STEEM, is intended to combine the former two methods to reduce their drawbacks. However, the regulations based on its results may increase the costs of shipping companies and cause the competitiveness of the port states and coastal states. Quite a few papers have focused on this area and provided another fresh perspective for the air emission to be incorporated in maritime transportation regulations; these facts deserve more attention. This paper is to review the literature on the debates over air emission calculation, with particular attention given to the STEEM and the refined estimation methods. It also reviews related literature on the economic analysis of maritime transportation emission regulations, and provides an insight into such analysis. At the end of this paper, based on a review and analysis of previous literature, we conclude with the policy indications in the future and work that should be done. As the related regulations in maritime transportation emissions are still at their beginning stage in China, this paper provides specific suggestions on how China should regulate emissions in the maritime transportation sector.

  5. Biofuels, vehicle emissions, and urban air quality.

    PubMed

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel. PMID:27112132

  6. Polarized radio emission from extensive air showers measured with LOFAR

    SciTech Connect

    Schellart, P.; Buitink, S.; Corstanje, A.; Enriquez, J.E.; Falcke, H.; Hörandel, J.R.; Krause, M.; Nelles, A.; Rachen, J.P.; Veen, S. ter; Thoudam, S.

    2014-10-01

    We present LOFAR measurements of radio emission from extensive air showers. We find that this emission is strongly polarized, with a median degree of polarization of nearly 99%, and that the angle between the polarization direction of the electric field and the Lorentz force acting on the particles, depends on the observer location in the shower plane. This can be understood as a superposition of the radially polarized charge-excess emission mechanism, first proposed by Askaryan and the geomagnetic emission mechanism proposed by Kahn and Lerche. We calculate the relative strengths of both contributions, as quantified by the charge-excess fraction, for 163 individual air showers. We find that the measured charge-excess fraction is higher for air showers arriving from closer to the zenith. Furthermore, the measured charge-excess fraction also increases with increasing observer distance from the air shower symmetry axis. The measured values range from (3.3± 1.0)% for very inclined air showers at 25 m to (20.3± 1.3)% for almost vertical showers at 225 m. Both dependencies are in qualitative agreement with theoretical predictions.

  7. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... You must calculate and report the annual process CO2 emissions from each taconite indurating furnace.... Calculate and report the annual process CO2 emissions from the coke pushing process according to paragraph (c) of this section. (a) Calculate and report under this subpart the process CO2 emissions...

  8. 40 CFR 98.113 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must calculate and report the annual process CO2 emissions from each EAF using the procedures in either paragraph (a) or (b) of this section. (a) Calculate and report under this subpart the process CO2 emissions... Combustion Sources). (b) Calculate and report under this subpart the annual process CO2 emissions using...

  9. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86... Procedures § 86.1342-90 Calculations; exhaust emissions. (a) The final reported transient emission test... exhaust entering positive displacement pump during test, °R (°K). (e) Sample calculation of mass values...

  10. REGIONAL AIR POLLUTION STUDY: OFF-HIGHWAY MOBILE SOURCE EMISSION INVENTORY

    EPA Science Inventory

    An emission inventory of mobile off-highway sources of air pollution has been determined for the Regional Air Pollution Study (RAPS) in St. Louis, Missouri. Emissions of HC, CO, NOx, SOx and particulate matter have been calculated with the aid of a computer for the 1,989 grid squ...

  11. RADIONUCLIDE AIR EMISSIONS REPORT FOR THE HANFORD SITE CY2003

    SciTech Connect

    ROKKAN, D.J.

    2004-06-11

    This report documents radionuclide air emissions from the US Department of Energy (DOE) Hanford Site in 2003 and the resulting effective dose equivalent (EDE) to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities''; Washington Administrative Code (WAC) Chapter 246-247, ''Radiation Protection-Air Emissions''; 10 CFR 830.120, Quality Assurance; DOE Order 414.1B, Quality Assurance; NQA-1, Quality Assurance Requirements for Nuclear Facility Application; EPA QA/R-2, EPA Requirements for Quality Management Plans; and EPA QA/R-5, Requirements for Quality Assurance Project Plans. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from DOE facilities and the resulting public dose from those emissions. A standard of 10 mrem/yr EDE is not to be exceeded. The EDE to the MEI due to routine and nonroutine emissions in 2003 from Hanford Site point sources was 0.022 mrem (0.00022 mSv), or 0.22 percent of the federal standard. The portions of the Hanford Site MEI dose attributable to individual point sources as listed in Section 2.0 are appropriate for use in demonstrating the compliance of abated stack emissions with applicable terms of the Hanford Site Air Operating Permit and of Notices of Construction. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations, yet further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. WAC 246-247 also requires the reporting of radionuclide emissions from all Hanford Site sources during routine as well as nonroutine operations. The EDE from

  12. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... balance of fuel, intake air, and exhaust as described in § 1065.655, plus information about your engine's..., sample bag readings, and dilution air background readings, for drift as described in § 1065.672....

  13. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... using a chemical balance of fuel, intake air, and exhaust as described in § 1065.655, plus information..., including continuous readings, sample bag readings, and dilution air background readings, for drift...

  14. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... balance of fuel, intake air, and exhaust as described in § 1065.655, plus information about your engine's... concentrations, including continuous readings, sample bags readings, and dilution air background readings,...

  15. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... balance of fuel, intake air, and exhaust as described in § 1065.655, plus information about your engine's..., sample bag readings, and dilution air background readings, for drift as described in § 1065.672....

  16. 40 CFR 1065.650 - Emission calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION... balance of fuel, intake air, and exhaust as described in § 1065.655, plus information about your engine's... concentrations, including continuous readings, sample bags readings, and dilution air background readings,...

  17. Proton dose calculation based on in-air fluence measurements.

    PubMed

    Schaffner, Barbara

    2008-03-21

    Proton dose calculation algorithms--as well as photon and electron algorithms--are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and-to a lesser extent-design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques. PMID:18367787

  18. Proton dose calculation based on in-air fluence measurements

    NASA Astrophysics Data System (ADS)

    Schaffner, Barbara

    2008-03-01

    Proton dose calculation algorithms—as well as photon and electron algorithms—are usually based on configuration measurements taken in a water phantom. The exceptions to this are proton dose calculation algorithms for modulated scanning beams. There, it is usual to measure the spot profiles in air. We use the concept of in-air configuration measurements also for scattering and uniform scanning (wobbling) proton delivery techniques. The dose calculation includes a separate step for the calculation of the in-air fluence distribution per energy layer. The in-air fluence calculation is specific to the technique and—to a lesser extent—design of the treatment machine. The actual dose calculation uses the in-air fluence as input and is generic for all proton machine designs and techniques.

  19. 40 CFR 98.113 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must calculate and report the annual process CO2 emissions from each EAF not subject to paragraph (c... also subject to annual process CH4 emissions reporting, you must also calculate and report the annual process CH4 emissions from the EAF using the procedures in paragraph (d) of this section. (a)...

  20. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... subpart G of this part or under 40 CFR part 1068. (2) Exported vehicles. (3) Vehicles not subject to the... applicable emission standard. Calculate positive emission credits for a family or subfamily that has an FEL below the standard. Calculate negative emission credits for a family or subfamily that has an FEL...

  1. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... subpart G of this part or under 40 CFR part 1068. (2) Exported vehicles. (3) Vehicles not subject to the... applicable emission standard. Calculate positive emission credits for a family or subfamily that has an FEL below the standard. Calculate negative emission credits for a family or subfamily that has an FEL...

  2. 40 CFR 1037.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... subpart G of this part or under 40 CFR part 1068. (2) Exported vehicles. (3) Vehicles not subject to the... applicable emission standard. Calculate positive emission credits for a family or subfamily that has an FEL below the standard. Calculate negative emission credits for a family or subfamily that has an FEL...

  3. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  4. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  5. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  6. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Phosphoric Acid Production § 98.263 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... the annual CO2 mass emissions from each wet-process phosphoric acid process line using the methods...

  7. 40 CFR 98.183 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calculate and report the annual process CO2 emissions from each smelting furnace using the procedure in... § 98.33(b)(4)(ii) or (b)(4)(iii), you must calculate and report combined process and combustion CO2 emissions by operating and maintaining a CEMS to measure CO2 emissions according to the Tier 4...

  8. 40 CFR 98.293 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must calculate and report the annual process CO2 emissions from each soda ash manufacturing line using... report under this subpart the combined process and combustion CO2 emissions by operating and maintaining a CEMS to measure CO2 emissions according to the Tier 4 Calculation Methodology specified in §...

  9. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... You must calculate and report the annual process CO2 emissions from each silicon carbide process unit.... (a) Calculate and report under this subpart the process CO2 emissions by operating and maintaining... and report under this subpart the process CO2 emissions using the procedures in paragraphs (b)(1)...

  10. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  11. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  12. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  13. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Ammonia Manufacturing § 98.73 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... ammonia manufacturing unit, the CO2 process emissions from gaseous feedstock according to Equation G-1...

  14. 40 CFR 91.419 - Raw emission sampling calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw emission sampling calculations. 91... Raw emission sampling calculations. (a) Derive the final test results through the steps described in... following equations are to be used when fuel flow is selected as the basis for mass emission...

  15. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each hydrogen production process unit... emissions associated with each fuel and feedstock used for hydrogen production by following paragraphs...

  16. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (b)(2) of this section. (1) Carbon mass balance method. Calculate the annual mass emissions of CO2... indurating furnaces, estimate CO2 emissions using Equation Q-1 of this section. ER30OC09.063 Where: CO2... emissions using Equation Q-2 of this section. ER30OC09.064 Where: CO2 = Annual CO2 mass emissions from...

  17. Quantifying Uncontrolled Air Emissions from Two Florida Landfills

    EPA Science Inventory

    Landfill gas emissions, if left uncontrolled, contribute to air toxics, climate change, trospospheric ozone, and urban smog. Measuring emissions from landfills presents unique challenges due to the large and variable source area, spatial and temporal variability of emissions, and...

  18. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  19. 40 CFR 98.73 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must calculate and report the annual process CO2 emissions from each ammonia manufacturing process unit... subpart the process CO2 emissions by operating and maintaining CEMS according to the Tier 4 Calculation... (General Stationary Fuel Combustion Sources). (b) Calculate and report under this subpart process...

  20. 40 CFR 89.418 - Raw emission sampling calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw emission sampling calculations. 89... Test Procedures § 89.418 Raw emission sampling calculations. (a) The final test results shall be... cases where the reference conditions vary from those stated, an error may occur in the calculations....

  1. 40 CFR 98.273 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC requirements described in § 98.34 are met. (2) Calculate fossil fuel-based CH4 and N2O emissions from...

  2. 40 CFR 98.273 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC requirements described in § 98.34 are met. (2) Calculate fossil fuel-based CH4 and N2O emissions from...

  3. 40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in 40 CFR 86.144 or 40 CFR part 1065, subpart G. (b) For composite emission calculations over... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and...

  4. 40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in 40 CFR 86.144 or 40 CFR part 1065, subpart G. (b) For composite emission calculations over... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and...

  5. Air emissions inventory for the Idaho National Engineering Laboratory -- 1995 emissions report

    SciTech Connect

    1996-06-01

    This report presents the 1995 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources. The air contaminants reported include nitrogen oxides, sulfur oxides, carbon monoxide, volatile organic compounds, particulates, and hazardous air pollutants (HAPs).

  6. Health effects of SRS non-radiological air emissions

    SciTech Connect

    Stewart, J.

    1997-06-16

    This report examines the potential health effects of non radiological emissions to the air resulting from operations at the Savannah River Site (SRS). The scope of this study was limited to the 55 air contaminants for which the US Environmental Protection Agency (EPA) has quantified risk by determining unit risk factors (excess cancer risks) and/or reference concentrations (deleterious non cancer risks). Potential health impacts have been assessed in relation to the maximally exposed individual. This is a hypothetical person who resides for a lifetime at the SRS boundary. The most recent (1994) quality assured SRS emissions data available were used. Estimated maximum site boundary concentrations of the air contaminants were calculated using air dispersion modeling and 24-hour and annual averaging times. For the emissions studied, the excess cancer risk was found to be less than the generally accepted risk level of 1 in 100,000 and, in most cases, was less than 1 in 1,000,000. Deleterious non cancer effects were also found to be very unlikely.

  7. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1999 Emission Report

    SciTech Connect

    Zohner, S.K.

    2000-05-30

    This report presents the 1999 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradionuclide emissions estimates for stationary sources.

  8. Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory - Calendar Year 1998 Emissions Report

    SciTech Connect

    S. K. Zohner

    1999-10-01

    This report presents the 1998 calendar year update of the Air Emission Inventory for the Idaho National Engineering and Environmental Laboratory (INEEL). The INEEL Air Emission Inventory documents sources and emissions of nonradionuclide pollutants from operations at the INEEL. The report describes the emission inventory process and all of the sources at the INEEL, and provides nonradiological emissions estimates for stationary sources.

  9. Air emission inventory for the Idaho National Engineering Laboratory: 1994 emissions report

    SciTech Connect

    1995-07-01

    This report Presents the 1994 update of the Air Emission inventory for the Idaho National Engineering Laboratory (INEL). The INEL Air Emission Inventory documents sources and emissions of non-radionuclide pollutants from operations at the INEL. The report describes the emission inventory process and all of the sources at the INEL, and provides non-radionuclide emissions estimates for stationary sources.

  10. Surveys of Microwave Emission from Air Showers

    NASA Astrophysics Data System (ADS)

    Kuramoto, Kazuyuki; Ogio, Shoichi; Iijima, Takashi; Yamamoto, Tokonatsu

    2011-09-01

    A possibility of detection of microwave molecular bremsstrahlung radiation from Extensive Air Showers was reported by AMBER group [1] [2]. This method has a potential to provide a high duty cycle and a new technique for measuring longitudinal profile of EAS. To survey this microwave emission from EAS, we built prototype detectors using parabolic antenna dishes for broadcasting satellites, and we are operating detectors with a small EAS array at Osaka City Univercity. Here, we report our detector configurations and the current experimental status.

  11. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 – 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  12. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and N2O emissions as follows: (a) Convert the... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG...

  13. Effects of future anthropogenic pollution emissions on global air quality

    NASA Astrophysics Data System (ADS)

    Pozzer, A.; Zimmermann, P.; Doering, U.; van Aardenne, J.; Dentener, F.; Lelieveld, J.

    2012-04-01

    The atmospheric chemistry general circulation model EMAC is used to estimate the impact of anthropogenic emission changes on global and regional air quality in recent and future years (2005, 2010, 2025 and 2050). The emission scenario assumes that population and economic growth largely determine energy consumption and consequent pollution sources ("business as usual"). By comparing with recent observations, it is shown that the model reproduces the main features of regional air pollution distributions though with some imprecision inherent to the coarse horizontal resolution (around 100 km). To identify possible future hot spots of poor air quality, a multi pollutant index (MPI) has been applied. It appears that East and South Asia and the Arabian Gulf regions represent such hotspots due to very high pollutant concentrations. In East Asia a range of pollutant gases and particulate matter (PM2.5) are projected to reach very high levels from 2005 onward, while in South Asia air pollution, including ozone, will grow rapidly towards the middle of the century. Around the Arabian Gulf, where natural PM2.5 concentrations are already high (desert dust), ozone levels will increase strongly. By extending the MPI definition, we calculated a Per Capita MPI (PCMPI) in which we combined population projections with those of pollution emissions. It thus appears that a rapidly increasing number of people worldwide will experience reduced air quality during the first half of the 21st century. It is projected that air quality for the global average citizen in 2050 will be comparable to the average in East Asia in the year 2005.

  14. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  15. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  16. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Sderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  17. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... this section: ER30OC09.025 Where: EPFC = Annual PFC emissions from aluminum production (metric tons PFC). Em = PFC emissions from aluminum production for the month “m” (metric tons PFC). (b) Use Equation...

  18. 40 CFR 98.63 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Aluminum Production § 98.63 Calculating GHG emissions. (a) The... aluminum production (metric tons PFC). Em = Emissions of the individual PFC compound from aluminum... prebake and Søderberg electrolysis cell. ER30OC09.026 Where: ECF4 = Monthly CF4 emissions from...

  19. 40 CFR 98.263 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... You must calculate and report the annual process CO2 emissions from each wet-process phosphoric acid... under this subpart the process CO2 emissions by operating and maintaining a CEMS according to the Tier 4... process CO2 emissions using the procedures in paragraphs (b)(1) and (b)(2) of this section. (1)...

  20. 40 CFR 98.213 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... emissions. You must determine CO2 process emissions from carbonate use in accordance with the procedures specified in either paragraphs (a) or (b) of this section. (a) Calculate the process emissions of CO2 using calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass...

  1. 40 CFR 98.83 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... total raw material weight. M = Number of raw materials. 44/12 = Ratio of molecular weights, CO2 to... as a non-carbonate species. (3) CO 2 emissions from raw materials. Calculate CO2 emissions using.../yr (dry basis). CO2,rm = Annual CO2 emissions from raw materials. TOCrm = Organic carbon content...

  2. 40 CFR 98.273 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the... CH4 and N2O emissions from direct measurement of fossil fuels consumed, default HHV, and...

  3. 40 CFR 98.273 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the... measurement of fossil fuels consumed, default or site-specific HHV, and default emissions factors and...

  4. 40 CFR 98.273 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the... measurement of fossil fuels consumed, default or site-specific HHV, and default emissions factors and...

  5. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Silicon Carbide Production § 98.283 Calculating GHG emissions. You must calculate and report the combined annual process CO2 emissions from all silicon carbide... factor for the amount of carbon in silicon carbide product (assuming 35 percent of carbon input is in...

  6. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  7. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  8. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Glass Production § 98.143 Calculating GHG emissions. You must calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace...

  9. 40 CFR 1036.530 - Calculating greenhouse gas emission rates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... applicable duty cycle as specified in 40 CFR 1065.650. Do not apply infrequent regeneration adjustment... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Calculating greenhouse gas emission... Procedures § 1036.530 Calculating greenhouse gas emission rates. This section describes how to...

  10. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  11. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  12. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  13. 40 CFR 98.163 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Hydrogen Production § 98.163 Calculating GHG emissions. You must calculate and report the annual CO2 emissions from each hydrogen production process unit using the... associated with each fuel and feedstock used for hydrogen production by following paragraphs (b)(1)...

  14. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CO2 emissions according to the Tier 4 Calculation Methodology specified in § 98.33(a)(4) and all... to measure CO2 emissions according to the Tier 4 Calculation Methodology specified in § 98.33(a)(4... mineral mass fraction. (ii) Determine the quantity of each carbonate-based raw material charged to...

  15. 40 CFR 98.403 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of the products supplied using either of Calculation Methodology 1 or 2 of this subpart: (1) Calculation Methodology 1. NGL fractionators shall estimate CO2 emissions that would result from the complete... volume unit throughout the equation. ER30OC09.163 Where: CO2i = Annual CO2 mass emissions that...

  16. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions. (a) You must calculate total annual emissions of each fluorinated GHG emitted by electronics... subpart (metric tons). N = The total number of process sub-types j that depends on the...

  17. 40 CFR 86.1778-99 - Calculations; particulate emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; particulate emissions. 86.1778-99 Section 86.1778-99 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Vehicles and Light-Duty Trucks § 86.1778-99 Calculations; particulate emissions. The provisions of §...

  18. Simulating Air Quality Investiga tions with the Programmable Calculator

    ERIC Educational Resources Information Center

    Craig, James C.

    1974-01-01

    Describes ways in which a student might use a programmable calculator to obtain air pollution data for a particular locale and outlines the teacher's role in preparing the Computer Simulated Experimentation. (JR)

  19. Vertical emission profiles for Europe based on plume rise calculations.

    PubMed

    Bieser, J; Aulinger, A; Matthias, V; Quante, M; Denier van der Gon, H A C

    2011-10-01

    The vertical allocation of emissions has a major impact on results of Chemistry Transport Models. However, in Europe it is still common to use fixed vertical profiles based on rough estimates to determine the emission height of point sources. This publication introduces a set of new vertical profiles for the use in chemistry transport modeling that were created from hourly gridded emissions calculated by the SMOKE for Europe emission model. SMOKE uses plume rise calculations to determine effective emission heights. Out of more than 40,000 different vertical emission profiles 73 have been chosen by means of hierarchical cluster analysis. These profiles show large differences to those currently used in many emission models. Emissions from combustion processes are released in much lower altitudes while those from production processes are allocated to higher altitudes. The profiles have a high temporal and spatial variability which is not represented by currently used profiles. PMID:21561695

  20. Air ingression calculations for selected plant transients using MELCOR

    SciTech Connect

    Kmetyk, L.N.

    1994-01-01

    Two sets of MELCOR calculations have been completed studying the effects of air ingression on the consequences of various severe accident scenarios. One set of calculations analyzed a station blackout with surge line failure prior to vessel breach, starting from nominal operating conditions; the other set of calculations analyzed a station blackout occurring during shutdown (refueling) conditions. Both sets of analyses were for the Surry plant, a three-loop Westinghouse PWR. For both accident scenarios, a basecase calculation was done, and then repeated with air ingression from containment into the core region following core degradation and vessel failure. In addition to the two sets of analyses done for this program, a similar air-ingression sensitivity study was done as part of a low-power/shutdown PRA, with results summarized here; that PRA study also analyzed a station blackout occurring during shutdown (refueling) conditions, but for the Grand Gulf plant, a BWR/6 with Mark III containment. These studies help quantify the amount of air that would have to enter the core region to have a significant impact on the severe accident scenario, and demonstrate that one effect, of air ingression is substantial enhancement of ruthenium release. These calculations also show that, while the core clad temperatures rise more quickly due to oxidation with air rather than steam, the core also degrades and relocates more quickly, so that no sustained, enhanced core heatup is predicted to occur with air ingression.

  1. Emission of pesticides into the air

    USGS Publications Warehouse

    Van Den, Berg, F.; Kubiak, R.; Benjey, W.G.; Majewski, M.S.; Yates, S.R.; Reeves, G.L.; Smelt, J.H.; Van Der Linden, A. M. A.

    1999-01-01

    During and after the application of a pesticide in agriculture, a substantial fraction of the dosage may enter the atmosphere and be transported over varying distances downwind of the target. The rate and extent of the emission during application, predominantly as spray particle drift, depends primarily on the application method (equipment and technique), the formulation and environmental conditions, whereas the emission after application depends primarily on the properties of the pesticide, soils, crops and environmental conditions. The fraction of the dosage that misses the target area may be high in some cases and more experimental data on this loss term are needed for various application types and weather conditions. Such data are necessary to test spray drift models, and for further model development and verification as well. Following application, the emission of soil fumigants and soil incorporated pesticides into the air can be measured and computed with reasonable accuracy, but further model development is needed to improve the reliability of the model predictions. For soil surface applied pesticides reliable measurement methods are available, but there is not yet a reliable model. Further model development is required which must be verified by field experiments. Few data are available on pesticide volatilization from plants and more field experiments are also needed to study the fate processes on the plants. Once this information is available, a model needs to be developed to predict the volatilization of pesticides from plants, which, again, should be verified with field measurements. For regional emission estimates, a link between data on the temporal and spatial pesticide use and a geographical information system for crops and soils with their characteristics is needed.

  2. Locating and estimating air emissions from sources of nickel

    SciTech Connect

    Not Available

    1984-03-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents such as this to compile available information on sources and emissions of these substances. This document deals specifically with nickel. Its intended audience includes Federal, State and local air pollution personnel and others interested in locating potential emitters of nickel and in making gross estimates of air emissions therefrom. This document presents information on (1) the types of sources that may emit nickel, (2) process variations and release points that may be expected within these sources, and (3) available emissions information indicating the potential for nickel release into the air from each operation.

  3. Calculation of the radio emission from EAS

    NASA Technical Reports Server (NTRS)

    Allan, H. R.; Sun, M. P.; Crannell, C. J.; Hough, J. H.; Shutie, P. F.

    1975-01-01

    Time-varying features of an electron-photon cascade are considered, particularly those associated with radio emission. The cosmic ray shower is represented as a superposition of collinear 10 GeV electron-photon cascades launched at different heights in the atmosphere. Actual simulations are performed for only 10 cascades at each of 40 heights and the results are scaled to represent the total number of cascades required. The apparent angular motions of the cascade particles as detected by antennas located at various positions up to 300 m from the shower axis are simulated. The radio pulse waveform and the corresponding frequency spectrum are obtained from these motions.

  4. National emission standards for hazardous air pollutants submittal -- 1996

    SciTech Connect

    Townsend, Y.E.; Black, S.C.

