Science.gov

Sample records for air filter system

  1. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    PubMed

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  2. [Sick building syndrome and HVAC system: MVOC from air filters].

    PubMed

    Schleibinger, H W; Wurm, D; Möritz, M; Böck, R; Rüden, H

    1997-08-01

    Growth and emissions of volatile metabolites of microorganisms on air filters are suspected to contribute to health complaints in ventilated rooms. To prove the microbiological production of volatile organic compounds (MVOC), concentrations of aldehydes and ketones were determined in two large HVAC systems. The in situ derivated aldehydes and ketones (as 2,4-dinitrophenyl-hydrazones) were analysed by HPLC and UV detection. The detection limit of each compound was 1 ppb (margin of error < 10%). Field measurements were carried out before and after the prefilters and the main filters, respectively, to investigate whether aldehydes and ketones increase in concentration after filters of HVAC systems. First results show that the compounds formaldehyde, acetaldehyde and acetone could be detected before and after the filters. The concentrations of these VOC after the filters were significantly increased--as a mean over twenty measurements--, especially as far as filters made of glass fibre are concerned. However the found concentrations were low and mostly comparable to outdoor findings. In simultaneous laboratory experiments pieces of used filter material of one HVAC system and unused filter pieces (for blank values) were examined in small incubation chambers to investigate the possible production of MVOC. For the incubation a temperature of 20 degrees C and a relative humidity of 95% was chosen. In these experiments an almost identical spectrum of compounds (formaldehyde and acetone) was found as in the field measurements. The concentrations of these compounds were higher in the chambers with the used filter pieces. The concentration of acetone ranged up to almost 12 mg/m3.--As our field experiments correspond with our laboratory experiments, we assume that the microbial production of volatile organic compounds in HVAC systems under operating conditions is possible.

  3. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  4. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    PubMed

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry (< 80% R. H.) and warm (> 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  5. Recirculating electric air filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric air filter cartridge has a cylindrical inner high voltage eleode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  6. Recirculating electric air filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric air filter cartridge has a cylindrical inner high voltage electrode, a layer of filter material, and an outer ground electrode formed of a plurality of segments moveably connected together. The outer electrode can be easily opened to remove or insert filter material. Air flows through the two electrodes and the filter material and is exhausted from the center of the inner electrode.

  7. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  8. Air Sampling Filter

    NASA Technical Reports Server (NTRS)

    1980-01-01

    General Metal Works' Accu-Vol is a high-volume air sampling system used by many government agencies to monitor air quality for pollution control purposes. Procedure prevents possible test-invalidating contamination from materials other than particulate pollutants, caused by manual handling or penetration of windblown matter during transit, a cassette was developed in which the filter is sealed within a metal frame and protected in transit by a snap-on aluminum cover, thus handled only under clean conditions in the laboratory.

  9. Air-mass flux measurement system using Doppler-shifted filtered Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Winter, Michael

    1993-01-01

    An optical system has been investigated to measure mass flux distributions in the inlet of a high speed air-breathing propulsion system. Rayleigh scattered light from air is proportional to the number density of molecules and hence can be used to ascertain the gas density in a calibrated system. Velocity field measurements are achieved by spectrally filtering the elastically-scattered Doppler-shifted light with an absorbing molecular filter. A novel anamorphic optical collection system is used which allows optical rays from different scattering angles, that have different Doppler shifts, to be recorded separately. This is shown to obviate the need to tune the laser through the absorption to determine velocities, while retaining the ability to make spatially-resolved measurements along a line. By properly selecting the laser tuning and filter parameters, simultaneous density measurements can be made. These properties are discussed in the paper and experiments demonstrating the velocimetry capability are described.

  10. Aging assessment of nuclear air-treatment system HEPA filters and adsorbers. Volume 1, Phase 1

    SciTech Connect

    Winegardner, W.K.

    1993-08-01

    A Phase I aging assessment of high-efficiency particulate air (HEPA) filters and activated carbon gas adsorption units (adsorbers) was performed by the Pacific Northwest Laboratory (PNL) as part of the US Nuclear Regulatory Commission`s (NRC) Nuclear Plant Aging Research (NPAR) Program. Information concerning design features; failure experience; aging mechanisms, effects, and stressors; and surveillance and monitoring methods for these key air-treatment system components was compiled. Over 1100 failures, or 12 percent of the filter installations, were reported as part of a Department of Energy (DOE) survey. Investigators from other national laboratories have suggested that aging effects could have contributed to over 80 percent of these failures. Tensile strength tests on aged filter media specimens indicated a decrease in strength. Filter aging mechanisms range from those associated with particle loading to reactions that alter properties of sealants and gaskets. Low radioiodine decontamination factors associated with the Three Mile Island (TMI) accident were attributed to the premature aging of the carbon in the adsorbers. Mechanisms that can lead to impaired adsorber performance include oxidation as well as the loss of potentially available active sites as a result of the adsorption of pollutants. Stressors include heat, moisture, radiation, and airborne particles and contaminants.

  11. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  12. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  13. The Brookhaven National Laboratory filter pack system for collection and determination of air pollutants

    SciTech Connect

    Leahy, D.F.; Klotz, P.J.; Springston, S.R.; Daum, P.H.

    1995-04-01

    A filter pack system for sampling trace constituents in the atmosphere from aircraft and ground-based measurement platforms has been developed. The system simultaneously and quantitatively collects atmospheric aerosol, nitric acid, and sulfur dioxide using three sequential filter stages. The quartz aerosol filter is routinely analyzed for sulfate, nitrate, ammonium, and hydrogen ions, and specifically for sulfuric acid. The sodium chloride filter is analyzed for nitrate ion (from collected nitric acid), and the carbonate-glycerine filter for sulfate ion (from collected sulfur dioxide). Details of the procedures used for filter preparation, sampling, extraction and analysis are given.

  14. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    PubMed

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  15. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  16. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, K.A.; Burchell, T.D.; Judkins, R.R.

    1998-10-27

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply air stream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium. 3 figs.

  17. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  18. Carbon fiber composite molecular sieve electrically regenerable air filter media

    DOEpatents

    Wilson, Kirk A.; Burchell, Timothy D.; Judkins, Roddie R.

    1998-01-01

    An electrically regenerable gas filter system includes a carbon fiber composite molecular sieve (CFCMS) filter medium. After a separate medium-efficiency pre-filter removes particulate from the supply airstream, the CFCMS filter sorbs gaseous air pollutants before the air is recirculated to the space. When saturated, the CFCMS media is regenerated utilizing a low-voltage current that is caused to pass through the filter medium.

  19. Biological air filter for air-quality control

    NASA Astrophysics Data System (ADS)

    van Ras, Niels; Krooneman, Janneke; Ogink, Nico; Willers, Hans; D'Amico, Arnaldo; di Natale, Corrado; Godia, F.; Albiol, J.; Perez, J.; Martinez, N.; Dixon, Mike; Llewellyn, David; Eckhard, Fir; Zona, G.; Fachecci, L.; Kraakman, Bart; Demey, Dries; Michel, Noelle; Darlington, Alan

    2005-10-01

    Biological air filtration is a promising technique for air-quality control in closed environments in space and on Earth, and it offers several advantages over existing techniques. However, to apply it in these environments, specific criteria have to be met. A concept for biological air filtration in closed environments was developed and tested by an international team of specialists. Several model systems for closed environments in space and on Earth were used as a source of contaminated air. Conventional and new analytical techniques were used to determine odour composition and removal efficiency of the filter, including an "electronic nose". The results show that the developed biological air filter is suitable for treating contaminated air in closed environments. The developed electronic nose was shown to be a promising method for air-quality monitoring.

  20. Microanalysis of indoor aerosols and the impact of a compact high-efficiency particulate air (HEPA) filter system.

    PubMed

    Abraham, M E

    1999-03-01

    Aerosol particles in municipal atmospheres are of increasing public health concern; however, since most of our time is spent indoors, indoor aerosols must be researched in counterpart. Compact High-Efficiency Particulate Air (HEPA) filter systems are commonly employed in residences to alleviate airborne dust concentrations. In this study, a detailed and original methodology was used to determine concentrations and types of submicrometer aerosols, as well as of large (> 4 microns) dust particles. Scanning electron microscopy was used to quantify and characterize ambient aerosols collected from filtered and non-filtered rooms. Particle concentrations were significantly lower in samples collected in the presence of the filter system (mean 23 to 8 coarse particles liter-1, 63% reduction; 13 to 3 inorganic submicron particles cm-3, 76% reduction; 85 to 33 total submicron particles cm-3, 62% reduction; all P < 0.05). This study provides a new methodology for analysis of indoor aerosols and new data on their physico-chemical characteristics. Since the filter systems are effective at reducing submicron aerosol concentrations, they may improve the health of individuals such as asthmatics, who experience health problems caused by anthropogenic fine particles.

  1. Viability of bacteria in unused air filter media

    NASA Astrophysics Data System (ADS)

    Maus, R.; Goppelsröder, A.; Umhauer, H.

    Different experimental techniques were applied to determine the effects of different air filter media on the viability of bacteria. Rinse suspensions of unused filter media were employed in standard inhibition tests to determine the effects of filter ingredients on bacterial growth under ideal nutritional conditions. Furthermore, a new test procedure was proposed and validated to determine the survival of viable microorganisms in fibrous air filters as a function of different parameters. Samples of filter media were challenged with microbial aerosols in an experimental set-up designed for measuring the collection efficiencies of fibrous filters. The loaded filter samples were then challenged with clean air under controlled conditions for a definite time span and numbers of viable microorganisms in the filter media were determined as colony forming units. The filter samples were retrieved from unused filter media usually employed in common air conditioning and ventilation systems. Under ideal nutritional and moisture conditions, growth of investigated microorganisms in nutrient broth and on nutrient agar was not inhibited by the inclusion of filter samples or rinse solutions of different filters in the growth medium with one exception. M. luteus and E. coli collected in air filter media and exposed to low air humidity (RH = 30-60%) showed a decline in their viability as a function of time (within 1 h). The decline rate was dependent on the type of bacteria employed and also the filter material itself.

  2. Filtering by nonlinear systems.

    PubMed

    Campos Cantón, E; González Salas, J S; Urías, J

    2008-12-01

    Synchronization of nonlinear systems forced by external signals is formalized as the response of a nonlinear filter. Sufficient conditions for a nonlinear system to behave as a filter are given. Some examples of generalized chaos synchronization are shown to actually be special cases of nonlinear filtering.

  3. Filter service system

    DOEpatents

    Sellers, Cheryl L.; Nordyke, Daniel S.; Crandell, Richard A.; Tomlins, Gregory; Fei, Dong; Panov, Alexander; Lane, William H.; Habeger, Craig F.

    2008-12-09

    According to an exemplary embodiment of the present disclosure, a system for removing matter from a filtering device includes a gas pressurization assembly. An element of the assembly is removably attachable to a first orifice of the filtering device. The system also includes a vacuum source fluidly connected to a second orifice of the filtering device.

  4. Temperature Tunable Air-Gap Etalon Filter

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Stephen, Mark A.; Lunt, David L.

    1998-01-01

    We report on experimental measurements of a temperature tuned air-gap etalon filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and 600 pm free spectral range (finesse approximately 22). The experimental results are in close agreement with etalon theory.

  5. Are Ventilation Filters Degrading Indoor Air Quality in California Classrooms?

    SciTech Connect

    Fisk, William J.; Destaillats, H.; Apte, M.G.; Destaillats,, Hugo; Fisk, Michael G. Apte and William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects studenthealth and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air?conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent towhich filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  6. EFFECT OF VENTILATION SYSTEMS AND AIR FILTERS ON DECAY RATES OF PARTICLES PRODUCED BY INDOOR SOURCES IN AN OCCUPIED TOWNHOUSE

    EPA Science Inventory

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we me...

  7. Continuous air monitor filter changeout apparatus

    DOEpatents

    Rodgers, John C.

    2008-07-15

    An apparatus and corresponding method for automatically changing out a filter cartridge in a continuous air monitor. The apparatus includes: a first container sized to hold filter cartridge replacements; a second container sized to hold used filter cartridges; a transport insert connectively attached to the first and second containers; a shuttle block, sized to hold the filter cartridges that is located within the transport insert; a transport driver mechanism means used to supply a motive force to move the shuttle block within the transport insert; and, a control means for operating the transport driver mechanism.

  8. Aircraft Recirculation Filter for Air-Quality and Incident Assessment

    PubMed Central

    Eckels, Steven J.; Jones, Byron; Mann, Garrett; Mohan, Krishnan R.; Weisel, Clifford P.

    2015-01-01

    The current research examines the possibility of using recirculation filters from aircraft to document the nature of air-quality incidents on aircraft. These filters are highly effective at collecting solid and liquid particulates. Identification of engine oil contaminants arriving through the bleed air system on the filter was chosen as the initial focus. A two-step study was undertaken. First, a compressor/bleed air simulator was developed to simulate an engine oil leak, and samples were analyzed with gas chromatograph-mass spectrometry. These samples provided a concrete link between tricresyl phosphates and a homologous series of synthetic pentaerythritol esters from oil and contaminants found on the sample paper. The second step was to test 184 used aircraft filters with the same gas chromatograph-mass spectrometry system; of that total, 107 were standard filters, and 77 were nonstandard. Four of the standard filters had both markers for oil, with the homologous series synthetic pentaerythritol esters being the less common marker. It was also found that 90% of the filters had some detectable level of tricresyl phosphates. Of the 77 nonstandard filters, 30 had both markers for oil, a significantly higher percent than the standard filters. PMID:25641977

  9. Radioactive Air Emissions Notice of Construction for the 105-KW Basin integrated water treatment system filter vessel sparging vent

    SciTech Connect

    Kamberg, L.D.

    1998-02-23

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.07, for the Integrated Water Treatment System (IWTS) Filter Vessel Sparging Vent at 105-KW Basin. Additionally, the following description, and references are provided as the notices of startup, pursuant to 40 CFR 61.09(a)(1) and (2) in accordance with Title 40 Code of Federal Regulations, Part 61, National Emission Standards for Hazardous Air Pollutants. The 105-K West Reactor and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The IWTS, which has been described in the Radioactive Air Emissions NOC for Fuel Removal for 105-KW Basin (DOE/RL-97-28 and page changes per US Department of Energy, Richland Operations Office letter 97-EAP-814) will be used to remove radionuclides from the basin water during fuel removal operations. The purpose of the modification described herein is to provide operational flexibility for the IWTS at the 105-KW basin. The proposed modification is scheduled to begin in calendar year 1998.

  10. Application of modern anticoincidence (AC) system in HPGe γ-spectrometry for the detection limit lowering of the radionuclides in air filters.

    PubMed

    Długosz-Lisiecka, Magdalena

    2017-04-01

    The use of active and passive shields can substantially reduce the Minimum Detectable Activity (MDA) of the γ-ray counting systems, rejecting events induced by cosmic-rays or by environmental radioactivity. However, the size and geometry of the samples lead to limitations in the background reduction in routine measurements. The Minimum Detectable Activity (MDA) values for low energy of γ-ray emitting radionuclides (<200 keV) deposited in three typical air filter geometries have been compared for anticoincidence and single HPGe detector mode of γ-spectrometry systems. The relative increase in the Figure Of Merit (FOM) values from to 10-37% has been achieved for AC counting mode for radionuclides of (210)Pb, (234)Th, (235)U and (226)Ra deposited on the three kinds of air filters.

  11. Enhancing indoor air quality –The air filter advantage

    PubMed Central

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  12. Effect of ventilation systems and air filters on decay rates of particles produced by indoor sources in an occupied townhouse

    NASA Astrophysics Data System (ADS)

    Howard-Reed, Cynthia; Wallace, Lance A.; Emmerich, Steven J.

    Several studies have shown the importance of particle losses in real homes due to deposition and filtration; however, none have quantitatively shown the impact of using a central forced air fan and in-duct filter on particle loss rates. In an attempt to provide such data, we measured the deposition of particles ranging from 0.3 to 10 μm in an occupied townhouse and also in an unoccupied test house. Experiments were run with three different sources (cooking with a gas stove, citronella candle, pouring kitty litter), with the central heating and air conditioning (HAC) fan on or off, and with two different types of in-duct filters (electrostatic precipitator and ordinary furnace filter). Particle size, HAC fan operation, and the electrostatic precipitator had significant effects on particle loss rates. The standard furnace filter had no effect. Surprisingly, the type of source (combustion vs. mechanical generation) and the type of furnishings (fully furnished including carpet vs. largely unfurnished including mostly bare floor) also had no measurable effect on the deposition rates of particles of comparable size. With the HAC fan off, average deposition rates varied from 0.3 h -1 for the smallest particle range (0.3-0.5 μm) to 5.2 h -1 for particles greater than 10 μm. Operation of the central HAC fan approximately doubled these rates for particles <5 μm, and increased rates by 2 h -1 for the larger particles. An in-duct electrostatic precipitator increased the loss rates compared to the fan-off condition by factors of 5-10 for particles <2.5 μm, and by a factor of 3 for 2.5-5.0 μm particles. In practical terms, use of the central fan alone could reduce indoor particle concentrations by 25-50%, and use of an in-duct ESP could reduce particle concentrations by 55-85% compared to fan-off conditions.

  13. Nanofiber filter media for air filtration

    NASA Astrophysics Data System (ADS)

    Raghavan, Bharath Kumar

    Nanofibers have higher capture efficiencies in comparison to microfibers in the submicron particle size range of 100-500 nm because of small fiber diameter and increased surface area of the fibers. Pressure drop across the filter increases tremendously with decrease in fiber diameter in the continuum flow regime. Nanofibers with fiber diameter less than 300 nm are in the slip flow regime as a consequence of which steep increase in pressure drop is considerably reduced due to slip effect. The outlet or inlet gases have broad range of particle size distribution varying from few micrometers to nanometers. The economic benefits include capture of a wide range of particle sizes in the gas streams using compact filters composed of nanofibers and microfibers. Electrospinning technique was used to successfully fabricate polymeric and ceramic nanofibers. The nanofibers were long, continuous, and flexible with diameters in the range of 200--300 nm. Nanofibers were added to the filter medium either by mixing microfibers and nanofibers or by directly electrospinning nanofibers as thin layer on the surface of the microfiber filter medium. Experimental results showed that either by mixing Nylon 6 nanofibers with B glass fibers or by electrospinning Nylon 6 nanofibers as a thin layer on the surface of the microfiber medium in the surface area ratio of 1 which is 0.06 g of nanofibers for 2 g of microfibers performed better than microfiber filter media in air filtration tests. This improved performance is consistent with numerical modeling. The particle loading on a microfibrous filter were studied for air filtration tests. The experimental and modeling results showed that both pressure drop and capture efficiency increased with loading time. Nanofiber filter media has potential applications in many filtration applications and one of them being hot gas filtration. Ceramic nanofibers made of alumina and titania nanofibers can withstand in the range of 1000°C. Ceramic nanofibers

  14. Personal cooling air filtering device

    DOEpatents

    Klett, James [Knoxville, TN; Conway, Bret [Denver, NC

    2002-08-13

    A temperature modification system for modifying the temperature of fluids includes at least one thermally conductive carbon foam element, the carbon foam element having at least one flow channel for the passage of fluids. At least one temperature modification device is provided, the temperature modification device thermally connected to the carbon foam element and adapted to modify the temperature of the carbon foam to modify the temperature of fluids flowing through the flow channels. Thermoelectric and/or thermoionic elements can preferably be used as the temperature modification device. A method for the reversible temperature modification of fluids includes the steps of providing a temperature modification system including at least one thermally conductive carbon foam element having flow channels and at least one temperature modification device, and flowing a fluid through the flow channels.

  15. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  16. OPTIMIZATION OF ADVANCED FILTER SYSTEMS

    SciTech Connect

    R.A. Newby; M.A. Alvin; G.J. Bruck; T.E. Lippert; E.E. Smeltzer; M.E. Stampahar

    2002-06-30

    Two advanced, hot gas, barrier filter system concepts have been proposed by the Siemens Westinghouse Power Corporation to improve the reliability and availability of barrier filter systems in applications such as PFBC and IGCC power generation. The two hot gas, barrier filter system concepts, the inverted candle filter system and the sheet filter system, were the focus of bench-scale testing, data evaluations, and commercial cost evaluations to assess their feasibility as viable barrier filter systems. The program results show that the inverted candle filter system has high potential to be a highly reliable, commercially successful, hot gas, barrier filter system. Some types of thin-walled, standard candle filter elements can be used directly as inverted candle filter elements, and the development of a new type of filter element is not a requirement of this technology. Six types of inverted candle filter elements were procured and assessed in the program in cold flow and high-temperature test campaigns. The thin-walled McDermott 610 CFCC inverted candle filter elements, and the thin-walled Pall iron aluminide inverted candle filter elements are the best candidates for demonstration of the technology. Although the capital cost of the inverted candle filter system is estimated to range from about 0 to 15% greater than the capital cost of the standard candle filter system, the operating cost and life-cycle cost of the inverted candle filter system is expected to be superior to that of the standard candle filter system. Improved hot gas, barrier filter system availability will result in improved overall power plant economics. The inverted candle filter system is recommended for continued development through larger-scale testing in a coal-fueled test facility, and inverted candle containment equipment has been fabricated and shipped to a gasifier development site for potential future testing. Two types of sheet filter elements were procured and assessed in the program

  17. Anti-clogging filter system

    DOEpatents

    Brown, Erik P.

    2015-05-19

    An anti-clogging filter system for filtering a fluid containing large particles and small particles includes an enclosure with at least one individual elongated tubular filter element in the enclosure. The individual elongated tubular filter element has an internal passage, a closed end, an open end, and a filtering material in or on the individual elongated tubular filter element. The fluid travels through the open end of the elongated tubular element and through the internal passage and through the filtering material. An anti-clogging element is positioned on or adjacent the individual elongated tubular filter element and provides a fluid curtain that preferentially directs the larger particulates to one area of the filter material allowing the remainder of the filter material to remain more efficient.

  18. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  19. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  20. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  1. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  2. 14 CFR 23.1107 - Induction system filters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System... material particles in the induction air supply— (a) Each air filter must be capable of withstanding the... service and maintenance; and (b) Each air filter shall have a design feature to prevent material...

  3. Rocket noise filtering system using digital filters

    NASA Technical Reports Server (NTRS)

    Mauritzen, David

    1990-01-01

    A set of digital filters is designed to filter rocket noise to various bandwidths. The filters are designed to have constant group delay and are implemented in software on a general purpose computer. The Parks-McClellan algorithm is used. Preliminary tests are performed to verify the design and implementation. An analog filter which was previously employed is also simulated.

  4. Filter desulfation system and method

    DOEpatents

    Lowe, Michael D.; Robel, Wade J.; Verkiel, Maarten; Driscoll, James J.

    2010-08-10

    A method of removing sulfur from a filter system of an engine includes continuously passing an exhaust flow through a desulfation leg of the filter system during desulfation. The method also includes sensing at least one characteristic of the exhaust flow and modifying a flow rate of the exhaust flow during desulfation in response to the sensing.

  5. The high efficiency steel filters for nuclear air cleaning

    SciTech Connect

    Bergman, W.; Larsen, G.; Lopez, R.; Williams, K.; Violet, C.

    1990-08-01

    We have, in cooperation with industry, developed high-efficiency filters made from sintered stainless-steel fibers for use in several air-cleaning applications in the nuclear industry. These filters were developed to overcome the failure modes in present high-efficiency particulate air (HEPA) filters. HEPA filters are made from glass paper and glue, and they may fail when they get hot or wet and when they are overpressured. In developing our steel filters, we first evaluated the commercially available stainless-steel filter media made from sintered powder and sintered fiber. The sintered-fiber media performed much better than sintered-powder media, and the best media had the smallest fiber diameter. Using the best media, we then built prototype filters for venting compressed gases and evaluated them in our automated filter tester. 12 refs., 20 figs.

  6. Air filtering capacity of an integrated cardiopulmonary bypass unit.

    PubMed

    Mueller, Xavier M; Tevaearai, Hendrik T; Jegger, David; von Segesser, Ludwig K

    2003-01-01

    To limit the morbidity of cardiopulmonary bypass (CPB), a new concept of integrating pumping, oxygenation, and air removal into a single unit has been developed (CardioVention Inc., Santa Clara, CA). The air filtration capacity of this system was tested. Three calves (73.2 +/- 2 kg) were connected to the integrated system by jugular and carotid cannulation. The integrated unit was challenged with injections of boluses of air of 5, 10, and 20 ml, three times each, and for a blood flow of 3 L/min and 5 L/min, respectively. The bubble count and size were recorded downstream of the unit with a Doppler ultrasound. At 3 L/min, bubbles were detected after injections of 20 ml only (n = 7 for the nine boluses). At 5 L/min, 1 bubble was detected with the nine injections of 5 ml, 14 bubbles were detected with nine injections of 10 ml, and 25 bubbles were detected with nine injections of 20 ml. No bubble exceeded 40 microm in diameter as determined by the Doppler ultrasound. The air filtering capacity of the CardioVention system is excellent both in terms of bubble count and of size after injection of large boluses of air. Its integrated concept offers a simplification of the circuit with fewer devices and connections, which further reduces the risk of accidental air introduction.

  7. Antimicrobial nanoparticle-coated electrostatic air filter with high filtration efficiency and low pressure drop.

    PubMed

    Sim, Kyoung Mi; Park, Hyun-Seol; Bae, Gwi-Nam; Jung, Jae Hee

    2015-11-15

    In this study, we demonstrated an antimicrobial nanoparticle-coated electrostatic (ES) air filter. Antimicrobial natural-product Sophora flavescens nanoparticles were produced using an aerosol process, and were continuously deposited onto the surface of air filter media. For the electrostatic activation of the filter medium, a corona discharge electrification system was used before and after antimicrobial treatment of the filter. In the antimicrobial treatment process, the deposition efficiency of S. flavescens nanoparticles on the ES filter was ~12% higher than that on the pristine (Non-ES) filter. In the evaluation of filtration performance using test particles (a nanosized KCl aerosol and submicron-sized Staphylococcus epidermidis bioaerosol), the ES filter showed better filtration efficiency than the Non-ES filter. However, antimicrobial treatment with S. flavescens nanoparticles affected the filtration efficiency of the filter differently depending on the size of the test particles. While the filtration efficiency of the KCl nanoparticles was reduced on the ES filter after the antimicrobial treatment, the filtration efficiency was improved after the recharging process. In summary, we prepared an antimicrobial ES air filter with >99% antimicrobial activity, ~92.5% filtration efficiency (for a 300-nm KCl aerosol), and a ~0.8 mmAq pressure drop (at 13 cm/s). This study provides valuable information for the development of a hybrid air purification system that can serve various functions and be used in an indoor environment.

  8. Evaluation of filters for removal of bacteriophages from air.

    PubMed

    Washam, C J; Black, C H; Sandine, W E; Elliker, P R

    1966-07-01

    Glass wool, nonabsorbent cotton, fiberglass filter medium, and a commercial absolute filter were tested for effectiveness in removing aerosolized bacterial viruses under low flow rate (1 ft(3)/min) and high flow rate (10 to 25 ft(3)/min) air-flow conditions. Special equipment was designed for measurement of filter efficiencies under the two air-flow conditions. Under low air-flow rate test conditions, glass wool was only 98.543 to 99.83% efficient, whereas cotton (five layers), fiberglass medium (three layers), and the commercial absolute filter were at least 99.900, 99.999, and 99.999 efficient, respectively. Glass wool and cotton were not used under higher air-flow conditions because they were difficult to assemble in leak-tight filters. The commercial absolute filter and fiberglass medium (three layers) were at least 99.990 and 99.999% efficient, respectively, under the higher air flow conditions. A stainless-steel filter of simple design and fitted with three layers of fiberglass medium was found to be greater than 99.999% efficient in removing high concentrations (20,000 to 70,000 plaque-forming units per cubic foot) of aerosolized bacteriophages from air moving at a low flow rate (1 ft(3)/min). Use of this filter on pressure-vacuum tanks in the fermentation industry is suggested. Several other uses of such a filter are proposed.

  9. Evaluation of Filters for Removal of Bacteriophages from Air1

    PubMed Central

    Washam, C. J.; Black, C. H.; Sandine, W. E.; Elliker, P. R.

    1966-01-01

    Glass wool, nonabsorbent cotton, fiberglass filter medium, and a commercial absolute filter were tested for effectiveness in removing aerosolized bacterial viruses under low flow rate (1 ft3/min) and high flow rate (10 to 25 ft3/min) air-flow conditions. Special equipment was designed for measurement of filter efficiencies under the two air-flow conditions. Under low air-flow rate test conditions, glass wool was only 98.543 to 99.83% efficient, whereas cotton (five layers), fiberglass medium (three layers), and the commercial absolute filter were at least 99.900, 99.999, and 99.999 efficient, respectively. Glass wool and cotton were not used under higher air-flow conditions because they were difficult to assemble in leak-tight filters. The commercial absolute filter and fiberglass medium (three layers) were at least 99.990 and 99.999% efficient, respectively, under the higher air flow conditions. A stainless-steel filter of simple design and fitted with three layers of fiberglass medium was found to be greater than 99.999% efficient in removing high concentrations (20,000 to 70,000 plaque-forming units per cubic foot) of aerosolized bacteriophages from air moving at a low flow rate (1 ft3/min). Use of this filter on pressure-vacuum tanks in the fermentation industry is suggested. Several other uses of such a filter are proposed. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:5927020

  10. Independent Evaluation of Air Filter Media from Chornobyl

    SciTech Connect

    MD Hoover; AF Fencl; GJ Vargo

    1999-12-21

    An independent evaluation was performed to assess the morphology, pressure drop characteristics, alpha spectroscopy characteristics, and collection efficiency of an air sampling filter media and two types of aerosol face masks provided from Chernobyl by Pacific Northwest National Laboratory. The evaluation included characterizing the filter morphology by scqg electron microscopy; measuring the filter pressure drop as a function of air flowrate; evaluating the spectroscopy characteristics of the filter for alpha-emitting radionuclides by sampling ambient radon progeny aerosols in an Eberline Alpha-6A alpha continuous air monitor; determining the particle collection efficiency of the filter media for 0.3 {micro}m aerodynamic diameter monodisperse particles at 1 and 2 cfm; and comparing the apparent construction, durability, and performance similarities of the filter media to other media commonly used for monitoring airborne alpha-emitting radionuclides.

  11. Air annealing effects on the optical properties of ZnO SnO2 thin films deposited by a filtered vacuum arc deposition system

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.; Boxman, R. L.

    2006-03-01

    ZnO-SnO2 transparent and conducting thin films were deposited on microscope glass substrates by a filtered vacuum arc deposition (FVAD) system. The cathode was prepared with 50%:50% atomic concentration of Zn:Sn. The films were annealed in air at 500 °C for 1 h. Structural and compositional analyses were obtained using XRD and XPS diagnostics. X-ray diffraction analysis indicated that as-deposited and air-annealed thin ZnO-SnO2 films were amorphous. The atomic ratio of Zn to Sn in the film obtained using the 50%:50% cathode as determined by XPS analysis was ~2.7:1 in the bulk film. The optical properties were determined from normal incidence transmission measurements. Film transmission in the visible was 70% to 90%, affected by interference effects. Annealed films did not show higher transmission in the VIS compared to as-deposited films. Assuming that the interband electron transition is direct, the optical band gap was found to be in the range 3.34-3.61 eV for both as-deposited and annealed films. However, the average Eg for annealed films was 3.6 eV, larger by 0.2 eV than that of as-deposited. The refractive index n increased while the extinction index k decreased significantly with annealing.

  12. Early detection of foot-and-mouth disease virus from infected cattle using a dry filter air sampling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foot-and-mouth disease (FMD) is a highly contagious livestock disease of high economic impact. Early detection of FMD virus (FMDV) is fundamental for rapid outbreak control. Air sampling collection has been demonstrated as a useful technique for detection of FMDV RNA in infected animals, related to ...

  13. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  14. System and Apparatus for Filtering Particles

    NASA Technical Reports Server (NTRS)

    Agui, Juan H. (Inventor); Vijayakumar, Rajagopal (Inventor)

    2015-01-01

    A modular pre-filtration apparatus may be beneficial to extend the life of a filter. The apparatus may include an impactor that can collect a first set of particles in the air, and a scroll filter that can collect a second set of particles in the air. A filter may follow the pre-filtration apparatus, thus causing the life of the filter to be increased.

  15. Emergency sacrificial sealing method in filters, equipment, or systems

    SciTech Connect

    Brown, Erik P

    2014-09-30

    A system seals a filter or equipment component to a base and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  16. Emergency sacrificial sealing method in filters, equipment, or systems

    DOEpatents

    Brown, Erik P.

    2017-02-28

    A system seals a filter or equipment component to abase and will continue to seal the filter or equipment component to the base in the event of hot air or fire. The system includes a first sealing material between the filter or equipment component and the base; and a second sealing material between the filter or equipment component and the base and proximate the first sealing material. The first sealing material and the second seal material are positioned relative to each other and relative to the filter or equipment component and the base to seal the filter or equipment component to the base and upon the event of fire the second sealing material will be activated and expand to continue to seal the filter or equipment component to the base in the event of hot air or fire.

  17. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  18. TESTING OF THE DUAL ROTARY FILTER SYSTEM

    SciTech Connect

    Herman, D.; Fowley, M.; Stefanko, D.

    2011-08-29

    an issue in deployment where the desired flow rate will be within the normal operating range of the meter. Testing demonstrated that the use of a flexible line for the filtrate discharge is highly desired at the outlet of the rotary union to transition to the system piping. Isolating the vibration from the rotary union will significantly improve the lifetime of the seals. Methods to monitor and isolate individual filters should be considered during deployment. The ability to diagnose issues and isolate individual filters would allow isolation prior to failure. Thus, filters may be cleaned or repaired instead of requiring complete replacement if the condition were to continue unnoticed. Isolating the filtrate line of each filter during startup will minimize the premature buildup of solids on the filter disks. Several tests have shown that the method of filter startup can improve performance lifetime of the filters. The installation must factor in an air inlet for the draining of a filter that does not involve a reverse flow through the filter disks. The reverse flow may cause deformation of the disks or may damage other components of the filters themselves.

  19. Independent Evaluaton of Air Filter Media From Chornobyl

    SciTech Connect

    Hoover, Mark D.; Fencl, Alice F.; Vargo, George J.

    1999-09-10

    Independent Evaluation of Air Filter Media from Chornobyl Research performed for the U.S. Department of Energy under Cooperative Agreement DE-FC04-96AL76406 Edited by Lovelace Respiratory Research Institute

  20. Methodology for Modeling the Microbial Contamination of Air Filters

    PubMed Central

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter. PMID:24523908

  1. Magnetic analyses of powders from exhausted cabin air filters

    NASA Astrophysics Data System (ADS)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  2. Filter systems for IGCC applications

    SciTech Connect

    Bevan, S.; Gieger, R.; Sobel, N.; Johnson, D.

    1995-11-01

    The objectives of this program were to identify metallic filter medium to be utilized in the Integrated Gasification Combined Cycle process (IGCC). In IGCC processes utilizing high efficiency desulfurizing technology, the traditional corrosion attack, sulfidation, is minimized so that metallic filters are viable alternatives over ceramic filters. Tampa Electric Company`s Polk Power Station is being developed to demonstrate Integrated Gasification Combined Cycle technology. The Pall Gas Solid Separation (GSS) System is a self cleaning filtration system designed to remove virtually all particulate matter from gas streams. The heart of the system is the filter medium used to collect the particles on the filter surface. The medium`s filtration efficiency, uniformity, permeability, voids volume, and surface characteristics are all important to establishing a permeable permanent cake. In-house laboratory blowback tests, using representative full scale system particulate, were used to confirm the medium selection for this project. Test elements constructed from six alloys were supplied for exposure tests: PSS 310SC (modified 310S alloy); PSS 310SC heat treated; PSS 310SC-high Cr; PSS 310SC-high Cr heat treated; PSS Hastelloy X; and PSS Hastelloy X heat treated.

  3. [A membrane filter sampling method for determining microbial air pollution].

    PubMed

    Cherneva, P; Kiranova, A

    1996-01-01

    The method is a contribution in the evaluation of the exposition and the control of the standards for organic powders. The method concerns the sample-taking procedure and the analysis-making technique for determining of the concentration of the microbial pollution of the air. It is based on filtering of some amount of air through a membrane filter which is then processed for cultivating of microbial colonies on its surface. The results are obtained in number of microbial colonies per unit of air. The method presents opportunity to select and vary the filtered volume of air, to determine the respirable fraction, to determine the personal exposition, as well as for the simultaneous determining of the microbial pollution together with other important parameters of the particle pollutants of the air (metal, fibre and others).

  4. Potential for HEPA filter damage from water spray systems in filter plenums

    SciTech Connect

    Bergman, W.; Fretthold, J.K.; Slawski, J.W.

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  5. Air Quality System (AQS)

    EPA Pesticide Factsheets

    The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements include both criteria air pollutants and hazardous air pollutants.

  6. Mold colonization during use of preservative-treated and untreated air filters, including HEPA filters from hospitals and commercial locations over an 8-year period (1996-2003).

    PubMed

    Price, Daniel L; Simmons, Robert B; Crow, Sidney A; Ahearn, Donald G

    2005-07-01

    High efficiency particulate arrestance (HEPA; 99.97% efficient at 0.3 microm) filters, filters with ASHRAE particulate arrestance rating of 90-95% at 1 mum (90-95% filters), and lower efficiency cellulosic-polyester filters from air conditioning systems in hospitals and commercial buildings were removed from the systems and examined microscopically for mold colonization. Cellulosic-type filters from systems with water entrainment problems typically were colonized, or became colonized upon incubation in moisture chambers. Species of Acremonium, Aspergillus, and Cladosporium were most common. With air filters of all types, treatment of filter media with an antimicrobial preservative tended to reduce or delay colonization. Mold colonization of HEPA and 90-95% filters was observed most often on the load surfaces, but two untreated HEPA filters were permeated with fungi, one with Aspergillus flavus, the other with Cladosporium sp. Air filters in heating, ventilating, and air conditioning (HVAC) systems, particularly those with chronic or periodic exposure to moisture, may serve as point sources for indoor molds.

  7. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size.

  8. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Bailey, John W.

