Science.gov

Sample records for air filling fraction

  1. Optimum values of air-filling fraction for photonic crystal fibers with different configurations and fixed number of air rings.

    PubMed

    Zendehnam, Akbar; Hosseinpour, Maryam; Mirzaei, Mahmood; Hedayati, Kambiz

    2014-02-20

    In this study, a Gaussian amp function related to the Gaussian family is employed to approximate the output intensity profile of various arrangements of air holes in photonic crystal fibers (PCFs) with a fixed number of air rings (N=4). It is shown that d/Λ=0.5 can be the best minimum value of air-filling fraction for all of the studied PCFs when λ=1.35  μm, whereas, for λ=1.55 and 1.65 μm, d/Λ=0.6 is suitable for achieving the maximum output intensity with very low confinement loss. PMID:24663304

  2. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources.

    PubMed

    Sørensen, Simon T; Larsen, Casper; Jakobsen, Christian; Thomsen, Carsten L; Bang, Ole

    2014-02-15

    Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fraction and decreasing diameter directly on the draw-tower. We demonstrate SC generation extending down to 375 nm in one such monolithic fiber device that is single-mode at 1064 nm at the input end. PMID:24562287

  3. Hamiltonian theory of fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, R.

    2012-11-01

    There is convincing numerical evidence that fractional quantum-Hall-like ground states arise in fractionally filled Chern bands. Here, we show that the Hamiltonian theory of composite fermions (CF) can be as useful in describing these states as it was in describing the fractional quantum Hall effect (FQHE) in the continuum. We are able to introduce CFs into the fractionally filled Chern-band problem in two stages. First, we construct an algebraically exact mapping which expresses the electron density projected to the Chern band ρFCB as a sum of Girvin-MacDonald-Platzman density operators ρGMP that obey the magnetic translation algebra. Next, following our Hamiltonian treatment of the FQH problem, we rewrite the operators ρGMP in terms of CF variables which reproduce the same algebra. This naturally produces a unique Hartree-Fock ground state for the CFs, which can be used as a springboard for computing gaps, response functions, temperature-dependent phenomena, and the influence of disorder. We give two concrete examples, one of which has no analog in the continuum FQHE with ν=(1)/(5) and σxy=(2)/(5). Our approach can be easily extended to fractionally filled, strongly interacting two-dimensional time-reversal-invariant topological insulators.

  4. Composite fermions for fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Shankar, R.

    2012-02-01

    We consider fractionally filled bands with a non-zero Chern index that exhibit the Fractional Quantum Hall Effect in zero external fieldootnotetextR. Roy and S. Sondhi, Physics 4, 46 (2011) and papers reviewed therein. a possibility supported by numerical work.ootnotetextIbid. Analytic treatments are complicated by a non-constant Berry flux and the absence of Composite Fermions (CF), which would not only single out preferred fractions, but also allow us compute numerous response functions at nonzero frequencies, wavelengths and temperature using either Chern-Simons field theory or our Hamiltonian formalism.ootnotetextG. Murthy and R. Shankar, Rev. Mod. Phys., 75, 1101, (2003) We describe a way to introduce CF's by embedding the Chern band in an auxiliary problem involving Landau levels. The embedded band can be designed to approximate a prescribed Chern density in k space which determines the commutation relations of the charge densities and hence preserve all dynamical and algebraic aspects of the original problem. We find some states for which the filling fraction and dimensionless Hall conductance are not equal. The approach extends to two-dimensional time-reversal invariant topological insulators and to composite bosons.

  5. Fractional Band Filling in an Atomic Chain Structure

    NASA Astrophysics Data System (ADS)

    Crain, J. N.; Kirakosian, A.; Altmann, K. N.; Bromberger, C.; Erwin, S. C.; McChesney, J. L.; Lin, J.-L.; Himpsel, F. J.

    2003-05-01

    A new chain structure of Au is found on stepped Si(111) which exhibits a 1/4-filled band and a pair of ≥1/2-filled bands with a combined filling of 4/3. Band dispersions and Fermi surfaces for Si(553)-Au are obtained by photoemission and compared to that of Si(557)-Au. The dimensionality of both systems is determined using a tight binding fit. The fractional band filling makes it possible to preserve metallicity in the presence of strong correlations.

  6. Optimal filling fraction of Ta2O5 inverse opals

    NASA Astrophysics Data System (ADS)

    Tubio, C. R.; Guitian, F.; Gil, A.

    2013-12-01

    Tantalum pentoxide (Ta2O5) inverse opals were prepared by combining the self-assembly process and sol-gel chemistry-based opal infiltration. The inverse opal was made by the infiltration of a tantalum(V) ethoxide solution in the interstices of the polystyrene colloidal crystal template, and then removing the original opal template by calcination. The infiltration process as well as the optimal precursor concentration has been investigated in order to obtain Ta2O5 inverse opals with the optimal filling fraction. The effects of processing, template sphere size, morphology, structural properties, filling fraction and composition of the inverse opal are provided by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy analysis (EDS) and powder X-ray diffraction (XRD). The results correlate the concentration of the precursor with the filling fraction of the template.

  7. Hall Crystal States in Fractionally Filled Chern Bands

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, Ramamurti

    2012-02-01

    Two-dimensional time-reversal-invariant topological insulators can be thought of as a time-reversed pair of Chern bands. Numerical evidence shows the existence of states at fractional filling which are analogous to FQH states[1]. In [2] it was noted that at small momenta, the algebra of the density operators projected to the Chern band resembles the magnetic translation algebra. The authors have constructed a mapping[3] between Chern bands and a Landau level in a periodic potential which works at all momenta. This mapping is dynamically faithful, and reproduces the commutators of the projected density operator. There turn out to be Hall Crystal states, characterized by a Hall conductance, and another integer which described the charged dragged when the potential is adiabatically moved by a lattice unit. Using the Hamiltonian formalism developed by the authors some time ago for the FQHE[4], we calculate gaps and collective mode dispersions for such states. 1. D. N. Sheng et al, arxiv:1102.2568, N. Regnault and B. A. Bernevig, arxiv:1105.4867. 2. S. Parameswaran, R. Roy, and S. L. Sondhi, arxiv:1106.4025. 3. G. Murthy and R. Shankar, arxiv:1108.5501 4. G. Murthy and R. Shankar, Rev. Mod. Phys. 75, 1101 (2003)

  8. Quasiparticle Tunneling in the Fractional Quantum Hall effect at filling fraction ν=5/2

    NASA Astrophysics Data System (ADS)

    Radu, Iuliana P.

    2009-03-01

    In a two-dimensional electron gas (2DEG), in the fractional quantum Hall regime, the quasiparticles are predicted to have fractional charge and statistics, as well as modified Coulomb interactions. The state at filling fraction ν=5/2 is predicted by some theories to have non-abelian statistics, a property that might be exploited for topological quantum computing. However, alternative models with abelian properties have been proposed as well. Weak quasiparticle tunneling between counter-propagating edges is one of the methods that can be used to learn about the properties of the state and potentially distinguish between models describing it. We employ an electrostatically defined quantum point contact (QPC) fabricated on a high mobility GaAs/AlGaAs 2DEG to create a constriction where quasiparticles can tunnel between counter-propagating edges. We study the temperature and dc bias dependence of the tunneling conductance, while preserving the same filling fraction in the constriction and the bulk of the sample. The data show scaling of the bias-dependent tunneling over a range of temperatures, in agreement with the theory of weak quasiparticle tunneling, and we extract values for the effective charge and interaction parameter of the quasiparticles. The ranges of values obtained are consistent with those predicted by certain models describing the 5/2 state, indicating as more probable a non-abelian state. This work was done in collaboration with J. B. Miller, C. M. Marcus, M. A. Kastner, L. N. Pfeiffer and K. W. West. This work was supported in part by the Army Research Office (W911NF-05-1-0062), the Nanoscale Science and Engineering Center program of NSF (PHY-0117795), NSF (DMR-0701386), the Center for Materials Science and Engineering program of NSF (DMR-0213282) at MIT, the Microsoft Corporation Project Q, and the Center for Nanoscale Systems at Harvard University.

  9. Effect of filling fraction on the performance of sponge-based moving bed biofilm reactor.

    PubMed

    Zhang, Xinbo; Chen, Xun; Zhang, Chunqing; Wen, Haitao; Guo, Wenshan; Ngo, Huu Hao

    2016-11-01

    Cubic-shaped polyurethane sponges (15×15×15mm) in the form of biofilm carriers were used in a moving bed biofilm reactor (MBBR) for treating synthetic domestic wastewater. Results indicated there was no significant difference in total organic carbon (TOC) and ammonia (NH4(+)-N) removal at different filling fractions. Three reactors exhibited high removal efficiencies of over 93% TOC and 95% NH4(+)-N on average at an HRT of 12h and aeration flow of 0.09m(3)/h. However, total nitrogen (TN) removal and simultaneous nitrification and denitrification (SND) increased with increasing the filling fraction. TN removal averaged at 77.2, 85.5% and 86.7% in 10%, 20% and 30% filling fraction reactor, respectively. Correspondingly, SND were 85.5±8.7%, 91.3±9.4% and 93.3±10.2%. Moreover, it was observed that sponge carriers in the 20% filling fraction reactor achieved the maximum biomass amount per gram sponge, followed by the 10% and 30% filling fraction reactors. PMID:27567965

  10. Transient behavior of granular materials with symmetric conditions for tumbler shapes and fill fractions

    NASA Astrophysics Data System (ADS)

    Pohlman, Nicholas; Si, Yun

    2014-11-01

    The typical granular motion in circular tumblers is considered steady-state since there are no features to disrupt the top surface layer dimension. In polygon tumblers, however, the flowing layer is perpetually changing length, which creates unsteady conditions with corresponding change in the flow behavior. Prior work showed the minimization of free surface energy is independent of tumbler dimension, particle size, and rotation rate. This subsequent research reports on experiments where dimensional symmetry of the free surface in triangular and square tumblers with varying fill fractions do not necessarily produce the symmetric flow behaviors. Results of the quasi-2D tumbler experiment show that other dimensions aligned with gravity and the instantaneous free surface influence the phase when extrema for angle of repose and other flow features occur. The conclusion is that 50% fill fraction may produce geometric symmetry of dimensions, but the symmetry point of flow likely occurs at a lower fill fraction.

  11. Estimation of water-filled and air-filled porosity in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Nelson, Philip H.

    1993-01-01

    The responses of density and dielectric logs are formulated in terms if the matrix properties, air-filled porosity and water-filled porosity. Porosity values obtained from logs from borehole USW G-2 are in reasonable agreement with estimates from core determinations.

  12. Quantum Hall effect in a quantum point contact at Landau filling fraction ν=52

    NASA Astrophysics Data System (ADS)

    Miller, Jeffrey; Radu, Iuliana; Zumbühl, Dominik; Levenson-Falk, Eli; Kastner, Marc; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2007-03-01

    We study the transport properties of quantum point contacts (QPC) fabricated on a GaAs/AlGaAs two dimensional electron gas that exhibits excellent bulk fractional quantum Hall effect, including a strong plateau in the Hall resistance at Landau level filling fraction ν= 52. We find that the ν=52 plateau is identifiable in point contacts with lithographic separations as small as 0.8 microns, but is not present in a 0.5 micron QPC. We study the temperature and dc-current-bias dependence of the ν=52 plateau---as well as neighboring fractional and integer plateaus---in the QPC. We also discuss our method to study the QPC at one filling fraction while the bulk remains at a higher filling fraction. Research supported in part by Microsoft Corporation, Project Q, and HCRP at Harvard University, and ARO (W911NF-05-1-0062), the NSEC program of the NSF (PHY-0117795) and NSF (DMR-0353209) at MIT.

  13. Wave intensity analysis in air-filled flexible vessels.

    PubMed

    Clavica, Francesco; Parker, Kim H; Khir, Ashraf W

    2015-02-26

    Wave intensity analysis (WIA) is an analytical technique generally used to investigate the propagation of waves in the cardiovascular system. Despite its increasing usage in the cardiovascular system, to our knowledge WIA has never been applied to the respiratory system. Given the analogies between arteries and airways (i.e. fluid flow in flexible vessels), the aim of this work is to test the applicability of WIA with gas flow instead of liquid flow. The models employed in this study are similar to earlier studies used for arterial investigations. Simultaneous pressure (P) and velocity (U) measurements were initially made in a single tube and then in several flexible tubes connected in series. Wave speed was calculated using the foot-to-foot method (cf), which was used to separate analytically the measured P and U waveforms into their forward and backward components. Further, the data were used to calculate wave intensity, which was also separated into its forward and backward components. Although the measured wave speed was relatively high, the results showed that the onsets and the nature of reflections (compression/expansion) derived with WIA, corresponded well to those anticipated using the theory of waves in liquid-filled elastic tubes. On average the difference between the experimental and theoretical arrival time of reflection was 6.1% and 3.6% for the single vessel and multivessel experiment, respectively. The results suggest that WIA can provide relatively accurate information on reflections in air-filled flexible tubes, warranting further studies to explore the full potential of this technique in the respiratory system. PMID:25595424

  14. Increasing the filling fraction of ultracold polar KRb molecules in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Moses, Steven; Gadway, Bryce; Yan, Bo; Covey, Jacob; Jin, Deborah; Ye, Jun

    2013-05-01

    Gases of ultracold polar molecules with sufficiently low entropy are an ideal experimental scenario to look for signatures of long-range many-body interactions. Having a high filling fraction in a 3D lattice is one way to achieve a low entropy state. In earlier work, we showed that preformed pairs of K and Rb in a 3D lattice (sites that have exactly one K and one Rb) are converted to KRb Feshbach molecules with nearly 100% efficiency. Since the STIRAP transfer from Feshbach molecules to ground-state molecules is 90-100% efficient, loading a 3D lattice with a large fraction of preformed pairs will lead to a large filling fraction of ground-state molecules. Our scheme is to load a Mott insulator of Rb and band insulator of K. After we have loaded a lattice with a high filling fraction, we will investigate effects of dipolar interactions in a many-body system. We acknowledge funding from NIST, NSF, AFOSR-MURI, and the NDSEG Graduate Fellowship.

  15. Fractional Distillation of Air and Other Demonstrations with Condensed Gases

    ERIC Educational Resources Information Center

    Oliver-Hoyo, Maria; Switzer, William L., III; Eierman, Robert

    2005-01-01

    The learning objectives of the fractional distillation of air and other demonstrations includes observing N2, O2, CO2 and H2O in air, studying the fractional separation of components based on boiling point differences and so on. The materials, reagent and equipment preparation, experimental procedures, hazards of the demonstration are also…

  16. Predictors of Increased Left Ventricular Filling Pressure in Dialysis Patients with Preserved Left Ventricular Ejection Fraction

    PubMed Central

    Bajraktari, Gani; Berbatovci-Ukimeraj, Mimoza; Hajdari, Ali; Ibraimi, Lavdim; Daullxhiu, Irfan; Elezi, Ymer; Ndrepepa, Gjin

    2009-01-01

    Aim To study the left and right ventricular function and to assess the predictors of increased left ventricular (LV) filling pressure in dialysis patients with preserved LV ejection fraction. Methods This study included 63 consecutive patients (age 57 ± 14 years, 57% women) with end-stage renal failure. Echocardiography, including tissue Doppler measurements, was performed in all patients. Based on the median value of the ratio of transmitral early diastolic velocity to early myocardial velocity (E/E’ ratio), patients were divided into 2 groups: the group with high filling pressure (E/E’>10.16) and the group with low filling pressure (E/E’≤10.16). Results Compared with patients with low filling pressure, the group of patients with high filling pressure included a higher proportion of diabetic patients (41% vs 13%, P = 0.022) and had greater LV mass index (211 ± 77 vs 172 ± 71 g/m3, P = 0.04), lower LV lateral long axis amplitude (1.4 ± 0.3 vs 1.6 ± 0.3 cm, P = 0.01), higher E wave (84 ± 19 vs 64 ± 18cm/s, P < 0.001), lower systolic myocardial velocity (S’:8.6 ± 1.5 vs 7.0 ± 1.3 cm/s, P < 0.001), and lower diastolic myocardial velocities (E’: 6.3 ± 1.9 vs 9.5 ± 2.9 cm/s, P < 0.001; A’: 8.4 ± 1.9 vs 9.7 ± 2.5 cm/s, P = 0.018). Multivariate analysis identified LV systolic myocardial velocity – S’ wave (adjusted odds ratio, 1.909; 95% confidence interval, 1.060-3.439; P = 0.031) and age (1.053; 1.001-1.108; P = 0.048) as the only independent predictors of high LV filling pressure in dialysis patients. Conclusions In dialysis patients with preserved left ventricular ejection fraction, reduced systolic myocardial velocity and elderly age are independent predictors of increased left ventricular filling pressure. PMID:20017222

  17. Mode-based microparticle conveyor belt in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, Oliver A; Euser, Tijmen G; Russell, Philip St J

    2013-12-01

    We show how microparticles can be moved over long distances and precisely positioned in a low-loss air-filled hollow-core photonic crystal fiber using a coherent superposition of two co-propagating spatial modes, balanced by a backward-propagating fundamental mode. This creates a series of trapping positions spaced by half the beat-length between the forward-propagating modes (typically a fraction of a millimeter). The system allows a trapped microparticle to be moved along the fiber by continuously tuning the relative phase between the two forward-propagating modes. This mode-based optical conveyor belt combines long-range transport of microparticles with a positional accuracy of 1 µm. The technique also has potential uses in waveguide-based optofluidic systems. PMID:24514492

  18. [Atrial filling fraction predicts left ventricular systolic function after myocardial infarction: pre-discharge echocardiographic evaluation].

    PubMed

    Galderisi, M; Fakher, A; Petrocelli, A; Alfieri, A; Garofalo, M; de Divitiis, O

    1995-10-01

    Aim of the study was to examine the relation between Doppler-derived indices of left ventricular diastolic and systolic function early after myocardial infarction. Fifty-three patients (31 males, 22 females) recovering from acute myocardial infarction underwent predischarge Doppler echocardiographic examination. Patients with age > 70 years, previous myocardial infarction, more than mild mitral and aortic regurgitation, mitral and aortic stenosis were excluded. Twenty-two healthy subjects (13 males; 9 females) free of coronary risk factors were selected as the control group. Both end-diastolic and end-systolic volumes and ejection fraction were measured by two-dimensional echocardiography. Pulsed Doppler was used to evaluate mitral inflow and left ventricular outflow velocity patterns. The following indices were measured: peak velocity of early (E) and late (A) flows, ratio of E/A peak velocities, ratio of early to late time velocity integrals, atrial filling fraction (time velocity integral A / time velocity integral of flow during total diastole) and deceleration time of E wave for mitral inflow; peak and time-velocity integral for left ventricular outflow. Stroke volume and cardiac output were obtained by pulsed Doppler using the left ventricular outflow method. The two groups were comparable for age, with blood pressure (p < 0.05) and heart rate (p < 0.01) reduced in myocardial infarction patients. Both end-diastolic and end-systolic volumes were significantly higher (both p < 0.0001) and ejection fraction (p < 0.0001) lower after myocardial infarction. Also stroke volume and cardiac output (both p < 0.0001) were reduced in myocardial infarction patients. No significant difference in Doppler indices of diastolic function was observed between the two groups, except for shortened deceleration time (p < 0.0001) in myocardial infarction patients. Multilinear regression analyses were performed separately into the two groups to identify determinants of left

  19. Hot air balloons fill gap in atmospheric and sensing platforms

    NASA Astrophysics Data System (ADS)

    Watson, Steven M.; Price, Russ

    Eric Edgerton was having a problem he could not solve: how to noninvasively collect in situ incinerator plume data. So he called in the Air Force and learned about its Atmospheric and Sensor Test Platform program; its platform is a manned hot air balloon. Many investigators are discovering the advantages of hot air balloons as stable, inexpensive platforms for performing in situ atmospheric measurements. Some are also using remote sensing capabilities on the balloon platforms.

  20. Fractional quantum Hall effect at Landau level filling ν = 4/11

    DOE PAGESBeta

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.

  1. Fractional quantum Hall effect at Landau level filling ν = 4/11

    SciTech Connect

    Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.

    2015-01-09

    In this study, we report low temperature electronic transport results on the fractional quantum Hall effect of composite fermions at Landau level filling ν = 4/11 in a very high mobility and low density sample. Measurements were carried out at temperatures down to 15mK, where an activated magnetoresistance Rxx and a quantized Hall resistance Rxy, within 1% of the expected value of h/(4/11)e2, were observed. The temperature dependence of the Rxx minimum at 4/11 yields an activation energy gap of ~ 7 mK. Developing Hall plateaus were also observed at the neighboring states at ν = 3/8 and 5/13.

  2. Mathematical model of an air-filled alpha stirling refrigerator

    NASA Astrophysics Data System (ADS)

    McFarlane, Patrick; Semperlotti, Fabio; Sen, Mihir

    2013-10-01

    This work develops a mathematical model for an alpha Stirling refrigerator with air as the working fluid and will be useful in optimizing the mechanical design of these machines. Two pistons cyclically compress and expand air while moving sinusoidally in separate chambers connected by a regenerator, thus creating a temperature difference across the system. A complete non-linear mathematical model of the machine, including air thermodynamics, and heat transfer from the walls, as well as heat transfer and fluid resistance in the regenerator, is developed. Non-dimensional groups are derived, and the mathematical model is numerically solved. The heat transfer and work are found for both chambers, and the coefficient of performance of each chamber is calculated. Important design parameters are varied and their effect on refrigerator performance determined. This sensitivity analysis, which shows what the significant parameters are, is a useful tool for the design of practical Stirling refrigeration systems.

  3. Effects of Sand-Filled Hydraulic Fractures during Air Sparging

    NASA Astrophysics Data System (ADS)

    Hall, R. J.; Murdoch, L. C.; Falta, R. W.

    2003-12-01

    The effectiveness of air sparging is limited in fine-grained formations, such as clay-rich saprolite, where low permeability restricts flow rates. The purpose of this work is to investigate the effectiveness of using hydraulic fractures to increase the performance of air sparging in relatively low permeability materials. The approach has been to conduct step-rate, air-injection tests into conventional wells and wells intersecting fractures, and then to evaluate the results of these tests using analytical and numerical models. Fieldwork is being conducted in an area underlain by saprolite weathered from granitoid gneiss. Permeability of the saprolite ranges from 1x10-12 to 5x10 -12 m2 according to slug test data. Five wells have been used for testing: three non-fractured and two fractured wells. Well tests involved injecting air at constant pressure and monitoring transient flow rates until the flow approximately equilibrated over 10 to 60 minutes, then incrementally increasing pressure and repeating the flow monitoring. Field results were expressed in terms of the initial specific sparge capacity (Q/(P-H-E)) where Q is mass flow rate, P is injection pressure, H is hydrostatic pressure, and E is air entry pressure. The specific sparge capacity of conventional wells ranges from 0.3 to 0.6 m3/(Mpa min), whereas it is several times greater for fractured wells (0.8 to 3.5 m3/(Mpa min)) at the field site. Field data have been analyzed using analytical and numerical models. We use the step-rate data and invert an analytical solution adapted from Philip (J. Contam. Hydro., 1998) to estimate the in situ relative permeability function during sparging. This approach indicates that permeability ranges from 0.4x10-12 to 2x10-12 m2, which is remarkably similar to the slug test data. It also indicates that the in situ air entry pressure is approximately 31 kPa, and the exponent constant in the Gardner relative permeability function ranges from 0.12 to 0.25 m-1. Numerical analyses

  4. Substances To Fill Lighter-Than-Air Balloons

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1995-01-01

    Various combinations of solid and liquid chemicals proposed as sources of hydrogen and other gases for inflating lighter-than-air balloons. In all cases energy used to propel balloon upward or downward comes from temperature differences in planet's atmosphere itself. Phase changes and/or reversible chemical reactions used to vary quantities of gases in balloons as functions of pressure and temperature and, as functions of altitude: provides means to control altitude of balloon.

  5. Air pollution and heart failure: Relationship with the ejection fraction

    PubMed Central

    Dominguez-Rodriguez, Alberto; Abreu-Afonso, Javier; Rodríguez, Sergio; Juarez-Prera, Ruben A; Arroyo-Ucar, Eduardo; Gonzalez, Yenny; Abreu-Gonzalez, Pedro; Avanzas, Pablo

    2013-01-01

    AIM: To study whether the concentrations of particulate matter in ambient air are associated with hospital admission due to heart failure in patients with heart failure with preserved ejection fraction and reduced ejection fraction. METHODS: We studied 353 consecutive patients admitted into a tertiary care hospital with a diagnosis of heart failure. Patients with ejection fraction of ≥ 45% were classified as having heart failure with preserved ejection fraction and those with an ejection fraction of < 45% were classified as having heart failure with reduced ejection fraction. We determined the average concentrations of different sizes of particulate matter (< 10, < 2.5, and < 1 μm) and the concentrations of gaseous pollutants (carbon monoxide, sulphur dioxide, nitrogen dioxide and ozone) from 1 d up to 7 d prior to admission. RESULTS: The heart failure with preserved ejection fraction population was exposed to higher nitrogen dioxide concentrations compared to the heart failure with reduced ejection fraction population (12.95 ± 8.22 μg/m3 vs 4.50 ± 2.34 μg/m3, P < 0.0001). Multivariate analysis showed that nitrogen dioxide was a significant predictor of heart failure with preserved ejection fraction (odds ratio ranging from (1.403, 95%CI: 1.003-2.007, P = 0.04) to (1.669, 95%CI: 1.043-2.671, P = 0.03). CONCLUSION: This study demonstrates that short-term nitrogen dioxide exposure is independently associated with admission in the heart failure with preserved ejection fraction population. PMID:23538391

  6. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  7. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  8. Size Control and Fractionation of Ionic Liquid Filled Polymersomes with Glassy and Rubbery Bilayer Membranes.

    PubMed

    So, Soonyong; Lodge, Timothy P

    2016-05-17

    We demonstrate control over the size of ionic liquid (IL) filled polymeric vesicles (polymersomes) by three distinct methods: mechanical extrusion, cosolvent-based processing in an IL, and fractionation of polymersomes in a biphasic system of IL and water. For the representative ionic liquid (1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide ([EMIM][TFSI])), the size and dispersity of polymersomes formed from 1,2-polybutadiene-b-poly(ethylene oxide) (PB-PEO) and polystyrene-b-poly(ethylene oxide) (PS-PEO) diblock copolymers were shown to be sensitive to assembly conditions. During mechanical extrusion through a polycarbonate membrane, the relatively larger polymersomes were broken up and reorganized into vesicles with mean size comparable to the membrane pore (100 nm radius); the distribution width also decreased significantly after only a few passes. Other routes were studied using the solvent-switch or cosolvent (CS) method, whereby the initial content of the cosolvent and the PEO block length of PS-PEO were systemically changed. The nonvolatility of the ionic liquid directly led to the desired concentration of polymersomes in the ionic liquid using a single step, without the dialysis conventionally used in aqueous systems, and the mean vesicle size depended on the amount of cosolvent employed. Finally, selective phase transfer of PS-PEO polymersomes based on size was used to extract larger polymersomes from the IL to the aqueous phase via interfacial tension controlled phase transfer. The interfacial tension between the PS membrane and the aqueous phase was varied with the concentration of sodium chloride (NaCl) in the aqueous phase; then the larger polymersomes were selectively separated to the aqueous phase due to differences in shielding of the hydrophobic core (PS) coverage by the hydrophilic corona brush (PEO). This novel fractionation is a simple separation process without any special apparatus and can help to prepare monodisperse polymersomes

  9. Edge state tunneling in a point contact at filling fraction ν=5/2

    NASA Astrophysics Data System (ADS)

    Radu, Iuliana P.; Miller, J. B.; Dillard, C. R.; Marcus, C. M.; Kastner, M. A.; Pfeiffer, L. N.; West, K. W.

    2008-03-01

    We investigate low temperature transport properties of quantum point contacts (QPCs) fabricated in a GaAs/AlGaAs 2-dimensional electron gas (2-DEG) with mobility 2000 m^2/Vs in a perpendicular magnetic field. The 2-DEG exhibits fractional quantum Hall effect, including a well-quantized plateau at ν=5/2. We study the temperature and DC current bias dependence of the transport through the QPC at ν=5/2 while preserving the same filling number in both the QPC and the bulk of the sample. We compare our results to theoretical predictions for quasi-particle tunneling in the weak coupling regime, and extract the quasi-particle charge and the strength of the Coulomb interaction, as reflected by the Luttinger liquid parameter g. This work was partially supported by ARO (W911NF-05-1-0062), by the NSEC program of NSF (PHY-0117795), by NSF (DMR-0353209) at MIT and by Project Q of Microsoft Corporation at Harvard University.

  10. Exceeding the filling fraction limit: An approach to enhancement of thermoelectric properties of filled - Co4Sb12 skutterudite

    NASA Astrophysics Data System (ADS)

    Graff, Jennifer Whitney

    Currently the world energy usage has nearly tripled since 1950 and is projected to grow at a rate of 1.5% per year and predicted to at least double from the beginning of the millennium to 2050. The United States alone is currently consuming more energy than it can produce (≈ 97 Quadrillion BTU's consumed in 2011).(1) Presently, fossil fuels make up over 85% of our energy landscape, including both the stationary grid (like coal and nuclear power plants) and the mobile grid (automobiles using gas and oil). This presents a major demand for developing methods of saving, storing, and renewing energy. Answers to these existing energy demands must come from a variety of renewable sources including: solar, wind, biomass, geothermal and others. But currently, most renewable sources are only a small part of the big energy picture. One approach to this exponentially growing problem, lies within high efficiency (15%-20%) thermoelectric (TE) materials which address small, yet very important and specific, parts of a bigger problem. Specifically, Co4Sb12-based skutterudites, an increasingly favorable thermoelectric material for mid to high temperature applications (currently used in General Motors TE Generator devices). These materials have the ability to be 'tuned' or controlled thermally and electrically through doping and filling mechanisms, as you will see in this dissertation. However, one of the major drawbacks of TE materials is the difficulty in optimizing both electrical and thermal properties simultaneously. Typically, different control parameters are used in order to enhance the electrical and thermal properties individually. It is very rare to observe optimization of both in a TE material via one control parameter. However, the work presented herein successfully augments all TE properties, with one control variable, by using an approach that can be applied to all doped skutterudites and clathrate materials. Skutterudites are novel materials in that they are a binary

  11. Experimental Studies of the Acoustic Properties of a Finite Elastic Pipe Filled with Water/air

    NASA Astrophysics Data System (ADS)

    Feng, L.

    1996-02-01

    Vibration of, and sound power radiated from, a water/air-filled steel pipe are measured and analyzed. Two types of pipe terminal are employed in the experiments: embedded in sand boxes or without any absorption treatment. Comparisons are made between experiments and theoretical analysis. The measured wavenumbers agree well with those predicted as do modal responses are sound power of the air-filled pipe. For the water-filled steel pipe used in the test (inner diameter 150 mm), measured modal responses and sound power at high frequencies (higher than 4·5 kHz) are much lower than expected for the lossless model. Influences of pipe terminals on the coupling between the water and pipe are also examined.

  12. Use of palm mid-fraction in dark chocolate as base filling centre at different storage temperatures.

    PubMed

    Jinap, S; Ali, A A; Man, Y B; Suria, A M

    2000-11-01

    Dark chocolates filled with palm mid-fraction (PMF) were stored at different temperatures to evaluate the physical and chemical changes. Storage at low temperature (18 degrees C) reduces the PMF migration to negligible extent. Higher storage temperatures (30 and 35 degrees C) increased the PMF migration from the filling centre into the chocolate coating. As a consequence of fat migration, fatty acid composition, triglyceride composition, hardness, solid fat content, melting point and polymorphic structure changed, leading to bloom formation, which started by fat migration and was influenced by recrystallization tendency within the chocolate coating. PMID:11271851

  13. [The application of air-lift loop column filling with porous carrier in wastewater treatment].

    PubMed

    Fan, Y; Ding, F; Yang, H; Chen, S; Zhang, W; Xing, X

    2001-09-01

    An air lift loop reactor filling with porous carrier particles was utilized as aeration column. Experiments were carried out in wide operating conditions. The experimental results showed that in the range of gas flow rate from 0.117 to 0.156 m3/(min.m3), a higher efficiency of removal of ammonium-N was achieved, and when the gas flow rate was above 0.039 m3/(min.m3), the COD was completely degraded in about 1 h. The filling ratio of the porous carriers in the column was an important factor for the removal of C and N compounds, and a filling ratio of 15% was proved to be most suitable in the operation ranges. The experimental results also indicated that the effect of aeration temperature on the removal efficiency was significant and the highest efficiency was obtained at around 25 degrees C. PMID:11769236

  14. Spectral broadening and temporal compression of ∼ 100 fs pulses in air-filled hollow core capillary fibers.

    PubMed

    Li, C; Rishad, K P M; Horak, P; Matsuura, Y; Faccio, D

    2014-01-13

    We experimentally study the spectral broadening of intense, ∼ 100 femtosecond laser pulses at 785 nm coupled into different kinds of hollow core capillary fibers, all filled with air at ambient pressure. Differently from observations in other gases, the spectra are broadened with a strong red-shift due to highly efficient intrapulse Raman scattering. Numerical simulations show that such spectra can be explained only by increasing the Raman fraction of the third order nonlinearity close to 100%. Experimentally, these broadened and red-shifted pulses do not generally allow for straightforward compression using, for example, standard chirped mirrors. However, using special hollow fibers that are internally coated with silver and polymer we obtain pulse durations in the sub-20 fs regime with energies up to 300 μJ. PMID:24515074

  15. A micro-gap, air-filled ionisation chamber as a detector for criticality accident dosimetry.

    PubMed

    Murawski, Ł; Zielczyński, M; Golnik, N; Gryziński, M A

    2014-10-01

    A micro-gap air-filled ionisation chamber was designed for criticality dosimetry. The special feature of the chamber is its very small gap between electrodes of only 0.3 mm. This prevents ion recombination at high dose rates and minimises the influence of gas on secondary particles spectrum. The electrodes are made of polypropylene because of higher content of hydrogen in this material, when compared with soft tissue. The difference between neutron and gamma sensitivity in such chamber becomes practically negligible. The chamber's envelope contains two specially connected capacitors, one for polarising the electrodes and the other for collecting the ionisation charge. PMID:24324250

  16. Effective hypernetted-chain study of even-denominator-filling state of the fractional quantum Hall effect

    SciTech Connect

    Ciftja, O.

    1999-04-01

    The microscopic approach for studying the half-filled state of the fractional quantum Hall effect is based on the idea of proposing a trial Fermi wave function of the Jastrow-Slater form, which is then fully projected onto the lowest Landau level. A simplified starting point is to drop the projection operator and to consider an unprojected wave function. A recent study claims that such a wave function approximated in a Jastrow form may still constitute a good starting point on the study of the half-filled state. In this paper we formalize the effective hypernetted-chain approximation and apply it to the unprojected Fermi wave function, which describes the even-denominator-filling states. We test the above approximation by using the Fermi hypernetted-chain theory, which constitutes the natural choice for the present case. Our results suggest that the approximation of the Slater determinant of plane waves as a Jastrow wave function may not be a very accurate approximation. We conclude that the lowest Landau-level projection operator cannot be neglected if one wants a better quantitative understanding of the phenomena. {copyright} {ital 1999} {ital The American Physical Society}

  17. Reconfigurable optothermal microparticle trap in air-filled hollow-core photonic crystal fiber.

    PubMed

    Schmidt, O A; Garbos, M K; Euser, T G; Russell, P St J

    2012-07-13

    We report a novel optothermal trapping mechanism that occurs in air-filled hollow-core photonic crystal fiber. In the confined environment of the core, the motion of a laser-guided particle is strongly influenced by the thermal-gradient-driven flow of air along the core surface. Known as "thermal creep flow," this can be induced either statically by local heating, or dynamically by the absorption (at a black mark placed on the fiber surface) of light scattered by the moving particle. The optothermal force on the particle, which can be accurately measured in hollow-core fiber by balancing it against the radiation forces, turns out to exceed the conventional thermophoretic force by 2 orders of magnitude. The system makes it possible to measure pN-scale forces accurately and to explore thermally driven flow in micron-scale structures. PMID:23030165

  18. Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber

    NASA Astrophysics Data System (ADS)

    Schmidt, O. A.; Garbos, M. K.; Euser, T. G.; Russell, P. St. J.

    2012-07-01

    We report a novel optothermal trapping mechanism that occurs in air-filled hollow-core photonic crystal fiber. In the confined environment of the core, the motion of a laser-guided particle is strongly influenced by the thermal-gradient-driven flow of air along the core surface. Known as “thermal creep flow,” this can be induced either statically by local heating, or dynamically by the absorption (at a black mark placed on the fiber surface) of light scattered by the moving particle. The optothermal force on the particle, which can be accurately measured in hollow-core fiber by balancing it against the radiation forces, turns out to exceed the conventional thermophoretic force by 2 orders of magnitude. The system makes it possible to measure pN-scale forces accurately and to explore thermally driven flow in micron-scale structures.

  19. Measurements of two types of dilatational waves in an air-filled unconsolidated sand

    SciTech Connect

    Hickey, C.J.; Sabatier, J.M.

    1997-07-01

    This study consists of laboratory measurements of dilatational waves propagating through an air-filled unconsolidated sand. One excitation technique consists of a loudspeaker suspended in the air above the packing of sand. A second excitation technique uses a mechanical shaker in contact with the sand. The transmitted signals are received using microphones and geophones located at various depths within the sand. An interpretation based on measured phase speeds indicates that the transmitted energy from the suspended loudspeaker source is partitioned primarily but not exclusively into the type-II dilatational wave. This wave attenuates rapidly and is only detected at depths of less than about 15 cm for this particular sample. At the deeper depths the detected signal is associated with the type-I dilatational wave. The mechanical shaker produces only a type-I dilatational wave. Both the geophone and microphone sensors can detect both types of dilatational waves. {copyright} {ital 1997 Acoustical Society of America.}

  20. Gauge choices in the Hamiltonian theory of fractionally filled Chern bands

    NASA Astrophysics Data System (ADS)

    Murthy, Ganpathy; Shankar, R.

    2014-05-01

    In the Hamiltonian approach to Chern bands one constructs an algebraically exact mapping which expresses the electron density projected to the Chern band ρFCB as a sum of Girvin-MacDonald-Platzman density operators ρGMP. The ρGMP operators, which obey the magnetic translation algebra, are expressed in terms of auxiliary composite fermion (CF) variables, while preserving the algebra. This produces, in a natural way, a unique Hartree-Fock ground state for the CFs, which can be used as a springboard for various computations. In previous presentations we had not realized that this procedure, which works in any gauge, in principle, is greatly optimized by one family of gauges introduced by Y.-L. Wu, N. Regnault, and B. A. Bernevig [Phys. Rev. B 86, 085129 (2012), 10.1103/PhysRevB.86.085129; Phys. Rev. Lett. 110, 106802 (2013), 10.1103/PhysRevLett.110.106802] in their exact diagonalization program for Laughlin-like fractions. Here we explain in detail why their gauge choices also enable us to obtain better variational energies in our Hamiltonian approach. We illustrate the ideas with some results on the Haldane model, comparing our results to exact diagonalizations.

  1. Concentration of dimethylnitrosamine in the air of smoke-filled rooms

    SciTech Connect

    Stehlik, G.; Richter, O.; Altmann, H.

    1982-12-01

    In order to evaluate the contribution of volatile nitrosamines from tobacco smoke to indoor air pollution, N-nitroso-dimethylamine (NDMA) and N-nitroso-diethylamine (NDEA) were measured in indoor air under artificial and natural conditions. In controlled experiments under extreme conditions, we found that tobacco smoke-related NDMA levels above 0.07 ng/liter were associated with a highly irritating atmosphere which was scarcely tolerable to those present. In smoke-filled rooms under natural conditions NDMA levels ranged from 0.02 to 0.05 ng/liter except a minimum value of less than 0.01 ng/liter in a restaurant and a maximum of 0.07 ng/liter in a dancing bar. These NDMA levels are thus below comparable values reported by others. The NDMA/NDEA ratios found in air samples taken from some rooms under conditions of everyday life are quite different from those found in sidestream smoke of cigarettes. Irritation was not reported under natural conditions. From the results it is concluded that NDMA levels, measured under real life conditions, are usually not caused by tobacco smoke alone. Evidence for other sources of volatile nitrosamines is discussed.

  2. Supernova Feedback and the Hot Gas Filling Fraction of the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Li, Miao; Ostriker, Jeremiah P.; Cen, Renyue; Bryan, Greg L.; Naab, Thorsten

    2015-11-01

    Supernovae (SNe), the most energetic stellar feedback mechanism, are crucial for regulating the interstellar medium (ISM) and launching galactic winds. We explore how supernova remnants (SNRs) create a multiphase medium by performing three-dimentional hydrodynamical simulations at various SN rates, S, and ISM average densities, \\bar{n}. The evolution of an SNR in a self-consistently generated three-phase ISM is qualitatively different from that in a uniform or a two-phase warm/cold medium. By traveling faster and further in the low-density hot phase, the domain of an SNR increases by >102.5. Varying \\bar{n} and S, we find that a steady state can only be achieved when the hot gas volume fraction {f}{{V,hot}}≲ 0.6+/- 0.1. Above that level, overlapping SNRs render connecting topology of the hot gas, and the ISM is subjected to thermal runaway. Photoelectric heating (PEH) has a surprisingly strong impact on {f}{{V,hot}}. For \\bar{n}≳ 3 {{cm}}-3, a reasonable PEH rate is able to suppress the thermal runaway. Overall, we determine the critical SN rate for the onset of thermal runaway to be {S}{{crit}}=200{(\\bar{n}/1 {{cm}}-3)}k{({E}{{SN}}/{10}51 {{erg}})}-1 {{{kpc}}}-3 {{Myr}}-1, where k = (1.2, 2.7) for \\bar{n}≤slant 1 and \\gt 1 {{cm}}-3, respectively. We present a fitting formula of the ISM pressure P(\\bar{n},S), which can be used as an effective equation of state in cosmological simulations. Despite the five orders of magnitude span of (\\bar{n},S), the average Mach number varies little: {M} ≈ 0.5 ± 0.2, 1.2 ± 0.3, and 2.3 ± 0.9 for the hot, warm, and cold phases, respectively.

  3. Age-related lung cell response to urban Buenos Aires air particle soluble fraction.

    PubMed

    Ostachuk, Agustín; Evelson, Pablo; Martin, Susana; Dawidowski, Laura; Sebastián Yakisich, J; Tasat, Deborah R

    2008-06-01

    Exposure to particulate matter (PM) may alter lung homeostasis inducing changes in fluid balance and host defense. Bioavailability of soluble PM compounds like polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and transition metals has been shown to play a key role in lung injury. We have previously characterized the size, shape, and chemical components of urban air particles from Buenos Aires (UAP-BA) and their biological impact on lungs. Herein, we evaluate the possible toxic effect of UAP-BA-soluble fraction (UAP-BAsf) on pulmonary cells obtained from young (1-2 months old) and aged (9-12 months old) Wistar rats using phagocytosis, oxidant-antioxidant generation, and apoptosis as endpoints. UAP-BA were collected in downtown BA and residual oil fly ash (ROFA), employed as a positive control, was collected from Boston Edison Co., Mystic Power Plant, Mystic, CT, USA. Both particle-soluble fractions (sf) were employed at concentrations ranging from 0 to 100 microg/mL. UAP-BAsf and ROFAsf even at the lowest dose assayed (10 microg/mL) showed in both lung cell populations the ability to stimulate phagocytosis and increase superoxide anion (O(2)(-)) generation. Both types of air particles caused a marked intracellular oxidant stress in aged pulmonary cells that may contribute to subsequent cell activation and production of proinflammatory mediators, leading to cell dysfunction. These data suggest that the impact of UAP-BAsf on phagocytosis, oxidant radical generation, and apoptosis is clearly dependent on the maturational state of the animal and might have different mechanisms of action. PMID:18313661

  4. Interaction of finite-amplitude sound with air-filled porous materials

    NASA Technical Reports Server (NTRS)

    Nelson, D. A.

    1985-01-01

    The propagation of high intensity sound waves through an air-filled porus material was studied. The material is assumed: (1) to be rigid, incompressible, and homogeneous, and (2) to be adequately described by two properties: resistivity r and porosity. The resulting wave equation is still nonlinear, however, because of the u sgn(u) term in the resistivity. The equation is solved in the frequency domain as an infinite set of coupled inhomogeneous Helmholtz equations, one for each harmonic. An approximate but analytical solution leads to predictions of excess attenuation, saturation, and phase speed reduction for the fundamental component. A more general numerical solution is used to calculate the propagation curves for the higher harmonics. The u sgn(u) nonlinearity produces a cubic distortion pattern; when the input signal is a pure tone, only odd harmonic distortion products are generated.

  5. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  6. Imaging air volume fraction in sea ice using non-destructive X-ray tomography

    NASA Astrophysics Data System (ADS)

    Crabeck, Odile; Galley, Ryan; Delille, Bruno; Else, Brent; Geilfus, Nicolas-Xavier; Lemes, Marcos; Des Roches, Mathieu; Francus, Pierre; Tison, Jean-Louis; Rysgaard, Søren

    2016-05-01

    Although the presence of a gas phase in sea ice creates the potential for gas exchange with the atmosphere, the distribution of gas bubbles and transport of gases within the sea ice are still poorly understood. Currently no straightforward technique exists to measure the vertical distribution of air volume fraction in sea ice. Here, we present a new fast and non-destructive X-ray computed tomography technique to quantify the air volume fraction and produce separate images of air volume inclusions in sea ice. The technique was performed on relatively thin (4-22 cm) sea ice collected from an experimental ice tank. While most of the internal layers showed air volume fractions < 2 %, the ice-air interface (top 2 cm) systematically showed values up to 5 %. We suggest that the air volume fraction is a function of both the bulk ice gas saturation factor and the brine volume fraction. We differentiate micro bubbles (Ø < 1 mm), large bubbles (1 mm < Ø < 5 mm) and macro bubbles (Ø > 5 mm). While micro bubbles were the most abundant type of gas bubbles, most of the air porosity observed resulted from the presence of large and macro bubbles. The ice texture (granular and columnar) as well as the permeability state of ice are important factors controlling the air volume fraction. The technique developed is suited for studies related to gas transport and bubble migration.

  7. COLLECTION, CHEMICAL FRACTIONATION, AND MUTAGENICITY BIOASSAY OF AMBIENT AIR PARTICULATE

    EPA Science Inventory

    The influence of industrialization and consequent increased concentration of urban particulate matter on the incidence of cancer has long been a concern. The first bioassays used to evaluate complex ambient air samples were whole-animal carcinogenesis bioassays. In these studies,...

  8. Air Sampling System for use in monitoring viable and non-viable particulate air quality under dynamic operating conditions of blow/fill/seal processing.