    1997-06-01

    The Nevada Test Site (NTS) is operated by the US Department of Energy, Nevada Operations Office (DOE/NV) as the site for nuclear weapons testing. Monitoring and evaluation of the various activities conducted onsite indicate that the potential sources of offsite radiation exposure in 1996 were releases from the following: evaporation of tritiated water from containment ponds that receive drainage from E tunnel and from wells used for site characterization studies; onsite radioanalytical laboratories; the Area 5 RWMS facility; and diffuse sources of tritium and resuspension of plutonium. Section 1 describes these sources on the NTS. Section 2 tabulates the air emissions data for the NTS. These data are used to calculate the effective dose equivalents to offsite residents. Appendices describe the methods used to determine the emissions from the sources listed.

  5. Air Emission Inventory for the Idaho National Engineering Laboratory, 1993 emissions report

    SciTech Connect

    Not Available

    1994-06-01

    This report presents the 1993 update of the Air Emission Inventory for the Idaho National Engineering Laboratory (INEL). The purpose of the Air Emission Inventory is to commence the preparation of the permit to operate application for the INEL, as required by the recently promulgated Title V regulations of the Clean Air Act. The report describes the emission inventory process and all of the sources at the INEL and provides emissions estimates for both mobile and stationary sources.

  6. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 17 2013-07-01 2013-07-01 false Actual 1985 Yearly SO2 Emissions Calculation C Appendix C to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. C Appendix C to Part 72—Actual 1985 Yearly...

  7. 40 CFR Appendix C to Part 72 - Actual 1985 Yearly SO2 Emissions Calculation

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Actual 1985 Yearly SO2 Emissions Calculation C Appendix C to Part 72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) PERMITS REGULATION Pt. 72, App. C Appendix C to Part 72—Actual 1985 Yearly...

  8. Calculated emission rates for barium releases in space

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1989-01-01

    The optical emissions from barium releases in space are caused by resonance and fluorescent scattering of sunlight. Emission rates for the dominant ion and neutral lines are calculated assuming the release to be optically thin and the barium to be in radiative equilibrium with the solar radiation. The solar spectrum has deep Fraunhofer absorption lines at the primary barium ion resonances. A velocity component toward or away from the sun will Doppler shift the emission lines relative to the absorption lines and the emission rates will increase many-fold over the rest value. The Doppler brightening is important in shaped charge or satellite releases where the barium is injected at high velocities. Emission rates as a function of velocity are calculated for the 4554, 4934, 5854, 6142 and 6497 A ion emission lines and the dominant neutral line at 5535 A. Results are presented for injection parallel to the ambient magnetic field, B, and for injection at an angle to B.

  9. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a... flow rate of effluent gas per test run during the performance test (dscf/hr). P = Production rate...

  10. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Except as provided in paragraph (b) of this section, continue to monitor and report CO2 mass emissions as required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and N2O emissions as follows: (1) Convert the cumulative annual CO2 mass emissions reported in the...

  11. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Except as provided in paragraph (b) of this section, continue to monitor and report CO2 mass emissions as required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and N2O emissions as follows: (1) Convert the cumulative annual CO2 mass emissions reported in the...

  12. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  13. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  14. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  15. 40 CFR 1033.705 - Calculating emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Locomotives permanently exempted under subpart G of this part or under 40 CFR part 1068. (2) Exported... for NOX or PM. (a) Calculate positive emission credits for an engine family that has an FEL below the... FEL above the otherwise applicable emission standard. Do not round until the end of year report....

  16. 40 CFR 98.403 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... part, calculate the estimated CO2 emissions that would result from the complete combustion or oxidation... combustion or oxidation of the product(s) supplied using Equation NN-1 of this section. LDCs shall estimate CO2 emissions that would result from the complete combustion or oxidation of the product received...

  17. 40 CFR 98.403 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... part, calculate the estimated CO2 emissions that would result from the complete combustion or oxidation... combustion or oxidation of the product(s) supplied using Equation NN-1 of this section. LDCs shall estimate CO2 emissions that would result from the complete combustion or oxidation of the product received...

  18. 40 CFR 98.193 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... must calculate and report the annual process CO2 emissions from all lime kilns combined using the procedure in paragraphs (a) and (b) of this section. (a) If all lime kilns meet the conditions specified in... combustion CO2 emissions from all lime kilns by operating and maintaining a CEMS to measure CO2...

  19. 40 CFR 98.193 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... must calculate and report the annual process CO2 emissions from all lime kilns combined using the procedure in paragraphs (a) and (b) of this section. (a) If all lime kilns meet the conditions specified in... required to be used to determine CO2 emissions from all lime kilns under paragraph (a) of this...

  20. 40 CFR 98.193 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... must calculate and report the annual process CO2 emissions from all lime kilns combined using the procedure in paragraphs (a) and (b) of this section. (a) If all lime kilns meet the conditions specified in... required to be used to determine CO2 emissions from all lime kilns under paragraph (a) of this...

  1. 40 CFR 98.193 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must calculate and report the annual process CO2 emissions from all lime kilns combined using the procedure in paragraphs (a) and (b) of this section. (a) If all lime kilns meet the conditions specified in... required to be used to determine CO2 emissions from all lime kilns under paragraph (a) of this...

  2. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    ERIC Educational Resources Information Center

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  3. 40 CFR 98.223 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Nitric Acid Production § 98.223 Calculating GHG emissions. (a) You must determine annual N2O process emissions from each nitric acid train according to paragraphs (a...) You must conduct an annual performance test for each nitric acid train according to paragraphs...

  4. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Adipic Acid Production § 98.53 Calculating GHG emissions. (a) You must determine annual N2O emissions from adipic acid production according to paragraphs (a)(1) or... must conduct the test on the vent stream from the nitric acid oxidation step of the process,...

  5. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  6. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  7. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  8. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  9. 40 CFR 98.313 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Titanium Dioxide Production § 98.313 Calculating GHG emissions... Equation EE-1 of this section: ER30OC09.123 Where: CO2 = Annual CO2 emissions from titanium dioxide... titanium dioxide production facility (tons). WCp,n = Production of carbon-containing waste in month n...

  10. Projection of hazardous air pollutant emissions to future years.

    PubMed

    Strum, Madeleine; Cook, Rich; Thurman, James; Ensley, Darrell; Pope, Anne; Palma, Ted; Mason, Richard; Michaels, Harvey; Shedd, Stephen

    2006-08-01

    Projecting a hazardous air pollutant (HAP) emission inventory to future years can provide valuable information for air quality management activities such as prediction of program successes and helping to assess future priorities. We have projected the 1999 National Emission Inventory for HAPs to numerous future years up to 2020 using the following tools and data: the Emissions Modeling System for Hazardous Air Pollutants (EMS-HAP), the National Mobile Inventory Model (NMIM), emission reduction information resulting from national standards and economic growth data. This paper discusses these projection tools, the underlying data, limitations and the results. The results presented include total HAP emissions (sum of pollutants) and toxicity-weighted HAP emissions for cancer and respiratory noncancer effects. Weighting emissions by toxicity does not consider fate, transport, or location and behavior of receptor populations and can only be used to estimate relative risks of direct emissions. We show these projections, along with historical emission trends. The data show that stationary source programs under Section 112 of the Clean Air Act Amendments of 1990 and mobile source programs which reduce hydrocarbon and particulate matter emissions, as well as toxic emission performance standards for reformulated gasoline, have contributed to and are expected to continue to contribute to large declines in air toxics emissions, in spite of economic and population growth. We have also analyzed the particular HAPs that dominate the source sectors to better understand the historical and future year trends and the differences across sectors. PMID:16448686

  11. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall...

  12. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all...

  13. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner...

  14. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator...

  15. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner...

  16. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous...

  17. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall...

  18. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous...

  19. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall...

  20. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage...

  1. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner...

  2. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all...

  3. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator...

  4. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous...

  5. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage...

  6. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all...

  7. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator...

  8. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage...

  9. 40 CFR 265.178 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.178 Section 265.178 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Use and Management of Containers § 265.178 Air emission standards. The owner...

  10. 40 CFR 264.200 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.200 Section 264.200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Tank Systems § 264.200 Air emission standards. The owner or operator shall manage all hazardous...

  11. 40 CFR 264.179 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.179 Section 264.179 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Use and Management of Containers § 264.179 Air emission standards. The owner or operator shall...

  12. 40 CFR 265.231 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator...

  13. 40 CFR 264.232 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 264.232 Section 264.232 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Surface Impoundments § 264.232 Air emission standards. The owner or operator shall manage all...

  14. 40 CFR 265.202 - Air emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage...

  15. 40 CFR 267.204 - What air emission standards apply?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PERMIT Tank Systems § 267.204 What air emission standards apply? You must manage all hazardous waste placed in a tank following the requirements of subparts AA, BB, and CC of 40 CFR part 264. Under a... 40 Protection of Environment 27 2014-07-01 2014-07-01 false What air emission standards apply?...

  16. World-wide radiation dosage calculations for air crew members.

    PubMed

    O'Brien, K; Smart, D F; Shea, M A; Felsberger, E; Schrewe, U; Friedberg, W; Copeland, K

    2003-01-01

    A greatly improved version of the computer program to calculate radiation dosage to air crew members is now available. Designated CARI-6, this program incorporates an updated geomagnetic cutoff rigidity model and a revision of the primary cosmic ray spectrum based on recent work by Gaisser and Stanev (1998). We believe CARI-6 provides the most accurate available method for calculating the radiation dosage to air crew members. The program is now utilized by airline companies around the world and provides unification for subsequent world-wide studies on the effects of natural radiation on aircrew members. PMID:14503487

  17. 1999 INEEL National Emission Standards for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    2000-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1999. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1999, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  18. 1998 INEEL National Emission Standard for Hazardous Air Pollutants - Radionuclides

    SciTech Connect

    J. W. Tkachyk

    1999-06-01

    Under Section 61.94 of Title 40, Code of Federal Regulations (CFR), Part 61, Subpart H, ''National Emission Standards for Emission of Radionuclides Other Than Radon From Department of Energy Facilities,'' each Department of Energy (DOE) facility must submit an annual report documenting compliance. This report addresses the Section 61.94 reporting requirements for operations at the Idaho National Engineering and Environmental Laboratory (INEEL) for calendar year (CY) 1998. The Idaho Operations Office of the DOE is the primary contract concerning compliance with the National Emission Standards for Hazardous Air Pollutants (NESHAPs) at the INEEL. For CY 1998, airborne radionuclide emissions from the INEEL operations were calculated to result in a maximum individual dose to a member of the public of 7.92E-03 mrem (7.92E-08 Sievert). This effective dose equivalent (EDE) is well below the 40 CFR 61, Subpart H, regulatory standard of 10 mrem per year (1.0E-04 Sievert per year).

  19. A model to calculate consistent atmospheric emission projections and its application to Spain

    NASA Astrophysics Data System (ADS)

    Lumbreras, Julio; Borge, Rafael; de Andrés, Juan Manuel; Rodríguez, Encarnación

    Global warming and air quality are headline environmental issues of our time and policy must preempt negative international effects with forward-looking strategies. As part of the revision of the European National Emission Ceilings Directive, atmospheric emission projections for European Union countries are being calculated. These projections are useful to drive European air quality analyses and to support wide-scale decision-making. However, when evaluating specific policies and measures at sectoral level, a more detailed approach is needed. This paper presents an original methodology to evaluate emission projections. Emission projections are calculated for each emitting activity that has emissions under three scenarios: without measures (business as usual), with measures (baseline) and with additional measures (target). The methodology developed allows the estimation of highly disaggregated multi-pollutant, consistent emissions for a whole country or region. In order to assure consistency with past emissions included in atmospheric emission inventories and coherence among the individual activities, the consistent emission projection (CEP) model incorporates harmonization and integration criteria as well as quality assurance/quality check (QA/QC) procedures. This study includes a sensitivity analysis as a first approach to uncertainty evaluation. The aim of the model presented in this contribution is to support decision-making process through the assessment of future emission scenarios taking into account the effect of different detailed technical and non-technical measures and it may also constitute the basis for air quality modelling. The system is designed to produce the information and formats related to international reporting requirements and it allows performing a comparison of national results with lower resolution models such as RAINS/GAINS. The methodology has been successfully applied and tested to evaluate Spanish emission projections up to 2020 for 26

  20. Developing a Great Lakes air toxic emission inventory for Ontario

    SciTech Connect

    Wong, P.; Wong, S.; Bobet, E.; Wong, S.; Doan, C.

    1997-12-31

    In meeting the increasing needs for an emission inventory of toxic air pollutants around the Ontario portion of the Great Lakes Region, this pilot study was the first phase of the development of a comprehensive toxic air pollutant emission inventory system which will meet the demand from the Ontario domestic and international environmental management programs. In the ongoing development of a toxic air pollutant emission inventory for Ontario, source-release information gaps and emission estimation methodology deficiencies have been identified for future improvement. The state-of-the-art Regional Air Pollutant Inventory Development System (RAPIDS), being developed by the eight Great Lakes states and under the project management of the Great Lakes Commission, was used in this study to compile the emission inventories of selected toxic air pollutants from point, area and mobile sources for 1990. Other emission inventory related models/tools used in this study included the MOBILE 5C (modified version of US MOBILE 5a by Environment Canada), PART5 and other Environment Canada or Ontario specific emission profiles. An emission inventory of toxic air pollutants from the Great Lakes Commission`s 49 targeted compounds and the Canada-Ontario Agreement Respecting the Great Lakes Basin Ecosystem (COA) was developed in this study. This study identified major point source and area source categories that contributed significant emissions of the specified toxic air pollutants. This study demonstrated that RAPIDS can be used as a framework for the development of an Ontario toxic air pollutant emission inventory. However, further refinement of the RAPIDS system, the emission factors, and source specific toxic air speciation profiles would be required.

  1. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions....

  2. 40 CFR 98.43 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... required under § 75.13 or section 2.3 of appendix G to 40 CFR part 75, and § 75.64. Calculate CO2, CH4, and... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electricity Generation § 98.43 Calculating GHG emissions....

  3. 40 CFR 98.333 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and combustion CO2 emissions by operating and maintaining a CEMS according to the Tier 4 Calculation... your facility used for zinc production, you must determine the mass of carbon in each carbon-containing... in your calculation using Equation R-1 of § 98.183. ER30OC09.126 Where: ECO2k = Annual CO2...

  4. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculations; evaporative emissions. 86.1243-96 Section 86.1243-96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Petroleum Gas-Fueled and Methanol-Fueled Heavy-Duty Vehicles § 86.1243-96 Calculations;...

  5. 40 CFR 98.393 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...). (c) Calculation for biomass co-processed with petroleum feedstocks. (1) Refiners shall calculate CO2 emissions from each type of biomass that enters a refinery and is co-processed with petroleum feedstocks... from the complete combustion or oxidation of each type of biomass “m” (metric tons). Biomassm =...

  6. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  7. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  8. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  9. 40 CFR 98.203 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Magnesium Production § 98.203 Calculating GHG emissions. (a) Calculate the mass of each GHG emitted from magnesium production or processing over the calendar year using... cylinders or other containers returned to the magnesium production or processing facility, in kg....

  10. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  11. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  12. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  13. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  14. 10 CFR 300.8 - Calculating emission reductions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Energy DEPARTMENT OF ENERGY CLIMATE CHANGE VOLUNTARY GREENHOUSE GAS REPORTING PROGRAM: GENERAL GUIDELINES... composition or output of reporting entities, a reporting entity may need to change previously specified... registration of additional emission reductions. (h) Calculation methods. An entity must calculate any change...

  15. AIR QUALITY AND EMISSIONS TRENDS REPORTS - TRENDS REPORT FOR 2002

    EPA Science Inventory

    This activity involves data analysis of air quality and emissions data from AIRS, CASNET, IMPROVE, NEI and other data bases. This activity is well founded within the air program (with the first report being prepared in the late 1970's) and uses a collection of government experts...

  16. Air emission inventories in North America: a critical assessment

    SciTech Connect

    C. Andrew Miller; George Hidy; Jeremy Hales

    2006-08-15

    Although emission inventories are the foundation of air quality management and have supported substantial improvements in North American air quality, they have a number of shortcomings that can potentially lead to ineffective air quality management strategies. Major reductions in the largest emissions sources have made accurate inventories of previously minor sources much more important to the understanding and improvement of local air quality. Changes in manufacturing processes, industry types, vehicle technologies, and metropolitan infrastructure are occurring at an increasingly rapid pace, emphasizing the importance of inventories that reflect current conditions. New technologies for measuring source emissions and ambient pollutant concentrations, both at the point of emissions and from remote platforms, are providing novel approaches to collecting data for inventory developers. Advances in information technologies are allowing data to be shared more quickly, more easily, and processed and compared in novel ways that can speed the development of emission inventories. Approaches to improving quantitative measures of inventory uncertainty allow air quality management decisions to take into account the uncertainties associated with emissions estimates, providing more accurate projections of how well alternative strategies may work. This paper discusses applications of these technologies and techniques to improve the accuracy, timeliness, and completeness of emission inventories across North America and outlines a series of eight recommendations aimed at inventory developers and air quality management decision-makers to improve emission inventories and enable them to support effective air quality management decisions for the foreseeable future. 122 refs., 3 figs., 1 tab.

  17. 40 CFR 1051.720 - How do I calculate my average emission level or emission credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the average emission level as: ER08NO02.011 Where: FELi = The FEL to which the engine family is... and calculate the average emission level as: ER13JY05.019 Where: FEL i = The FEL to which the engine...) Determine the FEL for calculating credits under paragraph (a)(3) of this section using any of the...

  18. 40 CFR 1051.720 - How do I calculate my average emission level or emission credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the average emission level as: ER08NO02.011 Where: FELi = The FEL to which the engine family is... and calculate the average emission level as: ER13JY05.019 Where: FEL i = The FEL to which the engine...) Determine the FEL for calculating credits under paragraph (a)(3) of this section using any of the...

  19. 40 CFR 1051.720 - How do I calculate my average emission level or emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the average emission level as: ER08NO02.011 Where: FELi = The FEL to which the engine family is... and calculate the average emission level as: ER13JY05.019 Where: FEL i = The FEL to which the engine...) Determine the FEL for calculating credits under paragraph (a)(3) of this section using any of the...

  20. Calculation of odour emissions from aircraft engines at Copenhagen Airport.

    PubMed

    Winther, Morten; Kousgaard, Uffe; Oxbøl, Arne

    2006-07-31

    In a new approach the odour emissions from aircraft engines at Copenhagen Airport are calculated using actual fuel flow and emission measurements (one main engine and one APU: Auxiliary Power Unit), odour panel results, engine specific data and aircraft operational data for seven busy days. The calculation principle assumes a linear relation between odour and HC emissions. Using a digitalisation of the aircraft movements in the airport area, the results are depicted on grid maps, clearly reflecting aircraft operational statistics as single flights or total activity during a whole day. The results clearly reflect the short-term temporal fluctuations of the emissions of odour (and exhaust gases). Aircraft operating at low engine thrust (taxiing, queuing and landing) have a total odour emission share of almost 98%, whereas the shares for the take off/climb out phases (2%) and APU usage (0.5%) are only marginal. In most hours of the day, the largest odour emissions occur, when the total amount of fuel burned during idle is high. However, significantly higher HC emissions for one specific engine cause considerable amounts of odour emissions during limited time periods. The experimentally derived odour emission factor of 57 OU/mg HC is within the range of 23 and 110 OU/mg HC used in other airport odour studies. The distribution of odour emission results between aircraft operational phases also correspond very well with the results for these other studies. The present study uses measurement data for a representative engine. However, the uncertainties become large when the experimental data is used to estimate the odour emissions for all aircraft engines. More experimental data is needed to increase inventory accuracy, and in terms of completeness it is recommended to make odour emission estimates also for engine start and the fuelling of aircraft at Copenhagen Airport in the future. PMID:16194561

  1. FUNCTIONALITY OF AN INTEGRATED EMISSION PREPROCESSING SYSTEM FOR AIR QUALITY MODELING: THE MODELS-3 EMISSION PREPROCESSOR

    EPA Science Inventory

    Conventional preparation of emission inventories for air quality modeling is typically an extended process using computer routines to reformat, quality check, chemically speciate, and temporally and spatially allocate data. rocessing of emission inventories for regional modeling ...

  2. Mapping Emissions that Contribute to Air Pollution Using Adjoint Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Bastien, L. A. J.; Mcdonald, B. C.; Brown, N. J.; Harley, R.

    2014-12-01

    The adjoint of the Community Multiscale Air Quality model (CMAQ) is used to map emissions that contribute to air pollution at receptors of interest. Adjoint tools provide an efficient way to calculate the sensitivity of a model response to a large number of model inputs, a task that would require thousands of simulations using a more traditional forward sensitivity approach. Initial applications of this technique, demonstrated here, are to benzene and directly-emitted diesel particulate matter, for which atmospheric reactions are neglected. Emissions of these pollutants are strongly influenced by light-duty gasoline vehicles and heavy-duty diesel trucks, respectively. We study air quality responses in three receptor areas where populations have been identified as especially susceptible to, and adversely affected by air pollution. Population-weighted air basin-wide responses for each pollutant are also evaluated for the entire San Francisco Bay area. High-resolution (1 km horizontal grid) emission inventories have been developed for on-road motor vehicle emission sources, based on observed traffic count data. Emission estimates represent diurnal, day of week, and seasonal variations of on-road vehicle activity, with separate descriptions for gasoline and diesel sources. Emissions that contribute to air pollution at each receptor have been mapped in space and time using the adjoint method. Effects on air quality of both relative (multiplicative) and absolute (additive) perturbations to underlying emission inventories are analyzed. The contributions of local versus upwind sources to air quality in each receptor area are quantified, and weekday/weekend and seasonal variations in the influence of emissions from upwind areas are investigated. The contribution of local sources to the total air pollution burden within the receptor areas increases from about 40% in the summer to about 50% in the winter due to increased atmospheric stagnation. The effectiveness of control

  3. Hiroshima Air-Over-Ground Analysis: Comparison of DORT and MCNP Calculations

    SciTech Connect

    Santoro, RT

    2001-09-04

    Monte Carlo (MCNP4B) and Discrete Ordinates (DORT) calculations were carried out to estimate {sup 60}Co and {sup 152}Eu activation as a function of ground range due to neutrons emitted from the Hiroshima A-bomb. Results of ORNL DORT and MCNP calculations using RZ cylindrical air-over-ground models are compared with LANL MCNP results obtained with an XYZ air-over-ground model. All of the calculations were carried out using ENDF/B-VI cross-section data and detailed angle and energy resolved neutron emission spectra from the weapon. Favorable agreement was achieved for the {sup 60}Co and {sup 152}Eu activation for ground ranges out to 1000m from the three calculations.

  4. Achieving Acceptable Air Quality: Some Reflections on Controlling Vehicle Emissions

    NASA Astrophysics Data System (ADS)

    Calvert, J. G.; Heywood, J. B.; Sawyer, R. F.; Seinfeld, J. H.

    1993-07-01

    Motor vehicle emissions have been and are being controlled in an effort to abate urban air pollution. This article addresses the question: Will the vehicle exhaust emission control and fuel requirements in the 1990 Clean Air Act Amendments and the California Air Resources Board regulations on vehicles and fuels have a significant impact? The effective control of in-use vehicle emissions is the key to a solution to the motor vehicle part of the urban air pollution problem for the next decade or so. It is not necessary, except perhaps in Southern California, to implement extremely low new car emission standards before the end of the 20th century. Some of the proposed gasoline volatility and composition changes in reformulated gasoline will produce significant reductions in vehicle emissions (for example, reduced vapor pressure, sulfur, and light olefin and improved high end volatility), whereas others (such as substantial oxygenate addition and aromatics reduction) will not.

  5. Clearing the air about sludge incinerator emissions

    SciTech Connect

    Martin, P.M.; Kuchenrither, R.D.; Waltz, E.W.

    1994-12-31

    In 1990, a research needs assessment for wastewater treatment agencies conducted by the Water Environment Research Foundation recommended a three-year project to identify and quantify hydrocarbon constituents in emissions from municipal sewage sludge incinerators. The project was designed to evaluate existing emission test data and obtain additional information to more completely characterize hydrocarbon emissions, their associated health risk, and operational factors effecting emissions. This paper presents the results and findings from the first year of the project.

  6. The contrast model method for the thermodynamical calculation of air-air wet heat exchanger

    NASA Astrophysics Data System (ADS)

    Yuan, Xiugan; Mei, Fang

    1989-02-01

    The 'contrast model' method thermodynamic calculation of air-air crossflow wet heat exchangers with initial air condensation is presented. Contrast-model equations are derived from the actual heat exchanger equations as well as imaginary ones; it is then possible to proceed to a proof that the enthalpy efficiency of the contrast model equations is similar to the temperature efficiency of the dry heat exchanger. Conditions are noted under which it becomes possible to unify thermodynamic calculations for wet and dry heat exchangers.

  7. Influence of future anthropogenic emissions on climate, natural emissions, and air quality

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.; Streets, David G.

