Science.gov

Sample records for air flow direction

  1. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  2. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  3. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  4. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  5. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1956-01-01

    A vane-type air-flow-direction pickup is described which is suitable for telemetering angle-of-attack and angle-of-sideslip data from rocket-propelled pilotless aircraft models. Test results which are presented show that the device performs well under high accelerations and is stable throughout a Mach number rage from subsonic to above a Mach number of 2.5.

  6. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1954-01-01

    A free-swiveling vane-type pickup for measuring air flow direction in both the angle-of-attack and angle-of-sideslip directions is described. The device, which is intended to telemeter flow direction from pilotless aircraft, has variable-inductance outputs suitable for use in the 100 to 200 kcps subcarrier frequency range of the NACA FM-AM telemetering system. Preliminary test results indicate that it can also be adapted for use with the audio subcarrier frequencies of the Research and Development Board standard FM-FM telemetering system. Test results are presented which indicate that the pickup is aerodynamically stable and has an accuracy, obtained from a bench calibration, of better than 0.3 degrees under conditions including acceleration up to 20g in any direction, Mach numbers from 0.5 to 2.8, and dynamic pressures up to at least 65 psi. Equations and curves which can be used to obtain flow direction at the center of gravity of a maneuvering model are presented.

  7. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  8. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  9. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  10. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack

    NASA Astrophysics Data System (ADS)

    Yu, Kuahai; Yang, Xi; Cheng, Yongzhou; Li, Changhao

    2014-12-01

    Thermal management is a routine but crucial strategy to ensure thermal stability and long-term durability of the lithium-ion batteries. An air-flow-integrated thermal management system is designed in the present study to dissipate heat generation and uniformize the distribution of temperature in the lithium-ion batteries. The system contains of two types of air ducts with independent intake channels and fans. One is to cool the batteries through the regular channel, and the other minimizes the heat accumulations in the middle pack of batteries through jet cooling. A three-dimensional anisotropic heat transfer model is developed to describe the thermal behavior of the lithium-ion batteries with the integration of heat generation theory, and validated through both simulations and experiments. Moreover, the simulations and experiments show that the maximum temperature can be decreased to 33.1 °C through the new thermal management system in comparison with 42.3 °C through the traditional ones, and temperature uniformity of the lithium-ion battery packs is enhanced, significantly.

  11. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  12. Investigation into air flow characteristics through inlet valve of directed ports

    SciTech Connect

    Liu, R.; Xiao, F.; Guan, L.; Liu, X.

    1994-09-01

    The velocity and turbulence intensity profiles at exit of intake valve from typical SI engine intake ports (horizontal and sloping directed ports) were measured by hot wire anemometry (HWA) in a steady flow rig. The characteristics of velocity and turbulence intensity distribution under different valve lifts and at distances along valve axis were analysed and compared between above two intake ports. Results showed that velocity and turbulence intensity profiles are strongly dependent on intake port form, valve lift and surrounding geometry. They vary not only around the valve head periphery but also along the valve axis. 9 refs., 14 figs.

  13. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and

  14. Study on Flow Phenomenon inside a Nozzle in Ship Propulsion Equipment Directly Driven by High Pressure Air

    NASA Astrophysics Data System (ADS)

    Tajiri, Shinsuke; Tsutahara, Michihisa; Ogawa, Kazuhiko; Sakamoto, Masahiko; Tajima, Masakazu; Azuma, Keisuke

    An experimental study was conducted by performing pressure measurements and flow visualization to investigate unsteady flows inside a two-dimensional semi-open-type nozzle in a ship propulsion equipment directly driven by high-pressure gas. We found that the ejected gas phase and water-flow phase are separated clearly, and the interface between these phases behaves like waves. It was clarified by flow visualization with a high-speed motion camera and a circulating water channel that these interfacial waves change their shapes according to the water-flow velocity. The interfacial wavelength increases as a result of increasing water-flow velocity, and the mechanism that produces thrust on the nozzle wall changes. The thrust and flow patterns for intermittent gas ejection according to water-flow velocity were also clarified.

  15. Transformation of a Water Slug in Free Fall Under the Conditions of Exposure to an Air Flow Orthogonal to the Direction of the Slug Motion

    NASA Astrophysics Data System (ADS)

    Volkov, R. S.; Zabelin, M. V.; Kuznetsov, G. V.; Strizhak, P. A.

    2016-07-01

    An experimental study has been made of the influence of an orthogonal (side) air flow propagating with a velocity to 5 m/s on the phases of transformation of a water slug with an initial volume of 0.05-0.5 liter in free fall from a height of 3 m. Use was made of Phantom V411 and Phantom Miro M310 high-speed video cameras and a Tema Automotive software system with the function of continuous tracking. The laws of retardation of the phases of transformation of the water slug from the instant of formation to that of formation of a droplet cloud under the action of the air flow orthogonal to the direction of the slug motion, and also of the deceleration, removal, and destruction of the droplets and fragments of water separating from the slug surface, have been established.

  16. Flow direction determination of lava flows.

    NASA Technical Reports Server (NTRS)

    Smith, E. I.; Rhodes, R. C.

    1972-01-01

    The flow direction technique, previously applied to ash-flow sheets, can be used to determine direction of movement and locate eruptive centers for lava flows. The method provides statistically stronger and more consistent flow direction data for lava than ash-flow tuff. The accuracy and reliability of the technique was established on the porphyritic basaltic andesite of Mount Taylor, New Mexico, which erupted from a known center, the Mount Taylor Amphitheater. The technique was then applied to volcanic units with unknown sources: the John Kerr Peak Quartz Latite and mid-Tertiary andesite flows in the Mogollon Mountains, both in southwestern New Mexico. The flow direction technique indicated flow patterns and suggested source areas for each rock unit. In the Mogollon Mountains flow direction measurements were supported by independent directional criteria such as dips of cross beds, stratigraphic thickening, facies changes, and megascopic textures.-

  17. The study of the effect of the surface wave on turbulent stably-stratified boundary layer air-flow by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej

    2015-04-01

    Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in

  18. Studies on the mixing of liquid jets and pre-atomized sprays in confined swirling air flows for lean direct injection combustion

    NASA Astrophysics Data System (ADS)

    Huh, Jun-Young

    A lean direct injection (LDI) combustion concept was introduced recently to obtain both low NOsbx emissions and high performance for advanced aircraft gas turbine engines. It was reported that pollutant emissions, especially NOsbx, in a lean combustion mode depend significantly on the degree of mixing (mixedness) of supplied air and liquid fuel droplets. From a viewpoint of environmental protection, therefore, uniform mixing of fuel and air in a very short period of time, i.e., well-stirred mixing, is crucially important in the LDI combustion mode. In the present study, as the first stage toward understanding the combustion phenomena in a lean direct injection (LDI) mode, the hydrodynamic behavior of liquid jets and pre-atomized sprays in confined swirling air flows is investigated. Laser-based flow visualization and image analysis techniques are applied to analyze the instantaneous motion of the mixing process of the jets and pre-atomized sprays. Statistical analysis system (SAS) software is utilized to analyze the experimental data, and correlate experimental parameters. Statistical parameters, such as centrality, degree of spread, and total area ratio of particles, are defined in this study, and used to quantify the mixedness (degree of mixing) of liquid particles in confined geometry. Two empirical equations are obtained to predict jet intact lengths and spray angles, respectively, in confined swirling air flows. It is found that initial jet characteristics, such as intact length and spray angle, determine the mixing of the liquid particles resulting from the jet. It is verified that image analysis is feasible in quantitative determination of the mixedness of liquid particles. Even though substantial improvements in liquid fuel injector systems are required before they can be considered adequate for LDI combustion at high pressure and high temperature, the results and ideas obtained from the present study will help engineers find better mixing methods for LDI

  19. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  20. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  1. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  2. Direct flow crystal growth system

    DOEpatents

    Montgomery, Kenneth E.; Milanovich, Fred P.

    1992-01-01

    A crystal is grown in a constantly filtered solution which is flowed directly into the growing face of a crystal. In a continuous flow system, solution at its saturation temperature is removed from a crystal growth tank, heated above its saturation temperature, filtered, cooled back to its saturation temperature, and returned to the tank.

  3. Direct condensation by humid air

    NASA Astrophysics Data System (ADS)

    Schwab, S.; Schiebelsberger, B.

    1980-12-01

    The practicability of direct condensation with humid air (DKFL) for waste heat removal from thermal power plants was investigated with regard to technical, economical and environmental aspects. The adjustment of a uniform trickling-water film was examined. A vertical test tube was erected to study the phenomenon of a trickling-water film. A pilot plant with a vertical tube-bundle was installed to evaluate the main process parameters. The applicability of the cooling system is judged. A theoretical model was derived for the design of a DKFL apparatus. A vertical geometry for the test tube has essential operational and economical advantages in comparison with a horizontal one.

  4. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  5. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  6. Directional synthetic aperture flow imaging.

    PubMed

    Jensen, Jørgen Arendt; Nikolov, Svetoslav Ivanov

    2004-09-01

    A method for flow estimation using synthetic aperture imaging and focusing along the flow direction is presented. The method can find the correct velocity magnitude for any flow angle, and full color flow images can be measured using only 32 to 128 pulse emissions. The approach uses spherical wave emissions with a number of defocused elements and a linear frequency-modulated pulse (chirp) to improve the signal-to-noise ratio. The received signals are dynamically focused along the flow direction and these signals are used in a cross-correlation estimator for finding the velocity magnitude. The flow angle is manually determined from the B-mode image. The approach can be used for both tissue and blood velocity determination. The approach was investigated using both simulations and a flow system with a laminar flow. The flow profile was measured with a commercial 7.5 MHz linear array transducer. A plastic tube with an internal diameter of 17 mm was used with an EcoWatt 1 pump generating a laminar, stationary flow. The velocity profile was measured for flow angles of 90 and 60 degrees. The RASMUS research scanner was used for acquiring radio frequency (RF) data from 128 elements of the array, using 8 emissions with 11 elements in each emission. A 20-micros chirp was used during emission. The RF data were subsequently beamformed off-line and stationary echo canceling was performed. The 60-degree flow with a peak velocity of 0.15 m/s was determined using 16 groups of 8 emissions, and the relative standard deviation was 0.36% (0.65 mm/s). Using the same setup for purely transverse flow gave a standard deviation of 1.2% (2.1 mm/s). Variation of the different parameters revealed the sensitivity to number of lines, angle deviations, length of correlation interval, and sampling interval. An in vivo image of the carotid artery and jugular vein of a healthy 29-year-old volunteer was acquired. A full color flow image using only 128 emissions could be made with a high

  7. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  8. Air flow patterns in the operating theatre.

    PubMed

    Howorth, F H

    1980-04-01

    Bacteria-carrying particles and exhaled anaesthetic gases are the two contaminants found in the air flow patterns of operating rooms. Their origin, direction and speed were illustrated by a motion picture using Schlieren photography and smoke tracers. Compared with a conventionally well air conditioned operating theatre, it was shown that a downward flow of clean air reduced the number of bacteria-carrying particles at the wound site by sixty times. The Exflow method of achieving this without the restriction of any side panels or floor obstruction was described. The total body exhaust worn by the surgical team was shown to reduce the bacteria count by a further eleven times. Clinical results show that when both these systems are used together, patient infection was reduced from 9 per cent to between 0.3 per cent and 0.5 per cent, even when no pre-operative antibiotics were used. Anaesthetic gas pollution was measured and shown to be generally 1000 p.p.m. at the head of the patient, in induction, operating and recovery rooms, also in dental and labour rooms. A high volume low pressure active scavenging system was described together with its various attachments including one specially for paediatric scavenging. Results showed a reduction of nitrous oxide pollution to between zero and 3 p.p.m. The economy and cost effectiveness of both these pollution control systems was shown to be good due to the removal of health hazards from patients and theatre staff.

  9. Influence of staged-air on airflow, combustion characteristics and NO(x) emissions of a down-fired pulverized-coal 300 MW(e) utility boiler with direct flow split burners.

    PubMed

    Li, Zhengqi; Kuang, Min; Zhang, Jia; Han, Yunfeng; Zhu, Qunyi; Yang, Lianjie; Kong, Weiguang

    2010-02-01

    Cold airflow experiments were conducted to investigate the aerodynamic field in a small-scale furnace of a down-fired pulverized-coal 300 MW(e) utility boiler arranged with direct flow split burners enriched by cyclones. By increasing the staged-air ratio, a deflected flow field appeared in the lower furnace; larger staged-air ratios produced larger deflections. Industrial-sized experiments on a full-scale boiler were also performed at different staged-air damper openings with measurements taken of gas temperatures in the burner region and near the right-side wall, wall heat fluxes, and gas components (O(2), CO, and NO(x)) in the near-wall region. Combustion was unstable at staged-air damper openings below 30%. For openings of 30% and 40%, late ignition of the pulverized coal developed and large differences arose in gas temperatures and heat fluxes between the regions near the front and rear walls. In conjunction, carbon content in the fly ash was high and boiler efficiency was low with high NO(x) emission above 1200 mg/m(3) (at 6% O(2) dry). For fully open dampers, differences in gas temperatures and heat fluxes, carbon in fly ash and NO(x) emission decreased yielding an increase in boiler efficiency. The optimal setting is fully open staged-air dampers.

  10. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  11. AUTOMATIC AIR BURST DIRECTION FINDER

    DOEpatents

    Allard, G.A.

    1952-01-31

    This patent application describes an atomic explosion direction indicator comprising a geometric heat-scorchable indicating surface symmetrical about an axis, elevation and azimuth markings on the heat scorchable surface, and an indicating rod at the axis of said surface arranged to cast a shadow hereon, whereby heat from an atomic explosion will scorch a pattern on said surface indicative of the azimuth and elevation of said explosion.

  12. Health woes tied to low air flow

    SciTech Connect

    Barber, J.

    1984-01-23

    Occupants in buildings with heating, ventilating, and air conditioning (HVAC) systems which limit fresh air flow may suffer a variety of illnesses because of the buildup of noxious contaminants. Building managers need to continue conservation efforts, but they should also meet the air standards set by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) which are in the process of being strengthened. Cases of building sickness caused by indoor air pollution have increased during the past decade, prompting ASHRAE to expedite the revision of its specifications.

  13. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  16. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  17. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  18. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  19. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  20. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  1. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  2. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  3. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  4. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  5. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  7. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  8. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  9. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    PubMed

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

  10. Ionization based multi-directional flow sensor

    DOEpatents

    Chorpening, Benjamin T.; Casleton, Kent H.

    2009-04-28

    A method, system, and apparatus for conducting real-time monitoring of flow (airflow for example) in a system (a hybrid power generation system for example) is disclosed. The method, system and apparatus measure at least flow direction and velocity with minimal pressure drop and fast response. The apparatus comprises an ion source and a multi-directional collection device proximate the ion source. The ion source is configured to generate charged species (electrons and ions for example). The multi-directional collection source is configured to determine the direction and velocity of the flow in real-time.

  11. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter....

  13. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter....

  14. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter....

  15. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter....

  16. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter....

  17. Direct Numerical Simulation of Air Layer Drag Reduction over a Backward-facing Step

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Moin, Parviz

    2010-11-01

    Direct Numerical Simulation (DNS) of two-phase flow is performed to investigate the air layer drag reduction (ALDR) phenomenon in turbulent flow over a backward-facing step. In their experimental study, Elbing et al. (JFM, 2008) have observed a stable air layer on an entire flat plate if air is injected beyond the critical air-flow rate. In the present study, air is injected at the step on the wall into turbulent water flow for ALDR. The Reynolds and Weber numbers based on the water properties and step height are 22,800 and 560, respectively. An inlet section length before the step is 3h and the post expansion length is 30h, where h is the step height. The total number of grid points is about 271 million for DNS. The level set method is used to track the phase interface and the structured-mesh finite volume solver is used with an efficient algorithm for two-phase DNS. Two cases with different air-flow rates are performed to investigate the mechanism and stability of air layer. For high air-flow rate, the stable air layer is formed on the plate and more than 90% drag reduction is obtained. In the case of low air-flow rate, the air layer breaks up and ALDR is not achieved. The parameters governing the stability of air layer from the numerical simulations is also consistent with the results of stability analysis.

  18. The Direct Method of Cash Flows.

    ERIC Educational Resources Information Center

    Bosserman, David C.; Fischer, Mary

    2000-01-01

    Explains to college/university business officers how to comply with Governmental Accounting Standards Board Statements Nos. 34, 35, and 9, which require the direct method of presenting cash flows from operating activities and reconciliation of operating cash flows to operating income by fiscal year 2001. Institutions are urged to begin immediately…

  19. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Astrophysics Data System (ADS)

    So, R. M. C.; Ahmed, S. A.

    1984-04-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  20. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  1. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  2. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  3. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  4. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  5. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  6. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  7. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    SciTech Connect

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  8. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  9. Flow-Directed Crystallization for Printed Electronics.

    PubMed

    Qu, Ge; Kwok, Justin J; Diao, Ying

    2016-12-20

    The solution printability of organic semiconductors (OSCs) represents a distinct advantage for materials processing, enabling low-cost, high-throughput, and energy-efficient manufacturing with new form factors that are flexible, stretchable, and transparent. While the electronic performance of OSCs is not comparable to that of crystalline silicon, the solution processability of OSCs allows them to complement silicon by tackling challenging aspects for conventional photolithography, such as large-area electronics manufacturing. Despite this, controlling the highly nonequilibrium morphology evolution during OSC printing remains a challenge, hindering the achievement of high electronic device performance and the elucidation of structure-property relationships. Many elegant morphological control methodologies have been developed in recent years including molecular design and novel processing approaches, but few have utilized fluid flow to control morphology in OSC thin films. In this Account, we discuss flow-directed crystallization as an effective strategy for controlling the crystallization kinetics during printing of small molecule and polymer semiconductors. Introducing the concept of flow-directed crystallization to the field of printed electronics is inspired by recent advances in pharmaceutical manufacturing and flow processing of flexible-chain polymers. Although flow-induced crystallization is well studied in these areas, previous findings may not apply directly to the field of printed electronics where the molecular structures (i.e., rigid π-conjugated backbone decorated with flexible side chains) and the intermolecular interactions (i.e., π-π interactions, quadrupole interactions) of OSCs differ substantially from those of pharmaceuticals or flexible-chain polymers. Another critical difference is the important role of solvent evaporation in open systems, which defines the flow characteristics and determines the crystallization kinetics and pathways. In

  10. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  11. Measurement of directed blood flow by laser speckle

    NASA Astrophysics Data System (ADS)

    Hirst, Evan R.; Thompson, Oliver B.; Andrews, Michael K.

    2011-03-01

    Recent success in reconciling laser Doppler and speckle measurements of dermal perfusion by the use of multi-exposure speckle has prompted an investigation of speckle effects arising from directed blood flow which might be expected in the small blood vessels of the eye. Unlike dermal scatter, the blood in retinal vessels is surrounded by few small and stationary scatterers able to assist the return of light energy by large-angle scatter. Returning light is expected to come from multiple small angle scatter from the large red blood cells which dominate the fluid. This work compares speckle measurements on highly scattering skin, with measurements on flow in a retinal phantom consisting of a glass capillary which is itself immersed in an index matching fluid to provide a flat air-phantom interface. Brownian motion dominated measurements when small easily levitated scatters were used, and flow was undetectable. With whole-blood, Brownian motion was small and directed flows in the expected region of tens of mm/s were detectable. The nominal flow speed relates to the known pump rate; within the capillary the flow will have a profile reducing toward the walls. The pulsatile effects on laser speckle contrast in the retina are discussed with preliminary multi-exposure measurements on retinal vessels using a fundus camera. Differences between the multiple exposure curves and power spectra of perfused tissue and ordered flow are discussed.

  12. Direct simulation of compressible reacting flows

    NASA Technical Reports Server (NTRS)

    Poinsot, Thierry J.

    1989-01-01

    A research program for direct numerical simulations of compressible reacting flows is described. Two main research subjects are proposed: the effect of pressure waves on turbulent combustion and the use of direct simulation methods to validate flamelet models for turbulent combustion. The interest of a compressible code to study turbulent combustion is emphasized through examples of reacting shear layer and combustion instabilities studies. The choice of experimental data to compare with direct simulation results is discussed. A tentative program is given and the computation cases to use are described as well as the code validation runs.

  13. Cycle and flow trusses in directed networks

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Yoshida, Yuichi

    2016-11-01

    When we represent real-world systems as networks, the directions of links often convey valuable information. Finding module structures that respect link directions is one of the most important tasks for analysing directed networks. Although many notions of a directed module have been proposed, no consensus has been reached. This lack of consensus results partly because there might exist distinct types of modules in a single directed network, whereas most previous studies focused on an independent criterion for modules. To address this issue, we propose a generic notion of the so-called truss structures in directed networks. Our definition of truss is able to extract two distinct types of trusses, named the cycle truss and the flow truss, from a unified framework. By applying the method for finding trusses to empirical networks obtained from a wide range of research fields, we find that most real networks contain both cycle and flow trusses. In addition, the abundance of (and the overlap between) the two types of trusses may be useful to characterize module structures in a wide variety of empirical networks. Our findings shed light on the importance of simultaneously considering different types of modules in directed networks.

  14. Cycle and flow trusses in directed networks

    PubMed Central

    Yoshida, Yuichi

    2016-01-01

    When we represent real-world systems as networks, the directions of links often convey valuable information. Finding module structures that respect link directions is one of the most important tasks for analysing directed networks. Although many notions of a directed module have been proposed, no consensus has been reached. This lack of consensus results partly because there might exist distinct types of modules in a single directed network, whereas most previous studies focused on an independent criterion for modules. To address this issue, we propose a generic notion of the so-called truss structures in directed networks. Our definition of truss is able to extract two distinct types of trusses, named the cycle truss and the flow truss, from a unified framework. By applying the method for finding trusses to empirical networks obtained from a wide range of research fields, we find that most real networks contain both cycle and flow trusses. In addition, the abundance of (and the overlap between) the two types of trusses may be useful to characterize module structures in a wide variety of empirical networks. Our findings shed light on the importance of simultaneously considering different types of modules in directed networks. PMID:28018610

  15. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  16. Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, S. R.

    1995-01-01

    A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.