    PubMed

    Probert, Steve; Sinclair, Colin S; Tallentire, Alan

    2002-01-01

    An Air Sampling Link (ASL), employed in conjunction with an Air Sampling Device (ASD) or a laser particle counter, has been developed for sampling flowing air for viable and non-viable particulate analyses. Typically, the ASL could be used to sample filtered air supplied to an air shower of a Blow/Fill/Seal machine operating in the dynamic state. The ASL allows sample volumes of air to be taken from flowing air without significant loss from the sample flow of airborne particles possessing aerodynamic sizes relevant to those found in practice. The link has no moving parts, is steam sterilizable in-situ, and allows for the taking of continuous samples of air without the need for intervention into the 'critical zone' of the filling machine. This article describes (i) the design criteria for the ASL and the ASD, (ii) the rationale underlying the concept of the ASL design, (iii) the collection performance of the ASL against that of a conventional sampling arrangement, and (iv) a functionality assessment of the ASL-based sampling system installed on a Rommelag style 305 B/F/S machine over a seven week period. PMID:12404722

  9. Impact of Blow/Fill/Seal process variables in determining rate of vial contamination by air dispersed microorganisms.

    PubMed

    Leo, Frank; Poisson, Patrick; Sinclair, Colin S; Tallentire, Alan

    2005-01-01

    Controlled challenges of air dispersed spores of Bacillus subtilis NCIMB 8649 have been generated in a custom-built challenge room housing a Blow/Fill/Seal machine filling filter-sterilized trypticase soy broth into 5.5 cm3 low density polyethylene vials. The effects on the rate of vial contamination of systematic changes in the process variables, rate of provision of ballooning air, delay in the application of mould vacuum and duration of transfer of the open vial, have been examined. Overall, the findings show that the conditions of vial formation can affect appreciably the rate of vial contamination from airborne spores. The indications are that heat lethality, associated with the elevated temperature required for polymer extrusion and vial formation, has a role in determining such contamination. PMID:16316067

  10. A fuzzy fractional chance-constrained programming model for air quality management under uncertainty

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Wen, Zhi; Xu, Ye

    2016-01-01

    A fuzzy fractional chance-constrained programming model (FFCCPM) was developed for dealing with air quality management under uncertainty. FFCCPM integrates a fractional programming model and a double-sided fuzzy chance-constrained programming model. It considers the ratio between total treated pollutant amounts and system cost in the objective function; the constraints with fuzzy variables can be satisfied under some predetermined confidence levels and reliability scenarios. The air quality management system in Fengrun district, Tangshan City, China, was used to demonstrate the applicability of the proposed method. The obtained results indicated that the proposed model was suitable in describing and providing an overview of a studied management system for decision makers, generating various cost-effective air pollution-abatement alternatives. The strategy with a balance between system economy and reliability was recommended for decision makers. The successful application of FFCCPM in Fengrun district provides a good example of real-world regional air quality management.

  11. Metastable inhomogeneous vortex configuration with non-uniform filling fraction inside a blind hole array patterned in a BSCCO single crystal and concentrating magnetic flux inside it

    NASA Astrophysics Data System (ADS)

    Shaw, Gorky; Banerjee, S. S.; Tamegai, T.; Suderow, Hermann

    2016-06-01

    Using magneto-optical imaging, we map the local magnetic field distribution inside a hexagonally ordered array of blind holes patterned in BSCCO single crystals. The nature of the spatial distribution of local magnetic field and shielding currents across the array reveals the presence of a non-uniform vortex configuration partially matched with the blind holes at sub-matching fields. We observe that the filling fraction is different in two different regions of the array. The mean vortex configuration within the array is described as a patchy vortex configuration with the patches having different mean filling fraction. The patchy nature of the vortex configuration is more pronounced at partial filling of the array at low fields while the configuration becomes more uniform with a unique filling fraction at higher fields. The metastable nature of this patchy vortex configuration is revealed by the application of magnetic field pulses of fixed height or individual pulses of varying height to the array. The metastability of the vortex configuration allows a relatively easy way of producing flux reorganization and flux focusing effects within the blind hole array. The effect of the magnetic field pulses modifies the vortex configuration within the array and produces a uniform enhancement in the shielding current around the patterned array edges. The enhanced shielding current concentrates magnetic flux within the array by driving vortices away from the edges and towards the center of the array. The enhanced shielding current also prevents the uninhibited entry of vortices into the array. We propose that the metastable patchy vortex configuration within the blind hole array is due to a non-uniform pinning landscape leading to non-uniform filling of individual blind holes.

  12. PROPERTIES OF DEFATTED AND PIN-MILLED OAT BRAN CONCENTRATE FRACTIONS SEPARATED BY AIR CLASSIFICATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oats contain health beneficial beta-glucans. To incorporate into foods, industries seek beta-glucan ingredients with broader functionality. This study investigated the potential for air classification to produce fractionated oat bran products with novel properties. Oat bran concentrate (OBC) was ...

  13. BIOASSAY-DIRECTED FRACTIONATION OF THE ORGANIC EXTRACT OF SRM 1649 URBAN AIR PARTICULATE MATTER

    EPA Science Inventory

    Separation of 2 grams of the methylene chloride extract of NIST SRM 1649 (Washington, D.C. urban air particulate matter) into six compound class fractions by acid-base partitioning and silica gel column chromatography is demonstrated here. ecoveries of organic mass and Salmonella...

  14. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  15. Intake fractions of industrial air pollutants in China: estimation and application.

    PubMed

    Wang, Shuxiao; Hao, Jiming; Ho, Mun S; Li, Ji; Lu, Yongqi

    2006-02-01

    Intake fractions, an emissions-intake relationship for primary pollutants, are defined and are estimated in order to make simple estimates of health damages from air pollution. The sulfur dioxide (SO2) and total suspended particles (TSP) intake fractions for five cities of China are estimated for the four main polluting industries-electric power generation, mineral (mostly cement) products industry, chemical process industry and metallurgical industry (mainly iron and steel smelting). The Industrial Source Complex Long Term (ISTLT3) model is used to simulate the spatial distribution of incremental ambient concentrations due to emissions from a large sample of site-specific sources. Detailed population distribution information is used for each city. The average intake fractions within 50 km of these sources are 4.4x10(-6) for TSP, and 4.2x10(-6) for SO2, with standard deviations of 8.15x10(-6) and 9.16x10(-6), respectively. They vary over a wide range, from 10(-7) to 10(-5). Although the electric power generation has been the focus of much of the air pollution research in China, our results show that it has the lowest average intake fraction for a local range among the four industries, which highlights the importance of pollutant emissions from other industrial sources. Sensitivity analyses show how the intake fractions are affected by the source and pollutant characteristics, the most important parameter being the size of the domain. However, the intake fraction estimates are robust enough to be useful for evaluating the local impacts on human health of primary SO2 and TSP emissions. An application of intake fractions is given to demonstrate how this approach provides a rapid population risk estimate if the dose-response function is linear without threshold, and hence can help in prioritizing pollution control efforts. PMID:16398989

  16. Impact from indoor air mixing on the thoron progeny concentration and attachment fraction.

    PubMed

    de With, G; de Jong, P

    2016-07-01

    Despite the considerable amount of work in the field of indoor thoron exposure, little studies have focussed on mitigation strategies to reduce exposure to thoron and its progeny. For this reason an advanced computer model has been developed that describes the dispersion and aerosol modelling from first principal using Computational Fluid Dynamics. The purpose of this study is to investigate the mitigation effects from air mixing on the progeny concentration and attachment with aerosols. The findings clearly demonstrate a reduction in thoron progeny concentration due to air mixing. The reduction in thoron progeny is up to 60% when maximum air mixing is applied. In addition there is a reduction in the unattached fraction from 1.2% under regular conditions to 0.3% in case of maximum mixing. PMID:27064565

  17. 13CO2 recovery fraction in expired air of septic patients under mechanical ventilation.

    PubMed

    Auxiliadora-Martins, M; Martins, M A; Coletto, F A; Martins-Filho, O A; Marchini, J S; Basile-Filho, A

    2008-07-01

    The continuous intravenous administration of isotopic bicarbonate (NaH13CO2) has been used for the determination of the retention of the 13CO2 fraction or the 13CO2 recovered in expired air. This determination is important for the calculation of substrate oxidation. The aim of the present study was to evaluate, in critically ill patients with sepsis under mechanical ventilation, the 13CO2 recovery fraction in expired air after continuous intravenous infusion of NaH13CO2 (3.8 micromol/kg diluted in 0.9% saline in ddH2O). A prospective study was conducted on 10 patients with septic shock between the second and fifth day of sepsis evolution (APACHE II, 25.9 +/- 7.4). Initially, baseline CO2 was collected and indirect calorimetry was also performed. A primer of 5 mL NaH13CO2 was administered followed by continuous infusion of 5 mL/h for 6 h. Six CO2 production (VCO2) measurements (30 min each) were made with a portable metabolic cart connected to a respirator and hourly samples of expired air were obtained using a 750-mL gas collecting bag attached to the outlet of the respirator. 13CO2 enrichment in expired air was determined with a mass spectrometer. The patients presented a mean value of VCO2 of 182 +/- 52 mL/min during the steady-state phase. The mean recovery fraction was 0.68 +/- 0.06%, which is less than that reported in the literature (0.82 +/- 0.03%). This suggests that the 13CO2 recovery fraction in septic patients following enteral feeding is incomplete, indicating retention of 13CO2 in the organism. The severity of septic shock in terms of the prognostic index APACHE II and the sepsis score was not associated with the 13CO2 recovery fraction in expired air. PMID:18719737

  18. Beam focusing and unidirectional excitation from four nanoslits filled with air and non-linear material

    NASA Astrophysics Data System (ADS)

    Kong, Yan; Quan, Wei; Wei, Qi; Qiu, Peng

    2016-05-01

    We theoretically design a device composed of four nanoslits to dynamically modulate the propagation direction of light beam by embedding non-linear material and air, respectively. Directions of radiation fields are determined by the phase difference of the surface waves at the exit interface and distance of each slit. Numerical simulations using finite element method verify that the unidirectional excitation and beam focusing can be achieved easily by changing the intensity of incident light.

  19. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2005-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of 1K, and layer precipitable water with an rms error of 20%, in cases with up to 80% effective cloud cover. The basic theory used to analyze AIRS/AMSU/HSB data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small. HSB failed in February 2005, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC in April 2005 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  20. Accuracy of Geophysical Parameters Derived from AIRS/AMSU as a Function of Fractional Cloud Cover

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Barnet, Chris; Blaisdell, John; Iredell, Lena; Keita, Fricky; Kouvaris, Lou; Molnar, Gyula; Chahine, Moustafa

    2006-01-01

    AIRS was launched on EOS Aqua on May 4,2002, together with AMSU A and HSB, to form a next generation polar orbiting infrared and microwave atmospheric sounding system. The primary products of AIRS/AMSU are twice daily global fields of atmospheric temperature-humidity profiles, ozone profiles, sea/land surface skin temperature, and cloud related parameters including OLR. The sounding goals of AIRS are to produce 1 km tropospheric layer mean temperatures with an rms error of lK, and layer precipitable water with an rms error of 20 percent, in cases with up to 80 percent effective cloud cover. The basic theory used to analyze Atmospheric InfraRed Sounder/Advanced Microwave Sounding Unit/Humidity Sounder Brazil (AIRS/AMSU/HSB) data in the presence of clouds, called the at-launch algorithm, was described previously. Pre-launch simulation studies using this algorithm indicated that these results should be achievable. Some modifications have been made to the at-launch retrieval algorithm as described in this paper. Sample fields of parameters retrieved from AIRS/AMSU/HSB data are presented and validated as a function of retrieved fractional cloud cover. As in simulation, the degradation of retrieval accuracy with increasing cloud cover is small and the RMS accuracy of lower tropospheric temperature retrieved with 80 percent cloud cover is about 0.5 K poorer than for clear cases. HSB failed in February 2003, and consequently HSB channel radiances are not used in the results shown in this paper. The AIRS/AMSU retrieval algorithm described in this paper, called Version 4, become operational at the Goddard DAAC (Distributed Active Archive Center) in April 2003 and is being used to analyze near-real time AIRS/AMSU data. Historical AIRS/AMSU data, going backwards from March 2005 through September 2002, is also being analyzed by the DAAC using the Version 4 algorithm.

  1. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  2. Preparation and in vitro evaluation of poly(D,L-lactide-co-glycolide) air-filled nanocapsules as a contrast agent for ultrasound imaging.

    PubMed

    Néstor, Mendoza-Muñoz; Kei, Noriega-Peláez Eddy; Guadalupe, Nava-Arzaluz María; Elisa, Mendoza-Elvira Susana; Adriana, Ganem-Quintanar; David, Quintanar-Guerrero

    2011-10-01

    The aim of this study was to prepare air-filled nanocapsules intended ultrasound contrast agents (UCAs) with a biodegradable polymeric shell composed of poly(d,l-lactide-co-glycolide) (PLGA). Because of their size, current commercial UCAs are not capable of penetrating the irregular vasculature that feeds growing tumors. The new generation of UCAs should be designed on the nanoscale to enhance tumor detection, in addition, the polymeric shell in contrast with monomolecular stabilized UCAs improves the mechanical properties against ultrasound pressure and lack of stability. The preparation method of air-filled nanocapsules was based on a modification of the double-emulsion solvent evaporation technique. Air-filled nanocapsules with a mean diameter of 370±96nm were obtained. Electronic microscopies revealed spherical-shaped particles with smooth surfaces and a capsular morphology, with a shell thickness of ∼50nm. Air-filled nanocapsules showed echogenic power in vitro, providing an enhancement of up to 15dB at a concentration of 0.045mg/mL at a frequency of 10MHz. Loss of signal for air-filled nanocapsules was 2dB after 30min, suggesting high stability. The prepared contrast agent in this work has the potential to be used in ultrasound imaging. PMID:21570702

  3. Isolating scattering resonances of an air-filled spherical shell using iterative, single-channel time reversal.

    PubMed

    Waters, Zachary J; Dzikowicz, Benjamin R; Simpson, Harry J

    2012-01-01

    Iterative, single-channel time reversal is employed to isolate backscattering resonances of an air-filled spherical shell in a frequency range of 0.5-20 kHz. Numerical simulations of free-field target scattering suggest improved isolation of the dominant target response frequency in the presence of varying levels of stochastic noise, compared to processing returns from a single transmission and also coherent averaging. To test the efficacy of the technique in a realistic littoral environment, monostatic scattering experiments are conducted in the Gulf of Mexico near Panama City, Florida. The time reversal technique is applied to returns from a hollow spherical shell target sitting proud on a sandy bottom in 14 m deep water. Distinct resonances in the scattering response of the target are isolated, depending upon the bandwidth of the sonar system utilized. PMID:22280594

  4. Response of ozone to changes in hydrocarbon and nitrogen oxide concentrations in outdoor smog chambers filled with Los Angeles air

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gunst, Richard F.

    During the summer portion of the 1987 Southern California Air Quality Study (SCAQS), outdoor smog chamber experiments were performed on Los Angeles air to determine the response of maximum ozone levels, O 3(max), to changes in the initial concentrations of hydrocarbons, HC, and nitrogen oxides, NO x. These captive-air experiments were conducted in downtown Los Angeles and in the downwind suburb of Claremont. Typically, eight chambers were filled with LA air in the morning. In some chambers the initial HC and/or NO x concentrations were changed by 25% to 50% by adding various combinations of a mixture of HC, clean air, or NO x. The O 3 concentration in each chamber was monitored throughout the day to determine O 3(max). An empirical mathematical model for O 3(max) was developed from regression fits to the initial HC and NO x concentrations and to the average daily temperature at both sites. This is the first time that a mathematical expression for the O 3-precursor relationship and the positive effect of temperature on O 3(max) have been quantified using captive-air experiments. An ozone isopleth diagram prepared from the empirical model was qualitatively similar to those prepared from photochemical mechanisms. This constitutes the first solely empirical corroboration of the O 3 contour shape for Los Angeles. To comply with the Federal Ozone Standard in LA, O 3(max) must be reduced by approximately 50%. Several strategies for reducing O 3(max) by 50% were evaluated using the empirical model. For the average initial conditions that we measured in LA, the most efficient strategy is one that reduces HC by 55-75%, depending on the ambient HC/NO x ratio. Any accompanying reduction in NO x would be counter-productive to the benefits of HC reductions. In fact, reducing HC and NO x simultaneously requires larger percentage reductions for both than the reduction required when HC alone is reduced. The HC-reduction strategy is the most efficient on average, but no single

  5. Pollutants in particulate and gaseous fractions of ambient air interfere with multiple signaling pathways in vitro.

    PubMed

    Novák, Jirí; Jálová, Veronika; Giesy, John P; Hilscherová, Klára

    2009-01-01

    Traditionally, contamination of air has been evaluated primarily by chemical analyses of indicator contaminants and these studies have focused mainly on compounds associated with particulates. Some reports have shown that air contaminants can produce specific biological effects such as toxicity mediated by the aryl hydrocarbon receptor (AhR) or modulation of the endocrine system. This study assessed the dioxin-like toxicity, anti-/estrogenicity, anti-/androgenicity and anti-/retinoic activity of both the particulate and gas phase fractions of air in two regions with different types of pollution sources and a background locality situated in an agricultural area of Central Europe. The first region (A) is known to be significantly contaminated by organochlorine pesticides and chemical industry. The other region (B) has been polluted by historical releases of PCBs, but the major current sources of contamination are probably combustion sources from local traffic and heating. Samples of both particle and gas fractions produced dioxin-like (AhR-mediated) activity, anti-estrogenic and antiandrogenic effects, but none had any effect on retinoid signaling. AhR-mediated activities were observed in all samples and the TEQ values were comparable in both fractions in region A, but significantly greater in the particulate fraction in region B. The greater AhR-mediated activity corresponded to a greater coincident antiestrogenicity of both phases in region B. Our study is the first report of antiestrogenicity and antiandrogenicity in ambient air. Anti-androgenicity was observed in the gas phase of all regions, while in the particulate phase only in one region due to the specific type of pollution in that area. Even though based on concentrations of individual compounds, except for the OCPs, the level of contamination of the two regions was similar, there were strong differences in responses in the bioassays between the two regions. Moreover, AhR-mediated activity and

  6. Spectral Evidence for Ionization in Air-Filled Glow Discharge Tubes: Application to Sprites

    NASA Astrophysics Data System (ADS)

    Armstrong, R. A.; Williams, E. R.; Golka, R. K.; Williams, D. R.

    2001-12-01

    The question of ionization in sprites and the evidence for VLF backscatter from sprites has motivated a quantitative spectral analysis of the various (classical) regions of the glow discharge tube under DC excitation and at air densities appropriate for sprites in the mesosphere. A PR-650 colorimeter (Photo Research, Inc.) has enabled calibrated irradiance measurements for localized zones along the axis of the discharge tube--in the dominantly blue negative glow, in the Faraday dark space and in the red/pink positive column. Consistent with historical nomenclature, nitrogen first and second positive emission is dominant in the positive column (associated with neutral N2), and nitrogen first negative emission, with a prominent peak at 4278 A, is dominant in the blue negative glow (associated with ionized N2+). Whereas nitrogen first and second positive emission are also detected in the negative glow, no spectral evidence for ionization (no 4279, no 3914, no Meinel) is found in the red/pink positive column. This negative result is attributed not to an absence of ionization in the positive column, but rather to a sparse population of N2+ relative to neutral nitrogen in this region, and to the prominent emission in the blue part of the spectrum due to nitrogen second positive. A similar interpretation may be appropriate for the time-integrated spectra from the red body of sprites, also lacking direct evidence for ionization.

  7. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air.

    PubMed

    Schinke, Claudia; Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100  μ m), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate. PMID:23738054

  8. Recovery of Extracellular Lipolytic Enzymes from Macrophomina phaseolina by Foam Fractionation with Air

    PubMed Central

    Germani, José Carlos

    2013-01-01

    Macrophomina phaseolina was cultivated in complex and simple media for the production of extracellular lipolytic enzymes. Culture supernatants were batch foam fractionated for the recovery of these enzymes, and column design and operation included the use of P 2 frit (porosity 40 to 100 μm), air as sparging gas at variable flow rates, and Triton X-100 added at the beginning or gradually in aliquots. Samples taken at intervals showed the progress of the kinetic and the efficiency parameters. Best results were obtained with the simple medium supernatant by combining the stepwise addition of small amounts of the surfactant with the variation of the air flow rates along the separation. Inert proteins were foamed out first, and the subsequent foamate was enriched in the enzymes, showing estimated activity recovery (R), enrichment ratio (E), and purification factor (P) of 45%, 34.7, and 2.9, respectively. Lipases were present in the enriched foamate. PMID:23738054

  9. Interaction-driven fractional quantum Hall state of hard-core bosons on kagome lattice at one-third filling

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Gong, S. S.; Sheng, D. N.

    2016-07-01

    There has been a growing interest in realizing topologically nontrivial states of matter in band insulators, where a quantum Hall effect can appear as an intrinsic property of the band structure. While ongoing progress is under way with a number of directions, the possibility of realizing novel interaction-generated topological phases, without the requirement of a nontrivial invariant encoded in single-particle wave function or band structure, can significantly extend the class of topological materials and is thus of great importance. Here, we show an interaction-driven topological phase emerging in an extended Bose-Hubbard model on a kagome lattice, where the noninteracting band structure is topological trivial with zero Berry curvature in the Brillouin zone. By means of an unbiased state-of-the-art density-matrix renormalization group technique, we identify that the ground state in a broad parameter region is equivalent to a bosonic fractional quantum Hall Laughlin state, based on the characterization of universal properties including ground-state degeneracy, edge excitations, and anyonic quasiparticle statistics. Our work paves a way to finding an interaction-induced topological phase at the phase boundary of conventionally ordered solid phases.

  10. On the air-filled effective porosity parameter of Rogers and Nielson's (1991) bulk radon diffusion coefficient in unsaturated soils.

    PubMed

    Saâdi, Zakaria

    2014-05-01

    The radon exhalation rate at the earth's surface from soil or rock with radium as its source is the main mechanism behind the radon activity concentrations observed in both indoor and outdoor environments. During the last two decades, many subsurface radon transport models have used Rogers and Nielson's formula for modeling the unsaturated soil bulk radon diffusion coefficient. This formula uses an "air-filled effective porosity" to account for radon adsorption and radon dissolution in the groundwater. This formula is reviewed here, and its hypotheses are examined for accuracy in dealing with subsurface radon transport problems. The author shows its limitations by comparing one dimensional steady-state analytical solutions of the two-phase (air/water) transport equation (Fick's law) with Rogers and Nielson's formula. For radon diffusion-dominated transport, the calculated Rogers and Nielson's radon exhalation rate is shown to be unrealistic as it is independent of the values of the radon adsorption and groundwater dissolution coefficients. For convective and diffusive transport, radon exhalation rates calculated using Fick's law and this formula agree only for high values of gas-phase velocity and groundwater saturation. However, these conditions are not usually met in most shallow subsurface environments where radon migration takes place under low gas phase velocities and low water saturation. PMID:24670909

  11. Photoacoustic Detection of Perfluorocarbon Tracers in Air for Application to Leak Detection in Oil-Filled Cables

    NASA Astrophysics Data System (ADS)

    Zajarevich, N.; Slezak, V.; Peuriot, A.; Villa, G.; Láttero, A.; Crivicich, R.

    2013-09-01

    The underground oil-filled cable consists of a hollow copper conductor surrounded by oiled paper which acts as electrical insulation. The oil flows along the conductor and diffuses through it to the insulating paper. A lead sheath is used as the outer retaining wall. As the deterioration of this cover may cause a loss of insulation fluid, its detection is very important since this high voltage and power cable is used in cities even under sidewalks. The method of perfluorocarbon vapor tracers, based on the injection and subsequent detection of these volatile chemical substances in the vicinity of the cable, is one of the most promising methods, so far used in combination with gas chromatography and mass spectrometry. In this study, the possibility of detecting two different tracers, and , by means of resonant photoacoustic spectroscopy is studied. The beam from a tunable amplitude-modulated laser goes through an aluminum cell with quarter wave filters at both ends of an open resonator and an electret microphone in its center, attached to the walls. The calibration of the system for either substance diluted in chromatographic air showed a higher sensitivity for , so the experiment was completed checking the behavior of this substance in samples prepared with ambient air in order to analyze the application of the system to field studies.

  12. Multiple Solutions in Natural Convection in an Air Filled Square Enclosure: Fractal Dimension of Attractors

    NASA Astrophysics Data System (ADS)

    Aklouche Benouaguef, S.; Zeghmati, B.; Bouhadef, K.; Daguenet, M.

    In this study, we investigated numerically the transient natural convection in a square cavity with two horizontal adiabatic sides and vertical walls composed of two regions of same size maintained at different temperatures. The flow has been assumed to be laminar and bi-dimensional. The governing equations written in dimensionless form and expressed in terms of stream function and vorticity, have been solved using the Alternating Direction Implicit (ADI) method and the GAUSS elimination method. Calculations were performed for air (Pr = 0.71), with a Rayleigh number varying from 2.5x105 to 3.7x106. We analysed the effect of the Rayleigh number on the route to the chaos of the system. The first transition has been found from steady-state to oscillatory flow and the second is a subharmonic bifurcation as the Rayleigh number is increased further. For sufficiently small Rayleigh numbers, present results show that the flow is characterized by four cells with horizontal and vertical symmetric axes. The attractor bifurcates from a stable fixed point to a limit cycle for a Rayleigh number varying from 2.5x105 to 2.51x105. A limit cycle settles from Ra = 3x105 and persists until Ra = 5x105. At a Rayleigh number of 2.5x105 the temporal evolution of the Nusselt number Nu(t) was stationary. As the Rayleigh number increases, the flow becomes unstable and bifurcates to a time periodic solution at a critical Rayleigh number between 2.5x105 and 2.51x105. After the first HOPF bifurcation at Ra = 2.51x105, the oscillatory flow undergoes several bifurcations and ultimately evolves into a chaotic flow.

  13. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    NASA Astrophysics Data System (ADS)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  14. Noble gas adsorption with and without mechanical stress: Not Martian signatures but fractionated air

    NASA Astrophysics Data System (ADS)

    Schwenzer, Susanne P.; Herrmann, Siegfried; Ott, Ulrich

    2012-06-01

    Sample preparation, involving physical and chemical methods, is an unavoidable step in geochemical analysis. From a noble gas perspective, the two important effects are loss of sample gas and/or incorporation of air, which are significant sources of analytical artifacts. This article reports on the effects of sample exposure to laboratory air without mechanical influence and during sample grinding. The experiments include pure adsorption on terrestrial analog materials (gibbsite and olivine) and grinding of Martian meteorites. A consistent observation is the presence of an elementally fractionated air component in the samples studied. This is a critical form of terrestrial contamination in meteorites as it often mimics the heavy noble gas signatures of known extra-terrestrial end-members that are the basis of important conclusions about the origin and evolution of a meteorite. Although the effects of such contamination can be minimized by avoiding elaborate sample preparation protocols, caution should be exercised in interpreting the elemental ratios (Ar/Xe, Kr/Xe), especially in the low-temperature step extractions. The experiments can also be transferred to the investigation of Martian meteorites with long terrestrial residence times, and to Mars, where the Mars Science Laboratory mission will be able to measure noble gas signatures in the current atmosphere and in rocks and soils collected on the surface in Gale crater.

  15. Small bowel necrosis as a consequence of spontaneous deflation and migration of an air-filled intragastric balloon - a potentially life-threatening complication.

    PubMed

    Drozdowski, Robert; Wyleżoł, Mariusz; Frączek, Mariusz; Hevelke, Piotr; Giaro, Marcin; Sobański, Paweł

    2014-06-01

    Intragastric balloon placement is a common method of treatment of obesity and is often used by non-surgical teams in endoscopy departments. The likelihood of spontaneous intragastric balloon damage is a well-known phenomenon. We describe a patient who was disqualified from surgical obesity treatment and in whom intragastric fluid-filled balloons had already been inserted twice and removed due to their intolerance. Therefore we qualified this patient for placement of the air-filled balloon Heliosphere BAG. Two months after the planned check-up, he arrived at the surgery department complaining of nausea and vomiting and due to symptoms of ileus diagnosed with an X-ray and ultrasound examination we qualified him for emergency surgery. We would like to emphasise the following issues: the necessity of air-filled balloon removal according to the producer's instructions and multidisciplinary specialist team care along with appropriate diagnostic tools in every case of intragastric balloon insertion. PMID:25097704

  16. Intake fraction variability between air pollution emission sources inside an urban area.

    PubMed

    Tainio, Marko; Holnicki, Piotr; Loh, Miranda M; Nahorski, Zbigniew

    2014-11-01

    The cost-effective mitigation of adverse health effects caused by air pollution requires information on the contribution of different emission sources to exposure. In urban areas the exposure potential of different sources may vary significantly depending on emission height, population density, and other factors. In this study, we quantified this intraurban variability by predicting intake fraction (iF) for 3,066 emission sources in Warsaw, Poland. iF describes the fraction of the pollutant that is inhaled by people in the study area. We considered the following seven pollutants: particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), benzo[a] pyrene (BaP), nickel (Ni), cadmium (Cd), and lead (Pb). Emissions for these pollutants were grouped into four emission source categories (Mobile, Area, High Point, and Other Point sources). The dispersion of the pollutants was predicted with the CALPUFF dispersion model using the year 2005 emission rate data and meteorological records. The resulting annual average concentrations were combined with population data to predict the contribution of each individual source to population exposure. The iFs for different pollutant-source category combinations varied between 51 per million (PM from Mobile sources) and 0.013 per million (sulfate PM from High Point sources). The intraurban iF variability for Mobile sources primary PM emission was from 4 per million to 100 per million with the emission-weighted iF of 44 per million. These results propose that exposure due to intraurban air pollution emissions could be decreased more effectively by specifically targeting sources with high exposure potency rather than all sources. PMID:24913007

  17. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  18. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  19. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation

    NASA Astrophysics Data System (ADS)

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; W Nazaroff, William

    Small-scale, distributed electricity generation (DG) technologies have been promoted for their many benefits as compared to the traditional paradigm of large, centralized power plants. To evaluate the implications for human inhalation exposure resulting from a shift toward DG, we combined Gaussian plume modeling and a GIS-based inhalation exposure assessment of existing and hypothetical power-generation facilities in California. Twenty-five existing central stations (CSs) were analyzed and compared with hypothetical DG technologies deployed in the downtown areas of the 11 most populous cities in California. The intake fraction (iF) for primary pollutants was computed for populations living within 100 km of each source, using meteorological conditions typical of the long-term observational record and population, lifetime-average breathing rates. The iF (a dimensionless term representing the proportion of pollutant mass emitted by a source that is eventually inhaled) concisely expresses the source-to-intake relationship, is independent of the emissions characteristics of the plants assessed, and normalizes for the large scale differences between the two paradigms of electricity generation. The median iF for nonreactive primary pollutants emitted from the 25 CSs is 0.8 per million compared to 16 per million for the 11 DG units. The difference is partly attributable to the closer proximity of DG sources to densely populated areas as compared to typical CS facilities. In addition, the short stacks of DG sources emphasize near-source population exposure more than traditional CSs, and increase exposures during periods of low wind speed, low mixing height and stable atmospheric conditions. Strategies that could reduce the potential increase in air pollutant intake from DG include maximally utilizing waste heat in combined heat and power operations, increasing the release height of DG effluents and deploying DG technologies that do not emit air pollutants.

  20. Development of functional spaghetti enriched in bioactive compounds using barley coarse fraction obtained by air classification.

    PubMed

    Verardo, Vito; Gómez-Caravaca, Ana Maria; Messia, Maria Cristina; Marconi, Emanuele; Caboni, Maria Fiorenza

    2011-09-14

    Barley byproducts obtained by air classification have been used to produce a different barley functional spaghetti, which were compared to different commercial whole semolina samples. Total, insoluble, and soluble fiber and β-glucan contents of the barley spaghetti were found to be greater than those of commercial samples. Furthermore, it was proved that barley spaghetti reached the FDA requirements, which could allow these pastas to deserve the health claims "good source of dietary fiber" and "may reduce the risk of heart disease". When the barley coarse fraction was used, a flavan-3-ols enrichment and an increase of antioxidant activity were reported, while commercial samples showed the absence of flavan-3-ols and a higher presence of phenolic acids and tannins. Whole semolina commercial spaghetti had a significantly higher content of phenolic acids than semolina spaghetti samples. Besides, it was observed that when vital gluten was added to the spaghetti formulation, phenolic compounds were blocked in the gluten network and were partially released during the cooking process. PMID:21806068

  1. Noninvasive prediction of the exercise-induced elevation in left ventricular filling pressure in post-heart transplant patients with normal left ventricular ejection fraction

    PubMed Central

    Meluzin, Jaroslav; Hude, Petr; Krejci, Jan; Spinarova, Lenka; Podrouzkova, Helena; Leinveber, Pavel; Dusek, Ladislav; Soska, Vladimir; Tomandl, Josef; Nemec, Petr

    2013-01-01

    OBJECTIVES: At present, there are conflicting data on the ability of echocardiographic parameters to predict the exercise-induced elevation of left ventricular (LV) filling pressure. The purpose of the present study was to validate the ratio of early diastolic transmitral (E) to mitral annular velocity (e′) obtained at peak exercise in its capacity to determine the exercise-induced elevation of pulmonary capillary wedge pressure (PCWP) and to reveal new noninvasive parameters with such capacity. METHODS: Sixty-one patients who had undergone heart transplantation with normal LV ejection fraction underwent simultaneous exercise echocardiography and right heart catheterization. RESULTS: In 50 patients with a normal PCWP at rest, exercise E/e′ ≥8.5 predicted exercise PCWP ≥25 mmHg with a sensitivity of 64.3% and a specificity of 84.2% (area under the curve [AUC]=0.74). A comparable or slightly better prediction was achieved by exercise E/peak systolic mitral annular velocity (s′) ≥11.0 (sensitivity 79.3%; specificity 57.9%; AUC=0.75) and exercise E/LV systolic longitudinal strain rate ≤−105 cm (sensitivity 78.9%; specificity 78.6%; AUC=0.87). Combined, exercise E/s′ and exercise E/e′ resulted in a trend toward a slightly more precise prediction (sensitivity 53.6%; specificity 89.5%; AUC=0.78) than did either variable alone. CONCLUSIONS: Exercise E/e′, used as a sole parameter, is not sufficiently precise to predict the exercise-induced elevation of PCWP. Exercise E/s′, E/LV systolic longitudinal strain rate or combinations of these parameters may represent further promising possibilities for predicting exercise PCWP elevation. PMID:23940422

  2. Enhancement of fill factor in air-processed inverted organic solar cells using self-assembled monolayer of fullerene catechol

    NASA Astrophysics Data System (ADS)

    Jeon, Il; Ogumi, Keisuke; Nakagawa, Takafumi; Matsuo, Yutaka

    2016-08-01

    [60]Fullerene catechol self-assembled monolayers were prepared and applied to inverted organic solar cells by an immersion method, and their energy conversion properties were measured. By introducing fullerenes at the surface, we improved the hole-blocking capability of electron-transporting metal oxide, as shown by the fill factor enhancement. The fullerene catechol-treated TiO x -containing device gave a power conversion efficiency (PCE) of 2.81% with a fill factor of 0.56 while the non treated device gave a PCE of 2.46% with a fill factor of 0.49. The solar cell efficiency improved by 13% compared with the non treated reference device.

  3. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-07-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH.

  4. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air.

    PubMed

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-01-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on 'sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)'. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH. PMID:26126962

  5. A simple methodological validation of the gas/particle fractionation of polycyclic aromatic hydrocarbons in ambient air

    PubMed Central

    Kim, Yong-Hyun; Kim, Ki-Hyun

    2015-01-01

    The analysis of polycyclic aromatic hydrocarbons (PAH) in ambient air requires the tedious experimental steps of both sampling and pretreatment (e.g., extraction or clean-up). To replace pre-existing conventional methods, a simple, rapid, and novel technique was developed to measure gas-particle fractionation of PAH in ambient air based on ‘sorbent tube-thermal desorption-gas chromatograph-mass spectrometer (ST-TD-GC-MS)’. The separate collection and analysis of ambient PAHs were achieved independently by two serially connected STs. The basic quality assurance confirmed good linearity, precision, and high sensitivity to eliminate the need for complicated pretreatment procedures with the detection limit (16 PAHs: 13.1 ± 7.04 pg). The analysis of real ambient PAH samples showed a clear fractionation between gas (two-three ringed PAHs) and particulate phases (five-six ringed PAHs). In contrast, for intermediate (four ringed) PAHs (fluoranthene, pyrene, benz[a]anthracene, and chrysene), a highly systematic/gradual fractionation was established. It thus suggests a promising role of ST-TD-GC-MS as measurement system in acquiring a reliable database of airborne PAH. PMID:26126962

  6. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  7. Determination of respirable mass concentration using a high volume air sampler and a sedimentation method for fractionation

    SciTech Connect

    Johnson, J.

    1995-12-31

    A preliminary study of a new method for determining respirable mass concentration is described. This method uses a high volume air sampler and subsequent fractionation of the collected mass using a particle sedimentation technique. Side-by-side comparisons of this method with cyclones were made in the field and in the laboratory. There was good agreement among the samplers in the laboratory, but poor agreement in the field. The effect of wind on the samplers` capture efficiencies is the primary hypothesized source of error among the field results. The field test took place at the construction site of a hazardous waste landfill located on the Hanford Reservation.

  8. Effect of barley roller milling on fractionation of flour using sieving and air classification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Separation of hulls prior to fermentation of barley flour could increase fuel ethanol productivity and the hulls would be an additional coproduct. In a recent study, it was found that the Elusieve process, a combination of sieving and elutriation (air classification) was effective in separating hul...

  9. FRACTIONAL AEROSOL FILTRATION EFFICIENCY OF IN-DUCT VENTILATION AIR CLEANERS

    EPA Science Inventory

    The filtration efficiency of ventilation air cleaners is highly particle-size dependent over the 0.01 to 3 μm diameter size range. Current standardized test methods, which determine only overall efficiencies for ambient aerosol or other test aerosols, provide data of limited util...

  10. The performance of a two-layer biotrickling filter filled with new mixed packing materials for the removal of H2S from air.

    PubMed

    Chen, Yingwen; Wang, Xiaojun; He, Shuo; Zhu, Shemin; Shen, Shubao

    2016-01-01

    In the work described here, a two-layer biotrickling filter filled with new packing materials was used to remove H2S from air. The upper layer of the filter was packed with activated carbon-loaded polyurethane, whereas the lower layer was filled with modified organism-suspended fillers. The effects of inlet load, empty bed residence time (EBRT) from 79 s to 53 s, pH and contaminant starvation time were investigated. For loads of 15-50 g/(m(3) h), the average removal efficiency (RE) was higher than 96% under a consistent supply of pollutants. The critical elimination capacity was 39.95 g/(m(3) h) for an EBRT of 53 s with an RE of 99.9%. The two-layer BTF was capable of withstanding contaminant starvation periods for 1.5 d and 7 d with only a few hours of recovery time. The biodegradation kinetics was studied using Michaelis-Menten type equations under different EBRTs. At an EBRT of 66 s, the optimal kinetic constants rmax and Km were 333.3 g/(m(3) h) and 0.93 g/m(3), respectively. During the operation, the two-layer BTF performed well under various reasonable conditions. PMID:26397031

  11. Isotope Fractionation of Modern Air In Dome C (antarctica) Polar Firn.

    NASA Astrophysics Data System (ADS)

    Landais, A.; Leuenberger, M.; Caillon, N.; Schwander, J.; Jouzel, J.

    Air bubbles trapped in ice cores are unique archives of the past atmospheric com- position. Recent paleoclimatic studies have taken advantage of the effects of thermal and gravitational diffusion occurring in the firn to quantify past abrupt temperature changes. In order to better quantify the thermal diffusion, we have analysed modern air samples pumped within the FIRETRACC European Project at different depths along the firn (upper 100 m of the ice cap) of Dome C polar station (Antarctica). Air bottles were then directly analysed for the isotopic composition of N2, O2 and Ar with mass spectrometer either in Saclay (LSCE) or in Bern (Climate Institute). Similar results were obtained in the two laboratories, which is a validation of the analytical method. The strong seasonal temperature gradient in the upper 30 m of the firn leads to a clear thermal diffusion anomaly for each isotope which is superimposed on the gravitational signal. Comparison of the different magnitudes of these thermally driven anomalies for 15N/14N, 18O/16O and 40Ar/36Ar enables us then to estimate the thermal diffu- sion factors for each isotope pair and use it for later studies in paleothermometry.

  12. Intake fractions of primary conserved air pollutants emitted from on-road vehicles in the United States

    NASA Astrophysics Data System (ADS)

    Lobscheid, Agnes B.; Nazaroff, William W.; Spears, Michael; Horvath, Arpad; McKone, Thomas E.

    2012-12-01

    Vehicular air pollutant emissions are characterized by a high degree of spatial variability that is correlated with the distribution of people. The consequences of the spatial association between emissions and exposed populations have not been fully captured in lifecycle and other impact assessments. The intake fraction (iF) quantifies aggregate air-pollutant exposures attributable to sources. Utilizing source-receptor (S-R) relationships derived from the US Environmental Protection Agency's AERMOD steady-state plume model, we quantify the intake fraction of conserved pollutants emitted from on-road mobile sources and report here the first characterization across approximately 65,000 census tracts of the conterminous United States. Considering exposures out to 50 km from the source, the population-weighted mean iF is 8.6 parts per million (ppm). The population-weighted median generally increases with geographic scale, from 3.6 ppm for census tracts to 4.2 ppm for counties, and 5.1 ppm for states, while the population-weighted interquartile range (IQR) progressively narrows as geographic scale increases: 0.85-8.8 ppm for census tracts, 1.5-8.5 ppm for counties, and 3.2-7.5 ppm for states. Across the four US Census regions, the population weighted median iF varies from 2.2 ppm (South) to 7.5 ppm (West), and the census-tract IQR spans an order of magnitude in each region (2.1-17 ppm in the West; 0.55-6.9 ppm in the Midwest; 0.45-5.5 ppm in the South; and 1.8-18 ppm in the Northeast). The population-weighted mean intake fraction for populous urban counties is about two orders of magnitude greater than for sparsely populated rural counties. On a population-weighted average basis and considering the 50 km analysis range, 75% of the intake occurs in the same county as emissions.

  13. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    PubMed

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided. PMID:27258903

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Rechargeability of Li-air cathodes pre-filled with discharge products using an ether-based electrolyte solution: implications for cycle-life of Li-air cells.

    PubMed

    Meini, Stefano; Tsiouvaras, Nikolaos; Schwenke, K Uta; Piana, Michele; Beyer, Hans; Lange, Lukas; Gasteiger, Hubert A

    2013-07-21

    The instability of currently used electrolyte solutions and of the carbon support during charge-discharge in non-aqueous lithium-oxygen cells can lead to discharge products other than the desired Li2O2, such as Li2CO3, which is believed to reduce cycle-life. Similarly, discharge in an O2 atmosphere which contains H2O and CO2 impurities would lead to LiOH and Li2CO3 discharge products. In this work we therefore investigate the rechargeability of model cathodes pre-filled with four possible Li-air cell discharge products, namely Li2O2, Li2CO3, LiOH, and Li2O. Using Online Electrochemical Mass Spectrometry (OEMS), we determined the charge voltages and the gases evolved upon charge of pre-filled electrodes, thus determining the reversibility of the formation/electrooxidation reactions. We show that Li2O2 is the only reversible discharge product in ether-based electrolyte solutions, and that the formation of Li2CO3, LiOH, or Li2O is either irreversible and/or reacts with the electrolyte solution or the carbon during its oxidation. PMID:23748698

  16. The Relationship Between Soil Air Filled Porosity and Soil Methane Oxidation is Almost Identical in Both Dry and Wet Temperate Eucalypt Forests

    NASA Astrophysics Data System (ADS)

    Fest, B. J.; Wardlaw, T.; Hinko-Najera, N.; Arndt, S. K.

    2015-12-01

    In order to gain a better understanding of the temporal variation in soil methane (CH4) exchange in temperate evergreen eucalypt forests in south-eastern Australia we measured soil CH4 exchange in high temporal resolution (every 2 hours or less) over two consecutive years (Wombat State Forest, Victoria, AUS) and over one year (Warra, Tasmania, AUS) in two temperate Eucalyptus obliqua (L. Her) forests with contrasting annual precipitation (Wombat State Forest = 870 mm yr-1, Warra = 1700 mm yr-1). Both forests were continuous CH4 sinks with the Victorian site having a sink strength of -1.79 kg CH4 ha-1 yr-1 and the Tasmanian site having a sink strength of -3.83 kg CH4 ha-1 yr-1. Our results show that CH4 uptake was strongly controlled by soil moisture at both sites and explained up to 90% of the temporal variability in CH4 uptake. Furthermore, when soil moisture was expressed as soil air filled porosity (AFP) we were able to predict the CH4 uptake of one site by the linear regression between AFP and CH4 uptake from the other site. Soil temperature only had an apparent control over seasonal variation in CH4 uptake during periods when soil moisture and soil temperature were closely correlated. The fluctuation of the generally low soil nitrogen levels did not influence soil CH4 uptake at either site.

  17. Rapid assessment of methanotrophic capacity of compost-based materials considering the effects of air-filled porosity, water content and dissolved organic carbon.

    PubMed

    Mancebo, Uriel; Hettiaratchi, J Patrick A

    2015-02-01

    Since the global warming potential of CH4 is 25 times that of CO2 on a 100-year time horizon, the development of methanotrophic applications for the conversion of CH4 to CO2 is emerging as an area of interest for researchers and practicing engineers. Compost exhibits most of the characteristics required for methanotroph growth media and has been used in several projects. This paper presents results from a study that was undertaken to assess the influence of physical and chemical characteristics of compost-based materials on the biological oxidation of CH4 when used in methane biofilters. The results showed that easily-measurable parameters, such as air filled porosity, water content and dissolved organic carbon, are correlated with maximum CH4 removal rates. The results obtained were used to develop an empirical relationship that could be regarded as a rapid assessment tool for the estimation of the performance of compost-based materials in engineered methanotrophic applications. PMID:25484123

  18. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 2: Methane

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Bergamaschi, P.; Peters, W.

    2009-01-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003-2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1). For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1-2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected and

  19. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite Part 1: Carbon dioxide

    NASA Astrophysics Data System (ADS)

    Schneising, O.; Buchwitz, M.; Burrows, J. P.; Bovensmann, H.; Reuter, M.; Notholt, J.; Macatangay, R.; Warneke, T.