    2009-04-01

    This study examines the effects of future anthropogenic emissions on climate, and the resulting feedback to natural emissions and air quality. Speciated sector- and region-specific 2030 emission factors were developed to produce gas and particle emission inventories that followed Special Report on Emission Scenarios (SRES) A1B and B1 emission trajectories. Current and future climate model simulations were run, in which anthropogenic emission changes affected climate, which fed back to natural emissions from lightning (NO, NO2, HONO, HNO3, N2O, H2O2, HO2, CO), soils (dust, bacteria, NO, N2O, H2, CH4, H2S, DMS, OCS, CS2), the ocean (bacteria, sea spray, DMS, N2O, H2, CH4), vegetation (pollen, spores, isoprene, monoterpenes, methanol, other VOCs), and photosynthesis/respiration. New methods were derived to calculate lightning flash rates as a function of size-resolved collisions and other physical principles and pollen, spore, and bacteria emissions. Although the B1 scenario was "cleaner" than the A1B scenario, global warming increased more in the B1 scenario because much A1B warming was masked by additional reflective aerosol particles. Thus neither scenario is entirely beneficial from a climate and health perspective, and the best control measure is to reduce warming gases and warming/cooling particles together. Lightning emissions declined by ˜3% in the B1 scenario and ˜12% in the A1B scenario as the number of ice crystals, thus charge-separating bounceoffs, decreased. Net primary production increased by ˜2% in both scenarios. Emissions of isoprene and monoterpenes increased by ˜1% in the A1B scenario and 4-5% in the B1 scenario. Near-surface ozone increased by ˜14% in the A1B scenario and ˜4% in the B1 scenario, reducing ambient isoprene in the latter case. Gases from soils increased in both scenarios due to higher temperatures. Near-surface PM2.5 mass increased by ˜2% in the A1B scenario and decreased by ˜2% in the B1 scenario. The resulting 1.4% higher

  8. Continuous emission monitoring of metal aerosol concentrations in atmospheric air

    NASA Astrophysics Data System (ADS)

    Gomes, Anne-Marie; Sarrette, Jean-Philippe; Madon, Lydie; Almi, Abdenbi

    1996-11-01

    Improvements of an apparatus for continuous emission monitoring (CEM) by inductively coupled plasma atomic emission spectrometry (ICP-AES) of metal aerosols in air are described. The method simultaneously offers low operating costs, large volume of tested air for valuable sampling and avoids supplementary contamination or keeping of the air pollutant concentrations. Questions related to detection and calibration are discussed. The detection limits (DL) obtained for the eight pollutants studied are lower than the recommended threshold limit values (TLV) and as satisfactory as the results obtained with other CEM methods involving air-argon plasmas.

  9. Emission Controls Using Different Temperatures of Combustion Air

    PubMed Central

    Holubčík, Michal; Papučík, Štefan

    2014-01-01

    The effort of many manufacturers of heat sources is to achieve the maximum efficiency of energy transformation chemically bound in the fuel to heat. Therefore, it is necessary to streamline the combustion process and minimize the formation of emission during combustion. The paper presents an analysis of the combustion air temperature to the heat performance and emission parameters of burning biomass. In the second part of the paper the impact of different dendromass on formation of emissions in small heat source is evaluated. The measured results show that the regulation of the temperature of the combustion air has an effect on concentration of emissions from the combustion of biomass. PMID:24971376

  10. Emissions of hazardous air pollutants from aeration tanks

    SciTech Connect

    Zhu, H.; Keener, T.C.; Bishop, P.L.; Orton, T.L.; Wang, M.; Siddiqui, K.F.

    1998-12-31

    Regulated under the 1990 Clean Air Act Amendments (CAAA), Publicly Owned Treatment Works (POT Ws) need to inventory and control their hazardous air pollutant (HAP) emissions, primarily from the aeration tanks. The spatial characteristics of hazardous air pollutant (HAP) emissions, primarily from the aeration tanks. The spatial characteristics of hazardous air pollutants in the form of volatile organic compounds (VOCs) from the aeration units of POTWs have been investigated by systematic monitoring and mathematical modeling. Using a verified off-gas sampling system and CC-MS analytical method, a large wastewater treatment plant has been tested to understand the air emissions from its aeration basins. Variations of VOC emissions along the length of the aeration units have been tested and modeled. Most VOCs have decreasing concentration profiles. A simple PFR model has been developed to obtain the spatial information of the VOC fate. This model can be easily used to validate model parameters and accurately simulate the process especially in the case where the aeration tanks are operated with varied airflow rates along the tank length. Using this simple model, air emissions can be accurately estimated and the simulation results are useful to support an emissions control analysis. This study also reveals that simple multiplication of measured off-gas concentration and total airflow over-estimates the overall emissions.

  11. Emission estimates for air pollution transport models.

    SciTech Connect

    Streets, D. G.

    1998-10-09

    The results of studies of energy consumption and emission inventories in Asia are discussed. These data primarily reflect emissions from fuel combustion (both biofuels and fossil fuels) and were collected to determine emissions of acid-deposition precursors (SO{sub 2} and NO{sub x}) and greenhouse gases (CO{sub 2} CO, CH{sub 4}, and NMHC) appropriate to RAINS-Asia regions. Current work is focusing on black carbon (soot), volatile organic compounds, and ammonia.

  12. SEMINAR PUBLICATION: ORGANIC AIR EMISSIONS FROM WASTE MANAGEMENT FACILITIES

    EPA Science Inventory

    The organic chemicals contained in wastes processed during waste management operations can volatilize into the atmosphere and cause toxic or carcinogenic effects or contribute to ozone formation. Because air emissions from waste management operations pose a threat to human health...

  13. 40 CFR 267.204 - What air emission standards apply?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PERMIT Tank Systems § 267.204 What air emission standards apply? You must manage all hazardous waste placed in a tank following the requirements of subparts AA, BB, and CC of 40 CFR part 264. Under...

  14. Source Emissions in Multipollutant Air Quality Management

    EPA Science Inventory

    Human activities and natural processes that emit pollutants into the ambient atmosphere are the underlying cause of all air quality problems. In a technical sense, we refer to these activities and processes as pollutant sources. Although air quality management is usually concerne...

  15. 40 CFR 98.143 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... calculate and report the annual process CO2 emissions from each continuous glass melting furnace using the procedure in paragraphs (a) and (b) of this section. (a) For each continuous glass melting furnace that...) For each continuous glass melting furnace that is not subject to the requirements in paragraph (a)...

  16. 40 CFR 98.293 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... process vents from the mine water stripper/evaporator for each manufacturing line and calculate CO2... water stripper/evaporator). ERCO2 = CO2 mass emission rate (metric tons/hour). Vt = Process vent flow rate from mine water stripper/evaporator during annual performance test (pounds/hour). 4.53 ×...

  17. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated...

  18. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated...

  19. 40 CFR 98.283 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (metric tons CO2/metric ton of petroleum coke consumed). 0.65 = Adjustment factor for the amount of carbon... = Carbon content factor for petroleum coke consumed in month n from the supplier or as measured by the... = Petroleum coke consumption in month n (tons). EFCO2,n = CO2 emissions factor from month n (calculated...

  20. 40 CFR 1042.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use of special test procedures for an engine family under 40 CFR 1065.10(c)(2), consistent with good... under 40 CFR part 1068. (2) Exported engines. (3) Engines not subject to the requirements of this part... that has an FEL below the standard. Calculate negative emission credits for a family that has an...

  1. 40 CFR 1042.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... use of special test procedures for an engine family under 40 CFR 1065.10(c)(2), consistent with good... under 40 CFR part 1068. (2) Exported engines. (3) Engines not subject to the requirements of this part... that has an FEL below the standard. Calculate negative emission credits for a family that has an...

  2. 40 CFR 1042.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... use of special test procedures for an engine family under 40 CFR 1065.10(c)(2), consistent with good... under 40 CFR part 1068. (2) Exported engines. (3) Engines not subject to the requirements of this part... that has an FEL below the standard. Calculate negative emission credits for a family that has an...

  3. 40 CFR 1042.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... use of special test procedures for an engine family under 40 CFR 1065.10(c)(2), consistent with good... under 40 CFR part 1068. (2) Exported engines. (3) Engines not subject to the requirements of this part... that has an FEL below the standard. Calculate negative emission credits for a family that has an...

  4. 40 CFR 1042.705 - Generating and calculating emission credits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use of special test procedures for an engine family under 40 CFR 1065.10(c)(2), consistent with good... under 40 CFR part 1068. (2) Exported engines. (3) Engines not subject to the requirements of this part... that has an FEL below the standard. Calculate negative emission credits for a family that has an...

  5. 40 CFR 98.343 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... between measurements. (c) For all landfills, calculate CH4 generation (adjusted for oxidation in cover materials) and actual CH4 emissions (taking into account any CH4 recovery, and oxidation in cover materials... generation, adjusted for oxidation, from the modeled CH4 (GCH 4 from Equation HH-1 of this section)...

  6. 40 CFR 98.83 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calculate and report the annual process CO2 emissions from each kiln using the procedure in paragraphs (a) and (b) of this section. (a) For each cement kiln that meets the conditions specified in § 98.33(b)(4... this part (General Stationary Fuel Combustion Sources). (b) For each kiln that is not subject to...

  7. 40 CFR 98.463 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the characteristics of the waste stream, such as the water content or volatile solids concentration..., calculate CH4 generation (adjusted for oxidation in cover materials) and CH4 emissions (taking into account any CH4 recovery, if applicable, and oxidation in cover materials) according to the applicable...

  8. 40 CFR 98.343 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the measurement period, volumetric basis (cubic feet water per cubic feet landfill gas) (CCH4)n... between measurements. (c) For all landfills, calculate CH4 generation (adjusted for oxidation in cover materials) and actual CH4 emissions (taking into account any CH4 recovery, and oxidation in cover...

  9. 40 CFR 98.463 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the characteristics of the waste stream, such as the water content or volatile solids concentration..., calculate CH4 generation (adjusted for oxidation in cover materials) and CH4 emissions (taking into account any CH4 recovery, if applicable, and oxidation in cover materials) according to the applicable...

  10. 40 CFR 98.463 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the characteristics of the waste stream, such as the water content or volatile solids concentration..., calculate CH4 generation (adjusted for oxidation in cover materials) and CH4 emissions (taking into account any CH4 recovery, if applicable, and oxidation in cover materials) according to the applicable...

  11. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... oxides of nitrogen K w = Wet to dry correction factor M C = Atomic weight of carbon (M C + M H) = mean... in the engine in lb/hr = W f/453.59 M H = Atomic weight of hydrogen M NO 2 = Molecular weight of... Emission calculations. (a) The following abbreviations (and units) are used in this section. α =...

  12. 40 CFR 86.345-79 - Emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... oxides of nitrogen K w = Wet to dry correction factor M C = Atomic weight of carbon (M C + M H) = mean... in the engine in lb/hr = W f/453.59 M H = Atomic weight of hydrogen M NO 2 = Molecular weight of... Emission calculations. (a) The following abbreviations (and units) are used in this section. α =...

  13. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  14. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  15. 40 CFR 98.93 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Electronics Manufacturing § 98.93 Calculating GHG emissions... electronics manufacturing production processes at your facility, for each process type, using Equations I-6...). N = The total number of recipes or process sub-types j that depends on the electronics...

  16. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... basic oxygen furnace (metric tons). 44/12 = Ratio of molecular weights, CO2 to carbon. (Iron) = Annual mass of molten iron charged to the furnace (metric tons). (CIron) = Carbon content of the molten...

  17. 40 CFR 98.173 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Iron and Steel Production § 98.173 Calculating GHG emissions... oxygen furnace (metric tons). 44/12 = Ratio of molecular weights, CO2 to carbon. (Iron) = Annual mass of molten iron charged to the furnace (metric tons). (CIron) = Carbon content of the molten iron, from...

  18. Radioactive air emissions notice of construction for HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    Johnson, R.E.

    1997-10-27

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health (WDOH) for the use of vacuums on the Hanford Site. These previous agreements/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant. Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year. This application is intended to request sitewide approval for the new activities, and provide an option for any facility on the site to use this approval, within the terms of this NOC. The HVUs used in accordance with this NOC will support reduction of radiological contamination at various locations on the Hanford Site. Radiation Protection Air

  19. STANDARDS CONTROLLING AIR EMISSIONS FOR THE SOIL DESICCATION PILOT TEST

    SciTech Connect

    BENECKE MW

    2010-09-08

    expected that Tc-99 and nitrate will remain with the water residual that is not removed, or remain as a salt bound to the soil particles. In addition, the SDPT will be conducted at lower extraction velocities to preclude pore water entrainment and thus, the extracted air effluent should be free of the contaminant residual present in the targeted moist zone. However, to conservatively bound the planned activity for potential radionuclide air emissions, it is assumed, hypothetically, that the Tc-99 does not remain in the zone of interest, but that it instead travels with the evaporated moisture to the extraction well and to the test equipment at the land surface. Thus, a release potential would exist from the planned point source (powered exhaust) for Tc-99 in the extracted moist air. In this hypothetical bounding case there would also be a potential for very minor fugitive emissions to occur due to nitrogen injection into the soil. The maximum value for Tc-99, measured in the contaminated moist zone, is used in calculating the release potential described in Section 2.3. The desiccation mechanism will be evaporation. Nitrate is neither a criteria pollutant nor a toxic air pollutant. It would remain nitrate as a salt adhered to sand and silt grains or as nitrate dissolved in the pore water. Nitrogen, an inert gas, will be injected into the ground during the test. Tracer gasses will also be injected near the beginning, middle, and the end of the test. The tracer gasses are sulfur hexafluoride, trichlorofluoromethane, and difluoromethane.

  20. WORKSHOP ON SOURCE EMISSION AND AMBIENT AIR MONITORING OF MERCURY

    EPA Science Inventory

    AN EPA/ORD Workshop on Source Emission and Ambient Air Monitoring of Mercury was held on 9/13-14/99, Bloomington, Minnesota. The purpose of the workshop was to discuss the state-of-the-science in source and ambient air mercury monitoring as well as mercury monitoring research and...

  1. EMISSIONS OF ORGANIC AIR TOXICS FROM OPEN BURNING

    EPA Science Inventory

    A detailed literature search was performed to collect and collate available data reporting emissions of toxic organic substances into the air from open burning sources. Availability of data varied according to the source and the class of air toxics of interest. Volatile organic c...

  2. 75 FR 80833 - Shipboard Air Emission Reduction Technology Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ..., 2008, issue of the Federal Register (73 FR 3316). Background and Purpose The U.S. implemented the Clean... SECURITY Coast Guard Shipboard Air Emission Reduction Technology Report AGENCY: Coast Guard, DHS. ACTION..., in conjunction with the Environmental Protection Agency, on Ship Emission Reduction Technology...

  3. IMPACT OF A PRIMARY SULFATE EMISSION SOURCE ON AIR QUALITY

    EPA Science Inventory

    A one-month study was carried out at an isolated oil-fired power plant in New York State to assess the impact of primary sulfate emissions on air quality. Emissions of total sulfate from the source varied from 22 kg/hr to 82 kg/hr per boiler with the sulfuric acid concentration a...

  4. CRITERIA AND AIR TOXIC EMISSIONS FROM IN-USE, LOW EMISSION VEHICLES (LEVS)

    EPA Science Inventory

    The U.S. Environmental Protection Agency implemented a program to identify tailpipe emissions of criteria and air toxic contaminants from in-use, light-duty Low Emission Vehicles (LEVs). EPA recruited twenty-five LEVs in 2002, and measured emissions on a chassis dynamometer usin...

  5. Animals as indicators of ecosystem responses to air emissions

    NASA Astrophysics Data System (ADS)

    Newman, James R.; Schreiber, R. Kent

    1984-07-01

    With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to air-borne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.

  6. Air quality impacts of power plant emissions in Beijing.

    PubMed

    Hao, Jiming; Wang, Litao; Shen, Minjia; Li, Lin; Hu, Jingnan

    2007-05-01

    The CALMET/CALPUFF modeling system was applied to estimate the air quality impacts of power plants in 2000 and 2008 in Beijing, and the intake fractions (IF) were calculated to see the public health risks posed. Results show that in 2000 the high emission contribution induced a relatively small contribution to average ambient concentration and a significant impact on the urban area (9.52 microg/m(3) of SO(2) and 5.29 microg/m(3) of NO(x)). The IF of SO(2), NO(x) and PM(10) are 7.4 x 10(-6), 7.4 x 10(-6) and 8.7 x 10(-5), respectively. Control measures such as fuel substitution, flue gas desulfurization, dust control improvement and flue gas denitration planned before 2008 will greatly mitigate the SO(2) and PM(10) pollution, especially alleviating the pressure on the urban area to reach the National Ambient Air Quality Standard (NAAQS). NO(x) pollution will be mitigated with 34% decrease in concentration but further controls are still needed. PMID:16899328

  7. Assessing the potential visibility benefits of Clean Air Act Title IV emission reductions

    SciTech Connect

    Trexler, E.C. Jr.; Shannon, J.D.

    1995-06-01

    Assessments are made of the benefits of the 1990 Clean Air Act Title IV (COVE), Phase 2, SO2 and NOX reduction provisions, to the visibility in typical eastern and western Class 1 areas. Probable bands of visibility impairment distribution curves are developed for Shenandoah National Park, Smoky Mountain National Park and the Grand Canyon National Park, based on the existing emissions, ``Base Case``, and for the COVE emission reductions, ``CAAA Case``. Emission projections for 2010 are developed with improved versions of the National Acid Precipitation Assessment Program emission projection models. Source-receptor transfer matrices created with the Advanced Statistical Trajectory Regional Air Pollution (ASTRAP) model are used with existing emission inventories and with the emission projections to calculate atmospheric concentrations of sulfate and nitrate at the receptors of interest for existing and projected emission scenarios. The Visibility Assessment Scoping Model (VASM) is then used to develop distributions of visibility impairment. VASM combines statistics of observed concentrations of particulate species and relative humidity with ASTRAP calculations of the relative changes in atmospheric sulfate and nitrate particulate concentrations in a Monte Carlo approach to produce expected distributions of hourly particulate concentrations and RH. Light extinction relationships developed in theoretical and field studies are then used to calculate the resulting distribution of visibility impairment. Successive Monte Carlo studies are carried out to develop sets of visibility impairment distributions with and without the COVE emission reductions to gain insight into the detectability of expected visibility improvements.

  8. Effect of timed secondary-air injection on automotive emissions

    NASA Technical Reports Server (NTRS)

    Coffin, K. P.

    1973-01-01

    A single cylinder of an automotive V-8 engine was fitted with an electronically timed system for the pulsed injection of secondary air. A straight-tube exhaust minimized any mixing other than that produced by secondary-air pulsing. The device was operated over a range of engine loads and speeds. Effects attributable to secondary-air pulsing were found, but emission levels were generally no better than using the engine's own injection system. Under nontypical fast-idle, no-load conditions, emission levels were reduced by roughly a factor of 2.

  9. National Emission Standards for Hazardous Air Pollutants Calendar Year 2005

    SciTech Connect

    Bechtel Nevada

    2006-06-01

    ) radius of the facility who would experience the highest annual dose. This dose to a hypothetical person living close to the NTS cannot exceed 10 mrem/yr. C.1 This report has been produced annually for the EPA Region IX, and for the state of Nevada since 1992 and documents that the estimated EDE to the MEI has been, and continues to be, well below the NESHAP dose limit. The report format and level of technical detail has been dictated by the EPA and DOE Headquarters over the years. It is read and evaluated for NESHAP compliance by federal and state regulators. Each section and appendix presents technical information (e.g., NTS emission source estimates, onsite air sampling data, air transport model input parameters, dose calculation methodology, etc.), which supports the annual dose assessment conclusions. In 2005, as in all previous years for which this report has been produced, the estimated dose to the public from inhalation of radiological emissions from current and past NTS activities is shown to be well below the 10 mrem/yr dose limit. This was demonstrated by air sampling data collected onsite at each of six EPA-approved “critical receptor” stations on the NTS. The sum of measured EDEs from the four stations at the NTS boundaries is 2.5 mrem/yr. This dose is 25 percent of the allowed NESHAP dose limit. Because the nearest member of the public resides approximately 20 kilometers (12 miles) from the NTS boundary, this individual receives only a small fraction of this dose. NESHAP compliance does not require DOE facilities to estimate annual inhalation dose from non-DOE activities. Therefore, this report does not estimate public radiation doses from any other sources or activities (e.g., naturally-occurring radon, global fallout).

  10. Animals as indicators of ecosystem responses to air emissions

    SciTech Connect

    Newman, J.R.; Schreiber, R.K.

    1984-07-01

    With existing and proposed air-quality regulations, ecological disasters resulting from air emissions such as those observed at Copperhill, Tennessee, and Sudbury, Ontario, are unlikely. Current air-quality standards, however, may not protect ecosystems from subacute and chronic exposure to air emissions. The encouragement of the use of coal for energy production and the development of the fossil-fuel industries, including oil shales, tar sands, and coal liquification, point to an increase and spread of fossil-fuel emissions and the potential to influence a number of natural ecosystems. This paper reviews the reported responses of ecosystems to airborne pollutants and discusses the use of animals as indicators of ecosystem responses to these pollutants. Animal species and populations can act as important indicators of biotic and abiotic responses of aquatic and terrestrial ecosystems. These responses can indicate long-term trends in ecosystem health and productivity, chemical cycling, genetics, and regulation. For short-term trends, fish and wildlife also serve as monitors of changes in community structure, signaling food-web contamination, as well as providing a measure of ecosystem vitality. Information is presented to show not only the importance of animals as indicators of ecosystem responses to air-quality degradation, but also their value as air-pollution indices, that is, as air-quality-related values (AQRV), required in current air-pollution regulation.

  11. LNG pool fire spectral data and calculation of emissive power.

    PubMed

    Raj, Phani K

    2007-04-11

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H2O and CO2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  12. EMISSION OF PESTICIDES INTO THE AIR

    EPA Science Inventory

    During and after the application of pesticide in agriculture, a substantial fraction of the dosage may enter the atmosphere and be transported over varying distances downwind of the target. The rate and extent of the emission during application depends primarily on the applicat...

  13. CONTROL OF AIR EMISSIONS FROM SUPERFUND SITES

    EPA Science Inventory

    This handbook is an easy-to-use tool for decision makers to evaluate emission control devices for use with Superfund remediation actions. t will assist in the selection of cost-effective control options. t is intended for use by engineers and scientists involved in preparing reme...

  14. U.S. Department of Energy Report, 2005 LANL Radionuclide Air Emissions

    SciTech Connect

    Keith W. Jacobson, David P. Fuehne

    2006-09-01

    Amendments to the Clean Air Act, which added radionuclides to the National Emissions Standards for Hazardous Air Pollutants (NESHAP), went into effect in 1990. Specifically, a subpart (H) of 40 CFR 61 established an annual limit on the impact to the public attributable to emissions of radionuclides from U.S. Department of Energy facilities, such as the Los Alamos National Laboratory (LANL). As part of the new NESHAP regulations, LANL must submit an annual report to the U.S. Environmental Protection Agency headquarters and the regional office in Dallas by June 30. This report includes results of monitoring at LANL and the dose calculations for the calendar year 2006.

  15. Air Emission, Liquid Effluent Inventory and Reporting

    1998-08-18

    The IES maintains an inventory of radiological air and liquid effluents released to the atmosphere. The IES utilizes the official stack numbers. Data may be entered by generators for any monitoring time period. Waste volumes released as well as their radiological constituents are tracked. The IES provides data to produce a report for NESHAPS as well as several administrative action/anomaly reports. These reports flag unusual occurences (releases) that are above normal range releases.

  16. Modeling Aircraft Emissions for Regional-scale Air Quality: Adapting a New Global Aircraft Emissions Database for the U.S

    NASA Astrophysics Data System (ADS)

    Arunachalam, S.; Baek, B. H.; Vennam, P. L.; Woody, M. C.; Omary, M.; Binkowski, F.; Fleming, G.

    2012-12-01

    Commercial aircraft emit substantial amounts of pollutants during their complete activity cycle that ranges from landing-and-takeoff (LTO) at airports to cruising in upper elevations of the atmosphere, and affect both air quality and climate. Since these emissions are not uniformly emitted over the earth, and have substantial temporal and spatial variability, it is vital to accurately evaluate and quantify the relative impacts of aviation emissions on ambient air quality. Regional-scale air quality modeling applications do not routinely include these aircraft emissions from all cycles. Federal Aviation Administration (FAA) has developed the Aviation Environmental Design Tool (AEDT), a software system that dynamically models aircraft performance in space and time to calculate fuel burn and emissions from gate-to-gate for all commercial aviation activity from all airports globally. To process in-flight aircraft emissions and to provide a realistic representation of these for treatment in grid-based air quality models, we have developed an interface processor called AEDTproc that accurately distributes full-flight chorded emissions in time and space to create gridded, hourly model-ready emissions input data. Unlike the traditional emissions modeling approach of treating aviation emissions as ground-level sources or processing emissions only from the LTO cycles in regional-scale air quality studies, AEDTproc distributes chorded inventories of aircraft emissions during LTO cycles and cruise activities into a time-variant 3-D gridded structure. We will present results of processed 2006 global emissions from AEDT over a continental U.S. modeling domain to support a national-scale air quality assessment of the incremental impacts of aircraft emissions on surface air quality. This includes about 13.6 million flights within the U.S. out of 31.2 million flights globally. We will focus on assessing spatio-temporal variability of these commercial aircraft emissions, and

  17. Modelling the impacts of ammonia emissions reductions on North American air quality

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Zheng, Q.; Cousineau, S.; Sassi, M.; Duhamel, A.; Besner, M.; Davignon, D.; Crevier, L.-P.; Bouchet, V. S.