  17. Potential Flow Interactions With Directional Solidification

    NASA Technical Reports Server (NTRS)

    Buddhavarapu, Sudhir S.; Meiburg, Eckart

    1999-01-01

    The effect of convective melt motion on the growth of morphological instabilities in crystal growth has been the focus of many studies in the past decade. While most of the efforts have been directed towards investigating the linear stability aspects, relatively little attention has been devoted to experimental and numerical studies. In a pure morphological case, when there is no flow, morphological changes in the solid-liquid interface are governed by heat conduction and solute distribution. Under the influence of a convective motion, both heat and solute are redistributed, thereby affecting the intrinsic morphological phenomenon. The overall effect of the convective motion could be either stabilizing or destabilizing. Recent investigations have predicted stabilization by a flow parallel to the interface. In the case of non-parallel flows, e.g., stagnation point flow, Brattkus and Davis have found a new flow-induced morphological instability that occurs at long wavelengths and also consists of waves propagating against the flow. Other studies have addressed the nonlinear aspects (Konstantinos and Brown, Wollkind and Segel)). In contrast to the earlier studies, our present investigation focuses on the effects of the potential flow fields typically encountered in Hele-Shaw cells. Such a Hele-Shaw cell can simulate a gravity-free environment in the sense that buoyancy-driven convection is largely suppressed, and hence negligible. Our interest lies both in analyzing the linear stability of the solidification process in the presence of potential flow fields, as well as in performing high-accuracy nonlinear simulations. Linear stability analysis can be performed for the flow configuration mentioned above. It is observed that a parallel potential flow is stabilizing and gives rise to waves traveling downstream. We have built a highly accurate numerical scheme which is validated at small amplitudes by comparing with the analytically predicted results for the pure

  18. Detection of directed information flow in biosignals.

    PubMed

    Winterhalder, Matthias; Schelter, Björn; Hesse, Wolfram; Schwab, Karin; Leistritz, Lutz; Timmer, Jens; Witte, Herbert

    2006-12-01

    Several analysis techniques have been developed for time series to detect interactions in multidimensional dynamic systems. When analyzing biosignals generated by unknown dynamic systems, awareness of the different concepts upon which these analysis techniques are based, as well as the particular aspects the methods focus on, is a basic requirement for drawing reliable conclusions. For this purpose, we compare four different techniques for linear time series analysis. In general, these techniques detect the presence of interactions, as well as the directions of information flow, in a multidimensional system. We review the different conceptual properties of partial coherence, a Granger causality index, directed transfer function, and partial directed coherence. The performance of these tools is demonstrated by application to linear dynamic systems.

  19. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  20. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  1. The directed flow maximum near cs = 0

    NASA Astrophysics Data System (ADS)

    Brachmann, J.; Dumitru, A.; Stöcker, H.; Greiner, W.

    2000-07-01

    We investigate the excitation function of quark-gluon plasma formation and of directed in-plane flow of nucleons in the energy range of the BNL-AGS and for the E {Lab/kin} = 40 AGeV Pb + Pb collisions performed recently at the CERN-SPS. We employ the three-fluid model with dynamical unification of kinetically equilibrated fluid elements. Within our model with first-order phase transition at high density, droplets of QGP coexisting with hadronic matter are produced already at BNL-AGS energies, E {Lab/kin} ≃ 10 AGeV. A substantial decrease of the isentropic velocity of sound, however, requires higher energies, E {Lab/kin} ≃ 0 AGeV. We show the effect on the flow of nucleons in the reaction plane. According to our model calculations, kinematic requirements and EoS effects work hand-in-hand at E {Lab/kin} = 40 AGeV to allow the observation of the dropping velocity of sound via an increase of the directed flow around midrapidity as compared to top BNL-AGS energy.

  2. Direct numerical simulation of incompressible axisymmetric flows

    NASA Technical Reports Server (NTRS)

    Loulou, Patrick

    1994-01-01

    In the present work, we propose to conduct direct numerical simulations (DNS) of incompressible turbulent axisymmetric jets and wakes. The objectives of the study are to understand the fundamental behavior of axisymmetric jets and wakes, which are perhaps the most technologically relevant free shear flows (e.g. combuster injectors, propulsion jet). Among the data to be generated are various statistical quantities of importance in turbulence modeling, like the mean velocity, turbulent stresses, and all the terms in the Reynolds-stress balance equations. In addition, we will be interested in the evolution of large-scale structures that are common in free shear flow. The axisymmetric jet or wake is also a good problem in which to try the newly developed b-spline numerical method. Using b-splines as interpolating functions in the non-periodic direction offers many advantages. B-splines have local support, which leads to sparse matrices that can be efficiently stored and solved. Also, they offer spectral-like accuracy that are C(exp O-1) continuous, where O is the order of the spline used; this means that derivatives of the velocity such as the vorticity are smoothly and accurately represented. For purposes of validation against existing results, the present code will also be able to simulate internal flows (ones that require a no-slip boundary condition). Implementation of no-slip boundary condition is trivial in the context of the b-splines.

  3. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  4. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  5. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  6. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  7. Field and Lava Flow Experiment Analysis of Vesicle Deformation as a Means of Determining Ancient Flow Direction

    NASA Astrophysics Data System (ADS)

    McColl, B.; Teasdale, R.

    2006-12-01

    The goal of this work is to test whether flow direction of ancient lavas can be determined from orientations of preserved vesicles. We have attempted to correlate field observations with lab experiments as a means of understanding the development of deformed vesicles. This work focuses on vesicles deformed parallel to the lava flow direction. On a fieldtrip, we observed deformed vesicles in basaltic lava flows at cinder cones in the Coso Volcanic Field. Other basalt flows with similarly deformed vesicles are also documented in the Lovejoy Basalt (Chico, CA) and in flows at Lava Beds National Monument, Medicine Lake Volcanic Field. We believe that the vesicles were deformed during lava flow emplacement and cooling. Analog flow experiments used materials with Newtonian behavior (honey, syrup) but Bingham fluid behavior is more similar to natural lavas so gelatin was also attempted. Experiments started with the analog fluids on a horizontal surface. Air was then injected into the fluids with a hypodermic needle and then the surface was inclined to approximately 4-5 degrees. The deformation of the bubbles in the analog fluids was recorded with digital photos taken from above the flows. In some cases, bubbles rose to the surface of the flow and were not deformed parallel to the flow direction. In other cases, bubbles were deformed and we recorded a bulbous end and elongate tail parallel to the flow direction. In all cases the bulbous end of deformed vesicles are directed down stream and a tail stretches behind. Honey best preserved vesicle deformation. Bubbles in syrup rose to the surface too quickly to document (even when syrup was chilled). Air injected into gelatin caused shear, releasing the air without forming bubbles. Future work will address analog material issues by using wax or polyethylene glycol (PEG). These materials are likely to better represent rheologies of basalt lavas during flow emplacement.

  8. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  9. Direct digital control of air washer cooling system

    SciTech Connect

    Elben, T.; Roseblock, R.; Lawler, R.; McCord, J.

    1990-01-01

    The purpose of this project was to make a practical evaluation of using new technology to extend the life of obsolete HVAC mechanical equipment. The specific exercises in this project involved the application of software driven control algorithms to operate and manage open loop air washer cooling systems in the air handling units located in the Municipal Auditorium in Kansas City, Missouri. The specific opportunity evaluated in this project involved eight air handling units at the Municipal Auditorium. The air handling systems utilize outdated air washer cooling systems that provide air conditioning and dehumidification to the areas they serve. We utilized direct digital control to assume total control of the operation of the air handling units. We also found it necessary to upgrade some components of the air handling units in order to allow the new control applications to execute their functions. This report describes the plan used to execute the project and the results. 20 tabs.

  10. Anisotropic Flow in the Forward Directions

    SciTech Connect

    Oldenburg, Markus D.; Putschke, Jorn

    2004-03-09

    The STAR Forward TPCs (FTPCs) extend the STAR acceptance for charged particles into the region 2.5 < |eta| < 4.0. We see the first signal of directed flow (v{sub 1}) at RHIC energies. While v{sub 1} is consistent with zero in the central rapidity region it rises up to 2 percent at pseudorapidities of +-4. With this signal we can verify that elliptic flow (v{sub 2}) is in-plane. The measurement of v{sub 2} in the FTPCs confirms the falloff by a factor of about 2 compared to mid-rapidity previously seen by PHOBOS [1]. In addition we look for higher harmonics (v{sub n}, n>2) where in the case of v{sub 4} a signal is seen in the STAR TPC. With the available statistics for the FTPCs we give an upper limit for these harmonics, since the results agree with zero within the errors. However, the falloff of v{sub 4} from mid-rapidity to forward-rapidities appears to be faster than for v{sub 2}.[1] B.B. Back. Phys. Rev. Lett. 89, 222301 (2002)

  11. DIRECT AMMONIA-AIR FUEL CELL.

    DTIC Science & Technology

    Experimental runs were conducted on direct ammonia fuel cells . Effects of temperature, composition, as well as run effect and block effect were...cells and to electrode flooding are discussed. Data on performance of complete laboratory direct ammonia-oxygen fuel cells are presented and discussed. (Author)

  12. 21 CFR 870.1240 - Flow-directed catheter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flow-directed catheter. 870.1240 Section 870.1240...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1240 Flow-directed catheter. (a) Identification. A flow-directed catheter is a device that incorporates a gas-filled balloon...

  13. Direct Numerical Simulation of A Shaped Hole Film Cooling Flow

    NASA Astrophysics Data System (ADS)

    Oliver, Todd; Moser, Robert

    2015-11-01

    The combustor exit temperatures in modern gas turbine engines are generally higher than the melting temperature of the turbine blade material. Film cooling, where cool air is fed through holes in the turbine blades, is one strategy which is used extensively in such engines to reduce heat transfer to the blades and thus reduce their temperature. While these flows have been investigated both numerically and experimentally, many features are not yet well understood. For example, the geometry of the hole is known to have a large impact on downstream cooling performance. However, the details of the flow in the hole, particularly for geometries similar to those used in practice, are generally know well-understood, both because it is difficult to experimentally observe the flow inside the hole and because much of the numerical literature has focused on round hole simulations. In this work, we show preliminary direct numerical simulation results for a film cooling flow passing through a shaped hole into a the boundary layer developing on a flat plate. The case has density ratio 1.6, blowing ratio 2.0, and the Reynolds number (based on momentum thickness) of incoming boundary layer is approximately 600. We compare the new simulations against both previous experiments and LES.

  14. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  15. The Nature of Air Flow About the Tail of an Airplane in a Spin

    NASA Technical Reports Server (NTRS)

    Scudder, N F; Miller, M P

    1932-01-01

    Air flow about the fuselage and empennage during a high-angle-of-attack spin was made visible in flight by means of titanium-tetrachloride smoke and was photographed with a motion-picture camera. The angular relation of the direction of the smoke streamer to the airplane axes was computed and compared with the angular direction of the motion in space derived from instrument measurement of the spin of the airplane for a nearly identical mass distribution. The results showed that the fin and upper part of the rudder were almost completely surrounded by dead air, which would render them inoperative; that the flow around the lower portion of the rudder and the fuselage was nonturbulent; and that air flowing past the cockpit in a high-angle-of-attack spin could not subsequently flow around control surfaces.

  16. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    NASA Astrophysics Data System (ADS)

    Katunská, Jana; Bullová, Iveta; Špaková, Miroslava

    2016-12-01

    The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now), by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  17. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  18. Investigation of the Penetration on an Air Jet Directed Perpendicularly to an Air Stream

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Ruggeri, Robert S

    1948-01-01

    An experimental investigation was conducted to determine the penetration of a circular air Jet directed perpendicularly to an air stream as a function of Jet density, Jet velocity, air-stream density, air-stream velocity, Jet diameter, and distance downstream from the Jet. The penetration was determined for nearly constant values of air-stream density at two tunnel velocities, four Jet diameters, four positions downstream of the Jet, and for a large range of Jet velocities and densities. An equation for the penetration was obtained in terms of the Jet diameter, the distance downstream from the jet, and the ratios of Jet and air-stream velocities and densities.

  19. Direct numerical simulation of turbulent reacting flows

    SciTech Connect

    Chen, J.H.

    1993-12-01

    The development of turbulent combustion models that reflect some of the most important characteristics of turbulent reacting flows requires knowledge about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between the turbulence and the chemistry is so strong in certain regimes that is is very difficult to isolate the role played by one individual phenomenon. Direct numerical simulation (DNS) is an extremely useful tool to study in detail the turbulence-chemistry interactions in certain well defined regimes. Globally, non-premixed flames are controlled by two limiting cases: the fast chemistry limit, where the turbulent fluctuations. In between these two limits, finite-rate chemical effects are important and the turbulence interacts strongly with the chemical processes. This regime is important because industrial burners operate in regimes in which, locally the flame undergoes extinction, or is at least in some nonequilibrium condition. Furthermore, these nonequilibrium conditions strongly influence the production of pollutants. To quantify the finite-rate chemistry effect, direct numerical simulations are performed to study the interaction between an initially laminar non-premixed flame and a three-dimensional field of homogeneous isotropic decaying turbulence. Emphasis is placed on the dynamics of extinction and on transient effects on the fine scale mixing process. Differential molecular diffusion among species is also examined with this approach, both for nonreacting and reacting situations. To address the problem of large-scale mixing and to examine the effects of mean shear, efforts are underway to perform large eddy simulations of round three-dimensional jets.

  20. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  1. Mapping blood flow directionality in the human brain.

    PubMed

    Park, Sung-Hong; Do, Won-Joon; Choi, Seung Hong; Zhao, Tiejun; Bae, Kyongtae Ty

    2016-07-01

    Diffusion properties of tissue are often expressed on the basis of directional variance, i.e., diffusion tensor imaging. In comparison, common perfusion-weighted imaging such as arterial spin labeling yields perfusion in a scalar quantity. The purpose of this study was to test the feasibility of mapping cerebral blood flow directionality using alternate ascending/descending directional navigation (ALADDIN), a recently-developed arterial spin labeling technique with sensitivity to blood flow directions. ALADDIN was applied along 3 orthogonal directions to assess directional blood flow in a vector form and also along 6 equally-spaced directions to extract blood flow tensor matrix (P) based on a blood flow ellipsoid model. Tensor elements (eigenvalues, eigenvectors, etc) were calculated to investigate characteristics of the blood flow tensor, in comparison with time-of-flight MR angiogram. While the directions of the main eigenvectors were heterogeneous throughout the brain, regional clusters of blood flow directionality were reproducible across subjects. The technique could show heterogeneous blood flow directionality within and around brain tumor, which was different from that of the contralateral normal side. The proposed method is deemed to provide information of blood flow directionality, which has not been demonstrated before. The results warrant further studies to assess changes in the directionality map as a function of scan parameters, to understand the signal sources, to investigate the possibility of mapping local blood perfusion directionality, and to evaluate its usefulness for clinical diagnosis.

  2. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  3. Direct Numerical Simulation of Multiphase Flows with Unstable Interfaces

    NASA Astrophysics Data System (ADS)

    Schillaci, Eugenio; Lehmkuhl, Oriol; Antepara, Oscar; Oliva, Assensi

    2016-09-01

    This paper presents a numerical model that intends to simulate efficiently the surface instability that arise in multiphase flows, typically liquid-gas, both for laminar or turbulent regimes. The model is developed on the in-house computing platform TermoFluids, and operates the finite-volume, direct numerical simulation (DNS) of multiphase flows by means of a conservative level-set method for the interface-capturing. The mesh size is optimized by means of an adaptive mesh refinement (AMR) strategy, that allows the dynamic re-concentration of the mesh in the vicinity of the interfaces between fluids, in order to correctly represent the diverse structures (as ligaments and droplets) that may rise from unstable phenomena. In addition, special attention is given to the discretization of the various terms of the momentum equations, to ensure stability of the flow and correct representation of turbulent vortices. As shown, the method is capable of truthfully simulate the interface phenomena as the Kelvin-Helmholtz instability and the Plateau-Rayleigh instability, both in the case of 2-D and 3-D configurations. Therefore it is suitable for the simulation of complex phenomena such as simulation of air-blast atomization, with several important application in the field of automotive and aerospace engines. A prove is given by our preliminary study of the 3-D coaxial liquid-gas jet.

  4. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  5. A Study of Air Flow in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1939-01-01

    A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.

  6. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  7. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  8. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  9. Miniature Flow-Direction/Pitot-Static Pressure Probes

    NASA Technical Reports Server (NTRS)

    Ashby, George C., Jr.; Coombs, David S.; Eves, John W.; Price, Howard E.; Vasquez, Peter

    1989-01-01

    Precision flow-direction/pitot-static pressure probes, ranging from 0.035 to 0.090 inch (0.89 to 2.29 mm) in outside diameter, successfully fabricated and calibrated for use in Langley 20-inch Mach 6 Tunnel. Probes simultaneously measure flow direction and static and pitot pressures in flow fields about configurations in hypersonic flow at temperatures up to 500 degree F (260 degree C).

  10. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  11. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    Kigali, the capital of the Equatorial African country Rwanda, indicates a fast growing population. This fact and the coherent rising rate of motorization are a reason for a sustainable degradation of the urban air quality. Poorly maintained old mopeds, motorcycles and vehicles cause an increasing concentration of different air pollutants. Apart from the traffic emissions there is another source of air pollution: the usage of simple stoves and open fireplaces. Burning wood, kerosene or dung for domestic energy, cooking and household chores produces a lot of emission, in- and outdoors. Kigali shows a distinctive relief, situated in the Central Highlands of Rwanda. The main business and residential districts are on top of the ridges, which are enclosed by small valleys called "Marais". The lack of space forces more and more people to settle along the slopes and on the bottom of the hills. Though the existence of air pollution depends on the spatial distribution and of course on the intensity of the sources. But pollution is not necessarily bound within the area of strongest emission. Topographical and meteorological conditions could have a very strong influence on the spatial distribution of air quality. This paper presents the results performed by stationary and mobile measurements between 2008 and 2012. Air temperature, air humidity, precipitation, wind speed and direction, carbon monoxide and suspended particulate matter (PM10) were measured at fixed stations within the urban area. CO and PM10 were additionally detected by mobile measurements using a car traverse, which started in the outskirts of Kigali following paved and unpaved roads through the urban area. A mixture of different types of land use composed the measuring route where different commercial, industrial, residential and mobile sources could be expected. Although highest levels of concentration were measured in areas with paved roads in business and commercial areas with the highest traffic rates

  12. Ignition of hydrogen/air mixing layer in turbulent flows

    SciTech Connect

    Im, H.G.; Chen, J.H.; Law, C.K.

    1998-03-01

    Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

  13. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  14. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  15. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  17. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  18. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  19. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-05-01

    Granger causality analysis is designed to quantify whether one time series is useful in forecasting another. We apply the time domain Granger causality analysis based on autoregressive processes to gridded daily surface air temperature data. For each grid-point pair, the direction and strength of the causal influence were computed with the one-day lag, effectively assessing the direction of the information flow in the temperature field. In order to remove the influence of different distances of the grid-points in the original angularly regular grid of the NCEP/NCAR reanalysis, the data were transformed into an equidistant geodesic grid of 642 grid points. The strongest causalities have been found in the Northern Hemisphere's extratropics, where the temperature information is flowing eastward, in agreement with the prevailing westerlies. In contrast, only weak causalities have been observed in the tropics, which may be arising from higher spatio-temporal homogeneity. In the second step, we quantitatively compared this estimate of information flow with the actual wind directions from NCEP/NCAR reanalysis data transformed onto the equidistant geodesic grid of 642 points. This was done for the surface layer and for the 850, 700, 500, 300 and 100hPa layers. The direction of the information flow matches the flow of the air masses, particularly well in the Northern Hemisphere's extratropics, i.e. for the strongest causalities. This agreement holds throughout the troposphere, slightly increasing with the height up to 500hPa level, then remains the same until bottom stratosphere. The agreement between the information flow in the air temperature field and the flow of air masses suggests the Granger causality as a suitable tools for constructing directed climate networks.

  20. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  1. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  2. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  3. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  4. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  5. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  6. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  7. Thermohydraulic analysis of the cooling air flow in a rack

    NASA Astrophysics Data System (ADS)

    Natusch, Andreas; Huchler, Markus

    Manned space laboratories like the US Space Station Freedom or the European COLUMBUS APM are equipped with so-called racks for subsystem and payload accommodation. An important resource is air for cooling the unit internal heat sources, the avionics air. Each unit inside the rack must be supplied with sufficient amount of air to cool down the unit to the allowable maximum temperature. In the course of the COLUMBUS Environmental Control and Life Support Subsystem (ECLSS) project, a thermohydraulic mathematical model (THMM) of a representative COLUMBUS rack was developed to analyze and optimize the distribution of avionic air inside this rack. A sensitivity and accuracy study was performed to determine the accuracy range of the calculated avionics flow rate distribution to the units. These calculations were then compared to measurement results gained in a rack airflow distribution test, which was performed with an equipped COLUMBUS subsystem rack to show the pressure distribution inside the rack. In addition to that cold flow study, the influence of the avionics air heating due to the unit dissipations on the airflow distribution and the cooling tenmperature was investigated in a detailed warm flow analysis.

  8. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  9. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  10. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  11. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  12. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  13. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  14. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  15. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  16. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  17. Direct visualization of hemolymph flow in the heart of a grasshopper (Schistocerca americana)

    PubMed Central

    Lee, Wah-Keat; Socha, John J

    2009-01-01

    Background Hemolymph flow patterns in opaque insects have never been directly visualized due to the lack of an appropriate imaging technique. The required spatial and temporal resolutions, together with the lack of contrast between the hemolymph and the surrounding soft tissue, are major challenges. Previously, indirect techniques have been used to infer insect heart motion and hemolymph flow, but such methods fail to reveal fine-scale kinematics of heartbeat and details of intra-heart flow patterns. Results With the use of microbubbles as high contrast tracer particles, we directly visualized hemolymph flow in a grasshopper (Schistocerca americana) using synchrotron x-ray phase-contrast imaging. In-vivo intra-heart flow patterns and the relationship between respiratory (tracheae and air sacs) and circulatory (heart) systems were directly observed for the first time. Conclusion Synchrotron x-ray phase contrast imaging is the only generally applicable technique that has the necessary spatial, temporal resolutions and sensitivity to directly visualize heart dynamics and flow patterns inside opaque animals. This technique has the potential to illuminate many long-standing questions regarding small animal circulation, encompassing topics such as retrograde heart flow in some insects and the development of flow in embryonic vertebrates. PMID:19272159

  18. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  19. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  20. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  1. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  2. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  3. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  4. Measurement of velocity of air flow in the sinus maxillaris.

    PubMed

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  5. Impact of residual contamination on inclusive and direct photon flow

    NASA Astrophysics Data System (ADS)

    Bock, F.; Loizides, C.; Peitzmann, T.; Sas, M.

    2017-02-01

    Direct photon flow is measured by subtracting the contribution of decay photon flow from the measured inclusive photon flow via the double ratio {R}γ , which defines the excess of direct over decay photons. The inclusive photon sample is affected by a modest contamination arising from different background sources, which can not always be fully corrected for in measurements. However, due to the sensitivity of the direct photon measurement even a residual contamination may significantly bias the extracted direct photon flow. In particular, for measurements using photon conversions, which are very powerful at low transverse momentum, these effects can be substantial. Assuming three different types of correlated background contributions we demonstrate using the Therminator2 event generator that the impact of the contamination on the magnitude of direct photon flow can be on the level of 50%, even if the purity of the inclusive photon sample is about 97%. Future measurements should attempt to account for the contamination by measuring the background contributions and subtracting them from the inclusive photon flow.

  6. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  7. Vision and air flow combine to streamline flying honeybees.

    PubMed

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  8. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  9. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  10. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  11. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  12. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  13. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  14. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  15. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  16. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  17. Air pollution and climate response to aerosol direct radiative ...