    2004-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS, was shown to be capable of spectral sampling of images in the visible range over a 200 nm spectral range with a spectral resolution of 30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses incoming light

  9. Tunable-Bandwidth Filter System

    NASA Technical Reports Server (NTRS)

    Aye, Tin; Yu, Kevin; Dimov, Fedor; Savant, Gajendra

    2006-01-01

    A tunable-bandwidth filter system (TBFS), now undergoing development, is intended to be part of a remote-sensing multispectral imaging system that will operate in the visible and near infrared spectral region (wavelengths from 400 to 900 nm). Attributes of the TBFS include rapid tunability of the pass band over a wide wavelength range and high transmission efficiency. The TBFS is based on a unique integration of two pairs of broadband Raman reflection holographic filters with two rotating spherical lenses. In experiments, a prototype of the TBFS was shown to be capable of spectral sampling of images in the visible range over a 200-nm spectral range with a spectral resolution of .30 nm. The figure depicts the optical layout of a prototype of the TBFS as part of a laboratory multispectral imaging system for the spectral sampling of color test images in two orthogonal polarizations. Each pair of broadband Raman reflection holographic filters is mounted at an equatorial plane between two halves of a spherical lens. The two filters in each pair are characterized by steep spectral slopes (equivalently, narrow spectral edges), no ripple or side lobes in their pass bands, and a few nanometers of non-overlapping wavelength range between their pass bands. Each spherical lens and thus the filter pair within it is rotated in order to rapidly tune its pass band. The rotations of the lenses are effected by electronically controlled, programmable, high-precision rotation stages. The rotations are coordinated by electronic circuits operating under overall supervision of a personal computer in order to obtain the desired variation of the overall pass bands with time. Embedding the filters inside the spherical lenses increases the range of the hologram incidence angles, making it possible to continuously tune the pass and stop bands of the filters over a wider wavelength range. In addition, each spherical lens also serves as part of the imaging optics: The telephoto lens focuses

  10. Fuel cell cathode air filters: Methodologies for design and optimization

    NASA Astrophysics Data System (ADS)

    Kennedy, Daniel M.; Cahela, Donald R.; Zhu, Wenhua H.; Westrom, Kenneth C.; Nelms, R. Mark; Tatarchuk, Bruce J.

    Proton exchange membrane (PEM) fuel cells experience performance degradation, such as reduction in efficiency and life, as a result of poisoning of platinum catalysts by airborne contaminants. Research on these contaminant effects suggests that the best possible solution to allowing fuel cells to operate in contaminated environments is by filtration of the harmful contaminants from the cathode air. A cathode air filter design methodology was created that connects properties of cathode air stream, filter design options, and filter footprint, to a set of adsorptive filter parameters that must be optimized to efficiently operate the fuel cell. Filter optimization requires a study of the trade off between two causal factors of power loss: first, a reduction in power production due to poisoning of the platinum catalyst by chemical contaminants and second, an increase in power requirements to operate the air compressor with a larger pressure drop from additional contaminant filtration. The design methodology was successfully applied to a 1.2 kW fuel cell using a programmable algorithm and predictions were made about the relationships between inlet concentration, breakthrough time, filter design, pressure drop, and compressor power requirements.

  11. Westinghouse Advanced Particle Filter System

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.; Bachovchin, D.M.

    1996-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of PFBC and IGCC systems. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: W-APF integrated operation with the American Electric Power, 70 MW PFBC clean coal facility--approximately 6000 test hours completed; approximately 2500 hours of testing at the Hans Ahlstrom 10 MW PCFB facility located in Karhula, Finland; over 700 hours of operation at the Foster Wheeler 2 MW 2nd generation PFBC facility located in Livingston, New Jersey; status of Westinghouse HGF supply for the DOE Southern Company Services Power System Development Facility (PSDF) located in Wilsonville, Alabama; the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation; and the status of the design and supply of the HGF unit for the 95 MW Pinon Pine IGCC Clean Coal Demonstration.

  12. Novel process of bio-chemical ammonia removal from air streams using a water reflux system and zeolite as filter media.

    PubMed

    Vitzthum von Eckstaedt, Sebastian; Charles, Wipa; Ho, Goen; Cord-Ruwisch, Ralf

    2016-02-01

    A novel biofilter that removes ammonia from air streams and converts it to nitrogen gas has been developed and operated continuously for 300 days. The ammonia from the incoming up-flow air stream is first absorbed into water and the carrier material, zeolite. A continuous gravity reflux of condensed water from the exit of the biofilter provides moisture for nitrifying bacteria to develop and convert dissolved ammonia (ammonium) to nitrite/nitrate. The down-flow of the condensed water reflux washes down nitrite/nitrate preventing ammonium and nitrite/nitrate accumulation at the top region of the biofilter. The evaporation caused by the inflow air leads to the accumulation of nitrite to extremely high concentrations in the bottom of the biofilter. The high nitrite concentrations favour the spontaneous chemical oxidation of ammonium by nitrite to nitrogen (N2). Tests showed that this chemical reaction was catalysed by the zeolite filter medium and allowed it to take place at room temperature. This study shows that ammonia can be removed from air streams and converted to N2 in a fully aerated single step biofilter. The process also overcomes the problem of microorganism-inhibition and resulted in zero leachate production.

  13. Comparison of aerosol and bioaerosol collection on air filters.

    PubMed

    Miaskiewicz-Peska, Ewa; Lebkowska, Maria

    2012-06-01

    Air filters efficiency is usually determined by non-biological test aerosols, such as potassium chloride particles, Arizona dust or di-ethyl-hexyl-sebacate (DEHS) oily liquid. This research was undertaken to asses, if application of non-biological aerosols reflects air filters capacity to collect particles of biological origin. The collection efficiency for non-biological aerosol was tested with the PALAS set and ISO Fine Test Dust. Flow rate during the filtration process was 720 l/h, and particles size ranged 0.246-17.165 μm. The upstream and downstream concentration of the aerosol was measured with a laser particle counter PCS-2010. Tested bioaerosol contained 4 bacterial strains of different shape and size: Micrococcus luteus,Micrococcus varians, Pseudomonas putida and Bacillus subtilis. Number of the biological particles was estimated with a culture-based method. Results obtained with bioaerosol did not confirmed 100% filters efficiency noted for the mineral test dust of the same aerodynamic diameter. Maximum efficiency tested with bacterial cells was 99.8%. Additionally, cells reemission from filters into air was also studied. Bioaerosol contained 3 bacterial strains: Micrococcus varians, Pseudomonas putida and Bacillus subtilis. It was proved that the highest intensity of the reemission process was during the first 5 min. and reached maximum 0.63% of total number of bacteria retained in filters. Spherical cells adhered stronger to the filter fibres than cylindrical ones. It was concluded that non-biological aerosol containing particles of the same shape and surface characteristics (like DEHS spherical particles) can not give representative results for all particles present in the filtered air.

  14. Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples

    SciTech Connect

    Robert Hayes

    2009-01-23

    An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

  15. Air-conditioner filters enriching dust mites allergen.

    PubMed

    Zhan, Xiaodong; Li, Chaopin; Xu, Haifeng; Xu, Pengfei; Zhu, Haibin; Diao, Jidong; Li, Na; Zhao, Beibei

    2015-01-01

    We detected the concentration of dust mites allergen (Der f1 & Der p1) in the air of different places before and after the starting of air-conditioners in Wuhu City, Anhui, China, and to discuss the relation between the dust mites allergen in air-conditioner filters and the asthma attack. The dust samples were collected from the air-conditioner filters in dining rooms, shopping malls, hotels and households respectively. Concentrations of dust mites major group allergen 1 (Der f 1, Der p1) were detected with enzyme linked immunosorbent assay (ELISA), and the dust mite immune activities were determined by dot-ELISA. The concentration of Der f1 in dining rooms, shopping malls, hotels and households was 1.52 μg/g, 1.24 μg/g, 1.31 μg/g and 1.46 μg/g respectively, and the concentration of Der p1 in above-mentioned places was 1.23 μg/g, 1.12 μg/g, 1.16 μg/g and 1.18 μg/g respectively. The concentration of Der f1 & Der p1 in air was higher after the air-conditioners starting one hours later, and the difference was significant (P<0.05, respectively). Additionally, dot-ELISA findings revealed that the allergen extracted from the dust was capable of reacting with IgE from the sera of asthma mice allergic to dust mites. The study concludes that air-conditioner filters can enrich dust mites major group allergen, and the allergens can induce asthma. The air-conditioner filters shall be cleaned or replaced regularly to prevent or reduce accumulation of the dust mites and its allergens.

  16. 36. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" AIR FILTERS LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. FIFTH FLOOR BLDG. 27, "CLEAN ROOM" AIR FILTERS LOOKING SOUTH. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  17. BIOLOGICAL WASTE AIR TREATMENT IN BIOTRICKLING FILTERS. (R825392)

    EPA Science Inventory

    Abstract

    Recent studies in the area of biological waste air treatment in biotrickling filters have addressed fundamental key issues, such as biofilm architecture, microbiology of the process culture and means to control accumulation of biomass. The results from these s...

  18. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  19. COMPUTATIONS ON THE PERFORMANCE OF PARTICLE FILTERS AND ELECTRONIC AIR CLEANERS

    EPA Science Inventory

    The paper discusses computations on the performance of particle filters and electronic air cleaners (EACs). The collection efficiency of particle filters and ACs is calculable if certain factors can be assumed or calibrated. For fibrous particulate filters, measurement of colle...

  20. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  1. Thoron ( 220Rn) progeny reduction by an air cleaner of the polarized media filter type

    NASA Astrophysics Data System (ADS)

    Bigu, J.

    1993-02-01

    The effect of an air cleaner on 220Rn progeny atmospheres has been studied in a Radon/Thoron Test Facility (RTTF) of the walk-in type. The air cleaner consists basically of a fan and a special filter material sandwiched between two metal screens, to which an electric field is applied. The filter is of the polarized media type and uses fibreglass as material. The fan and filter system are housed in a metal case. Air is drawn from the back of the case by means of the fan and forced through the "electrical" filter where removal of the 220Rn progeny occurs. Radon-220 progeny "depleted" air is discharged at the top of the device. Tests were conducted in 220Rn/ 220Rn progeny atmospheres when the air cleaner was operating, and when it was turned off. Very pronounced effects were observed during the operation of the device, namely: a dramatic decrease in the 220Rn progeny concentrations and the total aerosol concentration, as well as a large increase in the 220Rn progeny unattached fractions and the plate-out of these radionuclides on the walls of the RTTF. The air cleaner has potential in industrial applications, which should be explored.

  2. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  3. Give reverse-air fabric filters a closer look

    SciTech Connect

    Jensen, R.M.

    1995-02-01

    Although use of reverse-air filters dominates in operating US utility power stations, pulse-jet designs seem to be getting the lion`s share of attention for new and retrofit plants. This article examines key technical advantages of reverse-air designs that are becoming lost in the current debate. Control of particulate emissions continues to be an area of growing concern for operators of coal-fired powerplants, especially as it relates to air toxics and fine particulates. That concern has led to greater scrutiny of the devices used to control those emissions. Regarding the fabric-filter option, reverse-air (RA) designs have operated reliably at large utility units, but now face a strong challenge from pulse-jet (PJ) designs--which are more popular with operators of independent-power-producer, waste-to-energy, and other small solid-fuel-fired units. Both RA and PJ designs can adequately meet the particulate emissions requirements for large coal-fired units when properly applied. The wholesale shift by electric utilities from RA to PJ fabric filters--at least in discussion if not actual projects--is apparent but may be short-sighted. The oft-stated reason--that RA fabric filters can only handle a face velocity one-half that of PJ, resulting in higher cost for the RA option--is too simplistic. The many design and operating characteristics that distinguish the two should be thoroughly reviewed before blanket acceptance of PJ technology. Some of the technical areas reviewed here are level of commercial design experience, bag life, pressure drop, bag replacement procedure, cleaning cycles, particle elutriation, submicron-particle floaters, residual-cake preservation, and particle re-entrainment.

  4. Use of Whatman-41 filters in air quality sampling networks (with applications to elemental analysis)

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1974-01-01

    The operation of a 16-site parallel high volume air sampling network with glass fiber filters on one unit and Whatman-41 filters on the other is reported. The network data and data from several other experiments indicate that (1) Sampler-to-sampler and filter-to-filter variabilities are small; (2) hygroscopic affinity of Whatman-41 filters need not introduce errors; and (3) suspended particulate samples from glass fiber filters averaged slightly, but not statistically significantly, higher than from Whatman-41-filters. The results obtained demonstrate the practicability of Whatman-41 filters for air quality monitoring and elemental analysis.

  5. DC side filters for multiterminal HVDC systems

    SciTech Connect

    Shore, N.L.; Adamson, K.; Bard, P.

    1996-10-01

    Multiterminal HVDC systems present challenges in the specification and design of suitable dc side filtering. This document examines the existing experience and addresses the particular technical problems posed by multiterminal systems. The filtering requirements of small taps are discussed, as is the potential use of active filters. Aspects of calculation and design are considered and recommendations made to guide the planners and designers of future multiterminal schemes.

  6. Air cushion landing system

    NASA Technical Reports Server (NTRS)

    Boghami, K. M.; Captain, K. M.; Fish, R. B.

    1978-01-01

    Static and dynamic performance of air cushion landing system is simulated in computer program that treats four primary ACLS subsystems: fan, feeding system, trunk, and cushion. Configuration of systems is sufficiently general to represent variety of practical designs.

  7. Active imaging system with Faraday filter

    DOEpatents

    Snyder, James J.

    1993-01-01

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  8. Active imaging system with Faraday filter

    DOEpatents

    Snyder, J.J.

    1993-04-13

    An active imaging system has a low to medium powered laser transmitter and receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination while eliminating solar background.

  9. Transparent air filter for high-efficiency PM2.5 capture.

    PubMed

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-16

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m(-3)). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  10. Transparent air filter for high-efficiency PM2.5 capture

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Hsu, Po-Chun; Lee, Hyun-Wook; Ye, Meng; Zheng, Guangyuan; Liu, Nian; Li, Weiyang; Cui, Yi

    2015-02-01

    Particulate matter (PM) pollution has raised serious concerns for public health. Although outdoor individual protection could be achieved by facial masks, indoor air usually relies on expensive and energy-intensive air-filtering devices. Here, we introduce a transparent air filter for indoor air protection through windows that uses natural passive ventilation to effectively protect the indoor air quality. By controlling the surface chemistry to enable strong PM adhesion and also the microstructure of the air filters to increase the capture possibilities, we achieve transparent, high air flow and highly effective air filters of ~90% transparency with >95.00% removal of PM2.5 under extreme hazardous air-quality conditions (PM2.5 mass concentration >250 μg m-3). A field test in Beijing shows that the polyacrylonitrile transparent air filter has the best PM2.5 removal efficiency of 98.69% at high transmittance of ~77% during haze occurrence.

  11. Air gap resonant tunneling bandpass filter and polarizer.

    PubMed

    Melnyk, A; Bitarafan, M H; Allen, T W; DeCorby, R G

    2016-04-15

    We describe a bandpass filter based on resonant tunneling through an air layer in the frustrated total internal reflection regime, and show that the concept of induced transmission can be applied to the design of thin film matching stacks. Experimental results are reported for Si/SiO2-based devices exhibiting a polarization-dependent passband, with bandwidth on the order of 10 nm in the 1550 nm wavelength range, peak transmittance on the order of 80%, and optical density greater than 5 over most of the near infrared region.

  12. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  13. Control, Filtering and Prediction for Phased Arrays in Directed Energy Systems

    DTIC Science & Technology

    2016-04-30

    AFRL-RD-PS- AFRL-RD-PS- TR-2016-0029 TR-2016-0029 CONTROL, FILTERING AND PREDICTION FOR PHASED ARRAYS IN DIRECTED ENERGY SYSTEMS Steve Gibson...UNLIMITED. AIR FORCE RESEARCH LABORATORY Directed Energy Directorate 3550 Aberdeen Ave SE AIR FORCE MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM...Filtering and Prediction for Phased Arrays in Directed Energy Systems 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER

  14. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  15. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  16. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  17. Feasibility study for an additional HEPA filter leaching system in NWCF

    SciTech Connect

    Willis, W.D.

    1992-11-01

    This report documents the feasibility of installing a second high-efficiency particulate air (HEPA) filter leaching system in the New Waste Calcining Facility at the Idaho Chemical Processing Plant (ICPP). A large spent filter backlog already exists at the ICPP, and it has been uncertain whether the existing HEPA filter leaching system will have a throughput rate sufficient to work off the existing backlog in a timely manner. Three areas within the New Waste Calcining Facility (NWCF) have been identified as possible locations for a second filter leaching system. This report examines the suitability of each location, identifies modifications that would be necessary-to install a filter leaching system at each location, examines the impact of modifying each location, and discusses recent efforts to estimate filter throughput using the existing filter leaching system. Based on all available information, installation of a second filter leaching system is not recommended at the present time.

  18. Phase I characterization of the HEPA (High Efficiency Particulate Air) filter media used in the airborne activity confinement system at the Savannah River Site

    SciTech Connect

    Novick, V.J.; Higgins, P.J. )

    1989-01-01

    The purpose of this report was to characterize the HEPA filter media material. This work consisted of two major tasks. First, the pressure drop characteristics of the HEPA filter material were measured as a function of the aerosol mass loading. Particle size effects were studied by using three different particle size distributions to load the filter material. The second task was to determine the filtration efficiency spectrum for solid particles as a function of particle diameter. The filtration efficiency was measured at two different media velocities, one corresponding to the equivalent flow rate under normal operating conditions, the other corresponding to the minimum equivalent flow rate expected through the filter compartments. These tests were conducted at the Argonne National Laboratory between September 1988 and February 1989. 20 refs., 31 figs., 10 tabs.

  19. Highly Bactericidal Polyurethane Effective Against Both Normal and Drug-Resistant Bacteria: Potential Use as an Air Filter Coating.

    PubMed

    Taylor, Matthew; McCollister, Bruce; Park, Daewon

    2016-03-01

    The battle against the prevalence of hospital-acquired infections has underscored the importance of identifying and maintaining the cleanliness of possible infection transmission sources in the patient's environment. One of the most crucial lines of defense for mitigating the spread of pathogens in a healthcare facility is the removal of microorganisms from the environment by air filtration systems. After removing the pathogenic microorganisms, the filters used in these systems can serve as reservoirs for the pathogens and pose a risk for secondary infection. This threat, combined with the ever-growing prevalence of drug-resistant bacterial strains, substantiates the need for an effective bactericidal air filter. To this end, a broad-spectrum bactericidal polyurethane incorporating immobilized quaternary ammonium groups was developed for use as an air filter coating. In this study, the bactericidal activity of the polymer coating on high-efficiency particulate air (HEPA) filter samples was quantified against eight bacterial strains commonly responsible for nosocomial infection-including drug-resistant strains, and confirmed when applied as a filter coating in conditions mimicking those of its intended application. The coated HEPA filter samples exhibited high bactericidal activity against all eight strains, and the polyurethane was concluded to be an effective coating in rendering HEPA filters bactericidal.

  20. Bioaerosol DNA Extraction Technique from Air Filters Collected from Marine and Freshwater Locations

    NASA Astrophysics Data System (ADS)

    Beckwith, M.; Crandall, S. G.; Barnes, A.; Paytan, A.

    2015-12-01

    Bioaerosols are composed of microorganisms suspended in air. Among these organisms include bacteria, fungi, virus, and protists. Microbes introduced into the atmosphere can drift, primarily by wind, into natural environments different from their point of origin. Although bioaerosols can impact atmospheric dynamics as well as the ecology and biogeochemistry of terrestrial systems, very little is known about the composition of bioaerosols collected from marine and freshwater environments. The first step to determine composition of airborne microbes is to successfully extract environmental DNA from air filters. We asked 1) can DNA be extracted from quartz (SiO2) air filters? and 2) how can we optimize the DNA yield for downstream metagenomic sequencing? Aerosol filters were collected and archived on a weekly basis from aquatic sites (USA, Bermuda, Israel) over the course of 10 years. We successfully extracted DNA from a subsample of ~ 20 filters. We modified a DNA extraction protocol (Qiagen) by adding a beadbeating step to mechanically shear cell walls in order to optimize our DNA product. We quantified our DNA yield using a spectrophotometer (Nanodrop 1000). Results indicate that DNA can indeed be extracted from quartz filters. The additional beadbeating step helped increase our yield - up to twice as much DNA product was obtained compared to when this step was omitted. Moreover, bioaerosol DNA content does vary across time. For instance, the DNA extracted from filters from Lake Tahoe, USA collected near the end of June decreased from 9.9 ng/μL in 2007 to 3.8 ng/μL in 2008. Further next-generation sequencing analysis of our extracted DNA will be performed to determine the composition of these microbes. We will also model the meteorological and chemical factors that are good predictors for microbial composition for our samples over time and space.

  1. Active imaging system with Faraday filter

    SciTech Connect

    Snyder, J.J.

    1992-12-31

    This invention is comprised of an active imaging system which has a low to medium powered laser transmitter and a receiver wherein the receiver includes a Faraday filter with an ultranarrow optical bandpass and a bare (nonintensified) CCD camera. The laser is locked in the vicinity of the passband of the Faraday filter. The system has high sensitivity to the laser illumination wile eliminating solar background.

  2. Antimicrobial Air Filters Using Natural Euscaphis japonica Nanoparticles

    PubMed Central

    Yun, Ji Ho; Lee, Jung Eun; Lee, Hee Ju; Nho, Chu Won; Bae, Gwi- Nam; Jung, Jae Hee

    2015-01-01

    Controlling bioaerosols has become more important with increasing participation in indoor activities. Treatments using natural-product nanomaterials are a promising technique because of their relatively low toxicity compared to inorganic nanomaterials such as silver nanoparticles or carbon nanotubes. In this study, antimicrobial filters were fabricated from natural Euscaphis japonica nanoparticles, which were produced by nebulizing E. japonica extract. The coated filters were assessed in terms of pressure drop, antimicrobial activity, filtration efficiency, major chemical components, and cytotoxicity. Pressure drop and antimicrobial activity increased as a function of nanoparticle deposition time (590, 855, and 1150 µg/cm2filter at 3-, 6-, and 9-min depositions, respectively). In filter tests, the antimicrobial efficacy was greater against Staphylococcus epidermidis than Micrococcus luteus; ~61, ~73, and ~82% of M. luteus cells were inactivated on filters that had been coated for 3, 6, and 9 min, respectively, while the corresponding values were ~78, ~88, and ~94% with S. epidermidis. Although statistically significant differences in filtration performance were not observed between samples as a function of deposition time, the average filtration efficacy was slightly higher for S. epidermidis aerosols (~97%) than for M. luteus aerosols (~95%). High-performance liquid chromatography (HPLC) and electrospray ionization-tandem mass spectrometry (ESI/MS) analyses confirmed that the major chemical compounds in the E. japonica extract were 1(ß)-O-galloyl pedunculagin, quercetin-3-O-glucuronide, and kaempferol-3-O-glucoside. In vitro cytotoxicity and disk diffusion tests showed that E. japonica nanoparticles were less toxic and exhibited stronger antimicrobial activity toward some bacterial strains than a reference soluble nickel compound, which is classified as a human carcinogen. This study provides valuable information for the development of a bioaerosol control

  3. A biased filter for linear discrete dynamic systems.

    NASA Technical Reports Server (NTRS)

    Chang, J. W.; Hoerl, A. E.; Leathrum, J. F.

    1972-01-01

    A recursive estimator, the ridge filter, was developed for the linear discrete dynamic estimation problem. Theorems were established to show that the ridge filter can be, on the average, closer to the expected value of the system state than the Kalman filter. On the other hand, Kalman filter, on the average, is closer to the instantaneous system state than the ridge filter. The ridge filter has been formulated in such a way that the computational features of the Kalman filter are preserved.

  4. Culture systems: air quality.

    PubMed

    Thomas, Theodore

    2012-01-01

    Poor laboratory air quality is a known hazard to the culture of human gametes and embryos. Embryologists and chemists have employed analytical methods for identifying and measuring bulk and select air pollutants to assess the risk they pose to the embryo culture system. However, contaminant concentrations that result in gamete or embryotoxicity are poorly defined. Combating the ill effects of poor air quality requires an understanding of how toxicants can infiltrate the laboratory, the incubator, and ultimately the culture media. A further understanding of site-specific air quality can then lead to the consideration of laboratory design and management strategies that can minimize the deleterious effects that air contamination may have on early embryonic development in vitro.

  5. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  6. Spectral Cloud-Filtering of AIRS Data: Non-Polar Ocean

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, David; Barron, Diana

    2004-01-01

    The Atmospheric Infrared Sounder (AIRS) is a grating array spectrometer which covers the thermal infrared spectral range between 640 and 1700/cm. In order to retain the maximum radiometric accuracy of the AIRS data, the effects of cloud contamination have to be minimized. We discuss cloud filtering which uses the high spectral resolution of AIRS to identify about 100,000 of 500,000 non-polar ocean spectra per day as relatively "cloud-free". Based on the comparison of surface channels with the NCEP provided global real time sst (rtg.sst), AIRS surface sensitive channels have a cold bias ranging from O.5K during the day to 0.8K during the night. Day and night spatial coherence tests show that the cold bias is due to cloud contamination. During the day the cloud contamination is due to a 2-3% broken cloud cover at the 1-2 km altitude, characteristic of low stratus clouds. The cloud-contamination effects surface sensitive channels only. Cloud contamination can be reduced to 0.2K by combining the spectral filter with a spatial coherence threshold, but the yield drops to 16,000 spectra per day. AIRS was launched in May 2002 on the Earth Observing System (EOS) Aqua satellite. Since September 2002 it has returned 4 million spectra of the globe each day.

  7. Magnetic evaluation of TSP-filters for air quality monitoring

    NASA Astrophysics Data System (ADS)

    Castañeda-Miranda, Ana Gabriela; Böhnel, Harald N.; Molina-Garza, Roberto S.; Chaparro, Marcos A. E.

    2014-10-01

    We present the magnetic properties of the powders collected by high volume total suspended particle air samplers used to monitor atmospheric pollution in Santiago de Querétaro, a city of one million people in central Mexico. The magnetic measurements have been combined with scanning electron microscopy observations and analysis, in order to characterize the particles captured in the filters as natural and anthropogenic. The main goal of the study is to test if magnetic measurements on the sampled atmospheric dust can be effective, low-cost, proxy to qualitatively estimate the air quality, complementing the traditional analytical methods. The magnetic properties of the powder collected in the filters have been investigated measuring the low field magnetic susceptibility, hysteresis loops, thermomagnetic curves, and isothermal remanent magnetization. The rock magnetism data have been supplemented by energy-dispersive X-ray spectroscopy analysis and Raman spectroscopy. It was found that the main magnetic carrier is low-Ti magnetite in the PSD range with a contribution from SP particles, and small but significant contributions from hematite, maghemite and goethite particles. Total suspended particles in the atmosphere during the monitored days ranged between about 30 and 280 μg/m3. Magnetic susceptibility values are well correlated with the independently determined total suspended particles concentration (R = 0.93), but particle concentration does not correlate as well with IRM1T. This may be attributed to contributions from SP and paramagnetic particles to the susceptibility signal, but not to the remanence. The effects of climate in particle size, composition and concentration were considered in terms of precipitation and wind intensity, but they are actually minor. The main effect of climate appears to be the removal of SP particles during rainy days. There is a contribution to air pollution from natural mineral sources, which we attribute to low vegetation cover

  8. Air injection system diagnostic

    SciTech Connect

    Kotzan, J.M.; Labus, G.E.

    1992-05-19

    This patent describes a method for diagnosing failures in an air control system that controls a quantity of air admitted into an exhaust path of an internal combustion engine. It comprises sensing the oxygen content of the exhaust gas of the engine at predetermined time intervals at a first predetermined point in the exhaust path of the engine, the oxygen content normally oscillating between a rich oxygen condition and a lean oxygen condition in the absence of air injected into the exhaust path above the first predetermined point; injecting a quantity of air into the exhaust path of the engine at a second predetermined point in the exhaust port, the second predetermined point being above the first predetermined point; counting the number of intervals at which the sensed oxygen content indicates a rich oxygen condition over a predetermined period of time; comparing the counted number of rich oxygen intervals to a predetermined threshold value, the threshold value being greater than a counted number of rich oxygen intervals over the predetermined period of time resulting from the normal oscillations between rich and lean oxygen conditions in the absence of air injected into the exhaust path; indicating the existence of a fault in the air control system when the number of rich oxygen intervals does not exceed the predetermined threshold value.

  9. Can car air filters be useful as a sampling medium for air pollution monitoring purposes?

    PubMed

    Katsoyiannis, Athanasios; Birgul, Askin; Ratola, Nuno; Cincinelli, Alessandra; Sweetman, Andy J; Jones, Kevin C

    2012-11-01

    Urban air quality and real human exposure to chemical environmental stressors is an issue of high scientific and political interest. In an effort to find innovative and inexpensive means for air quality monitoring, the ability of car engine air filters (CAFs) to act as efficient samplers collecting street level air, to which people are exposed to, was tested. In particular, in the case of taxis, air filters are replaced after regular distances, the itineraries are almost exclusively urban, cruising mode is similar and, thus, knowledge of the air flow can provide with an integrated city air sample. The present pilot study focused on polycyclic aromatic hydrocarbons (PAHs), the most important category of organic pollutants associated with traffic emissions. Concentrations of ΣPAHs in CAFs ranged between 650 and 2900 μg CAF(-1), with benzo[b]fluoranthene, benzo[k]fluoranthene and indeno[123-cd]pyrene being the most abundant PAHs. Benzo[a]pyrene (BaP) ranged between 110 and 250 μg CAF(-1), accounting regularly for 5-15% of the total carcinogenic PAHs. The CAF PAH loads were used to derive road-level atmospheric PAH concentrations from a standard formula relating to the CAF air flow. Important parameters/assumptions for these estimates are the cruising speed and the exposure duration of each CAF. Based on information obtained from the garage experts, an average 'sampled air volume' of 48,750 m(3) per CAF was estimated, with uncertainty in this calculation estimated to be about a factor of 4 between the two extreme scenarios. Based on this air volume, ΣPAHs ranged between 13 and 56 ng m(-3) and BaP between 2.1 and 5.0 ng m(-3), suggesting that in-traffic BaP concentrations can be many times higher than the limit values set by the UK (0.25 ng m(-3)) and the European Union (1.0 ng m(-3)), or from active sampling stations normally cited on building roof tops or far from city centres. Notwithstanding the limitations of this approach, the very low cost, the continuous

  10. OQPSK and MSK systems with bandlimiting filters in transmitter and receiver and various detector filters

    NASA Astrophysics Data System (ADS)

    Korn, I.

    1980-12-01

    Formulas are presented for the computation of error probability of OQPSK (Offset Quadrature Phase Shift Keying) and MSK (Minimum Shift Keying) with narrow band filters in transmitter and receiver and various detector filters (matched filter, sampling detector, rectangular filter and half-rectangular filter). Numerical results are computed for the case when the filters in transmitter and receiver are identical Butterworth filters. The error probability is presented as a function of signal/noise ratio or normalized filter bandwidth with the filter order as a parameter. It is concluded that with narrowband filters, MSK with a sampling detector or half-rectangular detector filter and OQPSK with a samping detector are the best systems.

  11. Dental Compressed Air Systems.

    DTIC Science & Technology

    1992-03-01

    I AL-TR-IWI-0uuu AD-A249 954 DENTAL COMPRESSED AIMYTM R Curtis D. Weyrmuch, Mejor, USAP, D Samuel P.Dvs iueatclpi SF.O N AEROSPACE MwaEDIN mwr~ComA G...FUNDING NUMBERS Dental Compressed Air Systems PE - 87714F PR - 7350 TA - 22 D. Weyrauch WU - XX Samuel P. Davis George W. Gaines 7. PERFORMING...words) The purpose of this report is to update guidelines on dental compressed air systems (DCA). Much of the information was obtained from a survey

  12. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  13. The use of Whatman-41 filters for high volume air sampling

    NASA Technical Reports Server (NTRS)

    Neustadter, H. E.; Sidik, S. M.; King, R. B.; Fordyce, J. S.; Burr, J. C.

    1975-01-01

    The feasibility of using W41 filter media on a routine TSP high-volume monitoring network was determined by comparison with glass fiber (GF) filtering. Results indicate that suspended particulate samples from GF filters averaged slightly, but not significantly, higher than those from Whatman-41 filters. Some extra handling procedures were required to avoid errors due to the hygroscopic nature of W41 filters; these added procedures are not overly burdensome, however, and they allow the performance of analytical work, thus extending the capabilities of high-volume sampling. It was demonstrated that W41 filters are practical for air quality monitoring and elemental analysis in environments similar to Cleveland's.

  14. Mixed Media Filters for Aircrew Breathing Systems.

    DTIC Science & Technology

    1980-12-01

    F AD-AiLT1 382 UMPQUA RESEARCH CO MYRTLE CREEK OR F/S 6/11 I MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS. CU) IDEC 80 G V COLOMBO F33615-76-C...O603 UNCLASSIFIED SAMTR-60-27 NL C Report SAM-TR-80.27 00 lot MIXED MEDIA FILTERS FOR AIRCREW BREATHING SYSTEMS Gerald V. Colombo, M.S. Umpqua Research...Texas 78235 0 ’: 0 010 T .A NOTICES This final report was submitted by Umpqua Research Company, Myrtle Creek, Oregon 97457, under contract F33615-76-C

  15. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    PubMed

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter.

  16. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    SciTech Connect

    Moore, Murray E.

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  17. Prototype air cleaning system for a firing range

    SciTech Connect

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  18. Hot gas filter and system assembly

    DOEpatents

    Lippert, T.E.; Palmer, K.M.; Bruck, G.J.; Alvin, M.A.; Smeltzer, E.E.; Bachovchin, D.M.

    1999-08-31

    A filter element is described for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system. 8 figs.

  19. Hot gas filter and system assembly

    DOEpatents

    Lippert, Thomas Edwin; Palmer, Kathryn Miles; Bruck, Gerald Joseph; Alvin, Mary Anne; Smeltzer, Eugene E.; Bachovchin, Dennis Michael

    1999-01-01

    A filter element for separating fine dirty particles from a hot gas. The filter element comprises a first porous wall and a second porous wall. Each porous wall has an outer surface and an inner surface. The first and second porous walls being coupled together thereby forming a substantially closed figure and open at one end. The open end is formed to be coupled to a hot gas clean up system support structure. The first and second porous walls define a channel beginning at the open end and terminate at the closed end through which a filtered clean gas can flow through and out into the clean gas side of a hot gas clean up system.

  20. Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for US Type Approval

    DTIC Science & Technology

    2016-01-01

    Systems specifying multiple filters. ..................................................... 47 Table 15. ASHRAE guidance on minimum efficiency ...Alternative management system ANS Aquatic nusiance species ASHRAE American Society of Heating , Refrigerating, and Air Conditioning Engineers ASTM ASTM...was developed by the American Society of Heating , Refrigerating, and Air Conditioning Engineers (ASHRAE), the minimum efficiency reporting value

  1. Radioactive air emissions notice of construction HEPA filtered vacuum radioactive air emission units

    SciTech Connect

    JOHNSON, R.E.

    1999-09-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of certain portable high-efficiency particulate air (HEPA) filtered vacuum radionuclide airborne emission units (HVUs). Approval of this NOC application is intended to allow operation of the HVUs without prior project-specific approval. This NOC does not request replacement or supersedence of any previous agreements/approvals by the Washington State Department of Health for the use of vacuums on the Hanford Site. These previous agreement/approvals include the approved NOCs for the use of EuroClean HEPA vacuums at the T Plant Complex (routine technical meeting 12/10/96) and the Kelly Decontamination System at the Plutonium-Uranium Extraction (PUREX) Plant (routine technical meeting 06/25/96). Also, this NOC does not replace or supersede the agreement reached regarding the use of HEPA hand-held/shop-vacuum cleaners for routine cleanup activities conducted by the Environmental Restoration Project. Routine cleanup activities are conducted during the surveillance and maintenance of inactive waste sites (Radioactive Area Remedial Action Project) and inactive facilities. HEPA hand-held/shop-vacuum cleaners are used to clean up spot surface contamination areas found during outdoor radiological field surveys, and to clean up localized radiologically contaminated material (e.g., dust, dirt, bird droppings, animal feces, liquids, insects, spider webs, etc.). This agreement, documented in the October 12, 1994 Routine Meeting Minutes, is based on routine cleanup consisting of spot cleanup of low-level contamination provided that, in each case, the source term potential would be below 0.1 millirem per year.

  2. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  3. Experimental investigation of air pressure affecting filtration performance of fibrous filter sheet.

    PubMed

    Xu, Bin; Yu, Xiao; Wu, Ya; Lin, Zhongping

    2017-03-01

    Understanding the effect of air pressure on their filtration performance is important for assessing the effectiveness of fibrous filters under different practical circumstances. The effectiveness of three classes of air filter sheets were investigated in laboratory-based measurements at a wide range of air pressures (60-130 KPa). The filtration efficiency was found most sensitive to the air pressure change at smaller particle sizes. As the air pressure increased from 60 to 130 KPa, significant decrease in filtration efficiency (up to 15%) and increase in pressure drop (up to 90 Pa) were observed. The filtration efficiency of the filter sheet with largest fiber diameter and smallest solid volume fraction was affected most, while the pressure drop of the filter sheet with smallest fiber diameter and largest solid volume fraction was affected most. The effect of air pressure on the filtration efficiency was slightly larger at greater filter face air velocity. However, the effect of air pressure on the pressure drop was negligible. The filtration efficiency and pressure drop were explicitly expressed as functions of the air pressure. Two coefficients were empirically derived and successfully accounted for the effects of air pressure on filtration efficiency and pressure drop.

  4. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  5. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  6. Filter for on-line air monitor unaffected by radon progeny and method of using same

    DOEpatents

    Phillips, Terrance D.; Edwards, Howard D.

    1999-01-01

    An apparatus for testing air having contaminants and radon progeny therein. The apparatus includes a sampling box having an inlet for receiving the air and an outlet for discharging the air. The sampling box includes a filter made of a plate of sintered stainless steel. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough. A method of testing air having contaminants and radon progeny therein. The method includes providing a testing apparatus that has a sampling box with an inlet for receiving the air and an outlet for discharging the air, and has a sintered stainless steel filter disposed within said sampling box; drawing air from a source into the sampling box using a vacuum pump; passing the air through the filter; monitoring the contaminants trapped by the filter; and providing an alarm when a selected level of contaminants is reached. The filter traps the contaminants, yet allows at least a portion of the radon progeny to pass therethrough.

  7. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  8. VERIFICATION TESTING OF TECHNOLOGIES TO CLEAN OR FILTER VENTILATION AIR

    EPA Science Inventory

    Because of the importance of indoor air quality, Research Triangle Institute's Air Pollution Control Technology is adding indoor air products as a new technology category available for testing. This paper discusses RTI's participation in previous Environmental Technology Verifica...

  9. Functional performance testing of the universal super absorbing air filters FSU 70 „Air by Corneliu”

    NASA Astrophysics Data System (ADS)

    Raţiu, S.; Birtok-Băneasă, C.; Alexa, V.; Kiss, I.

    2015-06-01

    This paper presents the experimental methodology to carry out functional performance tests for an air filter with a particular design of its housing, generically named Universal super absorbing FSU 70 „Air by Corneliu”. The tests were carried out in the Internal Combustion Engines Laboratory, within the specialization "Road automotives" belonging to the Faculty of Engineering Hunedoara, component of “Politehnica” University of Timisoara. We present some comparative values of various operating parameters of the engine fitted, in the first measuring session, with the original filter, and then with the studied filter.

  10. Air-storage systems

    SciTech Connect

    Doherty, T.J.

    1981-10-01

    The air storage system, the critical component making CAES technically and economically feasible, is described in three of its forms. All have geological containments and reflect economics of scale requiring fairly large plant ratings and storage capacities. All three systems also are based on good precedent experience and there are a number of willing bidders in the engineering and construction field attesting to the readiness of the technology. The salient features of each storage system type are summarized. Hard rock caverns have the widest siting opportunity in a variety of geology, are well within construction capability in good quality rock with maximum control of system design through engineering, have the highest cost of the storage system options study and the potential for longest time to startup, are difficult and expensive to expand for increased storage or plant rating. The salt-solutioned cavern has limited siting opportunities, is a very economical storage system, and storage increase is possible through cavern additions.