    2009-03-01

    A unified regional air-quality modelling system (AURAMS) was used to investigate the effects of reductions in ammonia emissions on regional air quality, with a focus on particulate-matter formation. Three simulations of one-year duration were performed for a North American domain: (1) a base-case simulation using 2002 Canadian and US national emissions inventories augmented by a more detailed Canadian emissions inventory for agricultural ammonia; (2) a 30% North-American-wide reduction in agricultural ammonia emissions; and (3) a 50% reduction in Canadian beef-cattle ammonia emissions. The simulations show that a 30% continent-wide reduction in agricultural ammonia emissions lead to reductions in median hourly ±2.5 mass of <1 μg m-3 on an annual basis. The atmospheric response to these emission reductions displays marked seasonal variations, and on even shorter time scales the impacts of the emissions reductions are highly episodic: 95-percentile hourly ±2.5 mass decreases can be up to a factor of six larger than the median values. A key finding of the modelling work is the linkage between gas and aqueous chemistry and transport; reductions in ammonia emissions affect gaseous ammonia concentrations close to the emissions site, but substantial impacts on particulate matter and atmospheric deposition often occur at considerable distances downwind, with particle nitrate being the main vector of ammonia/um transport. Ammonia emissions reductions therefore have trans-boundary and possibly trans-oceanic consequences downwind. Calculations of critical-load exceedances for sensitive ecosystems in Canada suggest that ammonia emission reductions will have a minimal impact on current ecosystem acidification within Canada, but may have a substantial impact on future ecosystem acidification. The 50% Canadian beef-cattle ammonia emissions reduction scenario was used to examine model sensitivity to uncertainties in the new Canadian agricultural ammonia emissions inventory, and

  18. Large gain in air quality compared to an alternative anthropogenic emissions scenario

    NASA Astrophysics Data System (ADS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-08-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistry-transport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the year-to-year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  19. Large Gain in Air Quality Compared to an Alternative Anthropogenic Emissions Scenario

    NASA Technical Reports Server (NTRS)

    Daskalakis, Nikos; Tsigaridis, Kostas; Myriokefalitakis, Stelios; Fanourgakis, George S.; Kanakidou, Maria

    2016-01-01

    During the last 30 years, significant effort has been made to improve air quality through legislation for emissions reduction. Global three-dimensional chemistrytransport simulations of atmospheric composition over the past 3 decades have been performed to estimate what the air quality levels would have been under a scenario of stagnation of anthropogenic emissions per capita as in 1980, accounting for the population increase (BA1980) or using the standard practice of neglecting it (AE1980), and how they compare to the historical changes in air quality levels. The simulations are based on assimilated meteorology to account for the yearto- year observed climate variability and on different scenarios of anthropogenic emissions of pollutants. The ACCMIP historical emissions dataset is used as the starting point. Our sensitivity simulations provide clear indications that air quality legislation and technology developments have limited the rapid increase of air pollutants. The achieved reductions in concentrations of nitrogen oxides, carbon monoxide, black carbon, and sulfate aerosols are found to be significant when comparing to both BA1980 and AE1980 simulations that neglect any measures applied for the protection of the environment. We also show the potentially large tropospheric air quality benefit from the development of cleaner technology used by the growing global population. These 30-year hindcast sensitivity simulations demonstrate that the actual benefit in air quality due to air pollution legislation and technological advances is higher than the gain calculated by a simple comparison against a constant anthropogenic emissions simulation, as is usually done. Our results also indicate that over China and India the beneficial technological advances for the air quality may have been masked by the explosive increase in local population and the disproportional increase in energy demand partially due to the globalization of the economy.

  20. Emissions and Air Quality Impacts of Freight Transportation

    NASA Astrophysics Data System (ADS)

    Bickford, Erica

    Diesel freight vehicles (trucks + trains) are responsible for 20% of all U.S. nitrogen oxide (NOx) and 3% of fine particulate (PM2.5) emissions - pollutants that are harmful to human health. Freight tonnage is also projected to double over the next several decades, reaching 30 billion tons by 2050, increasing freight transport activity. Air quality impacts from increased activity, trade-offs between activity and vehicle technology improvements, as well as where to make infrastructure investments that encourage sustainable freight growth, are important considerations for transportation and air quality managers. To address these questions, we build a bottom-up roadway-by-roadway freight truck inventory (WIFE) and employ it to quantify emissions impacts of swapping biodiesel blends into the Midwest diesel freight truck fleet, and investigate emissions and air quality impacts of truck-to-rail freight modal shifts in the Midwest. We also evaluate the spatial and seasonal freight performance of WIFE modeled in a regional photochemical model (CMAQ) against satellite retrievals of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument (OMI). Results show that spatial and seasonal distribution of biodiesel affects regional emissions impacts. Summer high-blend deployment yields a larger annual emissions reduction than year-round low-blend deployment, however, technological improvements in vehicle emissions controls between 2009 and 2018 dwarf the impacts of biodiesel. Truck-to-rail modal shift analysis found 40% of daily freight truck VMT could be shifted to rail freight, causing a 26% net reduction in NOx emissions, and 31% less carbon dioxide (CO2) emissions. Despite significant emissions impacts, air quality modeling results showed mostly localized near roadway air quality improvements, with small regional net changes; yet, federal regulation of CO2 emissions and/or rising costs of diesel fuel could motivate shifting freight to more fuel efficient rail. Evaluation of

  1. A continuous sampling air-ICP for metals emission monitoring

    SciTech Connect

    Baldwin, D.P.; Zamzow, D.S.; Eckels, D.E.; Miller, G.P.

    1999-09-19

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)--echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  2. Continuous sampling air-ICP for metals emission monitoring

    NASA Astrophysics Data System (ADS)

    Baldwin, David P.; Zamzow, Daniel S.; Eckels, David E.; Miller, George P.

    1999-12-01

    An air-inductively coupled plasma (air-ICP) system has been developed for continuous sampling and monitoring of metals as a continuous emission monitor (CEM). The plasma is contained in a metal enclosure to allow reduced-pressure operation. The enclosure and plasma are operated at a pressure slightly less than atmospheric using a Roots blower, so that sample gas is continuously drawn into the plasma. A Teflon sampling chamber, equipped with a sampling pump, is connected to the stack that is to be monitored to isokinetically sample gas from the exhaust line and introduce the sample into the air-ICP. Optical emission from metals in the sampled gas stream is detected and monitored using an acousto-optic tunable filter (AOTF)-echelle spectrometer system. A description of the continuous sampling air-ICP system is given, along with some preliminary laboratory data for continuous monitoring of metals.

  3. Air emissions assessment from offshore oil activities in Sonda de Campeche, Mexico.

    PubMed

    Schifter, I; González-Macías, C; Miranda, A; López-Salinas, E

    2005-10-01

    Air emission data from offshore oil platforms, gas and oil processing installations and contribution of marine activities at the Sonda de Campeche, located at the Gulf of Mexico, were compiled and integrated to facilitate the study of long range transport of pollutants into the region. From this important region, roughly 76% of the total Mexican oil and gas production is obtained. It was estimated that the total air emissions of all contaminants are approximately 821,000 tons per year. Hydrocarbons are the largest pollutant emissions with 277,590 tons per year, generated during flaring activities, and SOx in second place with 185,907 tons per year. Marine and aviation activities contribute with less than 2% of total emissions. Mass of pollutants emitted per barrel of petroleum produced calculated in this work, are in the range reported by similar oil companies. PMID:16240194

  4. Radionuclide air emissions annual report for calendar year 1994

    SciTech Connect

    Not Available

    1995-04-04

    This report presents the results of the Pinellas Plant air sampling program for the year of 1994. Topics discussed include: site description; source description; air emissions data; dose assessments; description of dose model; summary of input parameters of dose model; unplanned releases; and diffuse emissions. Included in the attachments of this document are: non-radon individual dose assessment; non-radon population dose assessment; summary of stack flow rate measurements; HOTSPOT computer model run; and meteorological data for the Pinellas Plant for 1994.

  5. Physical Sciences Facility Air Emission Control Equivalency Evaluation

    SciTech Connect

    Brown, David M.; Belew, Shan T.

    2008-10-17

    This document presents the adequacy evaluation for the application of technology standards during design, fabrication, installation and testing of radioactive air exhaust systems at the Physical Sciences Facility (PSF), located on the Horn Rapids Triangle north of the Pacific Northwest National Laboratory (PNNL) complex. The analysis specifically covers the exhaust portion of the heating, ventilation and air conditioning (HVAC) systems associated with emission units EP-3410-01-S, EP-3420-01-S and EP 3430-01-S.

  6. Radionuclide Air Emissions Report for the Hanford Site Calendar Year 1999

    SciTech Connect

    ROKKAN, D.J.

    2000-06-01

    This report documents radionuclide air emissions from the US. Department of Energy (DOE) Hanford Site in 1999 and the resulting effective dose equivalent to the maximally exposed individual (MEI) member of the public. The report has been prepared in accordance with the Code of Federal Regulations (CFR). Title 40, Protection of the Environment, Part 61. National Emission Standards for Hazardous Air Pollutants, Subpart H, ''National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities'', and with the Washington Administrative Code (WAC) Chapter 246-247. Radiation Protection-Air Emissions. The federal regulations in Subpart H of 40 CFR 61 require the measurement and reporting of radionuclides emitted from US. Department of Energy (DOE) facilities and the resulting offsite dose from those emissions. A standard of 10 mrem/yr effective dose equivalent (EDE) is imposed on them. The EDE to the MEI due to routine emissions in 1999 from Hanford Site point sources was 0.029 mrem (2.9 E-04 mSv), which is less than 0.3 percent of the federal standard. WAC 246-247 requires the reporting of radionuclide emissions from all Hanford Site sources, during routine as well as nonroutine operations. The state has adopted the 40 CFR 61 standard of 10 mrem/yr EDE into their regulations. The state further requires that the EDE to the MEI be calculated not only from point source emissions but also from diffuse and fugitive sources of emissions. The EDE from diffuse and fugitive emissions at the Hanford Site in 1999 was 0.039 mrem (3.9 E-04 mSv) EDE. The total dose from point sources and from diffuse and fugitive sources of radionuclide emissions during all operating conditions in 1999 was 0.068 mrem (6.8 E-04 mSv) EDE, which is less than 0.7 percent of the state standard.

  7. Sequim Site Radionuclide Air Emissions Report for Calendar Year 2012

    SciTech Connect

    Snyder, Sandra F.; Barnett, J. Matthew; Gervais, Todd L.

    2013-04-01

    This report is prepared to document compliance with the Code of Federal Regulations (CFR), Title 40, Protection of the Environment, Part 61, National Emission Standards for Hazardous Air Pollutants (NESHAP), Subpart H, National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities and ashington Administrative Code (WAC) Chapter 246-247, Radiation Protection Air Emissions. This report meets the calendar year 2012 Sequim Site annual reporting requirement for its operations as a privately-owned facility as well as its federally-contracted status that began in October 2012. Compliance is indicated by comparing the estimated dose to the maximally exposed individual (MEI) with the 10 mrem/yr Environmental Protection Agency (EPA) standard. The MSL contains only sources classified as fugitive emissions. Despite the fact that the regulations are intended for application to point source emissions, fugitive emissions are included with regard to complying with the EPA standard. The dose to the Sequim Site MEI due to routine operations in 2012 was 9E-06 mrem (9E-08 mSv). No non-routine emissions occurred in 2012. The MSL is in compliance with the federal and state 10 mrem/yr standard.

  8. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  9. Characterization of air freshener emission: the potential health effects.

    PubMed

    Kim, Sanghwa; Hong, Seong-Ho; Bong, Choon-Keun; Cho, Myung-Haing

    2015-01-01

    Air freshener could be one of the multiple sources that release volatile organic compounds (VOCs) into the indoor environment. The use of these products may be associated with an increase in the measured level of terpene, such as xylene and other volatile air freshener components, including aldehydes, and esters. Air freshener is usually used indoors, and thus some compounds emitted from air freshener may have potentially harmful health impacts, including sensory irritation, respiratory symptoms, and dysfunction of the lungs. The constituents of air fresheners can react with ozone to produce secondary pollutants such as formaldehyde, secondary organic aerosol (SOA), oxidative product, and ultrafine particles. These pollutants then adversely affect human health, in many ways such as damage to the central nervous system, alteration of hormone levels, etc. In particular, the ultrafine particles may induce severe adverse effects on diverse organs, including the pulmonary and cardiovascular systems. Although the indoor use of air freshener is increasing, deleterious effects do not manifest for many years, making it difficult to identify air freshener-associated symptoms. In addition, risk assessment recognizes the association between air fresheners and adverse health effects, but the distinct causal relationship remains unclear. In this review, the emitted components of air freshener, including benzene, phthalate, and limonene, were described. Moreover, we focused on the health effects of these chemicals and secondary pollutants formed by the reaction with ozone. In conclusion, scientific guidelines on emission and exposure as well as risk characterization of air freshener need to be established. PMID:26354370

  10. 77 FR 16508 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ..., was published on January 9, 2012 (77 FR 1268). EPA has established the public docket for the proposed...: Group IV Polymers and Resins; Pesticide Active Ingredient Production; and Polyether Polyols Production... pollutants: National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and...

  11. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  12. Impact of historical air pollution emissions reductions on nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Loughner, C.; Tzortziou, M.; Duffy, M.; Duncan, B. N.; Hains, J.; Pickering, K. E.; Yoshida, Y.; Follette-Cook, M. B.

    2013-12-01

    There have been significant NOx emissions reductions since 2002 in the eastern and central US through a combination of the Environmental Protection Agency (EPA) NOx State Implementation Plan (SIP) call, which required 22 states and the District of Columbia to regulate NOx emissions to mitigate ozone transport, the NOx Budget Trading Program, subsequent EPA rules, court-orders, and state regulations. As reported by the EPA's National Emissions Inventory (NEI), NOx emissions nationwide have been reduced by 37% between 2002 and 2011. The benefit of these emissions reductions on decreasing nitrogen deposition onto terrestrial and aquatic ecosystems will be presented by comparing CMAQ air quality model simulations for July 2011 from a 12 km domain over the eastern US and a 4 km domain over the Mid-Atlantic with anthropogenic emissions appropriate for 2002 and 2011. Previously we showed that the historical emissions reductions from 2002 to 2011 prevented 9 to 13 ozone standard exceedance days throughout much of the Ohio River Valley and 3 to 9 ozone exceedance days throughout the Baltimore-Washington metropolitan area for the month of July 2011. Here, we focus on how the historical emissions reductions decreased nitrogen deposition, subsequently benefiting terrestrial and aquatic ecosystems. The base case simulation with emissions appropriate for 2011 everywhere was evaluated with ground-, ship-, aircraft-, and satellite-based observations, which include measurements made during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) and GeoCAPE-CBODAQ (Geostationary Coastal and Air Pollution Events-Chesapeake Bay Oceanographic Campaign with DISCOVER-AQ) field campaigns.

  13. Emission calculations for a scramjet powered hypersonic transport

    NASA Technical Reports Server (NTRS)

    Lezberg, E. A.

    1973-01-01

    Calculations of exhaust emissions from a scramjet powered hypersonic transport burning hydrogen fuel were performed over a range of Mach numbers of 5 to 12 to provide input data for wake mixing calculations and forecasts of future levels of pollutants in the stratosphere. The calculations were performed utilizing a one-dimensional chemical kinetics computer program for the combustor and exhaust nozzle of a fixed geometry dual-mode scramjet engine. Inlet conditions to the combustor and engine size was based on a vehicle of 227,000 kg (500,000 lb) gross take of weight with engines sized for Mach 8 cruise. Nitric oxide emissions were very high for stoichiometric engine operation but for Mach 6 cruise at reduced equivalence ratio are in the range predicted for an advanced supersonic transport. Combustor designs which utilize fuel staging and rapid expansion to minimize residence time at high combustion temperatures were found to be effective in preventing nitric oxide formation from reaching equilibrium concentrations.

  14. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  15. Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    JOHNSON, R.E.

    1999-09-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

  16. Radio emission from extensive air showers as a method for cosmic-ray detection

    SciTech Connect

    Kalmykov, N. N.; Konstantinov, A. A.; Engel, R.

    2010-07-15

    At the present time, radio emission from extensive air showers (EASs) is being considered as a new promising method for detecting cosmic rays of energy in the region E{sub 0} > 5 x 10{sup 16} eV. Radio emission from an EAS whose development is simulated by the Monte Carlo method is calculated here. The field of radio emission from an EAS is calculated on the basis of two representations of a shower: that as a set of individual particles and that as a continuous set of currents. The sensitivity of radio emission to EAS parameters in the frequency range 10-100 MHz is investigated. The results can be used to analyze experiments that being presently performed (CODALEMA and LOPES) and those that are being planned for the future.

  17. A simple model for calculating air pollution within street canyons

    NASA Astrophysics Data System (ADS)

    Venegas, Laura E.; Mazzeo, Nicolás A.; Dezzutti, Mariana C.

    2014-04-01

    This paper introduces the Semi-Empirical Urban Street (SEUS) model. SEUS is a simple mathematical model based on the scaling of air pollution concentration inside street canyons employing the emission rate, the width of the canyon, the dispersive velocity scale and the background concentration. Dispersive velocity scale depends on turbulent motions related to wind and traffic. The parameterisations of these turbulent motions include two dimensionless empirical parameters. Functional forms of these parameters have been obtained from full scale data measured in street canyons at four European cities. The sensitivity of SEUS model is studied analytically. Results show that relative errors in the evaluation of the two dimensionless empirical parameters have less influence on model uncertainties than uncertainties in other input variables. The model estimates NO2 concentrations using a simple photochemistry scheme. SEUS is applied to estimate NOx and NO2 hourly concentrations in an irregular and busy street canyon in the city of Buenos Aires. The statistical evaluation of results shows that there is a good agreement between estimated and observed hourly concentrations (e.g. fractional bias are -10.3% for NOx and +7.8% for NO2). The agreement between the estimated and observed values has also been analysed in terms of its dependence on wind speed and direction. The model shows a better performance for wind speeds >2 m s-1 than for lower wind speeds and for leeward situations than for others. No significant discrepancies have been found between the results of the proposed model and that of a widely used operational dispersion model (OSPM), both using the same input information.

  18. EMISSION INVENTORIES FOR THE 1996 NATIONAL AIR TOXICS ASSESSMENT

    EPA Science Inventory

    The product is a data set of estimates of 1996 emissions of hazardous air pollutants for every county in the US, with sufficient detail on source characteristics to support dispersion modeling, projection to future years, etc. To support NSA/NATA the inventory must be delivered ...

  19. EMISSION INVENTORIES FOR THE 1999 NATIONAL AIR TOXICS ASSESSMENT

    EPA Science Inventory

    The product is a data set of estimates of 1999 emissions of hazardous air pollutants for every county in the US, with sufficient detail on source characteristics to support dispersion modeling, projection to future years, etc. To support NSA/NATA the inventory must be delivered ...

  20. EMISSION INVENTORIES FOR THE 2002 NATIONAL AIR TOXICS ASSESSMENT

    EPA Science Inventory

    This product is a data set of estimates of 2002 emissions of hazardous air pollutants for every county in the US, with sufficient detail on source characteristics to support dispersion modeling, projection to future years, etc. To support NSA/NATA the inventory must be delivered ...

  1. AIR TOXICS EMISSIONS FROM A VINYL SHOWER CURTAIN

    EPA Science Inventory

    The paper reports results of both static and dynamic chamber tests conducted to evaluate emission characteristics of air toxics from a vinyl shower Curtain. (NOTE: Due to the relatively low price and ease of installation, vinyl shower curtains have been widely used in bathrooms i...

  2. AIR EMISSIONS FROM COMBUSTION OF SOLVENT REFINED COAL

    EPA Science Inventory

    The report gives details of a Solvent Refined Coal (SRC) combustion test at Georgia Power Company's Plant Mitchell, March, May, and June 1977. Flue gas samples were collected for modified EPA Level 1 analysis; analytical results are reported. Air emissions from the combustion of ...

  3. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN

    EPA Science Inventory

    The report gives results of experiments in a laboratory-scale charcoal kiln simulator to evaluate emissions of hazardous air pollutants from the production of charcoal in Missouri-type kilns. Fixed combustion gases were measured using continuous monitors. In Addition, other pollu...

  4. VOC EMISSIONS FROM AN AIR FRESHENER IN THE INDOOR ENVIRONMENT

    EPA Science Inventory

    The paper describes results of tests, conducted in the U.S. Environmental Protection Agency (EPA) large chamber facility, that investigated emissions of volatile organic compounds (VOCS) from one electrical plug-in type air freshener with pine-scented refills. VOCs were measured ...

  5. Compilation and application of Japanese inventories for energy consumption and air pollutant emissions using input-output tables.

    PubMed

    Nansai, Keisuke; Moriguchi, Yuichi; Tohno, Susumu

    2003-05-01

    Preparing emission inventories is essential to the assessment and management of our environment. In this study, Japanese air pollutant emissions, energy consumption, and CO2 emissions categorized by approximately 400 sectors (as classified by Japanese input-output tables in 1995) were estimated, and the contributions of each sector to the total amounts were analyzed. The air pollutants examined were nitrogen oxides (NOx), sulfur oxides (SOx), and suspended particulate matter (SPM). Consumptions of about 20 fossil fuels and five other fuels were estimated according to sector. Air pollutant emission factors for stationary sources were calculated from the results of a survey on air pollution prevention in Japan. Pollutant emissions from mobile sources were estimated taking into consideration vehicle types, traveling speeds, and distances. This work also counted energy supply and emissions from seven nonfossil fuel sources, including nonthermal electric power, and CO2 emissions from limestone (for example, during cement production). The total energy consumption in 1995 was concluded to be 18.3 EJ, and the annual total emissions of CO2, NOx, SOx, and SPM were, respectively, 343 Mt-C, 3.51 Mt, 1.87 Mt, and 0.32 Mt. An input-output analysis of the emission inventories was used to calculate the amounts of energy consumption and emissions induced in each sector by the economic final demand. PMID:12775078

  6. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  7. QA procedures and emissions from nonstandard sources in AQUIS, a PC-based emission inventory and air permit manager

    SciTech Connect

    Smith, A.E.; Tschanz, J.; Monarch, M.

    1996-05-01

    The Air Quality Utility Information System (AQUIS) is a database management system that operates under dBASE IV. It runs on an IBM-compatible personal computer (PC) with MS DOS 5.0 or later, 4 megabytes of memory, and 30 megabytes of disk space. AQUIS calculates emissions for both traditional and toxic pollutants and reports emissions in user-defined formats. The system was originally designed for use at 7 facilities of the Air Force Materiel Command, and now more than 50 facilities use it. Within the last two years, the system has been used in support of Title V permit applications at Department of Defense facilities. Growth in the user community, changes and additions to reference emission factor data, and changing regulatory requirements have demanded additions and enhancements to the system. These changes have ranged from adding or updating an emission factor to restructuring databases and adding new capabilities. Quality assurance (QA) procedures have been developed to ensure that emission calculations are correct even when databases are reconfigured and major changes in calculation procedures are implemented. This paper describes these QA and updating procedures. Some user facilities include light industrial operations associated with aircraft maintenance. These facilities have operations such as fiberglass and composite layup and plating operations for which standard emission factors are not available or are inadequate. In addition, generally applied procedures such as material balances may need special treatment to work in an automated environment, for example, in the use of oils and greases and when materials such as polyurethane paints react chemically during application. Some techniques used in these situations are highlighted here. To provide a framework for the main discussions, this paper begins with a description of AQUIS.

  8. 40 CFR Table S-1 to Subpart S of... - Basic Parameters for the Calculation of Emission Factors for Lime Production

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Basic Parameters for the Calculation of Emission Factors for Lime Production S Table S-1 to Subpart S of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  9. 40 CFR Table S-1 to Subpart S of... - Basic Parameters for the Calculation of Emission Factors for Lime Production

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Basic Parameters for the Calculation of Emission Factors for Lime Production S Table S-1 to Subpart S of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  10. 40 CFR Table S-1 to Subpart S of... - Basic Parameters for the Calculation of Emission Factors for Lime Production

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Basic Parameters for the Calculation of Emission Factors for Lime Production S Table S-1 to Subpart S of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  11. 40 CFR Table S-1 to Subpart S of... - Basic Parameters for the Calculation of Emission Factors for Lime Production

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Basic Parameters for the Calculation of Emission Factors for Lime Production S Table S-1 to Subpart S of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING...