    EPA Pesticide Factsheets

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a

  18. Direct Capture of CO2 from Ambient Air.

    PubMed

    Sanz-Pérez, Eloy S; Murdock, Christopher R; Didas, Stephanie A; Jones, Christopher W

    2016-10-12

    The increase in the global atmospheric CO2 concentration resulting from over a century of combustion of fossil fuels has been associated with significant global climate change. With the global population increase driving continued increases in fossil fuel use, humanity's primary reliance on fossil energy for the next several decades is assured. Traditional modes of carbon capture such as precombustion and postcombustion CO2 capture from large point sources can help slow the rate of increase of the atmospheric CO2 concentration, but only the direct removal of CO2 from the air, or "direct air capture" (DAC), can actually reduce the global atmospheric CO2 concentration. The past decade has seen a steep rise in the use of chemical sorbents that are cycled through sorption and desorption cycles for CO2 removal from ultradilute gases such as air. This Review provides a historical overview of the field of DAC, along with an exhaustive description of the use of chemical sorbents targeted at this application. Solvents and solid sorbents that interact strongly with CO2 are described, including basic solvents, supported amine and ammonium materials, and metal-organic frameworks (MOFs), as the primary classes of chemical sorbents. Hypothetical processes for the deployment of such sorbents are discussed, as well as the limited array of technoeconomic analyses published on DAC. Overall, it is concluded that there are many new materials that could play a role in emerging DAC technologies. However, these materials need to be further investigated and developed with a practical sorbent-air contacting process in mind if society is to make rapid progress in deploying DAC as a means of mitigating climate change.

  19. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust...

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust...

  3. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust...

  4. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  5. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  6. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  8. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional

  9. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  10. Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section

    DOEpatents

    Little, David A.; McQuiggan, Gerard; Wasdell, David L.

    2016-10-25

    A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).

  11. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  12. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    USGS Publications Warehouse

    Lu, N.; Kaya, B.S.; Godt, J.W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs. Copyright 2011 by the American Geophysical Union.

  13. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; Guerrero-Viramontes, J A

    2013-08-01

    A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

  14. Simulation of pulmonary air flow with a subject-specific boundary condition.

    PubMed

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A; Tawhai, Merryn H; Lin, Ching-Long

    2010-08-10

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology.

  15. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  16. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change.

  17. Direct Generation of Electric Currents from Flowing Neutral Ionic Solutions

    PubMed Central

    2013-01-01

    We have discovered a new method of generating electric currents, directly from high pressure-induced flow of neutral ionic solutions. The mechanism is that the cations and anions have different flow velocities, if their atomic masses are dramatically different, due to different accelerations generated from the high applied pressure. The generated electric current is very sensitive to the strengths of the applied pressure, and it might be potentially used for detection of atomic masses and pressures. PMID:24187520

  18. Direction of scalar transport in turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Srinivasan, Chiranth; Papavassiliou, Dimitrios V.

    2011-11-01

    The concept of reverse diffusion, introduced by Corrsin to describe the motion of particles as they move towards a location in the flow field, is fundamental to the understanding of mixing. In this work, direct numerical simulations in conjunction with the tracking of scalar markers are utilized in infinitely long channels to study the principal direction of transport of heat (or mass) for both forwards and backwards single particle dispersion. The viscous sub-layer, the transition region (between the viscous sub-layer and the logarithmic region), and the logarithmic region of a Poiseuille flow and a plane Couette flow channel are studied. Fluctuating velocities of scalar markers captured in these regions are used to obtain the full autocorrelation coefficient tensor forwards and backwards with time. The highest eigenvalue of the velocity correlation coefficient tensor quantifies the highest amount of turbulent heat transport, while the corresponding eigenvector points to the main direction of transport. Different Prandtl number, Pr, fluids are simulated for the two types of flow. It is found that the highest eigenvalues are higher in the case of backwards dispersion compared to the case of forwards dispersion for any Pr, in both flow cases. The principal direction for backwards and forwards dispersion is different than for forwards dispersion, for all Pr, and in all flow regions for both flows. Fluids with lower Pr behave different than the higher Pr fluids because of increased molecular diffusion effects. The current study also establishes an interesting analogy of turbulent dispersion to optics defining the turbulent dispersive ratio, a parameter that can be used to identify the differences in the direction of turbulent heat transport between forwards and backwards dispersion. A spectral analysis of the auto-correlation coefficient for both forwards and backwards dispersion shows a universal behavior with slope of -1 at intermediate frequencies.

  19. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    PubMed

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions.

  20. The influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation.

    NASA Astrophysics Data System (ADS)

    Fišer, J.; Jícha, M.

    2013-04-01

    The paper deals with instigation of influence of air duct geometry on air jet direction in aircraft cabin ventilated by mixing ventilation. CFD approach was used for investigation and model geometry was based on small aircraft cabin mock-up geometry. Model was also equipped by nine seats and five manikins that represent passengers. The air jet direction was observed for selected ambient environment parameters and several types of air duct geometry and influence of main air duct geometry on jets direction is discussed. The model was created in StarCCM+ ver. 6.04.014 software and polyhedral mesh was used.

  1. Future directions in air quality research: economic issues.

    PubMed

    Adams, Richard M; Horst, Robert L

    2003-06-01

    Our challenge was to address future directions in air quality research that involve economic issues. The paper outlines the role of economics in the evaluation of air pollution impacts on environmental systems and describes existing research. We identify studies that address economic effects in the agricultural sector, in the commercial forest sector, and in unmanaged natural systems. Effects related to ozone exposure are highlighted. The summary of available research is followed by a discussion of research recommendations. Several short-term recommendations are identified that can augment some of the new research being considered by scientists. A more ambitious, long-term research project is outlined for valuing air pollution impacts in unmanaged natural environments. Specifically, the paper describes possible advantages of an 'integrated assessment' framework that more formally brings together the complex relationships that exist in both ecological and economic systems. A final section contains thoughts on the importance of education (i.e., information transfer) in the research process, especially in relation to policy. It is further noted that education should be inclusive of all members of the research team, throughout all stages of the research process.

  2. Prediction of cavitating flow noise by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Seo, Jung H.; Moon, Young J.; Shin, Byeong Rog

    2008-06-01

    In this study, a direct numerical simulation procedure for the cavitating flow noise is presented. The compressible Navier-Stokes equations are written for the two-phase fluid, employing a density-based homogeneous equilibrium model with a linearly-combined equation of state. To resolve the linear and non-linear waves in the cavitating flow, a sixth-order compact central scheme is utilized with the selective spatial filtering technique. The present cavitation model and numerical methods are validated for two benchmark problems: linear wave convection and acoustic saturation in a bubbly flow. The cavitating flow noise is then computed for a 2D circular cylinder flow at Reynolds number based on a cylinder diameter, 200 and cavitation numbers, σ=0.7-2. It is observed that, at cavitation numbers σ=1 and 0.7, the cavitating flow and noise characteristics are significantly changed by the shock waves due to the coherent collapse of the cloud cavitation in the wake. To verify the present direct simulation and further analyze the sources of cavitation noise, an acoustic analogy based on a classical theory of Fitzpatrik and Strasberg is derived. The far-field noise predicted by direct simulation is well compared with that of acoustic analogy, and it also confirms the f-2 decaying rate in the spectrum, as predicted by the model of Fitzpatrik and Strasberg with the Rayleigh-Plesset equation.

  3. Direct numerical simulation of turbulent channel flow with permeable walls

    NASA Astrophysics Data System (ADS)

    Hahn, Seonghyeon; Je, Jongdoo; Choi, Haecheon

    2002-01-01

    The main objectives of this study are to suggest a proper boundary condition at the interface between a permeable block and turbulent channel flow and to investigate the characteristics of turbulent channel flow with permeable walls. The boundary condition suggested is an extended version of that applied to laminar channel flow by Beavers & Joseph (1967) and describes the behaviour of slip velocities in the streamwise and spanwise directions at the interface between the permeable block and turbulent channel flow. With the proposed boundary condition, direct numerical simulations of turbulent channel flow that is bounded by the permeable wall are performed and significant skin-friction reductions at the permeable wall are obtained with modification of overall flow structures. The viscous sublayer thickness is decreased and the near-wall vortical structures are significantly weakened by the permeable wall. The permeable wall also reduces the turbulence intensities, Reynolds shear stress, and pressure and vorticity fluctuations throughout the channel except very near the wall. The increase of some turbulence quantities there is due to the slip-velocity fluctuations at the wall. The boundary condition proposed for the permeable wall is validated by comparing solutions with those obtained from a separate direct numerical simulation using both the Brinkman equation for the interior of a permeable block and the Navier Stokes equation for the main channel bounded by a permeable block.

  4. Direct simulations of turbulent flow using finite-difference schemes

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Moin, Parviz

    1989-01-01

    A high-order accurate finite-difference approach is presented for calculating incompressible turbulent flow. The methods used include a kinetic energy conserving central difference scheme and an upwind difference scheme. The methods are evaluated in test cases for the evolution of small-amplitude disturbances and fully developed turbulent channel flow. It is suggested that the finite-difference approach can be applied to complex geometries more easilty than highly accurate spectral methods. It is concluded that the upwind scheme is a good candidate for direct simulations of turbulent flows over complex geometries.

  5. Three dimensional direct numerical simulation of complex jet flows

    NASA Astrophysics Data System (ADS)

    Shin, Seungwon; Kahouadji, Lyes; Juric, Damir; Chergui, Jalel; Craster, Richard; Matar, Omar

    2016-11-01

    We present three-dimensional simulations of two types of very challenging jet flow configurations. The first consists of a liquid jet surrounded by a faster coaxial air flow and the second consists of a global rotational motion. These computations require a high spatial resolution and are performed with a newly developed high performance parallel code, called BLUE, for the simulation of two-phase, multi-physics and multi-scale incompressible flows, tested on up to 131072 threads with excellent scalability performance. The method for the treatment of the fluid interfaces uses a hybrid Front Tracking/Level Set technique that defines the interface both by a discontinuous density field as well as by a local triangular Lagrangian mesh. Coriolis forces are taken into account and solved via an exact time-integration method that ensures numerical accuracy and stability. EPSRC UK Programme Grant EP/K003976/1.

  6. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  7. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  8. Microtopography and flow modulate the direction of endothelial cell migration.

    PubMed

    Uttayarat, P; Chen, M; Li, M; Allen, F D; Composto, R J; Lelkes, P I

    2008-02-01

    The migration of vascular endothelial cells under flow can be modulated by the addition of chemical or mechanical stimuli. The aim of this study was to investigate how topographic cues derived from a substrate containing three-dimensional microtopography interact with fluid shear stress in directing endothelial cell migration. Subconfluent bovine aortic endothelial cells were seeded on fibronectin-coated poly(dimethylsiloxane) substrates patterned with a combinatorial array of parallel and orthogonal microgrooves ranging from 2 to 5 microm in width at a constant depth of 1 microm. During a 4-h time-lapse observation in the absence of flow, the majority of the prealigned cells migrated parallel to the grooves with the distribution of their focal adhesions (FAs) depending on the groove width. No change in this migratory pattern was observed after the cells were exposed to moderate shear stress (13.5 dyn/cm(2)), irrespective of groove direction with respect to flow. After 4-h exposure to high shear stress (58 dyn/cm(2)) parallel to the grooves, the cells continued to migrate in the direction of both grooves and flow. By contrast, when microgrooves were oriented perpendicular to flow, most cells migrated orthogonal to the grooves and downstream with flow. Despite the change in the migration direction of the cells under high shear stress, most FAs and actin microfilaments maintained their original alignment parallel to the grooves, suggesting that topographic cues were more effective than those derived from shear stress in guiding the orientation of cytoskeletal and adhesion proteins during the initial exposure to flow.

  9. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  10. An air traffic flow management method based on mixed genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Ying

    2009-12-01

    With the air traffic congest problem becoming more and more severe, the study of air traffic flow management is more and more important. According to the character of air traffic flow management, the author analyzed the heuristic method and genetic algorithms, later put this two method together and give a new method of air traffic flow management-mixture genetic algorithms, It has global convergence, the simulation result demonstrates that the presented algorithm is effective.

  11. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  12. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    PubMed

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  13. Effect of Marangoni Flows on the Shape of Thin Sessile Droplets Evaporating into Air.

    PubMed

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2015-12-15

    Freely receding evaporating sessile droplets of perfectly wetting liquids, for which the observed finite contact angles are attributed to evaporation, are studied with a Mach-Zehnder interferometer. The experimentally obtained droplet shapes are found to depart, under some conditions, from the classical macroscopic static profile of a sessile droplet. The observed deviations (or the absence thereof) are explained in terms of a Marangoni flow due to evaporation-induced thermal gradients along the liquid-air interface. When such a Marangoni effect is strong, the experimental profiles exhibit a maximum of the slope at a certain distance from the contact line. In this case, the axisymmetric flow is directed from the contact line to the apex (along the liquid-air interface), hence delivering more liquid to the center of the droplet and making it appear inflated. These findings are quantitatively confirmed by predictions of a lubrication model accounting for the impact of the Marangoni effect on the droplet shape.

  14. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  15. Towards large eddy and direct simulation of complex turbulent flows

    NASA Technical Reports Server (NTRS)

    Moin, Parviz

    1991-01-01

    Recent advances in the methodology for direct numerical simulation of turbulent flows and some of the current applications are reviewed. It is argued that high-order finite difference schemes yield solutions with comparable accuracy to the spectral methods with the same number of degrees of freedom. The effects of random inflow conditions on the downstream evolution of turbulence are discussed.

  16. Complications of flow-directed balloon-tipped catheters.

    PubMed

    Smart, F W; Husserl, F E

    1990-01-01

    Acute or short-term complications following the use of flow-directed balloon-tipped catheters are well recognized. Long-term sequelae are rarely reported. We report herein an early complication of pulmonary arterial rupture with infarction followed by the delayed development of a pulmonary arterial aneurysm.

  17. Microalga propels along vorticity direction in a shear flow

    NASA Astrophysics Data System (ADS)

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  18. Microalga propels along vorticity direction in a shear flow.

    PubMed

    Chengala, Anwar; Hondzo, Miki; Sheng, Jian

    2013-05-01

    Using high-speed digital holographic microscopy and microfluidics, we discover that, when encountering fluid flow shear above a threshold, unicellular green alga Dunaliella primolecta migrates unambiguously in the cross-stream direction that is normal to the plane of shear and coincides with the local fluid flow vorticity. The flow shear drives motile microalgae to collectively migrate in a thin two-dimensional horizontal plane and consequently alters the spatial distribution of microalgal cells within a given suspension. This shear-induced algal migration differs substantially from periodic rotational motion of passive ellipsoids, known as Jeffery orbits, as well as gyrotaxis by bottom-heavy swimming microalgae in a shear flow due to the subtle interplay between torques generated by gravity and viscous shear. Our findings could facilitate mechanistic solutions for modeling planktonic thin layers and sustainable cultivation of microalgae for human nutrition and bioenergy feedstock.

  19. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  20. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  1. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  2. Viscous compressible flow direct and inverse computation and illustrations

    NASA Technical Reports Server (NTRS)

    Yang, T. T.; Ntone, F.

    1986-01-01

    An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.

  3. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  4. The Sensitivity of Orographic Precipitation to Flow Direction

    NASA Astrophysics Data System (ADS)

    Mass, C.; Picard, L.

    2015-12-01

    An area of substantial interest is the sensitivity of orographic precipitation to the characteristics of the incoming flow and to the surrounding environment. Some studies have suggested substantial sensitivity of precipitation within individual river drainages for relatively small directional or stability variations of incoming flow. A characterization of such flow sensitivity would be of great value for hydrometeorological prediction, the determination of Probable Maximum Precipitation statistics, and for quantifying the uncertainty in precipitation and hydrological forecasts. To gain insight into this problem, an idealized version of the Weather Research and Forecasting (WRF) modeling system was created in which simulations are driven by a single vertical sounding, with the assumption of thermal wind balance. The actual terrain is used and the full physics complement of the modeling system. The presentation will show how precipitation over the Olympic Mountains of Washington State varies as flow direction changes. This analysis will include both the aggregate precipitation over the barrier and the precipitation within individual drainages or areas. The role of surrounding terrain and the nearby coastline are also examined by removing these features from simulations. Finally, the impact of varying flow stability and speed on the precipitation over this orographic feature will be described.

  5. Phonatory air flow characteristics of adductor spasmodic dysphonia and muscle tension dysphonia.

    PubMed

    Higgins, M B; Chait, D H; Schulte, L

    1999-02-01

    The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pa] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.

  6. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  7. Direct Numerical Simulation of a Cavity-Stabilized Ethylene/Air Premixed Flame

    NASA Astrophysics Data System (ADS)

    Chen, Jacqueline; Konduri, Aditya; Kolla, Hemanth; Rauch, Andreas; Chelliah, Harsha

    2016-11-01

    Cavity flame holders have been shown to be important for flame stabilization in scramjet combustors. In the present study the stabilization of a lean premixed ethylene/air flame in a rectangular cavity at thermo-chemical conditions relevant to scramjet combustors is simulated using a compressible reacting multi-block direct numerical simulation solver, S3D, incorporating a 22 species ethylene-air reduced chemical model. The fuel is premixed with air to an equivalence ratio of 0.4 and enters the computational domain at Mach numbers between 0.3 and 0.6. An auxiliary inert channel flow simulation is used to provide the turbulent velocity profile at the inlet for the reacting flow simulation. The detailed interaction between intense turbulence, nonequilibrium concentrations of radical species formed in the cavity and mixing with the premixed main stream under density variations due to heat release rate and compressibility effects is quantified. The mechanism for flame stabilization is quantified in terms of relevant non-dimensional parameters, and detailed analysis of the flame and turbulence structure will be presented. We acknowledge the sponsorship of the AFOSR-NSF Joint Effort on Turbulent Combustion Model Assumptions and the DOE Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  8. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  9. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  10. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  11. New directions: Air pollution challenges for developing megacities like Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Khare, Mukesh; Harrison, Roy M.; Bloss, William J.; Lewis, Alastair C.; Coe, Hugh; Morawska, Lidia

    2015-12-01

    Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

  12. 77 FR 64763 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-23

    ... Directives; Lindstrand Hot Air Balloons Ltd Appliances AGENCY: Federal Aviation Administration (FAA... adopt a new airworthiness directive (AD) for certain Lindstrand Hot Air Balloons Ltd female ACME... identified in this proposed AD, contact Lindstrand Hot Air Balloons Ltd., Maesbury Road, Oswestry,...

  13. Direct effects of energy-related air pollutants on plant sexual reproduction

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  14. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  15. Intracardiac flow visualization: current status and future directions.

    PubMed

    Rodriguez Muñoz, Daniel; Markl, Michael; Moya Mur, José Luis; Barker, Alex; Fernández-Golfín, Covadonga; Lancellotti, Patrizio; Zamorano Gómez, José Luis

    2013-11-01

    Non-invasive cardiovascular imaging initially focused on heart structures, allowing the visualization of their motion and inferring its functional status from it. Colour-Doppler and cardiac magnetic resonance (CMR) have allowed a visual approach to intracardiac flow behaviour, as well as measuring its velocity at single selected spots. Recently, the application of new technologies to medical use and, particularly, to cardiology has allowed, through different algorithms in CMR and applications of ultrasound-related techniques, the description and analysis of flow behaviour in all points and directions of the selected region, creating the opportunity to incorporate new data reflecting cardiac performance to cardiovascular imaging. The following review provides an overview of the currently available imaging techniques that enable flow visualization, as well as its present and future applications based on the available literature and on-going works.

  16. Boundary conditions for direct simulations of compressible viscous flows

    NASA Technical Reports Server (NTRS)

    Poinsot, T. J.; Lele, S. K.

    1992-01-01

    The present consideration of procedures for the definition of boundary conditions for the Navier-Stokes equations emphasizes the derivation of boundary conditions that are compatible with nondissipative algorithms applicable to direct simulations of turbulent flows. A novel formulation for the Euler equations is derived on the basis of characteristic wave relations through boundaries; this formulation is generalized to the Navier-Stokes equations. The method, which applies to both sub- and supersonic flows, is used in reflecting and nonreflecting boundary-condition treatments. Attention is given to practical implementations involving inlet and outlet boundaries and slip and nonslip walls, as well as the test cases of a ducted shear layer, vortices propagating through boundaries, and Poiseuille flow.

  17. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  18. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  19. Directed flow is a sensitive probe of deconfinement transition

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu. B.; Soldatov, A. A.

    2016-08-01

    Analysis of available data on directed flow (v1) of protons, antiprotons and pions in heavy-ion collisions is performed in the range of incident energies relevant to the Nuclotron-based Ion Collider Facility (NICA). Simulations have been done within a three-fluid model employing a purely hadronic equation of state (EoS) and two versions of the EoS involving deconfinement transitions: a first-order phase transition and a smooth crossover transition. High sensitivity of the directed flow, especially the proton one, to onset of the deconfinement transition is found. The crossover EoS is favored by the majority of the considered experimental data. Future data from NICA could clarify certain inconsistency of data at E_{lab} = 2-8 A·GeV.

  20. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Department of Agriculture, or its equivalent. (2) A suitable supply of compressed air filtered to remove... specimen. The weight of the test specimen shall be that weight prescribed for the air flow instrument...

  1. Flow topologies in different regimes of premixed turbulent combustion: A direct numerical simulation analysis

    NASA Astrophysics Data System (ADS)

    Wacks, Daniel H.; Chakraborty, Nilanjan; Klein, Markus; Arias, Paul G.; Im, Hong G.

    2016-12-01

    The distributions of flow topologies within the flames representing the corrugated flamelets, thin reaction zones, and broken reaction zone regimes of premixed turbulent combustion are investigated using direct numerical simulation data of statistically planar turbulent H2-air flames with an equivalence ratio ϕ =0.7 . It was found that the diminishing influence of dilatation rate with increasing Karlovitz number has significant influences on the statistical behaviors of the first, second, and third invariants (i.e., P ,Q , and R ) of the velocity gradient tensor. These differences are reflected in the distributions of the flow topologies within the flames considered in this analysis. This has important consequences for those topologies that make dominant contributions to the scalar-turbulence interaction and vortex-stretching terms in the scalar dissipation rate and enstrophy transport equations, respectively. Detailed physical explanations are provided for the observed regime dependences of the flow topologies and their implications on the scalar dissipation rate and enstrophy transport.

  2. Mid-section of a can-annular gas turbine engine with an improved rotation of air flow from the compressor to the turbine

    DOEpatents

    Little, David A.; Schilp, Reinhard; Ross, Christopher W.

    2016-03-22

    A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the air flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).

  3. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  4. Experimental investigation and simulation of flow boiling of nanofluids in different flow directions

    NASA Astrophysics Data System (ADS)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this work, the flow boiling of TiO2/water and Al2O3/water nanofluids was investigated experimentally and simulated with two phases. Experimental results were obtained in two directions and compared together. The volume fraction and heat transfer coefficient obtained from the vertical tube were compared with those obtained from the horizontal tube. The results showed that the contours of vapor volume fraction in horizontal tube are completely different from the vertical tube, which is due to the buoyancy effect. Moreover, the effect of nanoparticles on both flow directions was almost the same, while heat transfer coefficient was not the same in these flow directions. Based on the experimental result, presence of nanoparticles in the base fluid cannot increase the heat transfer coefficient.

  5. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  6. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-02

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  7. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  8. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  9. Air flow resistance of three heat and moisture exchanging filter designs under wet conditions: implications for patient safety.