    2008-07-01

    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003 2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band), CH4 (1.66 μm) and oxygen (O2 A-band at 0.76 μm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2 annual

  20. Air quality in the German-Czech border region: A focus on harmful fractions of PM and ultrafine particles

    NASA Astrophysics Data System (ADS)

    Schladitz, Alexander; Leníček, Jan; Beneš, Ivan; Kováč, Martin; Skorkovský, Jiří; Soukup, Aleš; Jandlová, Jana; Poulain, Laurent; Plachá, Helena; Löschau, Gunter; Wiedensohler, Alfred

    2015-12-01

    A comprehensive air quality study has been carried out at two urban background sites in Annaberg-Buchholz (Germany) and Ústí nad Labem (Czech Republic) in the German-Czech border region between January 2012 and June 2014. Special attention was paid to quantify harmful fractions of particulate matter (PM) and ultrafine particle number concentration (UFP) from solid fuel combustion and vehicular traffic. Source type contributions of UFP were quantified by using the daily concentration courses of UFP and nitrogen oxide. Two different source apportionment techniques were used to quantify relative and absolute mass contributions: positive matrix factorization for total PM2.5 and elemental carbon in PM2.5 and chemical mass balance for total PM1 and organic carbon in PM1. Contributions from solid fuel combustion strongly differed between the non-heating period (April-September) and the heating period (October-March). Major sources of solid fuel combustion in this study were wood and domestic coal combustion, while the proportion of industrial coal combustion was low (<3%). In Ústí nad Labem combustion of domestic brown coal was the most important source of organic carbon ranging from 34% to 43%. Wood combustion was an important source of organic carbon in Annaberg-Buchholz throughout the year. Heavy metals and less volatile polycyclic aromatic hydrocarbons (PAH) in the accumulation mode were related to solid fuel combustion with enhanced concentrations during the heating period. In contrast, vehicular PAH emissions were allocated to the Aitken mode. Only in Ústí nad Labem a significant contribution of photochemical new particle formation (e.g. from sulfur dioxide) to UFP of almost 50% was observed during noontime. UFPs from traffic emissions (nucleation particles) and primary emitted soot particles dominated at both sites during the rest of the day. The methodology of a combined source apportionment of UFP and PM can be adapted to other regions of the world with

  1. Spin polarization at fractional filling factors

    NASA Astrophysics Data System (ADS)

    Groshaus, Javier; Plochocka, P.; Rappaport, M.; Bar-Joseph, I.; Dennis, B.; Pfeiffer, L.; West, K.; Pinczuk, A.

    2006-03-01

    We measure the spin polarization of a two-dimensional electron system (2DES) in the Quantum Hall regime by photocurrent interband absorption spectroscopy. The sample is a single GaAs quantum well that is placed in a dilution fridge with optical windows at low temperatures down to 70 mK. The 2DES density is tuned by a back-gate. We illuminate with circularly polarized light. This allows us to discriminate optical transitions into each electronic spin level. We show that the spectra consist of many-body electron-hole complexes. The lowest in energy is a singlet trion-like transition T (J.G. Groshaus et.al., Phys. Rev. Lett. 93, 96802, 2004). In the T-absorption process, the photocreated electron- hole pair binds to an electron from the 2DES with spin that is opposite to that of the photocreated one. We model this process taking into account correlations and phase space considerations. Using this model and measurements of the T-absorption, we obtain the spin polarization of the 2DES. We find that at ν=1/3 the 2DES is fully polarized. As ν is increased there is loss of spin polarization. Around ν=2/3 the 2DES is half polarized. At this ν, the 2DES remains half polarized for the relatively wide range of magnetic fields of 2 Tesla. This points to the existence of spatial magnetic domains, as proposed by G. Murthy (Phys. Rev. Lett. 84, 350, 2000).

  2. Crater Fill

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Context image for PIA03082 Crater Fill

    This VIS image shows part of the floor of an unnamed crater located between the Hellas and Argyre Basins. At some point in time the entire floor of the crater was filled by material. That material is now being eroded away to form the depressions seen in the center and bottom of the image.

    Image information: VIS instrument. Latitude 46.6S, Longitude 5.0E. 17 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. Nature of organo-mineral particles across density fractions in a volcanic-ash soil: air-drying and sonication effect

    NASA Astrophysics Data System (ADS)

    Wagai, R.; Kajiura, M.; Shirato, Y.; Uchida, M.

    2011-12-01

    Interactions of plant- and microbially-derived organic matter with mineral phases exert significant controls on the stabilization of organic matter (OM) as well as other biogeochemical processes in soil. Density fractionation techniques have been successful in distinguishing soil organo-mineral particles of different degrees of microbial alteration, turnover rate of C, mineral associations. A major methodological difference among the density fractionation studies is the choice of sample pre-treatment. Presence or absence of sonication to disrupt and disperse soil particles and aggregates is a particularly important choice which could significantly alter the nature and distribution of organo-mineral particle and thus the resultant elemental concentration in each density fraction. Soil moisture condition (air-dry vs. field-moist) may also have strong impact especially for soils rich in Fe oxides/hydroxides and/or poorly-crystalline minerals that are prone for (possibly irreversible) aggregation. We thus tested these two effects on the concentration and distribution of C, N, and extractable phases of Fe and Al (by pyrophosphate and acid oxalate) across six density fractions (from <1.6 to >2.5 g/cm^3) using a surface-horizon of volcanic-ash soil which contained large amounts of poorly-crystalline minerals and organo-metal complexes. Compared to field-moist sample, air-drying had little effects on the elemental concentration or distribution across the fractions. In contrast, sonication on air-dried sample at each density cutoff during fractionation process caused significant changes. In addition to well-known increase in low-density material due to the liberation of plant detritus upon aggregate disruption, we found clear increase in C, N, and metals in 2.0-2.3 g/cm^3 fraction, which was largely compensated by the reduction in 1.8-2.0 g/cm^3 and, to a less extent, 2.3-2.5 g/cm^3 particles. Overall, sonication led to the redistribution of C and N by 15-20% and that of

  4. Relationship between Arterial Inflow Rate and Venous Filling Index of the Lower Extremities Assessed by Air Plethysmography in Subjects with or without Axial Reflux in the Great Saphenous Vein

    PubMed Central

    2014-01-01

    Objective: To evaluate the relationship between arterial inflow rate (AIR) and venous filling index (VFI) in limbs with or without varicose veins, assessed by air plethysmography (APG). Materials and Methods: A total of 142 patients (142 limbs) visiting our clinic with leg complaints, but without arterial and venous disease, were defined as the normal group (NG), and 65 patients (65 limbs) with leg varices were defined as the varicose vein group (VG). Both groups underwent duplex ultrasonography and APG to identify venous reflux and measure hemodynamic parameters, respectively. Examinations were performed at the first visit in the NG and before and one month after treatment in the VG. Results: A strong correlation between resting AIR and VFI was found in the NG (r = 0.72) and postoperative VG (r = 0.71). Twenty-two and three limbs in the NG and postoperative VG, respectively, had a VFI over 2.0 mL/s because of the high AIR. In the VG, AIR tended to decrease after treatment (P >0.01). Conclusions: High leg AIR lead to high VFI measured by APG. AIR and VFI should be measured at the same session to assess venous hemodynamic changes after varicose vein treatment when residual venous reflux cannot be diagnosed with duplex ultrasonography. PMID:25298834

  5. Storage stability of keratinocyte growth factor-2 in lyophilized formulations: effects of formulation physical properties and protein fraction at the solid-air interface.

    PubMed

    Devineni, Dilip; Gonschorek, Christoph; Cicerone, Marcus T; Xu, Yemin; Carpenter, John F; Randolph, Theodore W

    2014-10-01

    Lyophilized formulations of keratinocyte growth factor-2 (KGF-2) were prepared with a range of disaccharide (sucrose or trehalose) and hydroxyethyl starch (HES) mass ratios. Protein degradation was assessed as a function of time of storage of the dried formulations at 40, 50 and 60°C. Lyophilized and stored samples were rehydrated, and protein degradation was quantified by measuring loss of monomeric protein with size exclusion chromatography and by determining chemical degradation in the soluble fraction with reverse-phase chromatography. The secondary structure of the protein in the lyophilized formulations was studied with infrared spectroscopy. The magnitudes of degradation were compared the key physical properties of the formulations including retention of protein native secondary structure, glass transition temperature (Tg), inverse mean square displacements 〈u(2)〉(-1) for hydrogen atoms (fast β relaxation), and the relaxation time τ(β), which correlates with relaxation due to fast Johari-Goldstein motions in the glass (Xu et al., 2013) [1]. In addition, specific surface areas of the lyophilized formulations were determined by Brunauer-Emmet-Teller analysis of krypton adsorption isotherms and used to estimate the fraction of the KGF-2 molecules residing at the solid-air interface. KGF-2 degradation rates were highest in formulations wherein the protein's structure was most perturbed, and wherein β relaxations were fastest, but the dominant factor governing KGF-2 degradation in freeze-dried formulations was the fraction of the protein found at the glass solid-air interface. PMID:24859390

  6. Storage Stability of Keratinocyte Growth Factor-2 in Lyophilized Formulations: Effects of Formulation Physical Properties and Protein Fraction at the Solid-Air Interface

    PubMed Central

    Devineni, Dilip; Gonschorek, Christoph; Cicerone, Marcus T; Xu, Yemin; Carpenter, John F.; Randolph, Theodore W.

    2014-01-01

    Lyophilized formulations of keratinocyte growth factor-2 (KGF-2) were prepared with a range of disaccharide (sucrose or trehalose) and hydroxyethyl starch (HES) mass ratios. Protein degradation was assessed as a function of time of storage of the dried formulations at 40, 50 and 60 °C. Lyophilized and stored samples were rehydrated, and protein degradation was quantified by measuring loss of monomeric protein with size exclusion chromatography and by determining chemical degradation in the soluble fraction with reverse-phase chromatography. The secondary structure of the protein in the lyophilized formulations was studied with infrared spectroscopy. The magnitudes of degradation were compared the key physical properties of the formulations including retention of protein native secondary structure, glass transition temperature (Tg), inverse mean square displacements −1 for hydrogen atoms (fast β relaxation), and the relaxation time τβ, which correlates with relaxation due to fast Johari-Goldstein motions in the glass[1]. In addition, specific surface areas of the lyophilized formulations were determined by Brunauer-Emmet-Teller analysis of krypton adsorption isotherms and used to estimate the fraction of the KGF-2 molecules residing at the solid-air interface. KGF-2 degradation rates were highest in formulations wherein the protein’s structure was most perturbed, and wherein β relaxations were fastest, but the dominant factor governing KGF-2 degradation in freeze-dried formulations was the fraction of the protein found at the glass solid-air interface. PMID:24859390

  7. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco

    PubMed Central

    2013-01-01

    This study aimed to evaluate the effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco in terms of internal temperature, produced gases quantity, organic matter conversion rate, and the quality of the final composts. For this purpose, in-vessel bioreactor was designed and used to evaluate both appropriate initial air pressure and appropriate initial moisture content for the composting process. Moreover, 5 experiments were carried out within initial moisture content of 55%, 65%, 70%, 75% and 85%. The initial air pressure and the initial moisture content of the mixture showed a significant effect on the aerobic composting. The experimental results demonstrated that for composting organic waste, relatively high moisture contents are better at achieving higher temperatures and retaining them for longer times. This study suggested that an initial moisture content of around 75%, under 0.6 bar, can be considered as being suitable for efficient composting of organic fraction of municipal solid waste. These last conditions, allowed maximum value of temperature and final composting product with good physicochemical properties as well as higher organic matter degradation and higher gas production. Moreover, final compost obtained showed good maturity levels and can be used for agricultural applications. PMID:23369502

  8. ORGANOCHLORINE PESTICIDE CONCENTRATIONS AND ENANTIOMER FRACTIONS FOR CHLORDANE IN INDOOR AIR FROM THE U.S. CORNBELT

    EPA Science Inventory

    Thirty-seven indoor air samples were collected and analyzed to determine if enantioselective degradation of past use organochlorine pesticides occurs indoors and to increase the available information on concentrations in homes. Samples were collected from homes in the U.S. cor...

  9. COMPARISON OF 24H AVERAGE VOC MONITORING RESULTS FOR RESIDENTIAL INDOOR AND OUTDOOR AIR USING CARBOPACK X-FILLED DIFFUSIVE SAMPLERS AND ACTIVE SAMPLING - A PILOT STUDY

    EPA Science Inventory

    Analytical results obtained by thermal desorption GC/MS for 24h diffusive sampling of 11 volatile organic compounds (VOCs) are compared with results of time-averaged active sampling at a known constant flow rate. Air samples were collected with co-located duplicate diffusive samp...

  10. Polycyclic organic material (POM) in urban air. Fractionation, chemical analysis and genotoxicity of particulate and vapour phases in an industrial town in Finland

    NASA Astrophysics Data System (ADS)

    Pyysalo, Heikki; Tuominen, Jari; Wickström, Kim; Skyttä, Eija; Tikkanen, Leena; Salomaa, Sisko; Sorsa, Marja; Nurmela, Tuomo; Mattila, Tiina; Pohjola, Veijo

    Polycyclic organic material (POM) was collected by high-volume sampling on filter and on XAD-2 resin from the air of a small industrial town in Finland. Concurrent chemical analysis and the assays for genotoxic activity were performed on the particulate and the vapour phases of ambient air POM and their chemical fractions. Furthermore, correlations between seasonal meteorological parameters and POM concentrations were studied to reveal characteristic POM profiles for various emission sources. The range of total POM concentrations varied from 115 to 380 ng m -3 in late spring and from 17 to 83 ng m -3 in early winter. No direct correlation of ambient POM was seen with the temperature, but rather with the wind direction from various emission sources. Especially the low molecular weight compounds were associated with wind direction from industrial sources. Genotoxic activity, as detected by the Ames Salmonella/microsome test and the SCE assay in CHO cells, was found not only in the paniculate phase samples but also in the vapour phase. The polar fractions of some of the samples showed genotoxic activity, and also direct mutagenicity was observed with both the assay systems; these facts support the significance of compounds other than conventional polycyclic aromatic hydrocarbons (PAH) in the samples.

  11. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  12. Filling the launch gap

    NASA Astrophysics Data System (ADS)

    Hoeser, S.

    1986-05-01

    Vehicles proposed to fill the gap in the U.S. space program's space transport needs for the next decade resulting from the January Challenger disaster, are discussed. Prior to the accident, the Air Force planned to purchase a Complementary Expendable Launch Vehicle system consisting of 10 single-use Titan-34D7 rockets. Another heavy lift booster now considered is the Phoenix H. Commercial launch vehicle systems projected to be available in the necessary time frame include the 215,000-pound thrust 4000-pound LEO payload capacity NASA Delta, the 11,300-pound LEO payload capacity Atlas Centaur the first ICBM, and the all-solid propellant expendable 2000-pound LEO payload Conestoga rocket. Also considered is the man-rated fully reusable Phoenix vertical take-off and vertical-landing launch vehicle.

  13. Brief exposure of air-filled guinea-pig isolated trachea to low levels of toluene diisocyanate (TDI) vapor in vitro increases reactivity to methacholine.

    PubMed

    Huang, J; Frazer, D G; Millecchia, L L; Fedan, J S

    1997-12-26

    Toluene diisocyanate (TDI) causes occupational asthma characterized by inflammation and hyperreactivity of airways to irritants and bronchoconstrictor drugs. We examined the non-immune, direct effect of TDI on airway reactivity in vitro in the absence of an inflammatory response using the guinea-pig isolated, perfused trachea preparation to measure reactivity to methacholine (MCh), and fixed point ion mobility spectrometry to measure moment to moment levels of TDI vapor in air that was delivered to the tracheal mucosa. MCh was added to the mucosal modified Krebs-Henseleit (MKH) perfusing solution to generate control concentration-response curves for contractile responses. The lumen was then emptied and perfused with air or air containing 5, 20 or 70 ppb TDI vapor, after which the trachea was perfused with MKH solution and reactivity to MCh was re-examined. After only 30 min of treatment, TDI vapor concentration-dependently increased reactivity of the trachea to MCh (2.4- and 2.9-fold, respectively, for 20 and 70 ppb TDI; 5 ppb TDI and air alone had no effect). In tracheas treated in vitro with 2 microM capsaicin to deplete tachykinins, TDI caused the same (4-fold) increase in reactivity to MCh that was observed in control tracheas. However, TDI vapor (70 ppb) no longer enhanced reactivity to MCh in tracheas from which the epithelium had been removed. Our results indicate that a direct, non-immune, non-inflammatory action of TDI on respiratory epithelium leads to hyperreactivity of airways in vitro. PMID:9457998

  14. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  15. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  16. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  17. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  18. Merging of OMI and AIRS Ozone Data

    NASA Technical Reports Server (NTRS)

    Labow, Gordon J.; Fisher, Bradford; Susskind, Joel

    2014-01-01

    The OMI Instrument measures ozone using the backscattered light in the UV part of the spectrum. In polar night there are no OMI measurements so we hope to incorporate the AIRS ozone data to fill in these missing regions. AIRS is on the Aqua platform and has been operating since May 2002. AIRS is a multi-detector array grating spectrometer containing 2378 IR channels between 650 per centimeter and 2760 per centimeter which measures atmospheric temperature, precipitable water, water vapor, CO, CH4, CO2 and ozone profiles and column amount. It can also measure effective cloud fraction and cloud top pressure for up to two cloud layers and sea-land skin temperature. Since 2008, OMI has had part of its aperture occulted with a piece of the thermal blanket resulting in several scan positions being unusable. We hope to use the AIRS data to fill in the missing ozone values for those missing scan positions.

  19. Pressurized gas filled tendons

    SciTech Connect

    Silcox, W. H.

    1985-06-04

    Pressurized gas filled tubular tendons provide a means for detecting leaks therein. Filling the tendon with a gaseous fluid provides increased buoyancy and reduces the weight supported by the buoyant structure. The use of a corrosion inhibiting gaseous fluid reduces the corrosion of the interior tendon wall.

  20. Filling Tanks with Hydrazine

    NASA Astrophysics Data System (ADS)

    Krueger, K.

    2004-10-01

    At the Hydrazine workshop in 2002 in Noordwijk several presentations dealt with the filling of satellite tanks. I was a bit surprised about the amount of manpower that is needed for this work. But I saw the same during the filling of the SCA system tanks some years ago in Trauen/Germany. I want to present the work flow of filling RESUS Hydrazine tanks. This bladder tanks have a capacity of 64 litres and are similar to some of the satellite tanks. We fill this tanks 25 to 50 times a year. Although the specifications are not exactly the same as those for satellite tank filling, it might be interesting to see how this work can be done half-automatically, because handling with Hydrazine is not a nice job, and the faster it goes, the better.

  1. FCC main fractionator revamps

    SciTech Connect

    Golden, S.W.; Martin, G.R.; Sloley, A.W. )

    1993-03-01

    Structured packing use in fluid catalytic cracker (FCC) main fractionators significantly impacts unit pressure profile. Unit pressure balance links the FCC main fractionator, reactor, regenerator, air compressor and wet gas compressor. Unit pressure balance should be viewed as a design variable when evaluating FCC unit revamps. Depending upon limitations of the particular FCC unit, capacity increases of 12.5% to 22.5% have been achieved without modifications to major rotating equipment, by revamping FCC main fractionators with structured packing. An examination of three FCC main fractionator revamps show improvements to pressure profiles and unit capacity. The three revamps described included a wet gas compressor volume limit; an air blower limitation; and a wet gas compressor motor limitation.

  2. Getting a prescription filled

    MedlinePlus

    ... to get prescription filled; Pharmacy - mail order; Pharmacy - internet; Types of pharmacies ... stored at certain temperatures at a local pharmacy. INTERNET (ONLINE) PHARMACIES Internet pharmacies can be used for ...

  3. Pyrotechnic filled molding powder

    DOEpatents

    Hartzel, Lawrence W.; Kettling, George E.

    1978-01-01

    The disclosure relates to thermosetting molding compounds and more particularly to a pyrotechnic filled thermosetting compound comprising a blend of unfilled diallyl phthalate molding powder and a pyrotechnic mixture.

  4. Influence of entrapped air pockets on hydraulic transients in water pipelines

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen

    2011-01-01

    The pressure variations associated with a filling undulating pipeline containing an entrapped air pocket are investigated both experimentally and numerically. The influence of entrapped air on abnormal transient pressures is often ambiguous since the compressibility of the air pocket permits the liquid flow to accelerate but also partly cushions the system, with the balance of these tendencies being associated with the initial void fraction of the air pocket. Earlier experimental research involved systems with an initial void fraction greater than 5.8%; this paper focuses on initial void fractions ranging from 0% to 10%, in order to more completely characterize the transient response. Experimental results show that the maximum pressure increases and then decreases as the initial void fraction decreases. A simplified model is developed by neglecting the liquid inertia and energy loss of a short water column near the air-water interface. Comparisons of the calculated and observed results show the model is able to accurately predict peak pressures as a function of void fraction and filling conditions. Rigid water column models, however, perform poorly with small void fractions.

  5. Loose-fill insulations

    SciTech Connect

    1995-05-01

    Whether you are increasing the insulation levels in your current home or selecting insulation for a new home, choosing the right insulation material can be challenging. Fibrous loose-fill insulations such as cellulose, fiberglass, and rock wool are options you may wish to consider. This publication will introduce you to these materials--what they are, how they are applied, how they compare with each other, and other considerations regarding their use--so that you can decide whether loose fills are right for your home.

  6. Building 930, oblique view to southeast from fill slope covering ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Building 930, oblique view to southeast from fill slope covering building 932, 135 mm lens. - Travis Air Force Base, Snack Bar, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA

  7. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  8. Getting a prescription filled

    MedlinePlus

    ... health plan: Call the phone number on the back of your insurance card. Call the pharmacy you want to use to see if they have a contract with your insurance plan. To help the pharmacist fill the prescription: Make sure all of the information ...

  9. Reversibility of strontium sorption on fracture fillings

    SciTech Connect

    Cui, D.; Eriksen, T.E.

    1995-12-31

    Granite has been chosen by several countries as a major candidate for deep geologic disposal of radioactive waste. The authors have carried out a comparative study of sorption and desorption of strontium in groundwater on separated size and magnetic fractions of fracture fillings from deep granite. Complete reversibility of the sorption process was demonstrated by identical Freundlich isotherms, isotopic exchangeability and pH dependence of the distribution coefficient R{sub d}.

  10. Gas filled panel insulation

    DOEpatents

    Griffith, B.T.; Arasteh, D.K.; Selkowitz, S.E.

    1993-12-14

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation. 18 figures.

  11. Gas filled panel insulation

    DOEpatents

    Griffith, Brent T.; Arasteh, Dariush K.; Selkowitz, Stephen E.

    1993-01-01

    A structural or flexible highly insulative panel which may be translucent, is formed from multi-layer polymeric material in the form of an envelope surrounding a baffle. The baffle is designed so as to minimize heat transfer across the panel, by using material which forms substantially closed spaces to suppress convection of the low conductivity gas fill. At least a portion of the baffle carries a low emissivity surface for suppression of infrared radiation.

  12. Voids in Sonic Fill(TM) restorations compared to traditional incrementally-filled composite restorations

    NASA Astrophysics Data System (ADS)

    Abourezq, Ibraheem A.

    SonicFill(TM) is a new composite resin and delivery system designed to provide rapid filling of cavity preparations by decreasing viscosity through application of sonic energy. However, it may produce unwanted air voids in the final restoration due to the short filling time. Air voids compromise long-term performance by providing weak foci, discontinuity at cavosurface margins and at internal cavity walls, and potential crack propagation. This study assessed the locations, sizes, and numbers of voids in SonicFill restorations compared with traditional composite resin restorations in a set of extracted molars with mesio-occlusal-distal (MOD) cavity preparations. Fifty noncarious intact extracted third molars were collected randomly from a large collection of discarded anonymous tooth specimens. Standardized MOD cavity preparations were cut, and teeth were assigned randomly to one of two groups ( n = 25). The first group was restored with SonicFill composite in two steps. The second group was restored with Herculite Ultra(TM) using an multiple increment layering technique (1-2 mm per layer). Cross-sectional images of the filling were taken by digital microscope. A total of 196 voids were found in the 50 specimens: 97 in SonicFill restorations and 99 in conventional restorations. Mean number of voids in SonicFill restorations was 3.88 versus 3.96 for conventional restorations. Mean percentage of void area in SonicFill restorations was 0.588% versus 0.508% for conventional restorations. Unpaired t tests for these differences indicated no statistically significant differences (p =.931 and p =.629, respectively). One-way ANOVA tests for mean void count and mean void area percentage differences by three location zones for conventional and SonicFill restorations also indicated no significant differences among the groups. The bulk-fill SonicFill system does not result in increased or decreased numbers or ii area of voids within Class II MOD restorations compared with a

  13. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  14. Release Fraction Evaluation

    SciTech Connect

    Bamberger, Judith A.; Glissmeyer, John A.

    2004-01-01

    This document presents results of experiments conducted to measure release fractions during certain tank retrieval processes. The tests were performed in a 1/4 scale model of a waste storage tank. The retrieval processes simulated were: (1) Discharging liquid or slurry from the mouth of a vertically oriented two-in. Schedule 40 pipe. The discharging material was in free-fall from the mouth of the pipe near the top of the tank into a liquid or slurry pool at the bottom of the tank. (2) The jet from a 9/16-in.-diameter nozzle transferring liquid or slurry waste from one side of the tank to the other. The discharging liquid was aimed at the opposite side of the tank from the nozzle and either impacted the tank wall or fell into a liquid or slurry pool in the bottom of the tank. (3) A high pressure fan jet of liquid striking a steel plate or simulated waste from a stand-off distance of a few inches. For each process, a water-soluble fluorescent dye was added to the liquid fraction as a tracer. Kaolin clay was used to represent the solids. The tank was covered and there was no forced ventilation in the tank during the tests. Six air samples were collected during each test. The air samples were collected at fixed positions in the tank. The air sample filters were dried and weighed to determine the solids collection. The fluorescent dye was then leached from each filter and quantified with a fluorometer to determine the collection of liquid. Samples of the slurry and liquid simulants were also collected to determine the quantities of simulant used in each test. To calculate the release fraction, the quantity collected on each air sample was adjusted for the fraction of the tank volume sampled and divided by the quantity of material exposed in the simulation. The method was not as sensitive for the solids content as it was for the liquid content, but in those instances where a solids release fraction was determined, it was in relatively good agreement with that of the

  15. Fractional oscillator.

    PubMed

    Stanislavsky, A A

    2004-11-01

    We consider a fractional oscillator which is a generalization of the conventional linear oscillator in the framework of fractional calculus. It is interpreted as an ensemble average of ordinary harmonic oscillators governed by a stochastic time arrow. The intrinsic absorption of the fractional oscillator results from the full contribution of the harmonic oscillator ensemble: these oscillators differ a little from each other in frequency so that each response is compensated by an antiphase response of another harmonic oscillator. This allows one to draw a parallel in the dispersion analysis for media described by a fractional oscillator and an ensemble of ordinary harmonic oscillators with damping. The features of this analysis are discussed. PMID:15600586

  16. Dye filled security seal

    DOEpatents

    Wilson, Dennis C. W.

    1982-04-27

    A security seal for providing an indication of unauthorized access to a sealed object includes an elongate member to be entwined in the object such that access is denied unless the member is removed. The elongate member has a hollow, pressurizable chamber extending throughout its length that is filled with a permanent dye under greater than atmospheric pressure. Attempts to cut the member and weld it together are revealed when dye flows through a rupture in the chamber wall and stains the outside surface of the member.

  17. Hydrogen Filling Station

    SciTech Connect

    Boehm, Robert F; Sabacky, Bruce; Anderson II, Everett B; Haberman, David; Al-Hassin, Mowafak; He, Xiaoming; Morriseau, Brian

    2010-02-24

    future. Project partners also conducted a workshop on hydrogen safety and permitting. This provided an opportunity for the various permitting agencies and end users to gather to share experiences and knowledge. As a result of this workshop, the permitting process for the hydrogen filling station on the Las Vegas Valley Water District’s land was done more efficiently and those who would be responsible for the operation were better educated on the safety and reliability of hydrogen production and storage. The lessons learned in permitting the filling station and conducting this workshop provided a basis for future hydrogen projects in the region. Continuing efforts to increase the working pressure of electrolysis and efficiency have been pursued. Research was also performed on improving the cost, efficiency and durability of Proton Exchange Membrane (PEM) hydrogen technology. Research elements focused upon PEM membranes, electrodes/catalysts, membrane-electrode assemblies, seals, bipolar plates, utilization of renewable power, reliability issues, scale, and advanced conversion topics. Additionally, direct solar-to-hydrogen conversion research to demonstrate stable and efficient photoelectrochemistry (PEC) hydrogen production systems based on a number of optional concepts was performed. Candidate PEC concepts included technical obstacles such as inefficient photocatalysis, inadequate photocurrent due to non-optimal material band gap energies, rapid electron-hole recombination, reduced hole mobility and diminished operational lifetimes of surface materials exposed to electrolytes. Project Objective 1: Design, build, operate hydrogen filling station Project Objective 2: Perform research and development for utilizing solar technologies on the hydrogen filling station and convert two utility vehicles for use by the station operators Project Objective 3: Increase capacity of hydrogen filling station; add additional vehicle; conduct safety workshop; develop a roadmap for

  18. Thermotropic nematic order upon nanocapillary filling

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Busch, Mark; Całus, Sylwia; Kityk, Andriy V.

    2013-04-01

    Optical birefringence and light absorption measurements reveal four regimes for the thermotropic behavior of a nematogen liquid (7CB) upon sequential filling of parallel-aligned capillaries of 12 nm diameter in a monolithic, mesoporous silica membrane. No molecular reorientation is observed for the first adsorbed monolayer. In the film-condensed state (up to 1 nm thickness), a weak, continuous paranematic-to-nematic (P-N) transition is found, which is shifted by 10 K below the discontinuous bulk transition at TIN=305 K. The capillary-condensed state exhibits a more pronounced, albeit still continuous P-N reordering, located 4 K below TIN. This shift vanishes abruptly upon complete filling of the capillaries. It could originate in competing anchoring conditions at the free inner surfaces and at the pore walls or result from the 10-MPa tensile pressure release associated with the disappearance of concave menisci in the confined liquid upon complete filling. The study documents that the thermo-optical properties of nanoporous systems (or single nanocapillaries) can be tailored over a surprisingly wide range simply by variation of the filling fraction with liquid crystals.

  19. Thermotropic nematic order upon nanocapillary filling.

    PubMed

    Huber, Patrick; Busch, Mark; Całus, Sylwia; Kityk, Andriy V

    2013-04-01

    Optical birefringence and light absorption measurements reveal four regimes for the thermotropic behavior of a nematogen liquid (7CB) upon sequential filling of parallel-aligned capillaries of 12 nm diameter in a monolithic, mesoporous silica membrane. No molecular reorientation is observed for the first adsorbed monolayer. In the film-condensed state (up to 1 nm thickness), a weak, continuous paranematic-to-nematic (P-N) transition is found, which is shifted by 10 K below the discontinuous bulk transition at T(IN)=305 K. The capillary-condensed state exhibits a more pronounced, albeit still continuous P-N reordering, located 4 K below T(IN). This shift vanishes abruptly upon complete filling of the capillaries. It could originate in competing anchoring conditions at the free inner surfaces and at the pore walls or result from the 10-MPa tensile pressure release associated with the disappearance of concave menisci in the confined liquid upon complete filling. The study documents that the thermo-optical properties of nanoporous systems (or single nanocapillaries) can be tailored over a surprisingly wide range simply by variation of the filling fraction with liquid crystals. PMID:23679431

  20. Fraction Reduction through Continued Fractions

    ERIC Educational Resources Information Center

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  1. Selective-fluid-filled photonic crystal fibers and applications

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Liao, Changrui; Zhong, Xiaoyong; Li, Zhengyong; Liu, Yingjie; Zhou, Jiangtao; Yang, Kaiming

    2013-08-01

    A selective-filling technique was demonstrated to improve the optical properties of photonic crystal fibres (PCFs). Such a technique can be used to fill one or more fluid samples selectively into desired air holes. The technique is based on drilling a hole or carving a groove on the surface of a PCF to expose selected air holes to atmosphere by the use of a micromachining system comprising of a femtosecond infrared laser and a microscope. The exposed section was immersed into a fluid and the air holes are then filled through the well-known capillarity action. Provided two or more grooves are fabricated on different locations and different orientation along the fibre surface, different fluids may be filled into different airholes to form a hybrid fibre. As an example, we filled half of a pure-silica PCF by a fluid with n=1.480 by carving a rectangular groove on the fibre. Consequently, the half-filled PCF became a bandgap-guiding structure (upper half), resulted from a higher refractive index in the fluid rods than in the fibre core, and three bandgaps were observed within the wavelength range from 600 to 1700 nm. Whereas, the lower half (unfilled holes) of the fibre remains an air/silica index-guiding structure. When the hybrid PCF is bent, its bandgaps gradually narrowed, resulted from the shifts of the bandgap edges. The bandgap edges had distinct bend-sensitivities when the hybrid PCF was bent toward different directions. Especially, the bandgaps are hardly affected when the half-filled PCF was bent toward the fluid-filled region. Such unique bend properties could be used to monitor simultaneously the bend directions and the curvature of the engineering structures.

  2. Model Fractional Chern Insulators.

    PubMed

    Behrmann, Jörg; Liu, Zhao; Bergholtz, Emil J

    2016-05-27

    We devise local lattice models whose ground states are model fractional Chern insulators-Abelian and non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct families of bosonic lattice generalizations of the Z_{k} parafermion quantum Hall states: (i) color-entangled fractional Chern insulators at band filling fractions ν=k/(C+1) and (ii) nematic states at ν=k/2, where C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a local (k+1) body repulsion term by term. In addition to providing the first known models hosting intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states, the remarkable stability and finite-size properties make our models particularly well suited for the study of novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a guide for designing experiments. PMID:27284668

  3. Model Fractional Chern Insulators

    NASA Astrophysics Data System (ADS)

    Behrmann, Jörg; Liu, Zhao; Bergholtz, Emil J.

    2016-05-01

    We devise local lattice models whose ground states are model fractional Chern insulators—Abelian and non-Abelian topologically ordered states characterized by exact ground state degeneracies at any finite size and infinite entanglement gaps. Most saliently, we construct exact parent Hamiltonians for two distinct families of bosonic lattice generalizations of the Zk parafermion quantum Hall states: (i) color-entangled fractional Chern insulators at band filling fractions ν =k /(C +1 ) and (ii) nematic states at ν =k /2 , where C is the Chern number of the lowest band. In spite of a fluctuating Berry curvature, our construction is partially frustration free: the ground states reside entirely within the lowest band and exactly minimize a local (k +1 ) body repulsion term by term. In addition to providing the first known models hosting intriguing states such as higher Chern number generalizations of the Fibonacci anyon quantum Hall states, the remarkable stability and finite-size properties make our models particularly well suited for the study of novel phenomena involving, e.g., twist defects and proximity induced superconductivity, as well as being a guide for designing experiments.

  4. Defining filled and empty space: reassessing the filled space illusion for active touch and vision.

    PubMed

    Collier, Elizabeth S; Lawson, Rebecca

    2016-09-01

    In the filled space illusion, an extent filled with gratings is estimated as longer than an equivalent extent that is apparently empty. However, researchers do not seem to have carefully considered the terms filled and empty when describing this illusion. Specifically, for active touch, smooth, solid surfaces have typically been used to represent empty space. Thus, it is not known whether comparing gratings to truly empty space (air) during active exploration by touch elicits the same illusionary effect. In Experiments 1 and 2, gratings were estimated as longer if they were compared to smooth, solid surfaces rather than being compared to truly empty space. Consistent with this, Experiment 3 showed that empty space was perceived as longer than solid surfaces when the two were compared directly. Together these results are consistent with the hypothesis that, for touch, the standard filled space illusion only occurs if gratings are compared to smooth, solid surfaces and that it may reverse if gratings are compared to empty space. Finally, Experiment 4 showed that gratings were estimated as longer than both solid and empty extents in vision, so the direction of the filled space illusion in vision was not affected by the nature of the comparator. These results are discussed in relation to the dual nature of active touch. PMID:27233286

  5. Measurements of N2O and SF6 mole fraction between 1977 and 1998 in archived air samples from Cape Meares, Oregon

    NASA Astrophysics Data System (ADS)

    Rolfe, T.; Rice, A. L.; Radda, J.

    2015-12-01

    The quantification of greenhouse gas concentrations in the atmosphere is important for monitoring imbalances in their global budgets between sources and sinks and their changes in time. Nitrous oxide (N2O) is a strong radiative trace gas with a GWP of ~300 times CO2 over a 100 year period and an atmospheric lifetime of ~100 years. The preindustrial revolution background concentration of N2O was ~270 ppb. Today, the concentration is ~330 ppb. Sulfur hexafluoride (SF6) is another potent greenhouse gas with a long lifetime (800 to 3200 years) and very large GWP (~23000 times CO2 over a 100 year period). Its current atmospheric concentration is low (~8 ppt today). Direct measurements of N2O and SF6 in air prior to the mid-1990s are few. Over 200 archived atmospheric gas samples collected at Cape Meares, Oregon between 1977 and 1998 were analyzed for their N2O and SF6 concentrations using an Agilent (model 6890 N) gas chromatograph fitted with an electron capture detector using a two column "heart-cut" technique. Precision of measurement of N2O and SF6 is calculated at 0.13% (1σ) and 1.35% (1σ) respectively. N2O concentrations in the late 1970s and early 1980s average around 303 ppb, rising to 309 ppb in the early 1990s. Between 1980 and 1990, the increase in N2O concentrations is found to be ~0.5 ppb/yr. SF6 concentrations during the late 1970s and early 1980s average around 0.9 ppt and rise slowly, reaching 1.6 ppt in the 1990s. We find that the increase in SF6 between 1980 and 1990 to be ~0.07 ppt/yr. We also discuss sample integrity in storage and observed temporal trends of N2O and SF6.

  6. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  7. Filling an Unvented Cryogenic Tank

    NASA Technical Reports Server (NTRS)

    Beck, Phillip; Willen, Gary S.

    1987-01-01

    Slow-cooling technique enables tank lacking top vent to be filled with cryogenic liquid. New technique: pressure buildup prevented through condensation of accumulating gas resulting in condensate being added to bulk liquid. Filling method developed for vibration test on vacuum-insulated spherical tank containing liquid hydrogen.

  8. Gas-filled hohlraum fabrication

    SciTech Connect

    Salazar, M.A.; Gobby, P.L.; Foreman, L.R.; Bush, H. Jr.; Gomez, V.M.; Moore, J.E.; Stone, G.F.

    1995-09-01

    Los Alamos National Laboratory (LANL) researchers have fabricated and fielded gas-filled hohlraums at the Lawrence Livermore National Laboratory (LLNL) Nova laser. Fill pressures of 1--5 atmospheres have been typical. We describe the production of the parts, their assembly and fielding. Emphasis is placed on the production of gas-tight polyimide windows and the fielding apparatus and procedure.

  9. Rigid-plug elastic-water model for transient pipe flow with entrapped air pocket

    SciTech Connect

    Zhou, Ling; Liu, Prof. Deyou; Karney, Professor Byran W.; Zhang, Qin Fen; OU, CHANGQI

    2011-01-01

    Pressure transients in a rapidly filling pipe with an entrapped air pocket are investigated analytically. A rigid-plug elastic water model is developed by applying elastic water hammer to the majority of the water column while applying rigid water analysis to a small portion near the air-water interface, which avoids effectively the interpolation error of previous approaches. Moreover, another two simplified models are introduced respectively based on constant water length and by neglecting water elasticity. Verification of the three models is confirmed by experimental results. Calculations show that the simplification of constant water length is feasible for small air pockets. The complete rigid water model is appropriate for cases with large initial air volume. The rigid-plug elastic model can predict all the essential features for the entire range of initial air fraction considered in this study, and it is the effective model for analysis of pressure transients of entrapped air.

  10. Airborne contamination during blow-fill-seal pharmaceutical production.

    PubMed

    Whyte, W; Matheis, W; Dean-Netcher, M; Edwards, A

    1998-01-01

    The routes of airborne contamination, during Blow-Fill-Seal (BFS) production, were studied using tracer gas, particles and bacteria. The prevention of airborne contamination, by the air shower at the point of fill, was effective (> 99.2% efficient). However, microbe-carrying particles could gain access, by deposition or air exchange, when the containers were cut open and before they shuttled under the protection of the air shower. The use of SF6 tracer gas demonstrated that when the air shower was not on, 50% of the air within the containers came from the area round the machine. When the air shower was switched on, only about 5% of the air came from the surroundings. Airborne microbial contamination of containers is in proportion to: the number of airborne microbes around the machine, the time the container is open, the neck area and the amount of air left within the container. The likely microbial contamination rate can be calculated from a model incorporating these variables. Microbial contamination of containers during BFS manufacturing is normally very low, but by increasing the naturally occurring bacteria in the air of the production rooms by about 100-fold, it was possible to verify the accuracy of this model. The contamination model agrees well with the observation that microbial contamination levels of between 1 in 10(5) and in 10(7) will be found when small containers (< 10 ml) are filled in conventionally ventilated rooms. To achieve similar contamination rates when filling of larger bottles, it is likely that unidirectional flow, or barrier technology will be required. PMID:9691671

  11. No-vent fill pressurization tests using a cryogen simulant

    NASA Technical Reports Server (NTRS)

    Schmidt, G. R.; Carrigan, R. W.; Hahs, J. E.; Vaughan, D. A.; Foust, D. C.

    1991-01-01

    The results are described of an experimental program which studied the performance of various no-vent fill techniques for tank-to-tank liquid transfer. The tests were performed using a cryogen simulant (Freon-114) and a test bed consisting of a multiple tank/plumbing network that enabled studies of a variety of different inlet flow and active mixing regimes. Several results and conclusions were drawn from the 26 transfer experiments comprising the program. Most notable was the significant improvement in fill performance (i.e., minimized fill time and maximized fill fraction) with increased agitation of the liquid surface. Another was the close correlation between measured condensation rates and those predicted by recent theories which express condensation as a function of turbulent eddy effects on the liquid surface. In most cases, test data exhibited strong agreement with an analytical model which accounts for tank heat transfer and thermodynamics in a 1 g environment.

  12. No-vent fill pressurization tests using a cryogen simulant

    NASA Technical Reports Server (NTRS)

    Schmidt, G.; Carrigan, R.; Hahs, J.; Vaughan, D.; Foust, D.

    1992-01-01

    The results are described of an experimental program which studied the performance of various no-vent fill techniques for tank-to-tank liquid transfer. The tests were performed using a cryogen simulant (Freon-114) and a test bed consisting of a multiple tank/plumbing network that enabled studies of a variety of different inlet flow and active mixing regimes. Several results and conclusions were drawn from the 26 transfer experiments comprising the program. Most notable was the significant improvement in fill performance (i.e., minimized fill time and maximized fill fraction) with increased agitation of the liquid surface. Another was the close correlation between measured condensation rates and those predicted by recent theories which express condensation as a function of turbulent eddy effects on the liquid surface. In most cases, test data exhibited strong agreement with an analytical model which accounts for tank heat transfer and thermodynamics in a 1 g environment.

  13. The Characteristic of Porous Charges on a Base of a Water-Filled RDX Powder

    NASA Astrophysics Data System (ADS)

    Valiano, Georgy; Yankovskiy, Boris; Milyavskiy, Vladimir; Borodina, Tatiana

    2011-06-01

    A detonation velocity of a condensed RDX linearly depends on density at a range of 1,0-1,8 g/cm3. These charges are porous if the density of RDX monocrystal is 1,806 g/cm3. The state of porous charge can be characterized by the packing density. It can be rising, if RDX powder will be mixed with water for deciding technological problems. It is necessary to be able to predict characteristics of such charges. Charges on a base of a water-filled RDX powder with air inclusions can be described by three parameters: a density of a charge, packing density of RDX powder and RDX mass fraction. Last two parameters are independent parameters of a mix. We have designed a nomogram for definition of mutual communication of three quantities: velocity of a detonation, density of packing of RDX powder and its mass fraction in a mix. To check up correctness of a prelegends of a nomogram, we have carried out measurement of a detonation velocity of porous water-contained RDX charges. We prepared charges on a base of RDX powder which has consisted of particles with a size 80-220 mcm. We was changing RDX mass fraction of charges in a range 0,6-1,0 and a packing density of RDX powder in a range of 1,0-1,4 g/cm3. The disorder of experimental data concerning the nomogram data did not exceed basically of 3 percent.

  14. Gap filling strategies for annual estimates of soil respiration

    NASA Astrophysics Data System (ADS)

    Gomez-Casanovas, N.; Anderson-Teixeira, K. J.; Zeri, M.; Bernacchi, C. J.; DeLucia, E. H.

    2012-12-01

    Soil respiration (Rsoil) is one of the largest CO2 fluxes in the global carbon cycle. Quantifying the contribution of Rsoil to the global carbon cycle requires calculating annual fluxes from measurements that often are made sporadically. Rsoil records generally contain gaps. Filling data gaps is therefore requisite to accurately predict Rsoil. However, the reliability of various strategies for filling gaps in Rsoil records and scaling survey respiration measurements to an annual time scale has not yet been assessed. Here, we: 1) conducted a literature survey for gap filling strategies used to estimate annual Rsoil, and 2) evaluated the performance of different gap filling methods by analyzing the errors introduced when filling artificial gaps in annual Rsoil datasets for various ecosystem types. Gap filling methods evaluated included linear and cubic interpolation, monthly average, and exponential temperature-dependence models assuming a) a single temperature sensitivity (E) and reference Rsoil (Rref, Rsoil at 10°C) over the entire year, b) constant E and varying Rref, and c) varying E and Rref, and soil temperature and moisture-dependence methods. Artificial gaps were introduced to the datasets at 11 gap fractions (0-95% of existing data) and in a pattern replicating bi-monthly survey measurements (>99% "gap") and filled using each method. In addition, we analyzed how the timing of survey measurements (>99% gap) affected gap-filling performance, considering two time frames for measurement (9AM-5PM and 9AM-12PM) and two portions of the year (entire year and growing season only). Our literature survey identified a wide variety of gap filling methods that have been used in Rsoil records. The linear interpolation method along with the temperature-dependence Rsoil model assuming a single E and Rref over the entire year were the gap filling methods most widely used. All methods performed best at lower gap fractions and had relatively high, systematic errors for

  15. Fuel-air munition and device

    DOEpatents

    Carlson, Gary A.

    1976-01-01

    An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.

  16. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, Dariush K.

    1992-01-01

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air.

  17. Method and apparatus for filling thermal insulating systems

    DOEpatents

    Arasteh, D.K.

    1992-01-14

    A method for filling insulated glazing units is disclosed. The method utilizes a vacuum chamber in which the insulated glazing units are placed. The insulated glazing units and vacuum chamber are evacuated simultaneously. The units are then refilled with a low conductance gas such as Krypton while the chamber is simultaneously refilled with air. 3 figs.