  12. Energy use, emissions and air pollution reduction strategies in Asia

    SciTech Connect

    Foell, W.; Green, C.; Sarkar, A.; Legler, J.

    1995-12-31

    The pace of economic progress and development experienced in many Asian countries has not occurred without costs to the natural environment. In particular, energy policies and technologies are a primary driving force behind air pollution problems arising from air pollution emissions in Asia. Economic growth, energy use, and reliance on fossil fuels are experiencing extremely high growth throughout most of the continent. Electric power expansion plans in many countries of Asia, particularly China and India, call for substantial increases in coal combustion. In the 1990`s, two-thirds of all power related investments in developing countries will be in Asia. In contrast to the situation in Europe and North America, emissions of air pollution species in Asia are increasing rapidly, resulting in both local air pollution problems and higher acidic deposition in many regions. In general, most Asian countries do not have a strong scientific nor public constituency for addressing potentially serious air pollution problems impacting important economic and cultural activities such as forestry, agriculture, and tourism. The complex political ramifications of trans-boundary air pollution in Asia have not yet begun to be addressed.

  13. Getting the most from your AQUIS database for air emission inventories

    SciTech Connect

    Alex, G.S.; Rasmussen, S.; Monarch, M.

    1995-07-01

    During the early 1990s, air quality managers at Hill Air Force Base (Hill) in Ogden, Utah saw the number of emission sources they were required to track escalating rapidly to over. 1,200. They felt the only way to effectively manage the associated data was using an electronic system. The US Air Force Material Command had just developed the Air Quality Utility Information System (AQUIS), as a means of helping bases manage their air emission sources. As Hill experimented with the system, it became evident that the air quality staff did not have the time and resources to keep the system updated. Hill determined that if they hired a contractor to become intimately familiar with AQUIS, they could receive on-going support without constantly retraining new full-time staff and AQUIS could become a valuable tool in managing its emission sources. In this way, Hill was able to manage the effort, while placing the responsibility for a cost effective, quality product on dedicated specialists. The contractor was asked to: (1) to find an efficient, cost effective method for collecting and entering data into AQUIS; (2) to determine whether the AQUIS emission algorithms and factors were appropriate for all of Hill`s sources; (3) if AQUIS did not have the capability to calculate emissions for some sources, to change the system or prepare supplementary spreadsheets for future inventories, until AQUIS generated the appropriate emissions; (4) to figure out a flexible method for generating the needed information from AQUIS for in-house and regulatory reporting, and (5) coordinate these efforts with the system development contractor (Argonne National Laboratory (ANL)) to limit duplication of effort. This paper discusses some of the methods the contractor used to achieve the goals set by Hill. The reader will be introduced to some methods that go beyond what AQUIS is currently designed to do.

  14. Air pollution response to changing weather and power plant emissions in the eastern United States

    NASA Astrophysics Data System (ADS)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  15. Development of a CMAQ Subroutine for Wind-blown Dust Emission Calculation

    NASA Astrophysics Data System (ADS)

    Park, S.

    2011-12-01

    A subroutine for calculating the wind-blown dust emission in the framework of the Community Multiscale Air Quality Modeling System (CMAQ) has been developed. This new subroutine, called WDEMIS, is analogous in its use to the recently added sea-salt emission subroutine SSEMIS. To make use of WDEMIS, the subroutine AERO_EMIS has to be modified so that WDEMIS (just like SSEMIS) is called by AERO_EMIS. The threshold friction velocity for smooth dry surface, the drag partitioning effect by non-erodible surface roughness elements, the soil moisture effect, the positive feedback of the saltating soil particles to the friction velocity, the saltation scheme calculating the horizontal soil flux, and the sandblasting scheme calculating the vertical dust emission flux are accounted for in WDEMIS. In order to supply soil characteristics required for wind-blown dust emission calculation, i.e., soil moisture content, land use fraction, and soil texture, the Pleim-Xiu land-surface model [Xiu and Pleim, 2001] is used by the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) combined with MCIP version 3.6. CMAQ modelling using WDEMIS was performed to simulate an Asian dust storm episode that occurred in April 2006 to evaluate the wind-blown dust emission prediction by WDEMIS. Sensitivity analysis showed that the accuracy of land use data and soil property supplied to WDEMIS is critical to performance of WDEMIS. Appropriate size fractioning is considered one of the most important improvement required in the future. Xiu, A., and J.E. Pleim, Development of a land surface model. Part I: Application in a mesoscale meteorology model, Journal of Applied Meteorology, 40, 192-209, 2001.

  16. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  17. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  18. Ambient and Emission Trends of Toxic Air Contaminants in California.

    PubMed

    Propper, Ralph; Wong, Patrick; Bui, Son; Austin, Jeff; Vance, William; Alvarado, Álvaro; Croes, Bart; Luo, Dongmin

    2015-10-01

    After initiating a toxic air contaminant (TAC) identification and control program in 1984, the California Air Resources Board adopted regulations to reduce TAC emissions from cars, trucks, stationary sources, and consumer products. This study quantifies ambient concentration and emission trends for the period 1990-2012 for seven TACs that are responsible for most of the known cancer risk associated with airborne exposure in California. Of these seven, diesel particulate matter (DPM) is the most important; however DPM is not measured directly. Based on a novel surrogate method, DPM concentrations declined 68%, even though the state's population increased 31%, diesel vehicle-miles-traveled increased 81%, and the gross state product (GSP) increased 74%. Based on monitoring data, concentrations of benzene, 1,3-butadiene, perchloroethylene, and hexavalent chromium declined 88-94%. Also, the ambient and emissions trends for each of these four TACs were similar. Furthermore, these declines generally occurred earlier in California than elsewhere. However, formaldehyde and acetaldehyde, which are formed in the air photochemically from volatile organic compounds (VOCs), declined only 20-21%. The collective cancer risk from exposure to these seven reviewed TACs declined 76%. Significant reduction in cancer risk to California residents from implementation of air toxics controls (especially for DPM) is expected to continue. PMID:26340590

  19. Evaluating NOx emission inventories for regulatory air quality modeling using satellite and air quality model data

    NASA Astrophysics Data System (ADS)

    Kemball-Cook, Susan; Yarwood, Greg; Johnson, Jeremiah; Dornblaser, Bright; Estes, Mark

    2015-09-01

    The purpose of this study was to assess the accuracy of NOx emissions in the Texas Commission on Environmental Quality's (TCEQ) State Implementation Plan (SIP) modeling inventories of the southeastern U.S. We used retrieved satellite tropospheric NO2 columns from the Ozone Monitoring Instrument (OMI) together with NO2 columns from the Comprehensive Air Quality Model with Extensions (CAMx) to make top-down NOx emissions estimates using the mass balance method. Two different top-down NOx emissions estimates were developed using the KNMI DOMINO v2.0 and NASA SP2 retrievals of OMI NO2 columns. Differences in the top-down NOx emissions estimates made with these two operational products derived from the same OMI radiance data were sufficiently large that they could not be used to constrain the TCEQ NOx emissions in the southeast. The fact that the two available operational NO2 column retrievals give such different top-down NOx emissions results is important because these retrievals are increasingly being used to diagnose air quality problems and to inform efforts to solve them. These results reflect the fact that NO2 column retrievals are a blend of measurements and modeled data and should be used with caution in analyses that will inform policy development. This study illustrates both benefits and challenges of using satellite NO2 data for air quality management applications. Comparison with OMI NO2 columns pointed the way toward improvements in the CAMx simulation of the upper troposphere, but further refinement of both regional air quality models and the NO2 column retrievals is needed before the mass balance and other emission inversion methods can be used to successfully constrain NOx emission inventories used in U.S. regulatory modeling.

  20. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  1. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1993-12-01

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 keV. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data are available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two dimensional grid as a function of mean kinetic energy and thermal energy.

  2. Relativistic collision rate calculations for electron-air interactions

    SciTech Connect

    Graham, G.; Roussel-Dupre, R.

    1992-12-16

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.

  3. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    NASA Astrophysics Data System (ADS)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  4. [Air pollutant emissions of aircraft in China in recent 30 years].

    PubMed

    He, Ji-Cheng

    2012-01-01

    Although aircrafts are of great importance in transportation in China, there has been rare study on air pollutant emissions of aircrafts until now. Based on the annually statistical data collected by the Statistic Center of Civil Aviation of China, using the emission factor method derived from fuel consumption, the air pollutant emissions of aircrafts during 1980-2009 were calculated, and their emission intensities and dynamic characteristics were analyzed. The results show that the emissions of SO2, CO, NO(x) and HC from aircrafts of China Civil Aviation increased from 0.31 thousand, 1.89 thousand, 2.25 thousand and 3.14 thousand tons in 1980 to 11.83 thousand, 72.98 thousand, 87.05 thousand and 121.59 thousand tons in 2009, indicating a increase of 0.397 thousand, 2.45 thousand, 2.92 thousand and 4.08 thousand tons per year, respectively. The emission intensities of SO2, CO, NO(x) and HC decreased significantly from 0.624, 3.806, 4.53 and 6.322 g x (t x km)(-1) in 1980 to 0.275, 1.697, 2.025 and 2.828 g x (t x km)(-1) in 2009, respectively. SO2, CO, NO(x) emissions of aircrafts of China Civil Aviation accounted very little of each total emissions in China, and the air pollutant emissions from aircrafts of China Civil Aviation was less than those from other industries in China. PMID:22452180

  5. Characterization of process air emissions in automotive production plants.

    PubMed

    D'Arcy, J B; Dasch, J M; Gundrum, A B; Rivera, J L; Johnson, J H; Carlson, D H; Sutherland, J W

    2016-01-01

    During manufacturing, particles produced from industrial processes become airborne. These airborne emissions represent a challenge from an industrial hygiene and environmental standpoint. A study was undertaken to characterize the particles associated with a variety of manufacturing processes found in the auto industry. Air particulates were collected in five automotive plants covering ten manufacturing processes in the areas of casting, machining, heat treatment and assembly. Collection procedures provided information on air concentration, size distribution, and chemical composition of the airborne particulate matter for each process and insight into the physical and chemical processes that created those particles. PMID:26273851

  6. [Major Air Pollutant Emissions of Coal-Fired Power Plant in Yangtze River Delta].

    PubMed

    Ding, Qing-qing; Wei, Wei; Shen, Qun; Sun, Yu-han

    2015-07-01

    The emission factor method was used to estimate major air pollutant emissions of coal-fired power plant in the Yangtze River Delta (YRD) region of the year 2012. Results showed that emissions of SO2, NOx, dust, PM10, PM2.5 were respectively 473 238, 1 566 195, 587 713, 348 773 and 179 820 t. For SO2 and NOx, 300 MW and above class units made contributions of 85% and 82% in emission; while in the respect of dust, PM10 and PM2.5 contribution rates of 100 MW and below class units were respectively 81%, 53% and 40%. Considering the regional distribution, Jiangsu discharged the most, followed by Zhejiang, Shanghai. According to discharge data of several local power plants, we also calculated and made a comparative analysis of emission factors in different unit levels in Shanghai, which indicated a lower emission level. Assuming an equal level was reached in whole YRD, SO2 emission would cut down 55. 8% - 65. 3%; for NOx and dust emissions were 50. 5% - 64. 1% and 3. 4% - 11. 3%, respectively. If technologies and pollution control of lower class units were improved, the emission cuts would improve. However, according to the pollution realities of YRD, we suggested to make a multiple-cuts plan, which could effectively improve the reaional atmospheric environment. PMID:26489303

  7. Improved Estimates of Air Pollutant Emissions from Biorefinery

    SciTech Connect

    Tan, Eric C. D.

    2015-11-13

    We have attempted to use detailed kinetic modeling approach for improved estimation of combustion air pollutant emissions from biorefinery. We have developed a preliminary detailed reaction mechanism for biomass combustion. Lignin is the only biomass component included in the current mechanism and methane is used as the biogas surrogate. The model is capable of predicting the combustion emissions of greenhouse gases (CO2, N2O, CH4) and criteria air pollutants (NO, NO2, CO). The results are yet to be compared with the experimental data. The current model is still in its early stages of development. Given the acknowledged complexity of biomass oxidation, as well as the components in the feed to the combustor, obviously the modeling approach and the chemistry set discussed here may undergo revision, extension, and further validation in the future.

  8. 77 FR 16547 - Radionuclide National Emission Standards for Hazardous Air Pollutants; Notice of Construction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY Radionuclide National Emission Standards for Hazardous Air Pollutants; Notice of Construction... modification of sources subject to the Radionuclide National Emission Standards for Hazardous Air...

  9. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    EPA Science Inventory

    The study evaluates heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). Various literature sources and methods for characterizing HVAC emission sources are reviewed. Available methods include in situ test...

  10. Quantifying the emissions and air quality co-benefits of lower-carbon electricity production

    NASA Astrophysics Data System (ADS)

    Plachinski, Steven D.; Holloway, Tracey; Meier, Paul J.; Nemet, Gregory F.; Rrushaj, Arber; Oberman, Jacob T.; Duran, Phillip L.; Voigt, Caitlin L.

    2014-09-01

    The impact of air emissions from electricity generation depends on the spatial distribution of power plants and electricity dispatch decisions. Thus, any realistic evaluation of the air quality impacts of lower-carbon electricity must account for the spatially heterogeneous changes in associated emissions. Here, we present an analysis of the changes in fine particulate matter (PM2.5) associated with current, expected, and proposed energy efficiency and renewable energy policies in Wisconsin. We simulate the state's electricity system and its potential response to policies using the MyPower electricity-sector model, which calculates plant-by-plant reductions in NOx and SO2 emissions. We find that increased efficiency and renewable generation in a 2024 policy scenario substantially reduce statewide emissions of NOx and SO2 (55% and 59% compared to 2008, 32% and 33% compared to 2024 business-as-usual, BAU). PM2.5 is quantified across the Great Lakes region using the EPA Community Multiscale Air Quality (CMAQ) model for some emissions scenarios. We find that summer mean surface concentrations of sulfate and PM2.5 are less sensitive to policy changes than emissions. In the 2024 policy scenario, sulfate aerosol decreases less than 3% over most of the region relative to BAU and 3-13% relative to 2008 over most of Wisconsin. The lower response of these secondary aerosols arises from chemical and meteorological processing of electricity emissions, and mixing with other emission sources. An analysis of model performance and response to emission reduction at five sites in Wisconsin shows good model agreement with observations and a high level of spatial and temporal variability in sulfate and PM2.5 reductions. In this case study, the marginal improvements in emissions and air quality associated with carbon policies were less than the technology, renewable, and conservation assumptions under a business-as-usual scenario. However, this analysis for Wisconsin shows how

  11. [Situation and Characteristics of Air Pollutants Emission from Crematories in Beijing, China].

    PubMed

    Xue, Yi-feng; Yan, Jing; Tian, He-zhong; Xiong, Cheng-cheng; Li, Jing-dong; Wu, Xiao-ing; Wang, Wei

    2015-06-01

    Hazardous Air Pollutants (HAPs) such as exhaust particulate matter (PM), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen oxide (NOx), mercury (Hg) and polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-furans ( PCDD/Fs) are emitted by the process of cremation and the burning of oblation. Risks to health posed by emissions of hazardous air pollutants from crematories are emerging concerns. Through field investigation and data collection, we obtained the related activity levels and monitored the concentrations of air pollutants from typical cremators, so as to better understand the current pollutants emission levels for crematory. Using the emission factor method, we calculated the emission inventory of HAPs for crematory of Beijing in 2012 and quantified the range of uncertainty. Using atmospheric diffusion model ADMS, we evaluated the influence of crematories on the surrounding environment, and identified the characteristics of air pollution. The results showed that: for the cremators installed with flue gas purification system, the emission concentration of exhaust PM was rather low, and the CO emission concentration fluctuated greatly. However, relative high emission concentrations of PCDD/Fs were detected mainly due to insufficient combustion. Exhaust PM, CO, SO2, NOx, Hg and PCDD/Fs emitted by crematory of Beijing in 2012 were estimated at about 11. 5 tons, 41.25 tons, 2.34 tons, 7.65 tons, 13.76 kg and 0.88 g, respectively; According to the results of dispersion model simulation, the concentration contributions of exhaust PM, CO, SO2, NOx, Hg, PCDD/Fs from crematories were 0.05947 microg x m(-3), 0.2009 microg x m(-3) and 0.0126 microg x m(-3), 0.03667 microg x m(-3) and 0.06247 microg x m(-3), 0.004213 microg x m(-3), respectively. PMID:26387295

  12. Performance of High Temperature Air Combustion Boiler with Low NOx Emission

    NASA Astrophysics Data System (ADS)

    Kobayashi, Hiromichi; Ito, Yoshihito; Tsuruta, Naoki; Yoshikawa, Kunio

    Thermal performance in the experiments and three-dimensional numerical simulations for a high temperature air combustion boiler where fuel can be efficiently combusted by high temperature preheated air (800°C-1000°C) is examined. The boiler can burn not only natural gas but also low calorific gas (e. g. full gasification gas obtained from coal or wastes). In the boiler, four regenerative burners are installed. This boiler has new features that not only air but also gasification gas is heated up to 900°C, and combination of burners is switched every 15 seconds where two burners are used as inlets of fuel and air and the other two burners are used as outlets of exhaust gas. Natural gas and syngas obtained from coal are burned. The NOx emission for each fuel is less than 50ppm. The heat transfer of three-dimensional calculation is predicted higher than that of experiment.

  13. Carbon and Air Quality Emissions from Crop Residue Burning in the Contiguous United States

    NASA Astrophysics Data System (ADS)

    McCarty, J. L.; Korontzi, S.; Justice, C. O.

    2009-12-01

    Crop residue burning is a global agricultural activity that is a source of carbon and air quality emissions. Carbon and air quality emissions from crop residue burning in the contiguous U.S. (CONUS) were estimated for a five-year period, 2003 through 2007, using multispectral remote sensing-derived products. The atmospheric species that comprise the U.S. Environmental Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) were selected as air quality emissions. CO2 emissions were also calculated due to its importance to global climate change. This analysis utilized multiple remote sensing data sets and products to quantify crop residue burning in CONUS, including multi-year crop type maps, an 8-day difference Normalized Burn Ratio product, and calibrated area estimates of cropland burning from 1 km MODIS Active Fire Points. Remote sensing products were combined in a GIS to quantify the location of cropland burning, burned area size, and associated crop type. A crop-specific emission factor database was compiled from the scientific literature. Fuel loads and combustion efficiency estimates were derived from the literature as well as from in-field collaborators. These data were combined to estimate crop residue burning emissions using the bottom-up methodology developed by Seiler and Crutzen (1980). This analysis found that an average of 1,239,000 ha of croplands burn each year in the CONUS. Florida, Arizona, Idaho, Utah, Washington, Arkansas, Louisiana, Oregon, California, and Colorado accounted for approximately 61% of the total crop residue burning. Crop residue burning is a significant fire activity in the CONUS, averaging 43% of the burned area reported for wildland fires in the U.S. (including Alaska and Hawaii). Crop residue burning was also found to be a significant source of emissions that negatively impacted air quality. Crop residue burning emissions occurred most often in summer and fall, with the exception of winter and early spring

  14. Emissions of air toxics from coal-fired boilers: Arsenic

    SciTech Connect

    Mendelsohn, M.H.; Huang, H.S.; Livengood, C.D.

    1994-08-01

    Concerns over emissions of hazardous air pollutants (air toxics) have emerged as a major environmental issue; the authority of the US Environmental Protection Agency to regulate such pollutants has been greatly expanded through passage of the Clean Air Act Amendments of 1990. Arsenic and arsenic compounds are of concern mainly because of their generally recognized toxicity. Arsenic is also regarded as one of the trace elements in coal subject to significant vaporization. This report summarizes and evaluates available published information on the arsenic content of coals mined in the United States, on arsenic emitted in coal combustion, and on the efficacy of various environmental control technologies for controlling airborne emissions. Bituminous and lignite coals have the highest mean arsenic concentrations, with subbituminous and anthracite coals having the lowest. However, all coal types show very significant variations in arsenic concentrations. Arsenic emissions from coal combustion are not well-characterized, particularly with regard to determination of specific arsenic compounds. Variations in emission, rates of more than an order of magnitude have been reported for some boiler types. Data on the capture of arsenic by environmental control technologies are available primarily for systems with cold electrostatic precipitators, where removals of approximately 50 to 98% have been reported. Limited data for wet flue-gas-desulfurization systems show widely varying removals of from 6 to 97%. On the other hand, waste incineration plants report removals in a narrow range of from 95 to 99%. This report briefly reviews several areas of research that may lead to improvements in arsenic control for existing flue-gas-cleanup technologies and summarizes the status of analytical techniques for measuring arsenic emissions from combustion sources.

  15. Air pollutants emissions from waste treatment and disposal facilities.

    PubMed

    Hamoda, Mohamed F

    2006-01-01

    This study examined the atmospheric pollution created by some waste treatment and disposal facilities in the State of Kuwait. Air monitoring was conducted in a municipal wastewater treatment plant, an industrial wastewater treatment plant established in a petroleum refinery, and at a landfill site used for disposal of solid wastes. Such plants were selected as models for waste treatment and disposal facilities in the Arabian Gulf region and elsewhere. Air measurements were made over a period of 6 months and included levels of gaseous emissions as well as concentrations of volatile organic compounds (VOCs). Samples of gas and bioaerosols were collected from ambient air surrounding the treatment facilities. The results obtained from this study have indicated the presence of VOCs and other gaseous pollutants such as methane, ammonia, and hydrogen sulphide in air surrounding the waste treatment and disposal facilities. In some cases the levels exceeded the concentration limits specified by the air quality standards. Offensive odors were also detected. The study revealed that adverse environmental impact of air pollutants is a major concern in the industrial more than in the municipal waste treatment facilities but sitting of municipal waste treatment and disposal facilities nearby the urban areas poses a threat to the public health. PMID:16401572

  16. Observations of microwave continuum emission from air shower plasmas

    SciTech Connect

    Gorham, P. W.; Lehtinen, N. G.; Varner, G. S.; Hebert, C. L.; Miki, C.; Kowalski, J.; Ruckman, L.; Stokes, B. T.; Beatty, J. J.; Connolly, A.; Saltzberg, D.; Chen, P.; Hast, C.; Ng, J.; Reil, K.; Walz, D.; Conde, M. E.; Gai, W.; Konecny, R.; Power, J. G.

    2008-08-01

    We investigate a possible new technique for microwave detection of cosmic-ray extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the Argonne Wakefield Accelerator laboratory in 2003 and measured broadband microwave emission from air ionized via high-energy electrons and photons. A follow-up experiment at the Stanford Linear Accelerator Center in the summer of 2004 confirmed the major features of the previous Argonne Wakefield Accelerator observations with better precision. Prompted by these results we built a prototype detector using satellite television technology and have made measurements suggestive of the detection of cosmic-ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations.

  17. Using GIS to study the health impact of air emissions

    SciTech Connect

    Dent, A.L.; Fowler, D.A.; Kaplan, B.M.; Zarus, G.M.

    1999-07-01

    Geographical Information Systems (GIS) is a fast-developing technology with an ever-increasing number of applications. Air dispersion modeling is a well-established discipline that can produce results in a spatial context. The marriage of these two application is optimal because it leverages the predictive capacity of modeling with the data management, analysis, and display capabilities of GIS. In the public health arena, exposure estimation techniques are invaluable. The utilization of air emission data, such as US EPA Toxic Release Inventory (TRI) data, and air dispersion modeling with GIS enable public health professionals to identify and define the potentially exposed population, estimate the health risk burden of that population, and determine correlations between point-based health outcome results with estimated health risk.

  18. Developing an emission factor for hazardous air pollutants for an F-16 using JP-8 fuel. Master's thesis

    SciTech Connect

    Van Schaack, D.J.

    1994-09-01

    The 1990 Clean Air Act amendments drastically changed the legislation of hazardous air pollutants (HAPs) or air toxics. Title 3 of the act which specifically addresses HAPs now lists 189 substances which may require regulation as air toxics. Consequently, the reporting of HAP emissions from all Air Force operations will be required in the future. However, the Department of Defense (DoD) does not have methods available to report this information. This thesis develops emission factors for selected HAPs from an F-16 CD aircraft/F110 engine operating on JP-8 fuel. The methodology included: determining which HAPs should be selected, using past aircraft emission studies to estimate HAP concentrations for the F110 engine using JP-8 fuel selecting an emission factor formula to calculate emission factors for each HAP, testing the developed emission factors on an airfield operation. The estimated emission factors for each HAP for the F110 engine are low for all engine modes mainly because the F110 is a newer engine with high combustion efficiency. The resultant emission inventory shows that many HAPs would be classified as major sources under current Title 3 legislation. Thus, it is important to assess airfield operations to ensure they remain in compliance with the upcoming Title 3 legislation.