    PubMed

    Morgan-Hughes, N J; Mills, G H; Northwood, D

    2001-08-01

    Heat and moisture exchanging filters (HMEFs) can be blocked by secretions. We have studied HMEF performance under wet conditions to see which particular design features predispose to this complication. Dar Hygrobac-S (composite felt filter and cellulose exchanger), Dar Hygroster (composite pleated ceramic membrane and cellulose exchanger) and Pall BB22-15 (pleated ceramic membrane) HMEFs were tested. Saline retention, saline concealment, and changes in air flow resistance when wet were assessed. The cellulose exchanger in the composite Hygrobac-S and Hygroster retained saline, producing a 'tampon' effect, associated with bi-directional air flow resistances in excess of the international standard of a 5 cm H(2)O pressure drop at 60 litre min(-1) air flow. Furthermore, high air flow resistances occurred before free saline was apparent within the transparent filter housing. The pleat only BB22-15 showed a significant increase in expiratory air flow resistance, but only after the presence of saline was apparent. These data imply that composite HMEFs with cellulose exchangers are more likely to block or cause excessive work of breathing as a result of occult accumulation of patient secretions than pleat only HMEFs.

  10. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  11. Impact of Aerosol Direct Effect on East Asian Air Quality During the EAST-AIRE Campaign

    NASA Astrophysics Data System (ADS)

    Wang, J.; Allen, D. J.; Pickering, K. E.; Li, Z.

    2015-12-01

    Three WRF-Chem simulations were conducted for East Asia region during March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) period to investigate the direct effects of aerosols on surface radiation and air quality. WRF-Chem captured the temporal and spatial variations of meteorological fields, trace gases, and aerosol loadings. Surface shortwave radiation changes due to the aerosol direct effect (ADE) were calculated and compared with data from six World Radiation Data Center (WRDC) stations. The comparison indicated that WRF-Chem can simulate the surface short wave radiation moderately well, with temporal correlations between 0.4 and 0.7, and high biases between 9 to 120 W/m2. Domain-wide, WRF-Chem showed a decrease of 22 W/m2 in surface SW radiation due to the aerosol direct effect, consistent with observational studies. The ADE demonstrates diverse influences on air quality in East Asian. For example, the surface concentration of PM2.5 increases in eastern China (~11.1%) due to ADE, but decreases in central China (-7.3%), western China (-8.8%), and Sichuan Basin (-4%). Surface 1-hour maximum ozone is reduced by 2.3%, owing to less radiation reaching the surface due to the ADE. Since PM2.5 pollution raises serious public concern in China, regulations that control the emissions of PM2.5 and its precursors have been implemented. We investigate the impact of reducing two different types of aerosols, sulfate (scattering) and black carbon (absorbing), by cutting 80% of SO2 and black carbon (BC) emissions in two sensitivity simulations. We found that reducing SO2 emissions results in the decline of PM2.5 as much as 16mg/m3 in eastern China, and 20mg/m3 in the Sichuan Basin. Reducing the BC emissions by the same percentage causes the PM2.5 to decrease as much as 40mg/m3 in eastern China, and 25mg/m3 in the Sichuan Basin. The monthly averaged surface 1-hour maximum ozone increases 3

  12. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  13. Direct simulation of isothermal-wall supersonic channel flow

    NASA Technical Reports Server (NTRS)

    Coleman, Gary N.

    1993-01-01

    The motivation for this work is the fact that in turbulent flows where compressibility effects are important, they are often poorly understood. A few examples of such flows are those associated with astrophysical phenomena and those found in combustion chambers, supersonic diffusers and nozzles, and over high-speed airfoils. For this project, we are primarily interested in compressibility effects near solid surfaces. Our main objective is an improved understanding of the fundamentals of compressible wall-bounded turbulence, which can in turn be used to cast light upon modeling concepts such as the Morkovin hypothesis and the Van Driest transformation. To this end, we have performed a direct numerical simulation (DNS) study of supersonic turbulent flow in a plane channel with constant-temperature walls. All of the relevant spatial and temporal scales are resolved so that no sub grid scale or turbulence model is necessary. The channel geometry was chosen so that finite Mach number effects can be isolated by comparing the present results to well established incompressible channel data. Here the fluid is assumed to be an ideal gas with constant specific heats, constant Prandtl number, and power-law temperature-dependent viscosity. Isothermal-wall boundary conditions are imposed so that a statistically stationary state may be obtained. The flow is driven by a uniform (in space) body force (rather than a mean pressure gradient) to preserve stream wise homogeneity, with the body force defined so that the total mass flux is constant.

  14. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter < 2.5 µm) concentrations to increase in eastern China (4.4%), southern China (10%), western China (2.3%), and the Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  15. Direct simulations of a rough-wall channel flow

    NASA Astrophysics Data System (ADS)

    Ikeda, Tomoaki

    Rough-wall turbulence arises in many applications. Besides, most walls should often be considered to be rough in the high Reynolds number limit. Our objective has been to understand turbulence modifications for their relevance to statistical closure models on the rough-wall boundary layer via Direct Numerical Simulations (DNS). In this study, we performed the simulations of turbulent flow over rectangular-rib roughness, provided on one side of a plane in a channel, with the other side being smooth. The separation between ribs is large enough to reproduce k-type, or sand-grain roughness. The Reynolds number Retau of our representative DNS case is 460 based on the smooth-wall friction velocity and the channel half width. The roughness height h is estimated as 110 in wall units based on the rough-wall friction velocity. Our study consists of two main parts. First, a numerical issue due to mesh stretch is discussed. It was found that statistical data were noticeably affected by the numerical mesh highly stretched in both the streamwise and wall-normal directions. Truncation error analysis shows that the energy conserving scheme produces anti-diffusion error if mesh is stretched, or positive diffusion if narrowed. However, high frequencies in turbulent flow cause further adverse effect on statistics, if solely the lowest-order error is removed. An appropriate form of convection scheme that minimizes the mesh-stretch error is proposed and evaluated through numerical analyses. In the second part, the simulation results of the asymmetric channel flow are presented. The velocity profile and kinetic energy budget verify the presence of an equilibrium, logarithmic layer at y ≳ 2h. In the roughness sublayer, however, a significant turbulent energy flux was observed. Visualizations of vortical streaks, disrupted in all the three directions in the roughness sublayer, indicate that the three-dimensional flow structure of sand-grain roughness is replicated by the two

  16. Direct numerical simulation of inertial flows in porous media

    NASA Astrophysics Data System (ADS)

    Apte, S.; Finn, J.; Wood, B. D.

    2010-12-01

    At modest flow rates (10 ≤ Re ≤ 300) through porous media and packed beds, fluid inertia can result in complex steady and unsteady recirculation regions, dependent on the local pore geometry. Body fitted CFD is a broadly used design and analysis tool for flows in porous media and packed bed type reactors. Unfortunately, the inherent complexities of porous media make unstructured mesh generation a difficult and time consuming step in the simulation process. To accurately capture the inertial dynamics using high-fidelity direct simulations, body fitted meshes must be high quality and sufficiently refined. We present methods to parameterize and simplify mesh generation for packed beds, with an eye toward obtaining efficient mesh independence for Reynolds numbers in the inertial and unsteady regimes. The crux of mesh generation for packed beds is dealing with sphere-sphere or sphere-wall contact points, where a geometric singularity exists. To handle the sphere-sphere and sphere-wall contact points, we use a fillet bridge model, in which every pair of contacting entities are bridged by a fillet, eliminating a small fluid region near the contact point. This results in a continuous surface mesh which does not require resizing of the spheres and can accommodate prism cells for improved boundary layer resolution. A second order accurate, parallel, incompressible flow solver [Moin and Apte, AIAA J. 2006] is used to simulate flow through three different sphere packings: a periodic simple cubic packing, a wall bounded hexagonal close packing, and a randomly packed tube. Mesh independence is assessed using several measures including Ergun pressure drop coefficients, viscous and pressure components of drag force, kinetic energy, kinetic energy dissipation and interstitial velocity profiles. The results of these test cases are used to determine the feasibility of accurate and very large scale simulations of flow through a randomly packed bed of 103 pores. Preliminary results

  17. Particle flow reconstruction based on the directed tree clustering algorithm

    SciTech Connect

    Chakraborty, D.; Lima, J. G. R.; McIntosh, R.; Zutshi, V.

    2006-10-27

    We present the status of particle flow algorithm development at Northern Illinois University. A key element in our approach is the calorimeter-based directed tree clustering algorithm. We have attempted to identify and tackle the essential challenges and analyze the effect of several different approaches to the reconstruction of jet energies and the Z-boson mass. A number of possibilities have been studied, such as analog vs. digital energy measurement, hit density-based clustering and the use of single or multiple energy thresholds. We plan to use this PFA-based reconstruction to compare some of the proposed detector technologies and geometries.

  18. Direction of fluid flow and the properties of fibrous filters

    SciTech Connect

    Pich, J.; Spurny, K.

    1991-01-01

    The influence of the fluid flow direction (downflow and upflow) on the filtration properties of filters that have a fibrous structure is investigated. It is concluded that selectivity of these filters (dependence of the filter efficiency on the particle size) in the case of upflow is changed - in comparison with the case of downflow - in three ways: the position of the minimum of this dependence is shifted to larger particle sizes, and the whole selectivity is decreased and simultaneously deformed. Corresponding equations for this shift and changes are derived and analyzed. Theoretical predictions are compared with available experimental data. In all cases qualitative agreement and in some cases quantitative agreement is found.

  19. A Flow SPR Immunosensor Based on a Sandwich Direct Method

    PubMed Central

    Tomassetti, Mauro; Conta, Giorgia; Campanella, Luigi; Favero, Gabriele; Sanzò, Gabriella; Mazzei, Franco; Antiochia, Riccarda

    2016-01-01

    In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10−3 and 10−1 M, a measurement time of ≤20 min and a high selectivity both towards β-lactam antibiotics and antibiotics of different classes. PMID:27187486

  20. Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Gatski, Thomas B.

    1997-01-01

    A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.

  1. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  2. Melt Flow Control in the Directional Solidification of Binary Alloys

    NASA Technical Reports Server (NTRS)

    Zabaras, Nicholas

    2003-01-01

    Our main project objectives are to develop computational techniques based on inverse problem theory that can be used to design directional solidification processes that lead to desired temperature gradient and growth conditions at the freezing front at various levels of gravity. It is known that control of these conditions plays a significant role in the selection of the form and scale of the obtained solidification microstructures. Emphasis is given on the control of the effects of various melt flow mechanisms on the local to the solidification front conditions. The thermal boundary conditions (furnace design) as well as the magnitude and direction of an externally applied magnetic field are the main design variables. We will highlight computational design models for sharp front solidification models and briefly discuss work in progress toward the development of design techniques for multi-phase volume-averaging based solidification models.

  3. Additional research on instabilities in atmospheric flow systems associated with clear air turbulence

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1972-01-01

    Analytical and experimental fluid mechanics studies were conducted to investigate instabilities in atmospheric flow systems associated with clear air turbulence. The experimental portion of the program was conducted using an open water channel which allows investigation of flows having wide ranges of shear and density stratification. The program was primarily directed toward studies of the stability of straight, stratified shear flows with particular emphasis on the effects of velocity profile on stability; on studies of three-dimensional effects on the breakdown region in shear layers; on the the interaction of shear flows with long-wave length internal waves; and on the stability of shear flows consisting of adjacent stable layers. The results of these studies were used to evaluate methods used in analyses of CAT encounters in the atmosphere involving wave-induced shear layer instabilities of the Kelvin-Helmholta type. A computer program was developed for predicting shear-layer instability and CAT induced by mountain waves. This technique predicts specific altitudes and locations where CAT would be expected.

  4. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  5. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  6. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  7. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  8. 78 FR 9785 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ...-034-AD; Amendment 39-17345; AD 2013-03-10] RIN 2120-AA64 Airworthiness Directives; Lindstrand Hot Air... Hot Air Balloons Ltd female ACME threaded hose connectors, part numbers HS6139 and HS6144, installed.... For service information identified in this AD, contact Lindstrand Hot Air Balloons Ltd, Maesbury...

  9. 78 FR 18533 - Airworthiness Directives; Lindstrand Hot Air Balloons Ltd Appliances

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-27

    ...-034-AD; Amendment 39-17345; AD 2013-03-10] RIN 2120-AA64 Airworthiness Directives; Lindstrand Hot Air... Register. That AD applies to certain Lindstrand Hot Air Balloons Ltd female ACME threaded hose connectors... follows: * * * * * (c) Applicability This AD applies to Lindstrand Hot Air Balloons Ltd female...

  10. 30 CFR 75.341 - Direct-fired intake air heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Direct-fired intake air heaters. 75.341 Section... air heaters. (a) If any system used to heat intake air malfunctions, the heaters affected shall switch off automatically. (b) Thermal overload devices shall protect the blower motor from overheating....

  11. Direct Numerical Simulation of Flow Over Passive Geometric Disturbances

    NASA Astrophysics Data System (ADS)

    Vizard, Alexander

    It is well understood that delaying flow separation on a bluff body allows significant drag reduction, which is attractive in many applications. With this in mind, many separation control mechanisms, both active and passive, have been developed and tested to optimize the effects of this phenomenon. Although this idea is generally accepted, the physical occurrences in the near-wall region during transition that lead to separation delay are not well understood. The current study evaluates the impact of both spherical dimples, and sandgrain style roughness on downstream flow by performing direct numerical simulations over such geometries on a zero pressure gradient flat plate. It is shown that although dimples and random roughness of similar characteristic length scales exhibit similar boundary layer characteristics, dimples are more successful in developing high momentum in the vicinity of the wall. Additionally it is shown that increasing the relative size of the rough elements does not increase the near-wall momentum, and is undesirable in controlling separation. Finally, it is shown that the impact of roughness elements on the flow is more immediate, and that, for the case of one row of dimples and an equivalent area of roughness, the roughness patch is more successful in transitioning the near-wall region to a non-laminar state. It can be concluded from variation in the span of the flowfield for a single row of dimples that the size and orientation of the disturbance region is significant to the results.

  12. Direct and Continuous Numerical Simulations of Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Lu, Tianshi; Samulyak, Roman; Glimm, James

    2003-11-01

    We have studied numerically the propagation of linear and nonlinear waves in bubbly flows using direct and continuous approaches. The direct method represents a mixture of gas bubbles in a liquid as a system of one phase domains separated by free interfaces. FronTier, a front tracking hydro code was used for numerical simulations. It is capable of tracking simultaneously a large number of interfaces and resolving their topological changes (the breakup and merger of bubbles) in two- and three-dimensional spaces. The continuous method describes a bubbly fluid as a homogeneous system or pseudofluid that obeys an equation of state of single-component flow. Homogeneous equation of state models based on the Rayleigh-Plesset equation have been developed for the FronTier code. We have compared results of our numerical simulations with theoretical predictions and experimental data on the propagation of shocks and linear sound waves in bubbly fluids. The two methods can be applied to estimate the efficiency of gas bubble mitigation in reducing the cavitation erosion of the container of the Spallation Neutron Source liquid mercury target.

  13. Air service to small communities, directions for the future. [conference

    NASA Technical Reports Server (NTRS)

    Vittek, J. F., Jr. (Editor)

    1974-01-01

    The seminar on the problems of providing air service to low and medium density points is reported. National transport policies and programs are discussed along with the technology aspects. Recommendations for ATC, CAB, and FAA are included.

  14. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  15. 14 CFR 119.21 - Commercial operators engaged in intrastate common carriage and direct air carriers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... common carriage and direct air carriers. 119.21 Section 119.21 Aeronautics and Space FEDERAL AVIATION... operators engaged in intrastate common carriage and direct air carriers. (a) Each person who conducts airplane operations as a commercial operator engaged in intrastate common carriage of persons or...

  16. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  17. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  18. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  19. [Invention of an air forced ventilated micro-isolation cage and rack system--environment within the cages: ventilation, air flow].

    PubMed

    Kurosawa, T; Yoshida, K; Okamoto, M; Tajima, M

    1993-10-01

    A forced air ventilation system for small laboratory animals was developed. The system consists of an air handling unit with air supply and exhaust fans, a rack, hard cage covers with a large diameter air inlet and an outlet, and shoe box cages. Air flow from the supply duct, to the exhaust duct and within the cage were observed. Variations in air flow among cages was minimal. The optimal air exchange rate of the cages in this system was determined to be 60 times per hour based on the results obtained in the present study. At this air exchange rate, air flow at the base of the cages had a velocity of less than 0.09m/sec, which was within the range of recommended values for humans. The observed results show that the system developed is capable of sustaining a laboratory animal microenvironment well in terms of air flow, without too much energy cost.

  20. Heat flow control and segregation in directional solidification

    NASA Technical Reports Server (NTRS)

    Witt, A. F.; Rohsenow, W. M.; Houpt, P. K.

    1982-01-01

    Optimization of the vertical Bridgman technique for growth of electronic materials in single crystal form was investigated. The limitations of the crystal growth configuration were experimentally determined and heat transfer related deficiencies identified. Design of an alternate system was based on the use of heat pipes separated by a gradient region. Heat transfer analyses based on one and two dimensional models indicated the necessity of a flexible gradient zone configuration. Directional melting of binary systems as encountered during seeding in melt growth was analysed for concurrent compositional changes at the crystal-metal interface, and the theoretical treatment numerically applied to HgCdTe and Ga doped germanium. A theoretical and experimental study of the thermal effects associated with current flow was conducted. It was found that experimental measurements of dc induced growth during crystal pulling can be used for the precise determination of the Peltier coefficient.

  1. Continuous flow ink etching for direct micropattern of silicon dioxide

    NASA Astrophysics Data System (ADS)

    Xing, Jiyao; Rong, Weibin; Wang, Lefeng; Sun, Lining

    2016-07-01

    A continuous flow ink etching (CFIE) method is presented to directly create micropatterns on a 60 nm thick silicon dioxide (SiO2) layer. This technique employs a micropipette filled with potassium bifluoride (KHF2) aqueous solution to localize SiO2 dissolution in the vicinity of the micropipette tip. Both dot and line features with well-defined edges were fabricated and used as hardmasks for silicon etching. The linear density of etchant ink deposited on the SiO2 can be used to regulate the depth, width and 2D morphology of the line pattern. The characterization of CFIE including the resolution (about 4 μm), reproducibility and capability to form complex structures are reported. This technique provides a simple and flexible alternative to generate the SiO2 hardmask for silicon microstructure fabrication.

  2. Experimental analysis of the velocity field of the air flowing through the swirl diffusers

    NASA Astrophysics Data System (ADS)

    Jaszczur, M.; Branny, M.; Karch, M.; Borowski, M.

    2016-09-01

    The article presents the results of experimental studies of flow of air through diffusers. Presented laboratory model is a simplification of the real system and was made in a geometric scale 1:10. Simplifying refer both to the geometry of the object and conditions of air flow. The aim of the study is to determine the actual velocity fields of air flowing out of the swirl diffuser. The results obtained for the diffuser various settings are presented. We have tested various flow rates of air. Stereo Particle Image Velocimetry (SPIV) method was used to measure all velocity vector components. The experimental results allow to determine the actual penetration depth of the supply air into the room. This will allow for better definition of the conditions of ventilation in buildings.

  3. An experimental setup for the study of the steady air flow in a diesel engine chamber

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín; José Vega, Emilio; Castilla, Alejandro; Marcos, Alberto; María Montanero, José; Barrio, Raúl

    2012-04-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  4. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  5. Melt flow effect on interface stability during directional solidification

    NASA Astrophysics Data System (ADS)

    Fedorov, O. P.; Mashkovskiy, A. G.

    2015-03-01

    In the framework of the phenomenological macroscopic continuum theory using the approximation of a flat frontier layer the stability of solid-liquid interface at the directional solidification under melt motion along the interface is studied. The stability conditions are reduced to determination of eigenvalues of boundary value problem for infinitesimal disturbances of stationary process. In case of stagnant melt it is shown that in the plane "wave number-pulling rate" there are two areas of instability for low and large pulling rates divided by the area of steady-steady growth. Neutral stability curve calculated for rather large pulling rates for succinonitrile-acetone (SCN-Ac) system is close to the relevant values received by Mullins and Sekerka, while the absolute values of critical growth rates are of the same order of magnitude as the experimental ones. Melt flow along the interface leads to emergence of the third area of instability which is characterized by small values of wave numbers. When increasing the melt flow rate the area of instability extends towards great values of wave numbers.

  6. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.

  7. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  8. Modeling 3D conjugate heat and mass transfer for turbulent air drying of Chilean papaya in a direct contact dryer

    NASA Astrophysics Data System (ADS)

    Lemus-Mondaca, Roberto A.; Vega-Gálvez, Antonio; Zambra, Carlos E.; Moraga, Nelson O.

    2017-01-01

    A 3D model considering heat and mass transfer for food dehydration inside a direct contact dryer is studied. The k- ɛ model is used to describe turbulent air flow. The samples thermophysical properties as density, specific heat, and thermal conductivity are assumed to vary non-linearly with temperature. FVM, SIMPLE algorithm based on a FORTRAN code are used. Results unsteady velocity, temperature, moisture, kinetic energy and dissipation rate for the air flow are presented, whilst temperature and moisture values for the food also are presented. The validation procedure includes a comparison with experimental and numerical temperature and moisture content results obtained from experimental data, reaching a deviation 7-10 %. In addition, this turbulent k- ɛ model provided a better understanding of the transport phenomenon inside the dryer and sample.

  9. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  10. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  11. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  12. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  13. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  14. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  15. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  16. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  17. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  18. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  19. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  20. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  1. Large-scale flow phenomena in axial compressors: Modeling, analysis, and control with air injectors

    NASA Astrophysics Data System (ADS)

    Hagen, Gregory Scott

    This thesis presents a large scale model of axial compressor flows that is detailed enough to describe the modal and spike stall inception processes, and is also amenable to dynamical systems analysis and control design. The research presented here is based on the model derived by Mezic, which shows that the flows are dominated by the competition between the blade forcing of the compressor and the overall pressure differential created by the compressor. This model describes the modal stall inception process in a similar manner as the Moore-Greitzer model, but also describes the cross sectional flow velocities, and exhibits full span and part span stall. All of these flow patterns described by the model agree with experimental data. Furthermore, the initial model is altered in order to describe the effects of three dimensional spike disturbances, which can destabilize the compressor at otherwise stable operating points. The three dimensional model exhibits flow patterns during spike stall inception that also appear in experiments. The second part of this research focuses on the dynamical systems analysis of, and control design with, the PDE model of the axial flow in the compressor. We show that the axial flow model can be written as a gradient system and illustrate some stability properties of the stalled flow. This also reveals that flows with multiple stall cells correspond to higher energy states in the compressor. The model is derived with air injection actuation, and globally stabilizing distributed controls are designed. We first present a locally optimal controller for the linearized system, and then use Lyapunov analysis to show sufficient conditions for global stability. The concept of sector nonlinearities is applied to the problem of distributed parameter systems, and by analyzing the sector property of the compressor characteristic function, completely decentralized controllers are derived. Finally, the modal decomposition and Lyapunov analysis used in

  2. Direct control of air gap flux in permanent magnet machines

    DOEpatents

    Hsu, John S.

    2000-01-01

    A method and apparatus for field weakening in PM machines uses field weakening coils (35, 44, 45, 71, 72) to produce flux in one or more stators (34, 49, 63, 64), including a flux which counters flux normally produced in air gaps between the stator(s) (34, 49, 63, 64) and the rotor (20, 21, 41, 61) which carries the PM poles. Several modes of operation are introduced depending on the magnitude and polarity of current in the field weakening coils (35, 44, 45, 71, 72). The invention is particularly useful for, but not limited to, the electric vehicle drives and PM generators.

  3. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  4. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  5. Air Vehicles Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2005-3060 AIR VEHICLES TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020 : Prediction Of... Technology Integration Program (AVTIP) 5b. GRANT NUMBER Delivery Order 0020 : Prediction Of Manufacturing Tolerances For Laminar Flow 5c. PROGRAM

  6. Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.

  7. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  8. Direct numerical simulation of free falling sphere in creeping flow

    NASA Astrophysics Data System (ADS)

    Reddy, Rupesh K.; Jin, Shi; Nandakumar, K.; Minev, Peter D.; Joshi, Jyeshtharaj B.

    2010-03-01

    In the present study, direct numerical simulations (DNS) are performed on single and a swarm of particles settling under the action of gravity. The simulations have been carried out in the creeping flow range of Reynolds number from 0.01 to 1 for understanding the hindrance effect, of the other particles, on the settling velocity and drag coefficient. The DNS code is a non-Lagrange multiplier-based fictitious-domain method, which has been developed and validated by Jin et al. (2008; A parallel algorithm for the direct numerical simulation of 3D inertial particle sedimentation. In: Conference proceedings of the 16th annual conference of the CFD Society of Canada). It has been observed that the time averaged settling velocity of the particle in the presence of other particles, decreases with an increase in the number of particles surrounding it (from 9 particles to 245 particles). The effect of the particle volume fraction on the drag coefficient has also been studied and it has been observed that the computed values of drag coefficients are in good agreement with the correlations proposed by Richardson and Zaki (1954; Sedimentation and fluidization: part I. Transactions of the Institution of Chemical Engineers, 32, 35-53) and Pandit and Joshi (1998; Pressure drop in packed, expanded and fluidised beds, packed columns and static mixers - a unified approach. Reviews in Chemical Engineering, 14, 321-371). The suspension viscosity-based model of Frankel and Acrivos (1967; On the viscosity of a concentrated suspension of solid spheres. Chemical Engineering Science, 22, 847-853) shows good agreement with the DNS results.

  9. Anomalous high-velocity outbursts ejected from the surface of tungsten microdroplets in a flow of argon-air plasma

    NASA Astrophysics Data System (ADS)

    Gulyaev, I. P.; Dolmatov, A. V.; Gulyaev, P. Yu; Iordan, V. I.; Kharlamov, M. Yu; Krivtsun, I. V.

    2016-02-01

    For the first time, a phenomenon of high-velocity outbursts ejected from the surface of liquid tungsten microparticles in a flow of argon-air plasma under atmospheric pressure was observed. As tungsten particles sized 50 to 200 μm moved in a plasma flow, stratified radiating spheres up to 9 mm in diameter formed around such particles. The spheres were sources of high-velocity outbursts whose ejection direction coincided with the direction of the plasma flow. The velocity of the anomalous outbursts amounted to 3-20 km/s. In the outburst images, the distribution of glow intensity along outburst tracks exhibited a wavy decaying behavior with a wavelength of 5-15 mm. Possible physical factors that could be the cause of the phenomenon are discussed.

  10. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    PubMed

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  11. 75 FR 52255 - Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT-802A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...; AD 2010-17-18] RIN 2120-AA64 Airworthiness Directives; Air Tractor, Inc. Models AT-802 and AT- 802A... to read as follows: 2010-17-18 Air Tractor, Inc.: Amendment 39-16412; Docket No. FAA- 2010-0827...) Ensure that the hopper is empty. (3) Limit airspeed to 135 miles per hour (mph) indicated airspeed...

  12. Rocket nozzle lip flow by direct simulation Monte Carlo method

    NASA Technical Reports Server (NTRS)

    Hueser, J. E.; Brock, F. J.; Melfi, L. T., Jr.; Bird, G. A.

    1985-01-01

    The flow in the immediate vicinity of a rocket nozzle lip has been analyzed, and the results are presented. A rapid change in gas composition is observed in the flow around the lip depending principally on species molecular mass and local flow angle. The divergence of axial and radial temperatures indicating breakdown of translational equilibrium is observed in the results.

  13. Direct measurement of floc breakage in flowing suspensions

    SciTech Connect

    Peng, S.J.; Williams, R.A. . Camborne School of Mines)

    1994-09-01

    Direct measurements of floc breakage behavior of silica and latex dispersions in a stirred tank and process pipeline have been performed using in situ scanning laser microscopy. The results show the effect of agitation intensity, flocculant dosage, and solids concentration on the floc formation and breakup in a stirred tanks. The effect of the rms velocity gradients on the floc breakage behavior in a process pipeline is also demonstrated and modeled using a quantitative relationship between the breakage constant (K) and the rms velocity gradient (G). These data provide a means of assessing, quantitatively, the strength of a floc population. Expressions for the mean dimensionless floc size R (scaled to the mean diameter of the primary particles) have been obtained for polymer-flocculated suspensions flowing in tubes. Typically R is given by (1 + aG[sup b]), where a and b depend on the volume concentration of solids. For 0.5% solids, a = 34.7, b = [minus]0.67; for 1.0% solids, a = 4.85, b= [minus]0.29.

  14. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  15. Transdermal Uptake of Diethyl Phthalate and Di(n-butyl) Phthalate Directly from Air: Experimental Verification

    PubMed Central

    Bekö, Gabriel; Koch, Holger M.; Salthammer, Tunga; Schripp, Tobias; Toftum, Jørn; Clausen, Geo

    2015-01-01

    Background Fundamental considerations indicate that, for certain phthalate esters, dermal absorption from air is an uptake pathway that is comparable to or greater than inhalation. Yet this pathway has not been experimentally evaluated and has been largely overlooked when assessing uptake of phthalate esters. Objectives This study investigated transdermal uptake, directly from air, of diethyl phthalate (DEP) and di(n-butyl) phthalate (DnBP) in humans. Methods In a series of experiments, six human participants were exposed for 6 hr in a chamber containing deliberately elevated air concentrations of DEP and DnBP. The participants either wore a hood and breathed air with phthalate concentrations substantially below those in the chamber or did not wear a hood and breathed chamber air. All urinations were collected from initiation of exposure until 54 hr later. Metabolites of DEP and DnBP were measured in these samples and extrapolated to parent phthalate intakes, corrected for background and hood air exposures. Results For DEP, the median dermal uptake directly from air was 4.0 μg/(μg/m3 in air) compared with an inhalation intake of 3.8 μg/(μg/m3 in air). For DnBP, the median dermal uptake from air was 3.1 μg/(μg/m3 in air) compared with an inhalation intake of 3.9 μg/(μg/m3 in air). Conclusions This study shows that dermal uptake directly from air can be a meaningful exposure pathway for DEP and DnBP. For other semivolatile organic compounds (SVOCs) whose molecular weight and lipid/air partition coefficient are in the appropriate range, direct absorption from air is also anticipated to be significant. Citation Weschler CJ, Bekö G, Koch HM, Salthammer T, Schripp T, Toftum J, Clausen G. 2015. Transdermal uptake of diethyl phthalate and di(n-butyl) phthalate directly from air: experimental verification. Environ Health Perspect 123:928–934; http://dx.doi.org/10.1289/ehp.1409151 PMID:25850107

  16. Numerical modeling on air quality in an urban environment with changes of the aspect ratio and wind direction.

    PubMed

    Yassin, Mohamed F

    2013-06-01

    Due to heavy traffic emissions within an urban environment, air quality during the last decade becomes worse year by year and hazard to public health. In the present work, numerical modeling of flow and dispersion of gaseous emissions from vehicle exhaust in a street canyon were investigated under changes of the aspect ratio and wind direction. The three-dimensional flow and dispersion of gaseous pollutants were modeled using a computational fluid dynamics (CFD) model which was numerically solved using Reynolds-averaged Navier-Stokes (RANS) equations. The diffusion flow field in the atmospheric boundary layer within the street canyon was studied for different aspect ratios (W/H=1/2, 3/4, and 1) and wind directions (θ=90°, 112.5°, 135°, and 157.5°). The numerical models were validated against wind tunnel results to optimize the turbulence model. The numerical results agreed well with the wind tunnel results. The simulation demonstrated that the minimum concentration at the human respiration height within the street canyon was on the windward side for aspect ratios W/H=1/2 and 1 and wind directions θ=112.5°, 135°, and 157.5°. The pollutant concentration level decreases as the wind direction and aspect ratio increase. The wind velocity and turbulence intensity increase as the aspect ratio and wind direction increase.

  17. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  18. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  19. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  20. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  1. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  2. New World Vistas: Air and Space Power for the 21st Century. Directed Energy Volume

    DTIC Science & Technology

    1995-01-01

    Vtl/V V VUMLU VIS IAS AIR AND SPACE POWER FORTHE OIQrr^FMTl IPV DIRECTED ENERGY VOLUME This report is a forecast of a potential future for the Air...vision of directed energy weapons, using high energy lasers (HEL) and high power microwaves (HPM), was first seriously engaged by the military. Within...revolutionary, have been made in types of laser devices, device efficiency, prime power generators, thermal management, beam control, sensor and

  3. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  4. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  5. HPV Direct Flow CHIP: a new human papillomavirus genotyping method based on direct PCR from crude-cell extracts.

    PubMed

    Herraez-Hernandez, Elsa; Alvarez-Perez, Martina; Navarro-Bustos, Gloria; Esquivias, Javier; Alonso, Sonia; Aneiros-Fernandez, Jose; Lacruz-Pelea, Cesar; Sanchez-Aguera, Magdalena; Santamaria, Javier Saenz; de Antonio, Jesus Chacon; Rodriguez-Peralto, Jose Luis

    2013-10-01

    HPV Direct Flow CHIP is a newly developed test for identifying 18 high-risk and 18 low-risk human papillomavirus (HPV) genotypes. It is based on direct PCR from crude-cell extracts, automatic flow-through hybridization, and colorimetric detection. The aim of this study was to evaluate the performance of HPV Direct Flow CHIP in the analysis of 947 samples from routine cervical screening or the follow-up of abnormal Pap smears. The specimens were dry swab samples, liquid-based cytology samples, or formalin-fixed paraffin-embedded tissues. The genotype distribution was in agreement with known epidemiological data for the Spanish population. Three different subgroups of the samples were also tested by Linear Array (LA) HPV Genotyping Test (n=108), CLART HPV2 (n=82), or Digene Hybrid Capture 2 (HC2) HPV DNA Test (n=101). HPV positivity was 73.6% by HPV Direct Flow CHIP versus 67% by LA, 65.9% by HPV Direct Flow CHIP versus 59.8% by CLART, and 62.4% by HPV Direct Flow CHIP versus 42.6% by HC2. HPV Direct Flow CHIP showed a positive agreement of 88.6% with LA (k=0.798), 87.3% with CLART (k=0.818), and 68.2% with HC2 (k=0.618). In conclusion, HPV Direct Flow CHIP results were comparable with those of the other methods tested. Although further investigation is needed to compare the performance of this new test with a gold-standard reference method, these preliminary findings evidence the potential value of HPV Direct Flow CHIP in HPV vaccinology and epidemiology studies.

  6. Sensor for Direct Measurement of the Boundary Shear Stress in Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bao, Xiaoqi; Badescu, Mircea; Bar-Cohen, Yoseph; Lih, Shyh-Shiuh; Sherrit, Stewart; Chang, Zensheu; Chen, Beck; Widholm, Scott; Ostlund, Patrick

    2011-01-01

    The formation of scour patterns at bridge piers is driven by the forces at the boundary of the water flow. In most experimental scour studies, indirect processes have been applied to estimate the shear and normal stress using measured velocity profiles. The estimations are based on theoretical models and associated assumptions. However, the turbulence flow fields and boundary layer in the pier-scour region are very complex. In addition, available turbulence models cannot account accurately for the bed roughness effect. Direct measurement of the boundary shear and normal stress and their fluctuations are attractive alternatives. However, this approach is a challenging one especially for high spatial resolution and high fidelity measurements. The authors designed and fabricated a prototype miniature shear stress sensor including an EDM machined floating plate and a high-resolution laser optical encoder. Tests were performed both in air as well as operation in water with controlled flow. The sensor sensitivity, stability and signal-to-noise level were measured and evaluated. The detailed test results and a discussion of future work will be presented in this paper.

  7. Integrating C-17 Direct Delivery Airlift into Traditional Air Force Doctrine.

    DTIC Science & Technology

    1998-06-01

    logistics response time, develop seamless logistic systems, and streamline the logistics infrastructure ( Zorich , 1996:2). The Air Force is moving from...and maintenance capability ( Zorich , 1996:2). Lean Logistics strives to produce a system in which logistics information and material flows freely...Air Mobility Warfare Center, March 1997. Zorich , David R. "Lean Logistics: Logistics of Tomorrow Today," A Special Report on Logistics for the 21st

  8. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  9. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  10. Theoretical and numerical study of air layer drag reduction in two-phase Couette-Poiseuille flow

    NASA Astrophysics Data System (ADS)

    Kim, Dokyun; Moin, Parviz

    2008-11-01

    The objective of the present study is to predict and understand the air layer drag reduction (ALDR) phenomenon. Recent experiments (Elbing et al. 2008) have shown net drag reductions if air is injected beyond a critical rate next to the wall. The analysis is performed on a two-phase Couette-Poiseuille flow configuration, which mimics the far downstream region of boundary layer flow on a flat plate. Both theoretical and numerical approaches are employed to investigate the stability and mechanisms of ALDR. The linear stability of air-liquid interface is investigated by solving the Orr-Sommerfeld equations. From the stability analysis, the stability of the interface is reduced as the liquid free-stream velocity, Froude number and velocity gradients at the interface are increased, while the stability is enhanced as the gas flow rate and surface tension are increased. The Critical gas flow rates from stability theory are compared with experimental results, showing good agreement. Direct numerical simulations with a Refiend Level Set Grid technique has been performed to investigate the evolution of the interface, the turbulence interaction and nonlinear mechanisms of ALDR. It is observed that the Weber number has significant impact on the characteristics of the interface development.

  11. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  12. Dithionite/air direct ion liquid fuel cell

    NASA Astrophysics Data System (ADS)

    Noack, Jens; Tübke, Jens; Pinkwart, Karsten

    2015-07-01

    The feasibility of an alkaline S2O42-/air-fuel cell was evaluated at room temperature, using a cell with an anion exchange membrane and a platinum oxygen reduction reaction catalyst. The tests performed were open circuit voltage analysis, linear sweep voltammetry, discharge analysis and electrochemical impedance spectroscopy (EIS) with registration of anode half-cell potential. With 0.85 M Na2S2O4 in 2 M KOH, the cell achieved a maximum power density of 2 mW cm-2, and the open circuit cell voltage was about 0.9 V. In a potentiostatic discharging at 0.2 V cell voltage, an energy efficiency of 12.3% was achieved at an energy density of 8.6 Wh L-1. The low power density was mainly due to the low reaction kinetics of dithionite oxidation at graphite electrodes. The low energy efficiency was mainly caused by a low cathode potential, which probably resulted from mixed potential formation and the low anode kinetics.

  13. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  14. Origin and Control of the Flow Structure on Unmanned Combat Air Vehicle

    DTIC Science & Technology

    2007-12-01

    Prescrtbed by ANSI Ski Z3S.18 AFOSR Final Repot 013108 ORIGIN AND CONTROL OF THE FLOW STRUCTURE ON UNMANNED COMBAT AIR VEHICLES AFOSR GRANT #FA9550-05...1991) described low-dimensional models for flows past a grooved channel and circular cylinders. By employing a Galerkin method, a governing partial

  15. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  16. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  17. Control of turbulent boundary layer through air blowing due to external-flow resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-07-01

    The possibility to control turbulent incompressible boundary layer using air blowing through a finely perforated wall presenting part of the streamlined flat-plate surface was examined. The control was exercised via an action on the state and characteristics of the near-wall flow exerted by controlled (through variation of external-pressure-flow velocity) blowing of air through an air intake installed on the idle side of the plate. A stable reduction of the local values of skin friction coefficient along the model, reaching 50 % at the end of the perforated area, has been demonstrated. The obtained experimental and calculated data are indicative of a possibility to model the process of turbulentboundary-layer control by air blowing due to external-flow resources.

  18. Ripples and Dunes in Directionally Varying Flows--Three Decades of Experiments, Theory, and Modeling (Invited)

    NASA Astrophysics Data System (ADS)

    Rubin, D. M.

    2013-12-01

    The morphology and dynamics of ripples and dunes have received considerable study for the past half-century, but most studies have focused on only the small subset of flows that are convenient to study in a lab: using flumes with flows that are constant in direction or wave tanks with flows that reverse by 180°. Many natural flows are free to change in direction by other angles (seasonal or daily cycles in wind direction; reversing wave-generated flows combined with alongshore currents; reversing tidal currents in curved channels; unsteady separated flows). A handful of studies have addressed a broader set of such flows using specialized lab setups (rotating beds in unidirectional flows; oscillating or pulsed beds in static or flowing water; unsteady flows that arise in channel expansions or topographic depressions). Other studies have applied theory or modeling (usually incorporating simplified relations between topography, flow, and sediment transport) to bedform morphology and orientation. The studies that have addressed this broader variety of natural flows have found that compared to the relatively sinuous barchanoid morphology of ripples and dunes in unidirectional flows, bedforms in bi-directional flows can have relatively long straight crests (wave ripples or linear dunes); and multi-directional flows have been shown to produce brick- or tile-pattern ripples under interfering waves, star dunes in deserts, and polygonal dunes within craters on Mars. The topic receiving most study in directionally varying flows is bedform orientation in bi-directional flows. A number of lab, field, theoretical, and modeling studies have found that bedforms arise with the orientation subject to maximum gross-normal transport, but some recent results suggest other orientations are possible where a bed is only partially covered in sand.

  19. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  20. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  1. Air Ejector Pumping Enhancement Through Pulsing Primary Flow

    DTIC Science & Technology

    2005-12-01

    CFD ) analysis show that pulsing the primary jet flow, an active metho of flow control, improved ejector performance. The physics of this improvement...without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis show that pulsing the...other shapes. A tube without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis

  2. URBAN WET-WEATHER FLOW MANAGEMENT: RESEARCH DIRECTIONS

    EPA Science Inventory

    There are three types of urban wet-weather flow (WWF) discharges: 1) combined-sewer overflow (CSO), which is a mixture of storm drainage and municipal-industrial wastewater discharged from combined sewers or dry-weather flow discharged from combined sewers due to clogged intercep...

  3. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  4. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  5. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  6. 76 FR 45655 - Airworthiness Directives; Superior Air Parts and Lycoming Engines (Formerly Textron Lycoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-01

    ... Administration 14 CFR Part 39 [Docket No. FAA-2011-0547; Directorate Identifier 2011-NE-13-AD; Amendment 39-16757; AD 2011-15-10] RIN 2120-AA64 Airworthiness Directives; Superior Air Parts and Lycoming Engines...: Final rule; request for comments. SUMMARY: We are adopting a new airworthiness directive (AD)...

  7. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  8. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  9. On the stability of an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, W. Kendall

    2000-11-01

    We present the results of a study of the stability of the interface of an accelerated coupled air-water flow. We develop a general solution of the two-layer, laminar parallel flow driven by a pressure gradient in the air. The velocity profiles in both fluids are given by analytical functions for pressure gradients that can be represented as power series in time. The stability of the coupled flow is then examined by solving the two layer Orr-Sommerfeld equations allowing for linear displacements of the interface. In the simple case of the linearly accelerating flow, we find that the flow is always stable for an air velocity below 0.6 m s-1. Instabilities first appear in the form of surface waves with a phase speed of approximately 30 cm s-1 and a wavenumber of O(1) cm-1. In cases when the flow in the air is turbulent, and represented by a continuously differentiable analytical approximation of the log-linear mean velocity profile, we find that the flow is rapidly unstable to surface waves. Comparisons are made with the previous computations of Kawai (1979) and Wheless and Csanady (1993), and with the measurements of Veron and Melville (2000).

  10. Some Measurements of Noise Transmission and Stress Response of a 0.020-Inch Duralumin Panel in the Presence of Air Flow

    NASA Technical Reports Server (NTRS)

    Kantarges, George T.

    1960-01-01

    Noise transmission measurements were made for a 0.020-inch panel with and without air flow on its surface. Tests were conducted with both an absorbent and reverberant chamber behind the panel. Panel stresses for some of these tests were also determined. Noise spectra obtained inside the absorbent chamber with flow attached and flow not attached to the panel appeared to contain several peaks corresponding in frequency to panel vibration modes. These peaks were notably absent when the chamber was reverberant. The noise reduction through the test panel measured with the aid of an absorbent chamber for the flow-not-attached case is in general agreement with values predicted by the theoretical weight law, which assumes negligible panel stiffness. Corresponding data for the flow-attached case do not follow the weight law but rather indicate less noise reduction at the high frequencies. The main stress responses of the panel without air flow occurred at its fundamental vibration mode. In the presence of air flow the main response occurs in a vibration mode having a node line perpendicular to the direction of air flow.

  11. Center-to-center analysis of flow lineation and flow direction in Eocene welded ignimbrites, Twin Peaks, Idaho

    SciTech Connect

    Olsen, H.J. . Geology Dept.)

    1993-04-01

    Ignimbrites of the Eocene Twin Peaks caldera (Hardyman, 1982) in central Idaho's Challis Volcanic Field comprise both caldera-fill and outflow facies. The vents and mode of emplacement of these ignimbrites are problematic, because the Twin Peaks caldera has been strongly structurally disrupted, and lineations are sparse in the ignimbrites. Six oriented samples from three separate cooling units were studied using the Fry center-to-center method (Seaman and Williams, 1992) in order to determine flow lineation and flow direction of the ignimbrites inside the caldera. Flow lineation is defined in the plane parallel to flattened pumice and assumes that phenocryst are at maximum spacing in this plane. The flow lineation then coincides with the long axis of a center-to-center ellipse. Flow direction is defined in the plane perpendicular to flattening, which is inclined with respect to the flow plane and dips towards the source of flow. Four of five samples from the upper two cooling units near the thickest part of the caldera fill have well developed center-to-center strain ellipsoids producing flow lineations oriented N35W ([+-]7[degree]). The samples from the bottom cooling unit also has a well developed strain ellipsoid, but with a lineation oriented N80E. The difference in flow lineation suggests that the lowest cooling unit had a separate vent. Strain analysis of perpendicular sections are underway to establish the flow direction of the ignimbrites.

  12. Sensitivity analysis of DSMC parameters for an 11-species air hypersonic flow

    NASA Astrophysics Data System (ADS)

    Higdon, Kyle J.; Goldstein, David B.; Varghese, Philip L.

    2016-11-01

    This research investigates the influence of input parameters in the direct simulation Monte Carlo (DSMC) method for the simulation of a hypersonic flow scenario. Simulations are performed using the Computation of Hypersonic Ionizing Particles in Shocks (CHIPS) code to reproduce NASA Ames Electric Arc Shock Tube (EAST) experimental results for a 10.26 km/s, 0.2 Torr scenario. Since the chosen nominal simulation involves an energetic flow, an electronic excitation model is introduced into CHIPS to complement the pre-existing 11-species air models. A global Monte Carlo sensitivity analysis was completed for this chosen scenario and three quantities of interest (QoIs) were investigated: translational temperature, electronic temperature, and electron number density. The electron impact ionization reaction, N + e- ⇌ N+ + e- + e-, was determined to have the greatest effect on all three QoIs as it defines the electron cascade that occurs post-shock. In addition, molecular nitrogen dissociation, associative ionization, and the N + NO+ ⇌ N+ + NO charge exchange reaction were all found to be important for these QoIs.

  13. Direct Initiation of Detonation in Unconfined Ethylene-Air Mixtures - Influence of Bag Size,

    DTIC Science & Technology

    1982-12-01

    preparation for...recording the time of ignition (det zero) on magnetic tape as a reference. The desired gas mixture was prepared by continuous flow of regulated quantities...constant velocity within 3% of the theoretical C-J velocity (Vcj) were observed in all ehtylene -air mixtures near stoichiometric composition (6.54%

  14. Direct measurement of the flow field around swimming microorganisms

    NASA Astrophysics Data System (ADS)

    Polin, Marco; Drescher, Knut; Goldstein, Raymond E.; Michel, Nicolas; Tuval, Idan

    2010-11-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (˜0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a "puller" stresslet, and can be described by a simple three-Stokeslet model.

  15. Direct Measurement of the Flow Field around Swimming Microorganisms

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Goldstein, Raymond E.; Michel, Nicolas; Polin, Marco; Tuval, Idan

    2010-10-01

    Swimming microorganisms create flows that influence their mutual interactions and modify the rheology of their suspensions. While extensively studied theoretically, these flows have not been measured in detail around any freely-swimming microorganism. We report such measurements for the microphytes Volvox carteri and Chlamydomonas reinhardtii. The minute (˜0.3%) density excess of V. carteri over water leads to a strongly dominant Stokeslet contribution, with the widely-assumed stresslet flow only a correction to the subleading source dipole term. This implies that suspensions of V. carteri have features similar to suspensions of sedimenting particles. The flow in the region around C. reinhardtii where significant hydrodynamic interaction is likely to occur differs qualitatively from a puller stresslet, and can be described by a simple three-Stokeslet model.

  16. Flow transitions in a 2D directional solidification model

    NASA Technical Reports Server (NTRS)

    Larroude, Philippe; Ouazzani, Jalil; Alexander, J. Iwan D.

    1992-01-01

    Flow transitions in a Two Dimensional (2D) model of crystal growth were examined using the Bridgman-Stockbarger me thod. Using a pseudo-spectral Chebyshev collocation method, the governing equations yield solutions which exhibit a symmetry breaking flow tansition and oscillatory behavior indicative of a Hopf bifurcation at higher values of Ra. The results are discussed from fluid dynamic viewpoint, and broader implications for process models are also addressed.

  17. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, George S.; Grafe, Victor Gerald

    1997-01-01

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a "fire" signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor.

  18. Direct match data flow memory for data driven computing

    DOEpatents

    Davidson, G.S.; Grafe, V.G.

    1997-10-07

    A data flow computer and method of computing is disclosed which utilizes a data driven processor node architecture. The apparatus in a preferred embodiment includes a plurality of First-In-First-Out (FIFO) registers, a plurality of related data flow memories, and a processor. The processor makes the necessary calculations and includes a control unit to generate signals to enable the appropriate FIFO register receiving the result. In a particular embodiment, there are three FIFO registers per node: an input FIFO register to receive input information form an outside source and provide it to the data flow memories; an output FIFO register to provide output information from the processor to an outside recipient; and an internal FIFO register to provide information from the processor back to the data flow memories. The data flow memories are comprised of four commonly addressed memories. A parameter memory holds the A and B parameters used in the calculations; an opcode memory holds the instruction; a target memory holds the output address; and a tag memory contains status bits for each parameter. One status bit indicates whether the corresponding parameter is in the parameter memory and one status bit to indicate whether the stored information in the corresponding data parameter is to be reused. The tag memory outputs a ``fire`` signal (signal R VALID) when all of the necessary information has been stored in the data flow memories, and thus when the instruction is ready to be fired to the processor. 11 figs.

  19. Flow and Noise Control: Review and Assessment of Future Directions

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Choudhari, Meelan M.; Joslin, Ronald D.

    2002-01-01

    Technologies for developing radically new aerovehicles that would combine quantum leaps in cost, safety, and performance benefits with environmental friendliness have appeared on the horizon. This report provides both an assessment of the current state-of-the-art in flow and noise control and a vision for the potential gains to be made, in terms of performance benefit for civil and military aircraft and a unique potential for noise reduction, via future advances in flow and noise technologies. This report outlines specific areas of research that will enable the breakthroughs necessary to bring this vision to reality. Recent developments in many topics within flow and noise control are reviewed. The flow control overview provides succinct summaries of various approaches for drag reduction and improved maneuvering. Both exterior and interior noise problems are examined, including dominant noise sources, physics of noise generation and propagation, and both established and proposed concepts for noise reduction. Synergy between flow and noise control is a focus and, more broadly, the need to pursue research in a more concurrent approach involving multiple disciplines. Also discussed are emerging technologies such as nanotechnology that may have a significant impact on the progress of flow and noise control.

  20. Effect of air on water capillary flow in silica nanochannels

    NASA Astrophysics Data System (ADS)

    Zambrano, Harvey; Walther, Jens; Oyarzua, Elton

    2013-11-01

    Capillarity is a classical topic in fluid dynamics. The fundamental relationship between capillarity and surface tension is solidly established. Nevertheless, capillarity is an active research area especially as the miniaturization of devices is reaching the molecular scale. Currently, with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads to changes in the dynamics contact angle of the water meniscus.

  1. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    SciTech Connect

    Mohr, D.H.; Merz, P.H.

    1995-05-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature.

  2. Transient Heat Flow Along Uni-Directional Fibers in Composites.

    DTIC Science & Technology

    1982-12-01

    Dynamics Laboratory (AFWAL/ FIBRA ) Air Unclassified Force Wright Aeronautical Laboratories (AFSC) Ar Base, DIECLASSIFICATION/OOWN1GRAOINGWright...Wolf and Lt Kay Bryan of AFFDL/ FIBRA , Flight Dynamics Laboratory, WPAFB, Dayton, Ohio. The author of this report gratefully acknowledges their

  3. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  4. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  5. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  6. Hydrogeology and simulation of ground-water flow at Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Hinaman, Kurt C.; Tenbus, Frederick J.

    2000-01-01

    , water drains off these highs and the vertical gradients decrease. At the south end of Dover Air Force Base, hydrographs of water levels in the Frederica aquifer show that off-Base pumping can cause the water levels to decline below sea level during part of the year.A 4-layer, steady-state numerical model of ground-water flow was developed for Dover Air Force Base and the surrounding area. The upper two layers represent the upper and lower surficial aquifers, which are in the Columbia Formation. In some areas of the model, a semi-confining unit is used to represent an intermittent clay layer between the upper and lower surficial aquifer. This semi-confining unit causes the local groundwater highs in the surficial aquifer. The third model layer represents the upper part of the Calvert Formation, a confining unit. The fourth model layer represents the Frederica aquifer. The model was calibrated to hydraulic heads and to ground-water discharge in Pipe Elm Branch, both of which were measured in September 1997. For the calibrated model, the root-mean-squared errors for the hydraulic heads and the ground-water discharge in the Pipe Elm Branch were 9 percent of the range of head and 3 percent of discharge, respectively. Heads simulated by use of the model were consistent with a map showing average water levels in the region. The U.S. Geological Survey?s MODPATH program was used to simulate ground-water-flow directions for several areas on the Base. This analysis showed the effects of the local groundwater highs. In these areas, ground water can flow from the highs and then dramatically change flow direction as it enters the lower surficial aquifer. The steady-state model has several limitations. The entire ground-water system is under transient hydraulic conditions, due mainly to seasonal and yearly changes in recharge and to withdrawal from irrigation wells. Yet this steady-state model is still considered to be an effective tool for understanding the ground-water-flow system u

  7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  8. Ultraviolet germicidal irradiation: future directions for air disinfection and building applications.

    PubMed

    Miller, Shelly L; Linnes, Jacqueline; Luongo, Julia

    2013-01-01

    Ultraviolet germicidal irradiation (UVGI) for air disinfection applications has relied on low-pressure mercury vapor lamps for decades. New design requirements have generated the need for alternatives in some uses. This study describes the current state of UVGI technology and describes future directions for technology development, including the use of lamps produced from nontoxic materials and light-emitting diode lamps. Important applications are discussed such as the use of ultraviolet germicidal lamps in developing countries, in heating, ventilating and air-conditioning systems to improve energy efficiency and indoor air quality, and for whole room disinfection.

  9. Reducing the cost of Ca-based direct air capture of CO2.

    PubMed

    Zeman, Frank

    2014-10-07

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions.

  10. Direct effects of energy-related air pollutants on plant sexual reproduction. Final report, February 1, 1979--January 31, 1982

    SciTech Connect

    Ragsdale, H.L.; Murdy, W.H.

    1987-12-08

    Our completed research program concentrated on the direct in vivo effects of energy-related air pollutants on plant sexual reproduction. Direct air pollution effects on plant sexual reproduction have been studied for SO{sub 2} and NO{sub 2}, two of the three major air pollutants.

  11. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  12. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  13. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry.

    PubMed

    Svitova, T F; Wetherbee, M J; Radke, C J

    2003-05-01

    Dynamic interfacial tensiometry, gauged by axisymmetric drop shape analysis of static drops or bubbles, provides useful information on surfactant adsorption kinetics. However, the traditional pendant-drop methodology is not readily amenable to the study of desorption kinetics. Thus, the question of sorption reversibility is difficult to assess by this technique. We extend classical pendant/sessile drop dynamic tensiometry by immersing a sessile bubble in a continuously mixed optical cell. Ideal-mixed conditions are established by stirring and by constant flow through the cell. Aqueous surface-active-agent solutions are either supplied to the cell (loading) or removed from the cell by flushing with water (washout), thereby allowing study of both adsorption and desorption kinetics. Well-mixed conditions and elimination of any mass transfer resistance permit direct identification of sorption kinetic barriers to and from the external aqueous phase with time constants longer than the optical-cell residence time. The monodisperse nonionic surfactant ethoxy dodecyl alcohol (C(12)E(5)), along with cationic cetyltrimethyl ammonium bromide (CTAB) in the presence of added salt, adsorbs and desorbs instantaneously at the air/water interface. In these cases, the experimentally observed dynamic-tension curves follow the local-equilibrium model precisely for both loading and washout. Accordingly, these surfactants below their critical micelle concentrations (CMC) exhibit no detectable sorption-activation barriers on time scales of order a min. However, the sorption dynamics of dilute CTAB in the absence of electrolyte is markedly different from that in the presence of KBr. Here CTAB desorption occurs at local equilibrium, but the adsorption rate is kinetically limited, most likely due to an electrostatic barrier arising as the charged surfactant accumulates at the interface. The commercial, polydisperse nonionic surfactant ethoxy nonylphenol (NP9) loads in good agreement with

  14. Investigation of an incompressible flow along a corner by an alternating direction implicit method

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Patel, D. K.

    1977-01-01

    The axial corner flow is analyzed for the incompressible laminar boundary layer flow. The governing equations are derived from the Navier-Stokes equations by neglecting second derivative terms of the axial direction. An alternating direction implicit method is used to solve the equations in primitive variables.

  15. 30 CFR 75.1101-19 - Nozzles; flow rate and direction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Nozzles; flow rate and direction. 75.1101-19 Section 75.1101-19 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...; flow rate and direction. The nozzles of each dry powder chemical system shall be capable of...

  16. 30 CFR 75.1101-19 - Nozzles; flow rate and direction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Nozzles; flow rate and direction. 75.1101-19 Section 75.1101-19 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE...; flow rate and direction. The nozzles of each dry powder chemical system shall be capable of...

  17. Direct numerical simulation of curved turbulent channel flow

    NASA Technical Reports Server (NTRS)

    Moser, R. D.; Moin, P.

    1984-01-01

    Low Reynolds number, mildly curved, turbulent channel flow has been simulated numerically without subgrid scale models. A new spectral numerical method developed for this problem was used, and the computations were performed with 2 million degrees of freedom. A variety of statistical and structural information has been extracted from the computed flow fields. These include mean velocity, turbulence stresses, velocity skewness, and flatness factors, space time correlations and spectra, all the terms in the Reynolds stress balance equations, and contour and vector plots of instantaneous velocity fields. The effects of curvature on this flow were determined by comparing the concave and convex sides of the channel. The observed effects are consistent with experimental observations for mild curvature. The most significant difference in the turbulence statistics between the concave and convex sides was in the Reynolds shear stress. This was accompanied by significant differences in the terms of the Reynolds shear stress balance equations. In addition, it was found that stationary Taylor-Gortler vortices were present and that they had a significant effect on the flow by contributing to the mean Reynolds shear stress, and by affecting the underlying turbulence.

  18. Detecting biological responses to flow management: Missed opportunities; future directions

    USGS Publications Warehouse

    Souchon, Y.; Sabaton, C.; Deibel, R.; Reiser, D.; Kershner, J.; Gard, M.; Katopodis, C.; Leonard, P.; Poff, N.L.; Miller, W.J.; Lamb, B.L.

    2008-01-01

    The conclusions of numerous stream restoration assessments all around the world are extremely clear and convergent: there has been insufficient appropriate monitoring to improve general knowledge and expertise. In the specialized field of instream flow alterations, we consider that there are several opportunities comparable to full-size experiments. Hundreds of water management decisions related to instream flow releases have been made by government agencies, native peoples, and non-governmental organizations around the world. These decisions are based on different methods and assumptions and many flow regimes have been adopted by formal or informal rules and regulations. Although, there have been significant advances in analytical capabilities, there has been very little validation monitoring of actual outcomes or research related to the response of aquatic dependent species to new flow regimes. In order to be able to detect these kinds of responses and to better guide decision, a general design template is proposed. The main steps of this template are described and discussed, in terms of objectives, hypotheses, variables, time scale, data management, and information, in the spirit of adaptive management. The adoption of such a framework is not always easy, due to differing interests of actors for the results, regarding the duration of monitoring, nature of funding and differential timetables between facilities managers and technicians. Nevertheless, implementation of such a framework could help researchers and practitioners to coordinate and federate their efforts to improve the general knowledge of the links between the habitat dynamics and biological aquatic responses. Copyright ?? 2008 John Wiley & Sons, Ltd.

  19. Direct Finite-Difference Simulations Of Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Rai, Man Mohan; Moin, Parviz

    1991-01-01

    Report discusses use of upwind-biased finite-difference numerical-integration scheme to simulate evolution of small disturbances and fully developed turbulence in three-dimensional flow of viscous, incompressible fluid in channel. Involves use of computational grid sufficiently fine to resolve motion of fluid at all relevant length scales.

  20. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  1. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.

    PubMed

    Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna

    2017-03-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.

  2. Skin and muscle components of forearm blood flow in directly heated resting man.

    NASA Technical Reports Server (NTRS)

    Detry, J.-M. R.; Brengelmann, G. L.; Rowell, L. B.; Wyss, C.

    1972-01-01

    Changes in forearm muscle blood flow (FMBF) during direct whole-body heating were measured in 17 normal subjects using three different methods. We conclude that FMBF is not increased by direct whole-body heating. Since renal and splanchnic blood flow fall 30% under these conditions, maximal total skin blood flow in 12 previously studied subjects can be estimated from the rise in cardiac output to be 7.6 L/min (3.0-11.1 L/min).

  3. A parallel direct numerical simulation of dust particles in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Nguyen, H. V.; Yokota, R.; Stenchikov, G.; Kocurek, G.

    2012-04-01

    Due to their effects on radiation transport, aerosols play an important role in the global climate. Mineral dust aerosol is a predominant natural aerosol in the desert and semi-desert regions of the Middle East and North Africa (MENA). The Arabian Peninsula is one of the three predominant source regions on the planet "exporting" dust to almost the entire world. Mineral dust aerosols make up about 50% of the tropospheric aerosol mass and therefore produces a significant impact on the Earth's climate and the atmospheric environment, especially in the MENA region that is characterized by frequent dust storms and large aerosol generation. Understanding the mechanisms of dust emission, transport and deposition is therefore essential for correctly representing dust in numerical climate prediction. In this study we present results of numerical simulations of dust particles in a turbulent flow to study the interaction between dust and the atmosphere. Homogenous and passive dust particles in the boundary layers are entrained and advected under the influence of a turbulent flow. Currently no interactions between particles are included. Turbulence is resolved through direct numerical simulation using a parallel incompressible Navier-Stokes flow solver. Model output provides information on particle trajectories, turbulent transport of dust and effects of gravity on dust motion, which will be used to compare with the wind tunnel experiments at University of Texas at Austin. Results of testing of parallel efficiency and scalability is provided. Future versions of the model will include air-particle momentum exchanges, varying particle sizes and saltation effect. The results will be used for interpreting wind tunnel and field experiments and for improvement of dust generation parameterizations in meteorological models.

  4. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  5. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  6. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields

    NASA Astrophysics Data System (ADS)

    Comer, J. K.; Kleinstreuer, C.; Zhang, Z.

    2001-05-01

    The understanding and quantitative assessment of air flow fields and local micron-particle wall concentrations in tracheobronchial airways are very important for estimating the health risks of inhaled particulate pollutants, developing algebraic transfer functions of global lung deposition models used in dose-response analyses, and/or determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part 1) the theory, model geometries, and air flow results are provided. In a companion paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and comparisons with measured data sets are reported. Decoupling of the naturally dilute particle suspension makes it feasible to present the results in two parts.

  7. Tomographic optical emission spectroscopy of a high enthalpy air plasma flow.

    PubMed

    Hermann, Tobias; Löhle, Stefan; Fasoulas, Stefanos; Andrianatos, Andreas

    2016-12-20

    A method is presented allowing for locally resolved emission spectroscopy using a tomographic setup. The approach presented in this work is applied to a high enthalpy air plasma flow. The resulting data sets allow for a three-dimensional (3D) representation of the non-symmetric flow field using photographs of the test section and 2D representation of the spectrally resolved radiance of the flow field. An analysis of different exposure times shows that transient fluctuations of the plasma can result in substantial asymmetry that approaches symmetry only for longer exposure times when the temporal averaging of the emission is significant. The spectral data allows the analysis of species selective excitation and emission. A non-equilibrium between atomic and molecular excitation temperatures is concluded for the investigated air plasma flow field. The spatial distribution of atomic electronic excitation temperatures are close to rotational symmetry while molecular rotational and vibrational temperatures exhibit asymmetric behavior.

  8. Hypersonic lateral and directional stability characteristics of aeroassist flight experiment configuration in air and CF4

    NASA Technical Reports Server (NTRS)

    Micol, John R.; Wells, William L.

    1993-01-01

    Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.

  9. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  10. Assessment of mathematical models for the flow in directional solidification

    NASA Astrophysics Data System (ADS)

    Lu, Jay W.; Chen, Falin

    1997-02-01

    In a binary solution unidirectionally solidified from below, the bulk melt and the eutectic solid is separated by a dendritic mushy zone. The mathematical formulation governing the fluid motion shall thus consist of the equations in the bulk melt and the mushy zone and the associated boundary conditions. In the bulk melt, assuming that the melt is a Newtonian fluid, the governing equations are the continuity equation, the Navier-Stokes equations, the heat conservation equation, and the solute conservation equation. In the mushy layer, however, the formulation of the momentum equation and the associated boundary conditions are diversified in previous investigations. In this paper, we discuss three mathematical models, which had been previously applied to study the flow induced by the solidification of binary solutions cooling from below. The assessment is given on the bases of the stability characteristics of the convective flow and the comparison between the numerical and experimental results.

  11. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  12. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  13. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  14. Compressed air energy storage system two-phase flow experiment

    SciTech Connect

    Kumamaru, Hiroshige; Ohtsu, Iwao; Murata, Hideo

    1996-08-01

    A water/CO{sub 2}-combination test facility, having a vertical shaft height of {approximately} 25 m and a shaft inner diameter of 0.2 m, has been constructed in simulating a water/air full-size CAES system, having a shaft height of {approximately} 1,000 m and an inner diameter of {approximately} 3 m. Totally fifteen experiments have been performed in this test facility. In an experiment of CO{sub 2} high-concentration ({approximately} 0.4 MPa) and medium water injection velocity ({approximately} 0.5 m/s), the shaft void fraction during gas charging to a lower reservoir (i.e. during water injection to the shaft) became highest in all the experiment. This experiment may correspond to the severest situation in a full-size CAES system; however, the blowout did not occur in this experiment. In an experiment of CO{sub 2} high-concentration({approximately} 0.4 MPa) and very-high injection velocity ({approximately} 2.5 m/s), after gas charging stopped, CO{sub 2}-supersaturated water, remained in the shaft, formed bubbles vigorously, and thereafter the blowout occurred. However, the injection velocity of {approximately} 2.5 m/s corresponds to a velocity of {approximately} 100 m/s in a full-size CAES system and may be unreal.

  15. Automation for "Direct-to" Clearances in Air-Traffic Control

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McNally, David

    2006-01-01

    A method of automation, and a system of computer hardware and software to implement the method, have been invented to assist en-route air-traffic controllers in the issuance of clearances to fly directly to specified waypoints or navigation fixes along straight paths that deviate from previously filed flight plans. Such clearances, called "direct-to" clearances, have been in use since before the invention of this method and system.

  16. A New High-Resolution Direction Finding Architecture Using Photonics and Neural Network Signal Processing for Miniature Air Vehicle Applications

    DTIC Science & Technology

    2015-09-01

    RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS by Robert...RESOLUTION DIRECTION FINDING ARCHITECTURE USING PHOTONICS AND NEURAL NETWORK SIGNAL PROCESSING FOR MINIATURE AIR VEHICLE APPLICATIONS 5. FUNDING...unlimited 12b. DISTRIBUTION CODE 13. ABSTRACT (maximum 200 words) This paper investigates the design of an interferometric direction finding receiver

  17. Direct optical monitoring of flow generated by bacterial flagellar rotation

    SciTech Connect

    Kirchner, Silke R.; Nedev, Spas; Carretero-Palacios, Sol; Lohmüller, Theobald E-mail: feldmann@lmu.de; Feldmann, Jochen E-mail: feldmann@lmu.de; Mader, Andreas; Opitz, Madeleine

    2014-03-03

    We report on a highly sensitive approach to measure and quantify the time dependent changes of the flow generated by the flagella bundle rotation of single bacterial cells. This is achieved by observing the interactions between a silica particle and a bacterium, which are both trapped next to each other in a dual beam optical tweezer. In this configuration, the particle serves as a sensitive detector where the fast-Fourier analysis of the particle trajectory renders, it possible to access information about changes of bacterial activity.

  18. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  19. Electric power generating plant having direct coupled steam and compressed air cycles

    DOEpatents

    Drost, Monte K.

    1982-01-01

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  20. Electric power generating plant having direct-coupled steam and compressed-air cycles

    DOEpatents

    Drost, M.K.

    1981-01-07

    An electric power generating plant is provided with a Compressed Air Energy Storage (CAES) system which is directly coupled to the steam cycle of the generating plant. The CAES system is charged by the steam boiler during off peak hours, and drives a separate generator during peak load hours. The steam boiler load is thereby levelized throughout an operating day.

  1. Inferring direct directed-information flow from multivariate nonlinear time series

    NASA Astrophysics Data System (ADS)

    Jachan, Michael; Henschel, Kathrin; Nawrath, Jakob; Schad, Ariane; Timmer, Jens; Schelter, Björn

    2009-07-01

    Estimating the functional topology of a network from multivariate observations is an important task in nonlinear dynamics. We introduce the nonparametric partial directed coherence that allows disentanglement of direct and indirect connections and their directions. We illustrate the performance of the nonparametric partial directed coherence by means of a simulation with data from synchronized nonlinear oscillators and apply it to real-world data from a patient suffering from essential tremor.

  2. Diagnostics of Unseeded Air and Nitrogen Flows by Molecular Tagging

    DTIC Science & Technology

    2015-07-21

    500ns 1µs 2µs 5µs 50µs 100µs 200µs d) b) c) a) E=320µJ E=320µJ E=780µJ E=780µJ Figure 4.11: Scattering intensity through the plane of maximum shockwave ...a profile was not observed for nanosecond plasmas, or in panel (c). One hypothesis is that the shockwave might be temporarily strengthened by...300mm and f = 500mm. The beam was directed through the plane of maximum emission/ shockwave intensity in all cases. For the f = 300, 500mm data, the

  3. Burning of Graphite in an Air Flow at High Temperatures

    DTIC Science & Technology

    1979-08-24

    components.Ir The inportance of the condition of constancy of direction of diffusion for the latter case can be demonstrated in the example of a...various gas-like carbon compounds: C, C2, C3, C4, C5, C6 and C7 [3]. In the case of a substance whose vaDors consist of a single product, the rate of... case of a substance whose vapors consist of several gas- like products, iust as in the case of’ graphite, the full evaporation rate is determined as the

  4. Egomotion Estimation with Optic Flow and Air Velocity Sensors

    DTIC Science & Technology

    2012-09-17

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...insects are able to estimate the wind direction and control their absolute ego- motion (i.e. groundspeed). The egomotion estimation method that we have...equation (1). w(t) = vg(t)− va(t) (1) There is evidence that some insects can control their groundspeed in an absolute sense, particularly in insects that

  5. Direct numerical simulation of two-phase flow: Effective rheology and flow patterns of particle suspensions

    NASA Astrophysics Data System (ADS)

    Deubelbeiss, Y.; Kaus, B. J. P.; Connolly, J. A. D.

    2010-02-01

    We analyze the mechanical behavior of a two-phase system consisting of rigid grains and an interconnected pore fluid. For this purpose we use 2D direct numerical simulations on the spatial scale of individual grains for Newtonian and non-Newtonian fluid rheology. By using the stress-strain rate relation we derive scaling laws for effective viscosity of two-phase particle suspensions. We demonstrate that the effective rheology of the assemblage is non-Newtonian only if the fluid has a non-Newtonian rheology. At small fluid fraction, inter-granular strain rates are up to 3 orders of magnitude higher than the applied background strain rate. We suggest that this effect explains the experimentally observed change at higher strain rates in rheology, from Newtonian to non-Newtonian aggregate rheology. To establish the conditions at which the fluid-solid aggregate deforms coherently as a consequence of Rayleigh-Taylor instabilities we studied flow patterns of particle suspensions and characterized them as a function of fluid fraction, viscosity, density, shape and size of the grains. From initial conditions with homogeneously distributed grains and interstitial fluid above a layer of pure fluid, our results show that the Rayleigh-Taylor instability dominates for moderate to large fluid fractions. At large fluid fractions, we observed a transition to a Stokes suspension mode, in which grains do not interact but sink independently. An analytical expression is derived that predicts the transition from Rayleigh-Taylor instability to Stokes suspension mode. The transition is a function of fluid fraction, radius of the grains, height of the interface and initial amplitude. Systematic numerical simulations are in good agreement with the analytical predictions.

  6. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  7. Direct simulation of compressible turbulence in a shear flow

    NASA Technical Reports Server (NTRS)

    Sarkar, S.; Erlebacher, G.; Hussaini, M. Y.

    1991-01-01

    Compressibility effects on the turbulence in homogeneous shear flow are investigated. The growth of the turbulent kinetic energy was found to decrease with increasing Mach number: a phenomenon which is similar to the reduction of turbulent velocity intensities observed in experiments on supersonic free shear layers. An examination of the turbulent energy budget shows that both the compressible dissipation and the pressure-dilatation contribute to the decrease in the growth of kinetic energy. The pressure-dilatation is predominantly negative in homogeneous shear flow, in contrast to its predominantly positive behavior in isotropic turbulence. The different signs of the pressure-dilatation are explained by theoretical consideration of the equations for the pressure variance and density variance. Previously, the following results were obtained for isotropic turbulence: (1) the normalized compressible dissipation is of O(M(sub t)(exp 2)); and (2) there is approximate equipartition between the kinetic and potential energies associated with the fluctuating compressible mode. Both of these results were substantiated in the case of homogeneous shear. The dilatation field is significantly more skewed and intermittent than the vorticity field. Strong compressions seem to be more likely than strong expansions.

  8. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  9. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  10. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  11. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  12. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  13. Effect of laminar air flow and clean-room dress on contamination rates of intravenous admixtures.

    PubMed

    Brier, K L; Latiolais, C J; Schneider, P J; Moore, T D; Buesching, W J; Wentworth, B C

    1981-08-01

    The effect of laminar air flow conditions and clean-room dress on the microbial contamination rates of intravenous admixtures was investigated. Intravenous admixtures were prepared by one investigator using aseptic technique under four environmental conditions: laminar air flow conditions with clean-room dress; laminar air flow without clean-room dress; clean table top with clean-room dress; and clean table top without clean-room dress. In each environmental condition, 350 admixtures were compounded. Negative-control samples (n = 150) were also tested, as were 10 positive-control samples. Samples were tested in each of two growth media and incubated at 35 degrees C for 14 days or until growth occurred. The incidence of contamination of admixtures compounded in laminar air flow conditions was significantly less than the contamination of those compounded on a clean table top (p less than 0.05) regardless of the operator's dress. The incidence of contamination of admixtures compounded while wearing clean-room dress was not significantly different from those prepared while not wearing clean-room dress regardless of the environment in which the admixture was prepared. The overall low level of contamination [0.79% (11/1400)] was inconclusive regarding the effect of dress on the incidence of contamination when admixtures were prepared under LAF conditions. It is concluded that, when one adheres to aseptic technique, the environment in which admixtures are compounded is the most important variable affecting the microbial contamination rate.

  14. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  15. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  16. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  17. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  18. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  19. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  20. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  1. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  2. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  3. Direct numerical simulation of compressible free shear flows

    NASA Technical Reports Server (NTRS)

    Lele, Sanjiva K.

    1989-01-01

    Direct numerical simulations of compressible free shear layers in open domains are conducted. Compact finite-difference schemes of spectral-like accuracy are used for the simulations. Both temporally-growing and spatially-growing mixing layers are studied. The effect of intrinsic compressibility on the evolution of vortices is studied. The use of convective Mach number is validated. Details of vortex roll up and pairing are studied. Acoustic radiation from vortex roll up, pairing and shape oscillations is studied and quantified.

  4. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  5. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  6. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  7. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  8. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Shimizu, Tetsuji; Iwafuchi, Yutaka; Morfill, Gregor E.; Sato, Takehiko

    2011-05-01

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s-1 to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  9. One-Directional Fluidic Flow Induced by Chemical Wave Propagation in a Microchannel.

    PubMed

    Arai, Miyu; Takahashi, Kazuhiro; Hattori, Mika; Hasegawa, Takahiko; Sato, Mami; Unoura, Kei; Nabika, Hideki

    2016-05-26

    A one-directional flow induced by chemical wave propagation was investigated to understand the origin of its dynamic flow. A cylindrical injection port was connected with a straight propagation channel; the chemical wave was initiated at the injection port. Chemical waves propagated with a constant velocity irrespective of the channel width, indicating that the dynamics of the chemical waves were governed by a geometry-independent interplay between the chemical reaction and diffusion. In contrast, the velocity of the one-directional flow was dependent on the channel width. Furthermore, enlargement of the injection port volume increased the flow velocity and volume flux. These results imply that the one-directional flow in the microchannel is due to a hydrodynamic effect induced in the injection port. Spectroscopic analysis of a pH indicator revealed the simultaneous behavior between the pH increase near the injection port and the one-directional flow. Hence, we can conclude that the one-directional flow in the microchannel with chemical wave propagation was caused by a proton consumption reaction in the injection port, probably through liquid volume expansion by the reaction products and the reaction heat. It is a characteristic feature of the present system that the hydrodynamic flow started from the chemical wave initiation point and not the propagation wavefront, as observed for previous systems.

  10. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  11. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  12. Quantitative identification of riverine nitrogen from point, direct runoff and base flow sources.

    PubMed

    Huang, Hong; Zhang, Baifa; Lu, Jun

    2014-01-01

    We present a methodological example for quantifying the contributions of riverine total nitrogen (TN) from point, direct runoff and base flow sources by combining a recursive digital filter technique and statistical methods. First, we separated daily riverine flow into direct runoff and base flow using a recursive digital filter technique; then, a statistical model was established using daily simultaneous data for TN load, direct runoff rate, base flow rate, and temperature; and finally, the TN loading from direct runoff and base flow sources could be inversely estimated. As a case study, this approach was adopted to identify the TN source contributions in Changle River, eastern China. Results showed that, during 2005-2009, the total annual TN input to the river was 1,700.4±250.2 ton, and the contributions of point, direct runoff and base flow sources were 17.8±2.8%, 45.0±3.6%, and 37.2±3.9%, respectively. The innovation of the approach is that the nitrogen from direct runoff and base flow sources could be separately quantified. The approach is simple but detailed enough to take the major factors into account, providing an effective and reliable method for riverine nitrogen loading estimation and source apportionment.

  13. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  14. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  15. Cold energy release characteristics of an ice/air direct contact heat exchanger

    SciTech Connect

    Ohira, Akiyoshi; Yanadori, Michio; Iwabuchi, Kunihiko; Kimura, Toshikatsu; Tsubota, Yuji

    1998-12-31

    This paper deals with the cold energy release characteristics of an ice/air direct contact heat exchanger in a refined cold energy conveyance system. Characteristics of the outlet temperature, the humidity, and time history of released heat are examined when the initial height of the ice-cube-packed bed in the heat exchanger is changed. The following are the results obtained in these experiments: (1) Inlet air of 30 C is lowered to about 0 C by passing the air through the heat exchanger, and absolute humidity of the outlet air is reduced to about a quarter of that of the inlet air. (2) There is an optimum height of the ice-cube-packed bed for maximizing the amount of cold energy released. (3) This heat exchange method can supply about twice the amount of cold energy released by an ordinary fin-tube-type heat exchanger even if the air velocity in the heat exchanger is reduced to about 0.38 times that of the fin-tube-type heat exchanger.

  16. Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air.

    PubMed

    Choi, Sunho; Drese, Jeffrey H; Eisenberger, Peter M; Jones, Christopher W

    2011-03-15

    While current carbon capture and sequestration (CCS) technologies for large point sources can help address the impact of CO(2) buildup on global climate change, these technologies can at best slow the rate of increase of the atmospheric CO(2) concentration. In contrast, the direct CO(2) capture from ambient air offers the potential to be a truly carbon negative technology. We propose here that amine-based solid adsorbents have significant promise as key components of a hypothetical air capture process. Specifically, the CO(2) capture characteristics of hyperbranched aminosilica (HAS) materials are evaluated here using CO(2) mixtures that simulate ambient atmospheric concentrations (400 ppm CO(2) = "air capture") as well as more traditional conditions simulating flue gas (10% CO(2)). The air capture experiments demonstrate that the adsorption capacity of HAS adsorbents are only marginally influenced even with a significant dilution of the CO(2) concentration by a factor of 250, while capturing CO(2) reversibly without significant degradation of performance in multicyclic operation. These results suggest that solid amine-based air capture processes have the potential to be an effective approach to extracting CO(2) from the ambient air.

  17. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  18. The Epidemic Spreading Model and the Direction of Information Flow in Brain Networks.

    PubMed

    Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Mieghem, P Van

    2017-02-04

    The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process.

  19. Directional gene flow and ecological separation in Yersinia enterocolitica

    PubMed Central

    Reuter, Sandra; Corander, Jukka; de Been, Mark; Harris, Simon; Cheng, Lu; Hall, Miquette; Thomson, Nicholas R.

    2015-01-01

    Yersinia enterocolitica is a common cause of food-borne gastroenteritis worldwide. Recent work defining the phylogeny of the genus Yersinia subdivided Y. enterocolitica into six distinct phylogroups. Here, we provide detailed analyses of the evolutionary processes leading to the emergence of these phylogroups. The dominant phylogroups isolated from human infections, PG3–5, show very little diversity at the sequence level, but do present marked patterns of gain and loss of functions, including those involved in pathogenicity and metabolism, including the acquisition of phylogroup-specific O-antigen loci. We tracked gene flow across the species in the core and accessory genome, and show that the non-pathogenic PG1 strains act as a reservoir for diversity, frequently acting as donors in recombination events. Analysis of the core and accessory genome also suggested that the different Y. enterocolitica phylogroups may be ecologically separated, in contrast to the long-held belief of common shared ecological niches across the Y. enterocolitica species. PMID:28348815

  20. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-01-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  1. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-10-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  2. Radial lean direct injection burner

    DOEpatents

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  3. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  4. Effect of air pressure differential on vapor flow through sample building walls

    SciTech Connect

    Stewart, W.E. Jr.

    1998-12-31

    Laboratory scale experiments were performed on two small sample composite walls of typical building construction to determine the approximate opposing air pressure difference required to stop or significantly reduce the transmission of water vapor due to a water vapor pressure difference. The experiments used wall section samples between two controlled atmosphere chambers. One chamber was held at a temperature and humidity condition approximating that of a typical summer day, while the other chamber was controlled at a condition typical of indoor conditioned space. Vapor transmission data through the wall samples were obtained over a range of vapor pressure differentials and opposing air pressure differentials. The results show that increasing opposing air pressure differences decrease water vapor transmission, as expected, and relatively small opposing air pressure differentials are required for wall materials of small vapor permeability and large air permeability. The opposing air pressure that stopped or significantly reduced the flow of water vapor through the wall sample was determined experimentally and also compared to air pressures as predicted by an analytical model.

  5. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  6. An evaluation of the directed flow graph methodology

    NASA Technical Reports Server (NTRS)

    Snyder, W. E.; Rajala, S. A.

    1984-01-01

    The applicability of the Directed Graph Methodology (DGM) to the design and analysis of special purpose image and signal processing hardware was evaluated. A special purpose image processing system was designed and described using DGM. The design, suitable for very large scale integration (VLSI) implements a region labeling technique. Two computer chips were designed, both using metal-nitride-oxide-silicon (MNOS) technology, as well as a functional system utilizing those chips to perform real time region labeling. The system is described in terms of DGM primitives. As it is currently implemented, DGM is inappropriate for describing synchronous, tightly coupled, special purpose systems. The nature of the DGM formalism lends itself more readily to modeling networks of general purpose processors.

  7. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  8. Thermography of volcanic areas on Piton de la Fournaise, Reunion Island : Mapping surface properties and possible detection of convective air flow within volcanic debris

    NASA Astrophysics Data System (ADS)

    Antoine, R.; Baratoux, D.; Rabinowicz, M.; Saracco, G.; Bachelery, P.; Staudacher, T.; Fontaine, F.

    2007-12-01

    We report on the detection of air convection in a couple of quasi circular cavities forming the 300 years old volcanically inactive cone of Formica Leo (Piton de la Fournaise, Reunion Island) [1]. Infrared thermal images of the cone have been acquired in 2006 from a hand held camera at regular time interval during a complete diurnal cycle. During night and dawn, the data display hot rims and cold centers. Both the conductivity contrasts of the highly porous soils filling the cavities and their 30° slopes are unable to explain the systematic rim to center temperature drop. Accordingly, this signal could be attributed to an air convection dipping inside the highly porous material at the center of each cavity, then flowing upslope along the base of the soil layer, before exiting it along the rims. Anemometrical and electrical data acquired in 2007 allow for the first time the direct detection of this air flow on the field: dipping gas velocities are measured at the center of the cone and self-potentials anomalies [2] generated by the humid air flow in the porous medium are detected. To quantify this process, we present 2D/3D numerical models of air convection in a sloped volcanic soil with a surface temperature evolving between day and night and taking into account electrical phenomena created by the air flow. At this present stage, this work constitutes a first step to investigate the deep structure of the active caldera of Bory-Dolomieu. The detection of the air flow at the surface could be of paramount importance for the understanding of volcanic hazards of the Reunion volcano. [1] Antoine et. al, submitted to G-Cubed [2] Darnet, PhD, Université Louis Pasteur (2003)

  9. A semi-direct solver for compressible 3-dimensional rotational flow

    NASA Technical Reports Server (NTRS)

    Chang, S. C.; Adamczyk, J. J.

    1983-01-01

    An iterative procedure is presented for solving steady inviscid 3-D subsonic rotational flow problems. The procedure combines concepts from classical secondary flow theory with an extension to 3-D of a novel semi-direct Cauchy-Riemann solver. It is developed for generalized coordinates and can be exercised using standard finite difference procedures. The stability criterion of the iterative procedure is discussed along with its ability to capture the evolution of inviscid secondary flow in a turning channel.

  10. A semi-direct solver for compressible three-dimensional rotational flow

    NASA Technical Reports Server (NTRS)

    Chang, S.-C.; Adamczyk, J. J.

    1983-01-01

    An iterative procedure is presented for solving steady inviscid 3-D subsonic rotational flow problems. The procedure combines concepts from classical secondary flow theory with an extension to 3-D of a novel semi-direct Cauchy-Riemann solver. It is developed for generalized coordinates and can be exercised using standard finite difference procedures. The stability criterion of the iterative procedure is discussed along with its ability to capture the evolution of inviscid secondary flow in a turning channel.

  11. A Comparative Study of Foreign Direct Investment Flow Using Diffusion Models

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Chiang, Yi-Hui; Yu, Shao-Ming; Chiang, Su-Yun; Hung, C.-H.

    2007-12-01

    In this work, we apply an improvement dynamic model of the foreign direct investment (FDI) flow to analyze the evolution of FDI flow. In comparison with the fundamental growth model of FDI, the simulation result is further accurate if the asymmetric growth pattern and heterogeneity of the potential adopters are considered. According to the result, the internal influence dominates the growth of FDI flow from Taiwan to China during 2001-2006, taking the electronics industry for example.

  12. Time and flow-direction responses of shear-styress-sensitive liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.; Muraqtore, J. J.; Heinick, James T.

    1994-01-01

    Time and flow-direction responses of shear-stress liquid crystal coatings were exploresd experimentally. For the time-response experiments, coatings were exposed to transient, compressible flows created during the startup and off-design operation of an injector-driven supersonic wind tunnel. Flow transients were visualized with a focusing schlieren system and recorded with a 100 frame/s color video camera.

  13. Simulation study of the lethality effect of high-power laser with supersonic air flow

    NASA Astrophysics Data System (ADS)

    Peng, Xin; Zhao, Guomin; Chen, Minsun

    2016-10-01

    The lethality effect of high power laser on target is simulated with CFD method under different conditions of supersonic air flow on the surface of the target. Materials used in the experiments are 2cm aluminum plate. With the Mach number changing from 1 to 5, the lethality effects of the high power laser can be obtained from the simulations under these conditions of supersonic air flow. The flow-structure-laser coupling impact on the failure time of the target is discussed based on the simulation. Results show that with the increase of mach number, the effect on the aluminum plate is increase first and then decrease by the pressure. Because that it is obvious that the maximum area of pressure is away from the center of deformation region when the mach number is bigger than 5 . At the same time, when mach number is increase, the aerodynamic heating play more important role than the convective heat transfer on the temperature field of aluminum plate. there are two impacts from the supersonic flow. Firstly , the flow can produce the pressure on the surface of the aluminum plate. Secondly, the flow can produce aerodynamic heat on the aluminum plate.

  14. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  15. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  16. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    PubMed

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  17. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  18. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  19. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field

    NASA Astrophysics Data System (ADS)

    Lugni, C.; Miozzi, M.; Brocchini, M.; Faltinsen, O. M.

    2010-05-01

    This paper describes a systematic experimental study of the role of the ambient pressure on wave impact events in depressurized environments. A wave impact event of "mode (b)" [see Lugni et al., "Wave impact loads: The role of the flip-through," Phys. Fluids 18, 122101 (2006)] causes entrapment of an air cavity. Here the topological and kinematic aspects of its oscillation and evolution toward collapse into a mixture of water and air bubbles are studied, while Part II [Lugni et al., "Evolution of the air cavity during a depressurized wave impact. II. The dynamic field," Phys. Fluids 22, 056102 (2010)] focuses on the dynamic features of the flow. Four distinct stages characterize the flow evolution: (1) the closure of the cavity onto the wall, (2) the isotropic compression/expansion of the cavity, (3) its anisotropic compression/expansion, and (4) the rise of the cavity up the wall. The first two stages are mainly governed by the air leakage, the last two by the surrounding hydrodynamic flow, which contributes to compressing the bubble horizontally and to convecting it up the wall. Ullage pressure affects the ratio between the minimum and maximum cavity areas. An ullage pressure of 2.5% of the atmospheric pressure leads to an area ratio of about 360% of the equivalent ratio at atmospheric conditions.

  20. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  1. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  2. Steady film flow over 2D topography with air inclusion formed inside the trench

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Varchanis, Stylianos; Dimakopoulos, Yannis

    2016-11-01

    Liquid film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or pin on the entrance and exit corners of the trench (Cassie state) or assume any other configuration in between these two extremes. In the intermediate cases a second gas-liquid interface inside the trench is formed, which adheres to the walls of the trench forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively re-meshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo arc-length continuation. Two possible cases of a single air inclusion inside the trench are examined. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or the capillarity or by decreasing the flow rate. Flow hysteresis may occur when the liquid does not penetrate deep enough inside the trench leading to different flow patterns. The interplay of inertia, viscous, gravity and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of free surface deformation. GSRT of Greece via the program "Excellence" and the LIMMAT foundation.

  3. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules

    PubMed Central

    Koehl, M. A. R.

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. PMID:26763332

  4. Deflections in Lava Flow Directions Relative to Topography in the Tharsis Region: Indicators of Post-Flow Tectonic Motion

    NASA Technical Reports Server (NTRS)

    Chadwick, D. J.; Hughes, S. S.; Sakimoto, S. E. H.

    2004-01-01

    High-resolution topographic data for Mars from the Mars Orbiter Laser Altimeter (MOLA), and imagery from the Mars Orbiter Camera (MOC) and the Thermal Emission Imaging System (THEMIS) allow for the first accurate assessment of lava flow directions relative to topographic slopes in the Tharsis region. Tharisis has long been recognized as the dominant tectonic and volcanic province on the planet, with a complex geologic history. In this study, lava flow directions on Daedalia Planum, Syria Planum, Tempe Terra, and near the Tharsis Montes are compared with MOLA topographic contours to look for deviations of flow directions from the local slope direction. The topographic deviations identified in this study are likely due to Tharsis tectonic deformation that has modified the regional topography subsequent to the emplacement of the flows, and can be used to model the mechanisms and magnitudes of relatively recent tectonism in the region. A similar approach was used to identify possible postflow tectonic subsidence on the Snake River Plain in Idaho.

  5. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.

    1992-01-01

    The basic objective of this research is to extend the capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. In the efforts related to LES, we were primarily involved with assessing the performance of the various modern methods based on the Probability Density Function (PDF) methods for providing closures for treating the subgrid fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we concentrated on understanding some of the relevant physics of compressible reacting flows by means of statistical analysis of the data generated by DNS of such flows. In the research conducted in the second year of this program, our efforts focused on the modeling of homogeneous compressible turbulent flows by PDF methods, and on DNS of non-equilibrium reacting high speed mixing layers. Some preliminary work is also in progress on PDF modeling of shear flows, and also on LES of such flows.

  6. Characterization of argon direct-current glow discharge with a longitudinal electric field applied at ambient air

    PubMed Central

    Jiang, Weiman; Tang, Jie; Wang, Yishan; Zhao, Wei; Duan, Yixiang

    2014-01-01

    A direct-current-driven plasma jet is developed by applying a longitudinal electric field on the flowing argon at ambient air. This plasma shows a torch shape with its cross-section increased from the anode to the cathode. Comparison with its counterparts indicates that the gas flow plays a key role in variation of the plasma structure and contributes much to enlarging the plasma volume. It is also found that the circular hollow metal base promotes generation of plasma with a high-power volume density in a limited space. The optical emission spectroscopy (OES) diagnosis indicates that the plasma comprises many reactive species, such as OH, O, excited N2, and Ar metastables. Examination of the rotational and vibrational temperature indicates that the plasma is under nonequilibrium condition and the excited species OH(A 2Σ+), O(5P), and N2(C 3Πu) are partly generated by energy transfer from argon metastables. The spatially resolved OES of plasma reveals that the negative glow, Faraday dark space, and positive column are distributed across the gas gap. The absence of the anode glow is attributed to the fact that many electrons in the vicinity of the anode follow ions into the positive column due to the ambipolar diffusion in the flowing gas. PMID:25205176

  7. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  8. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  9. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  10. High performance Python for direct numerical simulations of turbulent flows

    NASA Astrophysics Data System (ADS)

    Mortensen, Mikael; Langtangen, Hans Petter

    2016-06-01

    Direct Numerical Simulations (DNS) of the Navier Stokes equations is an invaluable research tool in fluid dynamics. Still, there are few publicly available research codes and, due to the heavy number crunching implied, available codes are usually written in low-level languages such as C/C++ or Fortran. In this paper we describe a pure scientific Python pseudo-spectral DNS code that nearly matches the performance of C++ for thousands of processors and billions of unknowns. We also describe a version optimized through Cython, that is found to match the speed of C++. The solvers are written from scratch in Python, both the mesh, the MPI domain decomposition, and the temporal integrators. The solvers have been verified and benchmarked on the Shaheen supercomputer at the KAUST supercomputing laboratory, and we are able to show very good scaling up to several thousand cores. A very important part of the implementation is the mesh decomposition (we implement both slab and pencil decompositions) and 3D parallel Fast Fourier Transforms (FFT). The mesh decomposition and FFT routines have been implemented in Python using serial FFT routines (either NumPy, pyFFTW or any other serial FFT module), NumPy array manipulations and with MPI communications handled by MPI for Python (mpi4py). We show how we are able to execute a 3D parallel FFT in Python for a slab mesh decomposition using 4 lines of compact Python code, for which the parallel performance on Shaheen is found to be slightly better than similar routines provided through the FFTW library. For a pencil mesh decomposition 7 lines of code is required to execute a transform.

  11. Assessment of air quality in and around a steel industry with direct reduction iron route.

    PubMed

    Jena, Pradip K; Behera, Dillip K; Mishra, C S K; Mohanty, Saswat K

    2011-10-01

    The coal based Direct Reduced Iron (DRI) route for secondary steel production is now a preferred choice in India. Steel making is invariably associated with emission of air pollutants into the environment. Air quality monitoring was carried out in Winter, Summer and Rainy seasons of 2008 in eight monitoring stations in the work zone and five stations in the residential zone of an Integrated Steel Industry located in Orissa state, India. Four air quality parameters i.e. SPM, RSPM, SO2 and NO2 were monitored. Mean SPM and RSPM values were found to be significantly high (p < 0.01) at stations nearer to source in both work zone and residential zone .The highest average SPM and RSPM values in the work zone recorded were 4869 microg/m3 and 1420 microg/m3 and in the residential zone 294 microg/m3 and 198 microg/m3 respectively. No significant difference in the SO2 and NO2 levels was observed between the work and residential zones. In general, the values of air pollutants were highest in Winter followed by Summer and Rainy season. SPM and RSPM values exceeded the National Air Quality Standards (NAAQS) in both the residential and work zones.

  12. Direct high-resolution alpha spectrometry from nuclear fuel particles in an outdoor air sample.

    PubMed

    Pöllänen, R; Siiskonen, T

    2008-01-01

    The potential use of direct high-resolution alpha spectrometry to identify the presence of transactinium elements in air samples is illustrated in the case when alpha-particle-emitting radionuclides are incorporated in nuclear fuel particles. Alpha particle energy spectra are generated through Monte Carlo simulations assuming a nuclide composition similar to RBMK (Chernobyl) nuclear fuel. The major alpha-particle-emitting radionuclides, in terms of activity, are 242Cm, 239Pu and 240Pu. The characteristics of the alpha peaks are determined by fuel particle properties as well as the type of the air filter. It is shown that direct alpha spectrometry can be readily applied to membrane filter samples containing nuclear fuel particles when rapid nuclide identification is of relevance. However, the development of a novel spectrum analysis code is a prerequisite for unfolding complex alpha spectra.

  13. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  14. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  15. Validation of simulated flow direction and hydraulic gradients with hydraulic head observations using open source GIS

    NASA Astrophysics Data System (ADS)

    Vandersteen, Katrijn; Rogiers, Bart; Gedeon, Matej

    2015-04-01

    It is recommended to check hydraulic gradients and flow directions predicted by a groundwater flow model that is calibrated solely with hydraulic head observations. It has been demonstrated in literature that substantial errors can be made when the model is not calibrated on these state variables. Therefore, in this work, we perform a validation of a steady-state groundwater flow model, representing part of the Neogene aquifer (60 km2) in Belgium. This model was developed and calibrated solely on groundwater head measurements, in the framework of the environmental impact assessment of the near surface repository for low- and intermediate-level short-lived waste, realized by ONDRAF/NIRAS at Dessel, Belgium. Horizontal flow directions, horizontal and vertical gradients for the entire area of the groundwater model were estimated from measurements at shallow monitoring wells within the groundwater flow model domain, and compared to the flow directions and vertical gradients predicted by the model. For obtaining horizontal flow directions and gradients, triangulation of groundwater levels was performed for combinations of three neighboring hydraulic head observations in the same hydrogeological layer within the model. The simulated equivalents at the same monitoring wells were used to repeat the same methodology, and calculate flow direction components. This analysis was performed in SAGA GIS and was visualized through QGIS. Comparison of the flow directions and flow gradients obtained from measurements and simulations gives an indication on the model performance. The calculations were performed for three sandy hydrogeological units used in the model. A similar procedure was performed for the vertical hydraulic head gradients, where any combination of two hydraulic head observations at the same location but at different levels within the aquifer were used to validate the vertical gradients predicted by the model. Besides model validation on average hydraulic heads, the

  16. A direct-inverse method for transonic and separated flows about airfoils

    NASA Technical Reports Server (NTRS)

    Carlson, K. D.

    1985-01-01

    A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

  17. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  18. Three-dimensional hypersonic rarefied flow calculations using direct simulation Monte Carlo method

    NASA Technical Reports Server (NTRS)

    Celenligil, M. Cevdet; Moss, James N.

    1993-01-01

    A summary of three-dimensional simulations on the hypersonic rarefied flows in an effort to understand the highly nonequilibrium flows about space vehicles entering the Earth's atmosphere for a realistic estimation of the aerothermal loads is presented. Calculations are performed using the direct simulation Monte Carlo method with a five-species reacting gas model, which accounts for rotational and vibrational internal energies. Results are obtained for the external flows about various bodies in the transitional flow regime. For the cases considered, convective heating, flowfield structure and overall aerodynamic coefficients are presented and comparisons are made with the available experimental data. The agreement between the calculated and measured results are very good.

  19. Direct Monte Carlo Simulations of Hypersonic Low-Density Flows about an ASTV Including Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, V. K.; Moss, J. N.; Wilmoth, R. G.; Price, J. M.

    1992-01-01

    Results of a numerical study concerning flow past a 70-deg blunted cone in hypersonic low-density flow environments are presented using the direct simulation Monte-Carlo method. The flow conditions simulated are those that can be obtained in existing low-density hypersonic wind tunnels. Results indicate that a stable vortex forms in the near wake at and below a freestream Knudsen number (based on cone diameter) of 0.01 and the size of the vortex increases with decreasing Knudsen number. The base region of the flow remains in thermal nonequilibrium for all cases considered herein.

  20. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  1. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  2. Analytical modeling of squeeze air film damping of biomimetic MEMS directional microphone

    NASA Astrophysics Data System (ADS)

    Ishfaque, Asif; Kim, Byungki

    2016-08-01

    Squeeze air film damping is introduced in microelectromechanical systems due to the motion of the fluid between two closely spaced oscillating micro-structures. The literature is abundant with different analytical models to address the squeeze air film damping effects, however, there is a lack of work in modeling the practical sensors like directional microphones. Here, we derive an analytical model of squeeze air film damping of first two fundamental vibration modes, namely, rocking and bending modes, of a directional microphone inspired from the fly Ormia ochracea's ear anatomy. A modified Reynolds equation that includes compressibility and rarefaction effects is used in the analysis. Pressure distribution under the vibrating diaphragm is derived by using Green's function. From mathematical modeling of the fly's inspired mechanical model, we infer that bringing the damping ratios of both modes in the critical damping range enhance the directional sensitivity cues. The microphone parameters are varied in derived damping formulas to bring the damping ratios in the vicinity of critical damping, and to show the usefulness of the analytical model in tuning the damping ratios of both modes. The accuracy of analytical damping results are also verified by finite element method (FEM) using ANSYS. The FEM results are in full compliance with the analytical results.

  3. Laser direct writing 3D structures for microfluidic channels: flow meter and mixer

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Lang; Liu, Yi-Jui; Lin, Zheng-Da; Wu, Bo-Long; Lee, Yi-Hsiung; Shin, Chow-Shing; Baldeck, Patrice L.

    2015-03-01

    The 3D laser direct-writing technology is aimed at the modeling of arbitrary three-dimensional (3D) complex microstructures by scanning a laser-focusing point along predetermined trajectories. Through the perspective technique, the details of designed 3D structures can be properly fabricated in a microchannel. This study introduces a direct reading flow meter and a 3D passive mixer fabricated by laser direct writing for microfluidic applications. The flow meter consists of two rod-shaped springs, a pillar, an anchor, and a wedge-shaped indicator, installed inside a microfluidic channel. The indicator is deflected by the flowing fluid while restrained by the spring to establish an equilibrium indication according to the flow rate. The measurement is readily carried out by optical microscopy observation. The 3D passive Archimedes-screw-shaped mixer is designed to disturb the laminar flow 3D direction for enhancing the mixing efficiency. The simulation results indicate that the screw provides 3D disturbance of streamlines in the microchannel. The mixing demonstration for fluids flowing in the micrchannel approximately agrees with the simulation result. Thanks to the advantage of the laser direct writing technology, this study performs the ingenious applications of 3D structures for microchannels.

  4. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  5. Direct and reverse pollen-mediated gene flow between GM rice and red rice weed

    PubMed Central

    Serrat, X.; Esteban, R.; Peñas, G.; Català, M. M.; Melé, E.; Messeguer, J.

    2013-01-01

    Potential risks of genetically modified (GM) crops must be identified before their commercialization, as happens with all new technologies. One of the major concerns is the proper risk assessment of adventitious presence of transgenic material in rice fields due to cross-pollination. Several studies have been conducted in order to quantify pollen-mediated gene flow from transgenic rice (Oryza sativa) to both conventional rice and red rice weed (O. sativa f. spontanea) under field conditions. Some of these studies reported GM pollen-donor rice transferring GM traits to red rice. However, gene flow also occurs in the opposite direction, in a phenomenon that we have called reverse gene flow, resulting in transgenic seeds that have incorporated the traits of wild red rice. We quantified reverse gene flow using material from two field trials. A molecular analysis based on amplified fragment length polymorphisms was carried out, being complemented with a phenotypic identification of red rice traits. In both field trials, the reverse gene flow detected was greater than the direct gene flow. The rate of direct gene flow varied according to the relative proportions of the donor (GM rice) and receptor (red rice) plants and was influenced by wind direction. The ecological impact of reverse gene flow is limited in comparison with that of direct gene flow because non-shattered and non-dormant seeds would be obtained in the first generation. Hybrid seed would remain in the spike and therefore most of it would be removed during harvesting. Nevertheless, this phenomenon must be considered in fields used for elite seed production and in developing countries where farmers often keep some seed for planting the following year. In these cases, there is a higher risk of GM red rice weed infestation increasing from year to year and therefore a proper monitoring plan needs to be established.

  6. Characteristics of a Direct Current-driven plasma jet operated in open air

    SciTech Connect

    Li, Xuechen; Bao, Wenting; Di, Cong; Jia, Pengying

    2013-09-30

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  7. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  8. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  9. Numerical simulation in finite elements of turbulent flows of viscous incompressible fluids in air intakes

    NASA Astrophysics Data System (ADS)

    Begue, C.; Periaux, J.; Perrier, P.; Pouletty, C.

    1985-11-01

    A self-adaptive finite-element method, coupled to a homogenization model of turbulence, is presented for the numerical simulation of unsteady turbulent flow of viscous fluids in air intakes. The nonlinear subproblem due to the convection is solved by an iterative algorithm, and the linear Stokes subproblem due to the diffusion is solved by a Hood-Taylor type iterative algorithm. An efficient and precise minielement approximation is used, and the adaptive mesh procedure is automatic in the calculation, using the physical criteria of rotation and divergence to determine the submeshing zones. The numerical method is demonstrated for the example of three-dimensional laminar flow around and in air intake at a Reynolds number of 200.

  10. A multi-channel, low velocity, hot film anemometry system for measuring air flows in buildings

    SciTech Connect

    Guire, J.L.

    1987-01-01

    A complete analytical and experimental development of a multichannel anemometry system is presented. The system consists of an array of low velocity sensors (0.0 m/s to 1.0 m/s), a constant current power supply, and the required data acquisition equipment. The velocity sensors can be scanned simultaneously yielding absolute air velocities and absolute ambient air temperatures at each of the probe positions in the array. One of the key results that this system can produce is the relationship between boundary layer flow and pressure driven flow through a large irregular aperture, such as a doorway, which up until now has been difficult to accomplish with regard to cost and experimental error incurred. 7 refs., 57 figs.

  11. Immersed boundary modeling for interaction of oscillatory flow with cylinder array under effects of flow direction and cylinder arrangement

    NASA Astrophysics Data System (ADS)

    Chern, Ming-Jyh; Shiu, Wei-Cheng; Horng, Tzyy-Leng

    2013-11-01

    An array of cylindrical structures are often used as a frame of an offshore platform. The prediction of hydrodynamic loadings on those cylindrical structures due to oscillatory flows is one of the most important issues in the design of those offshore structures. The aim of this study is to apply a direct-forcing immersed boundary method to simulating the oscillatory flow past a circular cylinder array in a square arrangement. The finite volume method was used to solve the Navier-Stokes equations. In this study, the effects of Keulegan-Carpenter (KC) number, oblique flow and the gap among four cylinders were investigated. Numerical results were visualized using vorticity contours so evolutions of oscillatory flow with the cylinder array were presented. Hydrodynamic loadings including in-line and transverse force coefficients were determined and illustrated in the time and spectral domains. Essentially, the proposed direct-forcing immersed boundary approach can be useful for scientists and engineers who would like to understand the interaction of the oscillatory flow with an array of cylinders and to estimate hydrodynamic loadings on the array of cylinders.

  12. A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components

    DTIC Science & Technology

    2016-01-01

    C O R P O R A T I O N Research Report A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components...Lisa M. Harrington, James H . Bigelow, Alexander Rothenberg, James Pita, Paul D. Emslie Limited Print and Electronic Distribution Rights This document...of a particular component—whether active , guard, or reserve. As a result, when personnel policies are implemented in one component, little is known

  13. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  14. Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame

    DTIC Science & Technology

    2012-01-01

    Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame by Matthew S. Kurman, John M. Densmore, Chol -Bum M. Kweon, and...Oak Ridge Associated Universities John M. Densmore Lawrence Livermore National Laboratory Chol -Bum M. Kweon Vehicle Technology Directorate... Chol -Bum M. Kweon, and Kevin L. McNesby 5d. PROJECT NUMBER 1VP2J1 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  15. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  16. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  17. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  18. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  19. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  20. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  1. Femoral Vessel Blood Flow Is Preserved Throughout Direct Anterior Total Hip Arthroplasty.

    PubMed

    Stryker, Louis S; Gilliland, Jeremy M; Odum, Susan M; Mason, J Bohannon

    2015-06-01

    Posterolateral and anterolateral approach THA disrupts femoral vessel blood flow, however, this has not been established for the direct anterior (DA) approach. Ten patients undergoing primary DA THA had peak vascular flow rates for the femoral artery and vein calculated via Doppler ultrasound at specified points: incision, acetabular preparation, femoral preparation and final reduction. Peak femoral arterial and venous flow decreased over baseline, but not significantly, during acetabular preparation (P=0.88, P=0.98) and femoral preparation (P=0.97, P=0.97). At final reduction, arterial peak flow was restored (P=1) with an increase in venous flow (P=0.55). Although there were alterations to peak flow, no vessel occlusion occurred at any point during DA THA.

  2. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    NASA Astrophysics Data System (ADS)

    Muszyński, Tomasz; Kozieł, Sławomir Marcin

    2016-09-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

  3. Experimental study of convective heat transfer of compressed air flow in radially rotating ducts

    SciTech Connect

    Hwang, G.J,; Tzeng, S.C.; Mao, C.P.

    1999-07-01

    The convective heat transfer of pressurized air flow in radially rotating serpentine channel is investigated experimentally in the present study. The main governing parameters are the Prandtl number, the Reynolds number for forced convection, the rotation number for the Coriolis force induced cross stream secondary flow and the Grashof number for natural convection. To simulate the operation conditions of a real gas turbine, the present study kept the parameters in the test rig approximately the same as those in a real engine. The air in the present serpentine channel was pressurized to increase the air density for making up the low rotational speed in the experiment. Before entering the rotating ducts, the air was also cooled to gain a high density ratio of approximately 1/3 in the ducts. This high density ratio will give a similar order of magnitude of Grashof number in a real operation condition. The local heat transfer rate on the four channel walls are present and compared with that in existing literature.

  4. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  5. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  6. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  7. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  8. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-09-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source.

  9. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-06-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases. are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source.

  10. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  11. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  12. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  13. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  14. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    with poly- methylene green (poly-MG) catalyst for biofuel cell anode fabrication. A fungal laccase that catalyzes oxygen reduction via direct electron...enzyme, Poly- methylene green, Membrane-less U U U UU 6 Glenn R. Johnson Reset This article appeared in a journal published by Elsevier. The attached copy...2011 Keywords: Biofuel cell Flow-through Air-breathing cathode NAD+-dependent enzyme Poly- methylene green Membrane-less a b s t r a c t One

  15. Flight calibration tests of a nose-boom-mounted fixed hemispherical flow-direction sensor

    NASA Technical Reports Server (NTRS)

    Armistead, K. H.; Webb, L. D.

    1973-01-01

    Flight calibrations of a fixed hemispherical flow angle-of-attack and angle-of-sideslip sensor were made from Mach numbers of 0.5 to 1.8. Maneuvers were performed by an F-104 airplane at selected altitudes to compare the measurement of flow angle of attack from the fixed hemispherical sensor with that from a standard angle-of-attack vane. The hemispherical flow-direction sensor measured differential pressure at two angle-of-attack ports and two angle-of-sideslip ports in diametrically opposed positions. Stagnation pressure was measured at a center port. The results of these tests showed that the calibration curves for the hemispherical flow-direction sensor were linear for angles of attack up to 13 deg. The overall uncertainty in determining angle of attack from these curves was plus or minus 0.35 deg or less. A Mach number position error calibration curve was also obtained for the hemispherical flow-direction sensor. The hemispherical flow-direction sensor exhibited a much larger position error than a standard uncompensated pitot-static probe.

  16. Beam-Energy and Centrality Dependence of Directed Flow of Identified Particles

    NASA Astrophysics Data System (ADS)

    Shanmuganathan, Prashanth

    2016-12-01

    These proceedings present directed flow (v1) measurements in Au+Au collisions from STAR's Beam Energy Scan (BES) program at the Relativistic Heavy-Ion Collider, for p, p ‾, Λ, Λ ‾, K±, KS0 and π±. At intermediate centrality, protons show a minimum in directed flow slope, dv1 / dy|y≤0.8, as a function of beam energy. Proton dv1 / dy changes sign near 10 GeV, and the directed flow for Λ is consistent with the proton result. The directed flow slope for net protons shows a clear minimum at 14.5 GeV and becomes positive at beam energies below 10 GeV and above 30 GeV. New results for net-kaon directed flow slope resemble net protons from high energy down to 14.5 GeV, but remain negative at lower energies. The slope dv1 / dy shows a strong centrality dependence, especially for p and Λ at the lower beam energies. Available model calculations are in poor agreement.

  17. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  18. Direct measurements of air-sea CO2 exchange over a coral reef

    NASA Astrophysics Data System (ADS)

    McGowan, Hamish A.; MacKellar, Mellissa C.; Gray, Michael A.

    2016-05-01

    Quantification of CO2 exchange with the atmosphere over coral reefs has relied on microscale measurements of pCO2 gradients across the air-sea interfacial boundary; shipboard measurements of air-sea CO2 exchange over adjacent ocean inferred to represent over reef processes or ecosystem productivity modeling. Here we present by way of case study the first direct measurements of air-sea CO2 exchange over a coral reef made using the eddy covariance method. Research was conducted during the summer monsoon over a lagoonal platform reef in the southern Great Barrier Reef, Australia. Results show the reef flat to be a net source of CO2 to the atmosphere of similar magnitude as coastal lakes, while adjacent shallow and deep lagoons were net sinks as was the surrounding ocean. This heterogeneity in CO2 exchange with the atmosphere confirms need for spatially representative direct measurements of CO2 over coral reefs to accurately quantify their role in atmospheric carbon budgets.

  19. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  20. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.