  18. Cell filling in gravure printing for printed electronics.

    PubMed

    Cen, Jialiang; Kitsomboonloha, Rungrot; Subramanian, Vivek

    2014-11-18

    Highly scaled direct gravure is a promising printing technique for printed electronics due to its large throughput, high resolution, and simplicity. Gravure can print features in the single micron range at printing speeds of ∼1 m/s by using an optimized cell geometry and optimized printing conditions. The filling of the cells on the gravure cylinder is a critical process, since the amount of ink in the cells strongly impacts printed feature size and quality. Therefore, an understanding of cell filling is crucial to make highly scaled gravure printed electronics viable. In this work we report a novel experimental setup to investigate the filling process in real time, coupled with numerical simulations to gain insight into the experimental observations. By varying viscosity and filling speed, we ensure that the dimensionless capillary number is a good indicator of filling regime in real gravure printing. In addition, we also examine the effect of cell size on filling as this is important for increasing printing resolution. In the light of experimental and simulation results, we are able to rationalize the dominant failure in the filling process, i.e., air entrapment, which is caused by contact line pinning and interface deformation over the cell opening. PMID:25343219

  19. LNFCS. Liquid Nitrogen Fill Control System

    SciTech Connect

    Reber, E.

    1998-12-01

    The Liquid Nitrogen Fill Control System controls the periodic filling of Germanium detector dewars with liquid nitrogen, as well as, filling portable LN2 supply tanks with liquid nitrogen from a high pressure LN2 storage tank. LNFCS major features are: Remote access, Fills detectors periodically, Monitors fills and logs results, Fully adjustable set of preferences, Graphical interface, Fully operational by command line entry, Senses if LN2 flow has stopped after fill, Individual detector fills without interrupting periodic fill, Automatic repeat fill when detectors fail to fill, Automatic filling of supply tank when 2 or more detectors fail to fill, Easy addition/deletion of detectors from fill cycle, Authorized access only, No clogging by ice of LN2 flow.

  20. Hierarchy of fillings for the FQHE in monolayer graphene

    PubMed Central

    Łydżba, Patrycja; Jacak, Lucjan; Jacak, Janusz

    2015-01-01

    In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect. PMID:26392385

  1. Hierarchy of fillings for the FQHE in monolayer graphene

    NASA Astrophysics Data System (ADS)

    Łydżba, Patrycja; Jacak, Lucjan; Jacak, Janusz

    2015-09-01

    In this paper, the commensurability conditions, which originated from the unique topology of two-dimensional systems, are applied to determine the quantum Hall effect hierarchy in the case of a monolayer graphene. The fundamental difference in a definition of a typical semiconductor and a monolayer graphene filling factor is pointed out. The calculations are undertaken for all spin-valley branches of two lowest Landau levels, since only they are currently experimentally accessible. The obtained filling factors are compared with the experimental data and a very good agreement is achieved. The work also introduces a concept of the single-loop fractional quantum Hall effect.

  2. Pairing in half-filled Landau level

    SciTech Connect

    Wang, Zhiqiang; Mandal, Ipsita; Chung, Suk Bum; Chakravarty, Sudip

    2014-12-15

    Pairing of composite fermions in half-filled Landau level state is reexamined by solving the BCS gap equation with full frequency dependent current–current interactions. Our results show that there can be a continuous transition from the Halperin–Lee–Read state to a chiral odd angular momentum Cooper pair state for short-range contact interaction. This is at odds with the previously established conclusion of first order pairing transition, in which the low frequency effective interaction was assumed for the entire frequency range. We find that even if the low frequency effective interaction is repulsive, it is compensated by the high frequency regime, which is attractive. We construct the phase diagrams and show that ℓ=1 angular momentum channel is quite different from higher angular momenta ℓ≥3. Remarkably, the full frequency dependent analysis applied to the bilayer Hall system with a total filling fraction ν=1/2 +1/2 is quantitatively changed from the previously established results but not qualitatively.

  3. Gap filling strategies and error in estimating annual soil respiration.

    PubMed

    Gomez-Casanovas, Nuria; Anderson-Teixeira, Kristina; Zeri, Marcelo; Bernacchi, Carl J; DeLucia, Evan H

    2013-06-01

    Soil respiration (Rsoil ) is one of the largest CO2 fluxes in the global carbon (C) cycle. Estimation of annual Rsoil requires extrapolation of survey measurements or gap filling of automated records to produce a complete time series. Although many gap filling methodologies have been employed, there is no standardized procedure for producing defensible estimates of annual Rsoil . Here, we test the reliability of nine different gap filling techniques by inserting artificial gaps into 20 automated Rsoil records and comparing gap filling Rsoil estimates of each technique to measured values. We show that although the most commonly used techniques do not, on average, produce large systematic biases, gap filling accuracy may be significantly improved through application of the most reliable methods. All methods performed best at lower gap fractions and had relatively high, systematic errors for simulated survey measurements. Overall, the most accurate technique estimated Rsoil based on the soil temperature dependence of Rsoil by assuming constant temperature sensitivity and linearly interpolating reference respiration (Rsoil at 10 °C) across gaps. The linear interpolation method was the second best-performing method. In contrast, estimating Rsoil based on a single annual Rsoil - Tsoil relationship, which is currently the most commonly used technique, was among the most poorly-performing methods. Thus, our analysis demonstrates that gap filling accuracy may be improved substantially without sacrificing computational simplicity. Improved and standardized techniques for estimation of annual Rsoil will be valuable for understanding the role of Rsoil in the global C cycle. PMID:23504959

  4. Partially liquid-filled hollow-core photonic crystal fiber polarizer.

    PubMed

    Qian, Wenwen; Zhao, Chun-Liu; Wang, Yunpeng; Chan, Chi Chiu; Liu, Shujing; Jin, Wei

    2011-08-15

    A compact fiber polarizer is demonstrated by the filling of selected air holes of a hollow-core photonic crystal fiber (PCF) with a liquid. The liquid-filling results in an asymmetric waveguide structure, leading to a large polarization dependent loss. A 6 mm long ethanol-filled PCF exhibits a polarization extinction ratio of ∼18 dB over a wavelength range from 1480 nm to 1600 nm. PMID:21847239

  5. Weaving and bonding method to prevent warp and fill distortion

    NASA Technical Reports Server (NTRS)

    Farley, Gary L. (Inventor)

    1997-01-01

    A method to prevent fiber distortion in textile materials employed in a modified weaving process. In a first embodiment, a tacifier in powder form is applied to the yarn and melted while on the fabric. Cool air is then supplied after the tacifier has melted to expedite the solidification of the tacifier. In a second embodiment, a solution form of a tacifier is used by dissolving the tacifier into a solvent that has a high evaporation rate. The solution is then sprayed onto the fabric or fill yarn as each fill yarn is inserted into a shed of the fabric. A third embodiment applies the tacifier in a liquid form that has not been dissolved in a solvent. That is, the tacifier is melted and is sprayed as a liquid onto the fabric or fill yarn as it is being extracted from a fill yarn spool prior to the fill yarn being inserted into the shed of the fabric. A fourth embodiment employs adhesive yarns contained as an integral part of the warp or fill yarn. Additional tacifier material is not required because a matrix is used as the tacifier. The matrix is then locally melted using heating elements on clamping bars or take-up rollers, is cooled, if necessary, and solidified.

  6. Thermoset shape-memory polymer nanocomposite filled with nanocarbon powders

    NASA Astrophysics Data System (ADS)

    Lan, Xin; Liu, Yanju; Leng, Jinsong

    2009-07-01

    A system of a thermoset styrene-based shape-memory polymer (SMP) filled with nanocarbon powders is investigated in this paper. The thermomechanical properties are characterized by thermal gravity analysis, differential scanning calorimetery and dynamic mechanical analysis. In addition, the distribution of CB is investigated by scanning electron microscope. To realize the electroactive stimuli of SMP, the electrical conductivity of SMP filled with various amounts of CB is characterized. The percolation threshold of electrically conductive SMP filled with CB is about 3.8 % (volume fraction of CB), which is much lower than many other electrically conductive polymers. When applying a voltage of 30V, the shape recovery process of SMP/CB (10 vol%) can be realized in about 100s.

  7. Confinement of Fractional Quantum Hall States

    NASA Astrophysics Data System (ADS)

    Willett, Robert; Manfra, Michael; West, Ken; Pfeiffer, Loren

    2008-03-01

    Confinement of small-gapped fractional quantum Hall states facilitates quasiparticle manipulation and is an important step towards quasiparticle interference measurements. Demonstrated here is conduction through top gate defined, narrow channels in high density, ultra-high mobility heterostructures. Transport evidence for the persistence of a correlated state at filling fraction 5/3 is shown in channels of 2μm length but gated to near 0.3μm in width. The methods employed to achieve this confinement hold promise for interference devices proposed for studying potential non-Abelian statistics at filling fraction 5/2. R.L. Willett, M.J. Manfra, L.N. Pfeiffer, K.W. West, Appl. Phys. Lett. 91, 052105 (2007).

  8. Can-Filled Crash Barrier

    NASA Technical Reports Server (NTRS)

    Wilson, A. H.

    1983-01-01

    Crash barrier composed largely of used aluminum beverage cans protects occupants of cars in collisions with poles or trees. Lightweight, can-filled barrier very effective in softening impact of an automobile in head-on and off-angle collisions. Preliminary results indicate barrier is effective in collisions up to 40 mi/h (64 km/h).

  9. Brain Responses to Filled Gaps

    ERIC Educational Resources Information Center

    Hestvik, Arild; Maxfield, Nathan; Schwartz, Richard G.; Shafer, Valerie

    2007-01-01

    An unresolved issue in the study of sentence comprehension is whether the process of gap-filling is mediated by the construction of empty categories (traces), or whether the parser relates fillers directly to the associated verb's argument structure. We conducted an event-related potentials (ERP) study that used the violation paradigm to examine…

  10. Space-filling polyhedral sorbents

    DOEpatents

    Haaland, Peter

    2016-06-21

    Solid sorbents, systems, and methods for pumping, storage, and purification of gases are disclosed. They derive from the dynamics of porous and free convection for specific gas/sorbent combinations and use space filling polyhedral microliths with facial aplanarities to produce sorbent arrays with interpenetrating interstitial manifolds of voids.

  11. Loose-fill, thermal insulation

    SciTech Connect

    Nath, N.; Ruff, D.L.

    1981-11-24

    Fire resistant, loose-fill, thermal insulation made of a mixture of particulate expanded perlite and cellulose fiber is described. The mixture is rendered non-settling and resistant to separation by applying a permanently tacky material to the particulate expanded perlite.

  12. Air emissions from exposed contaminated sediments and dredged material

    SciTech Connect

    Valsaraj, K.T.; Ravikrishna, R.; Reible, D.D.; Thibodeaux, L.J.; Choy, B.; Price, C.B.; Brannon, J.M.; Myers, T.E.; Yost, S.

    1999-01-01

    The sediment-to-air fluxes of two polycyclic aromatic hydrocarbons (phenanthrene and pyrene) and a heterocyclic aromatic hydrocarbon (dibenzofuran) from a laboratory-contaminated sediment and those of three polycyclic aromatic hydrocarbons (naphthalene, phenanthrene, and pyrene) from three field sediments were investigated in experimental microcosms. The flux was dependent on the sediment moisture content, air-filled porosity, and the relative humidity of the air flowing over the sediment surface. The mathematical model predictions of flux from the laboratory-spiked sediment agreed with observed values. The fluxes of compounds with higher hydrophobicity were more air-side resistance controlled. Conspicuous differences were observed between the fluxes from the laboratory-spiked and two of the three field sediments. Two field sediments showed dramatic increases in mass-transfer resistances with increasing exposure time and had significant fractions of oil and grease. The proposed mathematical model was inadequate for predicting the flux from the latter field sediments. Sediment reworking enhanced the fluxes from the field sediments due to exposure of fresh solids to the air. Variations in flux from the lab-spiked sediment as a result of change in air relative humidity were due to differences in retardation of chemicals on a dry or wet surface sediment. High moisture in the air over the dry sediment increased the competition for sorption sites between water and contaminant and increased the contaminant flux.

  13. Constitutive parameter de-embedding using inhomogeneously-filled rectangular waveguides with longitudinal section modes

    NASA Technical Reports Server (NTRS)

    Park, A.; Dominek, A. K.

    1990-01-01

    Constitutive parameter extraction from S parameter data using a rectangular waveguide whose cross section is partially filled with a material sample as opposed to being completely filled was examined. One reason for studying a partially filled geometry is to analyze the effect of air gaps between the sample and fixture for the extraction of constitutive parameters. Air gaps can occur in high temperature parameter measurements when the sample was prepared at room temperature. Single port and two port measurement approaches to parameter extraction are also discussed.

  14. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.; Dyrud, James F.

    1990-01-01

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  15. Particle-filled microporous materials

    DOEpatents

    McAllister, J.W.; Kinzer, K.E.; Mrozinski, J.S.; Johnson, E.J.; Dyrud, J.F.

    1990-09-18

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated. 3 figs.

  16. Particle-filled microporous materials

    DOEpatents

    McAllister, Jerome W.; Kinzer, Kevin E.; Mrozinski, James S.; Johnson, Eric J.

    1992-07-14

    A microporous particulate-filled thermoplastic polymeric article is provided. The article can be in the form of a film, a fiber, or a tube. The article has a thermoplastic polymeric structure having a plurality of interconnected passageways to provide a network of communicating pores. The microporous structure contains discrete submicron or low micron-sized particulate filler, the particulate filler being substantially non-agglomerated.

  17. Filling of charged cylindrical capillaries.

    PubMed

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J C T; Tas, N R; Chakraborty, Suman; Mitra, Sushanta K

    2014-10-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because of decreased velocity gradients at the wall. Both these effects essentially stem from the spontaneous formation of an electric double layer (EDL) and the resulting streaming potential caused by the net capillary-flow-driven advection of ionic species within the EDL. Our results demonstrate that filling of charged capillaries also exhibits the well-known linear and Washburn regimes witnessed for uncharged capillaries, although the filling rate is always lower than that of the uncharged capillary. We attribute this to a competitive success of the lowering of the driving forces (because of electroviscous effects), in comparison to the effect of weaker drag forces. We further reveal that the time at which the transition between the linear and the Washburn regime occurs may become significantly altered with the introduction of surface charges, thereby altering the resultant capillary dynamics in a rather intricate manner. PMID:25375597

  18. The effects of material attributes on capsule fill weight and weight variability in dosator nozzle machines.

    PubMed

    Faulhammer, Eva; Llusa, Marcos; Radeke, Charles; Scheibelhofer, Otto; Lawrence, Simon; Biserni, Stefano; Calzolari, Vittorio; Khinast, J G

    2014-08-25

    The goal of this work is to identify and understand the complex relationship between the material attributes, capsule fill weight and weight variability of capsules filled with a dosator nozzle machine. Six powders were characterized and filled into size-3 capsules in three volumes of dosing chambers and at two filling speeds. Subsequent multivariate data analysis was used to identify the influence of the material attributes on the capsule fill weight and weight variability. We observed a clear correlation between the capsule fill weight and the particle size, the air permeability and the compressibility. As the fill weight decreases, more factors affect capsule fill weight. For example, the wall friction angle, the tapped density, and the particle shape proved to be important factors. Larger fill weights were more affected by density while lower fill weights by flow and friction characteristics. No correlation was found between the material attributes and the weight variability. Rather, we could also see the major effect of process parameters on capsule fill weight and weight variability. PMID:24939614

  19. Understanding the Relationship Between Filling Pattern and Part Quality in Die Casting

    SciTech Connect

    Jerald Brevick; R. Allen Miller

    2004-03-15

    The overall objective of this research project was to investigate phenomena involved in the filling of die cavities with molten alloy in the cold chamber die-casting process. It has long been recognized that the filling pattern of molten metal entering a die cavity influences the quality of die-cast parts. Filling pattern may be described as the progression of molten metal filling the die cavity geometry as a function of time. The location, size and geometric configuration of points of metal entry (gates), as well as the geometry of the casting cavity itself, have great influence on filling patterns. Knowledge of the anticipated filling patterns in die-castings is important for designers. Locating gates to avoid undesirable flow patterns that may entrap air in the casting is critical to casting quality - as locating vents to allow air to escape from the cavity (last places to fill). Casting quality attributes that are commonly flow related are non-fills, poor surface finish, internal porosity due to trapped air, cold shuts, cold laps, flow lines, casting skin delamination (flaking), and blistering during thermal treatment.

  20. Advances in Plasma-Filled Microwave Sources

    NASA Astrophysics Data System (ADS)

    Goebel, Dan M.

    1998-11-01

    Significant improvements in the performance of high power microwave tubes have been achieved in recent years by the introduction of plasma into the beam- coupling structures of the devices. Plasma has been credited with increasing the maximum electron beam current, frequency bandwidth, electrical efficiency and reducing or eliminating the need for guiding magnetic fields in microwave sources. These advances are critically important for the development of high power, frequency agile microwave systems where size and weight are important. Conversely, plasma has been blamed for causing noise, instabilities, power variations and pulse-length limitations in microwave tubes for many years. Recent experimental and theoretical studies have demonstrated that introducing the right amount of plasma in a controlled manner can be beneficial in the areas described above. Enhanced beam propagation at lower magnetic fields and higher beam current levels due to the space-charge neutralization by plasma can be realized provided that the neutralization fraction is fairly stable and maintained near a value of one for the duration of the desired pulse length. The generation of hybrid waves in plasma-filled slow-wave structures (SWS) operating near cutoff has resulted in an increased electric field on axis and improved coupling to solid beams in both helix and coupled-cavity SWS, and wider coupling-aperture pass-bands and frequency bandwidth in coupled-cavity devices. In the event of excess plasma generation in these TWTs or BWOs, the device structures rapidly approach cutoff or breakdown and the beam forms instabilities, which degrades the output power level and pulse length. Recent experimental and theoretical advances in this field including plasma implementation techniques in the gun and circuit will be presented, and the benefits and limitations of plasma filling of microwave sources will be shown and discussed.

  1. 24. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. BUILDING NO. 452, ORDNANCE FACILITY (BAG CHARGE FILLING PLANT), INTERIOR VIEW LOOKING WEST AT NORTH END OF CENTRAL CORRIDOR (ROOM 3). STAIRWAY WORKBENCH WITH COMPRESSED-AIR POWERED CARTRIDGE LOADER. ARMORED PASS-THROUGH OF TRANSFER BOX FOR PASSING EXPLOSIVES MATERIALS THROUGH TO NEXT ROOM TO THE NORTH. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ

  2. Fractional vector calculus and fractional Maxwell's equations

    SciTech Connect

    Tarasov, Vasily E.

    2008-11-15

    The theory of derivatives and integrals of non-integer order goes back to Leibniz, Liouville, Grunwald, Letnikov and Riemann. The history of fractional vector calculus (FVC) has only 10 years. The main approaches to formulate a FVC, which are used in the physics during the past few years, will be briefly described in this paper. We solve some problems of consistent formulations of FVC by using a fractional generalization of the Fundamental Theorem of Calculus. We define the differential and integral vector operations. The fractional Green's, Stokes' and Gauss's theorems are formulated. The proofs of these theorems are realized for simplest regions. A fractional generalization of exterior differential calculus of differential forms is discussed. Fractional nonlocal Maxwell's equations and the corresponding fractional wave equations are considered.

  3. Initialized Fractional Calculus

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  4. 40 CFR 63.5714 - How do I demonstrate compliance if I use filled resins?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true How do I demonstrate compliance if I use filled resins? 63.5714 Section 63.5714 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES National Emission Standards...

  5. Tempered fractional calculus

    NASA Astrophysics Data System (ADS)

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  6. Tempered fractional calculus

    SciTech Connect

    Sabzikar, Farzad; Meerschaert, Mark M.; Chen, Jinghua

    2015-07-15

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered fractional difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series.

  7. 7 CFR 58.923 - Filling containers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Filling containers. 58.923 Section 58.923 Agriculture... Procedures § 58.923 Filling containers. (a) The filling of small containers with product shall be done in a sanitary manner. The containers shall not contaminate or detract from the quality of the product in any...

  8. Filling of carbon nanotubes and nanofibres

    PubMed Central

    Gately, Reece D

    2015-01-01

    Summary The reliable production of carbon nanotubes and nanofibres is a relatively new development, and due to their unique structure, there has been much interest in filling their hollow interiors. In this review, we provide an overview of the most common approaches for filling these carbon nanostructures. We highlight that filled carbon nanostructures are an emerging material for biomedical applications. PMID:25821693

  9. TEMPERED FRACTIONAL CALCULUS

    PubMed Central

    MEERSCHAERT, MARK M.; SABZIKAR, FARZAD; CHEN, JINGHUA

    2014-01-01

    Fractional derivatives and integrals are convolutions with a power law. Multiplying by an exponential factor leads to tempered fractional derivatives and integrals. Tempered fractional diffusion equations, where the usual second derivative in space is replaced by a tempered fractional derivative, govern the limits of random walk models with an exponentially tempered power law jump distribution. The limiting tempered stable probability densities exhibit semi-heavy tails, which are commonly observed in finance. Tempered power law waiting times lead to tempered fractional time derivatives, which have proven useful in geophysics. The tempered fractional derivative or integral of a Brownian motion, called a tempered fractional Brownian motion, can exhibit semi-long range dependence. The increments of this process, called tempered fractional Gaussian noise, provide a useful new stochastic model for wind speed data. A tempered difference forms the basis for numerical methods to solve tempered fractional diffusion equations, and it also provides a useful new correlation model in time series. PMID:26085690

  10. FRACTIONAL INTEGRATION TOOLBOX

    PubMed Central

    Marinov, Toma M.; Ramirez, Nelson; Santamaria, Fidel

    2014-01-01

    The problems formulated in the fractional calculus framework often require numerical fractional integration/differentiation of large data sets. Several existing fractional control toolboxes are capable of performing fractional calculus operations, however, none of them can efficiently perform numerical integration on multiple large data sequences. We developed a Fractional Integration Toolbox (FIT), which efficiently performs fractional numerical integration/differentiation of the Riemann-Liouville type on large data sequences. The toolbox allows parallelization and is designed to be deployed on both CPU and GPU platforms. PMID:24812536

  11. Comparing three gap filling methods for eddy covariance crop evapotranspiration measurements within a hilly agricultural catchment

    NASA Astrophysics Data System (ADS)

    Boudhina, Nissaf; Prévot, Laurent; Zitouna Chebbi, Rim; Mekki, Insaf; Jacob, Frédéric; Ben Mechlia, Netij; Masmoudi, Moncef

    2015-04-01

    Hilly watersheds are widespread throughout coastal areas around the Mediterranean Basin. They experience agricultural intensification since hilly topographies allow water-harvesting techniques that compensate for rainfall storage, water being a strong limiting factor for crop production. Their fragility is likely to increase with climate change and human pressure. Within semi-arid hilly watershed conditions, evapotranspiration (ETR) is a major term of both land surface energy and water balances. Several methods allow determining ETR, based either on direct measurements, or on estimations and forecast from weather and soil moisture data using simulation models. Among these methods, eddy covariance technique is based on high-frequency measurements of fluctuations of wind speed and air temperature / humidity, to directly determine the convective fluxes between land surface and atmosphere. In spite of experimental and instrumental progresses, datasets of eddy covariance measurements often experience large portions of missing data. The latter results from energy power failure, experimental maintenance, instrumental troubles such as krypton hygrometer malfunctioning because of air humidity, or quality assessment based filtering in relation to spatial homogeneity and temporal stationarity of turbulence within surface boundary layer. This last item is all the more important as hilly topography, when combined with strong winds, tends to increase turbulence within surface boundary layer. The main objective of this study is to establish gap-filling procedures to provide complete chronicles of eddy-covariance measurements of crop evapotranspiration (ETR) within a hilly agricultural watershed. We focus on the specific conditions induced by the combination of hilly topography and wind direction, by discriminating between upslope and downslope winds. The experiment was set for three field configurations within hilly conditions: two flux measurement stations (A, B) were installed

  12. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    DOE PAGESBeta

    Xi, Lili; Qiu, Yuting; Zhang, Wenqing; Chen, Lidong; Singh, David J.; Yang, Jihui

    2015-05-14

    Here, we report the design of novel filled CoSb3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  13. Defect-enhanced void filling and novel filled phases of open-structure skutterudites

    SciTech Connect

    Xi, Lili; Qiu, Yuting; Zhang, Wenqing; Chen, Lidong; Singh, David J.; Yang, Jihui

    2015-05-14

    Here, we report the design of novel filled CoSb3 skutterudite phases based on a combination of filling and Sb-substituted Ga/In defects. Ga/In doped skutterudite phases with Li-, Nd-, and Sm-fillings can be formed via this strategy, which can have relatively wider ranges of carrier concentration than other conventional filled skutterudite phases.

  14. Thermal Performance Evaluation of Walls with Gas Filled Panel Insulation

    SciTech Connect

    Shrestha, Som S.; Desjarlais, Andre Omer; Atchley, Jerald Allen

    2014-11-01

    Gas filled insulation panels (GFP) are very light weight and compact (when uninflated) advanced insulation products. GFPs consist of multiple layers of thin, low emittance (low-e) metalized aluminum. When expanded, the internal, low-e aluminum layers form a honeycomb structure. These baffled polymer chambers are enveloped by a sealed barrier and filled with either air or a low-conductivity gas. The sealed exterior aluminum foil barrier films provide thermal resistance, flammability protection, and properties to contain air or a low conductivity inert gas. This product was initially developed with a grant from the U.S. Department of Energy. The unexpanded product is nearly flat for easy storage and transport. Therefore, transportation volume and weight of the GFP to fill unit volume of wall cavity is much smaller compared to that of other conventional insulation products. This feature makes this product appealing to use at Army Contingency Basing, when transportation cost is significant compared to the cost of materials. The objective of this study is to evaluate thermal performance of walls, similar to those used at typical Barracks Hut (B-Hut) hard shelters, when GFPs are used in the wall cavities. Oak Ridge National Laboratory (ORNL) tested performance of the wall in the rotatable guarded hotbox (RGHB) according to the ASTM C 1363 standard test method.

  15. Effects of the air pressure on the wave-packet dynamics of gaseous iodine molecules at room temperature

    NASA Astrophysics Data System (ADS)

    Fan, Rongwei; He, Ping; Chen, Deying; Xia, Yuanqin; Yu, Xin; Wang, Jialing; Jiang, Yugang

    2013-02-01

    Based on ultrafast laser pulses, time-resolved resonance enhancement coherent anti-Stokes Raman scattering (RE-CARS) is applied to investigate wave-packet dynamics in gaseous iodine. The effects of air pressure on the wave-packet dynamics of iodine molecules are studied at pressures ranging from 1.5 Torr to 750 Torr. The RE-CARS signals are recorded in a gas cell filled with a mixture of about 0.3 Torr iodine in air buffer gas at room temperature. The revivals and fractional revival structures in the wave-packet signal are found to gradually disappear with rising air pressure up to 750 Torr, and the decay behaviors of the excited B-state and ground X-state become faster with increasing air pressure, which is due to the collision effects of the molecules and the growing complexity of the spectra at high pressures.

  16. DIY Fraction Pack.

    ERIC Educational Resources Information Center

    Graham, Alan; Graham, Louise

    2003-01-01

    Describes a very successful attempt to teach fractions to year 5 pupils based on pupils making their own fraction pack. Children decided for themselves how to make the fractional slices used in the activity using colored cardboard sheets and templates of a paper circle consisting of 24 equal slices. (Author/NB)

  17. Investigation and calculation of filling factor of SnO2 inverse opal

    NASA Astrophysics Data System (ADS)

    Wang, Jinquan; Wu, Shimin; Ji, Xiaoyuan; Li, Jinpeng; Zhang, Rong; Zhang, Ming

    2016-04-01

    In the process of preparing inverse opal, the structure of inverse opal is affected by many factors, and the filling factor of inverse opal is difficult to directly test. In this paper, SnO2 inverse opal was prepared with the sol–gel method by cooperative opal template. The repetition times of the infiltrating precursor into the opal templates were investigated in detail. The band-gap positions of SnO2 inverse opal were tested. In order to prepare perfect inverse opal structure, the filling quantity of the precursor is greater, as the diameter of the PS microsphere of opal is bigger. The filling factor of air in inverse opal can be calculated with a formula derived from Bragg’s law. For inverse opal, the filling factor of air in inverse opal gradually enlarges as the diameter of the void increases.

  18. System-level simulation of liquid filling in microfluidic chips.

    PubMed

    Song, Hongjun; Wang, Yi; Pant, Kapil

    2011-06-01

    Liquid filling in microfluidic channels is a complex process that depends on a variety of geometric, operating, and material parameters such as microchannel geometry, flow velocity∕pressure, liquid surface tension, and contact angle of channel surface. Accurate analysis of the filling process can provide key insights into the filling time, air bubble trapping, and dead zone formation, and help evaluate trade-offs among the various design parameters and lead to optimal chip design. However, efficient modeling of liquid filling in complex microfluidic networks continues to be a significant challenge. High-fidelity computational methods, such as the volume of fluid method, are prohibitively expensive from a computational standpoint. Analytical models, on the other hand, are primarily applicable to idealized geometries and, hence, are unable to accurately capture chip level behavior of complex microfluidic systems. This paper presents a parametrized dynamic model for the system-level analysis of liquid filling in three-dimensional (3D) microfluidic networks. In our approach, a complex microfluidic network is deconstructed into a set of commonly used components, such as reservoirs, microchannels, and junctions. The components are then assembled according to their spatial layout and operating rationale to achieve a rapid system-level model. A dynamic model based on the transient momentum equation is developed to track the liquid front in the microchannels. The principle of mass conservation at the junction is used to link the fluidic parameters in the microchannels emanating from the junction. Assembly of these component models yields a set of differential and algebraic equations, which upon integration provides temporal information of the liquid filling process, particularly liquid front propagation (i.e., the arrival time). The models are used to simulate the transient liquid filling process in a variety of microfluidic constructs and in a multiplexer, representing a

  19. Commensurability condition and fractional quantum Hall effect hierarchy in higher Landau levels

    NASA Astrophysics Data System (ADS)

    Jacak, J.; Jacak, L.

    2015-07-01

    The odd structure of the fractional filling hierarchy, which is referred to as the fractional quantum Hall effect, is studied in higher Landau levels using the commensurability condition. The hierarchy of fillings that are derived in this manner is consistent with the experimental observations in the first three Landau levels. The relative poverty of the fractional structure in higher Landau levels compared with the lowest Landau level is explained using commensurability topological arguments. The commensurability criterion for correlated states specific for higher Landau levels (with n ≥ 1), including also the paired states at half fillings of the spinsubbands of these levels, is formulated.

  20. Filling cavities or restoring teeth?

    PubMed

    Versluis, Antheunis; Versluis-Tantbirojn, Daranee

    2011-01-01

    Teeth seldom fracture under normal functional loading. This indicates that the natural tooth design is optimized for the distribution of regular masticatory forces by means of its properties and structure. When a tooth is restored with an intracoronal restoration, however, the incidence of tooth fracture increases. Since remaining tissues do not change, the restorative actions apparently alter the original stress distributions. In this study, the effect of different restoration types (unbonded amalgam and bonded composite restorations) were compared with the original stress conditions of the intact tooth, using finite element analysis. It was shown that an unbonded amalgam restoration did not restore the original stress conditions but led to much higher stresses in the buccal and lingual enamel and to higher tensile stresses in the cavity floor. The unbonded amalgam thus filled the cavity but did not restore the tooth. In contrast, a bonded composite restoration restored the original stress pattern in the tooth if there was no polymerization shrinkage. Polymerization shrinkage causes residual tensile stresses in the dentin around the cavity and in the buccal and lingual enamel. Residual tensile stresses in the buccal and lingual enamel are momentary compensated by compressive stress components during occlusal loading. It was concluded that bonding and elimination of residual stresses are prerequisites for restoring the original tooth integrity. PMID:21748978

  1. Fractional quantum Hall states of Rydberg polaritons

    NASA Astrophysics Data System (ADS)

    Maghrebi, Mohammad F.; Yao, Norman Y.; Hafezi, Mohammad; Pohl, Thomas; Firstenberg, Ofer; Gorshkov, Alexey V.

    2015-03-01

    We propose a scheme for realizing fractional quantum Hall states of light. In our scheme, photons of two polarizations are coupled to different atomic Rydberg states to form two flavors of Rydberg polaritons that behave as an effective spin. An array of optical cavity modes overlapping with the atomic cloud enables the realization of an effective spin-1 /2 lattice. We show that the dipolar interaction between such polaritons, inherited from the Rydberg states, can be exploited to create a flat, topological band for a single spin-flip excitation. At half filling, this gives rise to a photonic (or polaritonic) fractional Chern insulator—a lattice-based, fractional quantum Hall state of light.

  2. Applying machine learning to electronic form filling

    NASA Astrophysics Data System (ADS)

    Hermens, Leonard A.; Schlimmer, Jeffrey C.

    1993-03-01

    Forms of all types are used in businesses and government agencies and most of them are filled in by hand. Yet much time and effort has been expended to automate form-filling by programming specific systems on computers. The high cost of programmers and other resources prohibits many organizations from benefitting from efficient office automation. A learning apprentice can be used for such repetitious form-filling tasks. In this paper, we establish the need for learning apprentices, describe a framework for such a system, explain the difficulties of form-filling, and present empirical results of a form-filling system used in our department from September 1991 to April 1992. The form-filling apprentice saves up to 84% in keystroke effort and correctly predicts nearly 90% of the values on the form.

  3. Filling of orbital fluid management systems

    NASA Technical Reports Server (NTRS)

    Merino, F.; Blatt, M. H.; Thies, N. C.

    1978-01-01

    A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.

  4. Mechanisms of tracheal filling in insects.

    PubMed

    Förster, Thomas D; Woods, H Arthur

    2013-02-01

    Insects exchange respiratory gases primarily using tracheal systems that are filled with gas. However, in different developmental and environmental circumstances, liquid can occupy the tracheal system, which can significantly impair its respiratory function. Insects therefore use a suite of mechanisms for tracheal filling, which is the process of replacing tracheal liquids with gas. We review these mechanisms for liquid removal and gas filling. By integrating recent molecular work with older physiological literature, we show that liquid removal likely involves active ion transport in the whole tracheal system. Gas filling reveals fascinating interactions between geometry, surface chemistry of the tracheal walls, the tracheal liquid, and dissolved gases. The temporal proximity to moulting allows for potentially complex interdependencies between gas filling, moult-associated hormone signaling, and cuticle sclerotization. We propose a mechanistic model for tracheal filling. However, because the composition of the liquid is unknown, it remains hypothetical. PMID:22616845

  5. Classification of munition fill using laser acoustics

    SciTech Connect

    Rodriguez, J.G.; Blackwood, L.G.

    1997-08-01

    Identification of a munition fill is easier if one can determine if there is fill material present (empty versus full), and if so, the phase (solid or liquid) of the fill. Previous munition inspection efforts by the Idaho National Engineering and Environmental Laboratory (INEEL) determined that resonance information could determine the fill. A portable, noncontacting laser-acoustic system was developed by INEEL that uses a low-power laser system to measure the container`s vibration characteristics in response to an acoustic excitation. These vibration characteristics were shown to be functions of the fill material and munition geometry. The laser acoustic system was used to characterize the fill of over one hundred 155-mm munitions. Additional research and development using this system is being performed for the Mobile Munitions Assessment System.

  6. Development of a southern oceanic air standard reference material.

    PubMed

    Rhoderick, George C; Kelley, Michael E; Miller, Walter R; Brailsford, Gordon; Possolo, Antonio

    2016-02-01

    In 2009, the United States Congress charged the National Institute of Standards and Technology (NIST) with supporting climate change research. As part of this effort, the Gas Sensing Metrology Group at NIST began developing new gas standard mixtures for greenhouse gas mixtures relevant to atmospheric measurements. Suites of gravimetrically prepared primary standard mixtures (PSMs) were prepared at ambient concentration levels for carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in a dry-air balance. In parallel, 30 gas cylinders were filled, by the National Institute of Water and Atmospheric Research (NIWA) in Wellington, New Zealand, to high pressure from pristine southern oceanic air at Baring Head, New Zealand, and shipped to NIST. Using spectroscopic instrumentation, NIST analyzed the 30 cylinder samples for mole fractions of CO2, CH4, and N2O. Certified values were assigned to these mixtures by calibrating the instrumentation with the PSM suites that were recently developed at NIST. These mixtures became NIST Standard Reference Material (SRM) 1721 Southern Oceanic Air and are certified for ambient mole fraction, the first of their kind for NIST. The relative expanded uncertainties corresponding to coverage intervals with 95% probability are no larger than 0.06% of the certified values, representing the smallest uncertainties to date ever assigned to an NIST gas SRM. PMID:26650733

  7. Waste Package Neutron Absorber, Thermal Shunt, and Fill Gas Selection Report

    SciTech Connect

    V. Pasupathi

    2000-01-28

    Materials for neutron absorber, thermal shunt, and fill gas for use in the waste package were selected using a qualitative approach. For each component, selection criteria were identified; candidate materials were selected; and candidates were evaluated against these criteria. The neutron absorber materials evaluated were essentially boron-containing stainless steels. Two candidates were evaluated for the thermal shunt material. The fill gas candidates were common gases such as helium, argon, nitrogen, carbon dioxide, and dry air. Based on the performance of each candidate against the criteria, the following selections were made: Neutron absorber--Neutronit A978; Thermal shunt--Aluminum 6061 or 6063; and Fill gas--Helium.

  8. Undercut and fill system for pitching coal. Open file report Aug 79-Jun 81

    SciTech Connect

    Mangolds, A.; Fisk, A.

    1981-06-01

    A study of the technical and economic feasibility of using a unique undercut and fill system developed by Bureau of Mines engineers to mine steeply pitching coal is discussed. The undercut and fill system combines hydraulic coal cutting with unassisted gravity fluming of the coal slurry. Mining occurs across strike and the extended entry is backfilled to provide uniform strata control and an impermeable water and air barrier. Subsequent mining occurs beneath the previously filled stope such that the roof consists of a solid, controlled back.

  9. Impact of detector-element active-area shape and fill factor on super-resolution

    NASA Astrophysics Data System (ADS)

    Hardie, Russell; Droege, Douglas; Dapore, Alexander; Greiner, Mark

    2015-05-01

    In many undersampled imaging systems, spatial integration from the individual detector elements is the dominant component of the system point spread function (PSF). Conventional focal plane arrays (FPAs) utilize square detector elements with a nearly 100% fill factor, where fill factor is defined as the fraction of the detector element area that is active in light detection. A large fill factor is generally considered to be desirable because more photons are collected for a given pitch, and this leads to a higher signal-to-noise-ratio (SNR). However, the large active area works against super-resolution (SR) image restoration by acting as an additional low pass filter in the overall PSF when modeled on the SR sampling grid. A high fill factor also tends to increase blurring from pixel cross-talk. In this paper, we study the impact of FPA detector-element shape and fill factor on SR. A detailed modulation transfer function analysis is provided along with a number of experimental results with both simulated data and real data acquired with a midwave infrared (MWIR) imaging system. We demonstrate the potential advantage of low fill factor detector elements when combined with SR image restoration. Our results suggest that low fill factor circular detector elements may be the best choice. New video results are presented using robust adaptive Wiener filter SR processing applied to data from a commercial MWIR imaging system with both high and low detector element fill factors.

  10. Effects of verapamil on left ventricular diastolic filling in children with hypertrophic cardiomyopathy

    SciTech Connect

    Shaffer, E.M.; Rocchini, A.P.; Spicer, R.L.; Juni, J.; Snider, R.; Crowley, D.C.; Rosenthal, A.

    1988-02-15

    The effects of oral verapamil on resting left ventricular (LV) diastolic filling were examined in 10 children and adolescents with hypertrophic cardiomyopathy. Measurements of diastolic filling were made from gated technetium-99m radionuclide angiograms with postbeat rejection of data outside a 5% RR-interval window. LV time-activity curves were generated and the rapid-filling phase fit with a 3 degrees polynomial to calculate the peak filling rate and the time from end-systole to the point of peak filling. All patients had a radionuclide angiogram performed before and after 0.25 to 3 years of oral verapamil therapy. Verapamil did not change the LV ejection fraction but increased the peak filling rate (3.24 +/- 0.15 to 4.62 +/- 1.05 end-diastolic volume/s,p less than 0.01) and reduced the time to peak filling (217 +/- 57 to 168 +/- 63 ms, p less than 0.01). An increase in exercise endurance as measured by exercise treadmill test and subjective symptomatic improvement were also seen after verapamil therapy. Thus, in children with hypertrophic cardiomyopathy, symptomatic improvement and LV diastolic filling parameters improved with long-term oral verapamil.

  11. Mekong Floods Fill Tonle Sap

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The monsoon season in Southeast Asia brings recurring, often devastating floods to countries in the region, but these floods also play a necessary role in the region's water cycle. These MODIS images centered on Cambodia reveal extensive flooding of the Mekong River, which comes in from Laos in the north, to the right of center in the images, and flows south through Cambodia and southeast through Vietnam to empty into the South China Sea. The true-color image shows the brownish, sediment-laden floodwaters filling the Mekong Delta in southern Cambodia and Vietnam on September 15, 2001. The false color image above has been enhanced to bring out the contrast between the floodwaters and the lands, with sediment-carrying floodwaters in purple. Sediment can be seen flowing into the South China Sea as well. This year's floods have affected over a million people, and 100 people have been killed in Vietnam alone. The monsoon floods bring not only devastation, but renewal. The large body of water just left of center in Cambodia is the Tonle Sap. This shallow lake plays a changing role in the regional water cycle. During the dry season, the stream-fed Tonle Sap drains via the Tonle Sab River into the Mekong River. During the wet season (June-November), flooding of the Mekong reverses the course of the Tonle Sab, roughly tripling the lake's size from about 3000 km2 to about 10,000. When the dry season returns, the lake once again begins to drain into the Mekong Delta, where it provides a flow of fresh water that balances the intrusion of salty seawater into the delta's agricultural lands. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  12. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    NASA Astrophysics Data System (ADS)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  13. Fractional exhaled nitric oxide measurement with a handheld device.

    PubMed

    Magori, Erhard; Hiltawsky, Karsten; Fleischer, Maximilian; Simon, Elfriede; Pohle, Roland; von Sicard, Oliver; Tawil, Angelika

    2011-06-01

    A sensing system for fractional exhaled nitric oxide (FeNO) measurement is presented, which is characterized by a compact setup and a cost potential to be made available for the patient at home. The sensing is based on the work function measurement of a phthalocyanine-type sensing material, which is shown to be sufficiently sensitive for NO(2) in the ppb range. The transducer used to measure the work function is a field effect transistor with a suspended gate electrode. Selectivity is given with respect to other breath components including typically metabolic by-products. The measurement system includes breath treatments in a simple setup, which essentially are dehumidification and a quantitative conversion of NO to NO(2) with a conversion rate of approx. 95%, using a disposable oxidation catalyst. The accomplishment of the correct exhalation maneuver and feeding of the suited portion of exhaled air to the sensor is provided by breath sampling means. The sensor is not gas consuming. This allows us to fill the measurement chamber once, instead of establishing a gas flow for the measurement. This feature simplifies the device architecture. In this paper, we report on sensor characteristics, system architecture and measurement with artificial breath-gas as well as with human breath with the device. PMID:21646688

  14. Dividing Fractions: A Pedagogical Technique

    ERIC Educational Resources Information Center

    Lewis, Robert

    2016-01-01

    When dividing one fraction by a second fraction, invert, that is, flip the second fraction, then multiply it by the first fraction. To multiply fractions, simply multiply across the denominators, and multiply across the numerators to get the resultant fraction. So by inverting the division of fractions it is turned into an easy multiplication of…

  15. Aerosol Synthesis of Cargo-Filled Graphene Nanosacks

    PubMed Central

    Chen, Yantao; Guo, Fei; Jachak, Ashish; Kim, Sang-Pil; Datta, Dibakar; Liu, Jingyu; Kulaots, Indrek; Vaslet, Charles; Jang, Hee Dong; Huang, Jiaxing; Kane, Agnes; Shenoy, Vivek B.; Hurt, Robert H.

    2012-01-01

    Water microdroplets containing graphene oxide and a second solute are shown to spontaneously segregate into sack-cargo nanostructures upon drying. Analytical modelling and molecular dynamics suggest the sacks form when slow-diffusing graphene oxide preferentially accumulates and adsorbs at the receding air-water interface, followed by capillary collapse. Cargo-filled graphene nanosacks can be nanomanufactured by a simple, continuous, scalable process and are promising for many applications where nanoscale materials should be isolated from the environment or biological tissue. PMID:22429091

  16. ECO fill: automated fill modification to support late-stage design changes

    NASA Astrophysics Data System (ADS)

    Davis, Greg; Wilson, Jeff; Yu, J. J.; Chiu, Anderson; Chuang, Yao-Jen; Yang, Ricky

    2014-03-01

    One of the most critical factors in achieving a positive return for a design is ensuring the design not only meets performance specifications, but also produces sufficient yield to meet the market demand. The goal of design for manufacturability (DFM) technology is to enable designers to address manufacturing requirements during the design process. While new cell-based, DP-aware, and net-aware fill technologies have emerged to provide the designer with automated fill engines that support these new fill requirements, design changes that arrive late in the tapeout process (as engineering change orders, or ECOs) can have a disproportionate effect on tapeout schedules, due to the complexity of replacing fill. If not handled effectively, the impacts on file size, run time, and timing closure can significantly extend the tapeout process. In this paper, the authors examine changes to design flow methodology, supported by new fill technology, that enable efficient, fast, and accurate adjustments to metal fill late in the design process. We present an ECO fill methodology coupled with the support of advanced fill tools that can quickly locate the portion of the design affected by the change, remove and replace only the fill in that area, while maintaining the fill hierarchy. This new fill approach effectively reduces run time, contains fill file size, minimizes timing impact, and minimizes mask costs due to ECO-driven fill changes, all of which are critical factors to ensuring time-to-market schedules are maintained.

  17. The photospheric filling factor of the active binary II Pegasi

    NASA Astrophysics Data System (ADS)

    Marino, G.; Rodonó, M.; Leto, G.; Cutispoto, G.

    1999-12-01

    UBV and JHK photometry of the active single-lined binary II Peg, we performed in 1995, is presented. A method to determine the fraction of the photosphere covered by spots (filling factor) and to check the accuracy of generally assumed values of photospheric parameters has been developed. The procedure is based on the comparison between multiband fluxes and low resolution synthetic spectra weighted on the base of the spot filling factor and scaled with the ratio between the star radius and distance (R/d), so that we can also estimate the R/d ratio. A chi 2 fit has been performed for II Peg observations close to the light maximum and minimum by assuming reliable values of the photospheric parameters. Although a unique solution cannot be reached, we found clear indication for a spot filling factor at light maximum >= 40%. We find that the same set of parameters that gives us the best fit solutions at light maximum also provides the best fit at light minimum. The resulting solutions are consistent with the observed amplitude of the photometric wave, and with the commonly accepted value of R, unspotted V magnitude and spectral classification for II Pegasi.

  18. FRACTIONAL PEARSON DIFFUSIONS

    PubMed Central

    Leonenko, Nikolai N.; Meerschaert, Mark M.