  19. 76 FR 30604 - National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and Copolymers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    ... AGENCY 40 CFR Part 63 RIN 2060-AN33 National Emission Standards for Hazardous Air Pollutants for..., the proposed rule, National Emission Standards for Hazardous Air Pollutants for Polyvinyl Chloride and... regarding the EPA's proposed national emission standards for hazardous air pollutants, including data,...

  20. Energy and air emission effects of water supply.

    PubMed

    Stokes, Jennifer R; Horvath, Arpad

    2009-04-15

    Life-cycle air emission effects of supplying water are explored using a hybrid life-cycle assessment For the typically sized U.S. utility analyzed, recycled water is preferable to desalination and comparable to importation. Seawater desalination has an energy and air emission footprint that is 1.5-2.4 times larger than that of imported water. However, some desalination modes fare better; brackish groundwater is 53-66% as environmentally intensive as seawater desalination. The annual water needs (326 m3) of a typical Californian that is met with imported water requires 5.8 GJ of energy and creates 360 kg of CO2 equivalent emissions. With seawater desalination, energy use would increase to 14 GJ and 800 kg of CO2 equivalent emissions. Meeting the water demand of California with desalination would consume 52% of the state's electricity. Supply options were reassessed using alternative electricity mixes, including the average mix of the United States and several renewable sources. Desalination using solar thermal energy has lower greenhouse gas emissions than that of imported and recycled water (using California's electricity mix), but using the U.S. mix increases the environmental footprint by 1.5 times. A comparison with a more energy-intensive international scenario shows that CO2 equivalent emissions for desalination in Dubai are 1.6 times larger than in California. The methods, decision support tool (WEST), and results of this study should persuade decision makers to make informed water policy choices by including energy consumption and material use effects in the decision-making process. PMID:19475934

  1. Modelling the impacts of ammonia emissions reductions on North American air quality

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Moran, M. D.; Zheng, Q.; Cousineau, S.; Sassi, M.; Duhamel, A.; Besner, M.; Davignon, D.; Crevier, L.-P.; Bouchet, V. S.

    2009-09-01

    A unified regional air-quality modelling system (AURAMS) was used to investigate the effects of reductions in ammonia emissions on regional air quality, with a focus on particulate-matter formation. Three simulations of one-year duration were performed for a North American domain: (1) a base-case simulation using 2002 Canadian and US national emissions inventories augmented by a more detailed Canadian emissions inventory for agricultural ammonia; (2) a 30% North-American-wide reduction in agricultural ammonia emissions; and (3) a 50% reduction in Canadian beef-cattle ammonia emissions. The simulations show that a 30% continent-wide reduction in agricultural ammonia emissions lead to reductions in median hourly PM2.5 mass of <1 μg m-3 on an annual basis. The atmospheric response to these emission reductions displays marked seasonal variations, and on even shorter time scales, the impacts of the emissions reductions are highly episodic: 95th-percentile hourly PM2.5 mass decreases can be up to a factor of six larger than the median values. A key finding of the modelling work is the linkage between gas and aqueous chemistry and transport; reductions in ammonia emissions affect gaseous ammonia concentrations close to the emissions site, but substantial impacts on particulate matter and atmospheric deposition often occur at considerable distances downwind, with particle nitrate being the main vector of ammonia/um transport. Ammonia emissions reductions therefore have trans-boundary consequences downwind. Calculations of critical-load exceedances for sensitive ecosystems in Canada suggest that ammonia emission reductions will have a minimal impact on current ecosystem acidification within Canada, but may have a substantial impact on future ecosystem acidification. The 50% Canadian beef-cattle ammonia emissions reduction scenario was used to examine model sensitivity to uncertainties in the new Canadian agricultural ammonia emissions inventory, and the simulation results

  2. 77 FR 1267 - National Emission Standards for Hazardous Air Pollutant Emissions: Group IV Polymers and Resins...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-09

    ... Hazardous Air Pollutant Emissions for Polyether Polyols Production were promulgated on June 1, 1999 (64 FR... Vessels, Benzene Equipment Leaks, and Coke By-Product Recovery Plants (Benzene NESHAP), 54 FR 38044... thousand, that risk level is considered acceptable.'' 54 FR 38045. We discussed the maximum...

  3. 75 FR 65067 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ...This action proposes how EPA will address the residual risk and technology reviews conducted for two national emission standards for hazardous air pollutants (NESHAP), and this action is a supplemental notice of proposed rulemaking for an October 2008 action that proposed how EPA would address the residual risk and technology reviews for four NESHAP. The six NESHAP include 16 source......

  4. 77 FR 58219 - National Emission Standards for Hazardous Air Pollutant Emissions: Hard and Decorative Chromium...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ...This action finalizes the residual risk and technology review conducted for the following source categories regulated under two national emission standards for hazardous air pollutants (NESHAP): hard and decorative chromium electroplating and chromium anodizing tanks, and steel pickling--HCl process facilities and hydrochloric acid regeneration plants. On October 21, 2010, EPA proposed......

  5. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  6. Calculation of auroral Balmer volume emission height profiles in the upper atmosphere

    NASA Astrophysics Data System (ADS)

    Sigernes, F.; Lorentzen, D. A.; Deehr, C. S.; Henriksen, K.

    1994-03-01

    Energetic protons entering the atmosphere will either travel as auroral protons or as neutral hydrogen atoms due to charge-exchange and excitation interactions with atmospheric constituents. Our objective is to develop a simple procedure to evaluate the Balmer excitation rates of H(sub alpha) and H(sub beta) and produce the corresponding volume emission rates vs height, using semi-empirical range relations in air, starting from proton spectra observed from rockets above the main collision region as measured by REASONER et al. (1968) and Soraas et al. (1974). The main assumptions are that the geomagnetic field is parallel and vertical, and that the pitch angle of the proton/hydrogen atom is preserved in collisions with atmospheric constituents before being thermalized. Calculations show that the largest energy losses occur in the height interval between 100 and 125 km, and the corresponding volume emission rate vs height profiles have maximum values in this height interval. The calculated volume emission rate height profile of H(sub beta) compares favorably with that measured with a rocket-borne photometer.

  7. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    SciTech Connect

    McNaughton, Michael; Allen, Shannon P.; Archuleta, Debra C.; Brock, Burgandy; Coronado, Melissa A.; Dewart, Jean M.; Eisele, William F. Jr.; Fuehne, David P.; Gadd, Milan S.; Green, Andrew A.; Lujan, Joan J.; MacDonell, Carolyn; Whicker, Jeffrey J.

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  8. Study of air emissions related to aircraft deicing

    SciTech Connect

    Zarubiak, D.C.Z.; DeToro, J.A.; Menon, R.P.

    1997-12-31

    This paper outlines the results of a study that was conducted by Trinity Consultants Incorporated (Trinity) to estimate the airborne emissions of glycol from Type 1 Deicer fluid and potential exposure of ground personnel during routine deicing of aircraft. The study involved the experimental measurement of Type 1 Deicer fluid vapor emissions by Southern Research Institute (SRI, Research Triangle Park, NC). An open path Fourier Transform Infrared (FTIR) spectroscopic technique developed by SRI was used during a simulated airplane deicing event. The emissions measurement data are analyzed to obtain appropriate emission rates for an atmospheric dispersion modeling analysis. The modeled gaseous Type 1 Deicer fluid concentrations are determined from calculated emission rates and selected meteorological conditions. A propylene glycol (PG)-based Type 1 Deicer fluid was used. In order to examine the effects of the assumptions that are made for the development of the emission quantification and dispersion modeling methodologies, various scenarios are evaluated. A parametric analysis evaluates the effect of variations in the following parameters on the results of the study: glycol concentrations in deicing fluids, error limits of emission measurements, emission source heights, evaporation rate for various wind speeds, wind directions over typical physical layouts, and background (ambient) Type 1 Deicer fluid concentrations. The emissions for an EG based Type 1 Deicing fluid are expected to be between 80 and 85% of the reported data. In general, the model shows the region of maximum concentrations is located between 20 and 50 meters downwind from the trailing edge of the wing. This range is consistent with experimental findings. Depending on the specific modeled scenarios, maximum glycol concentrations are found to generally range between 50 and 500 milligrams per cubic meter.

  9. 40 CFR Table 1 to Subpart Wwww of... - Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Equations To Calculate Organic HAP Emissions Factors for Specific Open Molding and Centrifugal Casting Process Streams 1 Table 1 to Subpart WWWW of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...

  10. 40 CFR 63.5799 - How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I calculate my facility's organic HAP emissions on a tpy basis for purposes of determining which paragraphs of § 63.5805 apply? 63.5799 Section 63.5799 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS...

  11. Economically consistent long-term scenarios for air pollutant emissions

    SciTech Connect

    Smith, Steven J.; West, Jason; Kyle, G. Page

    2011-09-08

    Pollutant emissions such as aerosols and tropospheric ozone precursors substantially influence climate. While future century-scale scenarios for these emissions have become more realistic through the inclusion of emission controls, they still potentially lack consistency between surface pollutant concentrations and regional levels of affluence. We demonstrate a methodology combining use of an integrated assessment model and a three-dimensional atmospheric chemical transport model, whereby a reference scenario is constructed by requiring consistent surface pollutant levels as a function of regional income over the 21st century. By adjusting air pollutant emission control parameters, we improve agreement between modeled PM2.5 and economic income among world regions through time; agreement for ozone is also improved but is more difficult to achieve because of the strong influence of upwind world regions. The scenario examined here was used as the basis for one of the Representative Concentration Pathway (RCP) scenarios. This analysis methodology could also be used to examine the consistency of other pollutant emission scenarios.

  12. Inventory of pesticide emissions into the air in Europe

    NASA Astrophysics Data System (ADS)

    Sarigiannis, D. A.; Kontoroupis, P.; Solomou, E. S.; Nikolaki, S.; Karabelas, A. J.

    2013-08-01

    Creation of a reliable and comprehensive emission inventory of the pesticides used in Europe is a key step towards quantitatively assessing the link between actual pesticide exposure and adverse health effects. An inventory of pesticide emissions was generated at a 1 × 1 km grid, for the year 2000. The emission model comprises three components: estimates of active substance (AS) wind drift taking into account crop type, volatilization during pesticide application and volatilization from the crop canopy. Results show that atmospheric emission of pesticides varies significantly across Europe. Different pesticide families are emitted from different parts of Europe as a function of the main crop(s) cultivated, agro-climatic conditions and production intensity. The pesticide emission inventory methodology developed herein is a valuable tool for assessing air quality in rural and peri-urban Europe, furnishing the necessary input for atmospheric modelling at different scales. Its estimates have been tested using global sensitivity and Monte Carlo analysis for uncertainty assessment and they have been validated against national and local surveys in four European countries; the results demonstrate the robustness and reliability of the inventory. The latter may therefore be readily used for exposure and health risk assessment studies targeting farmers, applicators, but also bystanders and the general population in Europe.

  13. Air emissions assessment and air quality permitting for a municipal waste landfill treating municipal sewage sludge

    SciTech Connect

    Koehler, J.

    1998-12-31

    This paper presents a case study into the air quality permitting of a municipal solid waste (MSW) landfill in the San Francisco Bay Area undergoing a proposed expansion in operations to increase the life of the landfill. The operations of this facility include MSW landfilling, the treatment and disposal of municipal sewage sludge, the aeration of petroleum-contaminated soils, the construction of a new on-site plant to manufacture soil amendment products from waste wood and other organic material diverted from the landfill, and the installation of a vaporator to create steam from leachate for injection into the landfill gas flare. The emissions assessment for each project component relied upon interpretation of source tests from similar operations, incorporation of on-site measurements into emissions models and mass balances, and use of AP-42 procedures for emissions sources such as wind-blown dust, material handling and transfer operations, and fugitive landfill gas. Air permitting issues included best available control technology (BACT), emission offset thresholds, new source performance standards (NSPS), potential air toxics health risk impacts, and compliance with federal Title V operating permit requirements. With the increasing difficulties of siting new landfills, increasing pressures to reduce the rate of waste placement into existing landfills, and expanding regulatory requirements on landfill operations, experiences similar to those described in this paper are likely to increase in the future as permitting scenarios become more complex.

  14. The 1977 emissions inventory for southeastern Virginia. [environment model of air quality based on exhaust emission from urban areas

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.; Quinn, L. C.

    1979-01-01

    Regional tropospheric air pollution modeling and data compilation to simulate the time variation of species concentrations in and around an urban area is discussed. The methods used to compile an emissions inventory are outlined. Emissions factors for vehicular travel in the urban area are presented along with an analysis of the emission gases. Emission sources other than vehicular including industrial wastes, residential solid waste disposal, aircraft emissions, and emissions from the railroads are investigated.

  15. Online calculation of global marine halocarbon emissions in the chemistry climate model EMAC

    NASA Astrophysics Data System (ADS)

    Lennartz, Sinikka T.; Krysztofiak-Tong, Gisèle; Sinnhuber, Björn-Martin; Marandino, Christa A.; Tegtmeier, Susann; Krüger, Kirstin; Ziska, Franziska; Quack, Birgit

    2015-04-01

    Marine produced trace gases such as dibromomethane (CH2Br2), bromoform (CHBr3) and methyl iodide (CH3I) significantly impact tropospheric and stratospheric chemistry. Marine emissions are the dominant source of halocarbons to the atmosphere, and therefore, it is crucial to represent them accurately in order to model their impact on atmospheric chemistry. Chemistry climate models are a frequently used tool for quantifying the influence of halocarbons on ozone depletion. In these model simulations, marine emissions of halocarbons have mainly been prescribed from established emission climatologies, thus neglecting the interaction with the actual state of the atmosphere in the model. Here, we calculate halocarbon marine emissions for the first time online by coupling the submodel AIRSEA to the chemical climate model EMAC. Our method combines prescribed water concentrations and varying atmospheric concentrations derived from the model instead of using fixed emission climatologies. This method has a number of conceptual and practical advantages, as the modelled emissions can respond consistently to changes in temperature, wind speed, possible sea ice cover and atmospheric concentration in the model. Differences between the climatology-based and the new approach (2-18%) result from consideration of the actual, time-varying state of the atmosphere and the consideration of air-side transfer velocities. Extensive comparison to observations from aircraft, ships and ground stations reveal that interactively computing the air-sea flux from prescribed water concentrations leads to equally or more accurate atmospheric concentrations in the model compared to using constant emission climatologies. The effect of considering the actual state of the atmosphere is largest for gases with concentrations close to equilibrium in the surface ocean, such as CH2Br2. Halocarbons with comparably long atmospheric lifetimes, e.g. CH2Br2, are reflected more accurately in EMAC when compared to time

  16. Cost Effective Measures to Reduce CO2 Emissions in the Air Freight Sector

    NASA Technical Reports Server (NTRS)

    Blinge, Magnus

    2003-01-01

    This paper presents cost effective measures to reduce CO2 emissions in the air freight sector. One door-to-door transport chain is studied in detail from a Scandinavian city to a city in southern Europe. The transport chain was selected by a group of representatives from the air freight sector in order to encompass general characteristics within the sector. Three different ways of shipping air cargo are studied, i.e., by air freighter, as belly freight (in passenger aircrafts) and trucking. CO2 emissions are calculated for each part of the transport chain and its relative importance towards the total amount CO2 emitted during the whole transport chain is shown. It is confirmed that the most CO2 emitting part of the transport chain is the actual flight and that it is in the take-off and climbing phases that most fuel are burned. It is also known that the technical development of aircraft implies a reduction in fuel consumption for each new generation of aircraft. Thus, the aircraft manufacturers have an important role in this development. Having confirmed these observations, this paper focuses on other factors that significantly affects the fuel consumption. Analyzed factors are, e.g., optimization of speed and altitude, traffic management, congestion on and around the airfields, tankering, "latest acceptance time" for goods and improving the load factor. The different factors relative contribution to the total emission levels for the transport chain has been estimated.

  17. Good manufacturing practice for modelling air pollution: Quality criteria for computer models to calculate air pollution

    NASA Astrophysics Data System (ADS)

    Dekker, C. M.; Sliggers, C. J.

    To spur on quality assurance for models that calculate air pollution, quality criteria for such models have been formulated. By satisfying these criteria the developers of these models and producers of the software packages in this field can assure and account for the quality of their products. In this way critics and users of such (computer) models can gain a clear understanding of the quality of the model. Quality criteria have been formulated for the development of mathematical models, for their programming—including user-friendliness, and for the after-sales service, which is part of the distribution of such software packages. The criteria have been introduced into national and international frameworks to obtain standardization.

  18. Calculations on decay rates of various proton emissions

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-03-01

    Proton radioactivity of neutron-deficient nuclei around the dripline has been systematically studied within the deformed density-dependent model. The crucial proton-nucleus potential is constructed via the single-folding integral of the density distribution of daughter nuclei and the effective M3Y nucleon-nucleon interaction or the proton-proton Coulomb interaction. After the decay width is obtained by the modified two-potential approach, the final decay half-lives can be achieved by involving the spectroscopic factors from the relativistic mean-field (RMF) theory combined with the BCS method. Moreover, a simple formula along with only one adjusted parameter is tentatively proposed to evaluate the half-lives of proton emitters, where the introduction of nuclear deformation is somewhat discussed as well. It is found that the calculated results are in satisfactory agreement with the experimental values and consistent with other theoretical studies, indicating that the present approach can be applied to the case of proton emission. Predictions on half-lives are made for possible proton emitters, which may be useful for future experiments.

  19. Development of On-line Wildfire Emissions for the Operational Canadian Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, R.; Menard, S.; Chen, J.; Anselmo, D.; Paul-Andre, B.; Gravel, S.; Moran, M. D.; Davignon, D.

    2013-12-01

    An emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the USA, including Alaska, fire location information is needed for both of these large countries. Near-real-time satellite data are obtained and processed separately for the two countries for organizational reasons. Fire location and fuel consumption data for Canada are provided by the Canadian Forest Service's Canadian Wild Fire Information System (CWFIS) while fire location and emissions data for the U.S. are provided by the SMARTFIRE (Satellite Mapping Automated Reanalysis Tool for Fire Incident Reconciliation) system via the on-line BlueSky Gateway. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This 'on the fly' approach to the insertion of emissions provides greater flexibility since on-line meteorology is used and reduces computational overhead in emission pre-processing. An experimental wildfire version of GEM-MACH was run in real-time mode for the summers of 2012 and 2013. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions, computed objective scores, and subjective evaluations by AQ forecasters will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions within the operational air quality forecast system.

  20. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  1. A search for microwave emission from cosmic ray air showers

    NASA Astrophysics Data System (ADS)

    Williams, Christopher Lee

    At the highest energies, the sources of cosmic rays should be among the most powerful extragalactic accelerators. Large observatories have revealed a flux suppression above a few 1019 eV, similar to the expected effect of the interaction of ultrahigh energy cosmic rays (UHECR) with the cosmic microwave background. The Pierre Auger Observatory has measured the largest sample of cosmic ray induced extensive air showers (EAS) at the highest energies leading to a precise measurement of the energy spectrum, hints of spatial anisotropy, and a surprising change in the chemical composition at the highest energies. To answer the question of the origin of UHECRs a larger sample of high quality data will be required to reach a statistically significant result. One of the possible techniques suggested to achieve this much larger data sample, in a cost effective way, is ultra-wide field of view microwave telescopes which would operate in an analogous way to the already successful fluorescence detection (FD) technique. Detecting EAS in microwaves could be done with 100% duty cycle and essentially no atmospheric effects. This presents many advantages over the FD which has a 10% duty cycle and requires extensive atmospheric monitoring for calibration. We have pursued both prototype detector designs and improved laboratory measurements, the results of which are reported herein, and published in (Alvarez-Muniz et al., 2013; Alvarez-Muniz et al., 2012a; Williams et al., 2013; Alvarez-Muniz et al., 2013). The Microwave Detection of Air Showers (MIDAS) experiment is the first ultra-wide field of view imaging telescope deployed to detect isotropic microwave emission from EAS. With 61 days of livetime data operating on the University of Chicago campus we were able to set new limits on isotropic microwave emission from extensive air showers. The new limits rule out current laboratory air plasma measurements (Gorham et al., 2008) by more than five sigma. The MIDAS experiment continues to

  2. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... otherwise applicable emission standard. Calculate positive emission credits for a family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the...

  3. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... otherwise applicable emission standard. Calculate positive emission credits for a family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the...

  4. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... otherwise applicable emission standard. Calculate positive emission credits for a family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the...

  5. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... otherwise applicable emission standard. Calculate positive emission credits for a family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the...

  6. 40 CFR 1054.705 - How do I generate and calculate exhaust emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... special test procedures for a family under 40 CFR 1065.10(c)(2), consistent with good engineering judgment... otherwise applicable emission standard. Calculate positive emission credits for a family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the...

  7. CO2 Emissions from Air Travel by AGU and ESA Conference Attendees

    NASA Astrophysics Data System (ADS)

    Scott, B.; Plug, L. J.

    2003-12-01

    Air travel by scientists is one contributor to rising concentrations of CO2 and other greenhouse gases in the atmosphere. To assess the magnitude of this contribution in per-capita and overall terms, we calculated emissions derived from air travel for two major scientific conferences held in 2002: the western meeting of the American Geophysical Union (AGU) in San Francisco and the Ecological Society of America meeting in Tucson (ESA). Round trip travel distance for sampled attendees is 7971 +/- 6968 km (1 sigma range given, n=337) for AGU and 5452 +/- 5664 km for ESA (n=263), conservatively assuming great circle routes were followed. Using accepted CO2 production rates for commercial aircraft, mean AGU emissions are 1.3 tonnes per attendee and 12351 tonnes total and for ESA 0.9 tonnes per attendee and 3140 tonnes total. Although small compared to total anthropogenic emissions (2.275 x 1010 tonnes y-1 in 1999), per attendee emissions are significant compared to annual per-capita emissions; CO2 emission per AGU and ESA attendee exceeds the per capita annual emission of 42% and 19% of Earth's population, respectively. Per attendee AGU emissions are ≈6% of U.S. and ≈14% of British and Japanese per capita annual emission. Relocation of AGU and ESA to cities which minimize travel distances, Denver and Omaha respectively, would result in modest emission reductions of 8% and 14% (assuming 2002 attendee composition). To form a preliminary estimate of annual CO2 emissions for scientists in academia, we surveyed Earth Science faculty at our home institution. Mean annual air travel distance for professional activities was 38064 km y-1 (7 respondents). The consequent release of 6.1 tonnes y-1 of CO2 is 30% of annual per capita emissions in North America, and exceeds global per capita average of 4 tonnes y-1 by 150%. Society and the environment often benefit from scientific enquiry which is facilitated by travel. These benefits, however, might be balanced against the

  8. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above... equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as...

  9. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above... equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as...

  10. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above... equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as...

  11. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above... equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as...

  12. 40 CFR 1045.706 - How do I generate and calculate evaporative emission credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above... equation: Emission credits (kg) = (STD−FEL) × (Total Area) × (UL) × (AF) × (365) × (10−3) Where: STD = the emission standard, in g/m2/day. FEL = the family emission limit for the family, in g/m2/day, as...

  13. Transport and Environment Database System (TRENDS): Maritime air pollutant emission modelling

    NASA Astrophysics Data System (ADS)

    Georgakaki, Aliki; Coffey, Robert A.; Lock, Graham; Sorenson, Spencer C.

    This paper reports the development of the maritime module within the framework of the Transport and Environment Database System (TRENDS) project. A detailed database has been constructed for the calculation of energy consumption and air pollutant emissions. Based on an in-house database of commercial vessels kept at the Technical University of Denmark, relationships between the fuel consumption and size of different vessels have been developed, taking into account the fleet's age and service speed. The technical assumptions and factors incorporated in the database are presented, including changes from findings reported in Methodologies for Estimating air pollutant Emissions from Transport (MEET). The database operates on statistical data provided by Eurostat, which describe vessel and freight movements from and towards EU 15 major ports. Data are at port to Maritime Coastal Area (MCA) level, so a bottom-up approach is used. A port to MCA distance database has also been constructed for the purpose of the study. This was the first attempt to use Eurostat maritime statistics for emission modelling; and the problems encountered, since the statistical data collection was not undertaken with a view to this purpose, are mentioned. Examples of the results obtained by the database are presented. These include detailed air pollutant emission calculations for bulk carriers entering the port of Helsinki, as an example of the database operation, and aggregate results for different types of movements for France. Overall estimates of SO x and NO x emission caused by shipping traffic between the EU 15 countries are in the area of 1 and 1.5 million tonnes, respectively.