  11. Air-storage systems

    NASA Astrophysics Data System (ADS)

    Doherty, T. J.

    1981-10-01

    The air storage system, the critical component making compressed air energy storage technically economically feasible, is described in three of its forms. All have geological containments and reflect economics of scale requiring fairly large plant ratings and storage capacities. All three systems also are based on good precedent experience and there are a number of willing bidders in the engineering and construction field attesting to the readiness of the technology. The salient features of each storage system type are summarized. Hard rock caverns have the widest siting opportunity with a variety of geology, are well within construction capability in good quality rock with maximum control of system design through engineering, and have the highest cost of the storage system options study. They have the potential for longest time to startup and are difficult and expensive to expand for increased storage or plant rating. The salt-solutioned cavern has limited siting opportunities, is a very economical storage system, and storage increase is possible through cavern additions.

  12. Photometric transformation from RGB Bayer filter system to Johnson-Cousins BVR filter system

    NASA Astrophysics Data System (ADS)

    Park, Woojin; Pak, Soojong; Shim, Hyunjin; Le, Huynh Anh N.; Im, Myungshin; Chang, Seunghyuk; Yu, Joonkyu

    2016-01-01

    The RGB Bayer filter system consists of a mosaic of R, G , and B filters on the grid of the photo sensors which typical commercial DSLR (Digital Single Lens Reflex) cameras and CCD cameras are equipped with. Lot of unique astronomical data obtained using an RGB Bayer filter system are available, including transient objects, e.g. supernovae, variable stars, and solar system bodies. The utilization of such data in scientific research requires that reliable photometric transformation methods are available between the systems. In this work, we develop a series of equations to convert the observed magnitudes in the RGB Bayer filter system (RB,GB , and BB) into the Johnson-Cousins BVR filter system (BJ,VJ , and RC). The new transformation equations derive the calculated magnitudes in the Johnson-Cousins filters (BJcal,VJcal , and RCcal) as functions of RGB magnitudes and colors. The mean differences between the transformed magnitudes and original magnitudes, i.e. the residuals, are Δ (BJ -BJcal) = 0.064 mag, Δ (VJ -VJcal) = 0.041 mag, and Δ (RC -RCcal) = 0.039 mag. The calculated Johnson-Cousins magnitudes from the transformation equations show a good linear correlation with the observed Johnson-Cousins magnitudes.

  13. Westinghouse hot gas filter system development

    SciTech Connect

    Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Alvin, M.A.; Newby, R.A.

    1998-12-31

    Integrated Gasification Combined Cycles (IGCC) and Pressurized Fluidized Bed Combustion (PFBC) are being developed and demonstrated for commercial, power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC and PFBC in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements for these applications. This paper reports on the development and status of testing of the Westinghouse Advanced Hot Gas Particle Filter (W-APF) including: 4,246 hours of testing that has now been completed at the Foster Wheeler 10 MW PCFB facility located in Karhula, Finland; operation of the W-APF in conjunction with the Foster Wheeler Advanced HIPPS Test Program being conducted at their Livingston, New Jersey site; approximately 2,100 hours of operation of the W-APF at the SCS/PSDF site on the MWK transport reactor test loop; the design, installation and startup status of the W-APF unit supplied to the 95 MW Pinon Pine IGCC Clean Coal Demonstration, Reno, Nevada; and the status of the Westinghouse development and testing of HGF`s for Biomass Power Generation. Results reported include operating history, operating characteristics and filter performance. Schedules and objectives for future testing are summarized. The status of the 200 MWe PCFB Clean Coal Demonstration Project, City of Lakeland Florida and 75 MW(e) Minnesota Agriculture Biomass Power Project are summarized.

  14. Biomass control in waste air biotrickling filters by protozoan predation

    SciTech Connect

    Cox, H.H.J.; Deshusses, M.A.

    1999-01-20

    Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 kg in a control biotrickling filter to 11.795 kg in a biotrickling filter enriched with protozoa. The average toluene vapor elimination capacity at 1 g/m{sup 3} toluene and 64 m{sup 3}/(m{sup 3} {center_dot} h) was 31.1 g(m{sup 3} {center_dot} h) in the control and 32.2 g(m{sup 3} {center_dot} h) in the biotrickling filter enriched with protozoa. At higher toluene inlet concentrations, toluene degradation rates increased and were slightly higher in the biotrickling filter enriched with protozoa. The lower rate of biomass accumulation after the addition of protozoa was due to an increase of carbon mineralization. Apparent biomass yield coefficients in the control and enriched trickling filter were 0.72 and 0.59 g dry biomass/g toluene, respectively. The results show that protozoan predation may be a useful tool to control biomass in biotrickling filters, however, further stimulation of predation of the biomass immobilized in the reactor is required to ensure long-term stability of biotrickling filters.

  15. Stereotype-Based versus Personal-Based Filtering Rules in Information Filtering Systems.

    ERIC Educational Resources Information Center

    Kuflik, Tsvi; Shapira, Bracha; Shoval, Peretz

    2003-01-01

    Discusses rule-based information filtering systems and user profiles that express the user's information filtering policy. Compares the effectiveness of two alternative rule-based filtering methods: stereotype-based rules, where users are assigned to a group of similar users; and personal-based rules, where each user has his/her own personal…

  16. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT - BAGHOUSE FILTRATION PRODUCTS - AIR PURATOR CORPORATION HUYGLAS 1405M FILTER SAMPLE

    EPA Science Inventory

    Baghouse filtration products (BFPs) were evaluated by the Air Pollution Control Technology (APCT) pilot of the Environmental Technology Verification (ETV) Program. The performance factor verified was the mean outlet particle concentration for the filter fabric as a function of th...

  17. ARRANGEMENT FOR REPLACING FILTERS

    DOEpatents

    Blomgren, R.A.; Bohlin, N.J.C.

    1957-08-27

    An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

  18. EVALUATION OF THE FILTER PACK FOR LONG-DURATION SAMPLING OF AMBIENT AIR

    EPA Science Inventory

    A 14-week filter pack (FP) sampler evaluation field study was conducted at a site near Bondville, IL to investigate the impact of weekly sampling duration. Simultaneous samples were collected using collocated filter packs (FP) from two independent air quality monitoring networks...

  19. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6.

  20. High volume air sampler for environmental nanoparticles using a sharp-cut inertial filter combined with an impactor

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Zhao, Tianren; Takahashi, Hideaki; Hata, Mitsuhiko; Toriba, Akira; Ikeda, Takuji; Otani, Yoshio; Furuuchi, Masami

    2017-02-01

    A multi-nozzle layered mesh inertial filter, developed by the authors based on inertial filter technology for separating ultrafine particles (UFPs) at a moderate pressure drop, was investigated in an attempt to improve the steepness of the separation efficiency curve by combining an inertial filter and an impactor. In this system, the separation curves overlap each other, while maintaining about a 100 nm difference in cutoff size d p50. Such a combination, which we refer to as a ‘hybrid inertial filter’, was validated for a single nozzle geometry. Using a multi nozzle geometry, it was scaled up to a high volume air sampling flow rate of 400 l min-1 at a pressure drop of  <15 kPa. An air sampling unit designed for a commercial portable high volume air sampler, consisting of a multi-cyclone (d p50  =  1 µm) and a hybrid inertial filer (d p50  =  130 nm), was devised and its performance was compared with that for conventional air samplers. The scaled up version of the hybrid inertial filter using multi-nozzle geometry was confirmed. The features of the hybrid inertial filter included the suppression of the bouncing of particles with sizes  >300 nm, a steeper collection efficiency curve and less pressure drop than those of a previous type of inertial filter. The ambient PM0.13 evaluated for the present unit was found to be in good agreement with values obtained for 2 different types of cascade air samplers.

  1. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  2. Removable, hermetically-sealing, filter attachment system for hostile environments

    DOEpatents

    Mayfield, Glenn L [Richland, WA

    1983-01-01

    A removable and reusable filter attachment system. A filter medium is fixed o, and surrounded by, a filter frame having a coaxial, longitudinally extending, annular rim. The rim engages an annular groove which surrounds the opening of a filter housing. The annular groove contains a fusible material and a heating mechanism for melting the fusible material. Upon resolidifying, the fusible material forms a hermetic bond with the rim and groove. Remelting allows detachment and replacement of the filter frame.

  3. Semi-volatile organic compounds in heating, ventilation, and air-conditioning filter dust in retail stores.

    PubMed

    Xu, Y; Liang, Y; Urquidi, J R; Siegel, J A

    2015-02-01

    Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi-volatile organic compounds (SVOCs). Filters in heating, ventilation, and air-conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co-occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di-n-butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas-phase is achieved.

  4. Air Mobile Utility Distribution Systems.

    DTIC Science & Technology

    WATER PIPES, AIR TRANSPORTABLE EQUIPMENT, POLYVINYL CHLORIDE, GLASS REINFORCED PLASTICS , FUEL HOSES, HOSES....PIPES, *PIPING SYSTEMS, INSULATION, FABRICATION, CORROSION INHIBITION, FEASIBILITY STUDIES, AIR FORCE FACILITIES, POLYURETHANE RESINS, PLASTICS

  5. Towards robust particle filters for high-dimensional systems

    NASA Astrophysics Data System (ADS)

    van Leeuwen, Peter Jan

    2015-04-01

    In recent years particle filters have matured and several variants are now available that are not degenerate for high-dimensional systems. Often they are based on ad-hoc combinations with Ensemble Kalman Filters. Unfortunately it is unclear what approximations are made when these hybrids are used. The proper way to derive particle filters for high-dimensional systems is exploring the freedom in the proposal density. It is well known that using an Ensemble Kalman Filter as proposal density (the so-called Weighted Ensemble Kalman Filter) does not work for high-dimensional systems. However, much better results are obtained when weak-constraint 4Dvar is used as proposal, leading to the implicit particle filter. Still this filter is degenerate when the number of independent observations is large. The Equivalent-Weights Particle Filter is a filter that works well in systems of arbitrary dimensions, but it contains a few tuning parameters that have to be chosen well to avoid biases. In this paper we discuss ways to derive more robust particle filters for high-dimensional systems. Using ideas from large-deviation theory and optimal transportation particle filters will be generated that are robust and work well in these systems. It will be shown that all successful filters can be derived from one general framework. Also, the performance of the filters will be tested on simple but high-dimensional systems, and, if time permits, on a high-dimensional highly nonlinear barotropic vorticity equation model.

  6. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System

    PubMed Central

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD). PMID:26125024

  7. Workplace Exposure to Titanium Dioxide Nanopowder Released from a Bag Filter System.

    PubMed

    Ji, Jun Ho; Kim, Jong Bum; Lee, Gwangjae; Noh, Jung-Hun; Yook, Se-Jin; Cho, So-Hye; Bae, Gwi-Nam

    2015-01-01

    Many researchers who use laboratory-scale synthesis systems to manufacture nanomaterials could be easily exposed to airborne nanomaterials during the research and development stage. This study used various real-time aerosol detectors to investigate the presence of nanoaerosols in a laboratory used to manufacture titanium dioxide (TiO2). The TiO2 nanopowders were produced via flame synthesis and collected by a bag filter system for subsequent harvesting. Highly concentrated nanopowders were released from the outlet of the bag filter system into the laboratory. The fractional particle collection efficiency of the bag filter system was only 20% at particle diameter of 100 nm, which is much lower than the performance of a high-efficiency particulate air (HEPA) filter. Furthermore, the laboratory hood system was inadequate to fully exhaust the air discharged from the bag filter system. Unbalanced air flow rates between bag filter and laboratory hood systems could result in high exposure to nanopowder in laboratory settings. Finally, we simulated behavior of nanopowders released in the laboratory using computational fluid dynamics (CFD).

  8. PubMed search filters for the study of putative outdoor air pollution determinants of disease

    PubMed Central

    Curti, Stefania; Gori, Davide; Di Gregori, Valentina; Farioli, Andrea; Baldasseroni, Alberto; Fantini, Maria Pia; Christiani, David C; Violante, Francesco S; Mattioli, Stefano

    2016-01-01

    Objectives Several PubMed search filters have been developed in contexts other than environmental. We aimed at identifying efficient PubMed search filters for the study of environmental determinants of diseases related to outdoor air pollution. Methods We compiled a list of Medical Subject Headings (MeSH) and non-MeSH terms seeming pertinent to outdoor air pollutants exposure as determinants of diseases in the general population. We estimated proportions of potentially pertinent articles to formulate two filters (one ‘more specific’, one ‘more sensitive’). Their overall performance was evaluated as compared with our gold standard derived from systematic reviews on diseases potentially related to outdoor air pollution. We tested these filters in the study of three diseases potentially associated with outdoor air pollution and calculated the number of needed to read (NNR) abstracts to identify one potentially pertinent article in the context of these diseases. Last searches were run in January 2016. Results The ‘more specific’ filter was based on the combination of terms that yielded a threshold of potentially pertinent articles ≥40%. The ‘more sensitive’ filter was based on the combination of all search terms under study. When compared with the gold standard, the ‘more specific’ filter reported the highest specificity (67.4%; with a sensitivity of 82.5%), while the ‘more sensitive’ one reported the highest sensitivity (98.5%; with a specificity of 47.9%). The NNR to find one potentially pertinent article was 1.9 for the ‘more specific’ filter and 3.3 for the ‘more sensitive’ one. Conclusions The proposed search filters could help healthcare professionals investigate environmental determinants of medical conditions that could be potentially related to outdoor air pollution. PMID:28003291

  9. Active dc filter for HVDC systems

    SciTech Connect

    Zhang, W. ); Asplund, G.

    1994-01-01

    This article is a case history of the installation of active dc filters for high-performance, low-cost harmonics filtering at the Lindome converter station in the Konti-Skan 2 HVDC transmission link between Denmark and Sweden. The topics of the article include harmonics, interference, and filters, Lindome active dc filter, active dc filter design, digital signal processor, control scheme, protection and fault monitoring, and future applications.

  10. Air quality benefits of universal particle filter and NOx controls on diesel trucks

    NASA Astrophysics Data System (ADS)

    Tao, L.; Mcdonald, B. C.; Harley, R.

    2015-12-01

    Heavy-duty diesel trucks are a major source of black carbon/particulate matter and nitrogen oxide emissions on urban and regional scales. These emissions are relevant to both air quality and climate change. Since 2010 in the US, new engines are required to be equipped with emission control systems that greatly reduce both PM and NOx emissions, by ~98% relative to 1988 levels. To reduce emissions from the legacy fleet of older trucks that still remain on the road, regulations have been adopted in Califonia to accelerate the replacement of older trucks and thereby reduce associated emissions of PM and NOx. Use of diesel particle filters will be widespread by 2016, and universal use of catalytic converters for NOx control is required by 2023. We assess the air quality consequences of this clean-up effort in Southern California, using the Community Multiscale Air Quality model (CMAQ), and comparing three scenarios: historical (2005), present day (2016), and future year (2023). Emissions from the motor vehicle sector are mapped at high spatial resolution based on traffic count and fuel sales data. NOx emissions from diesel engines in 2023 are expected to decrease by ~80% compared to 2005, while the fraction of NOx emitted as NO2 is expected to increase from 5 to 18%. Air quality model simulations will be analyzed to quantify changes in NO2, black carbon, particulate matter, and ozone, both basin-wide and near hot spots such as ports and major highways.

  11. Design of suboptimal adaptive filter for stochastic systems

    NASA Astrophysics Data System (ADS)

    Ahn, Jun Il; Shin, Vladimir

    2005-12-01

    In this paper, the problem of estimating the system state in for linear discrete-time systems with uncertainties is considered. In [1], [2], we have proposed the fusion formula (FF) for an arbitrary number of correlated and uncorrelated estimates. The FF is applied to detection and filtering problem. The new suboptimal adaptive filter with parallel structure is herein proposed. In consequence of parallel structure of the proposed filter, parallel computers can be used for their design. A lower computational complexity and lower memory demand are achieved with the proposed filter than in the optimal adaptive Lainiotis-Kalman filter. Example demonstrates the accuracy of the new filter.

  12. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    SciTech Connect

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  13. Electrically heated particulate filter preparation methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2012-01-31

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a fuel control module that controls injection of fuel into exhaust that passes through the particulate filter. A regeneration module controls current to the particulate filter to initiate regeneration after the fuel has been injected into the exhaust.

  14. Improvements to Filter Debris Analysis in Aviation Propulsion Systems

    DTIC Science & Technology

    2012-12-01

    UNCLASSIFIED UNCLASSIFIED Improvements to Filter Debris Analysis in Aviation Propulsion Systems Andrew Becker and Peter... debris is fundamental to determining the health of aviation propulsion oil-wetted systems. The oil filter is an excellent source of wear debris , however...methods for removing and assessing the debris have traditionally involved tedious visual examination of the filter pleats and manual counting of

  15. Magnetic Bearing Amplifier Output Power Filters for Flywheel Systems

    NASA Technical Reports Server (NTRS)

    Lebron-Velilla, Ramon C.; Jansen, Ralph H.; Palazzolo, Alan; Thomas, Erwin; Kascak, Peter E.; Birchenough, Arthur G.; Dever, Timothy P.

    2003-01-01

    Five power filters and two types of power amplifiers were tested for use with active magnetic bearings for flywheel applications. Filter topologies included low pass filters and low pass filters combined with trap filters at the PWM switching frequency. Two state and three state PWM amplifiers were compared. Each system was evaluated based on current magnitude at the switching frequency, voltage magnitude at 500 kHz, and power consumption. The base line system was a two state amplifier without a power filter. The recommended system is a three state power amplifier with a 50 kHz low pass filter and a 27 kHz trap filter. This system uses 5.57 W. It reduces the switching current by an order of magnitude and the 500 kHz voltage by two orders of magnitude. The relative power consumption varied depending on the test condition between 60 to 130 percent of the baseline.

  16. Clinical evaluation of the air removal characteristics of an oxygenator with integrated arterial filter in a minimized extracorporeal circuit.

    PubMed

    Stehouwer, Marco C; Boers, Chris; de Vroege, Roel; C Kelder, Johannes; Yilmaz, Alaaddin; Bruins, Peter

    2011-04-01

    The use of minimized extracorporeal circuits (MECC) in cardiac surgery is an important measure to increase the biocompatibility of cardiopulmonary bypass during coronary artery bypass grafting (CABG). These circuits eliminate volume storage reservoirs and bubble traps to minimize the circuit. However, the reduction in volume may increase the risk of gaseous microemboli (GME). The MECC system as used by our group consists of a venous bubble trap, centrifugal pump, and an oxygenator. To further reduce the risk of introducing GME, an oxygenator with an integrated arterial filter was developed based on the concept of minimal volume and foreign surface. We studied the air removal characteristics of this oxygenator with and without integrated arterial filter. The quantity and volume of GME were measured with precision at both the inlet and outlet of the devices. Our results showed that integration of an arterial filter into this oxygenator increased GME reducing capacity from 69.2% to 92%. Moreover, we were able to obtain data on the impact of an arterial filter on the exact size-distribution of GME entering the arterial line. The present study demonstrates that an MECC system and oxygenator with integrated arterial filter significantly reduces the volume and size of GME. The use of an integrated arterial filter in an MECC system may protect the patient from the deleterious effects of CPB and may further improve patient safety.

  17. Enhanced orbit determination filter: Inclusion of ground system errors as filter parameters

    NASA Technical Reports Server (NTRS)

    Masters, W. C.; Scheeres, D. J.; Thurman, S. W.

    1994-01-01

    The theoretical aspects of an orbit determination filter that incorporates ground-system error sources as model parameters for use in interplanetary navigation are presented in this article. This filter, which is derived from sequential filtering theory, allows a systematic treatment of errors in calibrations of transmission media, station locations, and earth orientation models associated with ground-based radio metric data, in addition to the modeling of the spacecraft dynamics. The discussion includes a mathematical description of the filter and an analytical comparison of its characteristics with more traditional filtering techniques used in this application. The analysis in this article shows that this filter has the potential to generate navigation products of substantially greater accuracy than more traditional filtering procedures.

  18. Filtered-vented containment systems. [PWR; BWR

    SciTech Connect

    Benjamin, A S; Walling, H C; Cybulskis, P; DiSalvo, R

    1980-01-01

    The potential benefits of filtered-vented containment systems as a means for mitigating the effects of severe accidents are analyzed. Studies so far have focused upon two operating reactor plants in the United States, a large-containment pressurized water reactor and a Mark I containment boiling water reactor. Design options that could be retrofitted to these plants are described including single-component once-through venting systems, multiple-component systems with vent and recirculation capabilities, and totally contained venting systems. A variety of venting strategies are also described which include simple low-volume containment pressure relief strategies and more complicated, high-volume venting strategies that require anticipatory actions. The latter type of strategy is intended for accidents that produce containment-threatening pressure spikes.

  19. Dynamic data filtering system and method

    DOEpatents

    Bickford, Randall L; Palnitkar, Rahul M

    2014-04-29

    A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.

  20. Extended-life nuclear air cleaning filters via dynamic exclusion prefilters

    SciTech Connect

    Wright, S.R.; Crouch, H.S.; Bond, J.H.

    1997-08-01

    The primary objective of this investigation was to ascertain if a dynamic, self-cleaning particulate exclusion precleaner, designed for relatively large dust removal (2 to 100+ {mu}m diameter particles) from helicopter turbine inlets, could be extended to submicron filtration. The improved device could be used as a prefilter for HEPA filtration systems, significantly increasing service life. In nuclear air cleaning, its use would reduce the amount of nuclear particulate matter that would otherwise be entrapped in the HEPA filter cartridge/panel, causing fouling and increased back pressure, as well as requiring subsequent disposal of the contaminated media at considerable expense. A unique (patent-pending) mechanical separation device has recently been developed to extract particulate matter from fluid process streams based on a proprietary concept called Boundary Layer Momentum Transfer (BLMT). The device creates multiple boundary layers that actively exclude particles from entering the perimeter of the device, while allowing air to traverse the boundaries relatively unimpeded. A modified two-dimensional (2-D) computerized flow simulation model was used to assist in the prototype design. Empirical results are presented from particle breakthrough and AP experiments obtained from a reduced-scale prototype filter. Particles larger than 0.23 {mu}m were actively excluded by the prototype, but at a higher pressure drop than anticipated. Experimental data collected indicates that the filter housing and the inlet flow configuration may contribute significantly to improvements in device particle separation capabilities. Furthermore, preliminary experiments have shown that other downstream pressure drop considerations (besides those just across the spinning filtration disks) must be included to accurately portray the AP across the device. Further detailed quantitative investigations on a larger scale (1,000 CFM) prototype are warranted. 3 refs., 5 figs., 2 tabs.

  1. Electrically heated particulate filter propagation support methods and systems

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Ament, Frank [Troy, MI

    2011-06-07

    A control system that controls regeneration of a particulate filter is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate combustion of particulate matter in the particulate filter. A propagation module estimates a propagation status of the combustion of the particulate matter based on a combustion temperature. A temperature adjustment module controls the combustion temperature by selectively increasing a temperature of exhaust that passes through the particulate filter.

  2. Air Quality System (AQS) Metadata

    EPA Pesticide Factsheets

    The U.S. Environmental Protection Agency compiles air quality monitoring data in the Air Quality System (AQS). Ambient air concentrations are measured at a national network of more than 4,000 monitoring stations and are reported by state, local, and tribal

  3. Compressed state Kalman filter for large systems

    NASA Astrophysics Data System (ADS)

    Kitanidis, Peter K.

    2015-02-01

    The Kalman filter (KF) is a recursive filter that allows the assimilation of data in real time and has found numerous applications. In earth sciences, the method is applied to systems with very large state vectors obtained from the discretization of functions such as pressure, velocity, solute concentration, and voltage. With state dimension running in the millions, the implementation of the standard or textbook version of KF is very expensive and low-rank approximations have been devised such as EnKF and SEEK. Although widely applied, the error behavior of these methods is not adequately understood. This article focuses on very large linear systems and presents a complete computational method that scales roughly linearly with the dimension of the state vector. The method is suited for problems for which the effective rank of the state covariance matrix is much smaller than its dimension. This method is closest to SEEK but uses a fixed basis that should be selected in accordance with the characteristics of the problem, mainly the transition matrix and the system noise covariance. The method is matrix free, i.e., does not require computation of Jacobian matrices and uses the forward model as a black box. Computational results demonstrate the ability of the method to solve very large, say 106 , state vectors.

  4. Long duration tests of room air filters in cigarette smokers' homes.

    PubMed

    Batterman, Stuart; Godwin, Christopher; Jia, Chunrong

    2005-09-15

    Information regarding the long-term performance of stand-alone room airfilters is limited. In this study, laboratory and field tests were carried out to determine the effectiveness and performance of room filters that are easily deployed in essentially any type of house. Tests were conducted in houses containing strong PM sources, specifically cigarette smokers. Using commercially available four-speed HEPA filter units, we tested flow rate, pressure drop, and power consumption as a function of fan speed and filter loading. Filters were then deployed in four single-family homes over a 2 month period. Between 15 and 40 cigarettes were smoked daily by several smokers in each home. Occupants were instructed to continuously operate the unit at one of the higher speeds. Periodically, we monitored filter usage, fan speed, particulate matter (PM) mass concentrations, PM number concentrations, volatile organic compound (VOC) levels, and other parameters with the filter fan operating and with filters both installed and removed. The filters decreased PM concentrations by 30-70%, depending on size fraction and occupant activities, and significantly reduced the half-life of PM3-1.0. The half-life of 1-5 microm particles, CO2 concentrations, and VOC concentrations, including 2,5-dimethyl furan (a tracer for environmental tobacco smoke), did not change, indicating that occupancy and cigarette smoking intensity did not change overthe monitoring periods. Occupants generally kept the filters operating at a moderate speed. Filter air flow rates decreased 7-14% with extended operation, largely due to the loading of prefilters. Air exchange rates, deposition loss rates, and clean air delivery rates were estimated from the field data. Continuous operation at an intermediate fan speed would incur a total annualized cost of $236. While acceptance of the filters was very high, occupants might benefit from instructions and reminders to clean the prefilter and to keep the unit on. We

  5. Flight prototype regenerative particulate filter system development

    NASA Technical Reports Server (NTRS)

    Green, D. C.; Garber, P. J.

    1974-01-01

    The effort to design, fabricate, and test a flight prototype Filter Regeneration Unit used to regenerate (clean) fluid particulate filter elements is reported. The design of the filter regeneration unit and the results of tests performed in both one-gravity and zero-gravity are discussed. The filter regeneration unit uses a backflush/jet impingement method of regenerating fluid filter elements that is highly efficient. A vortex particle separator and particle trap were designed for zero-gravity use, and the zero-gravity test results are discussed. The filter regeneration unit was designed for both inflight maintenance and ground refurbishment use on space shuttle and future space missions.

  6. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew

    2008-08-22

    Since the mid-1980s the Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as a correction factor for the self absorption of activity of particulate radioactive air samples. More recently, an effort was made to evaluate the current particulate radioactive air sample filters (Versapor® 3000) used at PNNL for self absorption effects. There were two methods used in the study, 1) to compare the radioactivity concentration by direct gas-flow proportional counting of the filter to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection and 2) to evaluate sample filters by high resolution visual/infrared microscopy to determine the depth of material loading on or in the filter fiber material. Sixty samples were selected from the archive for acid digestion in the first method and about 30 samples were selected for high resolution visual/infrared microscopy. Mass loading effects were also considered. From the sample filter analysis, large error is associated with the average self absorption factor, however, when the data is compared directly one-to-one, statistically, there appears to be good correlation between the two analytical methods. The mass loading of filters evaluated was <0.2 mg cm-2 and was also compared against other published results. The microscopy analysis shows the sample material remains on the top of the filter paper and does not imbed into the filter media. Results of the microscopy evaluation lead to the conclusion that there is not a mechanism for significant self absorption. The overall conclusion is that self-absorption is not a significant factor in the analysis of filters used at PNNL for radioactive air stack sampling of radionuclide particulates and that an applied correction factor is conservative in determining overall sample activity. A new self absorption factor of 1.0 is recommended.

  7. Evaluation of Ag nanoparticle coated air filter against aerosolized virus: Anti-viral efficiency with dust loading.

    PubMed

    Joe, Yun Haeng; Park, Dae Hoon; Hwang, Jungho

    2016-01-15

    In this study, the effect of dust loading on the anti-viral ability of an anti-viral air filter was investigated. Silver nanoparticles approximately 11 nm in diameter were synthesized via a spark discharge generation system and were used as anti-viral agents coated onto a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter against aerosolized bacteriophage MS2 virus particles were tested with dust loading. The filtration efficiency and pressure drop increased with dust loading, while the anti-viral ability decreased. Theoretical analysis of anti-viral ability with dust loading was carried out using a mathematical model based on that presented by Joe et al. (J. Hazard. Mater.; 280: 356-363, 2014). Our model can be used to compare anti-viral abilities of various anti-viral agents, determine appropriate coating areal density of anti-viral agent on a filter, and predict the life cycle of an anti-viral filter.

  8. An evaluation of interventions for reducing the risk of PRRSV introduction to filtered farms via retrograde air movement through idle fans.

    PubMed

    Alonso, Carmen; Otake, Satoshi; Davies, Peter; Dee, Scott

    2012-06-15

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically significant pathogen of pigs that can be transported via the airborne route out to 9.1 km. To reduce this risk, large swine facilities have started to implement systems to filter contaminated incoming air. A proposed means of air filtration failure is the retrograde movement of air (back-drafting) from the external environment into the animal air space through non-filtered points such as idle wall fans; however, this risk has not been validated. Therefore, the purpose of this study was threefold: (1) to prove that PRRSV introduction via retrograde air movement through idle fans is a true risk; (2) to determine the minimum retrograde air velocity necessary to introduce PRRSV to an animal airspace from an external source; and (3) to evaluate the efficacy of different interventions designed to reduce this risk. A retrograde air movement model was used to test a range of velocities and interventions, including a standard plastic shutter, a plastic shutter plus a canvas cover, a nylon air chute, an aluminum shutter plus an air chute and a double shutter system. Results indicated that retrograde air movement is a real risk for PRRSV introduction to a filtered air space; however, it required a velocity of 0.76 m/s. In addition, while all the interventions designed to reduce this risk were superior when compared to a standard plastic shutter, significant differences were detected between treatments.

  9. Viral Penetration of High Efficiency Particulate Air (HEPA) Filters (PREPRINT)

    DTIC Science & Technology

    2009-09-01

    threatened deployment of biological 34 agents to produce casualties or disease in man or animals and damage to plants or 35 material. It is...viral weapons is not clearly defined. From a weapons standpoint, it 88 would be advantageous to create smaller particles, because they would remain...studies that 107 used an animal model (Burmester 1972, Hopkins1971) to assay the protection provided 108 by HEPA filters. The turn of the 21st

  10. Microbial community analysis in biotrickling filters treating isopropanol air emissions.

    PubMed

    Pérez, M Carmen; Alvarez-Hornos, F Javier; San-Valero, Pau; Marzal, Paula; Gabaldón, Carmen

    2013-01-01

    The evolution of the microbial community was analysed over one year in two biotrickling filters operating under intermittent feeding conditions and treating isopropanol emissions, a pollutant typically found in the flexography sector. Each reactor was packed with one media: plastic cross-flow-structured material or polypropylene rings. The communities were monitored by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA region. After inoculation with activated sludge, the biotrickling filters were operated using inlet loads (ILs) from 20 to 65 g C m(-3) h(-1) and empty-bed residence times (EBRTs) from 14 to 160 s. Removal efficiencies higher than 80% were obtained with ILs up to 35 g C m(-3) h(-1) working at EBRTs as low as 24 s. There was an increase in the total percentage of the target domains of up to around 80% at the end of the experiment. Specifically, the Gammaproteobacteria domain group, which includes the well-known volatile organic compound (VOC)-degrading species such as Pseudomonas putida, showed a noticeable rise in the two biotrickling filters of 26% and 27%, respectively. DGGE pattern band analysis revealed a stable band of Pseudomonas putida in all the samples monitored, even in the lower diversity communities. In addition, at similar operational conditions, the biotrickling filter with a greater relative abundance of Pseudomonas sp. (19.2% vs. 8%) showed higher removal efficiency (90% vs. 79%). Results indicate the importance of undertaking a further in-depth study of the involved species in the biofiltration process and their specific function.

  11. Summary of efficiency testing of standard and high-capacity high-efficiency particulate air filters subjected to simulated tornado depressurization and explosive shock waves

    SciTech Connect

    Smith, P.R.; Gregory, W.S.

    1985-04-01

    Pressure transients in nuclear facility air cleaning systems can originate from natural phenomena such as tornadoes or from accident-induced explosive blast waves. This study was concerned with the effective efficiency of high-efficiency particulate air (HEPA) filters during pressure surges resulting from simulated tornado and explosion transients. The primary objective of the study was to examine filter efficiencies at pressure levels below the point of structural failure. Both standard and high-capacity 0.61-m by 0.61-m HEPA filters were evaluated, as were several 0.2-m by 0.2-m HEPA filters. For a particular manufacturer, the material release when subjected to tornado transients is the same (per unit area) for both the 0.2-m by 0.2-m and the 0.61-m by 0.61-m filters. For tornado transients, the material release was on the order of micrograms per square meter. When subjecting clean HEPA filters to simulated tornado transients with aerosol entrained in the pressure pulse, all filters tested showed a degradation of filter efficiency. For explosive transients, the material release from preloaded high-capacity filters was as much as 340 g. When preloaded high-capacity filters were subjected to shock waves approximately 50% of the structural limit level, 1 to 2 mg of particulate was released.

  12. A nonlinear filtering process diagnostic system for the Space Station

    NASA Technical Reports Server (NTRS)

    Yoel, Raymond R.; Buchner, M.; Loparo, K.; Cubukcu, Arif

    1988-01-01

    A nonlinear filtering process diagnostic system, terrestrial simulation and real time implementation studies is presented. Possible applications to Space Station subsystem elements are discussed. A process diagnostic system using model based nonlinear filtering for systems with random structure was shown to provide improvements in stability, robustness, and overall performance in comparison to linear filter based systems. A suboptimal version of the nonlinear filter (zero order approximation filter, or ZOA filter) was used in simulation studies, initially, with a pressurized water reactor model and then with water/steam heat exchanger models. Finally, a real time implementation for leak detection in a water/steam heat exchanger was conducted using the ZOA filter and heat exchanger models.

  13. Evaluation of a high-efficiency, filter-bank system.

    PubMed

    Martin, Stephen B; Beamer, Bryan R; Moyer, Ernest S

    2006-04-01

    National Institute for Occupational Safety and Health (NIOSH) investigators evaluated filtration efficiencies at three U.S. Postal Service (USPS) facilities. Ventilation and filtration systems (VFSs) had been installed after the 2001 bioterrorist attacks when the USPS unknowingly processed letters laden with B. anthracis spores. The new VFS units included high-efficiency particulate air (HEPA) filters and were required by USPS contract specifications to provide an overall filtration efficiency of at least 99.97% for particles between 0.3 microm and 3.0 micro m. The USPS evaluation involved a modification of methodology used to test total filtration system efficiency in agricultural tractor cab enclosures. The modified sampling strategy not only proved effective for monitoring the total filtration system component of VFS performance but also distinguished between filtration systems performing to the high USPS performance criteria and those needing repair or replacement. The results clearly showed the importance of choosing a pair of optical particle counters that have been closely matched immediately prior to testing. The modified methodology is readily adaptable to any workplace wishing to evaluate air filtration systems, including high-efficiency systems.

  14. Remotely serviced filter and housing

    DOEpatents

    Ross, Maurice J.; Zaladonis, Larry A.

    1988-09-27

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge using an overhead crane. The filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station.

  15. [Progress of biological air filter (BAF) development in manned spacecraft cabin].

    PubMed

    Tang, Yong-kang; Guo, Shuang-sheng; Ai, Wei-dang

    2005-06-01

    The contaminants originating from human metabolism, material off-gassing and waste processing, may influence human health and the growth and development of higher plants when they accumulate at some degree in the spacecraft cabin. So the contaminants concentrations must be controlled below the spacecraft maximum allowable concentration (SMAC). For the long manned space missions and planetary habitation, biological technique is available for the removal of the contaminants. The biological air filter, BAF, is a system that degrades the contaminants into carbon dioxide, water and salts. It holds many advantages such as small weight and volume, low power consumption, easy maintenance and good working performance under the condition of microgravity. Its wide application will be seen in the space field in near future.

  16. Distribution and Rate of Microbial Processes in an Ammonia-Loaded Air Filter Biofilm▿

    PubMed Central

    Juhler, Susanne; Revsbech, Niels Peter; Schramm, Andreas; Herrmann, Martina; Ottosen, Lars D. M.; Nielsen, Lars Peter

    2009-01-01

    The in situ activity and distribution of heterotrophic and nitrifying bacteria and their potential interactions were investigated in a full-scale, two-section, trickling filter designed for biological degradation of volatile organics and NH3 in ventilation air from pig farms. The filter biofilm was investigated by microsensor analysis, fluorescence in situ hybridization, quantitative PCR, and batch incubation activity measurements. In situ aerobic activity showed a significant decrease through the filter, while the distribution of ammonia-oxidizing bacteria (AOB) was highly skewed toward the filter outlet. Nitrite oxidation was not detected during most of the experimental period, and the AOB activity therefore resulted in NO2−, accumulation, with concentrations often exceeding 100 mM at the filter inlet. The restriction of AOB to the outlet section of the filter was explained by both competition with heterotrophic bacteria for O2 and inhibition by the protonated form of NO2−, HNO2. Product inhibition of AOB growth could explain why this type of filter tends to emit air with a rather constant NH3 concentration irrespective of variations in inlet concentration and airflow. PMID:19363071

  17. Results of Self-Absorption Study on the Versapor 3000 Filters for Radioactive Particulate Air Sampling

    SciTech Connect

    Barnett, J. Matthew; Cullinan, Valerie I.; Barnett, Debra S.; Trang-Le, Truc LT; Bliss, Mary; Greenwood, Lawrence R.; Ballinger, Marcel Y.

    2009-02-17

    Since the mid-1980s, Pacific Northwest National Laboratory (PNNL) has used a value of 0.85 as the correction factor for self absorption of activity for particulate radioactive air samples collected from building exhaust for environmental monitoring. This value accounts for activity that cannot be detected by direct counting of alpha and beta particles. Emissions can be degraded or blocked by filter fibers for particles buried in the filter material or by inactive dust particles collected with the radioactive particles. These filters are used for monitoring air emissions from PNNL stacks for radioactive particles. This paper describes an effort to re-evaluate self-absorption effects in particulate radioactive air sample filters (Versapor® 3000, 47 mm diameter) used at PNNL. There were two methods used to characterize the samples. Sixty samples were selected from the archive for acid digestion to compare the radioactivity measured by direct gas-flow proportional counting of filters to the results obtained after acid digestion of the filter and counting again by gas-flow proportional detection. Thirty different sample filters were selected for visible light microscopy to evaluate filter loading and particulate characteristics. Mass-loading effects were also considered. Filter ratios were calculated by dividing the initial counts by the post-digestion counts with the expectation that post-digestion counts would be higher because digestion would expose radioactivity embedded in the filter in addition to that on top of the filter. Contrary to expectations, the post digestion readings were almost always lower than initial readings and averaged approximately half the initial readings for both alpha and beta activity. Before and after digestion readings appeared to be related to each other, but with a low coefficient of determination (R^2) value. The ratios had a wide range of values indicating that this method did not provide sufficient precision to quantify self

  18. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  19. Electromagnetic interference filter for automotive electrical systems

    DOEpatents

    Herron, Nicholas Hayden; Carlson, Douglas S; Tang, David; Korich, Mark D

    2013-07-02

    A filter for an automotive electrical system includes a substrate having first and second conductive members. First and second input terminals are mounted to the substrate. The first input terminal is electrically connected to the first conductive member, and the second input terminal is electrically connected to the second conductive member. A plurality of capacitors are mounted to the substrate. Each of the capacitors is electrically connected to at least one of the first and second conductive members. First and second power connectors are mounted to the substrate. The first power connector is electrically connected to the first conductive member, and the second power connector is electrically connected to the second conductive member. A common mode choke is coupled to the substrate and arranged such that the common mode choke extends around at least a portion of the substrate and the first and second conductive members.

  20. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2011-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  1. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2009-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  2. First report of Legionella pneumophila in car cabin air filters. Are these a potential exposure pathway for professional drivers?

    PubMed

    Alexandropoulou, Ioanna G; Konstantinidis, Theocharis G; Parasidis, Theodoros A; Nikolaidis, Christos; Panopoulou, Maria; Constantinidis, Theodoros C

    2013-12-01

    Recent findings have identified professional drivers as being at an increased risk of Legionnaires' disease. Our hypothesis was that used car cabin air filters represent a reservoir of Legionella bacteria, and thus a potential pathway for contamination. We analysed used cabin air filters from various types of car. The filters were analysed by culture and by molecular methods. Our findings indicated that almost a third of air filters were colonized with Legionella pneumophila. Here, we present the first finding of Legionella spp. in used car cabin air filters. Further investigations are needed in order to confirm this exposure pathway. The presence of Legionella bacteria in used cabin air filters may have been an unknown source of infection until now.

  3. High efficiency filter systems -- General observations, 1992--1993. Status report

    SciTech Connect

    Mauzy, A.; Mokler, B.V.; Scripsick, R.C.

    1994-05-01

    Reviews of air emission control systems have been conducted at selected facilities supported by the Department of Energy (DOE) Office of Nuclear Energy (NE). Large High efficiency particulate air (HEPA) filtration systems and their testing received particular emphasis. Although significant differences between the sites were found, there were also several common issues. These are discussed under four general topic areas: policy development, testing multiple state systems, guidance on in-place filter testing and system supervision, and uncertainty in in-place filter testing results. Two principal conclusions have emerged from these reviews. First, there is an immediate need to develop information on how filter mechanical integrity decreases with time and use this to establish limits on filter service life. Second, there is a general need to ensure the validity of in-place filter testing results and improve testing practices. A mathematical framework for describing the effects of nonideal system features on testing results is proposed as an aid in understanding the uncertainty in in-place filter testing results.

  4. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  5. Application of a high-efficiency cabin air filter for simultaneous mitigation of ultrafine particle and carbon dioxide exposures inside passenger vehicles.

    PubMed

    Lee, Eon S; Zhu, Yifang

    2014-02-18

    Modern passenger vehicles are commonly equipped with cabin air filters but their filtration efficiency for ultrafine particle (UFP) is rather low. Although setting the vehicle ventilation system to recirculation (RC) mode can reduce in-cabin UFPs by ∼ 90%, passenger-exhaled carbon dioxide (CO2) can quickly accumulate inside the cabin. Using outdoor air (OA) mode instead can provide sufficient air exchange to prevent CO2 buildup, but in-cabin UFP concentrations would increase. To overcome this dilemma, we developed a simultaneous mitigation method for UFP and CO2 using high-efficiency cabin air (HECA) filtration in OA mode. Concentrations of UFP and other air pollutants were simultaneously monitored in and out of 12 different vehicles under 3 driving conditions: stationary, on local roadways, and on freeways. Under each experimental condition, data were collected with no filter, in-use original equipment manufacturer (OEM) filter, and two types of HECA filters. The HECA filters offered an average in-cabin UFP reduction of 93%, much higher than the OEM filters (∼ 50% on average). Throughout the measurements, the in-cabin CO2 concentration remained in the range of 620-930 ppm, significantly lower than the typical level of 2500-4000 ppm observed in the RC mode.

  6. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  7. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  8. Optical calculation of correlation filters for a robotic vision system

    NASA Technical Reports Server (NTRS)

    Knopp, Jerome

    1989-01-01

    A method is presented for designing optical correlation filters based on measuring three intensity patterns: the Fourier transform of a filter object, a reference wave and the interference pattern produced by the sum of the object transform and the reference. The method can produce a filter that is well matched to both the object, its transforming optical system and the spatial light modulator used in the correlator input plane. A computer simulation was presented to demonstrate the approach for the special case of a conventional binary phase-only filter. The simulation produced a workable filter with a sharp correlation peak.

  9. A monolithic polarization-independent frequency-filter system for filtering of photon pairs

    SciTech Connect

    Ahlrichs, Andreas; Berkemeier, Christoph; Sprenger, Benjamin; Benson, Oliver

    2013-12-09

    We set up a long-term stable filtering system that consists of cascaded monolithic Fabry-Pérot filters to enhance the suppression and free spectral range. An effective free spectral range of hundreds of GHz allows the system to be used as a high resolution monochromator, with a linewidth of 192 MHz. As an important application a single mode is filtered from photon pairs generated by a parametric down-conversion source, and their indistinguishability is proven by measuring the Hong-Ou-Mandel effect with a visibility of 96%. We report that undesired birefringence, which is often encountered with monolithic cavities, can be avoided by stress-free mounting.

  10. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  11. Extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters by supercritical carbon dioxide

    SciTech Connect

    Schilling, J.B.

    1997-09-01

    Supercritical fluid extraction (SFE) using unmodified carbon dioxide has been explored as an alternative method for the extraction of semivolatile organic compounds from high-efficiency particulate air (HEPA) filters. HEPA filters provide the final stage of containment on many exhaust systems in US Department of Energy (DOE) facilities by preventing the escape of chemical and radioactive materials entrained in the exhausted air. The efficiency of the filters is tested by the manufacturer and DOE using dioctylphthalate (DOP), a substance regulated by the US Environmental Protection Agency under the Resource Conservation and Recovery Act. Therefore, the filters must be analyzed for semivolatile organics before disposal. Ninety-eight acid, base, and neutral semivolatile organics were spiked onto blank HEPA material and extracted using SFE, Soxhlet, automated Soxhlet, and sonication techniques. The SFE conditions were optimized using a Dionex SFE-703 instrument. Average recoveries for the 98 semivolatile compounds are 82.7% for Soxhlet, 74.0% for sonication, 70.2% for SFE, and 62.9% for Soxtec. Supercritical fluid extraction reduces the extraction solvent volume to 10--15 mL, a factor of 20--30 less than Soxhlet and more than 5 times less than Soxtec and sonication. Extraction times of 30--45 min are used compared to 16--18 h for Soxhlet extraction.

  12. Remotely serviced filter and housing

    DOEpatents

    Ross, M.J.; Zaladonis, L.A.

    1987-07-22

    A filter system for a hot cell comprises a housing adapted for input of air or other gas to be filtered, flow of the air through a filter element, and exit of filtered air. The housing is tapered at the top to make it easy to insert a filter cartridge holds the filter element while the air or other gas is passed through the filter element. Captive bolts in trunnion nuts are readily operated by electromechanical manipulators operating power wrenches to secure and release the filter cartridge. The filter cartridge is adapted to make it easy to change a filter element by using a master-slave manipulator at a shielded window station. 6 figs.

  13. Autonomous navigation system using a fuzzy adaptive nonlinear H∞ filter.

    PubMed

    Outamazirt, Fariz; Li, Fu; Yan, Lin; Nemra, Abdelkrim

    2014-09-19

    Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds  and adaptive disturbance attenuation , which significantly increases the UAV localization performance. The results obtained using the FANH∞ navigation filter are compared to the NH∞ navigation filter results and are validated using a 3D UAV flight scenario. The comparison proves the efficiency and robustness of the UAV localization process using the FANH∞ filter.

  14. Removal of ozone on clean, dusty and sooty supply air filters

    NASA Astrophysics Data System (ADS)

    Hyttinen, Marko; Pasanen, Pertti; Kalliokoski, Pentti

    The removal of ozone (O 3) on supply air filters was studied. Especially, the effects of dust load, diesel soot, relative humidity (RH), and exposure time on the removal of O 3 were investigated. Some loss of O 3 was observed in all the filters, except in an unused G3 pre-filter made of polyester. Dust load and quality influenced the reduction of O 3; especially, diesel soot removed O 3 effectively. Increasing the RH resulted in a larger O 3 removal. The removal of O 3 was highest in the beginning of the test, but it declined within 2 h reaching almost a steady state as the exposure continued. However, the sooty filters continued to remove as much as 25-30% of O 3. Up to 11% of O 3 removed participated in the production of formaldehyde. Small amounts of other oxidation products were also detected.

  15. Level-1C Product from AIRS: Principal Component Filtering

    NASA Technical Reports Server (NTRS)

    Manning, Evan M.; Jiang, Yibo; Aumann, Hartmut H.; Elliott, Denis A.; Hannon, Scott

    2012-01-01

    The Atmospheric Infrared Sounder (AIRS), launched on the EOS Aqua spacecraft on May 4, 2002, is a grating spectrometer with 2378 channels in the range 3.7 to 15.4 microns. In a grating spectrometer each individual radiance measurement is largely independent of all others. Most measurements are extremely accurate and have very low noise levels. However, some channels exhibit high noise levels or other anomalous behavior, complicating applications needing radiances throughout a band, such as cross-calibration with other instruments and regression retrieval algorithms. The AIRS Level-1C product is similar to Level-1B but with instrument artifacts removed. This paper focuses on the "cleaning" portion of Level-1C, which identifies bad radiance values within spectra and produces substitute radiances using redundant information from other channels. The substitution is done in two passes, first with a simple combination of values from neighboring channels, then with principal components. After results of the substitution are shown, differences between principal component reconstructed values and observed radiances are used to investigate detailed noise characteristics and spatial misalignment in other channels.

  16. Surgical suite environmental control system. [using halothane absorbing filter

    NASA Technical Reports Server (NTRS)

    Higginbotham, E. J.; Jacobs, M. L.

    1974-01-01

    Theoretical and experimental work for a systems analysis approach to the problem of surgical suit exhaust systems centered on evaluation of halothane absorbing filters. An activated charcoal-alumina-charcoal combination proved to be the best filter for eliminating halothane through multilayer absorption of gas molecules.

  17. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  18. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  19. Radiological background levels found on glass fiber filters used for low-level environmental surveillance air sampling

    SciTech Connect

    Althouse, P. E.

    1998-09-16

    Environmental surveillance of low-level radioactive particles in air requires a thorough understanding of low-level techniques and air sample collection media. High-volume air sampling for radioactive particles around Lawrence Livermore National Laboratory (LLNL) employs glass-fiber filters that are analyzed for gross alpha and gross beta activity and for specific isotopes. This study was conducted to determine the activities of radionuclides contained in blank glass-fiber filters. Data from this study provided a partial explanation of differences between current reported concentrations of radionuclides in air and those reported historically when cellulose filters were used in the LLNL monitoring effort.

  20. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Electrically heated particulate matter filter soot control system

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  2. Background culturable bacteria aerosol in two large public buildings using HVAC filters as long term, passive, high-volume air samplers.

    PubMed

    Stanley, Nicholas J; Kuehn, Thomas H; Kim, Seung Won; Raynor, Peter C; Anantharaman, Senthilvelan; Ramakrishnan, M A; Goyal, Sagar M

    2008-04-01

    Background culturable bacteria aerosols were collected and identified in two large public buildings located in Minneapolis, Minnesota and Seattle, Washington over a period of 5 months and 3 months, respectively. The installed particulate air filters in the ventilation systems were used as the aerosol sampling devices at each location. Both pre and final filters were collected from four air handing units at each site to determine the influence of location within the building, time of year, geographical location and difference between indoor and outdoor air. Sections of each loaded filter were eluted with 10 ml of phosphate buffered saline (PBS). The resulting solutions were cultured on blood agar plates and incubated for 24 h at 36 degrees C. Various types of growth media were then used for subculturing, followed by categorization using a BioLog MicroStation (Biolog, Hayward, CA, USA) and manual observation. Environmental parameters were gathered near each filter by the embedded on-site environmental monitoring systems to determine the effect of temperature, humidity and air flow. Thirty nine different species of bacteria were identified, 17 found only in Minneapolis and 5 only in Seattle. The hardy spore-forming genus Bacillus was the most commonly identified and showed the highest concentrations. A significant decrease in the number of species and their concentration occurred in the Minneapolis air handling unit supplying 100% outdoor air in winter, however no significant correlations between bacteria concentration and environmental parameters were found.

  3. Concentric Split Flow Filter

    NASA Technical Reports Server (NTRS)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  4. Mathematical test criteria for filtering complex systems: Plentiful observations

    SciTech Connect

    Castronovo, E.; Harlim, J.; Majda, A.J.

    2008-03-20

    An important emerging scientific issue is the real time filtering through observations of noisy turbulent signals for complex systems as well as the statistical accuracy of spatio-temporal discretizations for such systems. These issues are addressed here in detail for the setting with plentiful observations for a scalar field through explicit mathematical test criteria utilizing a recent theory [A.J. Majda, M.J. Grote, Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems, Proceedings of the National Academy of Sciences 104 (4) (2007) 1124-1129]. For plentiful observations, the number of observations equals the number of mesh points. These test criteria involve much simpler decoupled complex scalar filtering test problems with explicit formulas and elementary numerical experiments which are developed here as guidelines for filter performance. The theory includes information criteria to avoid filter divergence with large model errors, asymptotic Kalman gain, filter stability, and accurate filtering with small ensemble size as well as rigorous results delineating the role of various turbulent spectra for filtering under mesh refinement. These guidelines are also applied to discrete approximations for filtering the stochastically forced dissipative advection equation with very turbulent and noisy signals with either an equipartition of energy or -5/3 turbulent spectrum with infrequent observations as severe test problems. The theory and companion simulations demonstrate accurate statistical filtering in this context with implicit schemes with large time step with very small ensemble sizes and even with unstable explicit schemes under appropriate circumstances provided the filtering strategies are guided by the off-line theoretical criteria. The surprising failure of other strongly stable filtering strategies is also explained through these off-line criteria.

  5. Fail Save Shut Off Valve for Filtering Systems Employing Candle Filters

    DOEpatents

    VanOsdol, John

    2006-01-03

    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.

  6. Fail save shut off valve for filtering systems employing candle filters

    DOEpatents

    VanOsdol, John

    2006-01-03

    The invention relates to an apparatus that acts as a fail save shut off valve. More specifically, the invention relates to a fail save shut off valve that allows fluid flow during normal operational conditions, but prevents the flow of fluids in the event of system failure upstream that causes over-pressurization. The present invention is particularly well suited for use in conjunction with hot gas filtering systems, which utilize ceramic candle filters. Used in such a hot gas system the present invention stops the flow of hot gas and prevents any particulate laden gas from entering the clean side of the system.

  7. 39. DETAIL OF SAND FILTER SYSTEM. MAIN LINE RUNS IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. DETAIL OF SAND FILTER SYSTEM. MAIN LINE RUNS IN FOREGROUND WITH VALVES IN CONCRETE PITS. - Kalaupapa Water Supply System, Waikolu Valley to Kalaupapa Settlement, Island of Molokai, Kalaupapa, Kalawao County, HI

  8. Impregnated filters for the collection of ethanethiol and butanethiol in air

    SciTech Connect

    Knarr, R.D.; Rappaport, S.M.

    1981-11-01

    The use of glass-fiber filters impregnated with mercuric acetate is described for the collection of methanethiol and butanethiol in air. The entrapped thiol is regenerated from the mercuric mercaptide, formed on the filter during sampling, by treatment with acid. Samples are analyzed by gas chromatography with a relative error of +/- 4% and a RSD of less than 2%. The method may be used for the measurement of long-term or short-term exposures in the range of 0.1 to 1 ppm.

  9. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  10. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  11. Fabrication and characterization of micro-porous cellulose filters for indoor air quality control.

    PubMed

    Yoon, Younghan; Kim, Sungyoun; Ahn, Kwang Ho; Ko, Kwang Baik; Kim, Kwang-Soo

    2016-01-01

    Micro-porous cellulose filters were fabricated from paper mulberry pulp, which has been used for thousands of years with Korean history. 'Han-ji' is the name of a traditional paper used widely in Korea in construction, textile, craftworks and many household items but before now it has not been used for filtration purpose. Seeking for the utilization of this abundant natural material, this study aims to develop a fabrication process for the traditional paper to be used as a filter for dust filtration, and evaluate the performance by lab-scale experiments. To create pores in the paper, cellulose pulp was pretreated using several methods such as TEMPO oxidation and enzyme hydrolysis, or freeze dried with an alcoholic freezing medium, t-butyl alcohol, instead of water. The filters were characterized and their dust removal performance was tested at a lab scale while also monitoring pressure loss. Chemical oxidation and enzymatic pretreatment were helpful in fabricating a homogeneous filter but would not remove fine-dust particles because of its loose, enlarged pores. The best removal efficiency was observed with filters that were not pretreated but in which water had been exchanged with t-butyl alcohol before freeze-drying. The filter attained a dust removal efficiency higher than 99% over the entire experimental period, with a pressure loss of less than 230 Pa, at a 6.67 (cm3/s)/cm2 air-to-cloth ratio.

  12. Microwave mode shifting antenna system for regenerating particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA; Gregoire, Daniel J [Thousand Oaks, CA

    2011-04-26

    A regeneration system comprises a particulate matter (PM) filter including a microwave energy absorbing surface, and an antenna system comprising N antennas and an antenna driver module that sequentially drives the antenna system in a plurality of transverse modes of the antenna system to heat selected portions of the microwave absorbing surface to regenerate the PM filter, where N is an integer greater than one. The transverse modes may include transverse electric (TE) and/or transverse magnetic (TM) modes.

  13. Blended particle filters for large-dimensional chaotic dynamical systems.

    PubMed

    Majda, Andrew J; Qi, Di; Sapsis, Themistoklis P

    2014-05-27

    A major challenge in contemporary data science is the development of statistically accurate particle filters to capture non-Gaussian features in large-dimensional chaotic dynamical systems. Blended particle filters that capture non-Gaussian features in an adaptively evolving low-dimensional subspace through particles interacting with evolving Gaussian statistics on the remaining portion of phase space are introduced here. These blended particle filters are constructed in this paper through a mathematical formalism involving conditional Gaussian mixtures combined with statistically nonlinear forecast models compatible with this structure developed recently with high skill for uncertainty quantification. Stringent test cases for filtering involving the 40-dimensional Lorenz 96 model with a 5-dimensional adaptive subspace for nonlinear blended filtering in various turbulent regimes with at least nine positive Lyapunov exponents are used here. These cases demonstrate the high skill of the blended particle filter algorithms in capturing both highly non-Gaussian dynamical features as well as crucial nonlinear statistics for accurate filtering in extreme filtering regimes with sparse infrequent high-quality observations. The formalism developed here is also useful for multiscale filtering of turbulent systems and a simple application is sketched below.

  14. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  15. Wideband protection filter (WPF) integrated within optical systems

    NASA Astrophysics Data System (ADS)

    Ritt, G.; Eberle, B.; Ebert, R.; Fisher, T.; Nemet, B.; Oron, M.; Donval, A.

    2008-10-01

    Laser radiation may lead to permanent damage of the human eye when it is exposed to high power irradiation, especially when using magnifying optics such as binoculars, sights or periscopes. Into such an optical system we integrated a novel passive solid-state threshold-triggered Wideband Protection Filter (WPF) that blocks the transmission only if the power exceeds a certain threshold. At input powers below threshold, the filter has high transmission over the whole spectral band. However, when the input power exceeds the threshold power, transmission is decreased dramatically. We demonstrate the WPF integration within a typical optical system and the influence of system parameters on the protection capability of the filter.

  16. Federated nonlinear predictive filtering for the gyroless attitude determination system

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Qian, Shan; Zhang, Shifeng; Cai, Hong

    2016-11-01

    This paper presents a federated nonlinear predictive filter (NPF) for the gyroless attitude determination system with star sensor and Global Positioning System (GPS) sensor. This approach combines the good qualities of both the NPF and federated filter. In order to combine them, the equivalence relationship between the NPF and classical Kalman filter (KF) is demonstrated from algorithm structure and estimation criterion. The main features of this approach include a nonlinear predictive filtering algorithm to estimate uncertain model errors and determine the spacecraft attitude by using attitude kinematics and dynamics, and a federated filtering algorithm to process measurement data from multiple attitude sensors. Moreover, a fault detection and isolation algorithm is applied to the proposed federated NPF to improve the estimation accuracy even when one sensor fails. Numerical examples are given to verify the navigation performance and fault-tolerant performance of the proposed federated nonlinear predictive attitude determination algorithm.

  17. Reducing patients’ exposures to asthma and allergy triggers in their homes: an evaluation of effectiveness of grades of forced air ventilation filters

    PubMed Central

    Minegishi, Taeko; Allen, Joseph G.; McCarthy, John F.; Spengler, John D.; MacIntosh, David L.

    2014-01-01

    Objective Many interventions to reduce allergen levels in the home are recommended to asthma and allergy patients. One that is readily available and can be highly effective is the use of high performing filters in forced air ventilation systems. Methods We conducted a modeling analysis of the effectiveness of filter-based interventions in the home to reduce airborne asthma and allergy triggers. This work used “each pass removal efficiency” applied to health-relevant size fractions of particles to assess filter performance. We assessed effectiveness for key allergy and asthma triggers based on applicable particle sizes for cat allergen, indoor and outdoor sources of particles <2.5 µm in diameter (PM2.5), and airborne influenza and rhinovirus. Results Our analysis finds that higher performing filters can have significant impacts on indoor particle pollutant levels. Filters with removal efficiencies of >70% for cat dander particles, fine particulate matter (PM2.5) and respiratory virus can lower concentrations of those asthma triggers and allergens in indoor air of the home by >50%. Very high removal efficiency filters, such as those rated a 16 on the nationally recognized Minimum Efficiency Removal Value (MERV) rating system, tend to be only marginally more effective than MERV12 or 13 rated filters. Conclusions The results of this analysis indicate that use of a MERV12 or higher performing air filter in home ventilation systems can effectively reduce indoor levels of these common asthma and allergy triggers. These reductions in airborne allergens in turn may help reduce allergy and asthma symptoms, especially if employed in conjunction with other environmental management measures recommended for allergy and asthma patients. PMID:24555523

  18. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques.

    PubMed

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-10-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74-10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city.

  19. Characterization of Airborne Particles Collected from Car Engine Air Filters Using SEM and EDX Techniques

    PubMed Central

    Heredia Rivera, Birmania; Gerardo Rodriguez, Martín

    2016-01-01

    Particulate matter accumulated on car engine air-filters (CAFs) was examined in order to investigate the potential use of these devices as efficient samplers for collecting street level air that people are exposed to. The morphology, microstructure, and chemical composition of a variety of particles were studied using scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX). The particulate matter accumulated by the CAFs was studied in two categories; the first was of removed particles by friction, and the second consisted of particles retained on the filters. Larger particles with a diameter of 74–10 µm were observed in the first category. In the second one, the detected particles had a diameter between 16 and 0.7 µm. These particles exhibited different morphologies and composition, indicating mostly a soil origin. The elemental composition revealed the presence of three groups: mineral (clay and asphalt), metallic (mainly Fe), and biological particles (vegetal and animal debris). The palynological analysis showed the presence of pollen grains associated with urban plants. These results suggest that CAFs capture a mixture of atmospheric particles, which can be analyzed in order to monitor urban air. Thus, the continuous availability of large numbers of filters and the retroactivity associated to the car routes suggest that these CAFs are very useful for studying the high traffic zones within a city. PMID:27706087

  20. Detecting discontinuities in time series of upper air data: Demonstration of an adaptive filter technique

    SciTech Connect

    Zurbenko, I.; Chen, J.; Rao, S.T.

    1997-11-01

    The issue of global climate change due to increased anthropogenic emissions of greenhouse gases in the atmosphere has gained considerable attention and importance. Climate change studies require the interpretation of weather data collected in numerous locations and/or over the span of several decades. Unfortunately, these data contain biases caused by changes in instruments and data acquisition procedures. It is essential that biases are identified and/or removed before these data can be used confidently in the context of climate change research. The purpose of this paper is to illustrate the use of an adaptive moving average filter and compare it with traditional parametric methods. The advantage of the adaptive filter over traditional parametric methods is that it is less effected by seasonal patterns and trends. The filter has been applied to upper air relative humidity and temperature data. Applied to generated data, the filter has a root mean squared error accuracy of about 600 days when locating changes of 0.1 standard deviations and about 20 days for changes of 0.5 standard deviations. In some circumstances, the accuracy of location estimation can be improved through parametric techniques used in conjunction with the adaptive filter.

  1. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  2. 40 CFR 141.710 - Bin classification for filtered systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Enhanced Treatment for Cryptosporidium Treatment Technique Requirements § 141.710 Bin classification for filtered systems. (a) Following...) of this section is a violation of the treatment technique requirement....

  3. Preparation, certification and interlaboratory analysis of workplace air filters spiked with high-fired beryllium oxide.

    PubMed

    Oatts, Thomas J; Hicks, Cheryl E; Adams, Amy R; Brisson, Michael J; Youmans-McDonald, Linda D; Hoover, Mark D; Ashley, Kevin

    2012-02-01

    Occupational sampling and analysis for multiple elements is generally approached using various approved methods from authoritative government sources such as the National Institute for Occupational Safety and Health (NIOSH), the Occupational Safety and Health Administration (OSHA) and the Environmental Protection Agency (EPA), as well as consensus standards bodies such as ASTM International. The constituents of a sample can exist as unidentified compounds requiring sample preparation to be chosen appropriately, as in the case of beryllium in the form of beryllium oxide (BeO). An interlaboratory study was performed to collect analytical data from volunteer laboratories to examine the effectiveness of methods currently in use for preparation and analysis of samples containing calcined BeO powder. NIST SRM(®) 1877 high-fired BeO powder (1100 to 1200 °C calcining temperature; count median primary particle diameter 0.12 μm) was used to spike air filter media as a representative form of beryllium particulate matter present in workplace sampling that is known to be resistant to dissolution. The BeO powder standard reference material was gravimetrically prepared in a suspension and deposited onto 37 mm mixed cellulose ester air filters at five different levels between 0.5 μg and 25 μg of Be (as BeO). Sample sets consisting of five BeO-spiked filters (in duplicate) and two blank filters, for a total of twelve unique air filter samples per set, were submitted as blind samples to each of 27 participating laboratories. Participants were instructed to follow their current process for sample preparation and utilize their normal analytical methods for processing samples containing substances of this nature. Laboratories using more than one sample preparation and analysis method were provided with more than one sample set. Results from 34 data sets ultimately received from the 27 volunteer laboratories were subjected to applicable statistical analyses. The observed

  4. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  5. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  7. Study of loading/air back-pulse cleaning cycles on the performance of ceramic membrane filters

    SciTech Connect

    Waggoner, Charles; Alderman, Steven; Parsons, Michael; Hogoncamp, Kristina; Alderman, Steven

    2007-07-01

    Available in abstract form only. Full text of publication follows: The most commonly identified threats to conventional glass fiber HEPA filter performance are moisture and rapid blinding of filters by smoke. Regenerable filter media composed of ceramics or sintered metal can be utilized as pre-filters to protect the more vulnerable glass fiber HEPA filters in the event of upset conditions. Additionally, used in a pre-filtering application, the use of these regenerable filters can potentially extend the lifetime of conventional units. A series of tests have been conducted using CeraMem ceramic membrane filters in an effort to evaluate their performance after repeated loading and air back pulse cleaning. This was done in an effort to access filter performance after repeated loading/cleaning cycles. The filters were loaded using a solid potassium chloride aerosol challenge. The filters were evaluated for pressure drop and filtering efficiency changes from one cleaning cycle to the next. Additionally, the particle size distribution of the aerosol penetrating the filters was measured. (authors)

  8. Air-traffic surveillance systems

    NASA Technical Reports Server (NTRS)

    Macdoran, P. F.

    1979-01-01

    Passive ground-based radio-interferometry systems (RILS) monitor local air traffic by determining aircraft position in planes defined by surveillance area. Similar RILS arrangements are used to determine aircraft positions in three dimensions when combined with azimuth and range information obtained by radar. Information helps determine three-dimensional aircraft position without expensive encoding altimeters.

  9. Cleanable Air Filter Transferring Moisture and Effectively Capturing PM2.5.

    PubMed

    Zhao, Xinglei; Li, Yuyao; Hua, Ting; Jiang, Pan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-03-01

    The lethal danger of particulate matter (PM) pollution on health leads to the development of challenging individual protection materials that should ideally exhibit a high PM2.5 purification efficiency, low air resistance, an important moisture-vapor transmission rate (MVTR), and an easy-to-clean property. Herein, a cleanable air filter able to rapidly transfer moisture and efficiently capture PM2.5 is designed by electrospinning superhydrophilic polyacrylonitrile/silicon-dioxide fibers as the adsorption-desorption vector for moisture-vapor, and hydrophobic polyvinylidene fluoride fibers as the repellent components to avoid the formation of capillary water under high humidity. The desorption rate of water molecules increases from 10 to 18 mg min(-1) , while the diameters of polyacrylonitrile fibers reduce from 1.02 to 0.14 µm. Significantly, by introducing the hydroxyl on the surface of polyacrylonitrile nanofibers, rapid adsorption-desorption of the water molecules is observed. Moreover, by constructing a hydrophobic to super-hydrophilic gradient structure, the MVTR increases from 10 346 to 14 066 g m(-2) d(-1) . Interestingly, the prepared fibrous membranes is easy to clean. More importantly, benefiting from enhanced slip effect, the resultant fibrous membranes presented a low air resistance of 86 Pa. A field test in Shanghai shows that the air filter maintains stable PM2.5 purification efficiency of 99.99% at high MVTR during haze event.

  10. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  11. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  12. Revisiting Atmospheric Lead in NYC - Comparison of Archived Air Filters to Urban Park Sediments and Soils

    NASA Astrophysics Data System (ADS)

    Chillrud, S. N.; Ross, J. M.; Yan, B.; Bopp, R.

    2015-12-01

    Urban lake sediments have the potential to be used for reconstructing history of aerosols, providing data before the start of urban air quality monitoring. In a previous study, the similarity between radionuclide and excess Pb inventories (57 g/m^2) in Central Park Lake (CPL) sediments and those same parameters in Central Park soils (CPS) was interpreted to indicate that urban lake sediment cores from CPL represent deposition of atmospheric aerosols over the history of the park, which was constructed in the 1860s. Furthermore, metal ratios and metal chronologies indicated that incineration was the major source of Pb to the NYC atmosphere over the 20th century. In this report, we compare the lake chronologies for metals to a set of archived air filters collected by the Department of Energy's Environmental Measurement Lab (EML). These weekly filters of total suspended particulates (TSP) were collected by a high volume sampler located in lower Manhattan for radionuclides as part of the program focused on documenting radioactive fallout from nuclear weapons testing. Metal concentrations measured in subsamples of the EML filters collected between the 1970s to 1990s showed Pb decreasing more slowly than the records of Pb added to gasoline. Metal ratios in the filters were similar to the ratios measured in CPL sediments; the Pb to Sn ratios were roughly 20:1 and the Pb to Zn ratios were in close to 1. The similarity of the ratios provides additional solid support that the CP Lake sediment cores reflect atmospheric inputs. The enrichment of Pb in the large aerosol particle fraction (TSP), relative to fine PM2.5 fraction, demonstrates that the resuspended NYC soils and their historical contaminant burden, are the primary, current source of Pb to NYC air.

  13. Multiscale Systems, Kalman Filters, and Riccati Equations

    DTIC Science & Technology

    2006-01-01

    Rauch -Tung-Striebel algorithm- consisting of a fine-to-coarse Kalman-filter-like sweep followed by a coarse-to-fine smoothing step- was developed. In...MODELS 5 wv(t) = w(t) - E[w(t)lx(t)] (2.9) E[w(t)ifT(t)] = I- B T(t)P -l(t)B(t) - (t) (2.10) In [1] we derive a generalization of the Rauch -Tung...particular, this framework leads to an extremely efficient and highly parallelizable scale-recursive optimal estimation algorithm generalizing the Rauch

  14. Design of optimal correlation filters for hybrid vision systems

    NASA Technical Reports Server (NTRS)

    Rajan, Periasamy K.

    1990-01-01

    Research is underway at the NASA Johnson Space Center on the development of vision systems that recognize objects and estimate their position by processing their images. This is a crucial task in many space applications such as autonomous landing on Mars sites, satellite inspection and repair, and docking of space shuttle and space station. Currently available algorithms and hardware are too slow to be suitable for these tasks. Electronic digital hardware exhibits superior performance in computing and control; however, they take too much time to carry out important signal processing operations such as Fourier transformation of image data and calculation of correlation between two images. Fortunately, because of the inherent parallelism, optical devices can carry out these operations very fast, although they are not quite suitable for computation and control type operations. Hence, investigations are currently being conducted on the development of hybrid vision systems that utilize both optical techniques and digital processing jointly to carry out the object recognition tasks in real time. Algorithms for the design of optimal filters for use in hybrid vision systems were developed. Specifically, an algorithm was developed for the design of real-valued frequency plane correlation filters. Furthermore, research was also conducted on designing correlation filters optimal in the sense of providing maximum signal-to-nose ratio when noise is present in the detectors in the correlation plane. Algorithms were developed for the design of different types of optimal filters: complex filters, real-value filters, phase-only filters, ternary-valued filters, coupled filters. This report presents some of these algorithms in detail along with their derivations.

  15. Can the use of deactivated glass fibre filters eliminate sorption artefacts associated with active air sampling of perfluorooctanoic acid?

    PubMed

    Johansson, Jana H; Berger, Urs; Cousins, Ian T

    2017-05-01

    Experimental work was undertaken to test whether gaseous perfluorooctanoic acid (PFOA) sorbs to glass fibre filters (GFFs) during air sampling, causing an incorrect measure of the gas-particle equilibrium distribution. Furthermore, tests were performed to investigate whether deactivation by siliconisation prevents sorption of gaseous PFOA to filter materials. An apparatus was constructed to closely simulate a high-volume air sampler, although with additional features allowing introduction of gaseous test compounds into an air stream stripped from particles. The set-up enabled investigation of the sorption of gaseous test compounds to filter media, eliminating any contribution from particles. Experiments were performed under ambient outdoor air conditions at environmentally relevant analyte concentrations. The results demonstrate that gaseous PFOA sorbs to GFFs, but that breakthrough of gaseous PFOA on the GFFs occurs at trace-level loadings. This indicates that during high volume air sampling, filters do not quantitatively capture all the PFOA in the sampled air. Experiments with siliconised GFFs showed that this filter pre-treatment reduced the sorption of gaseous PFOA, but that sorption still occurred at environmentally relevant air concentrations. We conclude that deactivation of GFFs does not allow for the separation of gaseous and particle bound perfluorinated carboxylic acids (PFCAs) during active air sampling. Consequently, the well-recognised theory that PFCAs do not prevail as gaseous species in the atmosphere may be based on biased measurements. Caution should be taken to ensure that this artefact will not bias the conclusions of future field studies.

  16. Physico-chemical Modification of the Fibrous Filter Nozzles for Purification Processes of Water and Air

    NASA Astrophysics Data System (ADS)

    Bordunov, S. V.; Galtseva, O. V.; Natalinova, N. M.; Rogachev, A. A.; Zhang, Ruizhi

    2017-01-01

    A set of experiments to study physical and chemical modification of the surface of fibers is conducted to expand the area of their application for purification of water, gas and air (including that in conditions of space). The possibility of modification of filter nozzles in the process of fiber formation by particles of coal of BAU type, copper sulfide and silver chloride is experimentally shown. The fraction of the copper sulfide powder less than 50 microns in size was crushed in a spherical mill; it was deposited on fiber at air temperature of 50° C and powder consumption of 0.5 g/l of air. The resulting material contained 6–18 CuS particles per 1 cm of the fiber length. An effective bactericidal fibrous material can be produced using rather cheap material – CuS and relatively cheap natural compounds of sulphides and oxides of heavy metals.

  17. Approximating Ideal Filters by Systems of Fractional Order

    PubMed Central

    Li, Ming

    2012-01-01

    The contributions in this paper are in two folds. On the one hand, we propose a general approach for approximating ideal filters based on fractional calculus from the point of view of systems of fractional order. On the other hand, we suggest that the Paley and Wiener criterion might not be a necessary condition for designing physically realizable ideal filters. As an application of the present approach, we show a case in designing ideal filters for suppressing 50-Hz interference in electrocardiogram (ECG) signals. PMID:22291851

  18. Filtering nonlinear dynamical systems with linear stochastic models

    NASA Astrophysics Data System (ADS)

    Harlim, J.; Majda, A. J.

    2008-06-01

    An important emerging scientific issue is the real time filtering through observations of noisy signals for nonlinear dynamical systems as well as the statistical accuracy of spatio-temporal discretizations for filtering such systems. From the practical standpoint, the demand for operationally practical filtering methods escalates as the model resolution is significantly increased. For example, in numerical weather forecasting the current generation of global circulation models with resolution of 35 km has a total of billions of state variables. Numerous ensemble based Kalman filters (Evensen 2003 Ocean Dyn. 53 343-67 Bishop et al 2001 Mon. Weather Rev. 129 420-36 Anderson 2001 Mon. Weather Rev. 129 2884-903 Szunyogh et al 2005 Tellus A 57 528-45 Hunt et al 2007 Physica D 230 112-26) show promising results in addressing this issue; however, all these methods are very sensitive to model resolution, observation frequency, and the nature of the turbulent signals when a practical limited ensemble size (typically less than 100) is used. In this paper, we implement a radical filtering approach to a relatively low (40) dimensional toy model, the L-96 model (Lorenz 1996 Proc. on Predictability (ECMWF, 4-8 September 1995) pp 1-18) in various chaotic regimes in order to address the 'curse of ensemble size' for complex nonlinear systems. Practically, our approach has several desirable features such as extremely high computational efficiency, filter robustness towards variations of ensemble size (we found that the filter is reasonably stable even with a single realization) which makes it feasible for high dimensional problems, and it is independent of any tunable parameters such as the variance inflation coefficient in an ensemble Kalman filter. This radical filtering strategy decouples the problem of filtering a spatially extended nonlinear deterministic system to filtering a Fourier diagonal system of parametrized linear stochastic differential equations (Majda and Grote

  19. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  20. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles.

    PubMed

    Chong, Eui-Seok; Hwang, Gi Byoung; Nho, Chu Won; Kwon, Bo Mi; Lee, Jung Eun; Seo, Sungchul; Bae, Gwi-Nam; Jung, Jae Hee

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ~90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens.

  1. Simultaneous Filtered and Unfiltered Light Scattering Measurements in Laser Generated Air Sparks

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher; Miles, Richard

    2013-09-01

    Elastic laser light scattering may be used to measure the thermofluidic properties of gases and plasmas, including but not limited to density, temperature and velocity. Most of this information is contained within the spectra of the scattered radiation. This may be measured directly through dispersion or indirectly, by passing the light through an atomic or molecular vapor filter with known absorption features. In this work, filtered and unfiltered laser light scattering is used to diagnose air sparks generated by a 1064 nm Q-switched laser. The probe laser consists of a second Q-switched Nd:YAG laser frequency doubled to 532 nm. Simultaneous unfiltered and filtered images of the scattering are captured by a Princeton Instruments ICCD camera by using a 50 mm diameter concave re-imaging mirror. The filter consists of a well-characterized molecular Iodine cell. In the shock wave formed by the laser spark, spatially resolved measurements of density, temperature and radial velocity are extracted and compared with theory and models. Measurements in the spark core probe the ion feature of the electron Thomson scattering, from which ne and T can be extracted with the assumption Te =Ti . Partial funding was provided by General Electric Global Research Center: Niskayuna, New York. The first author is also supported by a National Defense Science and Engineering Graduate Fellowship.

  2. Optical add/drop filter for wavelength division multiplexed systems

    DOEpatents

    Deri, Robert J.; Strand, Oliver T.; Garrett, Henry E.

    2002-01-01

    An optical add/drop filter for wavelength division multiplexed systems and construction methods are disclosed. The add/drop filter includes a first ferrule having a first pre-formed opening for receiving a first optical fiber; an interference filter oriented to pass a first set of wavelengths along the first optical fiber and reflect a second set of wavelengths; and, a second ferrule having a second pre-formed opening for receiving the second optical fiber, and the reflected second set of wavelengths. A method for constructing the optical add/drop filter consists of the steps of forming a first set of openings in a first ferrule; inserting a first set of optical fibers into the first set of openings; forming a first set of guide pin openings in the first ferrule; dividing the first ferrule into a first ferrule portion and a second ferrule portion; forming an interference filter on the first ferrule portion; inserting guide pins through the first set of guide pin openings in the first ferrule portion and second ferrule portion to passively align the first set of optical fibers; removing material such that light reflected from the interference filter from the first set of optical fibers is accessible; forming a second set of openings in a second ferrule; inserting a second set of optical fibers into the second set of openings; and positioning the second ferrule with respect to the first ferrule such that the second set of optical fibers receive the light reflected from the interference filter.

  3. Improved filtering system for water sprays resists clogging

    SciTech Connect

    Not Available

    1981-10-01

    The improved filtering system was developed and tested after an extensive field evaluation disclosed that clogging of the water sprays on mining machines is almost always due to particle build-up on filters and strainers which causes a high pressure drop and failure of the filter element. Water for the sprays is often drawn from mine sumps of ponds having mud and coal particles in suspension. The improved filtering system is mounted on the mining machine, where it traps particles of coal and pipe scale which cause most clogging of the water sprays. Water entering the system first flows through a Y strainer, which screens out particles larger than 1/8 inch diameter. Next, the water whirls through a small hydrocyclone. Most of the remaining smaller particles are removed and pass into the accumulator compartment built into the hydrocyclone. The water also flows through a final filter. This filter catches particles that might pass the hydrocyclone, especially during water spray start-up and shutdown, when the speed of the water flow is not sufficient for this hydroclone to function effectively.

  4. EVALUATION OF AIR CLEANING SYSTEMS FOR FFTF CONTAINMENT MARGINS

    SciTech Connect

    POSTMA, A K.; HILLIARD, R K.

    1980-08-01

    Alternative air cleaning concepts were evaluated for possible application to FFTF containment margins. For evaluation purposes, it was assumed that the air cleaning system must process 3.07 m{sup 3}/s (6500 ACFM) of gas containing sodium compound aerosols (mainly NaOH) at temperatures up to 4070C (7000 F) and pressures up to 0.184 MPa (26.4 psia) and accommodate 5450 kg (12,000 lb) of aerosol material. Three systems designed for 90% efficient removal (a venturi scrubber, a submerged gravel scrubber and a spray scrubber) were compared. The submerged gravel scrubber and the venturi scrubber were rated as prime candidates. Four systems designed for 99% removal efficiency (the two optimum scrubbers chosen for 90% removal efficiency fitted with fibrous elements, a sand and gravel filter and a HEPA filter bank) were compared. The tI~ scrubbers were again rated as prime candidates. Both the sand and gravel filter and the HEPA filter bank were found to be excessively large and costly. Considerable experience supports the use of the optimum scrubber systems and it is concluded that their use is technically feasible for the FFTF containment margins application.

  5. RAZOR EX anthrax air detection system.

    PubMed

    Spaulding, Usha K; Christensen, Clarissa J; Crisp, Robert J; Vaughn, Michael B; Trauscht, Robert C; Gardner, Jordan R; Thatcher, Stephanie A; Clemens, Kristine M; Teng, David H F; Bird, Abigail; Ota, Irene M; Hadfield, Ted; Ryan, Valorie; Brunelle, Sharon L

    2012-01-01

    The RAZOR EX Anthrax Air Detection System, developed by Idaho Technology, Inc. (ITI), is a qualitative method for the detection of Bacillus anthracis spores collected by air collection devices. This system comprises a DNA extraction kit, a freeze-dried PCR reagent pouch, and the RAZOR EX real-time PCR instrument. Each pouch contains three assays, which distinguish potentially virulent B. anthracis from avirulent B. anthracis and other Bacillus species. These assays target the pXO1 and pXO2 plasmids and chromosomal DNA. When all targets are detected, the instrument makes an "anthrax detected" call, meaning that virulence genes of the anthrax bacillus are present. This report describes results from AOAC Method Developer (MD) and Independent Laboratory Validation (ILV) studies, which include matrix, inclusivity/exclusivity, environmental interference, upper and lower LOD of DNA, robustness, product consistency and stability, and instrument variation testing. In the MD studies, the system met the acceptance criteria for sensitivity and specificity, and the performance was consistent, stable, and robust for all components of the system. For the matrix study, the acceptance criteria of 95/96 expected calls was met for three of four matrixes, clean dry filters being the exception. Ninety-four of the 96 clean dry filter samples tested gave the expected calls. The nucleic acid limit of detection was 5-fold lower than AOAC's acceptable minimum detection limit. The system demonstrated no tendency for false positives when tested with Bacillus cereus. Environmental substances did not inhibit accurate detection of B. anthracis. The ILV studies yielded similar results for the matrix and inclusivity/exclusivity studies. The ILV environmental interference study included environmental substances and environmental organisms. Subsoil at a high concentration was found to negatively interfere with the pXO1 reaction. No interference was observed from the environmental organisms. The

  6. In-place HEPA (high efficiency, particulate air) filter testing at Hanford: Operating experiences, calibrations, and lessons learned

    SciTech Connect

    Flores, D.S.; Decelis, D.G.

    1989-10-01

    High Efficiency, Particulate Air (HEPA) Filters provide a minimum of 99.97% removal efficiency for particles greater than or equal to .3 microns in diameter. Each HEPA filter installation at Hanford is, at specified intervals, functionally tested for leaks. The test procedure involves a dioctylphthalate (DOP) smoke generator and a calibrated airborne particle detector. The DOP generator produces smoke of a known quantitative particle size distribution upstream of the filter. The airborne particle detector is first placed upstream, and then downstream of the filter to determine percent penetration. The smoke generator is characterized using a calibrated laser spectrometer, and the particle detector is calibrated using a calibrated picoammeter. 2 refs., 4 figs.

  7. Air Sampling System Evaluation Template

    SciTech Connect

    Blunt, Brent

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state of the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.

  8. Removing hydrogen sulfide from wastewater treatment facilities` air process streams with a biotrickling filter

    SciTech Connect

    Morton, R.L.; Caballero, R.C.

    1997-12-31

    Control of hydrogen sulfide (H{sub 2}S) and odor emissions has been a major consideration for many wastewater treatment plants. Many different methods have been and are currently being used for H{sub 2}S and odor control. Most of the current methods involve absorption of H{sub 2}S and odors into a liquid solution or adsorption onto a solid matrix. These methods are either expensive or if not operated correctly can be inefficient. The Los Angeles County Sanitation Districts have developed a biological method to remove odors and H{sub 2}S from different off-gas streams at its main wastewater treatment plant, the Joint Water Pollution Control Plant (JWPCP). This treatment method, which is known as a biotrickling filter, uses a packed contactor device in which the air to be treated is blown through the packing. The H{sub 2}S and odor is removed by a scrubbing solution containing bacteria that is trickled down from the top of the contactor. Different types of column packing media were tested, with a rock-based media being the most effective. The rock media allowed the biotrickling filter to get over 98 percent removal of inlet H{sub 2}S, as long as H{sub 2}S loadings did not exceed 39 g-H{sub 2}S/m{sup 3}-hr (1.1 g-H{sub 2}S/ft{sup 3}-hr). Odor panel analyses indicated that inlet odors were reduced by 99 percent by the biotrickling filter. Due to the success of the research work, a full scale biotrickling filter is being put into operation at the JWPCP. The unit will replace existing caustic scrubbers and will be much less expensive to operate. Current costs to operate a caustic scrubber at the JWPCP is about $1,150 per million m{sup 3} ($33.00 per million ft3) of air treated. The biotrickling filter operational costs would be about one-fifth or $240 per million m{sup 3} ($7.00 per million ft{sup 3}) of air treated.

  9. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems.

    PubMed

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-07-26

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches.

  10. Fuzzy Adaptive Cubature Kalman Filter for Integrated Navigation Systems

    PubMed Central

    Tseng, Chien-Hao; Lin, Sheng-Fuu; Jwo, Dah-Jing

    2016-01-01

    This paper presents a sensor fusion method based on the combination of cubature Kalman filter (CKF) and fuzzy logic adaptive system (FLAS) for the integrated navigation systems, such as the GPS/INS (Global Positioning System/inertial navigation system) integration. The third-degree spherical-radial cubature rule applied in the CKF has been employed to avoid the numerically instability in the system model. In processing navigation integration, the performance of nonlinear filter based estimation of the position and velocity states may severely degrade caused by modeling errors due to dynamics uncertainties of the vehicle. In order to resolve the shortcoming for selecting the process noise covariance through personal experience or numerical simulation, a scheme called the fuzzy adaptive cubature Kalman filter (FACKF) is presented by introducing the FLAS to adjust the weighting factor of the process noise covariance matrix. The FLAS is incorporated into the CKF framework as a mechanism for timely implementing the tuning of process noise covariance matrix based on the information of degree of divergence (DOD) parameter. The proposed FACKF algorithm shows promising accuracy improvement as compared to the extended Kalman filter (EKF), unscented Kalman filter (UKF), and CKF approaches. PMID:27472336

  11. Nonlinear dynamical system identification using unscented Kalman filter

    NASA Astrophysics Data System (ADS)

    Rehman, M. Javvad ur; Dass, Sarat Chandra; Asirvadam, Vijanth Sagayan

    2016-11-01

    Kalman Filter is the most suitable choice for linear state space and Gaussian error distribution from decades. In general practical systems are not linear and Gaussian so these assumptions give inconsistent results. System Identification for nonlinear dynamical systems is a difficult task to perform. Usually, Extended Kalman Filter (EKF) is used to deal with non-linearity in which Jacobian method is used for linearizing the system dynamics, But it has been observed that in highly non-linear environment performance of EKF is poor. Unscented Kalman Filter (UKF) is proposed here as a better option because instead of analytical linearization of state space, UKF performs statistical linearization by using sigma point calculated from deterministic samples. Formation of the posterior distribution is based on the propagation of mean and covariance through sigma points.

  12. H(infinity) filtering for fuzzy singularly perturbed systems.

    PubMed

    Yang, Guang-Hong; Dong, Jiuxiang

    2008-10-01

    This paper considers the problem of designing H(infinity) filters for fuzzy singularly perturbed systems with the consideration of improving the bound of singular-perturbation parameter epsilon. First, a linear-matrix-inequality (LMI)-based approach is presented for simultaneously designing the bound of the singularly perturbed parameter epsilon, and H(infinity) filters for a fuzzy singularly perturbed system. When the bound of singularly perturbed parameter epsilon is not under consideration, the result reduces to an LMI-based design method for H(infinity) filtering of fuzzy singularly perturbed systems. Furthermore, a method is given for evaluating the upper bound of singularly perturbed parameter subject to the constraint that the considered system is to be with a prescribed H(infinity) performance bound, and the upper bound can be obtained by solving a generalized eigenvalue problem. Finally, numerical examples are given to illustrate the effectiveness of the proposed methods.

  13. Efficiency of an air filter at the drainage site in a closed circuit with a centrifugal blood pump: an in vitro study.

    PubMed

    Mitsumaru, A; Yozu, R; Matayoshi, T; Morita, M; Shin, H; Tsutsumi, K; Iino, Y; Kawada, S

    2001-01-01

    In a closed circuit with a centrifugal blood pump, one of the serious obstacles to clinical application is sucking of air bubbles into the drainage circuit. The goal of this study was to investigate the efficiency of an air filter at the drainage site. We used whole bovine blood and the experimental circuit consisted of a drainage circuit, two air filters, a centrifugal blood pump, a membrane oxygenator, a return circuit, and a reservoir. Air was injected into the drainage circuit with a roller pump, and the number and size of air bubbles were measured. The air filter at the drainage site could remove the air bubbles (>40 microm) by itself, but adding a vacuum removed more bubbles (>40 microm) than without vacuum. Our results suggest that an air filter at the drainage site could effectively remove air bubbles, and that adding the filter in a closed circuit with a centrifugal blood pump would be safer.

  14. An air quality sensing system for cool air storage

    NASA Astrophysics Data System (ADS)

    Ngoy, T. J.; Joubert, T.-H.

    2016-02-01

    Cooling and ventilation systems play an important role in human occupied spaces. However, cooling using reversible air conditioners systems pollutes the environment and consumes a significant amount of energy. With global warming that experiences our environment, the large consumption of electrical energy and the operating instructions for reversible air conditioners, there is a need to find alternatives to those cooling systems. Hence this research project aims to investigate an air storage system, a microsystem reversible ventilation system using natural atmospheric air (renewable energy) for cooling at low consumption of energy. For the variation of the temperature range of comfort due to thermal heat produces by occupants, equipment and environment, an optimal transient automatic regulation of air flow as to be design in order to maintain the temperature of comfort in occupied spaces during peak hours.

  15. Evaluation of the effect of media velocity on filter efficiency and most penetrating particle size of nuclear grade high-efficiency particulate air filters.

    PubMed

    Alderman, Steven L; Parsons, Michael S; Hogancamp, Kristina U; Waggoner, Charles A

    2008-11-01

    High-efficiency particulate air (HEPA) filters are widely used to control particulate matter emissions from processes that involve management or treatment of radioactive materials. Section FC of the American Society of Mechanical Engineers AG-1 Code on Nuclear Air and Gas Treatment currently restricts media velocity to a maximum of 2.5 cm/sec in any application where this standard is invoked. There is some desire to eliminate or increase this media velocity limit. A concern is that increasing media velocity will result in higher emissions of ultrafine particles; thus, it is unlikely that higher media velocities will be allowed without data to demonstrate the effect of media velocity on removal of ultrafine particles. In this study, the performance of nuclear grade HEPA filters, with respect to filter efficiency and most penetrating particle size, was evaluated as a function of media velocity. Deep-pleat nuclear grade HEPA filters (31 cm x 31 cm x 29 cm) were evaluated at media velocities ranging from 2.0 to 4.5 cm/sec using a potassium chloride aerosol challenge having a particle size distribution centered near the HEPA filter most penetrating particle size. Filters were challenged under two distinct mass loading rate regimes through the use of or exclusion of a 3 microm aerodynamic diameter cut point cyclone. Filter efficiency and most penetrating particle size measurements were made throughout the duration of filter testing. Filter efficiency measured at the onset of aerosol challenge was noted to decrease with increasing media velocity, with values ranging from 99.999 to 99.977%. The filter most penetrating particle size recorded at the onset of testing was noted to decrease slightly as media velocity was increased and was typically in the range of 110-130 nm. Although additional testing is needed, these findings indicate that filters operating at media velocities up to 4.5 cm/sec will meet or exceed current filter efficiency requirements. Additionally

  16. Digital filtering for data compression in telemetry systems

    SciTech Connect

    Bell, R.M.

    1994-08-01

    There are many obstacles to using data compression in a telemetry system. Non-linear quantization is often too lossy, and the data is too highly structured to make variable-length entropy codes practical. This paper describes a lossless telemetry data compression system that was built using digital FIR filters. The method of compression takes advantage of the fact that the optimal Nyquist sampling rate is rarely achievable due to two factors: (1) Sensor/transducers are not bandlimited to the frequencies of interest, and (2) Accurate, high-order analog filters are not available to perform effective band limiting and prevent aliasing. Real-time digital filtering can enhance the performance of a typical sampling system so that it approaches Nyquist sampling rates, effectively compressing the amount of data and reducing transmission bandwidth. The system that was built reduced the sampling rate of 14 high-frequency vibration channels by a factor of two, and reduced the bandwidth of the-data link from 1.8 Mbps to 1.28 Mbps. The entire circuit uses seven function-specific, digital-filter DSP`s operating in parallel (two 128-tap FIR filters can be implemented on each Motorola DSP56200), one EPROM and a Programmable Logic Device as the controller.

  17. Electrically heated particulate filter diagnostic systems and methods

    DOEpatents

    Gonze, Eugene V [Pinckney, MI

    2009-09-29

    A system that diagnoses regeneration of an electrically heated particulate filter is provided. The system generally includes a grid module that diagnoses a fault of the grid based on at least one of a current signal and a voltage signal. A diagnostic module at least one of sets a fault status and generates a warning signal based on the fault of the grid.

  18. Inductively heated particulate matter filter regeneration control system

    SciTech Connect

    Gonze, Eugene V; Paratore Jr., Michael J; Kirby, Kevin W; Phelps, Amanda; Gregoire, Daniel J

    2012-10-23

    A system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas, a downstream end and zones. The system also includes a heating element. A control module selectively activates the heating element to inductively heat one of the zones.

  19. FORTRAN IV Digital Filter Design Programs. Digital Systems Education Project.

    ERIC Educational Resources Information Center

    Reuss, E.; And Others

    The goals of the Digital Systems Education Project (DISE) include the development and distribution of educational/instructional materials in the digital systems area. Toward that end, this document contains three reports: (1) A FORTRAN IV Design Program for Low-Pass Butterworth and Chebychev Digital Filters; (2) A FORTRAN IV Design Program for…

  20. Microscope system with on axis programmable Fourier transform filtering

    NASA Astrophysics Data System (ADS)

    Martínez, José Luis; García-Martínez, Pascuala; Moreno, Ignacio

    2017-02-01

    We propose an on-axis microscope optical system to implement programmable optical Fourier transform image processing operations, taking advantage of phase and polarization modulation of a liquid crystal on silicon (LCOS) display. We use a Hamamatsu spatial light modulator (SLM), free of flickering, which therefore can be tuned to fully eliminate the zero order component of the encoded diffractive filter. This allows the realization of filtering operation on axis (as opposed to other systems in the literature that require operating off axis), therefore making use of the full space bandwidth provided by the SLM. The system is first demonstrated by implementing different optical processing operations based on phase-only blazed gratings such as phase contrast, band-pass filtering, or additive and substractive imaging. Then, a simple Differential interference contrast (DIC) imaging is obtained changing to a polarization modulation scheme, achieved simply by selecting a different incident state of polarization on the incident beam.

  1. Staged fluidized-bed combustion and filter system

    DOEpatents

    Mei, Joseph S.; Halow, John S.

    1994-01-01

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized-bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gases into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  2. A staged fluidized-bed comubstion and filter system

    SciTech Connect

    Mei, J.S.; Halow, J.S.

    1993-12-31

    A staged fluidized-bed combustion and filter system for substantially reducing the quantity of waste through the complete combustion into ash-type solids and gaseous products. The device has two fluidized- bed portions, the first primarily as a combustor/pyrolyzer bed, and the second as a combustor/filter bed. The two portions each have internal baffles to define stages so that material moving therein as fluidized beds travel in an extended route through those stages. Fluidization and movement is achieved by the introduction of gasses into each stage through a directional nozzle. Gases produced in the combustor/pyrolyzer bed are permitted to travel into corresponding stages of the combustor/filter bed through screen filters that permit gas flow but inhibit solids flow. Any catalyst used in the combustor/filter bed is recycled. The two beds share a common wall to minimize total volume of the system. A slightly modified embodiment can be used for hot gas desulfurization and sorbent regeneration. Either side-by-side rectangular beds or concentric beds can be used. The system is particularly suited to the processing of radioactive and chemically hazardous waste.

  3. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    PubMed

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p < 0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  4. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  5. Using Kalman Filters to Reduce Noise from RFID Location System

    PubMed Central

    Xavier, José; Reis, Luís Paulo; Petry, Marcelo

    2014-01-01

    Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes—linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11–13% of improvement). PMID:24592186

  6. Using Kalman filters to reduce noise from RFID location system.

    PubMed

    Abreu, Pedro Henriques; Xavier, José; Silva, Daniel Castro; Reis, Luís Paulo; Petry, Marcelo

    2014-01-01

    Nowadays, there are many technologies that support location systems involving intrusive and nonintrusive equipment and also varying in terms of precision, range, and cost. However, the developers some time neglect the noise introduced by these systems, which prevents these systems from reaching their full potential. Focused on this problem, in this research work a comparison study between three different filters was performed in order to reduce the noise introduced by a location system based on RFID UWB technology with an associated error of approximately 18 cm. To achieve this goal, a set of experiments was devised and executed using a miniature train moving at constant velocity in a scenario with two distinct shapes-linear and oval. Also, this train was equipped with a varying number of active tags. The obtained results proved that the Kalman Filter achieved better results when compared to the other two filters. Also, this filter increases the performance of the location system by 15% and 12% for the linear and oval paths respectively, when using one tag. For a multiple tags and oval shape similar results were obtained (11-13% of improvement).

  7. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  8. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  9. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  10. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  11. Analysis of the plugging of the systems autonomy demonstration project brassboard filters

    NASA Technical Reports Server (NTRS)

    Clay, John C.

    1989-01-01

    A fine gray powder was clogging the brassboard filters. The powder appeared to be residue from a galvanic corrosive attack by ammonia of the aluminum and stainless steel components in the system. The corrosion was caused by water and chlorine that had entered into the system and combined with the ammonia. This combination made an electrolyte and a corrosive agent of the ammonia that attacked the metals in the system. The corroded material traveled through the system with the ammonia and clogged the filters. Key conclusions are: the debris collecting in the filters is a by-product of galvanic corrosion; the debris is principally corroded aluminum and stainless from the system; and galvanic corrosion occurred from water and chlorine that entered the system during normal and/or extreme operating and servicing conditions. Key recommendations are: use only one metal in the ammonia system-titanium, aluminum, or stainless steel; make the system as air-tight as possible (replace fittings with welded joints); and replace electron paramagnetic resonance (EPR) O-rings with neoprene O-rings, and do not use freon to clean system components.

  12. Mold Occurring on the Air Cleaner High-Efficiency Particulate Air Filters Used in the Houses of Child Patients with Atopic Dermatitis

    PubMed Central

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam

    2014-01-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 102 ± 1.50 × 102 CFU/cm2, 8.72 × 102 ± 1.69 × 102 CFU/cm2, and 9.71 × 102 ± 1.35 × 102 CFU/cm2, respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea. PMID:25346608

  13. Mold occurring on the air cleaner high-efficiency particulate air filters used in the houses of child patients with atopic dermatitis.

    PubMed

    Kim, Seong Hwan; Ahn, Geum Ran; Son, Seung Yeol; Bae, Gwi-Nam; Yun, Yeo Hong

    2014-09-01

    Fungi are the known sources of irritation associated with atopic diseases (e.g., asthma, allergic rhinoconjunctivitis, and atopic eczema). To quantitatively estimate their presence in the indoor environment of atopic dermatitis-inflicted child patient's houses (ADCPHs), the high-efficiency particulate air (HEPA) filters installed inside the air cleaners of three different ADCPHs were investigated for the presence of mold. The air cleaner HEPA filters obtained from the three different ADCPHs were coded as HEPA-A, -B, and -C, respectively, and tested for the presence of mold. The colony forming units (CFUs) corresponding to the HEPA-A, -B, and -C filters were estimated to be 6.51 × 10(2) ± 1.50 × 10(2) CFU/cm(2), 8.72 × 10(2) ± 1.69 × 10(2) CFU/cm(2), and 9.71 × 10(2) ± 1.35 × 10(2) CFU/cm(2), respectively. Aspergillus, Penicillium, Alternaria, Cladosporium, Trichoderma, and other fungal groups were detected in the 2,494 isolates. The distribution of these fungal groups differed among the three filters. Cladosporium was the major fungal group in filters HEPA-A and -C, whereas Penicillium was the major fungal group in the filter HEPA-B. Nine fungal species, including some of the known allergenic species, were identified in these isolates. Cladosporium cladosporioides was the most common mold among all the three filters. This is the first report on the presence of fungi in the air cleaner HEPA filters from ADCPHs in Korea.

  14. Method and System for Temporal Filtering in Video Compression Systems

    NASA Technical Reports Server (NTRS)

    Lu, Ligang; He, Drake; Jagmohan, Ashish; Sheinin, Vadim

    2011-01-01

    Three related innovations combine improved non-linear motion estimation, video coding, and video compression. The first system comprises a method in which side information is generated using an adaptive, non-linear motion model. This method enables extrapolating and interpolating a visual signal, including determining the first motion vector between the first pixel position in a first image to a second pixel position in a second image; determining a second motion vector between the second pixel position in the second image and a third pixel position in a third image; determining a third motion vector between the first pixel position in the first image and the second pixel position in the second image, the second pixel position in the second image, and the third pixel position in the third image using a non-linear model; and determining a position of the fourth pixel in a fourth image based upon the third motion vector. For the video compression element, the video encoder has low computational complexity and high compression efficiency. The disclosed system comprises a video encoder and a decoder. The encoder converts the source frame into a space-frequency representation, estimates the conditional statistics of at least one vector of space-frequency coefficients with similar frequencies, and is conditioned on previously encoded data. It estimates an encoding rate based on the conditional statistics and applies a Slepian-Wolf code with the computed encoding rate. The method for decoding includes generating a side-information vector of frequency coefficients based on previously decoded source data and encoder statistics and previous reconstructions of the source frequency vector. It also performs Slepian-Wolf decoding of a source frequency vector based on the generated side-information and the Slepian-Wolf code bits. The video coding element includes receiving a first reference frame having a first pixel value at a first pixel position, a second reference frame

  15. Linear theory for filtering nonlinear multiscale systems with model error

    PubMed Central

    Berry, Tyrus; Harlim, John

    2014-01-01

    In this paper, we study filtering of multiscale dynamical systems with model error arising from limitations in resolving the smaller scale processes. In particular, the analysis assumes the availability of continuous-time noisy observations of all components of the slow variables. Mathematically, this paper presents new results on higher order asymptotic expansion of the first two moments of a conditional measure. In particular, we are interested in the application of filtering multiscale problems in which the conditional distribution is defined over the slow variables, given noisy observation of the slow variables alone. From the mathematical analysis, we learn that for a continuous time linear model with Gaussian noise, there exists a unique choice of parameters in a linear reduced model for the slow variables which gives the optimal filtering when only the slow variables are observed. Moreover, these parameters simultaneously give the optimal equilibrium statistical estimates of the underlying system, and as a consequence they can be estimated offline from the equilibrium statistics of the true signal. By examining a nonlinear test model, we show that the linear theory extends in this non-Gaussian, nonlinear configuration as long as we know the optimal stochastic parametrization and the correct observation model. However, when the stochastic parametrization model is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa; this finding is based on analytical and numerical results on our nonlinear test model and the two-layer Lorenz-96 model. Finally, even when the correct stochastic ansatz is given, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that the parameters estimated online, as part of a filtering procedure

  16. A new design of filter system in streak camera

    NASA Astrophysics Data System (ADS)

    Zhou, Pengyu; Bai, Yonglin

    2015-10-01

    In order to reduce the frequency of researchers routing in and out of the testing site and ensure the fluency of the testing we design a new filter system applied to the streak cameras. This system promotes streak cameras' abilities on spatial discrimination and time resolution. This paper focuses on the instruction of the piezoelectric motor's principle based on field-effect tubes. Filter wheel is driven by piezoelectric motor. It can effectively avoid the influences of high field produced by streak tube. Finally we achieve auto regulation at different gears and promote the efficiency of operations and guarantee the safety of researchers. CD4046 introduces the driven clock of this system and we use an inverter to get two synchronous inverted signals. These signals are amplified by field-effect tubes to more than 300V. The amplified ones are integrated at the output terminals to generate sinusoidal signal. The test shows that in this filter system piezoelectric motor operates at its resonance frequency under a control signal of 62.5 KHz. Its working current is 1.9A and driving power is almost 10W. By adjusting the gears, the filter wheel costs less than 2 seconds to calibrate. We accomplish the test in respected results.

  17. A rapid, precise, reciprocating-movement color filter system

    NASA Technical Reports Server (NTRS)

    Phillipps, P. G.; Epstein, P.; Donovan, G.; Lawhite, E.

    1972-01-01

    Unit was designed for moving color filters in and out of position in less than 46 ms. System may be used to record previously derived colors on photorecorder or to scan different color or wavelength components of rapidly passing scene, as in aerial reconnaissance. Rapid, precise reciprocating movement may be useful in purely mechanical and chemical applications.

  18. Enhancing Adaptive Filtering Approaches for Land Data Assimilation Systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent work has presented the initial application of adaptive filtering techniques to land surface data assimilation systems. Such techniques are motivated by our current lack of knowledge concerning the structure of large-scale error in either land surface modeling output or remotely-sensed estima...

  19. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  20. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    PubMed

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly.

  1. Adaptive noise Wiener filter for scanning electron microscope imaging system.

    PubMed

    Sim, K S; Teh, V; Nia, M E

    2016-01-01

    Noise on scanning electron microscope (SEM) images is studied. Gaussian noise is the most common type of noise in SEM image. We developed a new noise reduction filter based on the Wiener filter. We compared the performance of this new filter namely adaptive noise Wiener (ANW) filter, with four common existing filters as well as average filter, median filter, Gaussian smoothing filter and the Wiener filter. Based on the experiments results the proposed new filter has better performance on different noise variance comparing to the other existing noise removal filters in the experiments.

  2. Frequency Selective Surface Based Bandpass Filter for THz Communication System

    NASA Astrophysics Data System (ADS)

    Das, Subrata; Reza, Khan Mamun; Habib, Md. Ahsan

    2012-11-01

    In this work, a band pass filter based on frequency selective surface (FSS) is presented. The resonance of the FSS is achieved by perforating slot type ring structure on an Aluminum layer. To ensure adequate mechanical strength, this structure is again supported by a dielectric layer. The physical dimensions of the FSS, i.e. ring radius, slot width, cell dimension and width of the layers all are responsible for the resonance behavior. In its electrical equivalent circuit, these dimensions act as inductor and capacitor. The center frequency of the designed filter is at 0.16 THz with a -3 dB bandwidth of 18 GHz. This filter can be utilized as a part of any THz communication system to achieve application specific frequency discrimination. The simulation has been carried by using commercial software-CST Microwave Studio. The performance of the fabricated FSS is evaluated by Microwave Vector Network Analyzer.

  3. PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Djalalova, Irina; Delle Monache, Luca; Wilczak, James

    2015-05-01

    A new post-processing method for surface particulate matter (PM2.5) predictions from the National Oceanic and Atmospheric Administration (NOAA) developmental air quality forecasting system using the Community Multiscale Air Quality (CMAQ) model is described. It includes three main components: • A real-time quality control procedure for surface PM2.5 observations; • Model post-processing at each observational site using historical forecast analogs and Kalman filtering; • Spreading the forecast corrections from the observation locations to the entire gridded domain. The methodology is tested using 12 months of CMAQ forecasts of hourly PM2.5, from December 01, 2009 through November 30, 2010. The model domain covers the contiguous USA, and model data are verified against U.S. Environmental Prediction Agency AIRNow PM2.5 observations measured at 716 stations over the CMAQ domain. The model bias is found to have a strong seasonal dependency, with a large positive bias in winter and a small bias in the summer months, and also to have a strong diurnal cycle. Five different post-processing techniques are compared, including a seven-day running mean subtraction, Kalman-filtering, analogs, and combinations of analogs and Kalman filtering. The most accurate PM2.5 forecasts have been found to be produced when using historical analogs of the hourly Kalman-filtered forecasts, referred to as KFAN. The choice of meteorological variables used in the hourly analog search is also found to have a significant effect. A monthly error analysis is computed, in each case using the remaining 11 months of the data set for the analog searches. The improvement of KFAN errors over the raw CMAQ model errors ranges from 50 to 75% for MAE and from 40 to 60% for the correlation coefficient. Since the post-processing analysis is only done at the locations where observations are available, the spreading of post-processing correction information over nearby model grid points is necessary to make

  4. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  5. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter.

    PubMed

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-11

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m(-2)), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300-500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification.

  6. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    NASA Astrophysics Data System (ADS)

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m‑2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300–500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification.

  7. Tailoring Mechanically Robust Poly(m-phenylene isophthalamide) Nanofiber/nets for Ultrathin High-Efficiency Air Filter

    PubMed Central

    Zhang, Shichao; Liu, Hui; Yin, Xia; Li, Zhaoling; Yu, Jianyong; Ding, Bin

    2017-01-01

    Effective promotion of air filtration applications proposed for fibers requires their real nanoscale diameter, optimized pore structure, and high service strength; however, creating such filter medium has proved to be a tremendous challenge. This study first establishes a strategy to design and fabricate novel poly(m-phenylene isophthalamide) nanofiber/nets (PMIA NF/N) air filter via electrospinning/netting. Our strategy results in generation of a bimodal structure including a scaffold of nanofibers and abundant two-dimensional ultrathin (~20 nm) nanonets to synchronously construct PMIA filters by combining solution optimization, humidity regulation, and additive inspiration. Benefiting from the structural features including the true nanoscale diameter, small pore size, high porosity, and nets bonding contributed by the widely distributed nanonets, our PMIA NF/N filter exhibits the integrated properties of superlight weight (0.365 g m−2), ultrathin thickness (~0.5 μm), and high tensile strength (72.8 MPa) for effective air filtration, achieving the ultra-low penetration air filter level of 99.999% and low pressure drop of 92 Pa for 300–500 nm particles by sieving mechanism. The successful synthesis of PMIA NF/N would not only provide a promising medium for particle filtration, but also develop a versatile platform for exploring the application of nanonets in structural enhancement, separation and purification. PMID:28074880

  8. Automatic spectral transmittance measurement system for DWDM filters

    NASA Astrophysics Data System (ADS)

    Chang, Gao-Wei; Heish, Ming-Yu

    2003-08-01

    For many years, fiber-optics communication has become an essential part of the development of our modern society. For example, its significance comes from the increasing demands on real-time image transmission, multimedia communication, distance learning, video-conferencing, video telephone, and cable TV, etc. This paper is to develop an automatic transmittance measurement system for a DWDM (dense wavelength division multiplexing) filter. In this system, a grating-based monochromators is devised to generate a collection of monochromatic light with various wavelengths, instead of using an expensive tunable laser. From this approach, the cost of the proposed system will be much lower than that of those having the same functions, by one order. In addition, we simulate the spectral filtering to investigate the resolving power of the system. It appears that our simulations give quite satisfactory results.

  9. Integrated exhaust and electrically heated particulate filter regeneration systems

    SciTech Connect

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  10. Velocity Estimate Following Air Data System Failure

    DTIC Science & Technology

    2008-03-01

    12 Figure 2.2. Pitot Tube...that relay pitot -static information from the aircraft’s air data system and inertial measurement information from the Inertial Navigation System...Air data systems receive total and static pressure inputs from a pitot -static system. A typical pitot tube, as shown below, receives total pressure

  11. Spatial filter system as an optical relay line

    DOEpatents

    Hunt, John T.; Renard, Paul A.

    1979-01-01

    A system consisting of a set of spatial filters that are used to optically relay a laser beam from one position to a downstream position with minimal nonlinear phase distortion and beam intensity variation. The use of the device will result in a reduction of deleterious beam self-focusing and produce a significant increase in neutron yield from the implosion of targets caused by their irradiation with multi-beam glass laser systems.

  12. Inductive displacement sensors with a notch filter for an active magnetic bearing system.

    PubMed

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-07-15

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested.

  13. Inductive Displacement Sensors with a Notch Filter for an Active Magnetic Bearing System

    PubMed Central

    Chen, Seng-Chi; Le, Dinh-Kha; Nguyen, Van-Sum

    2014-01-01

    Active magnetic bearing (AMB) systems support rotating shafts without any physical contact, using electromagnetic forces. Each radial AMB uses two pairs of electromagnets at opposite sides of the rotor. This allows the rotor to float in the air gap, and the machine to operate without frictional losses. In active magnetic suspension, displacement sensors are necessary to detect the radial and axial movement of the suspended object. In a high-speed rotating machine equipped with an AMB, the rotor bending modes may be limited to the operating range. The natural frequencies of the rotor can cause instability. Thus, notch filters are a useful circuit for stabilizing the system. In addition, commercial displacement sensors are sometimes not suitable for AMB design, and cannot filter the noise caused by the natural frequencies of rotor. Hence, implementing displacement sensors based on the AMB structure is necessary to eliminate noises caused by natural frequency disturbances. The displacement sensor must be highly sensitive in the desired working range, and also exhibit a low interference noise, high stability, and low cost. In this study, we used the differential inductive sensor head and lock-in amplifier for synchronous demodulation. In addition, an active low-pass filter and a notch filter were used to eliminate disturbances, which caused by natural frequencies. As a consequence, the inductive displacement sensor achieved satisfactory linearity, high sensitivity, and disturbance elimination. This sensor can be easily produced for AMB applications. A prototype of these displacement sensors was built and tested. PMID:25029281

  14. Estimating Power System Dynamic States Using Extended Kalman Filter

    SciTech Connect

    Huang, Zhenyu; Schneider, Kevin P.; Nieplocha, Jaroslaw; Zhou, Ning

    2014-10-31

    Abstract—The state estimation tools which are currently deployed in power system control rooms are based on a steady state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper investigates the application of Extended Kalman Filtering techniques for estimating dynamic states in the state estimation process. The new formulated “dynamic state estimation” includes true system dynamics reflected in differential equations, not like previously proposed “dynamic state estimation” which only considers the time-variant snapshots based on steady state modeling. This new dynamic state estimation using Extended Kalman Filter has been successfully tested on a multi-machine system. Sensitivity studies with respect to noise levels, sampling rates, model errors, and parameter errors are presented as well to illustrate the robust performance of the developed dynamic state estimation process.

  15. Acousto-optic tunable filter multispectral imaging system

    NASA Technical Reports Server (NTRS)

    Cheng, Li-Jen; Chao, Tien-Hsin; Reyes, George

    1992-01-01

    This paper discusses recent activities of Jet Propulsion Laboratory in the development of a new type of remote sensing multispectral imaging instruments using acousto-optic tunable filter (AOTF) as programmable bandpass filter. This remote sensor provides real-time operation; observational flexibility; measurements of spectral, spatial, and polarization information using a single instrument; and compact, solid state structure without moving parts. Two microcomputer-controlled AOTF imaging spectrometer breadboard systems were designed and built. One operates in the wavelength range of 0.48-0.76 micron and the other in the range of 1.2-2.5 micron. Experiments were performed using these two systems to observe geological and botanical objects in laboratory and outdoor environment. Results have demonstrated the feasibility of using the AOTF multispectral imaging system as a real-time versatile remote sensor with operational flexibility for future Army tactical applications.

  16. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  17. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  18. Nanoparticle filtration performance of NIOSH-certified particulate air-purifying filtering facepiece respirators: evaluation by light scattering photometric and particle number-based test methods.

    PubMed

    Rengasamy, Samy; Eimer, Benjamin C

    2012-01-01

    National Institute for Occupational Safety and Health (NIOSH) certification test methods employ charge neutralized NaCl or dioctyl phthalate (DOP) aerosols to measure filter penetration levels of air-purifying particulate respirators photometrically using a TSI 8130 automated filter tester at 85 L/min. A previous study in our laboratory found that widely different filter penetration levels were measured for nanoparticles depending on whether a particle number (count)-based detector or a photometric detector was used. The purpose of this study was to better understand the influence of key test parameters, including filter media type, challenge aerosol size range, and detector system. Initial penetration levels for 17 models of NIOSH-approved N-, R-, and P-series filtering facepiece respirators were measured using the TSI 8130 photometric method and compared with the particle number-based penetration (obtained using two ultrafine condensation particle counters) for the same challenge aerosols generated by the TSI 8130. In general, the penetration obtained by the photometric method was less than the penetration obtained with the number-based method. Filter penetration was also measured for ambient room aerosols. Penetration measured by the TSI 8130 photometric method was lower than the number-based ambient aerosol penetration values. Number-based monodisperse NaCl aerosol penetration measurements showed that the most penetrating particle size was in the 50 nm range for all respirator models tested, with the exception of one model at ~200 nm size. Respirator models containing electrostatic filter media also showed lower penetration values with the TSI 8130 photometric method than the number-based penetration obtained for the most penetrating monodisperse particles. Results suggest that to provide a more challenging respirator filter test method than what is currently used for respirators containing electrostatic media, the test method should utilize a sufficient number

  19. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    PubMed

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  20. Experimental Study on Ultrafine Particle Removal Performance of Portable Air Cleaners with Different Filters in an Office Room

    PubMed Central

    Ma, Huan; Shen, Henggen; Shui, Tiantian; Li, Qing; Zhou, Liuke

    2016-01-01

    Size- and time-dependent aerodynamic behaviors of indoor particles, including PM1.0, were evaluated in a school office in order to test the performance of air-cleaning devices using different filters. In-situ real-time measurements were taken using an optical particle counter. The filtration characteristics of filter media, including single-pass efficiency, volume and effectiveness, were evaluated and analyzed. The electret filter (EE) medium shows better initial removal efficiency than the high efficiency (HE) medium in the 0.3–3.5 μm particle size range, while under the same face velocity, the filtration resistance of the HE medium is several times higher than that of the EE medium. During service life testing, the efficiency of the EE medium decreased to 60% with a total purifying air flow of 25 × 104 m3/m2. The resistance curve rose slightly before the efficiency reached the bottom, and then increased almost exponentially. The single-pass efficiency of portable air cleaner (PAC) with the pre-filter (PR) or the active carbon granule filter (CF) was relatively poor. While PAC with the pre-filter and the high efficiency filter (PR&HE) showed maximum single-pass efficiency for PM1.0 (88.6%), PAC with the HE was the most effective at removing PM1.0. The enhancement of PR with HE and electret filters augmented the single-pass efficiency, but lessened the airflow rate and effectiveness. Combined with PR, the decay constant of large-sized particles could be greater than for PACs without PR. Without regard to the lifetime, the electret filters performed better with respect to resource saving and purification improvement. A most penetrating particle size range (MPPS: 0.4–0.65 μm) exists in both HE and electret filters; the MPPS tends to become larger after HE and electret filters are combined with PR. These results serve to provide a better understanding of the indoor particle removal performance of PACs when combined with different kinds of filters in school

  1. Approach to Cultural Asset Preservation "Enzyme Filter Media Has Bactericidal Effect and Bacteriostasis Effect in Air Phase"

    NASA Astrophysics Data System (ADS)

    Isomae, Kazuro

    Enzyme air-filter media according to the bactericidal effect as an environmental green technology acquired the high appraisal and the result in the domestic and foreign clean room and the air conditioning field. The mechanism of this enzyme technology, safety, and the bactericidal effect in the real environment are discussed by using the electron microscopic picture etc. And it proposes to apply these technologies to the cultural asset preservation.

  2. Investigation of air cleaning system response to accident conditions

    SciTech Connect

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  3. Disk filter

    DOEpatents

    Bergman, Werner

    1986-01-01

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  4. Disk filter

    DOEpatents

    Bergman, W.

    1985-01-09

    An electric disk filter provides a high efficiency at high temperature. A hollow outer filter of fibrous stainless steel forms the ground electrode. A refractory filter material is placed between the outer electrode and the inner electrically isolated high voltage electrode. Air flows through the outer filter surfaces through the electrified refractory filter media and between the high voltage electrodes and is removed from a space in the high voltage electrode.

  5. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  6. 42 CFR 84.1143 - Dust, fume, and mist air-purifying filter tests; performance requirements; general.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Dust, fume, and mist air-purifying filter tests; performance requirements; general. 84.1143 Section 84.1143 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  7. Development of an in-line filter to prevent intrusion of NO2 toxic vapors into A/C systems

    NASA Technical Reports Server (NTRS)

    Meneghelli, Barry; Mcnulty, R. J.; Springer, Mike; Lueck, Dale E.

    1995-01-01

    The hypergolic propellant nitrogen tetroxide (N2O4 or NTO) is routinely used in spacecraft launched at Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). In the case of a catastrophic failure of the spacecraft, there would be a release of the unspent propellant in the form of a toxic cloud. Inhalation of this material at downwind concentrations which may be as high as 20 parts per million (ppm) for 30 minutes in duration, may produce irritation to the eyes, nose and respiratory tract. Studies at both KSC and CCAS have shown that the indoor concentrations of N2O4 during a toxic release may range from 1 to 15 ppm and depend on the air change rate (ACR) for a particular building and whether or not the air conditioning (A/C) system has been shut down or left in an operating mode. This project was initiated in order to assess how current A/C systems could be easily modified to prevent personnel from being exposed to toxic vapors. A sample system has been constructed to test the ability of several types of filter material to capture the N2O4 vapors prior to their infiltration into the A/C system. Test results will be presented which compare the efficiencies of standard A/C filters, water wash systems, and chemically impregnated filter material in taking toxic vapors out of the incoming air stream.

  8. Flow Characteristics of Pulse Cleaning System in Ceramic Filter

    SciTech Connect

    Zhongli, J.; Peng, S.; Chen, H.; Shi, M.

    2002-09-19

    The rigid ceramic filters have been recognized to be a most promising kind of equipment for the gas-solid separation and the cleaning of hot gases due to their unique properties and higher separation efficiency for larger than 5 {micro}m particles, which will well meet downstream system component protection and environmental standards. They have potential for increased efficiency in advanced coal-fired power generation systems like pressurized fluidized bed combustion (PFBC) and integrated gasification combined cycle (IGCC) process, and petrochemical process such as fluid catalyst cracking (FCC) Process. In the commercial utilization of rigid ceramic filters, the performance of pulse cleaning systems has crucial effects on the long-term structural durability and reliability of the entire design. In order to get a clear insight into the nature of this cleaning process and provide a solid basis for the industrial applications, the transient flow characteristics of the rigid ceramic candle filter during the whole pulse cleaning process should be completely analyzed.

  9. Error Measurements in an Acousto-Optic Tunable Filter Fiber Bragg Grating Sensor System

    DTIC Science & Technology

    1994-05-01

    Acousto - Optic Tunable Filter--Fiber Bragg Grating (AOTF-FBG) system. This analysis was targeted to investigate the measurement error in the AOTF-FBG system...Fiber bragg grating, Wavelength division multiplexing, Acousto - optic tunable filter.

  10. Mixed cellulose ester filter as a separator for air-diffusion cathode microbial fuel cells.

    PubMed

    Wang, Zejie; Lim, Bongsu

    2017-04-01

    Separator is important to prevent bio-contamination of the catalyst layer of air-diffusion cathode microbial fuel cells (MFCs). Mixed cellulose ester filter (MCEF) was examined as a separator for an air-cathode MFC in the present study. The MCEF-MFC produced a maximum power density of 780.7 ± 18.7 mW/m(2), which was comparable to 770.9 ± 35.9 mW/m(2) of MFC with Nafion membrane (NFM) as a separator. Long-term examination demonstrated a more stable performance of the MCEF-MFC than NFM-MFC. After 25 cycles, the maximum voltage of the MCEF-MFC decreased by only 1.3% from 425.1 ± 4.3 mV (initial 5 cycles) to 419.5 ± 2.3 mV (last 5 cycles). However, it was decreased by 9.1% from 424.8 ± 5.7 to 386 ± 2.5 mV for the NFM-MFC. The coulombic efficiency (CE) of the MCEF-MFC did not change (from 3.11 ± 0.09% to 3.13 ± 0.02%), while it decreased by 9.12% from 3.18 ± 0.04% to 2.89 ± 0.02% for the NFM-MFC. The MCEF separator was with less biofouling than the NFM separator over 60 days' operation, which might be the reason for the more table long-term performance of the MCEF-MFC. The results demonstrated that MCEF was feasible as a separator to set up good-performing and cost-effective air-diffusion cathode MFC.

  11. Air ion exposure system for plants.

    PubMed

    Morrow, R C; Tibbitts, T W

    1987-02-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  12. Air ion exposure system for plants

    NASA Technical Reports Server (NTRS)

    Morrow, R. C.; Tibbitts, T. W.

    1987-01-01

    A system was developed for subjecting plants to elevated air ion levels. This system consisted of a rectangular Plexiglas chamber lined with a Faraday cage. Air ions were generated by corona discharge from frayed stainless steel fibers placed at one end of the chamber. This source was capable of producing varying levels of either positive or negative air ions. During plant exposures, environmental conditions were controlled by operating the unit in a growth chamber.

  13. Filtered Mass Density Function for Design Simulation of High Speed Airbreathing Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Gicquel, L. Y. M.; Sheikhi, M. R. H.; Drozda, T. G.

    2002-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high speed reacting turbulent flows. NASA is interested in the design of various components involved in air breathing propulsion systems such as the scramjet. There is a demand for development of robust tools that can aid in the design procedure. The physics of high speed reactive flows is rich with many complexities. LES is regarded as one of the most promising means of simulating turbulent reacting flows.

  14. Emission of poly and perfluoroalkyl substances, UV-filters and siloxanes to air from wastewater treatment plants.

    PubMed

    Shoeib, Mahiba; Schuster, Jasmin; Rauert, Cassandra; Su, Ky; Smyth, Shirley-Anne; Harner, Tom

    2016-11-01

    The potential of wastewater treatment plants (WWTPs) to act as sources of poly and perfluoroalkyl substances (PFASs), volatile methyl siloxanes (VMSs) and organic UV-filters to the atmosphere was investigated. Target compounds included: PFASs (fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides/sulfonamidoethanols (FOSAs/FOSEs), perfluroalkyl sulfonic acids (PFSAs) and perfluroalkyl carboxylic acids (PFCAs)), cyclic VMSs (D3 to D6), linear VMSs (L3 to L5) and eight UV-filters. Emissions to air were assessed at eight WWTPs using paired sorbent-impregnated polyurethane foam passive air samplers, deployed during summer 2013 and winter 2014. Samplers were deployed on-site above the active tank and off-site as a reference. Several types of WWTPs were investigated: secondary activated sludge in urban areas (UR-AS), secondary extended aeration in towns (TW-EA) and facultative lagoons in rural areas (RU-LG). The concentrations of target compounds in air were ∼1.7-35 times higher on-site compared to the corresponding off-site location. Highest concentrations in air were observed at UR-AS sites while the lowest were at RU-LG. Higher air concentrations (∼2-9 times) were observed on-site during summer compared to winter, possibly reflecting enhanced volatilization due to higher wastewater temperatures or differences in influent wastewater concentrations. A significant positive correlation was obtained between concentrations in air and WWTP characteristics (influent flow rate and population in the catchment of the WWTP); whereas a weak negative correlation was obtained with hydraulic retention time. Emissions to air were estimated using a simplified dispersion model. Highest emissions to air were seen at the UR-AS locations. Emissions to air (g/year/tank) were highest for VMSs (5000-112,000) followed by UV-filters (16-2000) then ΣPFASs (10-110).

  15. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  16. Miniature mass spectrometer systems based on a microengineered quadrupole filter.

    PubMed

    Malcolm, Andrew; Wright, Steven; Syms, Richard R A; Dash, Neil; Schwab, Marc-André; Finlay, Alan

    2010-03-01

    Two miniature mass spectrometer systems based on a microengineered quadrupole mass filter have been developed. One of the instruments has a footprint of 27 cm x 20 cm and is intended for laboratory use when space is at a premium. The other is portable and intended for use in the field. It is battery powered, weighs 14.9 kg, and is housed in a rugged case. This is the first example of a portable mass spectrometer incorporating an analyzer fabricated using microelectromechanical systems (MEMS) techniques. The starting material for construction of the filters is a bonded silicon on insulator substrate, which is selectively etched using batch processing techniques to form coupling optics and springs that accurately hold 0.5 mm diameter stainless steel rods in the required geometry. Assembled filters measure 35 mm x 6 mm x 1.5 mm and are mounted, together with an ion source and channeltron detector, in small, interchangeable cartridges, which plug into a 220 cm(3) vacuum chamber. Recovery from accidental contamination or when servicing is required can be achieved within 5-10 min, as the cartridge is easily exchanged with a spare. A potential application to environmental monitoring has been investigated. The headspace above water spiked with dibutyl mercaptan was sampled with a solid phase microextraction (SPME) fiber, which was then injected directly into the vacuum chamber of the mass spectrometer. Using this method, the limit of detection was found to be approximately 5 ppm for a 15 s sampling period.

  17. A Highly Accurate Face Recognition System Using Filtering Correlation

    NASA Astrophysics Data System (ADS)

    Watanabe, Eriko; Ishikawa, Sayuri; Kodate, Kashiko

    2007-09-01

    The authors previously constructed a highly accurate fast face recognition optical correlator (FARCO) [E. Watanabe and K. Kodate: Opt. Rev. 12 (2005) 460], and subsequently developed an improved, super high-speed FARCO (S-FARCO), which is able to process several hundred thousand frames per second. The principal advantage of our new system is its wide applicability to any correlation scheme. Three different configurations were proposed, each depending on correlation speed. This paper describes and evaluates a software correlation filter. The face recognition function proved highly accurate, seeing that a low-resolution facial image size (64 × 64 pixels) has been successfully implemented. An operation speed of less than 10 ms was achieved using a personal computer with a central processing unit (CPU) of 3 GHz and 2 GB memory. When we applied the software correlation filter to a high-security cellular phone face recognition system, experiments on 30 female students over a period of three months yielded low error rates: 0% false acceptance rate and 2% false rejection rate. Therefore, the filtering correlation works effectively when applied to low resolution images such as web-based images or faces captured by a monitoring camera.

  18. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  19. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  20. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  1. Tactical Integrated Air Defense System

    DTIC Science & Technology

    1978-06-09

    and integrated. The discussion in %,hapter II sunmmarlies the effective. ness of their integration experiences. 4 Any evaluation of current air...require- ments. Therefore, to serve as a baseline for evaluating the present IAD capabilities of the United States, Chapter III contains an analysis...of the present Soviet tactical air threat. Given the historical background and operational requirements for IAD, an evaluation of the present United

  2. Subscription merging in filter-based publish/subscribe systems

    NASA Astrophysics Data System (ADS)

    Zhang, Shengdong; Shen, Rui

    2013-03-01

    Filter-based publish/subscribe systems suffer from high subscription maintenance cost for each broker in the system stores a large number of subscriptions. Advertisement and covering are not sufficient to conquer such problem. Thus, subscription merging is proposed. However, current researches lack of an efficient and practical merging mechanism. In this paper, we propose a novel subscription merging mechanism. The mechanism is both time and space efficient, and can flexibly control the merging granularity. The merging mechanism has been verified through both theoretical and simulation-based evaluation.

  3. Optical fiber gas sensing system based on FBG filtering

    NASA Astrophysics Data System (ADS)

    Wang, Shutao

    2008-10-01

    An optical fiber gas sensing system based on the law of Beer-Lambert is designed to determine the concentration of gas. This technique relies on the fact that the target gas has a unique, well-defined absorption characteristic within the infrared region of electromagnetic spectrum. The narrow-band filtering characteristic of optical fiber Bragg grating is used to produce the narrow spectrum light signal. An aspheric objective optical fiber collimator is used in the system as an optical fiber gas sensing detector to improve the sensitivity and stability. Experimental results show there is a high measuring sensitivity at 0.01%, and the measuring range goes beyond 5%.

  4. Manufacturing a low-cost ceramic water filter and filter system for the elimination of common pathogenic bacteria

    NASA Astrophysics Data System (ADS)

    Simonis, J. J.; Basson, A. K.

    Africa is one of the most water-scarce continents in the world but it is the lack of potable water which results in diarrhoea being the leading cause of death amongst children under the age of five in Africa (696 million children under 5 years old in Africa contract diarrhoea resulting in 2000 deaths per day: WHO and UNICEF, 2009). Most potable water treatment methods use bulk water treatment not suitable or available to the majority of rural poor in Sub-Saharan Africa. One simple but effective way of making sure that water is of good quality is by purifying it by means of a household ceramic water filter. The making and supply of water filters suitable for the removal of suspended solids, pathogenic bacteria and other toxins from drinking water is therefore critical. A micro-porous ceramic water filter with micron-sized pores was developed using the traditional slip casting process. This locally produced filter has the advantage of making use of less raw materials, cost, labour, energy and expertise and being more effective and efficient than other low cost produced filters. The filter is fitted with a silicone tube inserted into a collapsible bag that acts as container and protection for the filter. Enhanced flow is obtained through this filter system. The product was tested using water inoculated with high concentrations of different bacterial cultures as well as with locally polluted stream water. The filter is highly effective (log10 > 4 with 99.99% reduction efficiency) in providing protection from bacteria and suspended solids found in natural water. With correct cleaning and basic maintenance this filter technology can effectively provide drinking water to rural families affected by polluted surface water sources. This is an African solution for the more than 340 million people in Africa without access to clean drinking water (WHO and UNICEF, 2008).

  5. Efficiency of compressed-air systems

    NASA Astrophysics Data System (ADS)

    The current state of knowledge in American industry concerning the energy efficient design and operation of industrial compressed air systems and system components is examined. Since there is no standard reference for designers and operators of compressed air systems which provides guidelines for maximizing the energy efficiency of these systems, a major product of this contract was the preparation of a guidebook for this purpose.

  6. A microprocessor based anti-aliasing filter for a PCM system

    NASA Technical Reports Server (NTRS)

    Morrow, D. C.; Sandlin, D. R.

    1984-01-01

    Described is the design and evaluation of a microprocessor based digital filter. The filter was made to investigate the feasibility of a digital replacement for the analog pre-sampling filters used in telemetry systems at the NASA Ames-Dryden Flight Research Facility (DFRF). The digital filter will utilize an Intel 2920 Analog Signal Processor (ASP) chip. Testing includes measurements of: (1) the filter frequency response and, (2) the filter signal resolution. The evaluation of the digital filter was made on the basis of circuit size, projected environmental stability and filter resolution. The 2920 based digital filter was found to meet or exceed the pre-sampling filter specifications for limited signal resolution applications.

  7. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... been neutralized to the Boltzmann equilibrium state shall be used. Each filter shall be challenged with... Boltzmann equilibrium state shall be used. Each filter shall be challenged with a concentration...

  8. The Air Program Information Management System (APIMS)

    DTIC Science & Technology

    2011-11-02

    Technology November 2, 2011 The Air Program Information Management System (APIMS) Frank Castaneda, III, P.E. APIMS Program Manager AFCEE/TDNQ APIMS...NOV 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE The Air Program Information Management System (APIMS... Information   Management   System : Sustainability of  Enterprise air quality management system • Aspects and Impacts to Process • Auditing and Measurement

  9. Fluid-bed air-supply system

    DOEpatents

    Atabay, Keramettin

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  10. Highly Integrated Polysulfone/polyacrylonitrile/polyamide-6 Air Filter for Multi-level Physical Sieving Airborne Particles.

    PubMed

    Zhang, Shichao; Tang, Ning; Cao, Leitao; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-10-04

    Rational structural design involving controlled pore size, high porosity, and particle-targeted function is critical to the realization of highly efficient air filters, and the filter with absolute particle-screen ability has significant technological implications for applications including individual protection, industrial security, and environmental governance; however, it remains an ongoing challenge. In this study, we first report a facile and scalable strategy to fabricate the highly integrated polysulfone/polyacrylonitrile/polyamide-6 (PSU/PAN/PA-6) air filter for multi-level physical sieving airborne particles via sequential electrospinning. Our strategy causes the PSU microfiber (diameter of ~1 μm) layer, PAN nanofiber (diameter of ~200 nm) layer, and PA-6 nanonets (diameter of ~20 nm) layer to orderly assemble into the integrated filter with gradually varied pore structures and high porosity; thus enables the filter to work efficiently by employing different layers to cut off penetration of particles with certain size that exceeds the designed threshold level. By virtue of its elaborate gradient structure, robust hydrophobicity (WCA of ~130o), and superior mechanical property (5.6 MPa), our PSU/PAN/PA-6 filter even can filtrate the 300 nm particles with a high removal efficiency of 99.992% and a low pressure drop of 118 Pa in the way of physical sieving manner, which completely gets rid of the negative impact from high airflow speed, electret failure, and high humidity. It is expected that our highly integrated filter has wider applications for filtration and separation, and design of 3D functional structure in the future.

  11. Development of a filter regeneration system for advanced spacecraft fluid systems

    NASA Technical Reports Server (NTRS)

    Behrend, A. F., Jr.; Descamp, V. A.

    1974-01-01

    The development of a filter regeneration system for efficiently cleaning fluid particulate filters is presented. Based on a backflush/jet impingement technique, the regeneration system demonstrated a cleaning efficiency of 98.7 to 100%. The operating principles and design features are discussed with emphasis on the primary system components that include a regenerable filter, vortex particle separator, and zero-g particle trap. Techniques and equipment used for ground and zero-g performance tests are described. Test results and conclusions, as well as possible areas for commercial application, are included.

  12. Investigation of Adaptive Robust Kalman Filtering Algorithms for GPS/DR Navigation System Filters

    NASA Astrophysics Data System (ADS)

    Elzoghby, MOSTAFA; Arif, USMAN; Li, FU; Zhi Yu, XI

    2017-03-01

    The conventional Kalman filter (KF) algorithm is suitable if the characteristic noise covariance for states as well as measurements is readily known but in most cases these are unknown. Similarly robustness is required instead of smoothing if states are changing abruptly. Such an adaptive as well as robust Kalman filter is vital for many real time applications, like target tracking and navigating aerial vehicles. A number of adaptive as well as robust Kalman filtering methods are available in the literature. In order to investigate the performance of some of these methods, we have selected three different Kalman filters, namely Sage Husa KF, Modified Adaptive Robust KF and Adaptively Robust KF, which are easily simulate able as well as implementable for real time applications. These methods are simulated for land based vehicle and the results are compared with conventional Kalman filter. Results show that the Modified Adaptive Robust KF is best amongst the selected methods and can be used for Navigation applications.

  13. Development of an activated carbon filter to remove NO2 and HONO in indoor air.

    PubMed

    Yoo, Jun Young; Park, Chan Jung; Kim, Ki Yeong; Son, Youn-Suk; Kang, Choong-Min; Wolfson, Jack M; Jung, In-Ha; Lee, Sung-Joo; Koutrakis, Petros

    2015-05-30

    To obtain the optimum removal efficiency of NO2 and HONO by coated activated carbon (ACs), the influencing factors, including the loading rate, metal and non-metal precursors, and mixture ratios, were investigated. The NOx removal efficiency (RE) for K, with the same loading (1.0 wt.%), was generally higher than for those loaded with Cu or Mn. The RE of NO2 was also higher when KOH was used as the K precursor, compared to other K precursors (KI, KNO3, and KMnO4). In addition, the REs by the ACs loaded with K were approximately 38-55% higher than those by uncoated ACs. Overall, the REs (above 95%) of HONO and NOx with 3% KOH were the highest of the coated AC filters that were tested. Additionally, the REs of NOx and HONO using a mixing ratio of 6 (2.5% PABA (p-aminobenzoic acid)+6% H3PO4):4 (3% KOH) were the highest of all the coatings tested (both metal and non-metal). The results of this study show that AC loaded with various coatings has the potential to effectively reduce NO2 and HONO levels in indoor air.

  14. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  15. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  16. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  17. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  18. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  19. Damping strapdown inertial navigation system based on a Kalman filter

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong

    2016-11-01

    A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.

  20. Sampling and Filtering in Photovoltaic System Performance Monitoring

    SciTech Connect

    Driesse, Anton; Stein, Joshua S.; Riley, Daniel M.; Carmignani, Craig K.

    2014-10-01

    The performance of photovoltaic systems must be monitored accurately to ensure profitable long-term operation. The most important signals to be measured—irradiance and temperature, as well as power, current and voltage on both DC and AC sides of the system—contain rapid fluctuations that are not observable by typical monitoring systems. Nevertheless these fluctuations can affect the accuracy of the data that are stored. This report closely examines the main signals in one operating PV system, which were recorded at 2000 samples per second. It analyzes the characteristics and causes of the rapid fluctuations that are found, such as line-frequency harmonics, perturbations from anti-islanding detection, MPPT searching action and others. The operation of PV monitoring systems is then simulated using a wide range of sampling intervals, archive intervals and filtering options to assess how these factors influence data accuracy. Finally several potential sources of error are discussed with real-world examples.

  1. MSK modulated filter bank multicarrier system with mitigated subcarrier interference

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Zhang, Lijia; Xin, Xiangjun

    2017-01-01

    This paper proposes a novel minimum shift keying (MSK) modulated filter bank multi-carrier (FBMC) system. It can improve the signal performance by suppressing the interference among subcarriers. The spectral efficiency can be improved due to the absence of cyclic prefix in the system. In the experiment, a 15.67 Gb/s MSK-FBMC signal is transmitted over 80 km single mode fiber successfully. The performance of FBMC based multicarrier system outperforms that of fast Fourier transforms (FFT) based multicarrier system by 0.9 dB. Compared with QPSK mapping, 1 dB optical signal to noise ratio (OSNR) improvement is obtained with MSK mapping under a normalized residual frequency offset of 0.2.

  2. Mathematical strategies for filtering complex systems: Regularly spaced sparse observations

    SciTech Connect

    Harlim, J. Majda, A.J.

    2008-05-01

    Real time filtering of noisy turbulent signals through sparse observations on a regularly spaced mesh is a notoriously difficult and important prototype filtering problem. Simpler off-line test criteria are proposed here as guidelines for filter performance for these stiff multi-scale filtering problems in the context of linear stochastic partial differential equations with turbulent solutions. Filtering turbulent solutions of the stochastically forced dissipative advection equation through sparse observations is developed as a stringent test bed for filter performance with sparse regular observations. The standard ensemble transform Kalman filter (ETKF) has poor skill on the test bed and even suffers from filter divergence, surprisingly, at observable times with resonant mean forcing and a decaying energy spectrum in the partially observed signal. Systematic alternative filtering strategies are developed here including the Fourier Domain Kalman Filter (FDKF) and various reduced filters called Strongly Damped Approximate Filter (SDAF), Variance Strongly Damped Approximate Filter (VSDAF), and Reduced Fourier Domain Kalman Filter (RFDKF) which operate only on the primary Fourier modes associated with the sparse observation mesh while nevertheless, incorporating into the approximate filter various features of the interaction with the remaining modes. It is shown below that these much cheaper alternative filters have significant skill on the test bed of turbulent solutions which exceeds ETKF and in various regimes often exceeds FDKF, provided that the approximate filters are guided by the off-line test criteria. The skill of the various approximate filters depends on the energy spectrum of the turbulent signal and the observation time relative to the decorrelation time of the turbulence at a given spatial scale in a precise fashion elucidated here.

  3. 340 vault K1 exhaust system HEPA filter evaluation

    SciTech Connect

    Arndt, T.E., Fluor Daniel Hanford

    1997-02-01

    A previous evaluation documented in report WHC-SD-GN-RPT-30005, Rev. 0, titled ``Evaluation on Self-Contained High Efficiency Particulate Filters,`` revealed that the SCHEPA filters do not have required documentation to be in compliance with the design, testing, and fabrication standards required in ASME N-509, ASME N-510, and MIL-F-51068. These standards are required by DOE Order 6430.IA. Without this documentation, filter adequacy cannot be verified. The existing SCHEPA filters can be removed and replaced with new filters and filter housing which meet current codes and standards.

  4. The effects of air leaks on solar air heating systems

    NASA Technical Reports Server (NTRS)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  5. Quick-change filter cartridge

    DOEpatents

    Rodgers, John C.; McFarland, Andrew R.; Ortiz, Carlos A.

    1995-01-01

    A quick-change filter cartridge. In sampling systems for measurement of airborne materials, a filter element is introduced into the sampled airstream such that the aerosol constituents are removed and deposited on the filter. Fragile sampling media often require support in order to prevent rupture during sampling, and careful mounting and sealing to prevent misalignment, tearing, or creasing which would allow the sampled air to bypass the filter. Additionally, handling of filter elements may introduce cross-contamination or exposure of operators to toxic materials. Moreover, it is desirable to enable the preloading of filter media into quick-change cartridges in clean laboratory environments, thereby simplifying and expediting the filter-changing process in the field. The quick-change filter cartridge of the present invention permits the application of a variety of filter media in many types of instruments and may also be used in automated systems. The cartridge includes a base through which a vacuum can be applied to draw air through the filter medium which is located on a porous filter support and held there by means of a cap which forms an airtight seal with the base. The base is also adapted for receiving absorbing media so that both particulates and gas-phase samples may be trapped for investigation, the latter downstream of the aerosol filter.

  6. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  7. Chaos pass filter: linear response of synchronized chaotic systems.

    PubMed

    Zeeb, Steffen; Kestler, Johannes; Kanter, Ido; Kinzel, Wolfgang

    2013-04-01

    The linear response of synchronized time-delayed chaotic systems to small external perturbations, i.e., the phenomenon of chaos pass filter, is investigated for iterated maps. The distribution of distances, i.e., the deviations between two synchronized chaotic units due to external perturbations on the transferred signal, is used as a measure of the linear response. It is calculated numerically and, for some special cases, analytically. Depending on the model parameters this distribution has power law tails in the region of synchronization leading to diverging moments of distances. This is a consequence of multiplicative and additive noise in the corresponding linear equations due to chaos and external perturbations. The linear response can also be quantified by the bit error rate of a transmitted binary message which perturbs the synchronized system. The bit error rate is given by an integral over the distribution of distances and is calculated analytically and numerically. It displays a complex nonmonotonic behavior in the region of synchronization. For special cases the distribution of distances has a fractal structure leading to a devil's staircase for the bit error rate as a function of coupling strength. The response to small harmonic perturbations shows resonances related to coupling and feedback delay times. A bidirectionally coupled chain of three units can completely filter out the perturbation. Thus the second moment and the bit error rate become zero.

  8. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  9. Permanently magnetized high gradient magnetic air filters for the nuclear industry

    SciTech Connect

    Watson, J.H.P.

    1995-11-01

    This paper describes the structure and testing of two novel permanently magnetized magnetic filters for fine radioactive material. In the first filter the holes in the filter are left open as capture proceeds which means the pressure drop builds up only slowly. This filter is not suitable for composite particles which can be broken by mechanical forces. The second filter has been changed so as to strongly capture particles composed of fine particles weakly bound together which tend to break when captured. This uses a principle of assisted capture in which coarse particles aid the capture of the fine fragments. These filters have the following characteristics: (1) no external magnet is required, (2) no external power is required, (3) small in size and portable, (4) easily interchangeable, and (5) can be cleaned without demagnetizing by using a magnetic fluid which matches the susceptibility of the captured particles.

  10. Ensemble Kalman filters for dynamical systems with unresolved turbulence

    SciTech Connect

    Grooms, Ian; Lee, Yoonsang; Majda, Andrew J.

    2014-09-15

    Ensemble Kalman filters are developed for turbulent dynamical systems where the forecast model does not resolve all the active scales of motion. Coarse-resolution models are intended to predict the large-scale part of the true dynamics, but observations invariably include contributions from both the resolved large scales and the unresolved small scales. The error due to the contribution of unresolved scales to the observations, called ‘representation’ or ‘representativeness’ error, is often included as part of the observation error, in addition to the raw measurement error, when estimating the large-scale part of the system. It is here shown how stochastic superparameterization (a multiscale method for subgridscale parameterization) can be used to provide estimates of the statistics of the unresolved scales. In addition, a new framework is developed wherein small-scale statistics can be used to estimate both the resolved and unresolved components of the solution. The one-dimensional test problem from dispersive wave turbulence used here is computationally tractable yet is particularly difficult for filtering because of the non-Gaussian extreme event statistics and substantial small scale turbulence: a shallow energy spectrum proportional to k{sup −5/6} (where k is the wavenumber) results in two-thirds of the climatological variance being carried by the unresolved small scales. Because the unresolved scales contain so much energy, filters that ignore the representation error fail utterly to provide meaningful estimates of the system state. Inclusion of a time-independent climatological estimate of the representation error in a standard framework leads to inaccurate estimates of the large-scale part of the signal; accurate estimates of the large scales are only achieved by using stochastic superparameterization to provide evolving, large-scale dependent predictions of the small-scale statistics. Again, because the unresolved scales contain so much energy

  11. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  12. System for enhanced longevity of in situ microbial filter used for bioremediation

    DOEpatents

    Carman, M. Leslie; Taylor, Robert T.

    2000-01-01

    An improved method for in situ microbial filter bioremediation having increasingly operational longevity of an in situ microbial filter emplaced into an aquifer. A method for generating a microbial filter of sufficient catalytic density and thickness, which has increased replenishment interval, improved bacteria attachment and detachment characteristics and the endogenous stability under in situ conditions. A system for in situ field water remediation.

  13. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (HVAC) filters.

    PubMed

    Farnsworth, James E; Goyal, Sagar M; Kim, Seung Won; Kuehn, Thomas H; Raynor, Peter C; Ramakrishnan, M A; Anantharaman, Senthilvelan; Tang, Weihua

    2006-10-01

    The aim of the work presented here is to study the effectiveness of building air handling units (AHUs) in serving as high volume sampling devices for airborne bacteria and viruses. An HVAC test facility constructed according to ASHRAE Standard 52.2-1999 was used for the controlled loading of HVAC filter media with aerosolized bacteria and virus. Nonpathogenic Bacillus subtilis var. niger was chosen as a surrogate for Bacillus anthracis. Three animal viruses; transmissible gastroenteritis virus (TGEV), avian pneumovirus (APV), and fowlpox virus were chosen as surrogates for three human viruses; SARS coronavirus, respiratory syncytial virus, and smallpox virus; respectively. These bacteria and viruses were nebulized in separate tests and injected into the test duct of the test facility upstream of a MERV 14 filter. SKC Biosamplers upstream and downstream of the test filter served as reference samplers. The collection efficiency of the filter media was calculated to be 96.5 +/- 1.5% for B. subtilis, however no collection efficiency was measured for the viruses as no live virus was ever recovered from the downstream samplers. Filter samples were cut from the test filter and eluted by hand-shaking. An extraction efficiency of 105 +/- 19% was calculated for B. subtilis. The viruses were extracted at much lower efficiencies (0.7-20%). Our results indicate that the airborne concentration of spore-forming bacteria in building AHUs may be determined by analyzing the material collected on HVAC filter media, however culture-based analytical techniques are impractical for virus recovery. Molecular-based identification techniques such as PCR could be used.

  14. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... maintained in accordance with paragraph (g) of this section. (b) Except for DMU or MU locomotives covered... prescribed paragraph (g)(1) of this section. (c) Except for DMU or MU locomotives covered under § 238.309 of... system; and all air brake related filters and dirt collectors. (d) Except for MU locomotives...

  15. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maintained in accordance with paragraph (g) of this section. (b) Except for DMU or MU locomotives covered... prescribed paragraph (g)(1) of this section. (c) Except for DMU or MU locomotives covered under § 238.309 of... system; and all air brake related filters and dirt collectors. (d) Except for MU locomotives...

  16. 49 CFR 229.29 - Air brake system calibration, maintenance, and testing.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maintained in accordance with paragraph (g) of this section. (b) Except for DMU or MU locomotives covered... prescribed paragraph (g)(1) of this section. (c) Except for DMU or MU locomotives covered under § 238.309 of... system; and all air brake related filters and dirt collectors. (d) Except for MU locomotives...

  17. Parameter testing for lattice filter based adaptive modal control systems

    NASA Technical Reports Server (NTRS)

    Sundararajan, N.; Williams, J. P.; Montgomery, R. C.

    1983-01-01

    For Large Space Structures (LSS), an adaptive control system is highly desirable. The present investigation is concerned with an 'indirect' adaptive control scheme wherein the system order, mode shapes, and modal amplitudes are estimated on-line using an identification scheme based on recursive, least-squares, lattice filters. Using the identified model parameters, a modal control law based on a pole-placement scheme with the objective of vibration suppression is employed. A method is presented for closed loop adaptive control of a flexible free-free beam. The adaptive control scheme consists of a two stage identification scheme working in series and a modal pole placement control scheme. The main conclusion from the current study is that the identified parameters cannot be directly used for controller design purposes.

  18. Highly integrated system solutions for air conditioning.

    PubMed

    Bartz, Horst

    2002-08-01

    Starting with the air handling unit, new features concerning energy efficient air treatment in combination with optimisation of required space were presented. Strategic concepts for the supply of one or more operating suites with a modular based air handling system were discussed. The operating theatre ceiling itself, as a major part of the whole integrated system, is no longer a simple air outlet: additional functions have been added in so-called media-bridges, so that it has changed towards a medical apparatus serving as a daily tool for the physicians and the operating staff. Last and not least, the servicing of the whole system has become an integral part of the facility management with remote access to the main functions and controls. The results are understood to be the basis for a discussion with specialists from medical and hygienic disciplines as well as with technically orientated people representing the hospital and building-engineering.

  19. Isokinetic air sampler

    DOEpatents

    Sehmel, George A.

    1979-01-01

    An isokinetic air sampler includes a filter, a holder for the filter, an air pump for drawing air through the filter at a fixed, predetermined rate, an inlet assembly for the sampler having an inlet opening therein of a size such that isokinetic air sampling is obtained at a particular wind speed, a closure for the inlet opening and means for simultaneously opening the closure and turning on the air pump when the wind speed is such that isokinetic air sampling is obtained. A system incorporating a plurality of such samplers provided with air pumps set to draw air through the filter at the same fixed, predetermined rate and having different inlet opening sizes for use at different wind speeds is included within the ambit of the present invention as is a method of sampling air to measure airborne concentrations of particulate pollutants as a function of wind speed.

  20. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  1. Building the Brain's "Air Traffic Control" System: How Early Experiences Shape the Development of Executive Function. Working Paper 11

    ERIC Educational Resources Information Center

    National Scientific Council on the Developing Child, 2011

    2011-01-01

    Being able to focus, hold, and work with information in mind, filter distractions, and switch gears is like having an air traffic control system at a busy airport to manage the arrivals and departures of dozens of planes on multiple runways. In the brain, this air traffic control mechanism is called executive functioning, a group of skills that…

  2. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 6 2012-10-01 2012-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  3. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 6 2013-10-01 2013-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  4. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 6 2014-10-01 2014-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  5. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 6 2011-10-01 2011-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  6. Field-widened Michelson interferometer system as the spectroscopic filter of high-spectral-resolution lidar

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongtao; Liu, Dong; Zhou, Yudi; Yang, Yongying; Zhang, Yupeng; Luo, Jing; Bai, Jian; Liu, Chong; Shen, Yibing

    2016-05-01

    We propose and develop a field-widened Michelson interferometer (FWMI) system to act as a new type of spectroscopic filter in HSRL application. Due to the field widening characteristic, the FWMI can allow relatively large off-axis incident angle, and can be designed to any desirable wavelength. The theoretical foundations of the FWMI are introduced in this paper, and the developed prototype interferometer is described. It consists of a solid arm made of the glass H-ZF52 with the dimension of 37.876 mm, and an air gap with the length of 20.382 mm. These two interference arms are connected to a cube beam splitter to constitute a Michelson interferometer. Due to the matched dimensions and refractive indices of the two arms, the experimental testing results show that the OPD variation of the developed FWMI is about 0.04 lambda and the RMS is less than 0.008 lambda when the incident angle is as much as 1.5 degree (half angle). The cumulative wavefront distortion caused by the FWMI is less than 0.1 lambda PV value and 0.02 lambda RMS value. To lock the filtering frequency of the FWMI to the laser transmitter, a frequency locking system, which is actually an electro-optic feedback loop, is established. The setup and principle of this frequency locking system are also described in detail. Good locking accuracy of the FWMI about 27MHz is demonstrated through the frequency locking technique. All these results validate the feasibility of this developed FWMI system as a spectroscopic filter of an HSRL.

  7. Filter Measurement System for Nuclear Material Storage Canisters. End of Year Report FY 2013

    SciTech Connect

    Moore, Murray E.; Reeves, Kirk P.

    2014-02-03

    A test system has been developed at Los Alamos National Laboratory to measure the aerosol collection efficiency of filters in the lids of storage canisters for special nuclear materials. Two FTS (filter test system) devices have been constructed; one will be used in the LANL TA-55 facility with lids from canisters that have stored nuclear material. The other FTS device will be used in TA-3 at the Radiation Protection Division’s Aerosol Engineering Facility. The TA-3 system will have an expanded analytical capability, compared to the TA-55 system that will be used for operational performance testing. The LANL FTS is intended to be automatic in operation, with independent instrument checks for each system component. The FTS has been described in a complete P&ID (piping and instrumentation diagram) sketch, included in this report. The TA-3 FTS system is currently in a proof-of-concept status, and TA-55 FTS is a production-quality prototype. The LANL specification for (Hagan and SAVY) storage canisters requires the filter shall “capture greater than 99.97% of 0.45-micron mean diameter dioctyl phthalate (DOP) aerosol at the rated flow with a DOP concentration of 65±15 micrograms per liter”. The percent penetration (PEN%) and pressure drop (DP) of fifteen (15) Hagan canister lids were measured by NFT Inc. (Golden, CO) over a period of time, starting in the year 2002. The Los Alamos FTS measured these quantities on June 21, 2013 and on Oct. 30, 2013. The LANL(6-21-2013) results did not statistically match the NFT Inc. data, and the LANL FTS system was re-evaluated, and the aerosol generator was replaced and the air flow measurement method was corrected. The subsequent LANL(10-30-2013) tests indicate that the PEN% results are statistically identical to the NFT Inc. results. The LANL(10-30-2013) pressure drop measurements are closer to the NFT Inc. data, but future work will be investigated. An operating procedure for the FTS (filter test system) was written, and

  8. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  9. Comparing Pre-filtering and Post-filtering Approach in a Collaborative Contextual Recommender System: An Application to E-Commerce

    NASA Astrophysics Data System (ADS)

    Panniello, Umberto; Gorgoglione, Michele; Palmisano, Cosimo

    Recent literature predicts that including context in a recommender system may improve its performance. The context-based recommendation approaches are classified as pre-filtering, post-filtering and contextual modeling. Little research has been done on studying whether including context in a recommender system improves the recommendation performance and no research has compared yet the different approaches to contextual RS. The research contribution of this work lies in studying the effect of the context on the recommendation performance and comparing a pre-filtering approach to a post-filtering using a collaborative filtering recommender system.

  10. A novel vented microisolation container for caging animals: microenvironmental comfort in a closed-system filter cage.

    PubMed

    Rivard, G F; Neff, D E; Cullen, J F; Welch, S W

    2000-01-01

    We designed a closed-system cage with vent ports that would allow continuous airflow in the occupied cage to ensure adequate ventilation and gas exchange. In this system, the metabolic heat loads of mice generate upward thermal air currents. Heat exits via the exhaust port, and room air enters via the intake port, providing adequate ventilation. Simulations based on computational fluid dynamics (CFD) helped us to optimize the cage's design. CFD simulations and smoke visualizations with a feeder-trough assembly illustrated the one-pass air circulation pattern and the lack of air recirculation, turbulence, and dead air space in our system. We used hot-film anemometry and smoke-test methodologies to show that adequate ventilation was provided. In a room with still air (0 air changes per hour [ACH]), a cage fitted with double wire-cloth filters (40 mesh size) and occupied by five mice has at least 12 ACH, whereas the same cage occupied by one mouse has 6 ACH. After five mice had occupied the cage for a week, its average temperature was 0.58C, relative humidity was 34%, and ammonia concentration was 3 ppm higher than that of the room. Our novel vented microisolation cage provides adequate intracage ACH, isolates mice from environmental contaminants, and contains allergenic particles within the cage in an environment appropriate for the species.

  11. Method and system of filtering and recommending documents

    DOEpatents

    Patton, Robert M.; Potok, Thomas E.

    2016-02-09

    Disclosed is a method and system for discovering documents using a computer and providing a small set of the most relevant documents to the attention of a human observer. Using the method, the computer obtains a seed document from the user and generates a seed document vector using term frequency-inverse corpus frequency weighting. A keyword index for a plurality of source documents can be compared with the weighted terms of the seed document vector. The comparison is then filtered to reduce the number of documents, which define an initial subset of the source documents. Initial subset vectors are generated and compared to the seed document vector to obtain a similarity value for each comparison. Based on the similarity value, the method then recommends one or more of the source documents.

  12. Bioimaging system using acousto-optic tunable filter

    NASA Astrophysics Data System (ADS)

    Kasili, Paul M.; Mobley, Joel; Cullum, Brian M.; Vo-Dinh, Tuan

    2000-05-01

    The interaction of light with tissue has ben used to recognize disease since the mid-1800s. The recent developments of light sources, detectors, and fiber optic probes provide opportunities to measure these interactions, which yield information for tissue diagnosis at the biochemical, structural, or physiological level. In this paper, we describe a bioimaging system designed for biomedical applications and show laser-indued fluorescence (LIF) images mammalian brain tissue. The LIF imaging of tissue was carried out in vitro using two laser excitations: 488 nm and 514 nm. Images were recorded through an acousto- optic tunable filter over the range 500 nm-650 nm with a charged coupled device camera. Background subtracted images were generated across the fluorescent wavelength. Subtraction allowed a safe comparison to be made with well- contrasted images. Of the two tested excitation wavelengths, 488 nm excitation gave the more distinctive contrast.

  13. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  14. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  15. Quantitative fuel vapor/air mixing imaging in droplet/gas regions of an evaporating spray flow using filtered Rayleigh scattering.

    PubMed

    Allison, Patton M; McManus, Thomas A; Sutton, Jeffrey A

    2016-03-15

    This Letter demonstrates the application of filtered Rayleigh scattering (FRS) for quantitative two-dimensional fuel vapor/air mixing measurements in an evaporating hydrocarbon fuel spray flow. Using the FRS approach, gas-phase measurements are made in the presence of liquid-phase droplets without interference. Effective suppression of the liquid-phase droplet scattering using FRS is enabled by the high spectral purity of the current Nd:YAG laser system. Simultaneous Mie-scattering imaging is used to visualize the droplet field and illustrate the droplet loading under which the FRS imaging is applied in the current spray flows. The initial quantification of the FRS imaging is based on calibration measurements from a flow cell of known fuel vapor/air mixtures, while future work targets the utilization of a Rayleigh-Brillouin spectral model for quantification of the FRS signals.

  16. Portable XRF analysis of occupational air filter samples from different workplaces using different samplers: final results, summary and conclusions.

    PubMed

    Harper, Martin; Pacolay, Bruce; Hintz, Patrick; Bartley, David L; Slaven, James E; Andrew, Michael E

    2007-11-01

    This paper concludes a five-year program on research into the use of a portable X-ray fluorescence (XRF) analyzer for analyzing lead in air sampling filters from different industrial environments, including mining, manufacturing and recycling. The results from four of these environments have already been reported. The results from two additional metal processes are presented here. At both of these sites, lead was a minor component of the total airborne metals and interferences from other elements were minimal. Nevertheless, only results from the three sites where lead was the most abundant metal were used in the overall calculation of method accuracy. The XRF analyzer was used to interrogate the filters, which were then subjected to acid digestion and analysis by inductively-coupled plasma optical-emission spectroscopy (ICP-OES). The filter samples were collected using different filter-holders or "samplers" where the size (diameter), depth and homogeneity of aerosol deposit varied from sampler to sampler. The aerosol collection efficiencies of the samplers were expected to differ, especially for larger particles. The distribution of particles once having entered the sampler was also expected to differ between samplers. Samplers were paired to allow the between-sampler variability to be addressed, and, in some cases, internal sampler wall deposits were evaluated and compared to the filter catch. It was found, rather surprisingly, that analysis of the filter deposits (by ICP-OES) of all the samplers gave equivalent results. It was also found that deposits on some of the sampler walls, which in some protocols are considered part of the sample, could be significant in comparison to the filter deposit. If it is concluded that wall-deposits should be analyzed, then XRF analysis of the filter can only give a minimum estimate of the concentration. Techniques for the statistical analysis of field data were also developed as part of this program and have been reported

  17. Moment estimation for chemically reacting systems by extended Kalman filtering.

    PubMed

    Ruess, J; Milias-Argeitis, A; Summers, S; Lygeros, J

    2011-10-28

    In stochastic models of chemically reacting systems that contain bimolecular reactions, the dynamics of the moments of order up to n of the species populations do not form a closed system, in the sense that their time-derivatives depend on moments of order n + 1. To close the dynamics, the moments of order n + 1 are generally approximated by nonlinear functions of the lower order moments. If the molecule counts of some of the species have a high probability of becoming zero, such approximations may lead to imprecise results and stochastic simulation is the only viable alternative for system analysis. Stochastic simulation can produce exact realizations of chemically reacting systems, but tends to become computationally expensive, especially for stiff systems that involve reactions at different time scales. Further, in some systems, important stochastic events can be very rare and many simulations are necessary to obtain accurate estimates. The computational cost of stochastic simulation can then be prohibitively large. In this paper, we propose a novel method for estimating the moments of chemically reacting systems. The method is based on closing the moment dynamics by replacing the moments of order n + 1 by estimates calculated from a small number of stochastic simulation runs. The resulting stochastic system is then used in an extended Kalman filter, where estimates of the moments of order up to n, obtained from the same simulation, serve as outputs of the system. While the initial motivation for the method was improving over the performance of stochastic simulation and moment closure methods, we also demonstrate that it can be used in an experimental setting to estimate moments of species that cannot be measured directly from time course measurements of the moments of other species.

  18. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  19. Maintenance History of an Oberlin{reg_sign} Pressure Filter System

    SciTech Connect

    Burch, J.V.; Norford, S.W.; Martin, H.L.

    1998-05-01

    Two Oberlin 24 sq. ft. pressure filters, operating in parallel for thirteen years at the Savannah River Site, have reliably removed precipitated metals from treated wastewater for direct discharge to surface stream. The maintenance history and modifications of these filters, as well as their flocculation and filter aid addition systems are reviewed. These system modifications have successfully extended service life of individual components and have improved total systems performance.

  20. Air filters and air cleaners: Rostrum by the American Academy of Allergy, Asthma & Immunology Indoor Allergen Committee

    PubMed Central

    Sublett, James L.; Seltzer, James; Burkhead, Robert; Williams, P. Brock; Wedner, H. James; Phipatanakul, Wanda

    2010-01-01

    The allergist is generally recognized as possessing the greatest expertise in relating airborne contaminants to respiratory health, both atopic and nonatopic. Consequently, allergists are most often asked for their professional opinions regarding the appropriate use of air-cleaning equipment. This rostrum serves as a resource for the allergist and other health care professionals seeking a better understanding of air filtration. PMID:19910039

  1. An experimental approach to efficiency calibration for gamma-ray spectrometric analysis of large air particulate filters

    NASA Astrophysics Data System (ADS)

    Tomarchio, Elio

    2013-04-01

    A full-energy-peak efficiency (FEPE) calibration procedure for gamma-ray spectrometric analysis of air particulate samples collected on large filters is described herein. The experimental results are obtained for an unconventional measurement geometry, termed a "packet-sample". The sample is obtained from a large cellulose filter (45 cm×45 cm) used to collect air particulate samples that is resized to dimensions suitable for spectrometric measurements (6 cm×6 cm×0.7 cm). To determine the FEPEs, many standards were created, i.e., some filters containing a small amount of ThO2 and others containing a known amount of KCl. Efficiency curves obtained through best fits to experimental data for three high-purity germanium (HPGe) detectors, one of them for X-ray measurement, cover the energy range from 40 keV to 2600 keV. To validate the efficiency calibration procedure two experimental tests with the use of calibrated sources were conducted and, as application example, airborne concentrations of 131I (particulate matter), 134Cs and 137Cs at Palermo (Italy) in the days following the Fukushima accident in Japan were evaluated.

  2. Inverter Output Filter Effect on PWM Motor Drives of a Flywheel Energy Storage System

    NASA Technical Reports Server (NTRS)

    Santiago, Walter

    2004-01-01

    NASA Glenn Research Center (GRC) has been involved in the research and development of high speed flywheel systems for small satellite energy storage and attitude control applications. One research and development area has been the minimization of the switching noise produced by the pulsed width modulated (PWM) inverter that drives the flywheel permanent magnet motor/generator (PM M/G). This noise can interfere with the flywheel M/G hardware and the system avionics hampering the full speed performance of the flywheel system. One way to attenuate the inverter switching noise is by placing an AC filter at the three phase output terminals of the inverter with the filter neutral point connected to the DC link (DC bus) midpoint capacitors. The main benefit of using an AC filter in this fashion is the significant reduction of the inverter s high dv/dt switching and its harmonics components. Additionally, common mode (CM) and differential mode (DM) voltages caused by the inverter s high dv/dt switching are also reduced. Several topologies of AC filters have been implemented and compared. One AC filter topology consists of a two-stage R-L-C low pass filter. The other topology consists of the same two-stage R-L-C low pass filter with a series connected trap filter (an inductor and capacitor connected in parallel). This paper presents the analysis, design and experimental results of these AC filter topologies and the comparison between the no filter case and conventional AC filter.

  3. The Dual Carrier ABSK System Based on a FIR Bandpass Filter

    PubMed Central

    Chen, Zhimin; Wu, Lenan; Wang, Jiwu

    2014-01-01

    The special impacting filter (SIF) with IIR structure has been used to demodulate ABSK signals. The key points of SIF, including the resonance circuit's high Q value and the “slope-phase discrimination” character of the filter sideband, are demonstrated in the paper. The FIR narrow-band bandpass filtering system, which can also provide the impact-filtering effect, is proposed. A dual carrier system of ABSK signals is designed with the proposed FIR filter as its receiver. The simulation results show that the FIR filter can work well. Moreover, compared to the traditional SIF, the proposed FIR filter can not only achieve higher spectral efficiency, but also give better demodulation performance. PMID:24658625

  4. Precision SAW filters for a large phased-array radar system

    NASA Astrophysics Data System (ADS)

    Haydl, W. H.; Sander, W.; Wirth, W.-D.

    1981-05-01

    The electronically steerable radar (ELRA) at the Forschungsinstitut fuer Funk und Mathematik is an experimental S-band phased-array radar system consisting of separate transmitting and receiving arrays employing several coherent and incoherent signal-processing and data-handling techniques, incorporating multiple beam and multifunction operation for target search and tracking, adaptive interference suppression, and target resolution. This paper deals with the development and application of two types of SAW filters for the IF amplifier channel of the receiving array. Compared to conventional filters with lumped elements, these filters have some important merits. By making use of a special tuning technique, the center frequencies of all filters were adjusted, resulting in an rms deviation of less than 1 kHz. One type of the SAW filters represents an almost ideal approach of realizing a matched filter for rectangular shaped pulses. The conformity of the frequency responses of several hundred filters improved the noise suppression capability of the system.

  5. ETV TEST REPORT OF CONTROL OF BIOAEROSOLS IN HVAC SYSTEMS GLASFLOSS INDUSTRIES EXCEL FILTER, MODEL SBG24242898

    EPA Science Inventory

    The Environmental Technology Verification report discusses the technology and performance of the Excel Filter, Model SBG24242898 air filter for dust and bioaerosol filtration manufactured by Glasfloss Industries, Inc. The pressure drop across the filter was 82 Pa clean and 348 Pa...

  6. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  7. An innovative air data system for the Space Shuttle Orbiter - Data analysis techniques

    NASA Technical Reports Server (NTRS)

    Pruett, C. D.; Wolf, H.; Heck, M. L.; Siemers, P. M., III

    1981-01-01

    The Shuttle Entry Air Data System (SEADS) is an experimental system designed to supply research quality air data and to meet Orbiter operational air data requirements throughout entry. SEADS incorporates no mechanical devices but is based on the concept that the fuselage proper, whether symmetrical or not, can be instrumented so as to function both as a pitot-static probe and as a differential pressure flow direction sensor. Specifically SEADS consists of 20 flush orifices, each routed to a pair of absolute pressure transducers. A computational technique has been developed capable of extracting air data parameters solely from surface pressure measurements. The digital filtering algorithm implemented in SEADS is the natural adaptation to air data sensing of a technology widely used in navigation, guidance, and control systems.

  8. Decentralised ? - filtering of networked control systems: a jump system approach

    NASA Astrophysics Data System (ADS)

    Al-Radhawi, Muhammad Ali; Bettayeb, Maamar

    2014-10-01

    We consider the problem of decentralised estimation of discrete-time interconnected systems with local estimators communicating with their subsystems over lossy communication channels. Assuming that the packet losses follow the Gilbert-Elliot model, the networked estimation problem can be formulated into a Markovian jump linear system framework. Modelling subsystem interactions as sum quadratic constrained uncertainties, we design mode-dependent decentralised ?-estimators that robustly stabilise the estimator system and guarantee a given disturbance attenuation level. The estimation gains are derived with necessary and sufficient rank-constrained linear matrix inequality conditions. Results are also provided for local mode-dependent estimators. Estimator synthesis is done using a cone-complementarity linearisation algorithm for the rank-constraints. The results are illustrated via an example.

  9. A modified biotrickling filter for nitrification-denitrification in the treatment of an ammonia-contaminated air stream.

    PubMed

    Raboni, Massimo; Torretta, Vincenzo

    2016-12-01

    A conventional biotrickling filter for airborne ammonia nitrification has been modified, by converting the liquid sump into a biological denitrifying reactor. The biotrickling filter achieves an average ammonia removal efficiency of 92.4 %, with an empty bed retention time (EBRT) equal to 36 s and an average ammonia concentration of 54.7 mg Nm(-3) in the raw air stream. The denitrification reactor converts ammonia into inert gas N2, in addition to other important advantages connected to the alkaline character of the biochemical pathway of the denitrifying bacteria. Firstly, the trickling water crossing the denitrification reactor underwent a notable pH increase from 7.3 to 8.0 which prevented the acidic inhibition of the nitrifying bacteria due to the buildup of nitric and nitrous acids. Secondly, the pH increase created the ideal conditions for the autotrophic nitrifying bacteria. The tests proved that an ammonia removal efficiency of above 90 % can be achieved with an EBRT greater than 30 s and a volumetric load lower than 200 g NH3 m(-3) day(-1). The results of the biofilm observation by using a scanning confocal laser microscope are reported together with the identification of degrading bacteria genera in the biotrickling filter. The efficiency of the plant and its excellent operational stability highlight the effectiveness of the synergistic action between the denitrification reactor and the biotrickling filter in removing airborne ammonia.

  10. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    SciTech Connect

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D.

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  11. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  12. Ozone Removal by Filters Containing Activated Carbon: A Pilot Study

    SciTech Connect

    Fisk, William; Spears, Mike; Sullivan, Douglas; Mendell, Mark

    2009-09-01

    This study evaluated the ozone removal performance of moderate-cost particle filters containing activated carbon when installed in a commercial building heating, ventilating, and air conditioning (HVAC) system. Filters containing 300 g of activated carbon per 0.09 m2 of filter face area were installed in two 'experimental' filter banks within an office building located in Sacramento, CA. The ozone removal performance of the filters was assessed through periodic measurements of ozone concentrations in the air upstream and downstream of the filters. Ozone concentrations were also measured upstream and downstream of a 'reference' filter bank containing filters without any activated carbon. The filter banks with prefilters containing activated carbon were removing 60percent to 70percent of the ozone 67 and 81 days after filter installation. In contrast, there was negligible ozone removal by the reference filter bank without activated carbon.

  13. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. (a) Supply system. (1) Supply ducts and any dampers contained..., Class 1, or Class 2 air ducts. Class 2 air ducts shall be located at least 3 feet from the...

  14. Link performance model for filter bank based multicarrier systems

    NASA Astrophysics Data System (ADS)

    Petrov, Dmitry; Oborina, Alexandra; Giupponi, Lorenza; Stitz, Tobias Hidalgo

    2014-12-01

    This paper presents a complete link level abstraction model for link quality estimation on the system level of filter bank multicarrier (FBMC)-based networks. The application of mean mutual information per coded bit (MMIB) approach is validated for the FBMC systems. The considered quality measure of the resource element for the FBMC transmission is the received signal-to-noise-plus-distortion ratio (SNDR). Simulation results of the proposed link abstraction model show that the proposed approach is capable of estimating the block error rate (BLER) accurately, even when the signal is propagated through the channels with deep and frequent fades, as it is the case for the 3GPP Hilly Terrain (3GPP-HT) and Enhanced Typical Urban (ETU) models. The FBMC-related results of link level simulations are compared with cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) analogs. Simulation results are also validated through the comparison to reference publicly available results. Finally, the steps of link level abstraction algorithm for FBMC are formulated and its application for system level simulation of a professional mobile radio (PMR) network is discussed.

  15. Towards collaborative filtering recommender systems for tailored health communications.

    PubMed

    Marlin, Benjamin M; Adams, Roy J; Sadasivam, Rajani; Houston, Thomas K

    2013-01-01

    The goal of computer tailored health communications (CTHC) is to promote healthy behaviors by sending messages tailored to individual patients. Current CTHC systems collect baseline patient "profiles" and then use expert-written, rule-based systems to target messages to subsets of patients. Our main interest in this work is the study of collaborative filtering-based CTHC systems that can learn to tailor future message selections to individual patients based explicit feedback about past message selections. This paper reports the results of a study designed to collect explicit feedback (ratings) regarding four aspects of messages from 100 subjects in the smoking cessation support domain. Our results show that most users have positive opinions of most messages and that the ratings for all four aspects of the messages are highly correlated with each other. Finally, we conduct a range of rating prediction experiments comparing several different model variations. Our results show that predicting future ratings based on each user's past ratings contributes the most to predictive accuracy.

  16. Evaluation of an air drilling cuttings containment system

    SciTech Connect

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  17. Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS

    NASA Astrophysics Data System (ADS)

    Bechy-Loizeau, Anne-Laure; Flandrois, Jean-Pierre; Abaibou, Hafid

    2015-07-01

    On the ISS, as on Earth, water is an essential element for life and its quality control on a regular basis allows to ensure the health of the crew and the integrity of equipment. Currently, microbial water analysis onboard ISS still relies on the traditional culture-based microbiology methods. Molecular methods based on the amplification of nucleic acids for microbiological analysis of water quality show enormous potential and are considered as the best alternative to culture-based methods. For this reason, the Midass, a fully integrated and automated prototype was designed conjointly by ESA and bioMérieux for a rapid monitoring of the microbiological quality of air. The prototype allows air sampling, sample processing and the amplification/detection of nucleic acids. We describe herein the proof of principle of an analytical approach based on molecular biology that could fulfill the ESA's need for a rapid monitoring of the microbiological quality of recycled water onboard ISS. Both concentration and recovery of microorganisms are the main critical steps when the microfiltration technology is used for water analysis. Among filters recommended standards for monitoring the microbiological quality of the water, the polycarbonate filter was fully in line with the requirements of the ISO 7704-1985 standard in terms of efficacy of capture and recovery of bacteria. Moreover, this filter does not retain nucleic acids on the surface and has no inhibitory effect on their downstream processing steps such as purification and amplification/detection. Although the Midass system was designed for the treatment of air samples, the first results on the integration of PC filters were encouraging. Nevertheless, system modifications are needed to better adapt the Midass system for the monitoring of the microbiological water quality.

  18. Assessment of polycarbonate filter in a molecular analytical system for the microbiological quality monitoring of recycled waters onboard ISS.

    PubMed

    Bechy-Loizeau, Anne-Laure; Flandrois, Jean-Pierre; Abaibou, Hafid

    2015-07-01

    On the ISS, as on Earth, water is an essential element for life and its quality control on a regular basis allows to ensure the health of the crew and the integrity of equipment. Currently, microbial water analysis onboard ISS still relies on the traditional culture-based microbiology methods. Molecular methods based on the amplification of nucleic acids for microbiological analysis of water quality show enormous potential and are considered as the best alternative to culture-based methods. For this reason, the Midass, a fully integrated and automated prototype was designed conjointly by ESA and bioMérieux for a rapid monitoring of the microbiological quality of air. The prototype allows air sampling, sample processing and the amplification/detection of nucleic acids. We describe herein the proof of principle of an analytical approach based on molecular biology that could fulfill the ESA's need for a rapid monitoring of the microbiological quality of recycled water onboard ISS. Both concentration and recovery of microorganisms are the main critical steps when the microfiltration technology is used for water analysis. Among filters recommended standards for monitoring the microbiological quality of the water, the polycarbonate filter was fully in line with the requirements of the ISO 7704-1985 standard in terms of efficacy of capture and recovery of bacteria. Moreover, this filter does not retain nucleic acids on the surface and has no inhibitory effect on their downstream processing steps such as purification and amplification/detection. Although the Midass system was designed for the treatment of air samples, the first results on the integration of PC filters were encouraging. Nevertheless, system modifications are needed to better adapt the Midass system for the monitoring of the microbiological water quality.

  19. Ultra-wide tuning single channel filter based on one-dimensional photonic crystal with an air cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaodan; Yang, Yibiao; Chen, Zhihui; Wang, Yuncai; Fei, Hongming; Deng, Xiao

    2017-02-01

    By inserting an air cavity into a one-dimensional photonic crystal of LiF/GaSb, a tunable filter covering the whole visible range is proposed. Following consideration of the dispersion of the materials, through modulating the thickness of the air cavity, we demonstrate that a single resonant peak can shift from 416.1 to 667.3 nm in the band gap at normal incidence by means of the transfer matrix method. The research also shows that the transmittance of the channel can be maximized when the number of periodic LiF/GaSb layers on one side of the air defect layer is equal to that of the other side. When adding a period to both sides respectively, the full width at half maximum of the defect mode is reduced by one order of magnitude. This structure will provide a promising approach to fabricate practical tunable filters in the visible region with ultra-wide tuning range. Project supported by the National Natural Science Foundation of China (Nos. 61575138, 61307069, 51205273), and the Top Young Academic Leaders and the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi.

  20. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  1. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions.

    PubMed

    Giffin, Paxton K; Parsons, Michael S; Unz, Ronald J; Waggoner, Charles A

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m(3)/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  2. Fabrication of an anti-viral air filter with SiO₂-Ag nanoparticles and performance evaluation in a continuous airflow condition.

    PubMed

    Joe, Yun Haeng; Woo, Kyoungja; Hwang, Jungho

    2014-09-15

    In this study, SiO2 nanoparticles surface coated with Ag nanoparticles (SA particles) were fabricated to coat a medium air filter. The pressure drop, filtration efficiency, and anti-viral ability of the filter were evaluated against aerosolized bacteriophage MS2 in a continuous air flow condition. A mathematical approach was developed to measure the anti-viral ability of the filter with various virus deposition times. Moreover, two quality factors based on the anti-viral ability of the filter, and a traditional quality factor based on filtration efficiency, were calculated. The filtration efficiency and pressure drop increased with decreasing media velocity and with increasing SA particle coating level. The anti-viral efficiency also increased with increasing SA particle coating level, and decreased by with increasing virus deposition time. Consequently, SA particle coating on a filter does not have significant effects on filtration quality, and there is an optimal coating level to produce the highest anti-viral quality.

  3. Secondary air injection system and method

    SciTech Connect

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  4. Low-Resistance Dual-Purpose Air Filter Releasing Negative Ions and Effectively Capturing PM2.5.

    PubMed

    Zhao, Xinglei; Li, Yuyao; Hua, Ting; Jiang, Pan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2017-04-05

    The fatal danger of pollution due to particulate matter (PM) calls for both high-efficiency and low-resistance air purification materials, which also provide healthcare. This is however still a challenge. Herein, a low-resistance air filter capable of releasing negative ions (NIs) and efficiently capturing PM2.5 was prepared by electrospinning polyvinylidene fluoride (PVDF) fibers doped with negative ions powder (NIPs). The air-resistance of fibrous membranes decreased from 9.5 to 6 Pa (decrease of 36%) on decreasing the average fiber diameter from 1.16 to 0.41 μm. Moreover, the lower rising rate of air-resistance with reduction in pore size, for fibrous membranes with thinner fiber diameter was verified. In addition, a single PVDF/NIPs fiber was provided with strong surface potentials, due to high fluorine electronegativity, and tested using atomic force microscopy. This strong surface potential resulted in higher releasing amounts of NIs (RANIs). Interestingly, reduction of fiber diameter favored the alleviation of the shielding effects on electric field around fibers and promoted the RANIs from 798 to 1711 ions cc(-1). Moreover, by regulating the doping contents of NIPs, the RANIs increased from 1711 to 2818 ions cc(-1). The resultant fibrous membranes showed low air resistance of 40.5 Pa. Field-tests conducted in Shanghai showed stable PM2.5 purification efficiency of 99.99% at high RANIs, in the event of haze.

  5. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  6. Adaptation of a Filter Assembly to Assess Microbial Bioburden of Pressurant Within a Propulsion System

    NASA Technical Reports Server (NTRS)

    Benardini, James N.; Koukol, Robert C.; Schubert, Wayne W.; Morales, Fabian; Klatte, Marlin F.

    2012-01-01

    A report describes an adaptation of a filter assembly to enable it to be used to filter out microorganisms from a propulsion system. The filter assembly has previously been used for particulates greater than 2 micrometers. Projects that utilize large volumes of nonmetallic materials of planetary protection concern pose a challenge to their bioburden budget, as a conservative specification value of 30 spores per cubic centimeter is typically used. Helium was collected utilizing an adapted filtration approach employing an existing Millipore filter assembly apparatus used by the propulsion team for particulate analysis. The filter holder on the assembly has a 47-mm diameter, and typically a 1.2-5 micrometer pore-size filter is used for particulate analysis making it compatible with commercially available sterilization filters (0.22 micrometers) that are necessary for biological sampling. This adaptation to an existing technology provides a proof-of-concept and a demonstration of successful use in a ground equipment system. This adaptation has demonstrated that the Millipore filter assembly can be utilized to filter out microorganisms from a propulsion system, whereas in previous uses the filter assembly was utilized for particulates greater than 2 micrometers.

  7. The ecological filter system for treatment of decentralized wastewater.

    PubMed

    Zhong, Kun; Luo, Yi-Yong; Wu, Zheng-Song; He, Qiang; Hu, Xue-Bin; Jie, Qi-Wu; Li, Yan-Ting; Wang, Shao-Jie

    2016-10-01

    A vertical flow constructed wetland was combined with a biological aerated filter to develop an ecological filter, and to obtain the optimal operating parameters: The hydraulic loading was 1.55 m(3)/(m(2)·d), carbon-nitrogen ratio was 10, and gas-water ratio was 6. The experimental results demonstrated considerable removal efficiency of chemical oxygen demand (COD), ammonia nitrogen (NH4(+)-N), total nitrogen (TN), and total phosphorus (TP) in wastewater by the ecological filter, with average removal rates of 83.79%, 93.10%, 52.90%, and 79.07%, respectively. Concentration of NH4(+)-N after treatment met the level-A discharge standard of GB18918-2002. Compared with non-plant filter, the ecological filter improved average removal efficiency of COD, NH4(+)-N, TN, and TP by 13.03%, 25.30%, 14.80%, and 2.32%, respectively: thus, plants significantly contribute to the removal of organic pollutants and nitrogen. Through microporous aeration and O2 secretion of plants, the ecological filter formed an aerobic-anaerobic-aerobic alternating environment; thus aerobic and anaerobic microbes were active and effectively removed organic pollutants. Meanwhile, nitrogen and phosphorus were directly assimilated by plants and as nutrients of microorganisms. Meanwhile, pollutants were removed through nitrification, denitrification, filtration, adsorption, and interception by the filler. High removal rates of pollutants on the ecological filter proved that it is an effective wastewater-treatment technology for decentralized wastewater of mountainous towns.

  8. 21. DETAIL OF AIR HANDLER 1 (MST AIRCONDITIONING SYSTEM) INTERIOR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. DETAIL OF AIR HANDLER 1 (MST AIR-CONDITIONING SYSTEM) INTERIOR, SOUTHEAST CORNER, STATION 30, SLC-3W MST - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 West, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. Empirical Evaluation of Explicit versus Implicit Acquisition of User Profiles in Information Filtering Systems.

    ERIC Educational Resources Information Center

    Quiroga, Luz Marina; Mostafa, Javed

    2000-01-01

    Compares three different approaches of user profile acquisition in a filtering system for customizing information acquisition on the World Wide Web. Explains the SIFTER system designed at Indiana University and discusses results of an analysis of variance that showed exclusive reliance on relevance feedback led to inferior filtering performance.…

  10. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    PubMed

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  11. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  12. Broad tuning range filtering system with Optune interferometers

    NASA Astrophysics Data System (ADS)

    Miron, Nicolae

    2008-08-01

    An optical system built with two Optune interferometers cascaded according to Vernier principle has attractive tunable band pass filtering properties for numerous applications. Several characteristics of Optune interferometer such as 0.2 dB insertion loss flatness across at least 90 nm interval, no tuning holes across 240 nm tuning range, quasi-periodic free spectral range and 1 dB insertion loss are key parameters to obtain a cascade with 0.1 nm band pass tunable across minimum 90 nm. Several properties of Optune interferometers are analyzed to build a cascade tunable across minimum 90 nm: the relationships between the free spectral ranges, bandwidths and tuning conditions. It is presented also a cascade prototype with two interferometers having 9.72 nm free spectral range and respectively 11.12 nm free spectral range. The cascade band pass is 0.1 nm tunable with 1 pm accuracy to any arbitrary wavelength across 150 nm free spectral range, without any tuning hole. It has 0.125 ms / 100 nm tuning speed, the insertion loss is less than 3 dB, 50 dB contrast, 0.5 dB flatness and 0.2 dB polarization dependent loss. A controller based on digital signal processor monitors the operation of the cascade to achieve optimum tuning performance.

  13. Fuzzy Logic Based Autonomous Parallel Parking System with Kalman Filtering

    NASA Astrophysics Data System (ADS)

    Panomruttanarug, Benjamas; Higuchi, Kohji

    This paper presents an emulation of fuzzy logic control schemes for an autonomous parallel parking system in a backward maneuver. There are four infrared sensors sending the distance data to a microcontroller for generating an obstacle-free parking path. Two of them mounted on the front and rear wheels on the parking side are used as the inputs to the fuzzy rules to calculate a proper steering angle while backing. The other two attached to the front and rear ends serve for avoiding collision with other cars along the parking space. At the end of parking processes, the vehicle will be in line with other parked cars and positioned in the middle of the free space. Fuzzy rules are designed based upon a wall following process. Performance of the infrared sensors is improved using Kalman filtering. The design method needs extra information from ultrasonic sensors. Starting from modeling the ultrasonic sensor in 1-D state space forms, one makes use of the infrared sensor as a measurement to update the predicted values. Experimental results demonstrate the effectiveness of sensor improvement.

  14. Volcano monitoring using the Global Positioning System: Filtering strategies

    USGS Publications Warehouse

    Larson, K.M.; Cervelli, Peter; Lisowski, M.; Miklius, Asta; Segall, P.; Owen, S.

    2001-01-01

    Permanent Global Positioning System (GPS) networks are routinely used for producing improved orbits and monitoring secular tectonic deformation. For these applications, data are transferred to an analysis center each day and routinely processed in 24-hour segments. To use GPS for monitoring volcanic events, which may last only a few hours, real-time or near real-time data processing and subdaily position estimates are valuable. Strategies have been researched for obtaining station coordinates every 15 min using a Kalman filter; these strategies have been tested on data collected by a GPS network on Kilauea Volcano. Data from this network are tracked continuously, recorded every 30 s, and telemetered hourly to the Hawaiian Volcano Observatory. A white noise model is heavily impacted by data outages and poor satellite geometry, but a properly constrained random walk model fits the data well. Using a borehole tiltmeter at Kilauea's summit as ground-truth, solutions using different random walk constraints were compared. This study indicates that signals on the order of 5 mm/h are resolvable using a random walk standard deviation of 0.45 cm/???h. Values lower than this suppress small signals, and values greater than this have significantly higher noise at periods of 1-6 hours. Copyright 2001 by the American Geophysical Union.

  15. Application of biological filters in water treatment systems

    NASA Technical Reports Server (NTRS)

    Hurley, T. L.; Bambenek, R. A.

    1973-01-01

    Silver chloride placed on or close to barrier kills bacteria as they arrive. Dead bacteria accumulate linearly, whereas previously, live bacteria accumulated exponentially. During continuous 30-day tests, no bacteriological contamination was found downstream of filters with silver chloride added.

  16. Fuel-air ratio controlled carburetion system

    SciTech Connect

    Abbey, H. G.

    1980-02-12

    An automatic control system is disclosed supplying a fuel-air mixture to an internal combustion engine including a variable-venturi carburetor. Air is fed into the input of the venturi, the air passing through the throat thereof whose effective area is adjusted by a mechanism operated by a servo motor. Fuel is fed into the input of the venturi from a fuel reservoir through a main path having a fixed orifice and an auxiliary path formed by a metering valve operated by an auxiliary fuel-control motor. The differential air pressure developed between the inlet of the venturi and the throat thereof is sensed to produce an airvelocity command signal that is applied to a controller adapted to compare the command signal with the servo motor set point to produce an output for governing the servo motor to cause it to seek a null point, thereby defining a closed process control loop. The intake manifold vacuum, which varies in degree as a function of load and speed conditions is sensed to govern the auxiliary fuel-control motor accordingly, is at the same time converted into an auxiliary signal which is applied to the controller in the closed loop to modulate the command signal in a manner establishing an optimum air-fuel ratio under the varying conditions of load and speed.

  17. Wide-aperture diffraction of unpolarised radiation in a system of two acousto-optic filters

    SciTech Connect

    Magdich, L N; Yushkov, K B; Voloshinov, V B

    2009-04-30

    Light diffraction is studied in two tandem acousto-optic cells filtering unpolarised radiation with a wide angular spectrum. It is shown that the side lobes of the ultrasonic radiation pattern of a piezoelectric transducer produce side diffraction intensity maxima at the output of the system consisting of two filters. Diffraction in paratellurite filters is studied experimentally at 1.06 {mu}m. (light modulation)

  18. BIOMASS CONTROL IN WASTE AIR BIOTRICKLING FILTERS BY PROTOZOAN PREDATION. (R825392)

    EPA Science Inventory

    Two protozoan species as well as an uncharacterized protozoan consortium were added to a toluene-degrading biotrickling filter to investigate protozoan predation as a means of biomass control. Wet biomass formation in 23.6-L reactors over a 77-day period was reduced from 13.875 k...

  19. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  20. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  1. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  2. 42 CFR 84.181 - Non-powered air-purifying particulate filter efficiency level determination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... sodium chloride or equivalent solid aerosol at 25 ±5 °C and relative humidity of 30 ±10 percent that has... further decrease in efficiency. (g) The sodium chloride test aerosol shall have a particle size...-purifying particulate respirator model shall be tested for filter efficiency against: (1) A solid...

  3. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    SciTech Connect

    Gupta, A.; Biswas, P. ); Monson, P.R. ); Novick, V.J. )

    1993-07-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K[sub 2] was computed for different test conditions and used as a measure of the mass loading capacity. K[sub 2] was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K[sub 2] for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs.

  4. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    EPA Pesticide Factsheets

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  5. System-level optimization of baseband filters for communication applications

    NASA Astrophysics Data System (ADS)

    Delgado-Restituto, Manuel; Fernandez-Bootello, Juan F.; Rodriguez-Vazquez, Angel

    2003-04-01

    In this paper, we present a design approach for the high-level synthesis of programmable continuous-time Gm-C and active-RC filters with optimum trade-off among dynamic range, distortion products generation, area consumption and power dissipation, thus meeting the needs of more demanding baseband filter realizations. Further, the proposed technique guarantees that under all programming configurations, transconductors (in Gm-C filters) and resistors (in active-RC filters) as well as capacitors, are related by integer ratios in order to reduce the sensitivity to mismatch of the monolithic implementation. In order to solve the aforementioned trade-off, the filter must be properly scaled at each configuration. It means that filter node impedances must be conveniently altered so that the noise contribution of each node to the filter output be as low as possible, while avoiding that peak amplitudes at such nodes be so high as to drive active circuits into saturation. Additionally, in order to not degrade the distortion performance of the filter (in particular, if it is implemented using Gm-C techniques) node impedances can not be scaled independently from each other but restrictions must be imposed according to the principle of nonlinear cancellation. Altogether, the high-level synthesis can be seen as a constrained optimization problem where some of the variables, namely, the ratios among similar components, are restricted to discrete values. The proposed approach to accomplish optimum filter scaling under all programming configurations, relies on matrix methods for network representation, which allows an easy estimation of performance features such as dynamic range and power dissipation, as well as other network properties such as sensitivity to parameter variations and non-ideal effects of integrators blocks; and the use of a simulated annealing algorithm to explore the design space defined by the transfer and group delay specifications. It must be noted that such

  6. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  7. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    PubMed

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  8. Explicit off-line criteria for stable accurate time filtering of strongly unstable spatially extended systems.

    PubMed

    Majda, Andrew J; Grote, Marcus J

    2007-01-23

    Many contemporary problems in science involve making predictions based on partial observation of extremely complicated spatially extended systems with many degrees of freedom and physical instabilities on both large and small scales. Various new ensemble filtering strategies have been developed recently for these applications, and new mathematical issues arise. Here, explicit off-line test criteria for stable accurate discrete filtering are developed for use in the above context and mimic the classical stability analysis for finite difference schemes. First, constant coefficient partial differential equations, which are randomly forced and damped to mimic mesh scale energy spectra in the above problems are developed as off-line filtering test problems. Then mathematical analysis is used to show that under natural suitable hypothesis the time filtering algorithms for general finite difference discrete approximations to an sxs partial differential equation system with suitable observations decompose into much simpler independent s-dimensional filtering problems for each spatial wave number separately; in other test problems, such block diagonal models rigorously provide upper and lower bounds on the filtering algorithm. In this fashion, elementary off-line filtering criteria can be developed for complex spatially extended systems. The theory is illustrated for time filters by using both unstable and implicit difference scheme approximations to the stochastically forced heat equation where the combined effects of filter stability and model error are analyzed through the simpler off-line criteria.

  9. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  10. Design of generalised orthogonal filters: application to the modelling of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikolić, Saša S.; Antić, Dragan S.; Perić, Staniša Lj.; Danković, Nikola B.; Milojković, Marko T.

    2016-02-01

    In this article, we define a new class of orthogonal filters with complex poles and zeroes inside their transfer function. This further improvement of classical orthogonal filters allows the possibility to model a wider range of real systems, that is, the systems whose mathematical models have complex zeroes besides real ones. These filters can be applied in the following areas: circuit theory, telecommunications, signal processing, bond graphs, theory approximations and control system theory. First, we describe the rational functions with complex poles and zeroes, and prove their orthogonality. Based on these functions, we designed the block diagram of orthogonal Legendre-type filter with complex poles and zeroes. After that an appropriate analogue scheme of this filter for practical realisation is derived. To validate theoretical results, we performed an experiment with a cascade-connected system designed and practically realised in our laboratories. The experiments proved the quality of the designed orthogonal model in terms of accuracy and simplicity.

  11. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  12. Interlaboratory evaluation of trace element determination in workplace air filter samples by inductively coupled plasma mass spectrometry†‡

    PubMed Central

    Shulman, Stanley A.; Brisson, Michael J.; Howe, Alan M.

    2015-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory precision estimates were acceptable for medium- and high

  13. A local particle filter for high-dimensional geophysical systems

    NASA Astrophysics Data System (ADS)

    Penny, Stephen G.; Miyoshi, Takemasa

    2016-11-01

    A local particle filter (LPF) is introduced that outperforms traditional ensemble Kalman filters in highly nonlinear/non-Gaussian scenarios, both in accuracy and computational cost. The standard sampling importance resampling (SIR) particle filter is augmented with an observation-space localization approach, for which an independent analysis is computed locally at each grid point. The deterministic resampling approach of Kitagawa is adapted for application locally and combined with interpolation of the analysis weights to smooth the transition between neighboring points. Gaussian noise is applied with magnitude equal to the local analysis spread to prevent particle degeneracy while maintaining the estimate of the growing dynamical instabilities. The approach is validated against the local ensemble transform Kalman filter (LETKF) using the 40-variable Lorenz-96 (L96) model. The results show that (1) the accuracy of LPF surpasses LETKF as the forecast length increases (thus increasing the degree of nonlinearity), (2) the cost of LPF is significantly lower than LETKF as the ensemble size increases, and (3) LPF prevents filter divergence experienced by LETKF in cases with non-Gaussian observation error distributions.

  14. Nonfragile filtering for discrete-time linear systems in finite-frequency domain

    NASA Astrophysics Data System (ADS)

    Ding, Da-Wei; Li, Xiaoli; Wang, Youyi

    2013-04-01

    This article investigates the problem of nonfragile filter design for discrete-time linear systems subject to noises with known frequency ranges. Additive interval uncertainty reflecting imprecision in filter implementation is considered. By the aid of generalised KYP lemma, both deterministic and randomised filtering algorithms are proposed to deal with noises in low-, middle- and high-frequency domain, respectively. The proposed nonfragile finite-frequency filters can get a better noise attenuation performance when frequency ranges of noises are known beforehand. An example about F-18 aircraft model is given to illustrate the effectiveness of the proposed algorithms.

  15. A nonlinear filter for compensating for time delays in manual control systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Myers, A. A.

    1984-01-01

    A nonlinear filter configured to provide phase lead without accompanying gain distortion is analyzed and evaluated. The nonlinear filter is superior to a linear lead/lag compensator in its ability to maintain system stability as open loop crossover frequency is increased. Test subjects subjectively rated the filter as slightly better than a lead/lag compensator in its ability to compensate for delays in a compensatory tracking task. However, the filter does introduce unwanted harmonics. This is particularly noticeable for low frequency pilot inputs. A revised compensation method is proposed which allows such low frequency inputs to bypass the nonlinear filter. A brief analytical and experimental evaluation of the revised filter indicates that further evaluation in more realistic tasks is justified.

  16. Estimation of noise parameters in dynamical system identification with Kalman filters.

    PubMed

    Kwasniok, Frank

    2012-09-01

    A method is proposed for determining dynamical and observational noise parameters in state and parameter identification from time series using Kalman filters. The noise covariances are estimated in a secondary optimization by maximizing the predictive likelihood of the data. The approach is based on internal consistency; for the correct noise parameters, the uncertainty projected by the Kalman filter matches the actual predictive uncertainty. The method is able to disentangle dynamical and observational noise. The algorithm is demonstrated for the linear, extended, and unscented Kalman filters using an Ornstein-Uhlenbeck process, the noise-driven Lorenz system, and van der Pol oscillator as well as a paleoclimatic ice-core record as examples. The approach is also applicable to the ensemble Kalman filter and can be readily extended to non-Gaussian estimation frameworks such as Gaussian-sum filters and particle filters.

  17. Robust SDRE filter design for nonlinear uncertain systems with an H∞ performance criterion.

    PubMed

    Beikzadeh, Hossein; Taghirad, Hamid D

    2012-01-01

    In order to remedy the effects of modeling uncertainty, measurement noise and input disturbance on the performance of the standard state-dependent Riccati equation (SDRE) filter, a new robust H(∞) SDRE filter design is developed in this paper. Based on the infinity-norm minimization criterion, the proposed filter effectively estimates the states of nonlinear uncertain system exposed to unknown disturbance inputs. Moreover, by assuming a mild Lipschitz condition on the chosen state-dependent coefficient form, fulfillment of a modified H(∞) performance index is guaranteed in the proposed filter. The effectiveness of the robust SDRE filter is demonstrated through numerical simulations where it brilliantly outperforms the conventional SDRE filter in presence of model uncertainties, disturbance and measurement noise, in terms of estimation error and region of convergence.

  18. Construction of point process adaptive filter algorithms for neural systems using sequential Monte Carlo methods.

    PubMed

    Ergün, Ayla; Barbieri, Riccardo; Eden, Uri T; Wilson, Matthew A; Brown, Emery N

    2007-03-01

    The stochastic state point process filter (SSPPF) and steepest descent point process filter (SDPPF) are adaptive filter algorithms for state estimation from point process observations that have been used to track neural receptive field plasticity and to decode the representations of biological signals in ensemble neural spiking activity. The SSPPF and SDPPF are constructed using, respectively, Gaussian and steepest descent approximations to the standard Bayes and Chapman-Kolmogorov (BCK) system of filter equations. To extend these approaches for constructing point process adaptive filters, we develop sequential Monte Carlo (SMC) approximations to the BCK equations in which the SSPPF and SDPPF serve as the proposal densities. We term the two new SMC point process filters SMC-PPFs and SMC-PPFD, respectively. We illustrate the new filter algorithms by decoding the wind stimulus magnitude from simulated neural spiking activity in the cricket cercal system. The SMC-PPFs and SMC-PPFD provide more accurate state estimates at low number of particles than a conventional bootstrap SMC filter algorithm in which the state transition probability density is the proposal density. We also use the SMC-PPFs algorithm to track the temporal evolution of a spatial receptive field of a rat hippocampal neuron recorded while the animal foraged in an open environment. Our results suggest an approach for constructing point process adaptive filters using SMC methods.

  19. Using Empirical Mode Decomposition to Filter Out Non-turbulent Contributions to Air-Sea Fluxes

    NASA Astrophysics Data System (ADS)

    Martins, Luís Gustavo N.; Miller, Scott D.; Acevedo, Otávio C.

    2017-04-01

    A methodology based on Empirical mode decomposition (EMD) was used to filter out non-turbulent motions from measurements of atmospheric turbulence over the sea, aimed at reducing their contribution to eddy-covariance (EC) estimates of turbulent fluxes. The proposed methodology has two main objectives: (1) to provide more robust estimates of the fluxes of momentum, heat and CO_2; and (2) to reduce the number of flux intervals rejected due to non-stationarity criteria when using traditional EC data processing techniques. The method was applied to measurements from a 28-day cruise (HALOCAST 2010) in the Eastern Pacific region. Empirical mode decomposition was applied to 4-h long time series data and used to determine the cospectral gap time scale, T_{gap}. Intrinsic modes of oscillation with characteristic periods longer than the gap scale due to non-turbulent motions were assumed and filtered out. Turbulent fluxes were then calculated for sub-intervals of length T_{gap} from the filtered 4-h time series. In the HALOCAST data, the gap scale was successfully identified in 89% of the 4-h periods and had a mean of 37 s. The EMD approach resulted in the rejection of 11% of the flux intervals, which was much less than the 68% rejected when using standard filtering methods based on data non-stationarity. For momentum and sensible heat fluxes, the averaged difference in flux magnitude between the traditional and EMD approaches was small (3 and 1%, respectively). For the CO_2 flux, the magnitude of EMD flux estimates was on average 16% less than fluxes estimated from linear detrended 10-min time series. These results provide evidence that the EMD method can be used to reduce the effects of non-turbulent correlations from flux estimates.

  20. 3D Air Filtration Modeling for Nanofiber Based Filters in the Ultrafine Particle Size Range

    NASA Astrophysics Data System (ADS)

    Sambaer, Wannes; Zatloukal, Martin; Kimmer, Dusan

    2011-07-01

    In this work, novel 3D filtration model for nanofiber based filters has been proposed and tested. For the model validation purposes, filtration efficiency characteristics of two different polyurethane nanofiber based structures (prepared by the electrospinning process) were determined experimentally in the ultrafine particle size range (20-400 nm). It has been found that the proposed model is able to reasonably predict the measured filtration efficiency curves for both tested samples.

  1. Adaptive gain and filtering circuit for a sound reproduction system

    NASA Technical Reports Server (NTRS)

    Engebretson, A. Maynard (Inventor); O'Connell, Michael P. (Inventor)

    1998-01-01

    Adaptive compressive gain and level dependent spectral shaping circuitry for a hearing aid include a microphone to produce an input signal and a plurality of channels connected to a common circuit output. Each channel has a preset frequency response. Each channel includes a filter with a preset frequency response to receive the input signal and to produce a filtered signal, a channel amplifier to amplify the filtered signal to produce a channel output signal, a threshold register to establish a channel threshold level, and a gain circuit. The gain circuit increases the gain of the channel amplifier when the channel output signal falls below the channel threshold level and decreases the gain of the channel amplifier when the channel output signal rises above the channel threshold level. A transducer produces sound in response to the signal passed by the common circuit output.

  2. A weighted combination filter with nonholonomic constrains for integrated navigation systems

    NASA Astrophysics Data System (ADS)

    Guo, Hang; Guo, Junge; Yu, Min; Hong, Haibin; Xiong, Jian; Tian, Baolian

    2015-03-01

    To meet the requirements of higher accuracy and stability of integrated navigation system, this paper applied Sage-Husa adaptive Kalman filter with nonholonomic constraints and forward/backward filtering to IMU/GPS integrated system, and the results of the forward and backward filtering are weighted and combined. A weighted combination filter is proposed in this paper, and which has been used in post-processing to improve MEMS IMU/GPS accuracy. Through the car navigation experiment, data set has been processed by four filtering algorithms. By means of comparing the four results, the method proposed for the vehicle integrated navigation system achieved the best accuracy with standard deviations of latitude = 1.03 m, longitude = 1.31 m, and heading angle = 0.84 deg°, which demonstrated the advantages of the new method.

  3. Biofiltration of toluene-contaminated air using an agro by-product-based filter bed.

    PubMed

    Krishnakumar, B; Hima, A M; Haridas, Ajit

    2007-02-01

    An innovative, coir-pith-based, filter bed for degrading vapor phase toluene in a gas biofilter over 160 days without any external nutrient supply is reported in this study. Indigenous microflora present in the coir pith as well as in the aerobic sludge added at the start-up stage metabolized the toluene, and correspondingly, CO(2) was produced in the biofilter. Inlet toluene concentration in the range of 0.75 to 2.63 g/m(3) was supplied to the biofilter in short acclimation periods. The maximum elimination capacity achieved was 96.75 g/m(3) x h at 120.72 g/m(3) x h loading where around 60% was recovered as CO(2). The filter bed maintained a stable low-pressure drop (0-4 mm H(2)O), neutral pH range (6.5-7.5), and moisture content of 60-80% (w/w) throughout the period. In addition to toluene-degrading microbial community, a grazing fauna including rotifer, bacteriovoric nematode, tardigrade, and fly larvae were also present in the filter bed. The overall performance of the biofilter bed in pollutant removal and sustainability was analyzed in this study.

  4. Geostationary Coastal and Air Pollution Events (GeoCAPE) Filter Radiometer (FR)

    NASA Technical Reports Server (NTRS)

    Kotecki, Carl; Chu, Martha; Wilson, Mark; Clark, Mike; Nanan, Bobby; Matson, Liz; McBirney, Dick; Smith, Jay; Earle, Paul; Choi, Mike; Stoneking, Eric; Luu, Kequan; Swinski, J. P.; Secunda, Mark; Brall, Aron; Verma, Sanjay; Hartman, Kathy R.

    2014-01-01

    The GeoCAPE Filter Radiometer (FR) Study is a different instrument type than all of the previous IDL GeoCape studies. The customer primary goals are to keep mass, volume and cost to a minimum while meeting the science objectives and maximizing flight opportunities by fitting on the largest number of GEO accommodations possible. Minimize total mission costs by riding on a commercial GEO satellite. For this instrument type, the coverage rate, km 2 min, was significantly increased while reducing the nadir ground sample size to 250m. This was accomplished by analyzing a large 2d area for each integration period. The field of view will be imaged on a 4k x 4k detector array of 15 micrometer pixels. Each ground pixel is spread over 2 x 2 detector pixels so the instantaneous field of view (IFOV) is 2048 X 2048 ground pixels. The baseline is, for each field of view 50 sequential snapshot images are taken, each with a different filter, before indexing the scan mirror to the next IFOV. A delta would be to add additional filters.

  5. Removal of ultrafine and fine particulate matter from air by a granular bed filter.

    PubMed

    Ozis, Fethiye; Singh, Manisha; Devinny, Joseph; Sioutas, Constantinos

    2004-08-01

    The removal efficiency of granular filters packed with lava rock and sand was studied for collection of airborne particles 0.05-2.5 microm in diameter. The effects of filter depth, packing wetness, grain size, and flow rate on collection efficiency were investigated. Two packing grain sizes (0.3 and 0.15 cm) were tested for flow rates of 1.2, 2.4, and 3.6 L/min, corresponding to empty bed residence times (equal to the bulk volume of the packing divided by the airflow rate) in the granular media of 60, 30, and 20 sec, respectively. The results showed that at 1.2 L/min, dry packing with grains 0.15 cm in diameter removed more than 80% (by number) of the particles. Particle collection efficiency decreased with increasing flow rate. Diffusion was identified as the predominant collection mechanism for ultrafine particles, while the larger particles in the accumulation mode of 0.7-2.5 microm were removed primarily by gravitational settling. For all packing depths and airflow rates, particle removal efficiency was generally higher on dry packing than on wet packing for particles smaller than 0.25 microm. The results suggest that development of biological filters for fine particles is possible.

  6. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    NASA Astrophysics Data System (ADS)

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-10-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications.

  7. Slip-Effect Functional Air Filter for Efficient Purification of PM2.5

    PubMed Central

    Zhao, Xinglei; Wang, Shan; Yin, Xia; Yu, Jianyong; Ding, Bin

    2016-01-01

    Fabrication of air filtration materials (AFM) that allow air to easily flow through while retaining particles is a significant and urgent need due to the harmful airborne particulate matter pollution; however, this is still a challenging research area. Herein, we report novel slip-effect functional nanofibrous membranes with decreased air resistance (reduction rate of 40%) due to the slip flow of air molecules on the periphery of nanofibers. This was achieved through careful control over the diameters of electrospun polyacrylonitrile fibers and aperture size of fiber assembly. Fiber assembly with 86% of fiber diameters between 60–100 nm was found to be most effective for slip flow, as these diameters are close to the mean free path of air molecules (65.3 nm). Significantly, an equilibrium factor τ = df/d2 has been introduced to elucidate the effect of distance of adjacent fibers on the drag force of airflow. Furthermore, the most effective aperture size (>3.5 μm) for slip-effect has been determined. Ultimately, the new material displayed low air resistance of 29.5 Pa, high purification efficiency of 99.09%, good transmittance of 77%, and long service life. The successful fabrication of such materials can facilitate the development of high-performance AFMs for various applications. PMID:27748419

  8. Heating, Ventilating, Air Conditioning and Dehumidifying Systems.

    DTIC Science & Technology

    1980-08-01

    not be connected to other ventilating systems. Duct runs shall be as short as possible to avoid leakage of moisture. I b. Special Considerations. (1...For rectangular duct design, see the SMACNA -Low Pressure Duct Construction Standards. Under jnormal applications, a minimum duct size of 6 by 6 inches...prevent leakage of the moisture-laden discharge air into the intake duct , and the intake and discharge outlets shall be located to prevent any

  9. Water Filters

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A compact, lightweight electrolytic water filter generates silver ions in concentrations of 50 to 100 parts per billion in the water flow system. Silver ions serve as effective bactericide/deodorizers. Ray Ward requested and received from NASA a technical information package on the Shuttle filter, and used it as basis for his own initial development, a home use filter.

  10. Wireless zoned particulate matter filter regeneration control system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Kirby, Kevin W [Calabasas Hills, CA; Phelps, Amanda [Malibu, CA

    2011-10-04

    An assembly includes a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and multiple zones. An absorbing layer absorbs microwave energy in one of N frequency ranges and is arranged with the upstream end. N is an integer. A frequency selective filter has M frequency selective segments and receives microwave energy in the N frequency ranges. M is an integer. One of the M frequency selective segments permits passage of the microwave energy in one of the N frequency ranges and does not permit passage of microwave energy in the other of the N frequency ranges.

  11. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction system. 23.1091 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power...

  12. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  13. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  14. Low Cost Air Combat Training System

    NASA Astrophysics Data System (ADS)

    Flynn, Earl

    1987-10-01

    Air combat training has evolved into a highly sophisticated and expensive process. To effectively train fighter pilots in air-to-air combat, interaction between pilots is essential. This interaction can be accomplished using multiple low cost laser image projections of friend and/or foe aircraft controlled by pilots in a multiple dome configuration. A Laser Target Projector (LTP) produces a calligraphically written aircraft model comprised of up to 200 vectors which are updated at a 60 Hz rate. The resulting wire frame image imparts both position, velocity, distance and altitude information to the pilots. Using a laser light source guarantees high luminance levels and provides large depths of field. This large depth of field allows for unique packaging arrangements and cost saving attributes. The LTP has total dome coverage via a computer-controlled, servo-driven, gimb-alled two-axis assembly that projects the wire frame aircraft image onto the dome surface. To unburden the host computer, all dome-to-dome communication, real world-to-dome coordinate transformations and all geometry corrections are done by a special purpose high-speed computer called a Dome Master. Each dome has one Dome Master that can drive up to six LTP's. This paper will deal with the technical aspects of the design and development of the LTP and Dome Master as a low cost air combat training system.

  15. Study on GPS attitude determination system aided INS using adaptive Kalman filter

    NASA Astrophysics Data System (ADS)

    Bian, Hongwei; Jin, Zhihua; Tian, Weifeng

    2005-10-01

    A marine INS/GPS (inertial navigation system/global positioning system) adaptive navigation system is presented in this paper. The GPS with two antennae providing vessel attitude is selected as the auxiliary system to fuse with INS. The Kalman filter is the most frequently used algorithm in the integrated navigation system, which is capable of estimating INS errors online based on the measured errors between INS and GPS. The conventional Kalman filter (CKF) assumes that the statistics of the noise of each sensor are given. As long as the noise distributions do not change, the Kalman filter will give the optimal estimation. However, the GPS receiver will be disturbed easily and thus temporally changing measurement noise will join into the outputs of GPS, which will lead to performance degradation of the Kalman filter. Many researchers introduce a fuzzy logic control method into innovation-based adaptive estimation Kalman filtering (IAE-AKF) algorithm, and accordingly propose various adaptive Kalman filters. However, how to design the fuzzy logic controller is a very complicated problem, which is still without a convincing solution. A novel IAE-AKF is proposed herein, which is based on the maximum likelihood criterion for the proper computation of the filter innovation covariance and hence of the filter gain. The approach is direct and simple without having to establish fuzzy inference rules. After having deduced the proposed IAE-AKF algorithm theoretically in detail, the approach is tested in the developed INS/GPS integrated marine navigation system. Real field test results show that the adaptive Kalman filter outperforms the CKF with higher accuracy and robustness. It is demonstrated that this proposed approach is a valid solution for the unknown changing measurement noise existing in the Kalman filter.

  16. Fabrication of a multi-walled carbon nanotube-deposited glass fiber air filter for the enhancement of nano and submicron aerosol particle filtration and additional antibacterial efficacy.

    PubMed

    Park, Jae Hong; Yoon, Ki Young; Na, Hyungjoo; Kim, Yang Seon; Hwang, Jungho; Kim, Jongbaeg; Yoon, Young Hun

    2011-09-01

    We grew multi-walled carbon nanotubes (MWCNTs) on a glass fiber air filter using thermal chemical vapor deposition (CVD) after the filter was catalytically activated with a spark discharge. After the CNT deposition, filtration and antibacterial tests were performed with the filters. Potassium chloride (KCl) particles (<1 μm) were used as the test aerosol particles, and their number concentration was measured using a scanning mobility particle sizer. Antibacterial tests were performed using the colony counting method, and Escherichia coli (E. coli) was used as the test bacteria. The results showed that the CNT deposition increased the filtration efficiency of nano and submicron-sized particles, but did not increase the pressure drop across the filter. When a pristine glass fiber filter that had no CNTs was used, the particle filtration efficiencies at particle sizes under 30 nm and near 500 nm were 48.5% and 46.8%, respectively. However, the efficiencies increased to 64.3% and 60.2%, respectively, when the CNT-deposited filter was used. The reduction in the number of viable cells was determined by counting the colony forming units (CFU) of each test filter after contact with the cells. The pristine glass fiber filter was used as a control, and 83.7% of the E. coli were inactivated on the CNT-deposited filter.

  17. Metallic Filters

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Filtration technology originated in a mid 1960's NASA study. The results were distributed to the filter industry, an HR Textron responded, using the study as a departure for the development of 421 Filter Media. The HR system is composed of ultrafine steel fibers metallurgically bonded and compressed so that the pore structure is locked in place. The filters are used to filter polyesters, plastics, to remove hydrocarbon streams, etc. Several major companies use the product in chemical applications, pollution control, etc.

  18. Removal of Gross Air Embolization from Cardiopulmonary Bypass Circuits with Integrated Arterial Line Filters: A Comparison of Circuit Designs.

    PubMed

    Reagor, James A; Holt, David W

    2016-03-01

    Advances in technology, the desire to minimize blood product transfusions, and concerns relating to inflammatory mediators have lead many practitioners and manufacturers to minimize cardiopulmonary bypass (CBP) circuit designs. The oxygenator and arterial line filter (ALF) have been integrated into one device as a method of attaining a reduction in prime volume and surface area. The instructions for use of a currently available oxygenator with integrated ALF recommends incorporating a recirculation line distal to the oxygenator. However, according to an unscientific survey, 70% of respondents utilize CPB circuits incorporating integrated ALFs without a path of recirculation distal to the oxygenator outlet. Considering this circuit design, the ability to quickly remove a gross air bolus in the blood path distal to the oxygenator may be compromised. This in vitro study was designed to determine if the time required to remove a gross air bolus from a CPB circuit without a path of recirculation distal to the oxygenator will be significantly longer than that of a circuit with a path of recirculation distal to the oxygenator. A significant difference was found in the mean time required to remove a gross air bolus between the circuit designs (p = .0003). Additionally, There was found to be a statistically significant difference in the mean time required to remove a gross air bolus between Trial 1 and Trials 4 (p = .015) and 5 (p =.014) irrespective of the circuit design. Under the parameters of this study, a recirculation line distal to an oxygenator with an integrated ALF significantly decreases the time it takes to remove an air bolus from the CPB circuit and may be safer for clinical use than the same circuit without a recirculation line.

  19. The determination of nitrogen dioxide in ambient air with free hanging filters as passive samplers, and a new calibration method using fritted bubblers.

    PubMed

    Heeres, Paul; Setiawan, Rineksa; Krol, Maarten Cornelis; Adema, Eduard Hilbrand

    2009-12-01

    This paper describes two new methods for the determination of NO(2) in the ambient air. The first method consists of free hanging filters with a diameter of 2.5 cm as passive samplers. The filters are impregnated with triethanolamine to bind NO(2). With standard colorimetrical analysis, the amount of NO(2) on the filters is determined. The second method is performed with fritted bubblers filled with Saltzman reagent, where, with a special procedure the absorption efficiencies of the bubblers are determined using ambient air, without the use of standard gases and electronic analytical instruments. The results of the bubblers are used to calibrate the free hanging filters. The two methods were applied simultaneously in the city of Yogyakarta, Indonesia. The methods are inexpensive and very well suited for use in low-budget situations. A characteristic of the free filter is the Sampling Volume, SV. This is the ratio of the amount of NO(2) on the filter and the ambient concentration. With the filter used in this study, the amount of triethanolamine and exposure time, the SV is 0.0166 m(3). The sampling rate (SR) of the filter, 4.6 cm(3)/s, is high. Hourly averaged measurements are performed for 15 hours per day in four busy streets. The measured amounts of NO(2) on the filters varied between 0.57 and 2.02 microg NO(2), at ambient air concentrations of 32 to 141 microg/m(3) NO(2). During the experiments the wind velocity was between 0.2 and 2.0 m/s, the relative humidity between 24 and 83 % and the temperature between 295 K and 311 K. These variations in weather conditions have no influence on the uptake of NO(2).

  20. Improved Kalman filter method for measurement noise reduction in multi sensor RFID systems.

    PubMed

    Eom, Ki Hwan; Lee, Seung Joon; Kyung, Yeo Sun; Lee, Chang Won; Kim, Min Chul; Jung, Kyung Kwon

    2011-01-01

    Recently, the range of available radio frequency identification (RFID) tags has been widened to include smart RFID tags which can monitor their varying surroundings. One of the most important factors for better performance of smart RFID system is accurate measurement from various sensors. In the multi-sensing environment, some noisy signals are obtained because of the changing surroundings. We propose in this paper an improved Kalman filter method to reduce noise and obtain correct data. Performance of Kalman filter is determined by a measurement and system noise covariance which are usually called the R and Q variables in the Kalman filter algorithm. Choosing a correct R and Q variable is one of the most important design factors for better performance of the Kalman filter. For this reason, we proposed an improved Kalman filter to advance an ability of noise reduction of the Kalman filter. The measurement noise covariance was only considered because the system architecture is simple and can be adjusted by the neural network. With this method, more accurate data can be obtained with smart RFID tags. In a simulation the proposed improved Kalman filter has 40.1%, 60.4% and 87.5% less mean squared error (MSE) than the conventional Kalman filter method for a temperature sensor, humidity sensor and oxygen sensor, respectively. The performance of the proposed method was also verified with some experiments.

  1. Efficient Decoding With Steady-State Kalman Filter in Neural Interface Systems

    PubMed Central

    Malik, Wasim Q.; Truccolo, Wilson; Brown, Emery N.; Hochberg, Leigh R.

    2011-01-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5 ± 0.5 s (mean ± s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25 ± 3 single units by a factor of 7.0 ± 0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems. PMID:21078582

  2. Efficient decoding with steady-state Kalman filter in neural interface systems.

    PubMed

    Malik, Wasim Q; Truccolo, Wilson; Brown, Emery N; Hochberg, Leigh R

    2011-02-01

    The Kalman filter is commonly used in neural interface systems to decode neural activity and estimate the desired movement kinematics. We analyze a low-complexity Kalman filter implementation in which the filter gain is approximated by its steady-state form, computed offline before real-time decoding commences. We evaluate its performance using human motor cortical spike train data obtained from an intracortical recording array as part of an ongoing pilot clinical trial. We demonstrate that the standard Kalman filter gain converges to within 95% of the steady-state filter gain in 1.5±0.5 s (mean ±s.d.). The difference in the intended movement velocity decoded by the two filters vanishes within 5 s, with a correlation coefficient of 0.99 between the two decoded velocities over the session length. We also find that the steady-state Kalman filter reduces the computational load (algorithm execution time) for decoding the firing rates of 25±3 single units by a factor of 7.0±0.9. We expect that the gain in computational efficiency will be much higher in systems with larger neural ensembles. The steady-state filter can thus provide substantial runtime efficiency at little cost in terms of estimation accuracy. This far more efficient neural decoding approach will facilitate the practical implementation of future large-dimensional, multisignal neural interface systems.

  3. A low pressure filter system for new containment concepts

    SciTech Connect

    Dillmann, H.G.; Pasler, H.

    1995-02-01

    It is demonstrated that after severe accidents the decay heat can be removed in a passive mode in a convective flow, i.e. without needing a fan. The filter components with sufficiently low pressure drop values which are required for this purpose will be described and the results indicated.

  4. An evaluation of the filtration performance of paediatric breathing system filters at low flows.

    PubMed

    Malan, C A; Wilkes, A R; Hall, J E; Gildersleve, C

    2007-05-01

    The filtration performance of five different types of filter intended for use in paediatric anaesthesia was measured. A total of 120 unused filters (24 samples of each filter type) were evaluated. The pressure drop and filtration performance, using challenges of sodium chloride particles, were measured for each filter at 3 l min(-1) and 15 l min(-1). The pressure drop was less at the lower flow; there was a wide variation in the pressure drop across some filters. The filtration performance of all filter types showed an improvement at 3 l min(-1) compared to 15 l min(-1). Four filter types had filtration efficiencies greater than 95% at 15 l min(-1) and greater than 99% at 3 l min(-1). The remaining filter type had a filtration efficiency less than 90% at 15 l min(-1) and greater than 95% at 3 l min(-1). These levels of performance are comparable to that of breathing system filters intended for use in adult anaesthesia using flows representing mean inspiratory flow.

  5. Study on application of color filters in vision system of hot forgings

    NASA Astrophysics Data System (ADS)

    Bi, Chao; Fang, Jianguo; Li, Di; Qu, Xinghua

    2016-10-01

    In order to improve the quality and efficiency of forging process, it needs to execute on-line dimensional measurement of the forgings. In the paper, a laboratory color vision measuring system is set up and the combination of digital and physical filtering is adopted to improve the image quality based on the radiation characteristics of high-temperature forgings. The digital filtering technology is a kind of image processing methods, in which the R component of the forging image is removed. While, the physical filtering technology is achieved by optical filters installed in front of the CCD, in which strong self-emitted radiation from the hot parts can be filtered out. In order to evaluate the image quality, the image contrast is applied, which is generally defined as the difference value between average gray scale of object region and that of background region. In the experiments, image contrast derived with filters at different sample points set from 800°C to 1200°C is compared to determine the optimal scheme of filters to be selected. Results of experiments indicate that the application effect of filters is dissimilar when the forging is in different temperature ranges. Through comparison, the optimal selection scheme of filters is determined to derive high quality image of forgings at different temperatures, which lays a solid foundation for the subsequent image processing.

  6. RadNet Air Data From Chicago, IL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Chicago, IL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Fort Worth, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Worth, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From San Bernardino, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Bernardino, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From San Francisco, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Francisco, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Virginia Beach, VA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Virginia Beach, VA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From St. George, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. George, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From San Angelo, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Angelo, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Los Angeles, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Los Angeles, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Champaign, IL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Champaign, ILfrom EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Salt Lake City, UT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Salt City, UT from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Fort Smith, AR

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Fort Smith, AR from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From San Antonio, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Antonio, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Richland, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Richland, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Mobile, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Burlington, VT

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Mobile, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  1. RadNet Air Data From Dallas, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Dallas, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  2. RadNet Air Data From Houston, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Houston, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  3. RadNet Air Data From Baton Rouge, LA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Baton Rouge, LA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  4. RadNet Air Data From San Diego, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Diego, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  5. RadNet Air Data From Yaphank, NY

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Yaphank, NY from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  6. RadNet Air Data From St. Louis, MO

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for St. Louis, MO from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  7. RadNet Air Data From Omaha, NE

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Omaha, NE from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  8. RadNet Air Data From San Jose, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for San Jose, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  9. RadNet Air Data From Worcester, MA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Worcester, MA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  10. RadNet Air Data From Austin, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Austin, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  11. RadNet Air Data From Birmingham, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Birmingham, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  12. RadNet Air Data From Greensboro, NC

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Greensboro, NC from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  13. RadNet Air Data From Tallahassee, FL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Tallahassee, FL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  14. RadNet Air Data From Montgomery, AL

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Montgomery, AL from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  15. RadNet Air Data From Lubbock, TX

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Lubbock, TX from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  16. RadNet Air Data From Olympia, WA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Olympia, WA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  17. RadNet Air Data From Charleston, WV

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Charleston, WV from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  18. RadNet Air Data From Milwaukee, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Milwaukee, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  19. RadNet Air Data From Shawano, WI

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Shawano, WI from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.

  20. RadNet Air Data From Sacramento, CA

    EPA Pesticide Factsheets

    This page presents radiation air monitoring and air filter analysis data for Sacramento, CA from EPA's RadNet system. RadNet is a nationwide network of monitoring stations that measure radiation in air, drinking water and precipitation.