    2013-01-01

    Pearson diffusions are governed by diffusion equations with polynomial coefficients. Fractional Pearson diffusions are governed by the corresponding time-fractional diffusion equation. They are useful for modeling sub-diffusive phenomena, caused by particle sticking and trapping. This paper provides explicit strong solutions for fractional Pearson diffusions, using spectral methods. It also presents stochastic solutions, using a non-Markovian inverse stable time change. PMID:23626377

  19. Critical temperature of noninteracting bosonic gases in cubic optical lattices at arbitrary integer fillings.

    PubMed

    Rakhimov, Abdulla; Askerzade, Iman N

    2014-09-01

    We have shown that the critical temperature of a Bose-Einstein condensate to a normal phase transition of noninteracting bosons in cubic optical lattices has a linear dependence on the filling factor, especially at large densities. The condensed fraction exhibits a linear power law dependence on temperature in contrast to the case of ideal homogeneous Bose gases. PMID:25314412

  20. Influence of template fill in graphoepitaxy DSA

    NASA Astrophysics Data System (ADS)

    Doise, Jan; Bekaert, Joost; Chan, Boon Teik; Hong, SungEun; Lin, Guanyang; Gronheid, Roel

    2016-03-01

    Directed self-assembly (DSA) of block copolymers (BCP) is considered a promising patterning approach for the 7 nm node and beyond. Specifically, a grapho-epitaxy process using a cylindrical phase BCP may offer an efficient solution for patterning randomly distributed contact holes with sub-resolution pitches, such as found in via and cut mask levels. In any grapho-epitaxy process, the pattern density impacts the template fill (local BCP thickness inside the template) and may cause defects due to respectively over- or underfilling of the template. In order to tackle this issue thoroughly, the parameters that determine template fill and the influence of template fill on the resulting pattern should be investigated. In this work, using three process flow variations (with different template surface energy), template fill is experimentally characterized as a function of pattern density and film thickness. The impact of these parameters on template fill is highly dependent on the process flow, and thus pre-pattern surface energy. Template fill has a considerable effect on the pattern transfer of the DSA contact holes into the underlying layer. Higher fill levels give rise to smaller contact holes and worse critical dimension uniformity. These results are important towards DSA-aware design and show that fill is a crucial parameter in grapho-epitaxy DSA.

  1. Laplace homotopy perturbation method for Burgers equation with space- and time-fractional order

    NASA Astrophysics Data System (ADS)

    Johnston, S. J.; Jafari, H.; Moshokoa, S. P.; Ariyan, V. M.; Baleanu, D.

    2016-07-01

    The fractional Burgers equation describes the physical processes of unidirectional propagation of weakly nonlinear acoustic waves through a gas-filled pipe. The Laplace homotopy perturbation method is discussed to obtain the approximate analytical solution of space-fractional and time-fractional Burgers equations. The method used combines the Laplace transform and the homotopy perturbation method. Numerical results show that the approach is easy to implement and accurate when applied to partial differential equations of fractional orders.

  2. FRACTIONATION OF COMPLEX MIXTURES USING AND ION-EXCHANGE METHODOLOGY

    EPA Science Inventory

    Fractionation of particle emission extracts captured from complex combustion mixtures gas performed upon environmental samples using an ion-exchange technique. aptured emissions from hazardous waste, municipal and medical/pathological incinerators along with urban air imputed by ...

  3. Isotopic fractionation of stratospheric nitrous oxide

    SciTech Connect

    Yung, Yuk L.; Miller, C.L.

    1997-12-05

    An isotopic fractionation mechanism is proposed, based on photolytic destruction to explain the {sup 15}N/{sup 14}N and {sup 18}O/{sup 16}O fractionation of stratospheric nitrous oxide (N{sub 2}O) and reconcile laboratory experiments with atmospheric observations. The theory predicts that (i) the isotopomers {sup 15}N{sup 14}N{sup 16}O and {sup 14}N{sup 15}N{sup 16}O have very different isotopic fractionations in the stratosphere, and (ii) laboratory photolysis experiments conducted at 205 nanometers should better simulate the observed isotopic fractionation of stratospheric N{sub 2}O. Modeling results indicate that there is no compelling reason to invoke a significant chemical source of N{sub 2}O in the middle atmosphere and that individual N{sub 2}O isotopomers might be useful tracers of stratospheric air parcel motion. 32 refs., 2 figs., 1 tab.

  4. An Appetite for Fractions

    ERIC Educational Resources Information Center

    Wilkerson, Trena L.; Bryan, Tommy; Curry, Jane

    2012-01-01

    This article describes how using candy bars as models gives sixth-grade students a taste for learning to represent fractions whose denominators are factors of twelve. Using paper models of the candy bars, students explored and compared fractions. They noticed fewer different representations for one-third than for one-half. The authors conclude…

  5. Can Kindergartners Do Fractions?

    ERIC Educational Resources Information Center

    Cwikla, Julie

    2014-01-01

    Mathematics professor Julie Cwikla decided that she needed to investigate young children's understandings and see what precurricular partitioning notions young minds bring to the fraction table. Cwikla realized that only a handful of studies have examined how preschool-age and early elementary school-age students solve fraction problems…

  6. The Future of Fractions

    ERIC Educational Resources Information Center

    Usiskin, Zalman P.

    2007-01-01

    In the 1970s, the movement to the metric system (which has still not completely occurred in the United States) and the advent of hand-held calculators led some to speculate that decimal representation of numbers would render fractions obsolete. This provocative proposition stimulated Zalman Usiskin to write "The Future of Fractions" in 1979. He…

  7. (Carbon isotope fractionation inplants)

    SciTech Connect

    O'Leary, M.H.

    1990-01-01

    The objectives of this research are: To develop a theoretical and experimental framework for understanding isotope fractionations in plants; and to develop methods for using this isotope fractionation for understanding the dynamics of CO{sub 2} fixation in plants. Progress is described.

  8. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  9. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  10. Droplet Measurement below Single-Layer Grid Fill

    NASA Astrophysics Data System (ADS)

    Vitkovic, Pavol

    2016-03-01

    The main part of the heat transfer in a cooling tower is in a fill zone. This one is consist of a cooling fill. For the cooling tower is used a film fill or grid fill or splash fill in the generally. The grid fill has lower heat transfer performance like film fill usually. But their advantage is high resistance to blockage of the fill. The grid fill is consisted with independent layers made from plastic usually. The layers consist of several bars connected to the different shapes. For experiment was used the rhombus shape. The drops diameter was measured above and below the Grid fill.

  11. The reopening of a collapsed fluid-filled elastic tube

    NASA Astrophysics Data System (ADS)

    Juel, Anne; Heap, Alexandra

    We present an experimental study of the reopening mechanics of a collapsed liquid-filled elastic tube. The experiment is a simple mechanical model of pulmonary airway reopening and aims to assess the robustness of existing theoretical models. A metre-long horizontal elastic tube of inner radius R_i {=} 4.88 ± 0.14mm is filled with silicone oil and is carefully collapsed mechanically. The injection of nitrogen at a constant flow rate results in the steady propagation of an air finger, after the decay of initial transients. This behaviour is observed over the realizable range of the capillary numbers Ca, which measures the ratio of viscous and capillary forces. With increasing Ca, the transition region between the collapsed and reopened sections of the tube shortens, and the height of the tube behind the bubble tip increases. We also find that air fingers can propagate in partially reopened tubes, in which the transmural pressure is negative far behind the finger tip.

  12. Fractional quantum Hall effect in a tilted magnetic field

    NASA Astrophysics Data System (ADS)

    Papić, Z.

    2013-06-01

    We discuss the orbital effect of a tilted magnetic field on the quantum Hall effect in parabolic quantum wells. Many-body states realized at the fractional (1)/(3) and (1)/(2) filling of the second electronic subband are studied using finite-size exact diagonalization. In both cases, we obtain the phase diagram consisting of a fractional quantum Hall fluid phase that persists for moderate tilts, and eventually undergoes a direct transition to the stripe phase. It is shown that tilting of the field probes the geometrical degree of freedom of fractional quantum Hall fluids, and can be partly related to the effect of band-mass anisotropy.

  13. First third filling parameters of left ventricle assessed from gated equilibrium studies in patients with various heart diseases

    SciTech Connect

    Adatepe, M.H.; Nichols, K.; Powell, O.M.; Isaacs, G.H.

    1984-01-01

    The authors determined the first third filling fraction (1/3 FF), the maximum filling rate (1/3 FR) and the mean filling rate (1/3 MFR) for the first third diastolic filling period of the left ventricle in patients with coronary artery disease (CAD), valvular heart disease (VHD), pericardial effusion (PE), cardiomyopathies (CM), chronic obstructive lung disease (COPD) and in 5 normals-all from resting gated equilibrium studies. Parameters are calculated from the third order Fourier fit to the LV volume curve and its derivative. 1/3 FF% = 1/3 diastolic count - end systolic count / 1/3 diastolic count x 100. Patients with CAD are divided into two groups: Group I with normal ejection fraction (EF) and wall motion (WM); Group II with abnormal EF and WM. Results are shown in the table. Abnormal filling parameters are found not only in CAD but in VHD, PE and CM. The authors conclude that the first third LV filling parameters are sensitive but non-specific indicators of filling abnormalities caused by diverse etiologic factors. Abnormal first third filling parameters may occur in the presence of a normal resting EF and WM in CAD.

  14. Evaluating a pneumatic fractionator for cleaning ginned lint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pneumatic fractionator has long been used to determine foreign matter content of seed cotton at the USDA Cotton Ginning Laboratories. An experiment was conducted to evaluate the pneumatic fractionator as a lint cleaning device. No modifications were made to the standard device, except that air p...

  15. Post-flight Analysis of the Argon Filled Ion Chamber

    NASA Technical Reports Server (NTRS)

    Tai, H.; Goldhagen, P.; Jones, I. W.; Wilson, J. W.; Maiden, D. L.; Shinn, J. L.

    2003-01-01

    Atmospheric ionizing radiation is a complex mixture of primary galactic and solar cosmic rays and a multitude of secondary particles produced in collision with air nuclei. The first series of Atmospheric Ionizing Radiation (AIR) measurement flights on the NASA research aircraft ER-2 took place in June 1997. The ER-2 flight package consisted of fifteen instruments from six countries and were chosen to provide varying sensitivity to specific components. These AIR ER-2 flight measurements are to characterize the AIR environment during solar minimum to allow the continued development of environmental models of this complex mixture of ionizing radiation. This will enable scientists to study the ionizing radiation health hazard associated with the high-altitude operation of a commercial supersonic transport and to allow estimates of single event upsets for advanced avionics systems design. The argon filled ion chamber representing about 40 percent of the contributions to radiation risks are analyzed herein and model discrepancies for solar minimum environment are on the order of 5 percent and less. Other biologically significant components remain to be analyzed.

  16. Improved quantification of microbial CH4 oxidation efficiency in arctic wetland soils using carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2013-04-01

    Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the arctic will cause deeper permafrost thawing, followed by increased carbon mineralization and CH4 formation in water-saturated tundra soils, thus creating a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4 signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (such as landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism and diffusive stable isotope fractionation should be considered alongside oxidative fractionation. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox = 1.017 ± 0.009) and needs to be determined on a case by case basis. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the

  17. Fractional calculus in bioengineering.

    PubMed

    Magin, Richard L

    2004-01-01

    Fractional calculus (integral and differential operations of noninteger order) is not often used to model biological systems. Although the basic mathematical ideas were developed long ago by the mathematicians Leibniz (1695), Liouville (1834), Riemann (1892), and others and brought to the attention of the engineering world by Oliver Heaviside in the 1890s, it was not until 1974 that the first book on the topic was published by Oldham and Spanier. Recent monographs and symposia proceedings have highlighted the application of fractional calculus in physics, continuum mechanics, signal processing, and electromagnetics, but with few examples of applications in bioengineering. This is surprising because the methods of fractional calculus, when defined as a Laplace or Fourier convolution product, are suitable for solving many problems in biomedical research. For example, early studies by Cole (1933) and Hodgkin (1946) of the electrical properties of nerve cell membranes and the propagation of electrical signals are well characterized by differential equations of fractional order. The solution involves a generalization of the exponential function to the Mittag-Leffler function, which provides a better fit to the observed cell membrane data. A parallel application of fractional derivatives to viscoelastic materials establishes, in a natural way, hereditary integrals and the power law (Nutting/Scott Blair) stress-strain relationship for modeling biomaterials. In this review, I will introduce the idea of fractional operations by following the original approach of Heaviside, demonstrate the basic operations of fractional calculus on well-behaved functions (step, ramp, pulse, sinusoid) of engineering interest, and give specific examples from electrochemistry, physics, bioengineering, and biophysics. The fractional derivative accurately describes natural phenomena that occur in such common engineering problems as heat transfer, electrode/electrolyte behavior, and sub

  18. Multiple daily fractionation schedules

    SciTech Connect

    Peschel, R.E.; Fischer, J.J.

    1982-10-01

    Although conventional fractionation schedules have been satisfactory for the treatment of some tumors, there is reason to believe that the results of radiation therapy could be improved in some cases by appropriate alterations in treatment schedules. The pharmacological characteristics of some of the electron affinic radiation sensitizers have provided added incentive to investigate newer fractionation schemes, particularly ones which deliver the majority of the radiation dose in short periods of time. This editorial discusses three papers describing preliminary clinical studies using multi-daily fractionated (MDF) radiation therapy. Two of these studies also make use of the radiation sensitizer misonidazole. (KRM)

  19. 5 CFR 362.303 - Filling positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... possesses a Ph.D. or equivalent degree directly related to the STEM position the agency is seeking to fill... candidate possesses a Ph.D. or equivalent degree directly related to the position the agency is seeking...

  20. 5 CFR 362.303 - Filling positions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... possesses a Ph.D. or equivalent degree directly related to the STEM position the agency is seeking to fill... candidate possesses a Ph.D. or equivalent degree directly related to the position the agency is seeking...

  1. PERVAPORATION USING ADSORBENT-FILLED MEMBRANES

    EPA Science Inventory

    Membranes containing selective fillers, such as zeolites and activated carbon, can improve the separation by pervaporation. Applications of adsorbent-filled membranes in pervaporation have been demonstrated by a number of studies. These applications include removal of organic co...

  2. Foam-filled cushions for sliding trays

    NASA Technical Reports Server (NTRS)

    Nahin, S. B.; Robb, P. H.

    1980-01-01

    Polytetrafluoroethylene tube filled with polyurethane foam forms low friction sliding surface that cushions vibrations and absorbs manufacturing tolerances and misalignment. Possible uses include packaging of components for shipping and seals for doors in lockers, cars, and refrigerators.

  3. REMEDIATION OF TCE-CONTAMINATED GROUNDWATER BY A PERMEABLE REACTIVE BARRIER FILLED WITH PLANT MULCH (BIOWALL)

    EPA Science Inventory

    A pilot-scale permeable reactive barrier filled with plant mulch was installed at Altus Air Force Base (in Oklahoma, USA) to treat trichloroethylene (TCE) contamination in ground water emanating from a landfill. The barrier was constructed in June 2002. It was 139 meters long, 7 ...

  4. The fractional quantum hall effect (experiment)

    NASA Astrophysics Data System (ADS)

    Stormer, H. L.

    1984-11-01

    Quantization of the Hall resistance ϱ XY in two-dimensional electron systems and simultaneously vanishing resistivity ϱ XX have been observed at fractional filling ν of Landau levels, ν being close to various rational fractions of p/q with exclusively odd denominator. Where resolved, the Hall resistance is quantized to ϱ XY=h/νe 2 to high accuracy. While the normal quantized Hall effect at integer values of ν=i, (i=1,2,3...) reflects the Landau and spin gaps in the single particle density of states of electrons in a magnetic field, this new phenomena is believed to indicate the condensation of the carriers into a novel, highly-correlated electronic state best described as an electron quantum liquid.

  5. Directed self-assembly of diblock copolymers in cylindrical confinement: effect of underfilling and air-polymer interactions on configurations

    NASA Astrophysics Data System (ADS)

    Carpenter, Corinne L.; Delaney, Kris T.; Laachi, Nabil; Fredrickson, Glenn H.

    2015-03-01

    Directed self-assembly (DSA) of block copolymers has attracted attention for its use as a simple, cost- effective patterning tool for creating vertical interconnect access (VIA) channels in nanoelectronic devices.1, 2 This technique supplements existing lithographic technologies to allow for the creation of high-resolution cylindrical holes whose diameter and placement can be precisely controlled. In this study, we use self-consistent field theory (SCFT) simulations to investigate the equilibrium configurations of under-filled DSA systems with air-polymer interactions. We report on a series of SCFT simulations of our three species (PMMA-b-PS diblock and air) model in cylindrical confinement to explore the role of template diameter, under-fill fraction (i.e. volume fraction of air), air-polymer surface interaction and polymer-side wall/substrate interactions on equilibrium morphologies in an under-filled template with a free top surface. We identify parameters and system configurations where a meniscus appears and explore cases with PMMA-attractive, PS-attractive, and all-neutral walls to understand the effects of wall properties on meniscus geometry and DSA morphology. An important outcome is an understanding of the parameters that control the contact angle of the meniscus with the wall, as it is one of the simplest quantitative measures of the meniscus shape. Ultimately, we seek to identify DSA formulations, templates, and surface treatments with predictable central cylinder diameter and a shallow contact angle, as these factors would facilitate broad process windows and ease of manufacturing.

  6. Autocorrelation spectra of an air-fluidized granular system measured by NMR

    NASA Astrophysics Data System (ADS)

    Lasic, S.; Stepisnik, J.; Mohoric, A.; Sersa, I.; Planinsic, G.

    2006-09-01

    A novel insight into the dynamics of a fluidized granular system is given by a nuclear magnetic resonance method that yields the spin-echo attenuation proportional to the spectrum of the grain positional fluctuation. Measurements of the air-fluidized oil-filled spheres and mustard seeds at different degrees of fluidization and grain volume fractions provide the velocity autocorrelation that differs from the commonly anticipated exponential Enskog decay. An empiric formula, which corresponds to the model of grain caging at collisions with adjacent beads, fits well to the experimental data. Its parameters are the characteristic collision time, the free path between collisions and the cage-breaking rate or the diffusion-like constant, which decreases with increasing grain volume fraction. Mean-squared displacements calculated from the correlation spectrum clearly show transitions from ballistic, through sub-diffusion and into diffusion regimes of grain motion.

  7. Intracellular Cadmium Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Horner, T. J.; Lee, R. B.; Henderson, G. M.; Rickaby, R. E.

    2011-12-01

    Recent stable isotope studies into the biological utilization of transition metals (e.g. Cu, Fe, Zn, Cd) suggest several stepwise cellular processes can fractionate isotopes in both culture and nature. However, the determination of fractionation factors is often unsatisfactory, as significant variability can exist - even between different organisms with the same cellular functions. Thus, it has not been possible to adequately understand the source and mechanisms of metal isotopic fractionation. In order to address this problem, we investigated the biological fractionation of Cd isotopes within genetically-modified bacteria (E. coli). There is currently only one known biological use or requirement of Cd, a Cd/Zn carbonic anhydrase (CdCA, from the marine diatom T. weissfloggii), which we introduce into the E. coli genome. We have also developed a cleaning procedure that allows for the treating of bacteria so as to study the isotopic composition of different cellular components. We find that whole cells always exhibit a preference for uptake of the lighter isotopes of Cd. Notably, whole cells appear to have a similar Cd isotopic composition regardless of the expression of CdCA within the E. coli. However, isotopic fractionation can occur within the genetically modified E. coli during Cd use, such that Cd bound in CdCA can display a distinct isotopic composition compared to the cell as a whole. Thus, the externally observed fractionation is independent of the internal uses of Cd, with the largest Cd isotope fractionation occurring during cross-membrane transport. A general implication of these experiments is that trace metal isotopic fractionation most likely reflects metal transport into biological cells (either actively or passively), rather than relating to expression of specific physiological function and genetic expression of different metalloenzymes.

  8. Symmetric continued fractions

    SciTech Connect

    Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat

    2010-11-11

    Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.

  9. Increasing the filling of ultracold KRb molecules in a 3D optical lattice

    NASA Astrophysics Data System (ADS)

    Moses, Steven; Covey, Jacob; Gadway, Bryce; Yan, Bo; Miecnikowski, Matthew; Ye, Jun; Jin, Deborah

    2015-05-01

    Ultracold polar molecules, with their long-range electric dipolar interactions, offer new opportunities for studying quantum magnetism and many-body physics. Recently, our group observed spin exchange interactions between KRb molecules in a 3D optical lattice, which is one of the first steps towards studying lattice spin models with polar molecules. The lattice fillings were about 10% or less in these experiments. Future experiments will benefit greatly from lower entropies and higher lattice fillings. Here, we have investigated the molecular creation process in a 3D optical lattice with the goal of maximizing the filling fraction. We start by loading a BEC of Rb and a degenerate Fermi gas of K into a 3D optical lattice. In the absence of K, Rb is a Mott insulator. We study how the Mott insulator and the filling of Rb are affected by the presence of K and develop a strategy to maintain high Rb filling throughout the molecule production process. We also find that we can convert a large fraction of these Rb to molecules when we operate with low Rb numbers. We acknowledge funding from DARPA, DOE, NIST, NSF, AFOSR, and the NDSEG Graduate Fellowship.

  10. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Performance Characteristics of Class II...

  11. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures for Testing Performance Characteristics of Class II...

  12. Drum silencer with shallow cavity filled with helium

    NASA Astrophysics Data System (ADS)

    Choy, Y. S.; Huang, Lixi

    2003-09-01

    The motivation of this study is twofold: (a) to produce a flow-through silencer with zero pressure loss for pressure-critical applications, and (b) to tackle low frequency noise with limited sideway space using cavities filled with helium. The work represents a further development of our recently conceived device of a drum-like silencer with conventional air cavity [Huang, J. Acoust. Soc. Am. 112, 2014-2025 (2002); Choy and Huang, ibid. 112, 2026-2035 (2002)]. Theoretical predictions are validated by experimental data. The new silencer consists of two highly tensioned membranes lining part of a duct, and each membrane is backed by a cavity filled with helium. For a typical configuration of a duct with height h, membrane length L=7h, cavity depth hc=0.2h, and tension T=0.52ρ0c02h2, where ρ0 and c0 are the ambient density and speed of sound in air, respectively, the transmission loss has a continuous stop band of TL>6.35 dB for frequency 0.03c0/h to 0.064c0/h, which is much better than traditional duct lining. In addition to the mechanisms at work for drum silencers with air cavity, the low density of helium reduces the masslike reactance of the cavity on the second in vacuo mode of membrane vibration. The reduction greatly enhances the membrane response at this mode, which is found to be critical for achieving a broadband performance in the low-frequency regime.

  13. Left ventricular diastolic filling with an implantable ventricular assist device: beat to beat variability with overall improvement

    NASA Technical Reports Server (NTRS)

    Nakatani, S.; Thomas, J. D.; Vandervoort, P. M.; Zhou, J.; Greenberg, N. L.; Savage, R. M.; McCarthy, P. M.

    1997-01-01

    OBJECTIVES: We studied the effects of left ventricular (LV) unloading by an implantable ventricular assist device on LV diastolic filling. BACKGROUND: Although many investigators have reported reliable systemic and peripheral circulatory support with implantable LV assist devices, little is known about their effect on cardiac performance. METHODS: Peak velocities of early diastolic filling, late diastolic filling, late to early filling ratio, deceleration time of early filling, diastolic filling period and atrial filling fraction were measured by intraoperative transesophageal Doppler echocardiography before and after insertion of an LV assist device in eight patients. A numerical model was developed to simulate this situation. RESULTS: Before device insertion, all patients showed either a restrictive or a monophasic transmitral flow pattern. After device insertion, transmitral flow showed rapid beat to beat variation in each patient, from abnormal relaxation to restrictive patterns. However, when the average values obtained from 10 consecutive beats were considered, overall filling was significantly normalized from baseline, with early filling velocity falling from 87 +/- 31 to 64 +/- 26 cm/s (p < 0.01) and late filling velocity rising from 8 +/- 11 to 32 +/- 23 cm/s (p < 0.05), resulting in an increase in the late to early filling ratio from 0.13 +/- 0.18 to 0.59 +/- 0.38 (p < 0.01) and a rise in the atrial filling fraction from 8 +/- 10% to 26 +/- 17% (p < 0.01). The deceleration time (from 112 +/- 40 to 160 +/- 44 ms, p < 0.05) and the filling period corrected by the RR interval (from 39 +/- 8% to 54 +/- 10%, p < 0.005) were also significantly prolonged. In the computer model, asynchronous LV assistance produced significant beat to beat variation in filling indexes, but overall a normalization of deceleration time as well as other variables. CONCLUSIONS: With LV assistance, transmitral flow showed rapidly varying patterns beat by beat in each patient, but

  14. The effect of capsule-filling machine vibrations on average fill weight.

    PubMed

    Llusa, Marcos; Faulhammer, Eva; Biserni, Stefano; Calzolari, Vittorio; Lawrence, Simon; Bresciani, Massimo; Khinast, Johannes

    2013-09-15

    The aim of this paper is to study the effect of the speed of capsule filling and the inherent machine vibrations on fill weight for a dosator-nozzle machine. The results show that increasing speed of capsule filling amplifies the vibration intensity (as measured by Laser Doppler vibrometer) of the machine frame, which leads to powder densification. The mass of the powder (fill weight) collected via the nozzle is significantly larger at a higher capsule filling speed. Therefore, there is a correlation between powder densification under more intense vibrations and larger fill weights. Quality-by Design of powder based products should evaluate the effect of environmental vibrations on material attributes, which in turn may affect product quality. PMID:23872302

  15. Charge filling factors in clean and disordered arrays of tunnel junctions

    PubMed Central

    Walker, Kelly A.; Vogt, Nicolas; Cole, Jared H.

    2015-01-01

    We simulate one-dimensional arrays of tunnel junctions using the kinetic Monte Carlo method to study charge filling behaviour in the large charging energy limit. By applying a small fixed voltage bias and varying the offset voltage, we investigate this behaviour in clean and disordered arrays (both weak and strong disorder effects). The offset voltage dependent modulation of the current is highly sensitive to background charge disorder and exhibits substantial variation depending on the strength of the disorder. We show that while small fractional charge filling factors are likely to be washed out in experimental devices due to strong background charge disorder, larger factors may be observable. PMID:26627327

  16. Modern plasma fractionation.

    PubMed

    Burnouf, Thierry

    2007-04-01

    Protein products fractionated from human plasma are an essential class of therapeutics used, often as the only available option, in the prevention, management, and treatment of life-threatening conditions resulting from trauma, congenital deficiencies, immunologic disorders, or infections. Modern plasma product production technology remains largely based on the ethanol fractionation process, but much has evolved in the last few years to improve product purity, to enhance the recovery of immunoglobulin G, and to isolate new plasma proteins, such as alpha1-protease inhibitor, von Willebrand factor, and protein C. Because of the human origin of the starting material and the pooling of 10,000 to 50,000 donations required for industrial processing, the major risk associated to plasma products is the transmission of blood-borne infectious agents. A complete set of measures--and, most particularly, the use of dedicated viral inactivation and removal treatments--has been implemented throughout the production chain of fractionated plasma products over the last 20 years to ensure optimal safety, in particular, and not exclusively, against HIV, hepatitis B virus, and hepatitis C virus. In this review, we summarize the practices of the modern plasma fractionation industry from the collection of the raw plasma material to the industrial manufacture of fractionated products. We describe the quality requirements of plasma for fractionation and the various treatments applied for the inactivation and removal of blood-borne infectious agents and provide examples of methods used for the purification of the various classes of plasma protein therapies. We also highlight aspects of the good manufacturing practices and the regulatory environment that govern the whole chain of production. In a regulated and professional environment, fractionated plasma products manufactured by modern processes are certainly among the lowest-risk therapeutic biological products in use today. PMID:17397761

  17. A discrete fractional random transform

    NASA Astrophysics Data System (ADS)

    Liu, Zhengjun; Zhao, Haifa; Liu, Shutian

    2005-11-01

    We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.

  18. Production, characterization, and modeling of mineral filled polypropylene filaments

    NASA Astrophysics Data System (ADS)

    George, Brian Robert

    1999-11-01

    This research produced mineral filled polypropylene filaments using a variety of fillers, characterized these filaments, and attempted to model their mechanical properties with current composite models. Also, these filaments were compared with bone to determine if they are suitable for modeling the mechanical properties of bone. Fillers used consist of wollastonite, talc, calcium carbonate, titanium dioxide, and hydroxyapatite. Fillers and polypropylene chips were combined and extruded into rods with the use of a mixer. The rods were chipped up and then formed into filaments through melt extrusion utilizing a piston extruder. Filaments with volume fractions of filler of 0.05, 0.10, 0.15, and 0.20 were produced. Additionally, some methods of trying to improve the properties of these filaments were attempted, but did not result in any significant property improvements. The fillers and filaments were visually characterized with a scanning electron microscope. Cross-sections, filament outer surfaces, fracture surfaces, and longitudinal cut open surfaces were viewed in this manner. Those filaments with anisotropic filler had some oriented filler particles, while all filaments suffered from poor adhesion between the polypropylene and the filler as well as agglomerations of filler particles. Twenty specimens of each filament were tensile tested and the average tenacity, strain, and modulus were calculated. Filaments containing talc, talc and wollastonite, titanium dioxide, or hydroxyapatite suffered from a drastic transition from ductile to brittle with the addition of 0.05 volume fraction of filler. This is evidenced by the sharp decrease in strain at this volume fraction of filler when compared to the strain of the unfilled polypropylene filament. Additionally, these same filaments suffered a sharp decrease in tenacity at the same volume fraction. These instant decreases are attributed to the agglomerations of filler in the filament. Generally, the modulus of the

  19. Polystyrene foam products equation of state as a function of porosity and fill gas

    SciTech Connect

    Mulford, Roberta N; Swift, Damian C

    2009-01-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO{sub 2}-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O{sub 2}-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO{sub 2} decomposes at high temperatures.

  20. Polystyrene Foam Products Equation of State as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, R. N.; Swift, D. C.

    2009-12-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam. Differences between air-filled, Ar-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with products of polystyrene decomposition. O2-blown foams are included in some comparisons, to amplify any consequences of reaction with oxygen in air. He-blown foams are included in some comparisons, to provide an extremum of density. Product pressures are slightly higher for oxygen-containing fill gases than for non-oxygen-containing fill gases. Examination of product species indicates that CO2 decomposes at high temperatures.

  1. Improved quantification of microbial CH4 oxidation efficiency in Arctic wetland soils using carbon isotope fractionation

    NASA Astrophysics Data System (ADS)

    Preuss, I.; Knoblauch, C.; Gebert, J.; Pfeiffer, E.-M.

    2012-12-01

    Permafrost-affected tundra soils are significant sources of the climate-relevant trace gas methane (CH4). The observed accelerated warming of the Arctic will cause a deeper permafrost thawing followed by increased carbon mineralization and CH4 formation in water saturated tundra soils which might cause a positive feedback to climate change. Aerobic CH4 oxidation is regarded as the key process reducing CH4 emissions from wetlands, but quantification of turnover rates has remained difficult so far. The application of carbon stable isotope fractionation enables the in situ quantification of CH4 oxidation efficiency in arctic wetland soils. The aim of the current study is to quantify CH4 oxidation efficiency in permafrost-affected tundra soils in Russia's Lena River Delta based on stable isotope signatures of CH4. Therefore, depth profiles of CH4 concentrations and δ13CH4-signatures were measured and the fractionation factors for the processes of oxidation (αox) and diffusion (αdiff) were determined. Most previous studies employing stable isotope fractionation for the quantification of CH4 oxidation in soils of other habitats (e.g. landfill cover soils) have assumed a gas transport dominated by advection (αtrans = 1). In tundra soils, however, diffusion is the main gas transport mechanism, aside from ebullition. Hence, diffusive stable isotope fractionation has to be considered. For the first time, the stable isotope fractionation of CH4 diffusion through water-saturated soils was determined with an αdiff = 1.001 ± 0.000 (n = 3). CH4 stable isotope fractionation during diffusion through air-filled pores of the investigated polygonal tundra soils was αdiff = 1.013 ± 0.003 (n = 18). Furthermore, it was found that αox differs widely between sites and horizons (mean αox, = 1.017 ± 0.009) and needs to be determined individually. The impact of both fractionation factors on the quantification of CH4 oxidation was analyzed by considering both the potential diffusion

  2. A model for the beam-filling effect associated with the microwave retrieval of rain

    NASA Technical Reports Server (NTRS)

    Graves, Charles E.

    1993-01-01

    Estimating rain rate from environmental microwave emissions is hampered by several difficulties. One of these difficulties is known as the beam-filling effect. Beam filling is the systematic error introduced when the microwave radiometer's field of view is not filled with uniform rain. Beam filling can have dramatic effects on rain-rate estimation, causing rain rates to be underestimated by as much as a factor of 2. The present study derives an approximate expression for beam filling that provides, in principle, a way to estimate this effect. In addition, this study deals only with single-channel microwave rain estimation over the ocean. The final results reveal that beam filling is essentially determined by the freezing level, the mean fraction of the footprint raining, and the footprint-averaged rain rate. Also, the numerical results appear to agree with other empirical studies. Furthermore, the analysis brings to light an interesting connection with rain threshold techniques for estimating area-averaged rain rates.

  3. Gap Filling as Exact Path Length Problem.

    PubMed

    Salmela, Leena; Sahlin, Kristoffer; Mäkinen, Veli; Tomescu, Alexandru I

    2016-05-01

    One of the last steps in a genome assembly project is filling the gaps between consecutive contigs in the scaffolds. This problem can be naturally stated as finding an s-t path in a directed graph whose sum of arc costs belongs to a given range (the estimate on the gap length). Here s and t are any two contigs flanking a gap. This problem is known to be NP-hard in general. Here we derive a simpler dynamic programming solution than already known, pseudo-polynomial in the maximum value of the input range. We implemented various practical optimizations to it, and compared our exact gap-filling solution experimentally to popular gap-filling tools. Summing over all the bacterial assemblies considered in our experiments, we can in total fill 76% more gaps than the best previous tool, and the gaps filled by our method span 136% more sequence. Furthermore, the error level of the newly introduced sequence is comparable to that of the previous tools. The experiments also show that our exact approach does not easily scale to larger genomes, where the problem is in general difficult for all tools. PMID:26959081

  4. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  5. FRACTIONAL CRYSTALLIZATION FEED ENVELOPE

    SciTech Connect

    HERTING DL

    2008-03-19

    Laboratory work was completed on a set of evaporation tests designed to establish a feed envelope for the fractional crystallization process. The feed envelope defines chemical concentration limits within which the process can be operated successfully. All 38 runs in the half-factorial design matrix were completed successfully, based on the qualitative definition of success. There is no feed composition likely to be derived from saltcake dissolution that would cause the fractional crystallization process to not meet acceptable performance requirements. However, some compositions clearly would provide more successful operation than other compositions.

  6. Multipartite Fully Entangled Fraction

    NASA Astrophysics Data System (ADS)

    Xu, Jianwei

    2016-06-01

    Fully entangled fraction is a definition for bipartite states, which is tightly related to bipartite maximally entangled states, and has clear experimental and theoretical significance. In this work, we generalize it to multipartite case, we call the generalized version multipartite fully entangled fraction (MFEF). MFEF measures the closeness of a state to GHZ states. The analytical expressions of MFEF are very difficult to obtain except for very special states, however, we show that, the MFEF of any state is determined by a system of finite-order polynomial equations. Therefore, the MFEF can be efficiently numerically computed.

  7. One-dimensional Gromov minimal filling problem

    SciTech Connect

    Ivanov, Alexandr O; Tuzhilin, Alexey A

    2012-05-31

    The paper is devoted to a new branch in the theory of one-dimensional variational problems with branching extremals, the investigation of one-dimensional minimal fillings introduced by the authors. On the one hand, this problem is a one-dimensional version of a generalization of Gromov's minimal fillings problem to the case of stratified manifolds. On the other hand, this problem is interesting in itself and also can be considered as a generalization of another classical problem, the Steiner problem on the construction of a shortest network connecting a given set of terminals. Besides the statement of the problem, we discuss several properties of the minimal fillings and state several conjectures. Bibliography: 38 titles.

  8. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    Polyimide aerogels were considered to serve as a filling for millimeter-wave waveguides. While these waveguides present a slightly higher loss than hollow waveguides, they have less losses than Duroid substrate integrated waveguides (less than 0.15 dB at Ka-band, in a 20 mm section), and exhibit an order of magnitude of mass reduction when compared to commercial waveguides. A Ka-band slotted aerogel-filled-waveguide array was designed, which provided the same gain (9 dBi) as its standard waveguide counterpart, and a slotted aerogel-filled-waveguide array using folded-slots was designed for comparison, obtaining a gain of 9 dB and a bandwidth of 590 MHz.

  9. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOEpatents

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  10. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., 6-hour precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a... as the fill is not located in an area containing intermittent or perennial streams. A rock-core... upstream drainage is diverted around the fill. The alternative rock-core chimney drain system shall...

  11. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels.... The maximum slope of the top of the fill shall be 33h:1v (3 percent). A drainage pocket may be... the runoff through or over the rock drain, if stability of the fill is not impaired. In no case...

  12. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels.... The maximum slope of the top of the fill shall be 33h:1v (3 percent). A drainage pocket may be... the runoff through or over the rock drain, if stability of the fill is not impaired. In no case...

  13. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels... slope of the top of the fill shall be 33h:lv (3 percent). A drainage pocket may be maintained at the... through or over the rock drain, if stability of the fill is not impaired. In no case shall this pocket...

  14. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels.... The maximum slope of the top of the fill shall be 33h:1v (3 percent). A drainage pocket may be... the runoff through or over the rock drain, if stability of the fill is not impaired. In no case...

  15. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels... slope of the top of the fill shall be 33h:lv (3 percent). A drainage pocket may be maintained at the... through or over the rock drain, if stability of the fill is not impaired. In no case shall this pocket...

  16. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... such that the final slope after settlement will be toward properly designed drainage channels... slope of the top of the fill shall be 33h:lv (3 percent). A drainage pocket may be maintained at the... through or over the rock drain, if stability of the fill is not impaired. In no case shall this pocket...

  17. Sweet Work with Fractions

    ERIC Educational Resources Information Center

    Vinogradova, Natalya; Blaine, Larry

    2013-01-01

    Almost everyone loves chocolate. However, the same cannot be said about fractions, which are loved by markedly fewer. Middle school students tend to view them with wary respect, but little affection. The authors attempt to sweeten the subject by describing a type of game involving division of chocolate bars. The activity they describe provides a…

  18. Momentum fractionation on superstrata

    NASA Astrophysics Data System (ADS)

    Bena, Iosif; Martinec, Emil; Turton, David; Warner, Nicholas P.

    2016-05-01

    Superstrata are bound states in string theory that carry D1, D5, and momentum charges, and whose supergravity descriptions are parameterized by arbitrary functions of (at least) two variables. In the D1-D5 CFT, typical three-charge states reside in high-degree twisted sectors, and their momentum charge is carried by modes that individually have fractional momentum. Understanding this momentum fractionation holographically is crucial for understanding typical black-hole microstates in this system. We use solution-generating techniques to add momentum to a multi-wound supertube and thereby construct the first examples of asymptotically-flat superstrata. The resulting supergravity solutions are horizonless and smooth up to well-understood orbifold singularities. Upon taking the AdS3 decoupling limit, our solutions are dual to CFT states with momentum fractionation. We give a precise proposal for these dual CFT states. Our construction establishes the very nontrivial fact that large classes of CFT states with momentum fractionation can be realized in the bulk as smooth horizonless supergravity solutions.

  19. Fraction collector for electrophoresis

    NASA Technical Reports Server (NTRS)

    Bier, M.

    1977-01-01

    Rotating-tube electrophoresis apparatus employs rotating jet of eluting buffer to reduce effects of convection during separation. Designed for separation of microorganisms and biological species, system combines gravity/gradient compensating of lumen with buffer flush at fraction outlet to increase separation efficiency.

  20. Fractionation of Soil Phosphorus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An understanding of the qualitative and quantitative information provided by soil phosphorus (P) fractionation methods is important for addressing agronomic and water quality problems, as well as evaluating P biogeochemistry in extreme environments. This chapter provides a schematic overview of and ...

  1. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  2. Fractional statistics and confinement

    NASA Astrophysics Data System (ADS)

    Gaete, P.; Wotzasek, C.

    2005-02-01

    It is shown that a pointlike composite having charge and magnetic moment displays a confining potential for the static interaction while simultaneously obeying fractional statistics in a pure gauge theory in three dimensions, without a Chern-Simons term. This result is distinct from the Maxwell-Chern-Simons theory that shows a screening nature for the potential.

  3. Gallbladder filling and post-ceruletide emptying in prairie dogs and rabbits.

    PubMed

    Krishnamurthy, G T; Turner, F E

    1988-05-01

    The filling and emptying characteristics of the gallbladder in prairie dogs and rabbits were studied to assess the importance of the residual bile in the pathogenesis of gallstones. In prairie dogs under ketamine/xylazine anesthesia, a significantly larger fraction (p = 0.001) of hepatic bile entered the gallbladder (87 +/- 8%) than the intestine during fasting and very little bile emptied (0-3% ejection fraction) following ceruletide infusion. In rabbits under similar anesthesia, only a small fraction of hepatic bile entered the gallbladder (4 +/- 2%) during fasting, and the gallbladder emptied almost completely (85% ejection fraction) following ceruletide infusion. The resultant higher residual bile in the prairie dog gallbladder and lower residual bile in the rabbit gallbladder may explain why gallstones form so readily in prairie dogs but not in rabbits when fed a lithogenic diet. These similarities and differences in gallbladder function must be taken into account when considering any animal as a model for gallstone formation. PMID:3412728

  4. 62. VIEW LOOKING NORTHWEST AT THE OIL FILLED CIRCUIT BREAKER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. VIEW LOOKING NORTHWEST AT THE OIL FILLED CIRCUIT BREAKER FOR GENERATOR NUMBER 1. CIRCUIT BREAKERS ARE AUTOMATED SWITCHES WHICH DISCONNECT THE GENERATORS FROM THE LINE WHEN SHORT CIRCUITS OCCUR. WHEN CIRCUITS INVOLVING HIGH CURRENTS AND VOLTAGES ARE BROKEN, THE AIR SURROUNDING MECHANICAL PARTS OF THE SWITCH BECOMES IONIZED AND CONTINUES TO CONDUCT ELECTRIC POWER ACROSS ANY GAP IN THE SWITCH CONTACTS. TO PREVENT THIS AND INSURE A POSITIVE INTERRUPTION OF CURRENT, THE SWITCH CONTACTS ARE IMMERSED IN A CONTAINER OF OIL. THE OIL DOES NOT SUPPORT THE FORMATION OF AN ARC AND EFFECTIVELY CUTS OFF THE CURRENT WHEN THE SWITCH CONTACTS ARE OPENED. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  5. Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process

    NASA Astrophysics Data System (ADS)

    Breinlinger, Thomas; Kraft, Torsten

    2015-08-01

    Die filling is an important part of the powder compaction process chain, where defects in the final part can be introduced—or prevented. Simulation of this process is therefore a goal for many part producers and has been studied by some researchers already. In this work, we focus on the influence of the surrounding air on the powder flow. We demonstrate the implementing and coupling of the discrete element method for the granular powder and the smoothed particle hydrodynamics method for the gas flow. Application of the method to the die filling process is demonstrated.

  6. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices.

    PubMed

    Murphy, D; Sparkes, B M

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability. PMID:27627236

  7. Disorder-induced heating of ultracold neutral plasmas created from atoms in partially filled optical lattices

    NASA Astrophysics Data System (ADS)

    Murphy, D.; Sparkes, B. M.

    2016-08-01

    We quantify the disorder-induced heating (DIH) of ultracold neutral plasmas (UCNPs) created from cold atoms in optical lattices with partial filling fractions, using a conservation of energy model involving the spatial correlations of the initial state and the equation of state in thermal equilibrium for a one-component plasma. We show, for experimentally achievable filling fractions, that the ionic Coulomb coupling parameter could be increased to a degree comparable to other proposed DIH-mitigation schemes. Molecular dynamics simulations were performed with compensation for finite-size and periodic boundary effects, which agree with calculations using the model. Reduction of DIH using optical lattices will allow for the study of strongly coupled plasma physics using low-density, low-temperature, laboratory-based plasmas, and lead to improved brightness in UCNP-based cold electron and ion beams, where DIH is otherwise a fundamental limitation to beam focal sizes and diffraction imaging capability.

  8. 7 CFR 58.924 - Aseptic filling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Aseptic filling. 58.924 Section 58.924 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND...

  9. 7 CFR 58.924 - Aseptic filling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Aseptic filling. 58.924 Section 58.924 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND...

  10. 7 CFR 58.924 - Aseptic filling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Aseptic filling. 58.924 Section 58.924 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND...

  11. 7 CFR 58.924 - Aseptic filling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Aseptic filling. 58.924 Section 58.924 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND...

  12. 7 CFR 58.924 - Aseptic filling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Aseptic filling. 58.924 Section 58.924 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) REGULATIONS AND STANDARDS UNDER THE AGRICULTURAL MARKETING ACT OF 1946 AND...

  13. 5 CFR 362.203 - Filling positions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROGRAMS Internship Program § 362.203 Filling positions. (a) Announcement. (1) When an agency accepts... opportunities to participate in the agency's Internship Program. For the purposes of this paragraph (a), “agency... Internship opportunities; and (iv) Any other information OPM considers appropriate. (2) OPM will...

  14. 5 CFR 362.203 - Filling positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PROGRAMS Internship Program § 362.203 Filling positions. (a) Announcement. (1) When an agency accepts... opportunities to participate in the agency's Internship Program. For the purposes of this paragraph (a), “agency... Internship opportunities; and (iv) Any other information OPM considers appropriate. (2) OPM will...

  15. Irregularly Shaped Space-Filling Truncated Octahedra

    ERIC Educational Resources Information Center

    Hanson, John Robert

    2008-01-01

    For any parent tetrahedron ABCD, centroids of selected sub-tetrahedra form the vertices of an irregularly shaped space-filling truncated octahedron. To reflect these properties, such a figure will be called an ISTO. Each edge of the ISTO is parallel to and one-eighth the length of one of the edges of tetrahedron ABCD and the volume of the ISTO is…

  16. The Chemistry of Modern Dental Filling Materials.

    ERIC Educational Resources Information Center

    Nicholson, John W.; Anstice, H. Mary

    1999-01-01

    Discusses materials used by dentists to restore teeth after decay has been removed. Shows how dental-material science is an interdisciplinary field in which chemistry plays a major part. Reviews the many developments polymer chemistry has contributed to the field of dental fillings. (CCM)

  17. SOIL AND FILL LABORATORY SUPPORT - 1991

    EPA Science Inventory

    The report gives results of soil analysis laboratory work by the University of Florida in Support of the Florida Radon Research Program (FRRP). Analyses were performed on soil and fill samples collected during 1991 by the FRRP Research House program and the New House Evaluation P...

  18. Postscript: Filling-in Models of Completion

    ERIC Educational Resources Information Center

    Anderson, Barton L.

    2007-01-01

    Presents some additional comments from the current author regarding his original article "Filling-in models of completion: Rejoinder to Kellman, Garrigan, Shipley, and Keane (2007) and Albert (2007)." Despite repeated assertions by Kellman et al., I have never claimed that luminance constraints block modal completion; rather, they merely weaken…

  19. New Skeletal-Space-Filling Models

    ERIC Educational Resources Information Center

    Clarke, Frank H.

    1977-01-01

    Describes plastic, skeletal molecular models that are color-coded and can illustrate both the conformation and overall shape of small molecules. They can also be converted to space-filling counterparts by the additions of color-coded polystyrene spheres. (MLH)

  20. 5 CFR 362.105 - Filling positions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Filling positions. 362.105 Section 362.105 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PATHWAYS... standards that are directly related to acquiring and demonstrating the various leadership, technical,...

  1. 5 CFR 362.105 - Filling positions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Filling positions. 362.105 Section 362.105 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PATHWAYS... standards that are directly related to acquiring and demonstrating the various leadership, technical,...

  2. Cotton-Fiber-Filled Rubber Insulation

    NASA Technical Reports Server (NTRS)

    Anderson, Floyd A.

    1987-01-01

    Carbonization of fibers at high temperatures improves strength and erosion resistance. Cotton linters tested as replacement for asbestos filler currently used in rubber insulation in solid rocket motors. Cotton-filled rubber insulation has industrial uses; in some kinds of chemical- or metal-processing equipment, hoses, and protective clothing.

  3. Ag-Air Service

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Econ, Inc.'s agricultural aerial application, "ag-air," involves more than 10,000 aircraft spreading insecticides, herbicides, fertilizer, seed and other materials over millions of acres of farmland. Difficult for an operator to estimate costs accurately and decide what to charge or which airplane can handle which assignment most efficiently. Computerized service was designed to improve business efficiency in choice of aircraft and determination of charge rates based on realistic operating cost data. Each subscriber fills out a detailed form which pertains to his needs and then receives a custom-tailored computer printout best suited to his particular business mix.

  4. Numerical recipes for mold filling simulation

    SciTech Connect

    Kothe, D.; Juric, D.; Lam, K.; Lally, B.

    1998-07-01

    Has the ability to simulate the filling of a mold progressed to a point where an appropriate numerical recipe achieves the desired results? If results are defined to be topological robustness, computational efficiency, quantitative accuracy, and predictability, all within a computational domain that faithfully represents complex three-dimensional foundry molds, then the answer unfortunately remains no. Significant interfacial flow algorithm developments have occurred over the last decade, however, that could bring this answer closer to maybe. These developments have been both evolutionary and revolutionary, will continue to transpire for the near future. Might they become useful numerical recipes for mold filling simulations? Quite possibly. Recent progress in algorithms for interface kinematics and dynamics, linear solution methods, computer science issues such as parallelization and object-oriented programming, high resolution Navier-Stokes (NS) solution methods, and unstructured mesh techniques, must all be pursued as possible paths toward higher fidelity mold filling simulations. A detailed exposition of these algorithmic developments is beyond the scope of this paper, hence the authors choose to focus here exclusively on algorithms for interface kinematics. These interface tracking algorithms are designed to model the movement of interfaces relative to a reference frame such as a fixed mesh. Current interface tracking algorithm choices are numerous, so is any one best suited for mold filling simulation? Although a clear winner is not (yet) apparent, pros and cons are given in the following brief, critical review. Highlighted are those outstanding interface tracking algorithm issues the authors feel can hamper the reliable modeling of today`s foundry mold filling processes.

  5. An Introduction to Continued Fractions.

    ERIC Educational Resources Information Center

    Moore, Charles G.

    Provided is an introduction to the properties of continued fractions for the intellectually curious high school student. Among the topics included are (1) Expansion of Rational Numbers into Simple Continued Fractions, (2) Convergents, (3) Continued Fractions and Linear Diophantine Equations of the Type am + bn = c, (4) Continued Fractions and…

  6. Goal Sketches in Fraction Learning

    ERIC Educational Resources Information Center

    Sophian, Catherine; Madrid, Samara

    2003-01-01

    To examine how conceptual knowledge about fraction magnitudes changes as students' learning progresses, 5th and 7th-grade students were asked to solve fraction magnitude problems that entailed finding a fraction between two given fractions and then to evaluate solutions for similar problems that were modeled for them. When the given fractions…

  7. Enigmatic 12/5 fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Pakrouski, Kiryl; Troyer, Matthias; Wu, Yang-Le; Das Sarma, Sankar; Peterson, Michael R.

    2016-08-01

    We numerically study the fractional quantum Hall effect at filling factors ν =12 /5 and 13/5 (the particle-hole conjugate of 12/5) in high-quality two-dimensional GaAs heterostructures via exact diagonalization including finite well width and Landau-level mixing. We find that Landau-level mixing suppresses the ν =13 /5 fractional quantum Hall effect relative to ν =12 /5 . By contrast, we find both ν =2 /5 and (its particle-hole conjugate) ν =3 /5 fractional quantum Hall effects in the lowest Landau level to be robust under Landau-level mixing and finite well-width corrections. Our results provide a possible explanation for the experimental absence of the 13/5 fractional quantum Hall state as caused by Landau-level mixing effects.

  8. Pollutant Dispersion in a Developing Valley Cold-Air Pool

    NASA Astrophysics Data System (ADS)

    Chemel, Charles; Burns, Paul

    2015-03-01

    Pollutants are trapped and accumulate within cold-air pools, thereby affecting air quality. A numerical model is used to quantify the role of cold-air-pooling processes in the dispersion of air pollution in a developing region of enhanced cooling within an Alpine valley under decoupled stable conditions. Results indicate that the negatively buoyant downslope flows transport and mix pollutants into the valley to depths that depend on the temperature deficit of the flow and the ambient temperature structure inside the valley. Along the slopes, pollutants are generally entrained above the region of enhanced cooling and detrained within the region of enhanced cooling largely above the ground-based inversion layer. The ability of the region of enhanced cooling to dilute pollutants is quantified. The analysis shows that the downslope flows fill the valley with air from above, which is then largely trapped within the region of enhanced cooling and that dilution depends on where the pollutants are emitted with respect to the positions of the top of the ground-based inversion layer and region of enhanced cooling, and on the slope wind speeds. Over the lower part of the slopes, the concentrations averaged across the region of enhanced cooling are proportional to the slope wind speeds where the pollutants are emitted, and diminish as the region of enhanced cooling deepens. Pollutants emitted within the ground-based inversion layer are largely trapped there. Pollutants emitted farther up the slopes detrain within the region of enhanced cooling above the ground-based inversion layer, although some fraction, increasing with distance from the top of the slopes, penetrates into the ground-based inversion layer.

  9. Testing fractional action cosmology

    NASA Astrophysics Data System (ADS)

    Shchigolev, V. K.

    2016-08-01

    The present work deals with a combined test of the so-called Fractional Action Cosmology (FAC) on the example of a specific model obtained by the author earlier. In this model, the effective cosmological term is proportional to the Hubble parameter squared through the so-called kinematic induction. The reason of studying this cosmological model could be explained by its ability to describe two periods of accelerated expansion, that is in agreement with the recent observations and the cosmological inflation paradigm. First of all, we put our model through the theoretical tests, which gives a general conception of the influence of the model parameters on its behavior. Then, we obtain some restrictions on the principal parameters of the model, including the fractional index, by means of the observational data. Finally, the cosmography parameters and the observational data compared to the theoretical predictions are presented both analytically and graphically.

  10. Effect of Drying on Heavy Metal Fraction Distribution in Rice Paddy Soil

    PubMed Central

    Qi, Yanbing; Huang, Biao; Darilek, Jeremy Landon

    2014-01-01

    An understanding of how redox conditions affect soil heavy metal fractions in rice paddies is important due to its implications for heavy metal mobility and plant uptake. Rice paddy soil samples routinely undergo oxidation prior to heavy metal analysis. Fraction distribution of Cu, Pb, Ni, and Cd from paddy soil with a wide pH range was investigated. Samples were both dried according to standard protocols and also preserved under anaerobic conditions through the sampling and analysis process and heavy metals were then sequentially extracted for the exchangeable and carbonate bound fraction (acid soluble fraction), iron and manganese oxide bound fraction (reducible fraction), organic bound fraction (oxidizable fraction), and residual fraction. Fractions were affected by redox conditions across all pH ranges. Drying decreased reducible fraction of all heavy metals. Curesidual fraction, Pboxidizable fraction, Cdresidual fraction, and Niresidual fraction increased by 25%, 33%, 35%, and >60%, respectively. Pbresidual fraction, Niacid soluble fraction, and Cdoxidizable fraction decreased 33%, 25%, and 15%, respectively. Drying paddy soil prior to heavy metal analysis overestimated Pb and underestimated Cu, Ni, and Cd. In future studies, samples should be stored after injecting N2 gas to maintain the redox potential of soil prior to heavy metal analysis, and investigate the correlation between heavy metal fraction distribution under field conditions and air-dried samples. PMID:24823670

  11. New Dry Fractionation Methods

    NASA Technical Reports Server (NTRS)

    McKay, David S.; Cooper, Bonnie L.

    2010-01-01

    This slide presentation describes new fractionation methods that are used to create dust that is respirable for testing the effects of inhalation of lunar dust in preparation for future manned lunar exploration. Because lunar dust is a very limited commodity, a method that does not result in loss of the material had to be developed. The dust separation system that is described incorporates some traditional methods, while preventing the dust from being contaminated or changed in reactivity properties while also limiting losses.

  12. Fractional Galilean symmetries

    NASA Astrophysics Data System (ADS)

    Hosseiny, Ali; Rouhani, Shahin

    2016-09-01

    We generalize the differential representation of the operators of the Galilean algebras to include fractional derivatives. As a result a whole new class of scale invariant Galilean algebras are obtained. The first member of this class has dynamical index z = 2 similar to the Schrödinger algebra. The second member of the class has dynamical index z = 3 / 2, which happens to be the dynamical index Kardar-Parisi-Zhang equation.

  13. Nonequilibrated Counterpropagating Edge Modes in the Fractional Quantum Hall Regime

    NASA Astrophysics Data System (ADS)

    Grivnin, Anna; Inoue, Hiroyuki; Ronen, Yuval; Baum, Yuval; Heiblum, Moty; Umansky, Vladimir; Mahalu, Diana

    2014-12-01

    It is well established that density reconstruction at the edge of a two-dimensional electron gas takes place for hole-conjugate states in the fractional quantum Hall effect (such as v =2 /3 , 3 /5 , etc.). Such reconstruction leads, after equilibration between counterpropagating edge channels, to a downstream chiral current edge mode accompanied by upstream chiral neutral modes (carrying energy without net charge). Short equilibration length prevented thus far observation of the counterpropagating current channels—the hallmark of density reconstruction. Here, we provide evidence for such nonequilibrated counterpropagating current channels, in short regions (l =4 μ m and l =0.4 μ m ) of fractional filling v =2 /3 and, unexpectedly, v =1 /3 , sandwiched between two regions of integer filling v =1 . Rather than a two-terminal fractional conductance, the conductance exhibited a significant ascension towards unity quantum conductance (GQ=e2/h ) at or near the fractional plateaus. We attribute this conductance rise to the presence of a nonequilibrated channel in the fractional short regions.

  14. Effective Field Theory of Fractional Quantized Hall Nematics

    SciTech Connect

    Mulligan, Michael; Nayak, Chetan; Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC

    2012-06-06

    We present a Landau-Ginzburg theory for a fractional quantized Hall nematic state and the transition to it from an isotropic fractional quantum Hall state. This justifies Lifshitz-Chern-Simons theory - which is shown to be its dual - on a more microscopic basis and enables us to compute a ground state wave function in the symmetry-broken phase. In such a state of matter, the Hall resistance remains quantized while the longitudinal DC resistivity due to thermally-excited quasiparticles is anisotropic. We interpret recent experiments at Landau level filling factor {nu} = 7/3 in terms of our theory.

  15. Laser-filamentation-induced water condensation and snow formation in a cloud chamber filled with different ambient gases.

    PubMed

    Liu, Yonghong; Sun, Haiyi; Liu, Jiansheng; Liang, Hong; Ju, Jingjing; Wang, Tiejun; Tian, Ye; Wang, Cheng; Liu, Yi; Chin, See Leang; Li, Ruxin

    2016-04-01

    We investigated femtosecond laser-filamentation-induced airflow, water condensation and snow formation in a cloud chamber filled respectively with air, argon and helium. The mass of snow induced by laser filaments was found being the maximum when the chamber was filled with argon, followed by air and being the minimum with helium. We also discussed the mechanisms of water condensation in different gases. The results show that filaments with higher laser absorption efficiency, which result in higher plasma density, are beneficial for triggering intense airflow and thus more water condensation and precipitation. PMID:27137026

  16. Numerical study of sidewall filling for gas-fed pulse detonation engines

    NASA Astrophysics Data System (ADS)

    Rongrat, Wunnarat

    Pulse detonation engines for aerospace propulsion are required to operate at 50-100 Hz meaning that each pulse is 10-20 ms long. Filling of the engine and the related purging process become dominant due to their long duration compared to ignition and detonation wave propagation. This study uses ANSYS FLUENT to investigate the filling of a 1 m long tube with an internal diameter of 100 mm. Six different configurations were investigated with an endwall port and various sidewall arrangements, including stagger and inclination. A stoichiometric mixture of gaseous octane and air at STP was used to fill the tube at injection rates of 40, 150 and 250 m/s. Phase injection was also investigated and it showed performance improvements such as reduced lling time and reduced propellant escape from the exit.

  17. Fractional Hofstadter States in Graphene on Hexagonal Boron Nitride

    NASA Astrophysics Data System (ADS)

    DaSilva, Ashley M.; Jung, Jeil; MacDonald, Allan H.

    2016-07-01

    In fractionally filled Landau levels there is only a small energy difference between broken translational symmetry electron-crystal states and exotic correlated quantum fluid states. We show that the spatially periodic substrate interaction associated with the long period moiré patterns present in graphene on nearly aligned hexagonal boron nitride tilts this close competition in favor of the former, explaining surprising recent experimental findings.

  18. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  19. Liquid-filled Canyons on Titan

    NASA Astrophysics Data System (ADS)

    Poggiali, Valerio; Mastrogiuseppe, Marco; Hayes, Alexander; Seu, Roberto; Birch, Samuel; Lorenz, Ralph; Grima, Cyril; Kargel, Jeffrey; Hofgartner, Jason

    2016-04-01

    During a close flyby, Cassini's RADAR altimeter observed a system of channels pertaining to the Vid Flumina system that drain into Titan's Ligeia Mare. While SAR images have been used to identify fluvial valleys in networks that extend for hundreds of kilometers, they can't directly prove the presence and/or physical extent of liquid channels filling them. Analysis of altimeter echoes shows that the channels are located in deep (~500 m) canyons and have strongly specular surface reflections that indicate they are currently liquid-filled. Liquid elevations in Vid Flumina and its lower tributaries are at the same level of Ligeia Mare to within the altimeter's vertical accuracy of ~15m, which is a function of both the RADAR instrument as well as the precision of Cassini's reconstructed ephemeris. Specular reflections are also observed in higher order tributaries that occur hundred meters above the level of Ligeia Mare, consistent with drainage feeding into the main channel system.

  20. Rubber elasticity: From topology to filled elastomers

    SciTech Connect

    Heinrich, G.; Vilgis, T.A.

    1993-12-31

    Various new aspects in the elasticity of rubbers and statistics of unfilled and filled elastomers, together with various consequences for practical application are discussed. It is shown that the role of network topology is crucial in the statistics of rubbers. This is seen mostly on the influence of heterogeneities of crosslink density which determine the elastic modulus, ultimate properties as well as the dynamical behavior. The filler effects, entanglements in filled rubbers, and the filler/bound rubber/mobile rubber problem are discussed from a novel point of view. A localization model is adopted, where it can be shown that on a rough (filler) surface more polymer can be adsorbed compared to a flat surface with similar energetic properties. The role of carbon black networking and fractal properties of the filler are discussed in relation to the dynamic-mechanical properties of the elastomer.

  1. Ultrafast carriers dynamics in filled-skutterudites

    SciTech Connect

    Guo, Liang; Xu, Xianfan; Salvador, James R.

    2015-06-08

    Carrier dynamics of filled-skutterudites, an important class of thermoelectric materials, is investigated using ultrafast optical spectroscopy. By tuning the wavelength of the probe laser, charge transfers at different electronic energy levels are interrogated. Analysis based on the Kramers-Kronig relation explains the complex spectroscopy data, which is mainly due to band filling caused by photo-excited carriers and free carrier absorption. The relaxation time of hot carriers is found to be about 0.4–0.6 ps, depending on the electronic energy level, and the characteristic time for carrier-phonon equilibrium is about 0.95 ps. These studies of carrier dynamics, which fundamentally determines the transport properties of thermoelectric material, can provide guidance for the design of materials.

  2. Flow in a torsionally oscillating filled cylinder

    NASA Technical Reports Server (NTRS)

    Schafer, C. F.

    1983-01-01

    The flow of a liquid in a completely filled cylinder undergoing torsional oscillations about its longitudinal symmetry axis was studied analytically and experimentally. The objective of the studies was to determine the efficacy of the torsional oscillations in mixing the confined liquid. Flow was found to be confined primarily to toroidal cells at the ends of the cylinder. Cell thickness was about equal to the cylinder radius. The use of baffles at the end walls was shown to enhance the mixing process.

  3. The partially filled viscous ring damper.

    NASA Technical Reports Server (NTRS)

    Alfriend, K. T.

    1973-01-01

    The problem of a spinning satellite with a partially filled viscous ring damper is investigated. It is shown that there are two distinct modes of motion, the nutation-synchronous mode and spin-synchronous mode. From an approximate solution of the equations of motion a time constant is obtained for each mode. From a consideration of the fluid dynamics several methods are developed for determining the damping constant.

  4. Slotted Polyimide-Aerogel-Filled-Waveguide Arrays

    NASA Technical Reports Server (NTRS)

    Rodriguez-Solis, Rafael A.; Pacheco, Hector L.; Miranda, Felix A.; Meador, Mary Ann B.

    2013-01-01

    This presentation discussed the potential advantages of developing Slotted Waveguide Arrays using polyimide aerogels. Polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aerospace antenna systems. PI aerogels are highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties. For slotted waveguide array applications, there are significant advantages in mass that more than compensate for the slightly higher loss of the aerogel filled waveguide when compared to state of practice commercial waveguide.

  5. Xenon Filled Silicon Germanium Thermoelectric Generators

    NASA Technical Reports Server (NTRS)

    Dewinter, F.

    1972-01-01

    An analysis is presented that shows the desirability and feasibility of using a xenon fill in the initial stages of operation of a silicon-germanium radioisotope thermoelectric generator to be used in outer-planetary exploration. The xenon cover gas offers protection against oxidation and against material sublimation, and allows the generator to deliver required power throughout the prelaunch and launch phases. The protective mechanisms afforded by the xenon cover gas and the mechanization of a xenon supply system are also discussed.

  6. Complex networks from space-filling bearings

    NASA Astrophysics Data System (ADS)

    Kranz, J. J.; Araújo, N. A. M.; Andrade, J. S.; Herrmann, H. J.

    2015-07-01

    Two-dimensional space-filling bearings are dense packings of disks that can rotate without slip. We consider the entire first family of bearings for loops of four disks and propose a hierarchical construction of their contact network. We provide analytic expressions for the clustering coefficient and degree distribution, revealing bipartite scale-free behavior with a tunable degree exponent depending on the bearing parameters. We also analyze their average shortest path and percolation properties.

  7. Complex networks from space-filling bearings.

    PubMed

    Kranz, J J; Araújo, N A M; Andrade, J S; Herrmann, H J

    2015-07-01

    Two-dimensional space-filling bearings are dense packings of disks that can rotate without slip. We consider the entire first family of bearings for loops of four disks and propose a hierarchical construction of their contact network. We provide analytic expressions for the clustering coefficient and degree distribution, revealing bipartite scale-free behavior with a tunable degree exponent depending on the bearing parameters. We also analyze their average shortest path and percolation properties. PMID:26274220

  8. COMSOL MULTIPHYSICS MODEL FOR DWPF CANISTER FILLING

    SciTech Connect

    Kesterson, M.

    2011-03-31

    The purpose of this work was to develop a model that can be used to predict temperatures of the glass in the Defense Waste Processing Facility (DWPF) canisters during filling and cooldown. Past attempts to model these processes resulted in large (>200K) differences in predicted temperatures compared to experimentally measured temperatures. This work was therefore intended to also generate a model capable of reproducing the experimentally measured trends of the glass/canister temperature during filling and subsequent cooldown of DWPF canisters. To accomplish this, a simplified model was created using the finite element modeling software COMSOL Multiphysics which accepts user defined constants or expressions to describe material properties. The model results were compared to existing experimental data for validation. A COMSOL Multiphysics model was developed to predict temperatures of the glass within DWPF canisters during filling and cooldown. The model simulations and experimental data were in good agreement. The largest temperature deviations were {approx}40 C for the 87inch thermocouple location at 3000 minutes and during the initial cooldown at the 51 inch location occurring at approximately 600 minutes. Additionally, the model described in this report predicts the general trends in temperatures during filling and cooling observed experimentally. However, the model was developed using parameters designed to fit a single set of experimental data. Therefore, Q-loss is not currently a function of pour rate and pour temperature. Future work utilizing the existing model should include modifying the Q-loss term to be variable based on flow rate and pour temperature. Further enhancements could include eliminating the Q-loss term for a user defined convection where Navier-Stokes does not need to be solved in order to have convection heat transfer.

  9. Abandoned Channel Fill Sequences in Tidal Estuaries

    NASA Astrophysics Data System (ADS)

    Gray, A. B.; Pasternack, G. B.; Goni, M. A.; Watson, E. B.

    2014-12-01

    This study proposes a modification of the current model for abandoned channel fill stratigraphy produced in unidirectional flow river reaches to incorporate seasonal tidal deposition. Evidence supporting this concept came from a study of two consecutive channel abandonment sequences in Ropers Slough of the lower Eel River Estuary in northern California. Aerial photographs showed that Ropers Slough was abandoned around 1943, reoccupied after the 1964 flood, and abandoned again in 1974 with fill continuing to the present. Planform geomorphic characteristics derived from these images were used in conjunction with sub-cm resolution stratigraphic analyses to describe the depositional environment processes and their resultant sedimentary deposits. Results showed that both abandonment sequences recorded quasi-annual scale fluvial/tidal deposition couplets. In both cases tidal deposits contained very little sand, and were higher in organic and inorganic carbon content than the sandier fluvial through-flow deposits. However, the two abandonment fills differed significantly in terms of the temporal progression of channel narrowing and fluvial sediment deposition characteristics. The first abandonment sequence led to a more rapid narrowing of Ropers Slough and produced deposits with a positive relationship between grain size/deposit thickness and discharge. The second abandonment resulted in a much slower narrowing of Ropers Slough and generally thinner fluvial deposits with no clear relationship between grain size/deposit thickness and discharge. The δ13C values and organic nitrogen to organic carbon ratios of deposits from the first phase overlapped with Eel River suspended sediment characteristics found for low flows (1-5 times mean discharge), while those of the second phase were consistent suspended sediment from higher flows (7-10 times mean discharge). The abandoned channel fill sequences appeared to differ due to the topographic steering of bed sediment transport and

  10. Moon - 'Ghost' craters formed during Mare filling.

    NASA Technical Reports Server (NTRS)

    Cruikshank, D. P.; Hartmann, W. K.; Wood, C. A.

    1973-01-01

    This paper discusses formation of 'pathological' cases of crater morphology due to interaction of craters with molten lavas. Terrestrial observations of such a process are discussed. In lunar maria, a number of small impact craters (D less than 10 km) may have been covered by thin layers of fluid lavas, or formed in molten lava. Some specific lunar examples are discussed, including unusual shallow rings resembling experimental craters deformed by isostatic filling.

  11. Microscopic justification of the equal filling approximation

    SciTech Connect

    Perez-Martin, Sara; Robledo, L. M.

    2008-07-15

    The equal filling approximation, a procedure widely used in mean-field calculations to treat the dynamics of odd nuclei in a time-reversal invariant way, is justified as the consequence of a variational principle over an average energy functional. The ideas of statistical quantum mechanics are employed in the justification. As an illustration of the method, the ground and lowest-lying states of some octupole deformed radium isotopes are computed.

  12. Statistical evaluation of metal fill widths for emulated metal fill in parasitic extraction methodology

    NASA Astrophysics Data System (ADS)

    J-Me, Teh; Noh, Norlaili Mohd.; Aziz, Zalina Abdul

    2015-05-01

    In the chip industry today, the key goal of a chip development organization is to develop and market chips within a short time frame to gain foothold on market share. This paper proposes a design flow around the area of parasitic extraction to improve the design cycle time. The proposed design flow utilizes the usage of metal fill emulation as opposed to the current flow which performs metal fill insertion directly. By replacing metal fill structures with an emulation methodology in earlier iterations of the design flow, this is targeted to help reduce runtime in fill insertion stage. Statistical design of experiments methodology utilizing the randomized complete block design was used to select an appropriate emulated metal fill width to improve emulation accuracy. The experiment was conducted on test cases of different sizes, ranging from 1000 gates to 21000 gates. The metal width was varied from 1 x minimum metal width to 6 x minimum metal width. Two-way analysis of variance and Fisher's least significant difference test were used to analyze the interconnect net capacitance values of the different test cases. This paper presents the results of the statistical analysis for the 45 nm process technology. The recommended emulated metal fill width was found to be 4 x the minimum metal width.

  13. The Complexity of Flood Filling Games

    NASA Astrophysics Data System (ADS)

    Arthur, David; Clifford, Raphaël; Jalsenius, Markus; Montanaro, Ashley; Sach, Benjamin

    We study the complexity of the popular one player combinatorial game known as Flood-It. In this game the player is given an n ×n board of tiles, each of which is allocated one of c colours. The goal is to fill the whole board with the same colour via the shortest possible sequence of flood filling operations from the top left. We show that Flood-It is NP-hard for c ≥ 3, as is a variant where the player can flood fill from any position on the board. We present deterministic (c - 1) and randomised 2c/3 approximation algorithms and show that no polynomial time constant factor approximation algorithm exists unless P=NP. We then demonstrate that the number of moves required for the 'most difficult' boards grows like Θ(sqrt{c} n). Finally, we prove that for random boards with c ≥ 3, the number of moves required to flood the whole board is Ω(n) with high probability.

  14. Solvent Fractionation of Lignin

    SciTech Connect

    Chatterjee, Sabornie; Saito, Tomonori

    2014-01-01

    Lignin is a highly abundant source of renewable carbon that can be considered as a valuable sustainable source of biobased materials. The major issues for the commercial production of value added high performance lignin products are lignin s physical and chemical heterogenities. To overcome these problems, a variety of procedures have been developed to produce pure lignin suitable for high performace applications such as lignin-derived carbon materials. However, most of the isolation procedures affect lignin s properties and structure. In this chapter, a short review of the effect of solvent fractionation on lignin s properties and structure is presented.

  15. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, L.W.; Anderson, G.A.

    1994-08-23

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynchronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board. 9 figs.

  16. Fractional channel multichannel analyzer

    DOEpatents

    Brackenbush, Larry W.; Anderson, Gordon A.

    1994-01-01

    A multichannel analyzer incorporating the features of the present invention obtains the effect of fractional channels thus greatly reducing the number of actual channels necessary to record complex line spectra. This is accomplished by using an analog-to-digital converter in the asynscronous mode, i.e., the gate pulse from the pulse height-to-pulse width converter is not synchronized with the signal from a clock oscillator. This saves power and reduces the number of components required on the board to achieve the effect of radically expanding the number of channels without changing the circuit board.

  17. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.

    PubMed

    Han, Anpan; Mondin, Giampietro; Hegelbach, Nicole G; de Rooij, Nicolaas F; Staufer, Urs

    2006-01-01

    We report the filling kinetics of different liquids in nanofabricated capillaries with rectangular cross-section by capillary force. Three sets of channels with different geometry were employed for the experiments. The smallest dimension of the channel cross-section was respectively 27, 50, and 73 nm. Ethanol, isopropanol, water and binary mixtures of ethanol and water spontaneously filled nanochannels with inner walls exposing silanol groups. For all the liquids the position of the moving liquid meniscus was observed to be proportional to the square root of time, which is in accordance with the classical Washburn kinetics. The velocity of the meniscus decreased both with the dimension of the channel and the ratio between the surface tension and the viscosity. In the case of water, air-bubbles were spontaneously trapped as channels were filled. For a binary mixture of 40% ethanol and water, no trapping of air was observed anymore. The filling rate was higher than expected, which also corresponds to the dynamic contact angle for the mixture being lower than that of pure ethanol. Nanochannels and porous materials share many physicochemical properties, e.g., the comparable pores size and extremely high surface to volume ratio. These similarities suggest that our nanochannels could be used as an idealized model to study mass transport mechanisms in systems where surface phenomena dominate. PMID:16023663

  18. Prediction of Thermal Conductivity of Aluminum Nanocluster-Filled Mesoporous Silica (Al/MCM-41)

    NASA Astrophysics Data System (ADS)

    Huang, Congliang; Feng, Yanhui; Zhang, Xinxin; Li, Jing; Cui, Liu; Wang, Ge; Yang, Mu

    2013-12-01

    MCM-41 consists of a hexagonal array of long, unconnected cylindrical pores with diameters that can be tailored within the range 1.6 nm to 10 nm. As a porous silica nanomaterial, MCM-41 is a promising porous substrate for mesoporous composites with extremely high or low thermal conductivity. In this article, the structural unit of MCM-41 was established first and an equilibrium molecular dynamics simulation was performed to determine the shell thermal conductivity of MCM-41. Then, based on one-dimensional (1D) heat transfer analysis, a mathematical expression for the effective thermal conductivity (ETC) of Al nanocluster-filled mesoporous MCM-41 (Al/MCM-41) was obtained. The effects of porosity and the filling ratio of nanoclusters in the mesochannels were further investigated. As the porosity is greater than 75 %, the ETC of only-air-filling mesoporous MCM-41 in all directions tends to approach the thermal conductivity of air. It seems that Al nanoclusters have negligible effects on the ETC of the composite, except that mesochannels are almost completely filled with Al nanowires.

  19. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  20. Water Tank with Capillary Air/Liquid Separation

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K.; Smith, Frederick; Edeen, Gregg; Almlie, Jay C.

    2010-01-01

    A bladderless water tank (see figure) has been developed that contains capillary devices that allow it to be filled and emptied, as needed, in microgravity. When filled with water, the tank shields human occupants of a spacecraft against cosmic radiation. A membrane that is permeable by air but is hydrophobic (neither wettable nor permeable by liquid water) covers one inside surface of the tank. Grooves between the surface and the membrane allow air to flow through vent holes in the surface as the tank is filled or drained. A margin of wettable surface surrounds the edges of the membrane, and all the other inside tank surfaces are also wettable. A fill/drain port is located in one corner of the tank and is covered with a hydrophilic membrane. As filling begins, water runs from the hydrophilic membrane into the corner fillets of the tank walls. Continued filling in the absence of gravity will result in a single contiguous air bubble that will be vented through the hydrophobic membrane. The bubble will be reduced in size until it becomes spherical and smaller than the tank thickness. Draining the tank reverses the process. Air is introduced through the hydrophobic membrane, and liquid continuity is maintained with the fill/drain port through the corner fillets. Even after the tank is emptied, as long as the suction pressure on the hydrophilic membrane does not exceed its bubble point, no air will be drawn into the liquid line.

  1. Seismic Response of In-filled Fractures

    NASA Astrophysics Data System (ADS)

    Acosta-Colon, A. A.; Pyrak-Nolte, L. J.; Olander, M.

    2008-12-01

    Current and ancient karsts environments contain mechanical discontinuities, such as fractures, pipes and caves that range in size from a few millimeters to several meters. These discontinuities are either unfilled, partially-filled or completely in-filled with sediments that range in size from a few microns (clays) to meters (boulders). Sediment within a fracture creates a sub-porosity that quite clearly affects fracture porosity, permeability and storativity. This study investigates the affect of a sub-porosity on the seismic response of in-filled fractures and consequently our ability to probe changes in the subsurface caused by the deposition or erosion of a sub-porosity. Experiments were performed to study the seismic response of a water-saturated fracture filled with sediments (acrylic spheres). The experimental setup consisted of a synthetic fracture created by the separation of two acrylic (Lucite) cylinders. The separation of the fracture was controlled by using computer-controlled linear actuators that incremented the aperture of the fracture in 50 μm steps over a distance of 20 mm. The fracture was water-saturated and filled with acrylic spheres (grains). The spheres ranged in size from 250 microns to 7.79 mm. Several different grain packings were used to infill the fracture. The packings included single layer and multiple layers with a single grain size, and layers composed of multiple grain sizes. Compressional and shear waves were propagated across the fracture using contact piezoelectric transducers (central frequency of 1 MHz) to send and receive the signal. A water-saturated fracture with no grains was used as a standard. The infill material affected the phase, spectral content and velocity of the transmitted compressional wave because of acoustic scattering and wave interference within the infill layer. To study these differences, a time-frequency analysis was performed to determine velocity dispersion and the spectral content of the waves. The

  2. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  3. Lithium isotope fractionation during uptake by gibbsite

    NASA Astrophysics Data System (ADS)

    Wimpenny, Josh; Colla, Christopher A.; Yu, Ping; Yin, Qing-Zhu; Rustad, James R.; Casey, William H.

    2015-11-01

    The intercalation of lithium from solution into the six-membered μ2-oxo rings on the basal planes of gibbsite is well-constrained chemically. The product is a lithiated layered-double hydroxide solid that forms via in situ phase change. The reaction has well established kinetics and is associated with a distinct swelling of the gibbsite as counter ions enter the interlayer to balance the charge of lithiation. Lithium reacts to fill a fixed and well identifiable crystallographic site and has no solvation waters. Our lithium-isotope data shows that 6Li is favored during this intercalation and that the solid-solution fractionation depends on temperature, electrolyte concentration and counter ion identity (whether Cl-, NO3- or ClO4-). We find that the amount of isotopic fractionation between solid and solution (ΔLisolid-solution) varies with the amount of lithium taken up into the gibbsite structure, which itself depends upon the extent of conversion and also varies with electrolyte concentration and in the counter ion in the order: ClO4- < NO3- < Cl-. Higher electrolyte concentrations cause more rapid expansion of the gibbsite interlayer and some counter ions, such as Cl-, are more easily taken up than others, probably because they ease diffusion. The relationship between lithium loading and ΔLisolid-solution indicates two stages: (1) uptake into the crystallographic sites that favors light lithium, in parallel with adsorption of solvated cations, and (2) continued uptake of solvated cations after all available octahedral vacancies are filled; this second stage has no isotopic preference. The two-step reaction progress is supported by solid-state NMR spectra that clearly resolve a second reservoir of lithium in addition to the expected layered double-hydroxide phase.

  4. Low volume fraction rimming flow in a rotating horizontal cylinder

    NASA Astrophysics Data System (ADS)

    Chen, Po-Ju; Tsai, Yu-Te; Liu, Ta-Jo; Wu, Ping-Yao

    2007-12-01

    An experimental study was carried out to examine how uniform rimming flow is established for a very small volume fraction of aqueous Newtonian solutions in a partially filled rotating horizontal cylinder. There exists a certain critical volume fraction (Vc) for each solution, where the rotational speed required to achieve uniform rimming flow takes a minimum value. Counterintuitively, it takes greater rotation speeds for both larger and smaller volume fractions than this. Axial instabilities are observed for liquid volume fractions above or below this critical value. For V >Vc the defects are mainly of shark-teeth and turbulent types, while for V fraction increases with increasing fluid viscosity. Reducing surface tension increases the minimum rotational speed for V >Vc, but has very little effect for V fraction for rimming flow found in the present study is 0.25%. The dimensionless minimum rotational speed Ω to achieve rimming flow is presented as a function of the dimensionless liquid volume fraction ϕ. The competing effects of fluid inertia and viscous force on rimming flow are demonstrated from a dimensionless plot of Ω versus ϕ.

  5. Clean fractionation of biomass

    SciTech Connect

    1995-09-01

    The US DOE Alternative Feedstocks (AF) program is forging new links between the agricultural community and the chemicals industry through support of research and development (R&D) that uses green feedstocks to produce chemicals. The program promotes cost-effective industrial use of renewable biomass as feedstocks to manufacture high-volume chemical building blocks. Industrial commercialization of such processes would stimulate the agricultural sector by increasing the demand of agricultural and forestry commodities. A consortium of five DOE national laboratories has been formed with the objectives of providing industry with a broad range of expertise and helping to lower the risk of new process development through federal cost sharing. The AF program is conducting ongoing research on a clean fractionation process, designed to convert biomass into materials that can be used for chemical processes and products. The focus of the clean fractionation research is to demonstrate to industry that one technology can successfully separate all types of feedstocks into predictable types of chemical intermediates.

  6. Polystyrene Foam EOS as a Function of Porosity and Fill Gas

    NASA Astrophysics Data System (ADS)

    Mulford, Roberta; Swift, Damian

    2009-06-01

    An accurate EOS for polystyrene foam is necessary for analysis of numerous experiments in shock compression, inertial confinement fusion, and astrophysics. Plastic to gas ratios vary between various samples of foam, according to the density and cell-size of the foam. A matrix of compositions has been investigated, allowing prediction of foam response as a function of the plastic-to-air ratio. The EOS code CHEETAH allows participation of the air in the decomposition reaction of the foam, Differences between air-filled, nitrogen-blown, and CO2-blown foams are investigated, to estimate the importance of allowing air to react with plastic products during decomposition. Results differ somewhat from the conventional EOS, which are generated from values for plastic extrapolated to low densities.

  7. In Brief: Air pollution app

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2010-10-01

    A new smartphone application takes advantage of various technological capabilities and sensors to help users monitor air quality. Tapping into smartphone cameras, Global Positioning System (GPS) sensors, compasses, and accelerometers, computer scientists with the University of Southern California's (USC) Viterbi School of Engineering have developed a new application, provisionally entitled “Visibility.” Currently available for the Android telephone operating system, the application is available for free download at http://robotics.usc.edu/˜mobilesensing/Projects/AirVisibilityMonitoring. An iPhone application may be introduced soon. Smartphone users can take a picture of the sky and then compare it with models of sky luminance to estimate visibility. While conventional air pollution monitors are costly and thinly deployed in some areas, the smartphone application potentially could help fill in some blanks in existing air pollution maps, according to USC computer science professor Gaurav Sukhatme.

  8. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  9. Effects of verapamil and propranolol on left ventricular systolic function and diastolic filling in patients with coronary artery disease: radionuclide angiographic studies at rest and during exercise

    SciTech Connect

    Bonow, R.O.; Leon, M.B.; Rosing, D.R.; Kent, K.M.; Lipson, L.C.; Bacharach, S.L.; Green, M.V.; Epstein, S.E.

    1982-06-01

    To determine the effects of verapamil on left ventricular (LV) systolic function and diastolic filling in patients with coronary artery disease (CAD), researchers performed gated radionuclide angiography at rest and during exercise in 16 symptomatic patients before and during oral verapamil therapy (480 mg/day). Twelve patients were also studied during oral propranolol. LV ejection fraction at rest was normal in 13 patients, but abnormal diastolic filling at rest, defined as peak filling rate (PFR) less than 2.5 end-diastolic volumes (EDV)/sec or time to PFR greater than 180 msec, was present in 15. During verapamil, resting ejection fraction decreased, but resting diastolic filling improved: PFR increased and time to PFR decreased. Exercise ejection fraction did not change during verapamil, but exercise PFR increased, and exercise time to PFR decreased. In contrast, propranolol did not alter ejection fraction, PFR, or time to PFR at rest or during exercise. Thus, LV ejection fraction is decreased by verapamil at rest but is unchanged during exercise. While LV systolic function is not improved by verapamil, LV diastolic filling is enhanced by verapamil, both at rest and during exercise. These mechanisms may account in part for the symptomatic improvement in many patients during verapamil therapy.

  10. Electrical conductivity modeling and research of polypropylene composites filled with carbon black

    NASA Astrophysics Data System (ADS)

    Stepashkina, A. S.; Tsobkallo, E. S.; Alyoshin, A. N.

    2014-12-01

    Composites of polypropylene filled with carbon black (PP/CB composite) at different concentrations were prepared by melt mixing followed by compression molding. The dependence of electrical resistance on the filler mass fraction was experimentally received. It was shown that the received dependence had the threshold character. The composite kept dielectric properties at the filler concentration below the threshold and at the concentration above the threshold the electrical resistance decreased more than on 8-10 orders. The theoretical description of electrical conductivity of the composite was offered. Experimental data of the dependence between electrical resistance and the filler mass fraction agreed with the theoretical. The process of conductivity in the PP/CB composite was simulated by means of the Monte-Carlo method for threshold mass fraction estimation.

  11. What is a fractional derivative?

    NASA Astrophysics Data System (ADS)

    Ortigueira, Manuel D.; Tenreiro Machado, J. A.

    2015-07-01

    This paper discusses the concepts underlying the formulation of operators capable of being interpreted as fractional derivatives or fractional integrals. Two criteria for required by a fractional operator are formulated. The Grünwald-Letnikov, Riemann-Liouville and Caputo fractional derivatives and the Riesz potential are accessed in the light of the proposed criteria. A Leibniz rule is also obtained for the Riesz potential.

  12. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  13. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  14. Topological dephasing in the ν =2 /3 fractional quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Park, Jinhong; Gefen, Yuval; Sim, H.-S.

    2015-12-01

    We study dephasing in electron transport through a large quantum dot (a Fabry-Perot interferometer) in the fractional quantum Hall regime with filling factor 2 /3 . In the regime of sequential tunneling, dephasing occurs due to electron fractionalization into counterpropagating charge and neutral edge modes on the dot. In particular, when the charge mode moves much faster than the neutral mode, and at temperatures higher than the level spacing of the dot, electron fractionalization combined with the fractional statistics of the charge mode leads to the dephasing selectively suppressing h /e Aharonov-Bohm oscillations but not h /(2 e ) oscillations, resulting in oscillation-period halving.

  15. Fractional diffusion on bounded domains

    DOE PAGESBeta

    Defterli, Ozlem; D'Elia, Marta; Du, Qiang; Gunzburger, Max Donald; Lehoucq, Richard B.; Meerschaert, Mark M.

    2015-03-13

    We found that the mathematically correct specification of a fractional differential equation on a bounded domain requires specification of appropriate boundary conditions, or their fractional analogue. In this paper we discuss the application of nonlocal diffusion theory to specify well-posed fractional diffusion equations on bounded domains.

  16. Using Steffe's Advanced Fraction Schemes

    ERIC Educational Resources Information Center

    McCloskey, Andrea V.; Norton, Anderson H.

    2009-01-01

    Recognizing schemes, which are different from strategies, can help teachers understand their students' thinking about fractions. Using Steffe's advanced fraction schemes, the authors describe a progression of development that upper elementary and middle school students might follow in understanding fractions. Each scheme can be viewed as a…

  17. How Weird Are Weird Fractions?

    ERIC Educational Resources Information Center

    Stuffelbeam, Ryan

    2013-01-01

    A positive rational is a weird fraction if its value is unchanged by an illegitimate, digit-based reduction. In this article, we prove that each weird fraction is uniquely weird and initiate a discussion of the prevalence of weird fractions.

  18. Fractions--Concepts before Symbols.

    ERIC Educational Resources Information Center

    Bennett, Albert B., Jr.

    The learning difficulties that students experience with fractions begin immediately when they are shown fraction symbols with one numeral written above the other and told that the "top number" is called the numerator and the "bottom number" is called the denominator. This introduction to fractions will usually include a few visual diagrams to help…

  19. Fractional M2-branes

    NASA Astrophysics Data System (ADS)

    Aharony, Ofer; Bergman, Oren; Jafferis, Daniel Louis

    2008-11-01

    We consider two generalizations of the Script N = 6 superconformal Chern-Simons-matter theories with gauge group U(N) × U(N). The first generalization is to Script N = 6 superconformal U(M) × U(N) theories, and the second to Script N = 5 superconformal O(2M) × USp(2N) and O(2M+1) × USp(2N) theories. These theories are conjectured to describe M2-branes probing C4/Zk in the unitary case, and C4/{\\widehat{D}}k in the orthogonal/symplectic case, together with a discrete flux, which can be interpreted as |M-N| fractional M2-branes localized at the orbifold singularity. The classical theories with these gauge groups have been constructed before; in this paper we focus on some quantum aspects of these theories, and on a detailed description of their M theory and type IIA string theory duals.

  20. Fractionation of Subcellular Organelles.

    PubMed

    Graham, John M

    2015-01-01

    This unit provides both a theoretical and a practical background to all the techniques associated with the application of differential and density gradient centrifugation for the analysis of subcellular membranes. The density gradient information focuses on the use of the modern gradient solute iodixanol, chosen for its ease of use, versatility, and compatibility with biological particles. Its use in both pre-formed discontinuous and continuous gradients and in self-generated gradients is discussed. Considerable emphasis is given to selection of the appropriate centrifuge rotors and tubes and their influence on the methods used for creation, fractionation, and analysis of density gradients. Without proper consideration of these critical ancillary procedures, the resolving power of the gradient can be easily compromised. PMID:26621372

  1. Soot Volume Fraction Imaging

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Ku, Jerry C.

    1994-01-01

    A new technique is described for the full-field determination of soot volume fractions via laser extinction measurements. This technique differs from previously reported point-wise methods in that a two-dimensional array (i.e., image) of data is acquired simultaneously. In this fashion, the net data rate is increased, allowing the study of time-dependent phenomena and the investigation of spatial and temporal correlations. A telecentric imaging configuration is employed to provide depth-invariant magnification and to permit the specification of the collection angle for scattered light. To improve the threshold measurement sensitivity, a method is employed to suppress undesirable coherent imaging effects. A discussion of the tomographic inversion process is provided, including the results obtained from numerical simulation. Results obtained with this method from an ethylene diffusion flame are shown to be in close agreement with those previously obtained by sequential point-wise interrogation.

  2. Xe isotopic fractionation in a cathodeless glow discharge

    NASA Astrophysics Data System (ADS)

    Bernatowicz, T. J.; Fahey, A. J.

    1986-03-01

    Results are reported on the isotopic composition of Xe processed in cathodeless glow discharges in rarefied air at pressures of 20-40 microns Hg, in the presence of activated charcoal and in empty pyrex containers. Residual gas phase Xe and trapped Xe were found to be fractionated, with the trapped Xe fractionated up to 1 percent per amu. A model is presented for the fractionating process in which Xe ions are simultaneously implanted and sputtered from substrate material, with a mass dependence favoring retention of the heavy isotopes in the substrate. Results of the investigation show that plasma synthesis of carbonaceous material is unnecessary for producing Xe fractionations, and that the fractionations observed in previous synthesis experiments are probably due to implantation of ions into the synthesized material.

  3. Wake Filling by Active Tail Articulation

    NASA Astrophysics Data System (ADS)

    Macumber, Daniel; Beal, David; Annaswamy, Anuradha; Henoch, Charles; Huyer, Stephen

    2004-11-01

    In a viscous fluid, the no slip boundary condition results in a surface drag force on a moving streamlined body, such as a hydrofoil, which causes a downstream wake velocity defect. In this paper, experimental results are presented which show that articulation of a trailing edge tail flap on a hydrofoil is sufficient to diminish the mean wake velocity defect. A 3 inch chord length NACA 0020 hydrofoil with a 1 inch long flapping trailing edge section was mounted in the research water tunnel at NUWC, Newport. Tests were conducted at speeds of 1, 2, and 4 m/s and the tail was flapped sinusoidally with amplitudes of 5, 10, and 20 degrees at varying frequencies. Time averaged velocity data was taken 1 chord length downstream by laser doppler velocimetry, LDV. Measurements with zero tail deflection show a velocity defect behind the hydrofoil of magnitude u/U = 0.88 and coefficient of drag, Cd, of approximately 0.02. Active articulation measurements show two regimes of wake filling. At very low Strouhal numbers it was found that tail articulation increases drag and is not useful for wake filling. In this range Cd is a function of flap deflection amplitude, St, and Re. However, above a certain threshold value, approximately St = 0.01, tail articulation begins to lessen the mean drag until Cd goes to zero around St = 0.06. At even higher St, tail articulation begins to produce thrust, resulting in a negative value of Cd. In the useful wake filling region, St 0.01, Cd seems to collapse to be a function of St only.

  4. Pressure distribution evaluation of different filling methods for deposition of powders in dies: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Sayyar Roudsari, Saed

    The aim of this research was to measure, analyze, and model the pressure distribution characteristics of powder deposition into rectangular and circular shallow dies using four filling methods. The feed shoe, the rotational rainy, the point feed, and the pneumatic filling methods were used to investigate the deposition characteristics into shallow dies. In order to evaluate the pressure distribution during filling of shallow dies, factors influencing powder deposition were studied. The factors included particle size and shape, particle size distribution, feed shoe speed, and tube cross-section (in case of feed shoe filling) and deposition rates (in case of rotational rainy, point feed, and pneumatic filling). A battery powder mixture (BPM) and microcrystalline cellulose (Avicel PH102) with median size of 84 and 600mum, respectively, were used to fill a shallow rectangular die 32x30 mm and 6.5 mm deep and a shallow circular die 35 mm in diameter and 6.5 mm deep. The second generation of pressure deposition tester (PDT-II) with circular and square feed shoe tube cross-sections was used to measure the two powders' pressure distribution characteristics. An innovative rotational rainy filling device was designed and fabricated. This versatile device can be used to measure filling characteristics at different rotational speeds (1-10 rpm) for various powders. The point feed (funnel fill) method with a funnel of 30 mm inlet diameter and 4.2 mm outlet diameter opening was used to fill the rectangular and circular shallow dies. The pneumatic filling method was designed and fabricated to fill the die using air as the conveying medium in a rectangular cross-section tube. The pneumatic filling device was limited to using only the BPM powder, since the Avicel powder generated substantial quantity of airborne dust during the test. Symmetry analysis, variance metrics, and uniformity analysis were used to quantify the deposition characteristics. The results showed that: (1) filled

  5. Filling an Emulsion Drop with Motile Bacteria

    NASA Astrophysics Data System (ADS)

    Vladescu, I. D.; Marsden, E. J.; Schwarz-Linek, J.; Martinez, V. A.; Arlt, J.; Morozov, A. N.; Marenduzzo, D.; Cates, M. E.; Poon, W. C. K.

    2014-12-01

    We have measured the spatial distribution of motile Escherichia coli inside spherical water droplets emulsified in oil. At low cell concentrations, the cell density peaks at the water-oil interface; at increasing concentration, the bulk of each droplet fills up uniformly while the surface peak remains. Simulations and theory show that the bulk density results from a "traffic" of cells leaving the surface layer, increasingly due to cell-cell scattering as the surface coverage rises above ˜10 %. Our findings show similarities with the physics of a rarefied gas in a spherical cavity with attractive walls.

  6. Liquid-Filled Piping System Analysis

    1993-07-07

    WHAM6 is used to calculate pressure and velocity transients in liquid-filled piping networks. It can be applied to multiloop complex piping networks consisting of dead ends, elbows, orifices, multiple-branch tees, changes of flow passage cross section, check valves, pumps, pressurizers or tanks, and exit valves or breaks. Hydraulic losses are considered. Transients can be initiated either by closure or opening of one or more exit valves (equivalent to system ruptures) or by a prescribed gasmore » pressure history in a pressurizer tank.« less

  7. AGU member running to fill congressional seat

    NASA Astrophysics Data System (ADS)

    Crum, Emily

    John F Mink, an AGU member (Hydrology) for 50 years, and husband of the late Representative Patsy T. Mink (D-Hawaii), will run in a special election on 30 November to fill the remainder of his wife's unexpired congressional term. Patsy Mink, who represented the 2nd Congressional District of Hawaii, passed away on 28 September after battling pneumonia.Her name will appear on the 5 November election ballot as a candidate for Hawaii's 2nd District in the 108th Congress. If she is elected posthumously, the state of Hawaii will hold a special election in January to select an official to serve the full two-year term.

  8. Capillary filling dynamics of water in nanopores

    NASA Astrophysics Data System (ADS)

    Bakli, Chirodeep; Chakraborty, Suman

    2012-10-01

    We portray a universal description of dynamic slip-stick behavior of water flowing through nanoscale pores. Based on fundamental molecular transport considerations, we derive a generalized constitutive model for describing resistive forces acting on the water column in a capillary that is being dynamically filled, as a combined function of the meniscus height, surface wettability, and roughness. This effectively acts like a unique signature of nanopore imbibition characteristics of water, which, when substituted in a simple one-dimensional force balance model agrees quantitatively with results from molecular dynamics simulations for a general class of problems, without necessitating the employment of any artificially tunable fitting parameters.

  9. Calibration of Dissolved Noble Gas Mass Spectrometric Measurements by an Air-Water Equilibration System

    NASA Astrophysics Data System (ADS)

    Hillegonds, Darren; Matsumoto, Takuya; Jaklitsch, Manfred; Han, Liang-Feng; Klaus, Philipp; Wassenaar, Leonard; Aggarwal, Pradeep

    2013-04-01

    Precise measurements by mass spectrometry of dissolved noble gases (He, Ar, Ne, Kr, Xe) in water samples require careful calibration against laboratory standards with known concentrations. Currently, air pipettes are used for day-to-day calibrations, making estimation of overall analytical uncertainties for dissolved noble gas measurements in water difficult. Air equilibrated water (AEW) is often used as a matrix-equivalent laboratory standard for dissolved gases in groundwater, because of the well-known and constant fractions of noble gases in the atmosphere. AEW standards, however, are only useful if the temperature and pressure of the gas-water equilibrium can be controlled and measured precisely (i.e., to better than 0.5%); contamination and partial sample degassing must also be prevented during sampling. Here we present the details of a new custom air-water equilibration system which consists of an insulated 600 liter tank filled with deionized water, held isothermally at a precise target temperature (<0.05 °C) through the use of a heat exchanger. The temperature and total dissolved gas of the water in the tank are monitored continually, as are atmospheric pressure and air temperature in the laboratory. Different noble gas concentration standards can be reliably produced by accurately controlling the water temperature of the equilibration system. Equilibration characteristics and reproducibility of this system for production of copper tubes containing known amounts of noble gases will be presented.

  10. Fraction reduction in membrane systems.

    PubMed

    Guo, Ping; Zhang, Hong; Chen, Haizhu; Liu, Ran

    2014-01-01

    Fraction reduction is a basic computation for rational numbers. P system is a new computing model, while the current methods for fraction reductions are not available in these systems. In this paper, we propose a method of fraction reduction and discuss how to carry it out in cell-like P systems with the membrane structure and the rules with priority designed. During the application of fraction reduction rules, synchronization is guaranteed by arranging some special objects in these rules. Our work contributes to performing the rational computation in P systems since the rational operands can be given in the form of fraction. PMID:24772037

  11. 21 CFR 1306.06 - Persons entitled to fill prescriptions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... substance may only be filled by a pharmacist, acting in the usual course of his professional practice and either registered individually or employed in a registered pharmacy, a registered central fill...

  12. 21 CFR 1306.06 - Persons entitled to fill prescriptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... substance may only be filled by a pharmacist, acting in the usual course of his professional practice and either registered individually or employed in a registered pharmacy, a registered central fill...

  13. Formation of NOx from N2 and O2 in catalyst-pellet filled dielectric barrier discharges at atmospheric pressure.

    PubMed

    Sun, Qi; Zhu, Aimin; Yang, Xuefeng; Niu, Jinhai; Xu, Yong

    2003-06-21

    At temperatures above 350 degrees C, significant amounts of NOx formed from N2 and O2 have been observed in Cu-ZSM-5 catalyst-pellet filled dielectric barrier discharges, indicating the necessity of using low-temperature performance in all plasma-catalytic processes for removal of air pollutants. PMID:12841270

  14. Unconventional Sequence of Fractional Quantum Hall States in Suspended Graphene

    NASA Astrophysics Data System (ADS)

    Feldman, Benjamin E.; Krauss, Benjamin; Smet, Jurgen H.; Yacoby, Amir

    2012-09-01

    Graphene provides a rich platform to study many-body effects, owing to its massless chiral charge carriers and the fourfold degeneracy arising from their spin and valley degrees of freedom. We use a scanning single-electron transistor to measure the local electronic compressibility of suspended graphene, and we observed an unusual pattern of incompressible fractional quantum Hall states that follows the standard composite fermion sequence between filling factors ν = 0 and 1 but involves only even-numerator fractions between ν = 1 and 2. We further investigated this surprising hierarchy by extracting the corresponding energy gaps as a function of the magnetic field. The sequence and relative strengths of the fractional quantum Hall states provide insight into the interplay between electronic correlations and the inherent symmetries of graphene.

  15. Toward lattice fractional vector calculus

    NASA Astrophysics Data System (ADS)

    Tarasov, Vasily E.

    2014-09-01

    An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.

  16. Microcomputed tomographic comparison of posterior composite resin restorative techniques: sonicated bulk fill versus incremental fill.

    PubMed

    Jarisch, Justin; Lien, Wen; Guevara, Peter H; Greenwood, William J; Dunn, William J

    2016-01-01

    Sonication technology has recently been touted to decrease composite viscosity during delivery and may allow better cavity preparation adaptation and minimize voids. The purpose of this investigation was to evaluate the difference between conventional, hand-placed, incremental application of a standard hybrid resin-based composite (RBC) and sonicated application of a bulk-fill RBC in box-type and cylindrical cavity preparations. Experimental restorations were fabricated using molds of box-type or cylindrical preparations. For bulk-filled specimens, a single compule of bulk-fill composite was dispensed with a sonic handpiece. The conventional hybrid material was placed in 3 increments (2 mm, 2 mm, and 1 mm). Microfocus x-ray computed tomography was used to analyze voids for percentage and total volume porosity as well as number of actual pores. An analysis of variance indicated that RBC restorations that were applied to cylindrical cavities using a sonicated bulk-filled application method exhibited significantly less porosity (1.42%; P < 0.001) than incrementally placed cylindrical restorations (2.87%); sonicated bulk-filled, cube-shaped restorations (3.12%); and incrementally placed cube-shaped restorations (5.16%). When the groups were subcategorized into the specific characteristics of shape (cube vs cylinder) and application method (bulk vs incremental), the cylindrical group, which included both bulk-filled and incrementally placed specimens, demonstrated significantly less porosity (2.00%; P < 0.001) than other groups. Restorations that were incrementally placed into cube-shaped cavities produced the largest amount of porosity. PMID:27599276

  17. Intraventricular filling under increasing left ventricular wall stiffness and heart rates

    NASA Astrophysics Data System (ADS)

    Samaee, Milad; Lai, Hong Kuan; Schovanec, Joseph; Santhanakrishnan, Arvind; Nagueh, Sherif

    2015-11-01

    Heart failure with normal ejection fraction (HFNEF) is a clinical syndrome that is prevalent in over 50% of heart failure patients. HFNEF patients show increased left ventricle (LV) wall stiffness and clinical diagnosis is difficult using ejection fraction (EF) measurements. We hypothesized that filling vortex circulation strength would decrease with increasing LV stiffness irrespective of heart rate (HR). 2D PIV and hemodynamic measurements were acquired on LV physical models of varying wall stiffness under resting and exercise HRs. The LV models were comparatively tested in an in vitro flow circuit consisting of a two-element Windkessel model driven by a piston pump. The stiffer LV models were tested in comparison with the least stiff baseline model without changing pump amplitude, circuit compliance and resistance. Increasing stiffness at resting HR resulted in diminishing cardiac output without lowering EF below 50% as in HFNEF. Increasing HR to 110 bpm in addition to stiffness resulted in lowering EF to less than 50%. The circulation strength of the intraventricular filling vortex diminished with increasing stiffness and HR. The results suggest that filling vortex circulation strength could be potentially used as a surrogate measure of LV stiffness. This research was supported by the Oklahoma Center for Advancement of Science and Technology (HR14-022).

  18. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis.

    PubMed

    Durruty, Ignacio; Aguirrezábal, Luis A N; Echarte, María M

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ') while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  19. Kinetic Modeling of Sunflower Grain Filling and Fatty Acid Biosynthesis

    PubMed Central

    Durruty, Ignacio; Aguirrezábal, Luis A. N.; Echarte, María M.

    2016-01-01

    Grain growth and oil biosynthesis are complex processes that involve various enzymes placed in different sub-cellular compartments of the grain. In order to understand the mechanisms controlling grain weight and composition, we need mathematical models capable of simulating the dynamic behavior of the main components of the grain during the grain filling stage. In this paper, we present a non-structured mechanistic kinetic model developed for sunflower grains. The model was first calibrated for sunflower hybrid ACA855. The calibrated model was able to predict the theoretical amount of carbohydrate equivalents allocated to the grain, grain growth and the dynamics of the oil and non-oil fraction, while considering maintenance requirements and leaf senescence. Incorporating into the model the serial-parallel nature of fatty acid biosynthesis permitted a good representation of the kinetics of palmitic, stearic, oleic, and linoleic acids production. A sensitivity analysis showed that the relative influence of input parameters changed along grain development. Grain growth was mostly affected by the specific growth parameter (μ′) while fatty acid composition strongly depended on their own maximum specific rate parameters. The model was successfully applied to two additional hybrids (MG2 and DK3820). The proposed model can be the first building block toward the development of a more sophisticated model, capable of predicting the effects of environmental conditions on grain weight and composition, in a comprehensive and quantitative way. PMID:27242809

  20. Mullins effect in a filled elastomer under uniaxial tension

    DOE PAGESBeta

    Maiti, A.; Small, W.; Gee, R. H.; Weisgraber, T. H.; Chinn, S. C.; Wilson, T. S.; Maxwell, R. S.

    2014-01-16

    Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading)more » two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.« less

  1. Mullins effect in a filled elastomer under uniaxial tension

    SciTech Connect

    Maiti, A.; Small, W.; Gee, R. H.; Weisgraber, T. H.; Chinn, S. C.; Wilson, T. S.; Maxwell, R. S.

    2014-01-16

    Modulus softening and permanent set in filled polymeric materials due to cyclic loading and unloading, commonly known as the Mullins effect, can have a significant impact on their use as support cushions. The quantitative analysis of such behavior is essential to ensure the effectiveness of such materials in long-term deployment. In this work we combine existing ideas of filler-induced modulus enhancement, strain amplification, and irreversible deformation within a simple non-Gaussian constitutive model to quantitatively interpret recent measurements on a relevant PDMS-based elastomeric cushion. Also, we find that the experimental stress-strain data is consistent with the picture that during stretching (loading) two effects take place simultaneously: (1) the physical constraints (entanglements) initially present in the polymer network get disentangled, thus leading to a gradual decrease in the effective cross-link density, and (2) the effective filler volume fraction gradually decreases with increasing strain due to the irreversible pulling out of an initially occluded volume of the soft polymer domain.

  2. Filled liquid silicone rubbers: possibilities and challenges

    NASA Astrophysics Data System (ADS)

    Yu, Liyun; Vudayagiri, Sindhu; Zakaria, Shamsul; Benslimane, Mohamed Y.; Skov, Anne L.

    2014-03-01

    Liquid silicone rubbers (LSRs) have been shown to possess very favorable properties as dielectric electroactive polymers due to their very high breakdown strengths (up to 170 V/μm) combined with their fast response, relatively high tear strength, acceptable Young's modulus as well as they can be filled with permittivity enhancing fillers. However, LSRs possess large viscosity, especially when additional fillers are added. Therefore both mixing and coating of the required thin films become difficult. The solution so far has been to use solvent to dilute the reaction mixture in order both to ensure better particle dispersion as well as allowing for film formation properties. We show that the mechanical properties of the films as well as the electrical breakdown strength can be affected, and that the control of the amount of solvent throughout the coating process is essential for solvent borne processes. Another problem encountered when adding solvent to the highly filled reaction mixture is the loss of tension in the material upon large deformations. These losses are shown to be irreversible and happen within the first large-strain cycle.

  3. Filling and wetting transitions at grooved substrates.

    PubMed

    Malijevský, Alexandr

    2013-11-01

    The wetting and filling properties of a fluid adsorbed on a solid grooved substrate are studied by means of a microscopic density functional theory. The grooved substrates are modelled using a solid slab, interacting with the fluid particles via long-range dispersion forces, to which a one-dimensional array of infinitely long rectangular grooves is sculpted. By investigating the effect of the groove periodicity and the width of the grooves and the ridges, a rich variety of different wetting morphologies is found. In particular, we show that for a saturated ambient gas, the adsorbent can occur in one of four wetting states characterized by (i) empty grooves, (ii) filled grooves, (iii) a formation of mesoscopic hemispherical caps (iv) a macroscopically wet surface. The character of the transition between particular regimes, that also extend off-coexistence, sensitively depends on the model geometry. The temperature at which the system becomes completely wet is considerably higher than that for a flat wall. PMID:24067670

  4. Liquid crystal filled surface plasmon resonance thermometer.

    PubMed

    Lu, Mengdi; Zhang, Xinpu; Liang, Yuzhang; Li, Lixia; Masson, Jean-Francois; Peng, Wei

    2016-05-16

    A novel surface plasmon resonance (SPR) thermometer based on liquid crystal (LC) filled hollow fiber is demonstrated in this paper. A hollow fiber was internally coated with silver and then filled with LC. The SPR response to temperature was studied using modeling and verified experimentally. The results demonstrated that the refractive index of LC decreases with the increasing temperature and the variation can be detected by the resonance wavelength shift of the plasmon resonance. The temperature sensitivities were 4.72 nm/°C in the temperature range of 20 to 34.5 °C and 0.55 nm/°C in the temperature range of 36 to 50 °C, At the phase transition temperature between nematic and isotropic phases of the LC, the temperature sensitivity increased by one order of magnitude and a shift of more than 46 nm was observed with only a 1.5 °C temperature change. This sensor can be used for temperature monitoring and alarming, and can be extended for other physical parameter measurement. PMID:27409911

  5. Space-filling branes of gravitational ancestry

    NASA Astrophysics Data System (ADS)

    Bunster, Claudio; Pérez, Alfredo

    2015-12-01

    We introduce a new kind of space-filling brane, which we term "G-brane" because its action is a descendant of the gravitational action. The G-brane may be thought of as the remanent of the gravitational field when the propagating gravitons are removed. The G-brane is different from the Dirac or Nambu space-filling branes. Its properties in any spacetime dimension D are exhibited. When the spacetime dimension D is greater than or equal to three, the G-brane does not possess propagating degrees of freedom, just as the Dirac or Nambu branes. For D =3 the G-brane yields a reformulation of gravitation theory in which the Hamiltonian constraints can be solved explicitly, while keeping the spacetime structure manifest. For D =2 the G-brane provides a realization of the conformal algebra, i.e. a conformal field theory, in terms of two scalar fields and their conjugates, which possesses a classical central charge. In the G-brane reformulation of (2 +1 ) gravity, the boundary degrees of freedom of the gravitational field in asymptotically anti-de Sitter space appear as "matter" coupled to the (1 +1 ) G-brane on the boundary.

  6. Distribution of 1-Butyl-3-methylimidazolium Bistrifluoromethylsulfonimide in Mesoporous Silica as a Function of Pore Filling

    SciTech Connect

    Han, Kee Sung; Wang, Xiqing; Hagaman, Edward {Ed} W; Dai, Sheng

    2013-01-01

    Rotational dynamics of the ionic liquid (IL) 1-butyl-3-methlyimidazolium bistrifluoromethylsulfonimide, [C4mim][Tf2N], 1, as a neat liquid and confined in mesoporous silica were investigated by 1H spin-spin (T2) and spin-lattice (T1) relaxation measurements and 13C NMR spectroscopy. Translational dynamics (self-diffusion) were monitored via the diffusion coefficient, D, obtained with 1H pulsed field gradient NMR measurements. These data were used to determine the distribution of 1 in the pores of KIT-6, a mesoporous silica with a bicontinuous gyroid pore structure, as a function of filling fraction. Relaxation studies performed as a function of filling factor and temperature, reveal a dynamic heterogeneity in both translational and rotational motions for 1 at filling factors, f, = 0.2-1.0 (f = 1 corresponds to fully filled pores). Spin-lattice and spin-spin relaxation times reveal the motion of 1 in silica mesopores conform to that expected for a two-dimensional relaxation model. The relaxation dynamics are interpreted using a two-state, fast exchange model for all motions; a slow rotation (and translation) of molecules in contact with the surface and a faster motion approximated by the values for bulk relaxation and diffusion. 1 retains liquid like behavior at all filling factors and temperatures that extend to ca. 50 degrees below the bulk melting point. Translational motion in these systems, interpreted with MD-simulated diffusivity limits, confirms the high propensity of 1 to form a monolayer film on the silica surface at low filling factors.. The attractive interaction of 1 with the surface is greater than that for self-association of 1. The trends in diffusion data at short and long diffusion time suggest that the population of surface-bound 1 is in intimate contact with 1 in the pores. This condition is most easily met at higher filling fractions with successive additions of 1 increasing the layer thickness built up on the surface layer.

  7. 27 CFR 19.410 - Age and fill date.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Age and fill date. 19.410... Spirits from Customs Custody § 19.410 Age and fill date. For purposes of this part, the age and fill date for spirits imported or brought into the United States will be: (a) The claimed age, as shown on...

  8. 27 CFR 19.410 - Age and fill date.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Age and fill date. 19.410... Spirits from Customs Custody § 19.410 Age and fill date. For purposes of this part, the age and fill date for spirits imported or brought into the United States will be: (a) The claimed age, as shown on...

  9. 27 CFR 19.410 - Age and fill date.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Age and fill date. 19.410... Spirits from Customs Custody § 19.410 Age and fill date. For purposes of this part, the age and fill date for spirits imported or brought into the United States will be: (a) The claimed age, as shown on...

  10. 27 CFR 19.410 - Age and fill date.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Age and fill date. 19.410... Spirits from Customs Custody § 19.410 Age and fill date. For purposes of this part, the age and fill date for spirits imported or brought into the United States will be: (a) The claimed age, as shown on...

  11. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  12. 5 CFR 7.1 - Discretion in filling vacancies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Discretion in filling vacancies. 7.1 Section 7.1 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE RULES GENERAL PROVISIONS (RULE VII) § 7.1 Discretion in filling vacancies. In his discretion, an appointing officer may fill...

  13. 33 CFR 183.564 - Fuel tank fill system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Fuel tank fill system. 183.564...) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Fuel Systems Manufacturer Requirements § 183.564 Fuel tank fill system. (a) Each fuel fill opening must be located so that a gasoline overflow of up to...

  14. 7 CFR 52.774 - Fill of container.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Fill of Container § 52.774 Fill of container. (a) FDA requirements. Canned red tart pitted cherries shall meet the fill of container requirements as set forth in the regulations of the Food and Drug Administration (21 CFR 145.125(c))....

  15. 7 CFR 52.774 - Fill of container.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Cherries 1 Fill of Container § 52.774 Fill of container. (a) FDA requirements. Canned red tart pitted cherries shall meet the fill of container requirements as set forth in the regulations of the Food and Drug Administration (21 CFR 145.125(c)). (b) Recommended minimum drained weights—(1) General. The minimum...

  16. 7 CFR 52.774 - Fill of container.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... United States Standards for Grades of Canned Red Tart Pitted Cherries 1 Fill of Container § 52.774 Fill of container. (a) FDA requirements. Canned red tart pitted cherries shall meet the fill of container requirements as set forth in the regulations of the Food and Drug Administration (21 CFR 145.125(c))....

  17. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  18. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  19. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  20. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  1. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  2. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  3. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  4. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that...

  5. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that...

  6. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that...

  7. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that...

  8. 46 CFR 98.25-65 - Filling density.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Filling density. 98.25-65 Section 98.25-65 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CARGO AND MISCELLANEOUS VESSELS SPECIAL... § 98.25-65 Filling density. (a) The filling density, or the percent ratio of the liquefied gas that...

  9. 46 CFR 64.35 - Bottom filling or discharge connection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Bottom filling or discharge connection. 64.35 Section 64.35 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MARINE PORTABLE TANKS AND CARGO HANDLING SYSTEMS Standards for an MPT § 64.35 Bottom filling or discharge connection. If an MPT is designed with a filling...

  10. 7 CFR 51.902 - Fairly well filled.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly well filled. 51.902 Section 51.902 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.902 Fairly well filled. Fairly well filled means that the berries are reasonably closely spaced on main and lateral stems...

  11. 7 CFR 51.902 - Fairly well filled.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Fairly well filled. 51.902 Section 51.902 Agriculture... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.902 Fairly well filled. Fairly well filled means that the berries are reasonably closely spaced on main and lateral stems...

  12. 7 CFR 3201.20 - Fluid-filled transformers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition—(1) Synthetic ester-based fluid-filled...-conducting) fluid to provide insulating and cooling properties. (2) Vegetable oil-based...

  13. 7 CFR 3201.20 - Fluid-filled transformers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition—(1) Synthetic ester-based fluid-filled...-conducting) fluid to provide insulating and cooling properties. (2) Vegetable oil-based...

  14. 7 CFR 2902.20 - Fluid-filled transformers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Fluid-filled transformers. 2902.20 Section 2902.20... Items § 2902.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled...-conducting) fluid to provide insulating and cooling properties. (2) Vegetable oil-based...

  15. 7 CFR 3201.20 - Fluid-filled transformers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Fluid-filled transformers. 3201.20 Section 3201.20... Designated Items § 3201.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled...-conducting) fluid to provide insulating and cooling properties. (2) Vegetable oil-based...

  16. 7 CFR 2902.20 - Fluid-filled transformers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Fluid-filled transformers. 2902.20 Section 2902.20... Items § 2902.20 Fluid-filled transformers. (a) Definition. (1) Synthetic ester-based fluid-filled...-conducting) fluid to provide insulating and cooling properties. (2) Vegetable oil-based...

  17. Study of correlations in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Shi, Chuntai

    Bulk two-dimensional electron systems in a strong perpendicular magnetic field exhibit the fascinating phenomenon of fractional quantum Hall effect. Composite fermion theory was developed in the process of understanding the fractional quantum Hall effect and was proven to work successfully for the FQHE and even beyond. In this dissertation, we explore the effect of the strong correlation between electrons in several cases. All of them belong to the category of 2DES in strong perpendicular magnetic field and they are listed below: (i) A fractional quantum Hall island surrounded by a bulk fractional quantum Hall state with a different filling factor. Specifically, we study the resonant tunneling composite fermions through their quasibound states around the island. A rich set of possible transitions are found and the possible relevance to an interesting experiment is discussed. Also, we discuss the subtlety of separating the effect of fractional braiding statistics from other factors. (ii) Correlated states of a quantum dot, at high magnetic fields, assuming four electrons with two components. Such a dot can be realized by reducing the two lateral dimensions of a 2DES tremendously. Both the liquid states and crystallites (the latter occurring at large angular momenta) of four electrons in terms of composite fermions are considered. Residual interaction between composite fermions is shown to leads to complex spin correlations. (iii) Bilayer quantum Hall effect at total filling nuT = 5. This can accommodate an excitonic superfluid state at small layer separations just like at nuT = 1. At large layer separations, however, nuT = 5 state evolves into uncorrelated nu = 5/2 fractional quantum Hall states in both layers, in contrast to uncorrelated composite Fermi sea in nu T = 1 case. We focus on finding the critical layer separation at which the correlation between electrons on different layers are destroyed. Effects due to the finite width of the layers are also considered.

  18. Functional fractionation-ratchets

    NASA Astrophysics Data System (ADS)

    Griess, G. A.; Serwer, P.

    2002-08-01

    Electrophoretic ratchets have been developed for both analytical and preparative electrophoresis. These ratchets use a new type of pulsed field. The quality of the fractionations meets the usual standards for biochemistry-based electrophoresis. The supporting medium is either an agarose gel or a capillary-contained polymer solution. The electrophoretic ratchets are effective with a particle that has an electrophoretic mobility (μ=velocity/electrical field) that varies as the electrical field varies. A ratchet developed for DNA molecules is effective because μ increases in magnitude as the electrical field increases in magnitude. Ratchets developed for both DNA-protein complexes and spheres are effective because of the opposite dependence of μ on the electrical field. Ratchet-based gel electrophoresis can be performed in a continuous, preparative mode. Ratchet-based capillary electrophoresis provides a necessary component for cyclic capillary electrophoresis. Cyclic capillary electrophoresis of DNA is a procedure for analyzing a DNA profile in several segments. These segments are separated by electrophoretic enhancements of the DNA profile. Cyclic capillary electrophoresis is being developed for increasing both the length and the accuracy of the analysis of a DNA-sequencing ladder.

  19. Dynamical fractional chaotic inflation

    NASA Astrophysics Data System (ADS)

    Harigaya, Keisuke; Ibe, Masahiro; Schmitz, Kai; Yanagida, Tsutomu T.

    2014-12-01

    Chaotic inflation based on a simple monomial scalar potential, V (ϕ )∝ϕp, is an attractive large-field model of inflation capable of generating a sizable tensor-to-scalar ratio r . Therefore, assuming that future cosmic microwave background observations will confirm the large r value reported by BICEP2, it is important to determine what kind of dynamical mechanism could possibly endow the inflaton field with such a simple effective potential. In this paper, we answer this question in the context of field theory, i.e. in the framework of dynamical chaotic inflation, where strongly interacting supersymmetric gauge dynamics around the scale of grand unification dynamically generate a fractional power-law potential via the quantum effect of dimensional transmutation. In constructing explicit models, we significantly extend our previous work, as we now consider a large variety of possible underlying gauge dynamics and relax our conditions on the field content of the model. This allows us to realize almost arbitrary rational values for the power p in the inflaton potential. The present paper may hence be regarded as a first step toward a more complete theory of dynamical chaotic inflation.

  20. Fractional telegrapher's equation from fractional persistent random walks

    NASA Astrophysics Data System (ADS)

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses.

  1. Fractional telegrapher's equation from fractional persistent random walks.

    PubMed

    Masoliver, Jaume

    2016-05-01

    We generalize the telegrapher's equation to allow for anomalous transport. We derive the space-time fractional telegrapher's equation using the formalism of the persistent random walk in continuous time. We also obtain the characteristic function of the space-time fractional process and study some particular cases and asymptotic approximations. Similarly to the ordinary telegrapher's equation, the time-fractional equation also presents distinct behaviors for different time scales. Specifically, transitions between different subdiffusive regimes or from superdiffusion to subdiffusion are shown by the fractional equation as time progresses. PMID:27300830

  2. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... precipitation event. (b) Rock-core chimney drains. A rock-core chimney drain may be used in a head-of-hollow... not located in an area containing intermittent or perennial streams. A rock-core chimney drain may be... is diverted around the fill. The alternative rock-core chimney drain system shall be...

  3. 30 CFR 816.72 - Disposal of excess spoil: Valley fills/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of this section. (a) Drainage control. (1) The top surface of the completed fill shall be graded... to each area of potential drainage or seepage in the disposal area. The underdrain system and rock... this pocket or sump have a potential capacity for impounding more than 10,000 cubic feet of...

  4. 30 CFR 817.72 - Disposal of excess spoil: Valley fill/head-of-hollow fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements of this section. (a) Drainage control. (1) The top surface of the completed fill shall be graded... area of potential drainage or seepage in the disposal area. The underdrain system and rock core shall... sump have a potential capacity for impounding more than 10,000 cubic feet of water. Terraces on...

  5. Increasing Polymer Solar Cell Fill Factor by Trap-Filling with F4-TCNQ at Parts Per Thousand Concentration.

    PubMed

    Yan, Han; Manion, Joseph G; Yuan, Mingjian; García de Arquer, F Pelayo; McKeown, George R; Beaupré, Serge; Leclerc, Mario; Sargent, Edward H; Seferos, Dwight S

    2016-08-01

    Intrinsic traps in organic semiconductors can be eliminated by trap-filling with F4-TCNQ. Photovoltaic tests show that devices with F4-TCNQ at parts per thousand concentration outperform control devices due to an improved fill factor. Further studies confirm the trap-filling pathway and demonstrate the general nature of this finding. PMID:27171655

  6. Teaching Science: Air Pressure "Eggs-periments."

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1994-01-01

    Discusses how teachers can introduce students to various scientific concept concerning motion, air composition, and heat by conducting an experiment: A peeled, hard-boiled egg is sucked into a bottle neck slightly smaller than the egg, after the bottle has been filled and emptied of hot water. Also discusses how students' understanding of the…

  7. Aerodynamical sealing by air curtains

    NASA Astrophysics Data System (ADS)

    Frank, Daria; Linden, Paul

    2015-11-01

    Air curtains are artificial high-velocity plane turbulent jets which are installed in a doorway in order to reduce the heat and the mass exchange between two environments. The performance of an air curtain is assessed in terms of the sealing effectiveness E, the fraction of the exchange flow prevented by the air curtain compared to the open-door situation. The main controlling parameter for air curtain dynamics is the deflection modulus Dm representing the ratio of the momentum flux of the air curtain and the transverse forces acting on it due to the stack effect. In this talk, we examine the influence of two factors on the performance of an air curtain: the presence of an additional ventilation pathway in the room, such as a small top opening, and the effects of an opposing buoyancy force which for example arises if a downwards blowing air curtain is heated. Small-scale experiments were conducted to investigate the E (Dm) -curve of an air curtain in both situations. We present both experimental results and theoretical explanations for our observations. We also briefly illustrate how simplified models developed for air curtains can be used for more complex phenomena such as the effects of wind blowing around a model building on the ventilation rates through the openings.

  8. Holocene alluvial fills in the South Loup Valley, Nebraska

    NASA Astrophysics Data System (ADS)

    May, David W.

    1989-07-01

    Four Holocene alluvial fills are present in Nebraska's South Loup River valley. Fill IV, the oldest and thickest, was deposited between 10,200 and 4800 14C yr B.P.; Fill III has an age of about 3000 14C yr B.P.; Fill II is younger than 2100 and older than 900 14C yr B.P.; and Fill I is younger than 900 14C yr B.P. Regional contemporaneity of valley alluviation in the eastcentral Great Plains suggests that climate has controlled long-term sediment storage in the South Loup River valley.

  9. Cryogenic separation of oxygen-argon mixture in natural air samples for isotopic and molecular ratios

    NASA Astrophysics Data System (ADS)

    Habeeb Rahman, Keedakkadan; Abe, Osamu

    2014-05-01

    The discovery of mass independent isotope fractionation in oxygen during the formation of ozone in the stratosphere has initiated a wide application in isotope geochemistry field. Separation of oxygen-argon mixture has become the foundation of high precision analysis of Δ17O and δ(O2/Ar) for geochemical applications. Here we present precise and simplified cryogenic separation of argon oxygen mixture from the atmospheric and dissolved air using 30/60 mesh 5A molecular sieve zeolite. A pioneer study of this method was conducted by Thiemens and Meagher in 1984. The column which is made of glass tube contains about 1.1 grams of molecular sieve zeolite and both ends of column was filled with glass wools. The experimental set up was tested for different combination of molecular sieves and slurry temperatures. We found the most efficient condition for the separation was at a column temperature of -103°C. For complete transfer of O2 and Ar mixture usually takes in 15-20 minutes time. The isotopic ratios of oxygen were analyzed using mass spectrometer (Thermo Fischer Delta Plus) relative to reference oxygen-argon mixture at 3V of m/z 32 for both sample and reference side. The signals of m/z 28, 32, and 40 were measured by dynamically to determine oxygen -argon ratio and to check nitrogen contamination. Repeated measurements of atmospheric air yielded a reproducibility (SE n=80) of 0.006, 0.004 and 0.19‰ for δ17O, δ18O and δO2/Ar respectively. The isotopic and molecular fractionation of argon- oxygen mixture during gas adsorption and desorption while using molecular sieve under liquid nitrogen temperature was studied. We have established a linear relationship governing the effect of 13X and 5A molecular sieves on molecular fractionation. And suggested the use of single 1/8" pellet 13X molecular sieve provided a negligible fractionation.

  10. Aging Studies of Filled and Unfilled VCE

    SciTech Connect

    Letant, S; Herberg, J; Alviso, C; Small, W; Mulcahy, H; Pearson, M; Wilson, T; Chinn, S; Maxwell, R

    2009-11-10

    This report presents data on the effects of temperature and gamma radiation on the chemical and structural properties of both filled and unfilled VCE material produced by the Kansas City Plant using WR-qualified processes. Thermal effects up to 300 C and gamma irradiation doses of 1 MRad and 25 MRad were investigated under atmospheric conditions. Characterization techniques used in the study comprise Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), Tensile Testing, Solid Phase MicroExtraction - Gas Chromatography/Mass Spectrometry (SPME-GC/MS), phenol extraction followed by HPLC, and various Nuclear Magnetic Resonance (NMR) techniques including: {sup 13}C, {sup 13}C {l_brace}{sup 1}H{r_brace} cross polarization (CP), {sup 1}H magic angle spinning (MAS), 13C{l_brace}{sup 1}H{r_brace} Wide-line-Separation (2D-WISE) and development of Center band-Only Detection of Exchange (CODEX).

  11. Super-insulating gas-filled panels

    SciTech Connect

    Arasteh, D.; Griffith, B.; Selkowitz, S.

    1990-08-01

    This paper presents the design, materials characteristics, and thermal performance of a new insulating material. Development of this material is motivated by the need for non-CFC based high performance insulations with applications for refrigerator/freezer and building walls. This super insulating gas filled panel technology achieves R-values of between 8 hr-ft{sup 2}-F/Btu per inch and 15 hr-ft{sup 2}-F/Btu per inch (one to two times that of CFC blown foams and two to four times that of fiberglass insulations) at estimated costs of $0.40--$1.50/in-ft{sup 2}. Prototypes have been built using commercially available materials and components, tested by the developers, and sent to an independent laboratory for independent thermal performance testing. 2 refs., 4 figs., 1 tab.

  12. Fracture surface statistics of filled elastomers.

    PubMed

    Horst, Thomas; Reincke, Katrin; Ilisch, Sybill; Heinrich, Gert; Grellmann, Wolfgang

    2009-10-01

    Roughness profiles of fracture surfaces formed as a result of the fast crack propagation through a filled rubber were analyzed by means of the height-height correlation functions. The fracture surface was found to be anisotropic in a certain domain of values of length scales; i.e., different values of roughness exponents are observed across and along the crack propagation direction. A two-dimensional analysis reveals a Family-Vicsek scaling in this domain characterized as well by two exponents. These characteristic values of the roughness exponents are found to be close to those observed for fracture surfaces of certain nonrubber materials at length scales smaller than the size of the fracture process zone. Hence, a ductile fracture process can be surmised to occur within the domain of the corresponding length scales. PMID:19905403

  13. Fracture surface statistics of filled elastomers

    NASA Astrophysics Data System (ADS)

    Horst, Thomas; Reincke, Katrin; Ilisch, Sybill; Heinrich, Gert; Grellmann, Wolfgang

    2009-10-01

    Roughness profiles of fracture surfaces formed as a result of the fast crack propagation through a filled rubber were analyzed by means of the height-height correlation functions. The fracture surface was found to be anisotropic in a certain domain of values of length scales; i.e., different values of roughness exponents are observed across and along the crack propagation direction. A two-dimensional analysis reveals a Family-Vicsek scaling in this domain characterized as well by two exponents. These characteristic values of the roughness exponents are found to be close to those observed for fracture surfaces of certain nonrubber materials at length scales smaller than the size of the fracture process zone. Hence, a ductile fracture process can be surmised to occur within the domain of the corresponding length scales.

  14. Method of filling a microchannel separation column

    DOEpatents

    Arnold, Don W.

    2002-01-01

    A method for packing a stationary phase into a small diameter fluid passageway or flow channel. Capillary action is employed to distribute a stationary phase uniformly along both the length and diameter of the flow channel. The method disclosed here: 1) eliminates the need for high pressure pumps and fittings and the safety hazards associated therewith; 2) allows the use of readily available commercial microparticles, either coated or uncoated, as the stationary phase; 3) provides for different types of particles, different particle sizes, and different particle size distributions to be packed in sequence, or simultaneously; 4) eliminates the need for plugging the flow channel prior to adding the stationary phase to retain the packing particles; and 5) many capillaries can be filled simultaneously.

  15. Transport properties of spacetime-filling branes

    NASA Astrophysics Data System (ADS)

    Tarrío, Javier

    2014-04-01

    A model consisting of (d+1)-dimensional gravity coupled to spacetime filling charged branes is used to study the effects of backreaction. The charged black holes arising from this simple model reflect the non-linearity of the gauge field and are thermodynamically stable. By analysing fluctuations of the system we corroborate that at low values of the temperature (or large chemical potential) backreaction effects from the branes are dominant. We also provide a generalisation of the Iqbal and Liu strategy to calculate the DC conductivity, in which a mass term for the gauge field fluctuation is included. This mass term gives the value of the residue of the pole at zero frequency in the imaginary part of the AC conductivity, as well as the running of the DC conductivity with the bulk radius.

  16. Boron-Filled Hybrid Carbon Nanotubes

    PubMed Central

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  17. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, D.J.; Calkins, N.C.; Gac, F.D.

    1990-11-13

    An armor system is disclosed in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix. 5 figs.

  18. Constrained ceramic-filled polymer armor

    DOEpatents

    Sandstrom, Donald J.; Calkins, Noel C.; Gac, Frank D.

    1990-01-01

    An armor system in which a plurality of constraint cells are mounted on a surface of a substrate, which is metal armor plate or a similar tough material, such that the cells almost completely cover the surface of the substrate. Each constraint cell has a projectile-receiving wall parallel to the substrate surface and has sides which are perpendicular to and surround the perimeter of the receiving wall. The cells are mounted such that, in one embodiment, the substrate surface serves as a sixth side or closure for each cell. Each cell has inside of it a plate, termed the front plate, which is parallel to and in contact with substantially all of the inside surface of the receiving wall. The balance of each cell is completely filled with a projectile-abrading material, which is a ceramic material in particulate form dispersed in a polymeric matrix.

  19. The Chemistry of Modern Dental Filling Materials

    NASA Astrophysics Data System (ADS)

    Nicholson, John W.; Anstice, H. Mary

    1999-11-01

    The chemistry underpinning modern tooth-colored dental fillings is described. Two broad groups of material are covered, the so-called composite resins and the glass-ionomer cements. Composite resins consist of bulky difunctional monomers together with high loadings of powdered inorganic fillers, and they set by addition polymerization. Glass-ionomers consist of aqueous polymeric acids, such as polyacrylic acid, plus basic glass powders. They set by a neutralization reaction, but leave a substantial amount of the glass unreacted, to act as reinforcing filler. Various attempts have been made to combine the attractive properties of these materials, and the different types of hybrids of them are described. The importance of chemistry to this important branch of health care is emphasized.

  20. Single-pole ladder at quarter filling

    NASA Astrophysics Data System (ADS)

    Aristov, D. N.; Kiselev, M. N.; Kikoin, K.

    2007-06-01

    We study the ground state and excitation spectrum of a quasi-one-dimensional system consisting of a pole and rungs oriented in opposite directions (“centipede ladder,” CL) at quarter filling. The spin and charge excitation spectra are found in the limits of small and large longitudinal hoppings t‖ compared to the on-rung hopping rate t⊥ and exchange coupling I⊥ . At small t‖ , the system with ferromagnetic on-rung exchange demonstrates instability against dimerization. Coherent propagation of charge-transfer excitons is possible in this limit. At large t‖ , CL behaves like two-orbital Hubbard chain, but the gap opens in the charge excitation spectrum, thus reducing the symmetry from SU(4) to SU(2). The spin excitations are always gapless and their dispersion changes from quadratic magnonlike for ferromagnetic on-rung exchange to linear spinonlike for antiferromagnetic on-rung exchange in weak longitudinal hopping limit.

  1. Boron-Filled Hybrid Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Patel, Rajen B.; Chou, Tsengming; Kanwal, Alokik; Apigo, David J.; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-07-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs.

  2. Boron-Filled Hybrid Carbon Nanotubes.

    PubMed

    Patel, Rajen B; Chou, Tsengming; Kanwal, Alokik; Apigo, David J; Lefebvre, Joseph; Owens, Frank; Iqbal, Zafar

    2016-01-01

    A unique nanoheterostructure, a boron-filled hybrid carbon nanotube (BHCNT), has been synthesized using a one-step chemical vapor deposition process. The BHCNTs can be considered to be a novel form of boron carbide consisting of boron doped, distorted multiwalled carbon nanotubes (MWCNTs) encapsulating boron nanowires. These MWCNTs were found to be insulating in spite of their graphitic layered outer structures. While conventional MWCNTs have great axial strength, they have weak radial compressive strength, and do not bond well to one another or to other materials. In contrast, BHCNTs are shown to be up to 31% stiffer and 233% stronger than conventional MWCNTs in radial compression and have excellent mechanical properties at elevated temperatures. The corrugated surface of BHCNTs enables them to bond easily to themselves and other materials, in contrast to carbon nanotubes (CNTs). BHCNTs can, therefore, be used to make nanocomposites, nanopaper sheets, and bundles that are stronger than those made with CNTs. PMID:27460526

  3. Fractionation, rearrangement and subgenome dominance

    PubMed Central

    Sankoff, David; Zheng, Chunfang

    2012-01-01

    Motivation: Fractionation is arguably the greatest cause of gene order disruption following whole genome duplication, causing severe biases in chromosome rearrangement-based estimates of evolutionary divergence. Results: We show how to correct for this bias almost entirely by means of a ‘consolidation’ algorithm for detecting and suitably transforming identifiable regions of fractionation. We characterize the process of fractionation and the performance of the algorithm through realistic simulations. We apply our method to a number of core eudicot genomes, we and by studying the fractionation regions detected, are able to address topical issues in polyploid evolution. Availability and implementation: Code for the consolidation algorithm, and sample data, is available at: http://137.122.149.195/Software/Fractionation/fractionation.html Contact: sankoff@uottawa.ca PMID:22962459

  4. Method development for VOST Fractionator

    SciTech Connect

    St. Germain Wickham, M.E.; Cummins, S.B.; Radolovich, G. )

    1994-01-01

    A VOST Fractionator was designed and tested to fractionate an original VOST sample into two samples: one large and one small sample. The device allows for quantitation of high levels of compounds in the small fraction and trace levels in the large fraction. Several preliminary validation samples were prepared, split, and analyzed to test the feasibility of the VOST Fractionator. These validation samples contained 40,000 ng of three terpene compounds and 100 ng of 42 other volatile target analytes. Analyte recoveries ranged from 70 to 130 percent, except for five water-soluble compounds. Recovery for the terpene compounds was 110 to 118 percent. Precision for triplicate spiked samples was less than 30 percent relative standard deviation (%RSD) for most compounds. Results indicate that the VOST Fractionator accurately splits the sample and allows quantitation of extremely high levels of compounds without sacrificing sensitivity for trace compounds. 3 refs., 1 fig., 3 tabs.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  6. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  7. USE OF BIOCERAMICS IN FILLING BONE DEFECTS

    PubMed Central

    Garrido, Carlos Antõnio; Sampaio, Tania Clarete Fonseca Vieira Sales

    2015-01-01

    Objective: To present the results from using biological ceramics for filling bone defects resulting from post-traumatic or orthopedic injuries. Methods: Thirty-six patients with bone defects caused by trauma or orthopedic injury were evaluated. Nineteen patients were male (52.8%) and 17 were female (47.2%). Their ages ranged from 19 to 84 years, with a mean of 45.7 years and median of 37 years. Only patients with defects that required at least five grams of biological ceramic were included. Eighteen cases were classified as orthopedic: bone defects were observed in 11 cases of total hip arthroplasty; one case of primary total hip arthroplasty, due to coxarthrosis; five cases of femoral or tibial open wedge osteotomy; and one case of tarsal arthrodesis. There were 18 cases of trauma-related defects; uninfected pseudarthrosis, eight cases; recent fractures of the tibial plateau with compression of the spongy bone, three cases; and exposed fractures treated with external fixators, seven cases. The surgical technique consisted of curetting and debriding the injury until bone suitable for grafting was found. Biological ceramic was then used to fill the defect and some kind of fixation was applied. Results: Among the 36 patients evaluated, it was seen that 35 (97.2%) presented integration of the biological ceramic, while one case of open fracture treated with external fixation had poor integration of the biological ceramic. Conclusion: Treatment of bone defects of orthopedic or post-traumatic etiology using a phosphocalcium ceramic composed of hydroxyapatite was shown to be a practical, effective and safe method. PMID:27022576

  8. Two variants of minimum discarded fill ordering

    SciTech Connect

    D'Azevedo, E.F. ); Forsyth, P.A.; Tang, Wei-Pai . Dept. of Computer Science)

    1991-01-01

    It is well known that the ordering of the unknowns can have a significant effect on the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable experimental work on the effects of ordering for regular finite difference problems. In many cases, good results have been obtained with preconditioners based on diagonal, spiral or natural row orderings. However, for finite element problems having unstructured grids or grids generated by a local refinement approach, it is difficult to define many of the orderings for more regular problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in finding high quality Incomplete LU (ILU) preconditioners, especially for problems arising from unstructured finite element grids. Testing indicates this algorithm can identify a rather complicated physical structure in an anisotropic problem and orders the unknowns in the preferred'' direction. The MDF technique may be viewed as the numerical analogue of the minimum deficiency algorithm in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses the next pivot node so as to minimize the amount of discarded fill. In this work, two efficient variants of the MDF technique are explored to produce cost-effective high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely related to the minimum degree algorithm. The MUM ordering is especially for large problems arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using a visualization tool. 22 refs., 4 figs., 7 tabs.

  9. Nonbiological fractionation of iron isotopes

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Roe, J. E.; Barling, J.; Nealson, K. H.

    2000-01-01

    Laboratory experiments demonstrate that iron isotopes can be chemically fractionated in the absence of biology. Isotopic variations comparable to those seen during microbially mediated reduction of ferrihydrite are observed. Fractionation may occur in aqueous solution during equilibration between inorganic iron complexes. These findings provide insight into the mechanisms of iron isotope fractionation and suggest that nonbiological processes may contribute to iron isotope variations observed in sediments.

  10. Fractional (Chern and topological) insulators

    NASA Astrophysics Data System (ADS)

    Neupert, Titus; Chamon, Claudio; Iadecola, Thomas; Santos, Luiz H.; Mudry, Christopher

    2015-12-01

    We review various features of interacting Abelian topological phases of matter in two spatial dimensions, placing particular emphasis on fractional Chern insulators (FCIs) and fractional topological insulators (FTIs). We highlight aspects of these systems that challenge the intuition developed from quantum Hall physics—for instance, FCIs are stable in the limit where the interaction energy scale is much larger than the band gap, and FTIs can possess fractionalized excitations in the bulk despite the absence of gapless edge modes.

  11. Accessible solitons of fractional dimension

    NASA Astrophysics Data System (ADS)

    Zhong, Wei-Ping; Belić, Milivoj; Zhang, Yiqi

    2016-05-01

    We demonstrate that accessible solitons described by an extended Schrödinger equation with the Laplacian of fractional dimension can exist in strongly nonlocal nonlinear media. The soliton solutions of the model are constructed by two special functions, the associated Legendre polynomials and the Laguerre polynomials in the fraction-dimensional space. Our results show that these fractional accessible solitons form a soliton family which includes crescent solitons, and asymmetric single-layer and multi-layer necklace solitons.

  12. Trigonometric Integrals via Partial Fractions

    ERIC Educational Resources Information Center

    Chen, H.; Fulford, M.

    2005-01-01

    Parametric differentiation is used to derive the partial fractions decompositions of certain rational functions. Those decompositions enable us to integrate some new combinations of trigonometric functions.

  13. Observation of neutral modes in the fractional quantum Hall regime.

    PubMed

    Bid, Aveek; Ofek, N; Inoue, H; Heiblum, M; Kane, C L; Umansky, V; Mahalu, D

    2010-07-29

    The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. For some particle-hole conjugate states of the fractional regime (for example, with fillings between 1/2 and 1 of the lowest Landau level), early predictions suggested the presence of counter-propagating edge currents in addition to the expected ones. When this did not agree with the measured conductance, it was suggested that disorder and interactions will lead to counter-propagating modes that carry only energy--the so called neutral modes. In addition, a neutral upstream mode (the Majorana mode) was expected for selected wavefunctions proposed for the even-denominator filling 5/2. Here we report the direct observation of counter-propagating neutral modes for fillings of 2/3, 3/5 and 5/2. The basis of our approach is that, if such modes impinge on a narrow constriction, the neutral quasiparticles will be partly reflected and fragmented into charge carriers, which can be detected through shot noise measurements. We find that the resultant shot noise is proportional to the injected current. Moreover, when we simultaneously inject a charge mode, the presence of the neutral mode was found to significantly affect the Fano factor and the temperature of the backscattered charge mode. In particular, such observations for filling 5/2 may single out the non-Abelian wavefunctions for the state. PMID:20671702

  14. A magnetic resonance study of pore filling processes during spontaneous imbibition in Berea sandstone

    NASA Astrophysics Data System (ADS)

    Chen, Quan; Gingras, Murray K.; Balcom, Bruce J.

    2003-11-01

    A new magnetic resonance technique, DDIF (the decay of magnetization due to diffusion in the internal field), was combined with mercury porosimetry to investigate pore geometry, including pore- and throat-size distribution, and pore connectivity for porous media. A comparison of DDIF spectra for a fully water saturated Berea sandstone, with the partially saturated sample by centrifugation in air, indicated that DDIF can be used for the measurement of water filled pore size distribution in partially saturated porous media. Dynamic water imbibition into air-filled Berea sandstone was studied using the DDIF technique. Simultaneously, in situ three-dimensional saturation and capillary driven water penetration were monitored using Conical-SPRITE, which is a rapid, centric scanning, spin-density weighted single point three-dimensional magnetic resonance imaging technique. These measurements provide direct evidence for differences in the pore filling mechanisms for co-current imbibition and counter-current imbibition in Berea sandstone. During co-current imbibition, water flows through the pores and connected throats with a piston-type mechanism. Air is displaced from the sample by the leading edge of the waterfront, resulting in a macroscopic piston-like flow through the entire sample. During counter-current imbibition, water flows through the pores and connected throats with a film-like structure along the corners and surfaces of the pore space. Air escapes from the sample by flowing through the center of the pores and pore throats, in the opposite direction. Once the penetrating waterfronts meet, at the sample center, there is a global, uniform increase in water content.

  15. Thermal resistance of attic loose-fill insulations decreases under simulated winter conditions

    SciTech Connect

    Graves, R.S.; Wilkes, K.E.; McElroy, D.L.

    1994-05-01

    Two absolute techniques were used to measure the thermal resistance of attic loose-fill insulations: the Large Scale Climate Simulator (LSCS) and the Unguarded Thin-Heater Apparatus (UTHA). Two types of attic loose-fill insulations (unbonded and bonded/cubed) were tested under simulated winter conditions. To simulate winter conditions for an attic insulation, the specimens were tested with heat flow up, large temperature differences, and an air gap. The specimens were tested either with a constant mean temperature (30 or 21{degrees}C) and an increasing temperature difference or with a constant base temperature (21{degrees}C) and an increasing temperature difference (i.e., a decreasing mean temperature). The UTHA test specimens had a nominal thickness of 0.2 m of loose-fill insulation. The LSCS test specimens had a nominal thickness of 0.3 m of loose-fill insulation contained in a 4.2 by 5 m attic test module with a gypsum board base. The module had a gabled attic with a 5 in 12 slope roof. The tests yielded the surface-to-surface thermal resistance, R, which includes the thermal resistance due to gypsum, insulation, and any wood joists. Tests with and without an air gap were conducted in the UTHA. Surface-to-surface thermal resistance results from the LSCS and the UTHA show similar trends for these two types of loose-fill insulation when tested under simulated winter conditions. Tests with no air gap gave values of R that agreed with the bag label R-value for the insulations; R increased with lower mean temperatures. These no-gap values of R were 2 to 5% greater than the values of R obtained with an air gap for temperature differences of less than 22{degrees}C. For larger temperature differences R decreased, and at temperature differences of over 40{degrees}C, the R values were 50% less than those at small temperature differences.

  16. The effect of oxygen inhibition on an unfilled/filled composite system.

    PubMed

    Rueggeberg, F A; Margeson, D H

    1990-10-01

    Oxygen is known to inhibit vinyl polymerization in resins used for restorative dentistry. This research examined the effects of unfilled resin being blown into a thin layer on etched bovine enamel in atmospheres of room air, argon, or a combination of the two. Onto this thin, cured resin surface, filled resin was added and cured under atmospheric conditions similar to those of the initial polymerization of the unfilled resin. Comparison of the effects of the different testing atmospheres was made by measurement of the shear bond strength of the resin/composite disc to the etched bovine enamel. Monomer conversion values of the unfilled resin were calculated from the infrared spectra of the simulated tooth/disc assembly. Blowing unfilled resin with compressed room air prior to curing caused poor monomer conversion values and resulted in low shear bond strength to etched enamel. Both high monomer conversion and shear strength values resulted when specimens were cured under all-argon conditions. A clinically practical method of maintenance of the tooth under a continuous stream of argon while being cured in room air was shown to provide greater monomer conversion than curing under room-air conditions alone. SEM evaluation showed that the inhibited layer present in room-air curing was both physically displaced by and absorbed into the overlying filled composite. Specimens cured in argon showed an intact, uniformly thick layer of bonding resin next to the etched enamel, with no displacement by or absorption into the composite addition. Unfilled resin cured in room air had a significantly greater thickness of polymerization-inhibited material than did resin cured in an argon atmosphere. PMID:2212209

  17. COMMERCIAL SNF ACCIDENT RELEASE FRACTIONS

    SciTech Connect

    S.O. Bader

    1999-10-18

    The purpose of this design analysis is to specify and document the total and respirable fractions for radioactive materials that are released from an accident event at the Monitored Geologic Repository (MGR) involving commercial spent nuclear fuel (CSNF) in a dry environment. The total and respirable release fractions will be used to support the preclosure licensing basis for the MGR. The total release fraction is defined as the fraction of total CSNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. The radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses. This subset of the total release fraction is referred to as the respirable release fraction. Potential accidents may involve waste forms that are characterized as either bare (unconfined) fuel assemblies or confined fuel assemblies. The confined CSNF assemblies at the MGR are contained in shipping casks, canisters, or disposal containers (waste packages). In contrast to the bare fuel assemblies, the container that confines the fuel assemblies has the potential of providing an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. However, this analysis will not take credit for this additional bamer and will establish only the total release fractions for bare unconfined CSNF assemblies, which may however be

  18. Commensurability condition and hierarchy of fillings for FQHE in higher Landau levels in conventional 2DEG systems and in graphene—monolayer and bilayer

    NASA Astrophysics Data System (ADS)

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The structure of the filling rate hierarchy referred to as the fractional quantum Hall effect is studied in higher Landau levels using the commensurability condition. The hierarchy of fillings that are derived in this manner is consistent with the experimental observations of the first three Landau levels in conventional semiconductor Hall systems. The relative poverty of the fractional structure in higher Landau levels compared with the lowest Landau level is explained using commensurability topological arguments. The commensurability criterion for correlated states for higher Landau levels (with n≥slant 1) including the paired states at half fillings of the spin-subbands of these levels is formulated. The commensurability condition is applied to determine the hierarchy of the fractional fillings of Landau levels in the monolayer and bilayer graphene. Good agreement with current experimental observations of fractional quantum Hall effect in the graphene monolayer and bilayer is achieved. The presence of even denominator rates in the hierarchy for fractional quantum Hall effect in the bilayer graphene is also explained.

  19. Microstructure-property relationships in alumina trihydrate filled poly (methyl methacrylate) composite materials

    NASA Astrophysics Data System (ADS)

    Zhang, Ruoyu

    2015-07-01

    The mechanical properties (Young's modulus and fracture toughness) of composite made from a poly (methyl methacrylate) (PMMA) matrix filled with alumina trihydrate(ATH) are reported. The experiments were performed using flexural tests and single edge notched bend (SENB) tests. The composites samples were tested at a range of filler volume fractions (34.7%, 39.4% and 44.4%) and mean filler diameters (8 pm, 15 pm and 25 pm). The data of Young's modulus agreed well with the results of Lielens model and finite element analysis (FEA) model.

  20. Channel fill characteristics in submarine fans and deltas

    SciTech Connect

    Bouma, A.H.; Goddard, D. )

    1993-02-01

    Excellent data sources may not answer all pertinent questions and multifold seismic data usually cannot resolve internal characteristics of channel fills, even when it can detect the channel. Well log correlations can be wrong, especially when dealing with thin channel fills and outcrops are seldom sufficiently large to reveal a complete channel fill. In the final analysis, integration of all these types of data is necessary. Although not well understood, a lot of similarities exist between the channel fills from submarine fans and those from deltas. It is definitely beneficial to compare data from both environments. Channels and their fills can be: (1) primarily the result of major erosion forming an incisement that becomes gradually filled; (2) primarily the result of deposition, maintaining a channel, gradually filling it and simultaneously building its levees; (3) massive fill; (4) a bedded fill with or without an upward and/or lateral thinning or fining; or (5) a combination of thick bedded and thin bedded. Many channels alternate between erosional and depositional activities. Often an erosional cut is lined with shale, reducing fluid flow between channel sandstones and those of the levees. Also, a thorough knowledge of all of these varied processes is essential for the understanding of why [open quotes]massive[close quotes] channel fills can be wet and [open quotes]thin-bedded levees[close quotes] deposits oil prone.

  1. Effect of a natural contaminant on foam fractionation of bromelain.

    PubMed

    Ko, S; Cherry, J; Prokop, A; Tanner, R D

    2001-01-01

    Foam fractionation is a simple, inexpensive method for separating and purifying proteins. Typically, a dilute bromelain solution with a pH ranging from 2.0 to 7.0 foams very well when bubbles are introduced into a foam fractionation column. It was observed, however, that the dilute enzyme solution only foamed between approximately pH 2.0 and 3.0 when the inner wall of the fractionation column was coated with a natural contaminant (okra residue). We studied the separation ratio and the protein mass recovery to explore the effect of a natural antifoaming agent on the foam fractionation of a dilute bromelain solution. The control variables used in this process were the initial bulk solution pH, which ranged from 2.0 to 7.0, and the superficial air velocity, which varied between 1.7 and 6.2 cm/s. PMID:11963869

  2. Vision-based level control for beverage-filling processes

    NASA Astrophysics Data System (ADS)

    Ley, Dietmar; Braune, Ingolf

    1994-11-01

    This paper presents a vision-based on-line level control system which is used in beverage filling machines. Motivation for the development of this sensor system was the need for an intelligent filling valve, which can provide constant filling levels for all container/product combinations (i.e. juice, milk, beer, water, etc. in glass or PET bottles with various transparency and shape) by using a non-tactile and completely sterile measurement method. The sensor concept being presented in this paper is based on several CCD-cameras imaging the moving containers from the outside. The stationary lighting system illuminating the bottles is located within the filler circle. The field of view covers between 5 and 8 bottles depending on the bottle diameter and the filler partitioning. Each filling element's number is identified by the signals of an angular encoder. The electro-pneumatic filling valves can be opened and closed by computer control The cameras continuously monitor the final stages of the filling process, i.e. after the filling height has reached the upper half of the bottle. The sensor system measures the current filling height and derives the filling speed. Based on static a priori- knowledge and dynamic process knowledge the sensor system generates a best estimate of the particular time when the single valve is to be closed. After every new level measurement the system updates the closing time. The measurement process continues until the result of the next level calculation would be available after the estimated closing time would have been passed. The vision-based filling valve control enables the filling machine to adapt the filling time of each valve to the individual bottle shape. Herewith a standard deviation between 2 and 4 mm (depending on the slew rate in the bottle neck) can be accomplished, even at filling speed > 70.000 bottles per hour. 0

  3. Rational Exponentials and Continued Fractions

    ERIC Educational Resources Information Center

    Denny, J. K.

    2012-01-01

    Using continued fraction expansions, we can approximate constants, such as pi and e, using an appropriate integer n raised to the power x[superscript 1/x], x a suitable rational. We review continued fractions and give an algorithm for producing these approximations.

  4. Searches for Fractionally Charged Particles

    SciTech Connect

    Perl, Martin L.; Lee, Eric R.; Loomba, Dinesh; /New Mexico U.

    2012-04-12

    Since the initial measurements of the electron charge were made a century ago, experimenters have faced the persistent question of the existence of elementary particles with charges that are fractional multiples of the electron charge. In this review, we discuss the results of recent searches for these fractionally charged particles.

  5. Fractionation process for petroleum wax

    SciTech Connect

    Jones, R.L.; Mitchael, M.R.; Krenowicz, R.A.; Southard, W.M.

    1991-07-16

    This patent describes a process which comprises separating a petroleum wax into a lower boiling wax fraction of a narrow melting range and a higher boiling wax fraction of wider melting range by subjecting the petroleum wax to distillation in a wiped film evaporator.

  6. Understanding Magnitudes to Understand Fractions

    ERIC Educational Resources Information Center

    Gabriel, Florence

    2016-01-01

    Fractions are known to be difficult to learn and difficult to teach, yet they are vital for students to have access to further mathematical concepts. This article uses evidence to support teachers employing teaching methods that focus on the conceptual understanding of the magnitude of fractions.

  7. Dividing Fractions and Problem Solving

    ERIC Educational Resources Information Center

    Cramer, Kathleen; Monson, Debra; Whitney, Stephanie; Leavitt, Seth; Wyberg, Terry

    2010-01-01

    Fraction division is generally introduced in sixth or seventh grade with this rule: "Invert and multiply." The authors examined current commercial curricula and found that few textbooks use context as a way to build meaning for the division of fractions. When context is used, the connection between the invert-and-multiply rule and the context is…

  8. Unwrapping Students' Ideas about Fractions

    ERIC Educational Resources Information Center

    Lewis, Rebecca M.; Gibbons, Lynsey K.; Kazemi, Elham; Lind, Teresa

    2015-01-01

    Supporting students to develop an understanding of the meaning of fractions is an important goal of elementary school mathematics. This involves developing partitioning strategies, creating representations, naming fractional quantities, and using symbolic notation. This article describes how teachers can use a formative assessment problem to…

  9. On the Filling Process Forming Silicic Segregations

    NASA Astrophysics Data System (ADS)

    Zavala, K.; Marsh, B. D.

    2001-05-01

    Interdigitating silicic lenses are particularly well developed and well exposed in the Ferrar Dolerites of the McMurdo Dry Valleys, Antarctica. Silicic segregations are texturally splotchy, have sharp upper contacts, and diffuse lower contacts that grade into normal dolerite. What is unusual about these 1- 2 m lenses is that the background sill shows very little compositional variation and yet the silicic segregations show wide compositional variation. In particular, silica content varies between 47 and 68%, and thus produces for the sill overall a bimodal composition. We have analyzed over 100 segregation samples in order to investigate the nature of the filling process. Previous work (Zavala & Marsh, 1999) has shown that segregations have compositions that correspond to interstitial liquid present at crystallinities between 59 and 63 % and temperatures between 1135° and 1115° . Additionally, it was noted that the large segregation lenses are not homogeneous and exhibit cyclic variations in silica content. This observation lead to the current study, in which new samples from the Peneplain Sill (235 to 241) show remarkable correlations between segregation texture, stratigraphic position and silica enrichment. Incompatibles like Zr indicate relatively low 35 to 40% concentrations of melt at the point of segregation extraction, which supports the notion that segregations formed by withdrawal of interstitial melt into tears as the solidification front (SF) became gravitationally unstable. The details of the filling process can also be gauged using chemical profiles normalized to segregation thickness. One group shows distinct multiple smaller cycles of silica enrichment versus depth, which suggests successive stages of opening. The other group shows a strong enrichment in silica followed by a steady decay to the base. The general form of this latter pattern measures the gradient in melt composition immediately below the segregation at the time of infilling. From

  10. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology.

    PubMed

    Estrada-Ruiz, R H; Flores-Campos, R; Gámez-Altamirano, H A; Velarde-Sánchez, E J

    2016-07-01

    The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained. PMID:26963241

  11. Radiating subdispersive fractional optical solitons.

    PubMed

    Fujioka, J; Espinosa, A; Rodríguez, R F; Malomed, B A

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy. PMID:25273201

  12. Radiating subdispersive fractional optical solitons

    NASA Astrophysics Data System (ADS)

    Fujioka, J.; Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  13. Radiating subdispersive fractional optical solitons

    SciTech Connect

    Fujioka, J. Espinosa, A.; Rodríguez, R. F.; Malomed, B. A.

    2014-09-01

    It was recently found [Fujioka et al., Phys. Lett. A 374, 1126 (2010)] that the propagation of solitary waves can be described by a fractional extension of the nonlinear Schrödinger (NLS) equation which involves a temporal fractional derivative (TFD) of order α > 2. In the present paper, we show that there is also another fractional extension of the NLS equation which contains a TFD with α < 2, and in this case, the new equation describes the propagation of radiating solitons. We show that the emission of the radiation (when α < 2) is explained by resonances at various frequencies between the pulses and the linear modes of the system. It is found that the new fractional NLS equation can be derived from a suitable Lagrangian density, and a fractional Noether's theorem can be applied to it, thus predicting the conservation of the Hamiltonian, momentum and energy.

  14. Fractional active disturbance rejection control.

    PubMed

    Li, Dazi; Ding, Pan; Gao, Zhiqiang

    2016-05-01

    A fractional active disturbance rejection control (FADRC) scheme is proposed to improve the performance of commensurate linear fractional order systems (FOS) and the robust analysis shows that the controller is also applicable to incommensurate linear FOS control. In FADRC, the traditional extended states observer (ESO) is generalized to a fractional order extended states observer (FESO) by using the fractional calculus, and the tracking differentiator plus nonlinear state error feedback are replaced by a fractional proportional-derivative controller. To simplify controller tuning, the linear bandwidth-parameterization method has been adopted. The impacts of the observer bandwidth ωo and controller bandwidth ωc on system performance are then analyzed. Finally, the FADRC stability and frequency-domain characteristics for linear single-input single-output FOS are analyzed. Simulation results by FADRC and ADRC on typical FOS are compared to demonstrate the superiority and effectiveness of the proposed scheme. PMID:26928516

  15. Confined combustion of TNT explosion products in air

    SciTech Connect

    Chandler, J; Ferguson, R E; Forbes, J; Kuhl, A L; Oppenheim, A K; Spektor, R

    1998-08-31

    Effects of turbulent combustion induced by explosion of a 0.8 kg cylindrical charge of TNT in a 17 m3 chamber filled with air, are investigated. The detonation wave in the charge transforms the solid explosive (C7H5N3O6) to gaseous products, rich (~20% each) in carbon dust and carbon monoxide. The detonation pressure (~210 kb) thereby engendered causes the products to expand rapidly, driving a blast wave into the surrounding air. The interface between the products and air, being essentially unstable as a consequence of strong acceleration to which it is subjected within the blast wave, evolves into a turbulent mixing layer-a process enhanced by shock reflections from the walls. Under such circumstances rapid combustion takes place where the expanded detonation products play the role of fuel. Its dynamic effect is manifested by the experimental measurement of ~3 bar pressure increase in the chamber, in contrast to ~1bar attained by a corresponding TNT explosion in nitrogen. The experiments were modeled as a turbulent combustion in an unmixed system at infinite Reynolds, Peclet and DamkGhler numbers. The CFD solution was obtained by a high-order Godunov scheme using an AMR (Adaptive Mesh Refinement) to trace the turbulent mixing on the computational grid in as much detail as possible. The evolution of the mass fraction of fuel consumed by combustion thus determined exhibited the properties of an exponential decay following a sharp initiation. The results reveal all the dynamic features of the exothermic process of combustion controlled by fluid mechanic transport in a highly turbulent field, in contrast to those elucidated by the conventional reaction-diffusion model.

  16. Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Leininger, R.W.; Vimy, M.J.; Lorscheider, F.L. )

    1990-11-01

    The fate of mercury (Hg) released from dental silver amalgam tooth fillings into human mouth air is uncertain. A previous report about sheep revealed uptake routes and distribution of amalgam Hg among body tissues. The present investigation demonstrates the bodily distribution of amalgam Hg in a monkey whose dentition, diet, feeding regimen, and chewing pattern closely resemble those of humans. When amalgam fillings, which normally contain 50% Hg, are made with a tracer of radioactive {sup 203}Hg and then placed into monkey teeth, the isotope appears in high concentration in various organs and tissues within 4 wk. Whole-body images of the monkey revealed that the highest levels of Hg were located in the kidney, gastrointestinal tract, and jaw. The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.

  17. Two-octave supercontinuum generation in a water-filled photonic crystal fiber.

    PubMed

    Bethge, J; Husakou, A; Mitschke, F; Noack, F; Griebner, U; Steinmeyer, G; Herrmann, J

    2010-03-15

    Supercontinuum generation in a water-filled photonic crystal fiber is reported. By only filling the central hollow core of this fiber with water, the fiber properties are changed such that the air cladding provides broadband guiding. Using a pump wavelength of 1200 nm and few-microjoule pump pulses, the generation of supercontinua with two-octave spectral coverage from 410 to 1640 nm is experimentally demonstrated. Numerical simulations confirm these results, revealing a transition from a soliton-induced mechanism to self-phase modulation dominated spectral broadening with increasing pump power. Compared to supercontinua generated in glass core photonic fibers, the liquid core supercontinua show a higher degree of coherence, and the larger mode field area and the higher damage threshold of the water core enable significantly higher pulse energies of the white light pulses, ranging up to 0.39microJ. PMID:20389646

  18. Development of a 3D Filling Model of Low-Pressure Die-Cast Aluminum Alloy Wheels

    NASA Astrophysics Data System (ADS)

    Duan, Jianglan; Maijer, Daan; Cockcroft, Steve; Reilly, Carl

    2013-12-01

    A two-phase computational fluid dynamics model of the low-pressure die-cast process for the production of A356 aluminum alloy wheels has been developed to predict the flow conditions during die filling. The filling model represents a 36-deg section of a production wheel, and was developed within the commercial finite-volume package, ANSYS CFX, assuming isothermal conditions. To fully understand the behavior of the free surface, a novel technique was developed to approximate the vent resistances as they impact on the development of a backpressure within the die cavity. The filling model was first validated against experimental data, and then was used to investigate the effects of venting conditions and pressure curves during die filling. It was found that vent resistance and vent location strongly affected die filling time, free surface topography, and air entrainment for a given pressure fill-curve. With regard to the pressure curve, the model revealed a strong relation between the pressure curve and the flow behavior in the hub, which is an area prone to defect formation.

  19. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  20. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  1. Hot Gas Testing Results of Stagnant Volume Filling Through a Back-Filled RSRM Nozzle Joint

    NASA Technical Reports Server (NTRS)

    Prince, Andrew S.

    1999-01-01

    Silicone rubber is back-filled into RSW nozzle joints after assembly. A possible artifact of this process is the formation of small pathways through this filter leading to sensitive sealing materials within the joint. At motor ignition, hot gases fill the stagnant volumes within the joint through this path. A series of 14 test has been completed studying this scenario and providing anchoring data for thermal/flow models. Parameters such as gas path cross section, gas path length, gas path materials, fill volume size, and post path gas spreading prior to unpingement on seal material, have been investigated. Tests were accomplished using geometry similar to RSRM nozzle joint 4 with attached volumes replicating the free volume and flow friction in the actual hardware. The test hardware simulated 8 inches of the full-scale circumference. Testing has pointed to changes required in model boundary condition assumptions and gas dynamics corrections for gas paths of this size and geometry. Areas ,where this date has provided improvement in analysis models will be covered as well as model inadequacies that require separate specialized efforts. Questions remaining after this testing and a possible direction for future testing will be suggested.

  2. Determination of degradation rates of organic substances in the unsaturated soil zone depending on the grain size fractions of various soil types

    NASA Astrophysics Data System (ADS)

    Fichtner, Thomas; Stefan, Catalin; Goersmeyer, Nora

    2015-04-01

    Rate and extent of the biological degradation of organic substances during transport through the unsaturated soil zone is decisively influenced by the chemical and physical properties of the pollutants such as water solubility, toxicity and molecular structure. Furthermore microbial degradation processes are also influenced by soil-specific properties. An important parameter is the soil grain size distribution on which the pore volume and the pore size depends. Changes lead to changes in air and water circulation as well as preferred flow paths. Transport capacity of water inclusive nutrients is lower in existing bad-drainable fine pores in soils with small grain size fractions than in well-drainable coarse pores in a soil with bigger grain size fractions. Because fine pores are saturated with water for a longer time than the coarse pores and oxygen diffusion in water is ten thousand times slower than in air, oxygen is replenished much slower in soils with small grain size fractions. As a result life and growth conditions of the microorganisms are negatively affected. This leads to less biological activity, restricted degradation/mineralization of pollutants or altered microbial processes. The aim of conducted laboratory column experiments was to study the correlation between the grain size fractions respectively pore sizes, the oxygen content and the biodegradation rate of infiltrated organic substances. Therefore two columns (active + sterile control) were filled with different grain size fractions (0,063-0,125 mm, 0,2-0,63 mm and 1-2 mm) of soils. The sterile soil was inoculated with a defined amount of a special bacteria culture (sphingobium yanoikuae). A solution with organic substances glucose, oxalic acid, sinaphylic alcohol and nutrients was infiltrated from the top in intervals. The degradation of organic substances was controlled by the measurement of dissolved organic carbon in the in- and outflow of the column. The control of different pore volumes

  3. Surface Patterning Using Diazonium Ink Filled Nanopipette.

    PubMed

    Zhou, Min; Yu, Yun; Blanchard, Pierre-Yves; Mirkin, Michael V

    2015-11-01

    Molecular grafting of diazonium is a widely employed surface modification technique. Local electrografting of this species is a promising approach to surface doping and related properties tailoring. The instability of diazonium cation complicates this process, so that this species was generated in situ in many reported studies. In this Article, we report the egress transfer of aryl diazonium cation across the liquid/liquid interface supported at the nanopipette tip that can be used for controlled delivery this species to the external aqueous phase for local substrate patterning. An aryl diazonium salt was prepared with weakly coordinating and lipophilic tetrakis(pentafluorophenyl)borate anion stable as a solid and soluble in low polarity media. The chemically stable solution of this salt in 1,2-dichloroethane can be used as "diazonium ink". The ink-filled nanopipette was employed as a tip in the scanning electrochemical microscope (SECM) for surface patterning with the spatial resolution controlled by the pipette orifice radius and a few nanometers film thickness. The submicrometer-size grafted spots produced on the HOPG surface were located and imaged with the atomic force microscope (AFM). PMID:26456795

  4. The Performance of Gas Filled Multilayer Insulation

    NASA Astrophysics Data System (ADS)

    Mills, G. L.; Zeller, C. M.

    2008-03-01

    The NASA Exploration Program is currently planning to use liquid oxygen, methane and hydrogen for propulsion in future spacecraft for the human exploration of the Moon and Mars. This will require the efficient long term, on-orbit storage of these cryogens. Multilayer insulation (MLI) will be critical to achieving the required thermal performance since it has much lower heat transfer than any other insulation when used in a vacuum. However, the size and mass constraints of these propulsion systems will not allow a structural shell to be used to provide vacuum for the MLI during ground hold and launch. One approach is to purge the MLI during ground hold with an inert gas which is then vented during launch ascent and on-orbit. In this paper, we report on experimental tests and modeling that we have done on MLI used to insulate a cryogenic tank. These include measurements of the heat transfer of gas filled insulation, evacuated insulation and during the transition in between.

  5. Recognizing focus in noise filled sentences

    NASA Astrophysics Data System (ADS)

    Xu, Ching X.; Xu, Yi

    2003-04-01

    This study is designed to help identify the intrinsic constituents of focus. Twelve four-word Mandarin sentences were recorded by a native speaker five times, each time either with focus on one of the words, or without any focus. Then, one, two or three words in each sentence produced by the speaker were replaced by pink noise. The noise-filled sentences were presented to subjects along with the text. The subjects' task was to determine if the sentence had a focus, and if yes, on which word. Ten native Mandarin speakers participated as subjects. Their performance was compared across noise replacement conditions. It was found that, when both on-focus and post-focus words were present, focus could be recognized consistently. When only the focused word was present, focus could be recognized fairly well unless the focus position was sentence final, in which case it was not very distinct from no focus. When post-focus word(s) was(were) left intact while focused words were replaced by noise, focus could still be detected successfully, but its exact localization was sometimes judged wrong. These results seem to support the dual-component hypothesis about focus. Further implications of the findings will be discussed.

  6. Handbook for Gas Filled RF Cavity Aficionados'

    SciTech Connect

    Tollestrup, A.V.; Chung, Moses; Yonehara, Katsuya; /Fermilab

    2009-05-01

    The use of hydrogen gas filled RF cavities in muon cooling channels has been proposed by Rolland Johnson. Impressive results have been obtained toward attaining high voltage gradients and rapid training in preliminary tests done at the FNAL MTA facility. However, so far it has not been possible to test them under conditions where they were subject to the transversal of a high intensity particle beam. This note is an attempt to bring together a description of some of the pertinent physical processes that take place in the dilute plasma that is generated in the hydrogen gas by the beam. Two effects dominate. The first is that the free electrons generated can load down the cavity and transfer its energy to heating the gas. The second is a question of what happens to the plasma in the longer term. There is an enormous literature on the subject of the subject of dilute hydrogen plasmas and we can tap into this information in order to understand and predict the behavior of the cavity.

  7. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers.

    PubMed

    Triches, Marco; Michieletto, Mattia; Hald, Jan; Lyngsø, Jens K; Lægsgaard, Jesper; Bang, Ole

    2015-05-01

    Gas-filled hollow-core photonic crystal fibers are used to stabilize a fiber laser to the 13C2H2 P(16) (ν1+ν3) transition at 1542 nm using saturated absorption. Four hollow-core fibers with different crystal structure are compared in terms of long term lock-point repeatability and fractional frequency instability. The locked fiber laser shows a fractional frequency instability below 4 × 10(-12) for averaging time up to 10(4) s. The lock-point repeatability over more than 1 year is 1.3 × 10(-11), corresponding to a standard deviation of 2.5 kHz. A complete experimental investigation of the light-matter interaction between the spatial modes excited in the fibers and the frequency of the locked laser is presented. A simple theoretical model that explains the interaction is also developed. PMID:25969219

  8. Estimation of bottle filling counts for conventional pharmaceutical tablets and capsules.

    PubMed

    Mullarney, Matthew P; Hutchins, Allan; Taylor, Graeme

    2015-04-01

    A method has been developed using commonly available data for estimating the number of tablets or hard shell capsules that can be filled into bottles. The single unit volumes of conventional pharmaceutical biconvex tablets and capsules can be calculated from simple geometric relationships, which then can be used to determine the packing fraction of the units in bottles. The packing fractions of capsules and tablets studied in this work ranged from 0.53 to 0.63 and 0.56 to 0.62, respectively, and were dependent on bottle size and shape. This method can be used to assess a variety of packaging configurations computationally during drug product development. PMID:24592891

  9. Laser-plasma interactions in large gas-filled hohlraums

    SciTech Connect

    Turner, R.E.; Powers, L.V.; Berger, R.L.

    1996-06-01

    Indirect-drive targets planned for the National Ignition Facility (NIF) laser consist of spherical fuel capsules enclosed in cylindrical Au hohlraums. Laser beams, arranged in cylindrical rings, heat the inside of the Au wall to produce x rays that in turn heat and implode the capsule to produce fusion conditions in the fuel. Detailed calculations show that adequate implosion symmetry can be maintained by filling the hohlraum interior with low-density, low-Z gases. The plasma produced from the heated gas provides sufficient pressure to keep the radiating Au surface from expanding excessively. As the laser heats this gas, the gas becomes a relatively uniform plasma with small gradients in velocity and density. Such long-scale-length plasmas can be ideal mediums for stimulated Brillouin Scattering (SBS). SBS can reflect a large fraction of the incident laser light before it is absorbed by the hohlraum; therefore, it is undesirable in an inertial confinement fusion target. To examine the importance of SBS in NIF targets, the authors used Nova to measure SBS from hohlraums with plasma conditions similar to those predicted for high-gain NIF targets. The plasmas differ from the more familiar exploding foil or solid targets as follows: they are hot (3 keV); they have high electron densities (n{sub e}=10{sup 21}cm{sup {minus}3}); and they are nearly stationary, confined within an Au cylinder, and uniform over large distances (>2 mm). These hohlraums have <3% peak SBS backscatter for an interaction beam with intensities of 1-4 x 10{sup 15} W/cm{sup 2}, a laser wavelength of 0.351{micro}m, f/4 or f/8 focusing optics, and a variety of beam smoothing implementations. Based on these conditions the authors conclude that SBS does not appear to be a problem for NIF targets.

  10. Acoustic fill factors for a 120 inch diameter fairing

    NASA Technical Reports Server (NTRS)

    Lee, Y. Albert

    1992-01-01

    Data from the acoustic test of a 120-inch diameter payload fairing were collected and an analysis of acoustic fill factors were performed. Correction factors for obtaining a weighted spatial average of the interior sound pressure level (SPL) were derived based on this database and a normalized 200-inch diameter fairing database. The weighted fill factors were determined and compared with statistical energy analysis (VAPEPS code) derived fill factors. The comparison is found to be reasonable.

  11. Chirality and current-current correlation in fractional quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Campagnano, G.; Lucignano, P.; Giuliano, D.

    2016-02-01

    We study current-current correlation in an electronic analog of a beam splitter realized with edge channels of a fractional quantum Hall liquid at Laughlin filling fractions. In analogy with the known result for chiral electrons [M. Büttiker, Phys. Rev. B 46, 12485 (1992), 10.1103/PhysRevB.46.12485], if the currents are measured at points located after the beam splitter, we find that the zero frequency equilibrium correlation vanishes due to the chiral propagation along the edge channels. Furthermore, we show that the current-current correlation, normalized to the tunneling current, exhibits clear signatures of the Laughlin quasiparticles' fractional statistics.

  12. Anisotropic Composite Fermions and Fractional Quantum Hall Effect

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Kamburov, Dobromir; Hasdemir, Sukret; Shayegan, Mansour; Pfeiffer, Loren; West, Ken; Baldwin, Kirk

    We study the role of Fermi sea anisotropy on the transport properties of composite Fermions near Landau level filling factor ν = 1 / 2 in two-dimensional hole systems confined to GaAs quantum wells. By applying a parallel magnetic field, we tune the Fermi sea anisotropy and monitor the relative change of the transport scattering time along its principal directions. Interpreted in a simple Drude model, our results suggest that the scattering time is longer along the longitudinal direction of the Fermi sea. Furthermore, we find that the measured energy gap for the fractional quantum Hall state at ν = 2 / 3 decreases when anisotropy becomes significant.

  13. ARE PLANETARY SYSTEMS FILLED TO CAPACITY? A STUDY BASED ON KEPLER RESULTS

    SciTech Connect

    Fang, Julia; Margot, Jean-Luc

    2013-04-20

    We used a sample of Kepler candidate planets with orbital periods less than 200 days and radii between 1.5 and 30 Earth radii (R{sub Circled-Plus }) to determine the typical dynamical spacing of neighboring planets. To derive the intrinsic (i.e., free of observational bias) dynamical spacing of neighboring planets, we generated populations of planetary systems following various dynamical spacing distributions, subjected them to synthetic observations by the Kepler spacecraft, and compared the properties of observed planets in our simulations with actual Kepler detections. We found that, on average, neighboring planets are spaced 21.7 mutual Hill radii apart with a standard deviation of 9.5. This dynamical spacing distribution is consistent with that of adjacent planets in the solar system. To test the packed planetary systems hypothesis, the idea that all planetary systems are dynamically packed or filled to capacity, we determined the fraction of systems that are dynamically packed by performing long-term (10{sup 8} years) numerical simulations. In each simulation, we integrated a system with planets spaced according to our best-fit dynamical spacing distribution but containing an additional planet on an intermediate orbit. The fraction of simulations exhibiting signs of instability provides an approximate lower bound on the fraction of systems that are dynamically packed; we found that {>=}31%, {>=}35%, and {>=}45% of two-planet, three-planet, and four-planet systems are dynamically packed, respectively. Such sizeable fractions suggest that many planetary systems are indeed filled to capacity. This feature of planetary systems is another profound constraint that formation and evolution models must satisfy.

  14. Photo-induced isotopic fractionation

    NASA Astrophysics Data System (ADS)

    Miller, Charles E.; Yung, Yuk L.

    2000-12-01

    This paper presents a systematic method for the analysis of photo-induced isotopic fractionation. The physical basis for this fractionation mechanism centers on the fact that isotopic substitution alters the energy levels, molecular symmetries, spin statistical weights and other fundamental molecular properties, producing spectroscopic signatures distinguishable from that of the parent isotopomer. These mass-dependent physical properties are identical to those invoked by Urey to explain stable isotope fractionation in chemical systems subject to thermodynamic equilibrium. Photo-induced isotopic fractionation is a completely general phenomenon and should be observable in virtually all gas phase photochemical systems. Water photo-induced isotopic fractionation has been examined in detail using experimental and theoretical data. These results illustrate the salient features of this fractionation mechanism for molecules possessing continuous UV absorption spectra and unit photodissociation quantum yields. Using the photo-induced isotopic fractionation methodology in conjunction with standard photochemical models, we predict substantial deuterium enrichment of water vapor in the planetary atmospheres of Earth and Mars.

  15. An Introduction to Fractional Diffusion

    NASA Astrophysics Data System (ADS)

    Henry, B. I.; Langlands, T. A. M.; Straka, P.

    The mathematical description of diffusion has a long history with many different formulations including phenomenological models based on conservation of mass and constitutive laws; probabilistic models based on random walks and central limit theorems; microscopic stochastic models based on Brownian motion and Langevin equations; and mesoscopic stochastic models based on master equations and Fokker-Planck equations. A fundamental result common to the different approaches is that the mean square displacement of a diffusing particle scales linearly with time. However there have been numerous experimental measurements in which the mean square displacement of diffusing particles scales as a fractional order power law in time. In recent years a great deal of progress has been made in extending the different models for diffusion to incorporate this fractional diffusion. The tools of fractional calculus have proven very useful in these developments, linking together fractional constitutive laws, continuous time random walks, fractional Langevin equations and fractional Brownian motions. These notes provide a tutorial style overview of standard and fractional diffusion processes.

  16. Water Vapor Isotopic Fractionation and Strat/trop Exchange

    NASA Astrophysics Data System (ADS)

    Jucks, K. W.; Johnson, D. G.; Traub, W. A.; Chance, K. V.

    We will present atmospheric observations of the isotopic fractionation for water vapor as observed by the Smithsonian Astrophysical Observatory far-infrared spectrometer (FIRS-2). The stratospheric observations are corrected with a photochemical model to account for methane oxidation to determine the "entry level" isotopic fractionation of water in the stratosphere. These values are then compared to a simple Rayleigh frac- tionation model that includes estimations of convection, radiative heating, and mixing to infer relative contributions to stratosphere/troposphere exchange. The observations of water vapor fractionation are most consistent with a model that mixes air uplifted from roughly 11 km with significantly more air that has been dehydrated by convec- tion to an effective temperature that is much cooler than the tropopause temperature. The water vapor mixing ratio in the stratosphere results from a combination of radia- tive heating, recirculation of stratospheric air, and deep convection that supplies the air to the upper tropical troposphere. We believe that these types of observations could be a powerful tool for constraining circulation models.

  17. 26. VIEW, LOOKING NORTHWEST INSIDE TRANSFORMER ROOM, SHOWING OIL FILLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. VIEW, LOOKING NORTHWEST INSIDE TRANSFORMER ROOM, SHOWING OIL- FILLED TRANSFORMER POTS - Sacramento River Bridge, Spanning Sacramento River at California State Highway 275, Sacramento, Sacramento County, CA

  18. Analytical modelling of no-vent fill process

    NASA Technical Reports Server (NTRS)

    Vaughan, David A.; Schmidt, George R.

    1990-01-01

    An analytical model called FILL is presented which represents the first step in attaining the capability for no-vent fill of cryogens in space. The model's analytical structure is described, including the equations used to calculate transient thermodynamic behavior in different regions of the tank. The code predictions are compared with data from recent no-vent fill ground tests using Freon-114. The results are used to validate the FILL model to evaluate the viability of universal submerged jet theory in predicting system-level condensation effects.

  19. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    NASA Astrophysics Data System (ADS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  20. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    SciTech Connect

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.