  14. Influence of benzene emission from motorcycle on Bangkok air quality

    NASA Astrophysics Data System (ADS)

    Leong, Shing Tet; Muttamara, S.; Laortanakul, Preecha

    This study investigated the influence of benzene concentration from motorcycle exhaust emissions on ambient air quality in Bangkok Metropolitan Region (BMR). Measurement of benzene concentration in exhaust emissions is performed on a standard test driving cycle through which each motorcycle to be tested is driven. The test result revealed that average benzene concentrations in exhaust emission for the test motorcycles ranged from 3.02 to 109.68 mg/m 3. The finding also indicated that two-stroke motorcycles emitted five times more benzene than that of four-stroke motorcycles. Four air monitoring sites were strategically established to determine the relationship between average benzene concentrations with different traffic configurations in each traffic zone of BMR during peak/non-peak hours, day/night times and weekday/weekend. The shape of the curve for benzene level usually shows two peaks corresponding to the morning and evening traffic rush or commuter rush hours. The finding shows that the mean concentrations for benzene in all monitoring stations in the ambient air for peak hours (07:00-09:00 and 16:00-18:00 h) ranged from 15.1 to 42.4 μg/m 3. For non-peak hour (11:30-15:00 h), benzene levels were found in the range 16.3-30.9 μg/m 3. It is observed that higher levels of benzene are found among roadside stations with slow moving traffic while lower levels are found among roadside stations with fast traffic movement. Additional factors such as temperature, wind speed, rainfall, etc. are also considered in this study to determine the relationship between traffic conditions and ambient benzene levels.

  15. Overview of Megacity Air Pollutant Emissions and Impacts

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  16. Adsorbent comparisons for anesthetic gas capture in hospital air emissions.

    PubMed

    Mehrata, Mina; Moralejo, Carol; Anderson, William A

    2016-08-23

    For the development of emission control strategies, activated carbon, zeolite, molecular sieves, and a silica gel were tested for adsorption of the newer anesthetic gases isoflurane, sevoflurane, and desflurane from air. The activated carbon Norit GCA 48 was selected for the best performance, and adsorption isotherms at room temperature were developed for the three anesthetics. Equilibrium capacities for this carbon were in the range of 500 to 1,000 mg g(-1) for these anesthetics at partial pressures ranging from 5 to 45 Torr, with the most volatile compound (desflurane) showing the least favorable adsorption. Activated carbons are therefore suggested for use as effective adsorbents in emission control of these anesthetic gases from hospitals. PMID:27222158

  17. Considerations on the radio emission from extended air showers

    NASA Astrophysics Data System (ADS)

    Conti, E.; Sartori, G.

    2016-05-01

    The process of radio emission from extended air showers produced by high energy cosmic rays has reached a good level of comprehension and prediction. It has a coherent nature, so the emitted power scales quadratically with the energy of the primary particle. Recently, a laboratory measurement has revealed that an incoherent radiation mechanism exists, namely, the bremsstrahlung emission. In this paper we expound why bremsstrahlung radiation, that should be present in showers produced by ultra high energy cosmic rays, has escaped detection so far, and why, on the other side, it could be exploited, in the 1–10 GHz frequency range, to detect astronomical γ-rays. We propose an experimental scheme to verify such hypothesis, which, if correct, would deeply impact on the observational γ-ray astronomy.

  18. Volcanic gas emissions and their effect on ambient air character

    SciTech Connect

    Sutton, A.J.; Elias, T.

    1994-01-01

    This bibliography was assembled to service an agreement between Department of Energy and the USGS to provide a body of references and useful annotations for understanding background gas emissions from Kilauea volcano. The current East Rift Zone (ERZ) eruption of Kilauea releases as much as 500,000 metric tonnes of SO{sub 2} annually, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl, and HF. Primary degassing locations on Kilauea are located in the summit caldera and along the middle ERZ. The effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Because of this complexity, we organized the bibliography into three main sections: (1) characterizing gases as they leave the edifice; (2) characterizing gases and chemical reaction products away from degassing sources; and (3) Hawaii Island meteorology.

  19. Emissions of air pollutants from indoor charcoal barbecue.

    PubMed

    Huang, Hsiao-Lin; Lee, Whei-May Grace; Wu, Feng-Shu

    2016-01-25

    Ten types of commercial charcoal commonly used in Taiwan were investigated to study the potential health effects of air pollutants generated during charcoal combustion in barbecue restaurants. The charcoal samples were combusted in a tubular high-temperature furnace to simulate the high-temperature charcoal combustion in barbecue restaurants. The results indicated that traditional charcoal has higher heating value than green synthetic charcoal. The amount of PM10 and PM2.5 emitted during the smoldering stage increased when the burning temperature was raised. The EF for CO and CO2 fell within the range of 68-300 and 644-1225 g/kg, respectively. Among the charcoals, the lowest EF for PM2.5 and PM10 were found in Binchōtan (B1). Sawdust briquette charcoal (I1S) emitted the smallest amount of carbonyl compounds. Charcoal briquettes (C2S) emitted the largest amount of air pollutants during burning, with the EF for HC, PM2.5, PM10, formaldehyde, and acetaldehyde being the highest among the charcoals studied. The emission of PM2.5, PM10, formaldehyde, and acetaldehyde were 5-10 times those of the second highest charcoal. The results suggest that the adverse effects of the large amounts of air pollutants generated during indoor charcoal combustion on health and indoor air quality must not be ignored. PMID:26476306

  20. Wind Energy and Air Emission Reduction Benefits: A Primer

    SciTech Connect

    Jacobson, D.; High, C.

    2008-02-01

    This document provides a summary of the impact of wind energy development on various air pollutants for a general audience. The core document addresses the key facts relating to the analysis of emission reductions from wind energy development. It is intended for use by a wide variety of parties with an interest in this issue, ranging from state environmental officials to renewable energy stakeholders. The appendices provide basic background information for the general reader, as well as detailed information for those seeking a more in-depth discussion of various topics.

  1. Effect of VOC emissions from vegetation on urban air quality during hot periods

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Kuik, Friderike; Bonn, Boris; Lauer, Axel; Grote, Ruediger; Butler, Tim

    2016-04-01

    Programs to plant millions of trees in cities around the world aim at the reduction of summer temperatures, increase of carbon storage, storm water control, and recreational space, as well as at poverty alleviation. These urban greening programs, however, do not take into account how closely human and natural systems are coupled in urban areas. Compared with the surroundings of cities, elevated temperatures together with high anthropogenic emissions of air and water pollutants are quite typical in urban systems. Urban and sub-urban vegetation respond to changes in meteorology and air quality and can react to pollutants. Neglecting this coupling may lead to unforeseen negative effects on air quality resulting from urban greening programs. The potential of emissions of volatile organic compounds (VOC) from vegetation combined with anthropogenic emissions of air pollutants to produce ozone has long been recognized. This ozone formation potential increases under rising temperatures. Here we investigate how emissions of VOC from urban vegetation affect corresponding ground-level ozone and PM10 concentrations in summer and especially during heat wave periods. We use the Weather Research and Forecasting Model with coupled atmospheric chemistry (WRF-CHEM) to quantify these feedbacks in the Berlin-Brandenburg region, Germany during the two summers of 2006 (heat wave) and 2014 (reference period). VOC emissions from vegetation are calculated by MEGAN 2.0 coupled online with WRF-CHEM. Our preliminary results indicate that the contribution of VOCs from vegetation to ozone formation may increase by more than twofold during heat wave periods. We highlight the importance of the vegetation for urban areas in the context of a changing climate and discuss potential tradeoffs of urban greening programs.

  2. The new air emission regulations for gas turbine

    SciTech Connect

    Solt, C.

    1998-07-01

    In the US, there are three new regulations now in development that will lower the limits for NO{sub x} emissions from gas turbines: (1) New National Ambient Air Quality Standards (NAAQS) for Particulate Matter, and Possibly revision to the Ozone standard (both of these new programs will target NO{sub x} emissions); (2) New regulations stemming from the Ozone Transport Assessment Group (OTAG) recommendations (again, NO{sub x} is the primary focus); (3) Revision of the New Source Performance Standard (NSPS) for gas turbines and a new rule that will impose new toxic emission requirements, (the Industrial Combustion Coordinated Rulemaking, stemming from revisions to Title III of the Clean Sir Act Amendments of 1990). The toxic rule should be of particular concern to the gas turbine industry in that it may impose the use of expensive toxic emission control techniques that may not provide any significant health benefits to the public. In addition, the European Community is currently drafting a new regulation for combustion sources that will require gas turbines to meet levels that are lower than any in Europe today. This paper will consider all 5 of these regulatory actions and will: review the proposed regulations; discuss timing for regulation development and implementation; assess the probable impact of each regulation; and provide opinions on the fate of each regulation. Both manufacturers and users of gas turbines should be aware of these proceedings and take an active role in the rule development.

  3. Air emission control equipment - the new challenge for equpiment suppliers

    SciTech Connect

    Lobb, F.H.

    1997-12-31

    The combination of Title V, the CAM Rule and the Credible Evidence Rule demand industrial sites view the selection and operation of emission control devices in a whole new light. No longer can users see these devices as detached end of pipe pieces of equipment essentially purchased off lowest bid. These regulatory changes force plants to fully integrate the operation of these devices into their process control systems and instrumentation. And this is specifically EPA`s stated intent. EPA believes that by forcing sites to exercise the same knowledge and attention to air emissions that they do to operate their production processes, emissions will undergo a natural reduction across the country. Process and operational data that historically has been the sole province of sites becomes public. And compliance with state defined requirements must be demonstrated essentially continuously. This paper explores the new approach to compliance and provides insight through specific field examples/installations of emission control equipment. The author seeks to promote understanding through discussion of these significant regulatory changes.

  4. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  5. Measurement of Ozone Emission and Particle Removal Rates from Portable Air Purifiers

    ERIC Educational Resources Information Center

    Mang, Stephen A.; Walser, Maggie L.; Nizkorodov, Sergey A.; Laux, John M.

    2009-01-01

    Portable air purifiers are popular consumer items, especially in areas with poor air quality. Unfortunately, most users of these air purifiers have minimal understanding of the factors affecting their efficiency in typical indoor settings. Emission of the air pollutant ozone (O[subscript 3]) by certain air purifiers is of particular concern. In an…

  6. Asphaltene Erosion Process in Air Plasma: Emission Spectroscopy and Surface Analysis for Air-Plasma Reactions

    NASA Astrophysics Data System (ADS)

    Martinez, H.; Flores, O.; C. Poveda, J.; Campillo, B.

    2012-04-01

    Optical emission spectroscopy (OES) was applied for plasma characterization during the erosion of asphaltene substrates. An amount of 100 mg of asphaltene was carefully applied to an electrode and exposed to air-plasma glow discharge at a pressure of 1.0 Torr. The plasma was generated in a stainless steel discharge chamber by an ac generator at a frequency of 60 Hz, output power of 50 W and a gas flow rate of 1.8 L/min. The electron temperature and ion density were estimated to be 2.15±0.11 eV and (1.24±0.05) × 1016 m-3, respectively, using a double Langmuir probe. OES was employed to observe the emission from the asphaltene exposed to air plasma. Both molecular band emission from N2, N+2, OH, CH, NH, O2 as well as CN, and atomic light emission from V and Hγ were observed and used to monitor the evolution of asphaltene erosion. The asphaltene erosion was analyzed with the aid of a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) detector. The EDX analysis showed that the time evolution of elements C, O, S and V were similar; and the chemical composition of the exposed asphaltenes remained constant. Particle size evolution was measured, showing a maximum size of 2307 μm after 60 min. This behavior is most likely related to particle agglomeration as a function of time.

  7. Interactions between energy efficiency and emission trading under the 1990 Clean Air Act Amendments

    SciTech Connect

    Hillsman, E.L.; Alvic, D.R.

    1994-08-01

    The 1990 Clean Air Act Amendments affect electric utilities in numerous ways. The feature that probably has received the greatest attention is the provision to let utilities trade emissions of sulfur dioxide (SO{sub 2}), while at the same time requiring them to reduce S0{sub 2} emissions in 2000 by an aggregate 43%. The emission trading system was welcomed by many as a way of reducing the cost of reducing emissions, by providing greater flexibility than past approaches. This report examines some of the potential interactions between trading emissions and increasing end-use energy efficiency. The analysis focuses on emission trading in the second phase of the trading program, which begins in 2000. The aggregate effects, calculated by an emission compliance and trading model, turn out to be rather small. Aggressive improvement of end-use efficiency by all utilities might reduce allowance prices by $22/ton (1990 dollars), which is small compared to the reduction that has occurred in the estimates of future allowance prices and when compared to the roughly $400/ton price we estimate as a base case. However, the changes in the allowance market that result are large enough to affect some compliance decisions. If utilities in only a few states improve end-use efficiency aggressively, their actions may not have a large effect on the price of an allowance, but they could alter the demand for allowances and thereby the compliance decisions of utilities in other states. The analysis shows how improving electricity end-use efficiency in some states can cause smaller emission reductions in other states, relative to what would have happened without the improvements. Such a result, while not surprising given the theory behind the emission trading system, is upsetting to people who view emissions, environmental protection, and energy efficiency in moral rather than strictly economic terms.

  8. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... withdrawn from dilution air, °R. (x) PB = Barometric pressure during test, mm Hg. (xi) VEM = Volume of.... (x) VSE = Volume of formaldehyde sample withdrawn from dilute exhaust, ft3. (xi) PB = Barometric... = Saturated vapor pressure, in mm Hg (kPa) at the engine intake air dry bulb temperature. (E) PB =...

  9. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... withdrawn from dilution air, °R. (x) PB = Barometric pressure during test, mm Hg. (xi) VEM = Volume of.... (x) VSE = Volume of formaldehyde sample withdrawn from dilute exhaust, ft3. (xi) PB = Barometric... = Saturated vapor pressure, in mm Hg (kPa) at the engine intake air dry bulb temperature. (E) PB =...

  10. Effects of saponin extracts on air emissions from steers.

    PubMed

    Li, W; Powers, W

    2012-11-01

    A series of experiments were conducted to quantify the effects of saponin extracts from Quillaja saponaria Molina (QS), Yucca schidigera Roezl ex Ortgies (YS), and Camellia sinensis (L.) Kuntze (TS) on gaseous emissions from steers (Bos taurus). During Exp. 1, a control diet [C1, corn (Zea mays L.) and corn silage basal diet] was compared with YS1 (C1 + 0.64% dietary DM of YS) and QS1 (C1 + 1.5% dietary DM of QS), with 4 replicates per treatment. During Exp. 2, the control diet (C2, corn and corn silage basal diet) was compared with TS2 (C2 + 0.25% dietary DM of TS). Product inclusion levels were established to provide the same concentration of saponin compounds across studies for Exp. 1 and 2. Experiment 3 compared C3 (corn and corn silage basal diet), QS3 (C3 + 1.5% QS), YS3 (C3 + 1.5% YS), and TS3 (C3 + 0.5% TS). Holstein steers (n = 12) at initial BW of 354 ± 10 kg (Exp. 1), 429 ± 10 kg (Exp. 2), 382 ± 16 kg (Period 1, Exp. 3) and 400 ± 12 kg (Period 2, Exp. 3) were individually housed in environmental rooms for 22 d per study. Gaseous emissions including methane (CH(4)), ammonia (NH(3)), and nitrous oxide (N(2)O) were monitored in room exhaust air. No differences in DMI (7.54 ± 0.09 kg) and ADG (1.16 ± 0.19 kg) were observed in Exp. 1 (P > 0.05). Adding TS2 to the diet improved DMI in Exp. 2 (8.94 kg in TS2 vs. 8.53 in C2; P < 0.01), whereas ADG was not affected by diet. During Exp. 3, steers fed the TS3 diet ate less (6.36 kg/d) and gained less BW (0.31 kg/d) compared with the other 3 treatments. Saponin inclusion did not alter daily CH(4) emission per unit DMI (13.17, 10.90, and 13.21 g/kg DMI, for Exp. 1, 2, and 3, respectively). Emissions of NH(3) per unit N intake were not affected by diets in Exp. 1 (134.89 mg/g N consumed) and Exp. 3 (134.99 mg/g N consumed). Feeding TS2 reduced NH(3) emission per unit of N consumed by 30% compared with C2 (P < 0.01). Feeding up to 0.5% of TS failed to reduce CH(4) emissions without impairing steer growth. Nitrous

  11. Dynamic Evaluation of Regional Air Quality Model's Response to Emission Reductions in the Presence of Uncertain Emission Inventories

    EPA Science Inventory

    A method is presented and applied for evaluating an air quality model’s changes in pollutant concentrations stemming from changes in emissions while explicitly accounting for the uncertainties in the base emission inventory. Specifically, the Community Multiscale Air Quality (CMA...

  12. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    PubMed

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data. PMID:27209731

  13. Urban scale air quality modelling using detailed traffic emissions estimates

    NASA Astrophysics Data System (ADS)

    Borrego, C.; Amorim, J. H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S. R.; Bandeira, J. M.; Coelho, M. C.

    2016-04-01

    The atmospheric dispersion of NOx and PM10 was simulated with a second generation Gaussian model over a medium-size south-European city. Microscopic traffic models calibrated with GPS data were used to derive typical driving cycles for each road link, while instantaneous emissions were estimated applying a combined Vehicle Specific Power/Co-operative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe (VSP/EMEP) methodology. Site-specific background concentrations were estimated using time series analysis and a low-pass filter applied to local observations. Air quality modelling results are compared against measurements at two locations for a 1 week period. 78% of the results are within a factor of two of the observations for 1-h average concentrations, increasing to 94% for daily averages. Correlation significantly improves when background is added, with an average of 0.89 for the 24 h record. The results highlight the potential of detailed traffic and instantaneous exhaust emissions estimates, together with filtered urban background, to provide accurate input data to Gaussian models applied at the urban scale.

  14. 40 CFR 91.426 - Dilute emission sampling calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., CO, CO2, or NOX) for a test . Wi=Average mass flow rate of an emission from a test engine during mode... to one for all two-stroke engines. (b) The mass flow rate (Wi) of an emission for mode i is... temperature . Pb = Barometric pressure . (g) The fuel mass flow rate Fi can be either measured or...

  15. 40 CFR 91.426 - Dilute emission sampling calculations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., CO, CO2, or NOX) for a test . Wi=Average mass flow rate of an emission from a test engine during mode... to one for all two-stroke engines. (b) The mass flow rate (Wi) of an emission for mode i is... temperature . Pb = Barometric pressure . (g) The fuel mass flow rate Fi can be either measured or...

  16. 40 CFR 98.113 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of this... material for the EAF and estimate annual process CO2 emissions from the EAF using Equation K-1 of this... Equation K-1 of this section. ER30OC09.045 Where: ECO2 = Annual process CO2 emissions from an...

  17. 40 CFR 98.393 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... ER30OC09.152 Where: CO2i = Annual CO2 emissions that would result from the complete combustion or oxidation... oxidation of each petroleum product “i” (metric tons). Producti = Annual mass of product “i” produced... emissions that would result from the complete combustion or oxidation of each non-crude feedstock...

  18. 40 CFR 98.393 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... ER30OC09.152 Where: CO2i = Annual CO2 emissions that would result from the complete combustion or oxidation... oxidation of each petroleum product “i” (metric tons). Producti = Annual mass of product “i” produced... CO2 emissions that would result from the complete combustion or oxidation of each non-crude...

  19. 40 CFR 86.1243-96 - Calculations; evaporative emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... concentrations to determine the mass of hydrocarbons and methanol emitted. For testing with pure gasoline... emissions: (i) Methanol emissions: ER06OC93.129 Where: (A) MCH23OH=Methanol mass change, µg. (B) VFn=Net...=Initial sample. (J) f=Final sample. (K) 1=First impinger. (L) 2=Second impinger. (M) MCH3OH,out=mass...

  20. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    NASA Astrophysics Data System (ADS)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  1. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    PubMed

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  2. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  3. WETAIR: A computer code for calculating thermodynamic and transport properties of air-water mixtures

    NASA Technical Reports Server (NTRS)

    Fessler, T. E.

    1979-01-01

    A computer program subroutine, WETAIR, was developed to calculate the thermodynamic and transport properties of air water mixtures. It determines the thermodynamic state from assigned values of temperature and density, pressure and density, temperature and pressure, pressure and entropy, or pressure and enthalpy. The WETAIR calculates the properties of dry air and water (steam) by interpolating to obtain values from property tables. Then it uses simple mixing laws to calculate the properties of air water mixtures. Properties of mixtures with water contents below 40 percent (by mass) can be calculated at temperatures from 273.2 to 1497 K and pressures to 450 MN/sq m. Dry air properties can be calculated at temperatures as low as 150 K. Water properties can be calculated at temperatures to 1747 K and pressures to 100 MN/sq m. The WETAIR is available in both SFTRAN and FORTRAN.

  4. 40 CFR 204.52 - Portable air compressor noise emission standard.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Portable air compressor noise emission standard. 204.52 Section 204.52 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS NOISE EMISSION STANDARDS FOR CONSTRUCTION EQUIPMENT Portable Air Compressors § 204.52 Portable air compressor...

  5. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 13 2014-07-01 2014-07-01 false How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  6. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  7. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 13 2013-07-01 2012-07-01 true How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES (CONTINUED)...

  8. 40 CFR 63.2850 - How do I comply with the hazardous air pollutant emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 12 2011-07-01 2009-07-01 true How do I comply with the hazardous air pollutant emission standards? 63.2850 Section 63.2850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National...

  9. A zinc-air battery and flywheel zero emission vehicle

    SciTech Connect

    Tokarz, F.; Smith, J.R.; Cooper, J.; Bender, D.; Aceves, S.

    1995-10-03

    In response to the 1990 Clean Air Act, the California Air Resources Board (CARB) developed a compliance plan known as the Low Emission Vehicle Program. An integral part of that program was a sales mandate to the top seven automobile manufacturers requiring the percentage of Zero Emission Vehicles (ZEVs) sold in California to be 2% in 1998, 5% in 2001 and 10% by 2003. Currently available ZEV technology will probably not meet customer demand for range and moderate cost. A potential option to meet the CARB mandate is to use two Lawrence Livermore National Laboratory (LLNL) technologies, namely, zinc-air refuelable batteries (ZARBs) and electromechanical batteries (EMBs, i. e., flywheels) to develop a ZEV with a 384 kilometer (240 mile) urban range. This vehicle uses a 40 kW, 70 kWh ZARB for energy storage combined with a 102 kW, 0.5 kWh EMB for power peaking. These technologies are sufficiently near-term and cost-effective to plausibly be in production by the 1999-2001 time frame for stationary and initial vehicular applications. Unlike many other ZEVs currently being developed by industry, our proposed ZEV has range, acceleration, and size consistent with larger conventional passenger vehicles available today. Our life-cycle cost projections for this technology are lower than for Pb-acid battery ZEVs. We have used our Hybrid Vehicle Evaluation Code (HVEC) to simulate the performance of the vehicle and to size the various components. The use of conservative subsystem performance parameters and the resulting vehicle performance are discussed in detail.

  10. Glass science tutorial: Lecture No. 4, commercial glass melting and associated air emission issues

    SciTech Connect

    Kruger, A.A.

    1995-01-01

    This document serves as a manual for a workshop on commercial glass melting and associated air emission issues. Areas covered include: An overview of the glass industry; Furnace design and construction practices; Melting furnace operation; Energy input methods and controls; Air legislation and regulations; Soda lime emission mechanisms; and, Post furnace emission controls. Supporting papers are also included.

  11. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false AC17 Air Conditioning Emissions Test Procedure. 86.167-17 Section 86.167-17 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  12. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations; exhaust... temperatures. Light-duty vehicles and light-duty trucks must calculate and report the weighted mass of...

  13. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type.

    PubMed

    England, G C; McGrath, T P; Gilmer, L; Seebold, J G; Lev-On, M; Hunt, T

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NOx emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. PMID:11219701

  14. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  15. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  16. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  17. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  18. 40 CFR 98.383 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Suppliers of Coal-based Liquid Fuels § 98.383 Calculating GHG... coal-to-liquid product supplier (i.e., calculation methodologies for refiners apply to producers of coal-to-liquid products and calculation methodologies for importers and exporters of petroleum...

  19. Performance and emission characteristics of swirl-can combustors to near-stoichiometric fuel-air ratio

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Trout, A. M.

    1976-01-01

    Emissions and performance characteristics were determined for two full annular swirl-can combustors operated to near stoichiometric fuel-air ratio. Test condition variations were as follows: combustor inlet-air temperatures, 589, 756, 839, and 894 K; reference velocities, 24 to 37 meters per second; inlet pressure, 62 newtons per square centimeter; and fuel-air ratios, 0.015 to 0.065. The combustor average exit temperature and combustor efficiency were calculated from the combustor exhaust gas composition. For fuel-air ratios greater than 0.04, the combustion efficiency decreased with increasing fuel-air ratios in a near-linear manner. Increasing the combustor inlet air temperature tended to offset this decrease. Maximum oxides of nitrogen emission indices occurred at intermediate fuel-air ratios and were dependent on combustor design. Carbon monoxide levels were extremely high and were the primary cause of poor combustion efficiency at the higher fuel-air ratios. Unburned hydrocarbons were low for all test conditions. For high fuel-air ratios SAE smoke numbers greater than 25 were produced, except at the highest inlet-air temperatures.

  20. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... = CH4 emissions from anaerobic digestion (metric tons/yr). AD = Number of anaerobic digesters at the... collection efficiency of anaerobic digester, as specified in Table JJ-6 of this section (decimal). (c)...

  1. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... = CH4 emissions from anaerobic digestion (metric tons/yr). AD = Number of anaerobic digesters at the... collection efficiency of anaerobic digester, as specified in Table JJ-6 of this section (decimal). (c)...

  2. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064) × (CH3CH2OH)mass + (13.8756/30.0262) × (HCHO)mass + (13.8756/44.048) × (CH3CHO)mass (2) (b) The requirements... emission standards in §§ 86.1708 and 86.1709, the mass of NMOG emissions from a vehicle certified...

  3. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064) × (CH3CH2OH)mass + (13.8756/30.0262) × (HCHO)mass + (13.8756/44.048) × (CH3CHO)mass (2) (b) The requirements... emission standards in §§ 86.1708 and 86.1709, the mass of NMOG emissions from a vehicle certified...

  4. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064) × (CH3CH2OH)mass + (13.8756/30.0262) × (HCHO)mass + (13.8756/44.048) × (CH3CHO)mass (2) (b) The requirements... emission standards in §§ 86.1708 and 86.1709, the mass of NMOG emissions from a vehicle certified...

  5. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    NASA Astrophysics Data System (ADS)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff < 0.5) and volatilization ( ff > 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  6. National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions, Calendar Year 2010

    SciTech Connect

    NSTec Ecological and Environmental Monitoring

    2011-06-30

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office operates the Nevada National Security Site (NNSS, formerly the Nevada Test Site) and North Las Vegas Facility (NLVF). From 1951 through 1992, the NNSS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NNSS activities has been monitored since the initiation of atmospheric testing. Limitation to underground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NNSS. After nuclear testing ended in 1992, NNSS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by wind) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium are also emitted to air at the NLVF, an NNSS support complex in North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations [CFR] Part 61 Subpart H) (CFR, 2010a) limits the release of radioactivity from a U.S. Department of Energy (DOE) facility to that which would cause 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation unrelated to NNSS activities. Unrelated doses could come from naturally occurring radioactive elements, from sources such as medically or commercially used radionuclides, or from sources outside of the United States, such as those from the damaged Fukushima nuclear power plant in Japan. Because this report is intended to discuss radioactive air emissions during calendar year 2010, data on radionuclides in air from the 2011 Fukushima nuclear power plant releases are not presented but will be included in the report for calendar year 2011. The NNSS demonstrates compliance with the NESHAP

  7. Traffic emission factors of ultrafine particles: effects from ambient air.

    PubMed

    Janhäll, Sara; Molnar, Peter; Hallquist, Mattias

    2012-09-01

    Ultrafine particles have a significant detrimental effect on both human health and climate. In order to abate this problem, it is necessary to identify the sources of ultrafine particles. A parameterisation method is presented for estimating the levels of traffic-emitted ultrafine particles in terms of variables describing the ambient conditions. The method is versatile and could easily be applied to similar datasets in other environments. The data used were collected during a four-week period in February 2005, in Gothenburg, as part of the Göte-2005 campaign. The specific variables tested were temperature (T), relative humidity (RH), carbon monoxide concentration (CO), and the concentration of particles up to 10 μm diameter (PM(10)); all indicators are of importance for aerosol processes such as coagulation and gas-particle partitioning. These variables were selected because of their direct effect on aerosol processes (T and RH) or as proxies for aerosol surface area (CO and PM(10)) and because of their availability in local monitoring programmes, increasing the usability of the parameterization. Emission factors are presented for 10-100 nm particles (ultrafine particles; EF(ufp)), for 10-40 nm particles (EF(10-40)), and for 40-100 nm particles (EF(40-100)). For EF(40-100) no effect of ambient conditions was found. The emission factor equations are calculated based on an emission factor for NO(x) of 1 g km(-1), thus the particle emission factors are easily expressed in units of particles per gram of NO(x) emitted. For 10-100 nm particles the emission factor is EF(ufp) = 1.8 × 10(15) × (1 - 0.095 × CO - 3.2 × 10(-3) × T) particles km(-1). Alternative equations for the EFs in terms of T and PM(10) concentration are also presented. PMID:22858604

  8. 76 FR 15266 - National Emission Standards for Hazardous Air Pollutants; Notice of Reconsideration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Pollutants; Notice of Reconsideration AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... aspects of the national emission standards for hazardous air pollutants (NESHAP) for new and existing... Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional...

  9. 75 FR 67676 - Delegation of National Emission Standards for Hazardous Air Pollutants for Source Categories...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ...Pursuant to section 112(l) of the Clean Air Act as amended in 1990, EPA is proposing to grant delegation of specific national emission standards for hazardous air pollutants (NESHAP) to Clark County,...

  10. 40 CFR 1039.705 - How do I generate and calculate emission credits?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... engines to calculate emission credits: (1) Engines exempted under subpart G of this part or under 40 CFR... family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the standard. Sum your positive and negative credits for the model year before...

  11. 40 CFR 1039.705 - How do I generate and calculate emission credits?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... engines to calculate emission credits: (1) Engines exempted under subpart G of this part or under 40 CFR... family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the standard. Sum your positive and negative credits for the model year before...

  12. 40 CFR 1039.705 - How do I generate and calculate emission credits?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines to calculate emission credits: (1) Engines exempted under subpart G of this part or under 40 CFR... family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the standard. Sum your positive and negative credits for the model year before...

  13. 40 CFR 1039.705 - How do I generate and calculate emission credits?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... engines to calculate emission credits: (1) Engines exempted under subpart G of this part or under 40 CFR... family that has an FEL below the standard. Calculate negative emission credits for a family that has an FEL above the standard. Sum your positive and negative credits for the model year before...

  14. The impact of shipping emissions on air pollution in the Greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2015-04-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within the Interreg IVb project Clean North Sea Shipping (CNSS) a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a data base containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 in high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and of sulfur oxides 123 Gg within the North Sea, which was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25% in summer and 15% in winter. Some hundred kilometers away from the sea the contribution was about 6% in summer and 4% in

  15. The impact of shipping emissions on air pollution in the greater North Sea region - Part 1: Current emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Aulinger, A.; Matthias, V.; Zeretzke, M.; Bieser, J.; Quante, M.; Backes, A.

    2016-01-01

    The North Sea is one of the areas with the highest ship traffic densities worldwide. At any time, about 3000 ships are sailing its waterways. Previous scientific publications have shown that ships contribute significantly to atmospheric concentrations of NOx, particulate matter and ozone. Especially in the case of particulate matter and ozone, this influence can even be seen in regions far away from the main shipping routes. In order to quantify the effects of North Sea shipping on air quality in its bordering states, it is essential to determine the emissions from shipping as accurately as possible. Within Interreg IVb project Clean North Sea Shipping (CNSS), a bottom-up approach was developed and used to thoroughly compile such an emission inventory for 2011 that served as the base year for the current emission situation. The innovative aspect of this approach was to use load-dependent functions to calculate emissions from the ships' current activities instead of averaged emission factors for the entire range of the engine loads. These functions were applied to ship activities that were derived from hourly records of Automatic Identification System signals together with a database containing the engine characteristics of the vessels that traveled the North Sea in 2011. The emission model yielded ship emissions among others of NOx and SO2 at high temporal and spatial resolution that were subsequently used in a chemistry transport model in order to simulate the impact of the emissions on pollutant concentration levels. The total emissions of nitrogen reached 540 Gg and those of sulfur oxides 123 Gg within the North Sea - including the adjacent western part of the Baltic Sea until 5° W. This was about twice as much of those of a medium-sized industrialized European state like the Netherlands. The relative contribution of ships to, for example, NO2 concentration levels ashore close to the sea can reach up to 25 % in summer and 15 % in winter. Some hundred kilometers

  16. AIR EMISSIONS FROM RESIDENTIAL HEATING: THE WOOD HEATING OPTION PUT INTO ENVIRONMENTAL PERSPECTIVE

    EPA Science Inventory

    The paper compares the national scale (rather than local) air quality impacts of the various residential space heating options. Specifically, it compares the relative contribution of the space heating options to fine particulate emissions, greenhouse gas emissions, and acid preci...

  17. IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  18. (AWMA) IMPROVING EMISSION INVENTORIES FOR EFFECTIVE AIR-QUALITY MANAGEMENT ACROSS NORTH AMERICA - A NARSTO ASSESSMENT

    EPA Science Inventory

    The NARSTO Ozone and Particulate Matter Assessments emphasized that emission inventories are critical to the success of air quality management programs and that emissions inventories in Canada, Mexico, and the United States need improvement to meet expectations for quality, timel...

  19. 40 CFR 98.113 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the Tier 4 Calculation Methodology in § 98.33(a)(4) and all associated requirements for Tier 4 in... operating and maintaining a CEMS according to the Tier 4 Calculation Methodology specified in § 98.33(a)(4... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of...

  20. 40 CFR 98.113 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the Tier 4 Calculation Methodology in § 98.33(a)(4) and all associated requirements for Tier 4 in... operating and maintaining a CEMS according to the Tier 4 Calculation Methodology specified in § 98.33(a)(4... EAFs using the carbon mass balance procedure specified in paragraphs (b)(2)(i) and (b)(2)(ii) of...

  1. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... °F and 1 atm). T = Average annual temperature at which flow is measured, calculated in Equation JJ-9... JJ-10 of this section (atm). (2) For each digester, calculate the average annual volumetric flow rate... flow is measured (atm). OD = Operating days, number of days per year that the digester was...

  2. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... °F and 1 atm). T = Average annual temperature at which flow is measured, calculated in Equation JJ-9... JJ-10 of this section (atm). (2) For each digester, calculate the average annual volumetric flow rate... flow is measured (atm). OD = Operating days, number of days per year that the digester was...

  3. 40 CFR 98.363 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... °F and 1 atm). T = Average annual temperature at which flow is measured, calculated in Equation JJ-9... JJ-10 of this section (atm). (2) For each digester, calculate the average annual volumetric flow rate... flow is measured (atm). OD = Operating days, number of days per year that the digester was...

  4. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    PubMed

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-01

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China. PMID:27479733

  5. Locating and estimating air emissions from sources of chlorobenzenes (revised March 1994). Final report

    SciTech Connect

    Not Available

    1994-03-01

    ;Table of Contents: Background; Emissions from Chlorobenzenes Production; Emissions from Major Uses of Chlorobenzene; Emission from the Use of Materials Containing Chlorobenzenes; Byproduct Emission -- Processes Unrelated to Production or Use of Chlorobenzenes; Ambient Air and Stationary Source Test Procedures; Potential Source Categories of Chlorobenzenes Emissions; Textile Fiber Dyeing Facilities with Annual Sales Greater Than $1 Million; and Summary of Emission Factors Listed in this Document.

  6. 77 FR 555 - National Emissions Standards for Hazardous Air Pollutants From Secondary Lead Smelting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-05

    ...This action finalizes the residual risk and technology review conducted for the secondary lead smelting source category regulated under national emission standards for hazardous air pollutants. These final amendments include revisions to the emissions limits for lead compounds; revisions to the standards for fugitive emissions; the addition of total hydrocarbon and dioxin and furan emissions......

  7. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  8. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    NASA Astrophysics Data System (ADS)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  9. Radionuclide air emissions report for the Hanford Site, calendar year 1992

    SciTech Connect

    Diediker, L.P.; Johnson, A.R.; Rhoads, K.; Klages, D.L.; Soldat, J.K.; Rokkan, D.J.

    1993-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1992 and the resulting effective dose equivalent to an member of the public. The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, Title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  10. Radionuclide air emissions report for the Hanford site, Calendar year 1994

    SciTech Connect

    Gleckler, B.P.; Diediker, L.P.; Jette, S.J.; Rhoads, K.; Soldat, S.K.

    1995-06-01

    This report documents radionuclide air emissions from the Hanford Site in 1994, and the resulting effective dose equivalent to the maximally exposed member of the public, referred to as the ``MEI.`` The report has been prepared and will be submitted in accordance with reporting requirements in the Code of Federal Regulations, title 40, Protection of the Environment, Part 61, ``National Emissions Standards for Hazardous Air Pollutants,`` Subpart H, ``National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.``

  11. National Emission Standards for Hazardous Air Pollutants—Calendar Year 2010 INL Report for Radionuclides (2011)

    SciTech Connect

    Mark Verdoorn; Tom Haney

    2011-06-01

    This report documents the calendar Year 2010 radionuclide air emissions and resulting effective dose equivalent to the maximally exposed individual member of the public from operations at the Department of Energy's Idaho National Laboratory Site. This report was prepared in accordance with the Code of Federal Regulations, Title 40, 'Protection of the Environment,' Part 61, 'National Emission Standards for Hazardous Air Pollutants,' Subpart H, 'National Emission Standards for Emissions of Radionuclides Other than Radon from Department of Energy Facilities.'

  12. 40 CFR 98.393 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... product). Density = Density of the petroleum product or natural gas liquid (metric tons per barrel for non... emissions from each individual petroleum product and natural gas liquid using Equation MM-1 of this section... of each petroleum product or natural gas liquid “i” (metric tons). Producti = Annual volume...

  13. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... emissions. (a) For each anaerobic reactor and anaerobic lagoon, estimate the annual mass of CH4 generated... measure the concentration of organic material entering the anaerobic reactors or anaerobic lagoon using... concentration of organic material entering an anaerobic reactor or anaerobic lagoon using methods for...

  14. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions. (a) For each anaerobic reactor and anaerobic lagoon, estimate the annual mass of CH4 generated... measure the concentration of organic material entering the anaerobic reactors or anaerobic lagoon using... concentration of organic material entering an anaerobic reactor or anaerobic lagoon using methods for...

  15. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions. (a) For each anaerobic reactor and anaerobic lagoon, estimate the annual mass of CH4 generated... measure the concentration of organic material entering the anaerobic reactors or anaerobic lagoon using... concentration of organic material entering the anaerobic reactors or anaerobic lagoon using methods for...

  16. 40 CFR 98.353 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions. (a) For each anaerobic reactor and anaerobic lagoon, estimate the annual mass of CH4 generated... measure the concentration of organic material entering the anaerobic reactors or anaerobic lagoon using... concentration of organic material entering an anaerobic reactor or anaerobic lagoon using methods for...

  17. CO{sub 2} Emission Calculations and Trends

    DOE R&D Accomplishments Database

    Boden, T. A.; Marland, G.; Andres, R. J.

    1995-06-01

    Evidence that the atmospheric CO{sub 2}concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  18. 40 CFR 98.453 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... SF6 and PFC emissions using the mass-balance approach in Equation SS-1 of this section: ER01DE10.056... purchased from chemical producers or suppliers in bulk) + (Pounds of SF6 returned by equipment users..., substituting the relevant PFC(s) for SF6 in Equation SS-1 of this section. (c) Estimate the disbursements...

  19. EQUIB: Atomic level populations and line emissivities calculator

    NASA Astrophysics Data System (ADS)

    Howarth, I. D.; Adams, S.; Clegg, R. E. S.; Ruffle, D. P.; Liu, X.-W.; Pritchet, C. J.; Ercolano, B.

    2016-03-01

    The Fortran program EQUIB solves the statistical equilibrium equation for each ion and yields atomic level populations and line emissivities for given physical conditions, namely electron temperature and electron density, appropriate to the zones in an ionized nebula where the ions are expected to exist.

  20. CO{sub 2} emission calculations and trends

    SciTech Connect

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-31

    Evidence that the atmospheric CO{sub 2} concentration has risen during the past several decades is irrefutable. Most of the observed increase in atmospheric CO{sub 2} is believed to result from CO{sub 2} releases from fossil-fuel burning. The United Nations (UN) Framework Convention on Climate Change (FCCC), signed in Rio de Janeiro in June 1992, reflects global concern over the increasing CO{sub 2} concentration and its potential impact on climate. One of the convention`s stated objectives was the ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. `` Specifically, the FCCC asked all 154 signing countries to conduct an inventory of their current greenhouse gas emissions, and it set nonbinding targets for some countries to control emissions by stabilizing them at 1990 levels by the year 2000. Given the importance of CO{sub 2} as a greenhouse gas, the relationship between CO{sub 2} emissions and increases in atmospheric CO{sub 2} levels, and the potential impacts of a greenhouse gas-induced climate change; it is important that comprehensive CO{sub 2} emissions records be compiled, maintained, updated, and documented.

  1. 40 CFR 98.33 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from the stack test and the associated parametric data, perform an engineering analysis to estimate the... and engineering judgment, apply the most representative CO2 mass emission rate from the correlation in..., engineering analysis) to estimate the value of (HI)A for each type of fuel. Instrumentation used to make...

  2. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  3. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  4. 40 CFR 98.153 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GHG emissions. (a) The mass of HFC-23 generated from each HCFC-22 production process shall be estimated by using one of two methods, as applicable: (1) Where the mass flow of the combined stream of HFC...) by the weekly (or more frequent) mass flow of the combined stream of HFC-23 and the other product....

  5. 40 CFR 98.83 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials using Equation H-5 of this section: ER30OC09.044 Where: rm = The amount of raw material i consumed... = Annual CO2 emissions from raw materials. TOCrm = Organic carbon content of raw material i or organic... factor of 0.2 percent of total raw material weight. M = Number of raw materials or 1 if......

  6. 40 CFR 98.83 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials using Equation H-5 of this section: ER30OC09.044 Where: rm = The amount of raw material i consumed... = Annual CO2 emissions from raw materials. TOCrm = Organic carbon content of raw material i or organic... factor of 0.2 percent of total raw material weight. M = Number of raw materials or 1 if......

  7. 40 CFR 98.83 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials using Equation H-5 of this section: ER30OC09.044 Where: rm = The amount of raw material i consumed... = Annual CO2 emissions from raw materials. TOCrm = Organic carbon content of raw material i or organic... factor of 0.2 percent of total raw material weight. M = Number of raw materials or 1 if......

  8. 40 CFR 98.213 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions... ton carbonate consumed. Fi = Fraction calcination achieved for each particular carbonate type i (decimal fraction). As an alternative to measuring the calcination fraction, a value of 1.0 can be used....

  9. 40 CFR 98.213 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions... ton carbonate consumed. Fi = Fraction calcination achieved for each particular carbonate type i (decimal fraction). As an alternative to measuring the calcination fraction, a value of 1.0 can be used....

  10. 40 CFR 98.213 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... calcination fractions with Equation U-1 of this section. ER30OC09.077 Where: ECO2 = Annual CO2 mass emissions... ton carbonate consumed. Fi = Fraction calcination achieved for each particular carbonate type i (decimal fraction). As an alternative to measuring the calcination fraction, a value of 1.0 can be used....

  11. 40 CFR 98.183 - Calculating GHG emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... smelting furnace, determine the annual mass of carbon in each carbon-containing material, other than fuel... emissions using Equation R-1 of this section. Carbon-containing materials include carbonaceous reducing agents. If you document that a specific material contributes less than 1 percent of the total carbon...

  12. 40 CFR 98.183 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... smelting furnace, determine the annual mass of carbon in each carbon-containing material, other than fuel... emissions using Equation R-1 of this section. Carbon-containing materials include carbonaceous reducing agents. If you document that a specific material contributes less than 1 percent of the total carbon...

  13. 40 CFR 98.53 - Calculating GHG emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... adipic acid production (determined in paragraph (f) of this section) according to Equation E-3d of this... adipic acid production for unit “z” according to this Equation E-3d (metric tons). EFN 2 O = N2O... emissions from adipic acid production unit “z” according to Equation E-3d of this section (metric tons)....

  14. Energy and air emission implications of a decentralized wastewater system

    NASA Astrophysics Data System (ADS)

    Shehabi, Arman; Stokes, Jennifer R.; Horvath, Arpad

    2012-06-01

    Both centralized and decentralized wastewater systems have distinct engineering, financial and societal benefits. This paper presents a framework for analyzing the environmental effects of decentralized wastewater systems and an evaluation of the environmental impacts associated with two currently operating systems in California, one centralized and one decentralized. A comparison of energy use, greenhouse gas emissions and criteria air pollutants from the systems shows that the scale economies of the centralized plant help lower the environmental burden to less than a fifth of that of the decentralized utility for the same volume treated. The energy and emission burdens of the decentralized plant are reduced when accounting for high-yield wastewater reuse if it supplants an energy-intensive water supply like a desalination one. The centralized facility also reduces greenhouse gases by flaring methane generated during the treatment process, while methane is directly emitted from the decentralized system. The results are compelling enough to indicate that the life-cycle environmental impacts of decentralized designs should be carefully evaluated as part of the design process.

  15. [Population exposure to air pollutant emissions in Human Province].

    PubMed

    Li, Ji; Hao, Jiming; Ye, Xuemei; Zhu, Tianle

    2003-05-01

    Estimate of population exposure to air pollution is necessary to health impact assessment. Based on the concept of intake fraction, a rapid population exposure assessment method was developed in this paper. The CALPUFF atmospheric dispersion model was applied to estimate intake fractions of primary and secondary fine particles emitted from a set of 17 power plants in Hunan Province. Results showed that within 500 km from the emission source, average values of intake fraction were 9.73 x 10(-6) for PM2.5, 2.39 x 10(-6) for sulfate and 2.47 x 10(-6) for nitrate. From regression analysis, good correlations were found for the relations among intake fraction of PM2.5, stack height, and population (R2 = 0.83), and intake fraction of SO(4)2- and population (R2 = 0.64), and intake fraction of NO3-, stack height and population (R2 = 0.74). Iso-intake fraction maps were produced based on the regression equations and population distribution, which reflected the differentiation of population density and enabled simple impact assessment for emission sources in this region. PMID:12916195

  16. Air quality improvements following implementation of Lisbon's Low Emission Zone

    NASA Astrophysics Data System (ADS)

    Ferreira, F.; Gomes, P.; Tente, H.; Carvalho, A. C.; Pereira, P.; Monjardino, J.

    2015-12-01

    Air pollution levels within Lisbon city limits have been exceeding the limit values established in European Union and national legislation since 2001, with the most problematic cases related to the levels of fine particles (PM10) and nitrogen dioxide (NO2), mainly originated by road traffic. With the objective of answering this public health issue, an Air Quality Action Plan was developed in 2006 and the respective Enforcement Plan was published in 2009. From the overall strategy, one of the major measures presented in this strategy was the creation of a Low Emission Zone (LEZ) in Lisbon, which has been operating since July 2011. Implemented at different stages it has progressively expanded its area, including more vehicle types and adopting more stringent requirements in terms of minimum emission standards (currently LEZ phase 2 with EURO 2 in the city center - zone 1 and EURO 1 in the rest of the LEZ area - zone 2). At the same time the road axis comprised of Marquês de Pombal square and Avenida da Liberdade was subjected to profound changes in its traffic circulation model, reducing road traffic volumes. The analysis of the air quality data before and after the LEZ phase 2 has shown positive evolution when comparing the period between 2011 (before measures) and 2013 (after measures). In 2013, there was a reduction in PM10 annual average concentration of 23% and NO2 annual average concentrations of 12%, compared with the year 2011. Although PM10 reductions were more significant inside the LEZ area, the same was not valid for NO2, suggesting that the implementation of these measures was not as effective in reducing NO2 levels as shown by results in other cities like Berlin and London. The results from road traffic characterization indicate a relevant effect on fleet renewal with an overall decrease in the relative weight of pre-EURO 2 vehicles in 2012/2013, compared with data from 2011. An important increase in the share of EURO 4 and EURO 5 vehicles was also

  17. HP-25 PROGRAMMABLE POCKET CALCULATOR APPLIED TO AIR POLLUTION MEASUREMENT STUDIES: STATIONARY SOURCES

    EPA Science Inventory

    The report should be useful to persons concerned with Air Pollution Measurement Studies of Stationary Industrial Sources. It gives detailed descriptions of 22 separate programs, written specifically for the Hewlett Packard Model HP-25 manually programmable pocket calculator. Each...

  18. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... mechanisms and rates, including e.g., photolysis and reaction with atmospheric components such as OH, O3, CO... grams). 60/1 = Conversion factor (60 minutes/1 hour). (v) You must calculate a site-specific,...

  19. 40 CFR 98.123 - Calculating GHG emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... mechanisms and rates, including e.g., photolysis and reaction with atmospheric components such as OH, O3, CO... grams). 60/1 = Conversion factor (60 minutes/1 hour). (v) You must calculate a site-specific,...

  20. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... temperatures. Light-duty vehicles and light-duty trucks must calculate and report the weighted mass of each... Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks...