Science.gov

Sample records for air flow field

  1. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  2. Experimental analysis of the velocity field of the air flowing through the swirl diffusers

    NASA Astrophysics Data System (ADS)

    Jaszczur, M.; Branny, M.; Karch, M.; Borowski, M.

    2016-09-01

    The article presents the results of experimental studies of flow of air through diffusers. Presented laboratory model is a simplification of the real system and was made in a geometric scale 1:10. Simplifying refer both to the geometry of the object and conditions of air flow. The aim of the study is to determine the actual velocity fields of air flowing out of the swirl diffuser. The results obtained for the diffuser various settings are presented. We have tested various flow rates of air. Stereo Particle Image Velocimetry (SPIV) method was used to measure all velocity vector components. The experimental results allow to determine the actual penetration depth of the supply air into the room. This will allow for better definition of the conditions of ventilation in buildings.

  3. Flow-field differences and electromagnetic-field properties of air and N2 inductively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yamada, Kazuhiko; Takahashi, Yusuke; Liu, Kai; Zhao, Tong

    2016-12-01

    A numerical model for simulating air and nitrogen inductively coupled plasmas (ICPs) was developed considering thermochemical nonequilibrium and the third-order electron transport properties. A modified far-field electromagnetic model was introduced and tightly coupled with the flow field equations to describe the Joule heating and inductive discharge phenomena. In total, 11 species and 49 chemical reactions of air, which include 5 species and 8 chemical reactions of nitrogen, were employed to model the chemical reaction process. The internal energy transfers among translational, vibrational, rotational, and electronic energy modes of chemical species were taken into account to study thermal nonequilibrium effects. The low-Reynolds number Abe-Kondoh-Nagano k-ɛ turbulence model was employed to consider the turbulent heat transfer. In this study, the fundamental characteristics of an ICP flow, such as the weak ionization, high temperature but low velocity in the torch, and wide area of the plasma plume, were reproduced by the developed numerical model. The flow field differences between the air and nitrogen ICP flows inside the 10-kW ICP wind tunnel were made clear. The interactions between the electromagnetic and flow fields were also revealed for an inductive discharge.

  4. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; Guerrero-Viramontes, J A

    2013-08-01

    A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

  5. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Shimizu, Tetsuji; Iwafuchi, Yutaka; Morfill, Gregor E.; Sato, Takehiko

    2011-05-01

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s-1 to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  6. Test Data of Flow Field of Shuttle SRM Nozzle Joint with Bond Defects, Using Unheated Air

    NASA Technical Reports Server (NTRS)

    Hair, Leroy M.; McAnally, James V.; Hengel, John E.

    1989-01-01

    The nozzle-to-case joint on the Shuttle SRM (as redesigned after the Challenger accident) features an adhesive sealant filling and bonding the joint, with a wiper O-ring to prevent the adhesive from reaching and disabling the closure O-ring. Flawless implementation of that joint design would ensure that hot, corrosive propellant combustion gases never reach the closure O-ring. However, understanding the flow field related to bonding defects is prudent. A comprehensive test program was conducted to quantify such flow fields and associated heating environments. A two-dimensional, full-scale model represented 65 inches of the nozzle joint, using unheated air as the test medium, in a blowdown mode. Geometry variations modeled RSRM assembly tolerances, and two types of bonding defects: pullaways and blowholes. A range of the magnitude of each type defect was tested. Also a range of operational parameters was tested, representative of the RSRM flow environment, including duplication of RSRM Mach and Reynolds numbers. Extensive instrumentation was provided to quantify pressures, heat rates, and velocities. The resulting data established that larger geometric defects cause larger pressure and larger heating, at the closure O-ring region. Velocity trends were not so straight-forward. Variations in assembly tolerances did not generally affect flow fields or heating. Operational parameters affected flow fields and heating as might be expected, increasing density or velocity increased heating. Complete details of this test effort are presented.

  7. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field

    NASA Astrophysics Data System (ADS)

    Lugni, C.; Miozzi, M.; Brocchini, M.; Faltinsen, O. M.

    2010-05-01

    This paper describes a systematic experimental study of the role of the ambient pressure on wave impact events in depressurized environments. A wave impact event of "mode (b)" [see Lugni et al., "Wave impact loads: The role of the flip-through," Phys. Fluids 18, 122101 (2006)] causes entrapment of an air cavity. Here the topological and kinematic aspects of its oscillation and evolution toward collapse into a mixture of water and air bubbles are studied, while Part II [Lugni et al., "Evolution of the air cavity during a depressurized wave impact. II. The dynamic field," Phys. Fluids 22, 056102 (2010)] focuses on the dynamic features of the flow. Four distinct stages characterize the flow evolution: (1) the closure of the cavity onto the wall, (2) the isotropic compression/expansion of the cavity, (3) its anisotropic compression/expansion, and (4) the rise of the cavity up the wall. The first two stages are mainly governed by the air leakage, the last two by the surrounding hydrodynamic flow, which contributes to compressing the bubble horizontally and to convecting it up the wall. Ullage pressure affects the ratio between the minimum and maximum cavity areas. An ullage pressure of 2.5% of the atmospheric pressure leads to an area ratio of about 360% of the equivalent ratio at atmospheric conditions.

  8. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields

    NASA Astrophysics Data System (ADS)

    Comer, J. K.; Kleinstreuer, C.; Zhang, Z.

    2001-05-01

    The understanding and quantitative assessment of air flow fields and local micron-particle wall concentrations in tracheobronchial airways are very important for estimating the health risks of inhaled particulate pollutants, developing algebraic transfer functions of global lung deposition models used in dose-response analyses, and/or determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part 1) the theory, model geometries, and air flow results are provided. In a companion paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and comparisons with measured data sets are reported. Decoupling of the naturally dilute particle suspension makes it feasible to present the results in two parts.

  9. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  10. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure.

    PubMed

    Tiwary, Abhishek; Robins, Alan; Namdeo, Anil; Bell, Margaret

    2011-07-01

    This paper reviews the state of knowledge on modelling air flow and concentration fields at road intersections. The first part covers the available literature from the past two decades on experimental (both field and wind tunnel) and modelling activities in order to provide insight into the physical basis of flow behaviour at a typical cross-street intersection. This is followed by a review of associated investigations of the impact of traffic-generated localised turbulence on the concentration fields due to emissions from vehicles. There is a discussion on the role of adequate characterisation of vehicle-induced turbulence in making predictions using hybrid models, combining the merits of conventional approaches with information obtained from more detailed modelling. This concludes that, despite advancements in computational techniques, there are crucial knowledge gaps affecting the parameterisations used in current models for individual exposure. This is specifically relevant to the growing impetus on walking and cycling activities on urban roads in the context of current drives for sustainable transport and healthy living. Due to inherently longer travel times involved during such trips, compared to automotive transport, pedestrians and cyclists are subjected to higher levels of exposure to emissions. Current modelling tools seem to under-predict this exposure because of limitations in their design and in the empirical parameters employed.

  11. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  12. Flow field studies on a micro-air-vehicle-scale cycloidal rotor in forward flight

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jarugumilli, Tejaswi; Benedict, Moble; Lakshminarayan, Vinod K.; Jones, Anya R.; Chopra, Inderjit

    2014-12-01

    This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.

  13. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  14. Effect of Gravity on the Near Field Flow Structure of Helium Jet in Air

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Parthasarathy, Ramkumar; Griffin, DeVon

    2002-01-01

    Experiments have shown that a low-density jet injected into a high-density surrounding medium undergoes periodic oscillations in the near field. Although the flow oscillations in these jets at Richardson numbers about unity are attributed to the buoyancy, the direct physical evidence has not been acquired in the experiments. If the instability were indeed caused by buoyancy, the near-field flow structure would undergo drastic changes upon removal of gravity in the microgravity environment. The present study was conducted to investigate this effect by simulating microgravity environment in the 2.2-second drop tower at the NASA Glenn Research Center. The non-intrusive, rainbow schlieren deflectometry technique was used for quantitative measurements of helium concentrations in buoyant and non-buoyant jets. Results in a steady jet show that the radial growth of the jet shear layer in Earth gravity is hindered by the buoyant acceleration. The jet in microgravity was 30 to 70 percent wider than that in Earth gravity. The microgravity jet showed typical growth of a constant density jet shear layer. In case of a self-excited helium jet in Earth gravity, the flow oscillations continued as the jet flow adjusted to microgravity conditions in the drop tower. The flow oscillations were however not present at the end of the drop when steady microgravity conditions were reached.

  15. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations

    NASA Astrophysics Data System (ADS)

    López, D.; Domínguez, D.; Gonzalo, J.

    2014-12-01

    This paper defines a methodology to carry out optimizations of rocket/missile geometries by means of krigingbased algorithms applied to simulations made with computational fluid dynamic (CFD) codes. The first part of the paper is focused on the validation of the open source CFD code against a well-studied 3-dimmensional test case in supersonic conditions. The impact of several turbulence models, different numerical schemes to discretize the equations and different mesh resolution levels have been analyzed demonstrating the performance of using wall functions for supersonic flow. Good agreements between numerical, theoretical and experimental results are obtained and some general guidelines are extracted. The best accuracy is obtained with SST k-omega turbulence model with meshes suitable for the use of wall functions in the boundary cells. Then, with this configuration for the simulations, an air-ejected rocket fairing is selected to apply a geometrical optimization. The selected method is kriging-based, where a statistical model is generated by means of several numerical experiments dependent on a certain number of design parameters; the final objective is to find the minimum drag coefficient for the model, keeping enough room inside the fairing to install the requested payload. This kriging-based method allows obtaining the samples in a parallel manner, looking for the optimum design at the generated metamodel and hence improving its accuracy adding new samples if needed.

  16. Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.

  17. Experimental determination of the velocity and strain rate field in a laminar H2/Air counter-flow diffusion flame via LDA

    NASA Technical Reports Server (NTRS)

    Yeo, S. H.; Dancey, C. L.

    1991-01-01

    Measurements of the axial and radial components of velocity on the air side of stagnation in an axisymmetric H2/Air laminar counter-flow diffusion flame are reported. Results include the two-dimensional velocity field and computed velocity gradients (strain rates) along the stagnation streamline at two 'characteristic' strain rates, below the extinction limit. The measurements generally verify the modeling assumptions appropriate to the model of Kee et al. (1988). The 'traditional' potential flow model is not consistent with the measured results.

  18. Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Simonet, S.; Bois, G.; Issa, A.

    2012-11-01

    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this

  19. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  20. Field-Flow Fractionation.

    ERIC Educational Resources Information Center

    Caldwell, Karin D.

    1988-01-01

    Describes a technique for separating samples that range over 15 orders of magnitude in molecular weight. Discusses theory, apparatus, and sample preparation techniques. Lists several types of field-flow fractionation (FFF) and their uses: sedimentation FFF, thermal FFF, flow FFF, electrical FFF, and steric FFF. (ML)

  1. Pitot survey of exhaust flow field of a 2-D scramjet nozzle at Mach 6 with air or freon and argon used for exhaust simulation

    NASA Technical Reports Server (NTRS)

    Monta, William J.

    1992-01-01

    A pitot-rake survey of the simulated exhaust of a half-span scramjet nozzle model was conducted in the Langley 20-Inch Mach 6 Tunnel to provide an additional data set for computational fluid dynamics (CFD) code comparisons. A wind-tunnel model was tested with a 26-tube pitot rake that could be manually positioned along the mid-semispan plane of the model. The model configuration had an external expansion surface of 20 degrees and an internal cowl expansion of 12 degrees; tests were also performed with a flow fence. Tests were conducted at a free-stream Reynolds number of approximately 6.5 x 10(exp 6) per foot and a model angle of attack of -0.75 degrees. The two exhaust gas mediums that were tested were air and a Freon 12-argon mixture. Each medium was tested at two jet total pressures at approximately 28 and 14 psia. This document presents the flow-field survey results in graphical as well as tabular form, and several observations concerning the results are discussed. The surveys reveal the major expected flow-field characteristics for each test configuration. For a 50-percent freon 12 and 50-percent argon mixture by volume (Fr-Ar), the exhaust jet pressures were slightly higher than those for air. The addition of a flow fence slightly raised the pitot pressure for the Fr-Ar mixture, but it produced little change for air. For the Fr-Ar exhaust, the plume was larger and the region between the shock wave and plume was smaller.

  2. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D.; Vogel, J. M.

    1973-01-01

    Numerical calculations were made of flow fields generated by various aerodynamic configurations. Data cover flow fields generated by a finitely thick lifting three dimensional wing with subsonic tips moving at supersonic speeds, cross flow instability associated with lifting delta wing configurations such as space shuttles, and flow fields produced by a lifting elliptic cone. Finite difference techniques were used to determine elliptic cone flow.

  3. SRMAFTE facility checkout model flow field analysis

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The Solid Rocket Motor Air Flow Equipment (SRMAFTE) facility was constructed for the purpose of evaluating the internal propellant, insulation, and nozzle configurations of solid propellant rocket motor designs. This makes the characterization of the facility internal flow field very important in assuring that no facility induced flow field features exist which would corrupt the model related measurements. In order to verify the design and operation of the facility, a three-dimensional computational flow field analysis was performed on the facility checkout model setup. The checkout model measurement data, one-dimensional and three-dimensional estimates were compared, and the design and proper operation of the facility was verified. The proper operation of the metering nozzles, adapter chamber transition, model nozzle, and diffuser were verified. The one-dimensional and three-dimensional flow field estimates along with the available measurement data are compared.

  4. Investigations of the air flow velocity field structure above the wavy surface under severe wind conditions by particle image velosimetry technique.

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Kandaurov, Alexander; Sergeev, Daniil; Ermakova, Olga

    2013-04-01

    Preliminary experiments devoted to measuring characteristics of the air flow above the waved water surface for the wide range of wind speeds were performed with the application of modified Particle Image Velosimetry (PIV) technique. Experiments were carried out at the Wind - wave stratified flume of IAP RAS (length 10 °, cross section of air channel 0.4×0.4 m) for four different axial wind speeds: 8.7, 13.5, 19 and 24 m/s, corresponding to the equivalent 10-m wind speeds 15, 20, 30 40 m/s correspondingly. Intensive wave breaking with forming foam crest and droplets generations was occurred for two last wind conditions. The modified PIV-method based on the use of continuous-wave (CW) laser illumination of the airflow seeded by tiny particles and with highspeed video. Spherical 20 μm polyamide particles with density 1.02 g/sm3 and inertial time 7•10-3 s were used for seeding airflow with special injecting device. Green (532 nm) CW laser with 4 Wt output power was used as a source for light sheet. High speed digital camera Videosprint was used for taking visualized air flow images with the frame rate 2000 Hz s and exposure time 10 ms Combination including iteration Canny method [1] for obtaining curvilinear surface from the images in the laser sheet view and contact measurements of surface elevation by wire wave gauge installed near the border of working area for the surface wave profile was used. Then velocity air flow field was retrieved by PIV images processing with adaptive cross-correlation method on the curvilinear grid following surface wave profile. The mean wind velocity profiles were retrieved by averaging over obtained ensembles of wind velocity field realizations and over a wave period even for the cases of intensive wave breaking and droplets generation. To verify the PIV method additional measurements of mean velocity profiles over were carried out by the contact method using the Pitot tube. In the area of overlap, wind velocity profiles measured by

  5. Ground vortex flow field investigation

    NASA Technical Reports Server (NTRS)

    Kuhn, Richard E.; Delfrate, John H.; Eshleman, James E.

    1988-01-01

    Flow field investigations were conducted at the NASA Ames-Dryden Flow Visualization Facility (water tunnel) to investigate the ground effect produced by the impingement of jets from aircraft nozzles on a ground board in a STOL operation. Effects on the overall flow field with both a stationary and a moving ground board were photographed and compared with similar data found in other references. Nozzle jet impingement angles, nozzle and inlet interaction, side-by-side nozzles, nozzles in tandem, and nozzles and inlets mounted on a flat plate model were investigated. Results show that the wall jet that generates the ground effect is unsteady and the boundary between the ground vortex flow field and the free-stream flow is unsteady. Additionally, the forward projection of the ground vortex flow field with a moving ground board is one-third less than that measured over a fixed ground board. Results also showed that inlets did not alter the ground vortex flow field.

  6. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  7. Integrated flow field (IFF) structure

    NASA Technical Reports Server (NTRS)

    Pien, Shyhing M. (Inventor); Warshay, Marvin (Inventor)

    2012-01-01

    The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.

  8. Ground-water flow in the surficial aquifer system and potential movement of contaminants from selected waste-disposal sites at Cecil Field Naval Air Station, Jacksonville, Florida

    USGS Publications Warehouse

    Halford, K.J.

    1998-01-01

    As part of the Installation Restoration Program, Cecil Field Naval Air Station, Jacksonville, Florida, is considering remedialaction alternatives to control the possible movement of contaminants from sites that may discharge to the surface. This requires a quantifiable understanding of ground-water flow through the surficial aquifer system and how the system will respond to any future stresses. The geologic units of interest in the study area consist of sediments of Holocene to Miocene age that extend from land surface to the base of the Hawthorn Group. The hydrogeology within the study area was determined from gamma-ray and geologists? logs. Ground-water flow through the surficial aquifer system was simulated with a seven-layer, finite-difference model that extended vertically from the water table to the top of the Upper Floridan aquifer. Results from the calibrated model were based on a long-term recharge rate of 6 inches per year, which fell in the range of 4 to 10 inches per year, estimated using stream hydrograph separation methods. More than 80 percent of ground-water flow circulates within the surficial-sand aquifer, which indicates that most contaminant movement also can be expected to move through the surficial-sand aquifer alone. The surficial-sand aquifer is the uppermost unit of the surficial aquifer system. Particle-tracking results showed that the distances of most flow paths were 1,500 feet or less from a given site to its discharge point. For an assumed effective porosity of 20 percent, typical traveltimes are 40 years or less. At all of the sites investigated, particles released 10 feet below the water table had shorter traveltimes than those released 40 feet below the water table. Traveltimes from contaminated sites to their point of discharge ranged from 2 to 300 years. The contributing areas of the domestic supply wells are not very extensive. The shortest traveltimes for particles to reach the domestic supply wells from their respective

  9. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  10. Health woes tied to low air flow

    SciTech Connect

    Barber, J.

    1984-01-23

    Occupants in buildings with heating, ventilating, and air conditioning (HVAC) systems which limit fresh air flow may suffer a variety of illnesses because of the buildup of noxious contaminants. Building managers need to continue conservation efforts, but they should also meet the air standards set by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) which are in the process of being strengthened. Cases of building sickness caused by indoor air pollution have increased during the past decade, prompting ASHRAE to expedite the revision of its specifications.

  11. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  12. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  14. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  15. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  16. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  17. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  18. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  19. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  20. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  1. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  2. Flow field simulation for a corncob incinerator

    SciTech Connect

    Wu, C.H.

    1999-02-01

    This article utilizes the standard k-{epsilon} turbulent model to simulate a corncob incinerator using the PISO algorithm with computational fluid dynamics (CFD). The flow patterns of the incinerator equipped with secondary air inlets are predicted and compared for the various geometrical layouts. It is demonstrated that a wider recirculation zone can be found while the inclined angles of inlets increased, so a longer residence time and higher combustion efficiency will be expected. The longer distance between primary and secondary inlets will facilitate the formation of recirculation zone in this bigger space. The more the number of the secondary air inlets, the less the resident air in the top recirculation zone near the exit of the furnace. By using the CFD technique, the flow field of the incinerator can be understood more precisely, and it can serve as an excellent design tool. Furthermore, the computational program can be composed with FORTRAN and set up on a PC, and can easily be analyzed to get the flow field of the corncob incinerator.

  3. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  4. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  5. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  7. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  8. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  9. Aerodynamic Flow Field Measurements for Automotive Systems

    NASA Technical Reports Server (NTRS)

    Hepner, Timothy E.

    1999-01-01

    The design of a modern automotive air handling system is a complex task. The system is required to bring the interior of the vehicle to a comfortable level in as short a time as possible. A goal of the automotive industry is to predict the interior climate of an automobile using advanced computational fluid dynamic (CFD) methods. The development of these advanced prediction tools will enable better selection of engine and accessory components. The goal of this investigation was to predict methods used by the automotive industry. To accomplish this task three separate experiments were performed. The first was a laboratory setup where laser velocimeter (LV) flow field measurements were made in the heating and air conditioning unit of a Ford Windstar. The second involved flow field measurements in the engine compartment of a Ford Explorer, with the engine running idle. The third mapped the flow field exiting the center dashboard panel vent inside the Explorer, while the circulating fan operated at 14 volts. All three experiments utilized full-coincidence three-component LV systems. This enabled the mean and fluctuating velocities to be measured along with the Reynolds stress terms.

  10. Particle and flow field holography

    NASA Astrophysics Data System (ADS)

    Trolinger, J. D.

    1985-01-01

    The current status of particle field and flow field holography is examined, and the methods based on the principles of either class of imagery are described. Special consideration is given to the automated data reduction technology. Current applications of flow diagnostics, which can provide thousands of holograms during a one-day experiment, include NASA applications in wind tunnel holography, in a Laser Doppler Velocimeter, in holographic movies, and in an optical device for recording crystal growth at zero gravity, to be used in the Space Lab 3 shuttle mission scheduled for May 1985. Military applications of the flow diagnostics include the use of holographic tomography for visualizing flow fields around airborne structures, in wind tunnels, and in the analyses of rocket exhausts and gun ranges. The information provided by the particle sizing holography, concerning the size, shape, number, and velocity of particles and the records of the particle break-up phenomenon, can be used in various military field oriented and airborne applications and in meteorology and environment protection science.

  11. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  12. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  13. Numerical computations of Orbiter flow fields and heating rates

    NASA Technical Reports Server (NTRS)

    Goodrich, W. D.; Li, C. P.; Houston, C. K.; Chiu, P.; Olmedo, L.

    1976-01-01

    Numerical computations of flow fields around an analytical description of the Space Shuttle Orbiter windward surface, including the root of the wing leading edge, are presented to illustrate the sensitivity of these calculations to several flow field modeling assumptions. Results of parametric flow field and boundary layer computations using the axisymmetric analogue concept to obtain three-dimensional heating rates, in conjunction with exact three-dimensional inviscid floe field solutions and two-dimensional boundary layer analysis - show the sensitivity of boundary layer edge conditions and heating rates to considerations of the inviscid flow field entropy layer, equilibrium air versus chemically and vibrationally frozen flow, and nonsimilar terms in the boundary layer computations. A cursory comparison between flow field predictions obtained from these methods and current Orbiter design methods has established a benchmark for selecting and adjusting these and future design methodologies.

  14. Supersonic reacting internal flow fields

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    1989-01-01

    The national program to develop a trans-atmospheric vehicle has kindled a renewed interest in the modeling of supersonic reacting flows. A supersonic combustion ramjet, or scramjet, has been proposed to provide the propulsion system for this vehicle. The development of computational techniques for modeling supersonic reacting flow fields, and the application of these techniques to an increasingly difficult set of combustion problems are studied. Since the scramjet problem has been largely responsible for motivating this computational work, a brief history is given of hypersonic vehicles and their propulsion systems. A discussion is also given of some early modeling efforts applied to high speed reacting flows. Current activities to develop accurate and efficient algorithms and improved physical models for modeling supersonic combustion is then discussed. Some new problems where computer codes based on these algorithms and models are being applied are described.

  15. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1990-01-01

    Flow field measurements of three subsonic rectangular cold air jets are presented. The three cases had aspect ratios of 1x2, 1x4 at a Mach number of 0.09 and an aspect ratio of 1x2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemometer system. The data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data are presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made.

  16. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter....

  17. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter....

  18. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter....

  19. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter....

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter....

  1. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Astrophysics Data System (ADS)

    So, R. M. C.; Ahmed, S. A.

    1984-04-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  2. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  3. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  4. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  5. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  6. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  7. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  8. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  9. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  10. Visualizing vector field topology in fluid flows

    NASA Technical Reports Server (NTRS)

    Helman, James L.; Hesselink, Lambertus

    1991-01-01

    Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.

  11. Flow Field Classification Using Critical Point Matching

    NASA Astrophysics Data System (ADS)

    Krueger, Paul S.; Williams, Sheila; Hahsler, Michael; Olinick, Eli V.

    2016-11-01

    Classification of flow fields according to topological similarities can help reveal features of the flow generation and evolution for bluff body flows, and characterize different swimming maneuvers in aquatic locomotion, to name a few. Rigorous classification can be challenging, however, especially when complex flows are distorted by measurement uncertainties or variable flow generating conditions. The present work uses critical points of the velocity field to characterize the global flow topology. Flow fields are compared by finding a best match of critical points in two flow fields based on topological and location characteristics of the critical points together with general point set distance measures. The similarity between the flow fields is quantified based on the matched critical points. Applying clustering algorithms to a set of flow fields with quantified similarity can then be used to group flows with similar characteristics. This approach has been applied to generic 2D flow fields constructed using potential flow results and is able to correctly identify similar flow fields even after large distortions (up to 20% of the vortex separation) have been applied to the flows. Support of NSF Grant Nos. 1115139 and 1557698, and the Lyle School of Engineering is gratefully acknowledged.

  12. Air flow patterns in the operating theatre.

    PubMed

    Howorth, F H

    1980-04-01

    Bacteria-carrying particles and exhaled anaesthetic gases are the two contaminants found in the air flow patterns of operating rooms. Their origin, direction and speed were illustrated by a motion picture using Schlieren photography and smoke tracers. Compared with a conventionally well air conditioned operating theatre, it was shown that a downward flow of clean air reduced the number of bacteria-carrying particles at the wound site by sixty times. The Exflow method of achieving this without the restriction of any side panels or floor obstruction was described. The total body exhaust worn by the surgical team was shown to reduce the bacteria count by a further eleven times. Clinical results show that when both these systems are used together, patient infection was reduced from 9 per cent to between 0.3 per cent and 0.5 per cent, even when no pre-operative antibiotics were used. Anaesthetic gas pollution was measured and shown to be generally 1000 p.p.m. at the head of the patient, in induction, operating and recovery rooms, also in dental and labour rooms. A high volume low pressure active scavenging system was described together with its various attachments including one specially for paediatric scavenging. Results showed a reduction of nitrous oxide pollution to between zero and 3 p.p.m. The economy and cost effectiveness of both these pollution control systems was shown to be good due to the removal of health hazards from patients and theatre staff.

  13. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  14. Motion field and optical flow: Qualitative properties

    NASA Astrophysics Data System (ADS)

    Verri, Alessandro; Poggio, Tomaso

    1986-12-01

    The optical flow, a 2-D field that can be associated with the variation of the image brightness pattern, and the 2-D motion field, the projection on the image plane of the 3-D velocity field of a moving scene, are in general different, unless very special conditions are satisfied. The optical flow, therefore, is ill suited for computing structure from motion, and for reconstructing the 3-D velocity field, problems that require an accurate estimate of the 2-D motion field. A different use of the optical flow is suggested. Stable field and the 3-D structure of the scene, and they can usually be obtained from the optical flow. The smoothed optical flow and 2-D motion field, interpreted as vector fields tangent to flows of planar dynamical systems, may have the same qualitative properties from the point of view of the theory of structural stability of dynamical systems.

  15. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  16. Graphics and Flow Visualization of Computer Generated Flow Fields

    NASA Technical Reports Server (NTRS)

    Kathong, M.; Tiwari, S. N.

    1987-01-01

    Flow field variables are visualized using color representations described on surfaces that are interpolated from computational grids and transformed to digital images. Techniques for displaying two and three dimensional flow field solutions are addressed. The transformations and the use of an interactive graphics program for CFD flow field solutions, called PLOT3D, which runs on the color graphics IRIS workstation are described. An overview of the IRIS workstation is also described.

  17. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  18. Rectangular subsonic jet flow field measurements

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Swan, David H.

    1989-01-01

    Flow field measurements are presented of 3 subsonic rectangular cold air jets. The 3 cases presented had aspect ratios of 1 x 2, 1 x 4 at a Mach number of 0.09 and an aspect ratio of 1 x 2 at a Mach number of 0.9. All measurements were made using a 3-D laser Doppler anemoneter system. The presented data includes the mean velocity vector, all Reynolds stress tensor components, turbulent kinetic energy and velocity correlation coefficients. The data is presented in tabular and graphical form. No analysis of the measured data or comparison to other published data is made. All tabular data are available in ASCII format on MS-DOS compatible disks.

  19. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  20. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  1. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  2. The effect of swirling number on the flow field of downshot flame furnace

    SciTech Connect

    Zhijun, Z.; Zili, Z.; Xiang, Z.; Xinyu, C.; Junhu, Z.; Zhengyu, H.; Jianzhong, L.; Kefa, C.

    2000-07-01

    The cold model test is adopted to study the flow field of downshot flame furnace with swirling burners in this paper. The flow field is measured with tri-hole probe. The ribbon method and fireworks tracer technology are adopted to find out the flow field distribution qualitatively. The results show that the momentum ratio of arch air and side-wall air is not the most important factor which determines the flow field when swirling burners are adopted. The effect of swirling number of arch air on the flow field is notable, and the jet will decline like normal swirling jet. Under general swirling number, the momentum ratio of arch air and side-wall air should be large enough.

  3. Influence of flow velocity on flow field's optical tomography diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Yun-yun; Yu, Yang; Zhong, Xia; Zhang, Ying-ying

    2017-01-01

    The effect of flow velocity is usually neglected when optical computerized tomography (OCT) methods are chosen to measure the temperature distribution of the flow fields up to now. In this paper, two sets of experiment are supplied to verify the effect of flow velocity on flow field's moiré tomography. Specifically speaking, the temperature results with the assumption that it is an isobaric process (omit the effect of flow velocity) in the measured flame flow fields, manifest that the isobaric supposition is not suitable for all the flames. And then, a condition, which can be adopted to judge that when the effect of flow velocity on its temperature reconstruction can not be neglected any more, is proposed. This study would provide some reference to the temperature diagnosis by the optical methods which are based on the measurement of the refractive index.

  4. Knowledge-based flow field zoning

    NASA Technical Reports Server (NTRS)

    Andrews, Alison E.

    1988-01-01

    Automation flow field zoning in two dimensions is an important step towards easing the three-dimensional grid generation bottleneck in computational fluid dynamics. A knowledge based approach works well, but certain aspects of flow field zoning make the use of such an approach challenging. A knowledge based flow field zoner, called EZGrid, was implemented and tested on representative two-dimensional aerodynamic configurations. Results are shown which illustrate the way in which EZGrid incorporates the effects of physics, shape description, position, and user bias in a flow field zoning.

  5. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  6. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  7. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  8. Io: Heat flow from dark volcanic fields

    NASA Astrophysics Data System (ADS)

    Veeder, Glenn J.; Davies, Ashley Gerard; Matson, Dennis L.; Johnson, Torrence V.

    2009-11-01

    Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io's total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ˜200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io's heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ˜5% of Io's global heat flow or ˜5 × 10 12 W.

  9. An experimental setup for the study of the steady air flow in a diesel engine chamber

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín; José Vega, Emilio; Castilla, Alejandro; Marcos, Alberto; María Montanero, José; Barrio, Raúl

    2012-04-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  10. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  11. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  12. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  13. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  14. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  15. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  16. Numerical calculations of flow fields

    NASA Technical Reports Server (NTRS)

    Anderson, D. M.; Vogel, J. M.

    1972-01-01

    The solutions to the equations of motion for inviscid fluid flow around a pointed elliptic cone at incidence are presented. The numerical method used, MacCormack's second order preferential predictor-corrector finite difference approximation, is applied to the fluid flow equations derived in conservation-law form. The entropy boundary condition, hitherto unused for elliptic cone problems, is investigated and compared to reflection boundary condition solutions. The stagnation streamline movement of the inclined elliptic cone is noted and surface pressure coefficients are plotted. Also presented are solutions for an elliptic cone and a circular cone at zero incidence and a circular cone at a small angle of attack. Comparisons are made between these present solutions and previously published theory.

  17. Decorrelation Times of Photospheric Fields and Flows

    NASA Technical Reports Server (NTRS)

    Welsch, B. T.; Kusano, K.; Yamamoto, T. T.; Muglach, K.

    2012-01-01

    We use autocorrelation to investigate evolution in flow fields inferred by applying Fourier Local Correlation Tracking (FLCT) to a sequence of high-resolution (0.3 "), high-cadence (approx = 2 min) line-of-sight magnetograms of NOAA active region (AR) 10930 recorded by the Narrowband Filter Imager (NFI) of the Solar Optical Telescope (SOT) aboard the Hinode satellite over 12 - 13 December 2006. To baseline the timescales of flow evolution, we also autocorrelated the magnetograms, at several spatial binnings, to characterize the lifetimes of active region magnetic structures versus spatial scale. Autocorrelation of flow maps can be used to optimize tracking parameters, to understand tracking algorithms f susceptibility to noise, and to estimate flow lifetimes. Tracking parameters varied include: time interval Delta t between magnetogram pairs tracked, spatial binning applied to the magnetograms, and windowing parameter sigma used in FLCT. Flow structures vary over a range of spatial and temporal scales (including unresolved scales), so tracked flows represent a local average of the flow over a particular range of space and time. We define flow lifetime to be the flow decorrelation time, tau . For Delta t > tau, tracking results represent the average velocity over one or more flow lifetimes. We analyze lifetimes of flow components, divergences, and curls as functions of magnetic field strength and spatial scale. We find a significant trend of increasing lifetimes of flow components, divergences, and curls with field strength, consistent with Lorentz forces partially governing flows in the active photosphere, as well as strong trends of increasing flow lifetime and decreasing magnitudes with increases in both spatial scale and Delta t.

  18. Io: Heat Flow from Dark Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Veeder, G. J.; Matson, D. L.; Davies, A. G.; Johnson, T. V.

    2008-03-01

    We focus on the heat flow contribution from dark volcanic fields on Io. These are concentrated in the anti-Loki hemisphere. We use the areas and estimated effective temperatures of dark flucti to derive their total power.

  19. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  20. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  1. Development of a field-portable air monitor for Lewisite

    SciTech Connect

    Aldstadt, J.H.; Martin, A.F.; Olson, D.C. |

    1996-03-01

    The focus of this research is the development of a prototype field-portable ambient-air monitor for measuring trace levels of volatile organoarsenicals. Lewisite (dichloro[2-chlorovinyl]arsine) is a chemical warfare agent developed during World War I and stockpiled on a large scale by the former Soviet Union. A continuous air monitor for Lewisite at the eight-hour time-weighted-average concentration (3 {mu}g/m{sup 3}) is necessary to protect the safety and health of arms control treaty inspectors. Flow injection is used to integrate an air sampling device based on liquid-phase extraction with a flow-through detector based on potentiometric stripping analysis. We describe a method for the sampling and preconcentration of organoarsenicals from ambient air by using a gas permeation membrane sampler. The sampler is designed to selectively preconcentrate analyte that permeates a silicone rubber membrane into a caustic carrier stream. Instrument design is described for the sampling and detection methodologies.

  2. Flow field visualization about external axial corners

    NASA Technical Reports Server (NTRS)

    Talcott, N. A., Jr.

    1978-01-01

    An experimental investigation was conducted to visualize the flow field about external axial corners. The investigation was initiated to provide answers to questions about the inviscid flow pattern for continuing numerical investigations. Symmetrical and asymmetrical corner models were tested at a Reynolds number per meter of 60,700,000. Oil-flow and vapor-screen photographs were taken for both models at angle of attack and yaw. The paper presents the results of the investigation in the form of oil-flow photographs and the surrounding shock wave location obtained from the vapor screens.

  3. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    NASA Astrophysics Data System (ADS)

    Katunská, Jana; Bullová, Iveta; Špaková, Miroslava

    2016-12-01

    The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now), by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  4. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1989-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that have been reduced to a relatively compact set of equations in a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-average behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equations a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. Hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates chemical nonequilibrium is considered, and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  5. Hypervelocity atmospheric flight: Real gas flow fields

    NASA Technical Reports Server (NTRS)

    Howe, John T.

    1990-01-01

    Flight in the atmosphere is examined from the viewpoint of including real gas phenomena in the flow field about a vehicle flying at hypervelocity. That is to say, the flow field is subject not only to compressible phenomena, but is dominated by energetic phenomena. There are several significant features of such a flow field. Spatially, its composition can vary by both chemical and elemental species. The equations which describe the flow field include equations of state and mass, species, elemental, and electric charge continuity; momentum; and energy equations. These are nonlinear, coupled, partial differential equations that were reduced to a relatively compact set of equations of a self-consistent manner (which allows mass addition at the surface at a rate comparable to the free-stream mass flux). The equations and their inputs allow for transport of these quantities relative to the mass-averaged behavior of the flow field. Thus transport of mass by chemical, thermal, pressure, and forced diffusion; transport of momentum by viscosity; and transport of energy by conduction, chemical considerations, viscosity, and radiative transfer are included. The last of these complicate the set of equations by making the energy equation a partial integrodifferential equation. Each phenomenon is considered and represented mathematically by one or more developments. The coefficients which pertain are both thermodynamically and chemically dependent. Solutions of the equations are presented and discussed in considerable detail, with emphasis on severe energetic flow fields. For hypervelocity flight in low-density environments where gaseous reactions proceed at finite rates, chemical nonequilibrium is considered and some illustrations are presented. Finally, flight where the flow field may be out of equilibrium, both chemically and thermodynamically, is presented briefly.

  6. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  7. Flow Field Around a Hovering Rotor

    NASA Technical Reports Server (NTRS)

    Tung, C.; Low, S.

    1997-01-01

    A lifting surface hover code developed by the Analytical Method Inc. (AMI) was used to compute the average and unsteady velocity flow field of an isolated rotor without ground effect. The predicted velocity field compares well with experimental data obtained by hot-wire anemometry and by Laser Doppler Velocimetry. A subroutine 'DOWNWASH' was written to predict the velocity field at any given point in the wake for a given blade position.

  8. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  9. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  10. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  11. Laser velocimetry in turbulent flow fields - Particle response

    NASA Technical Reports Server (NTRS)

    Bachalo, W. D.; Rudoff, R.; Houser, M. J.

    1987-01-01

    Measurements of the particle response in a decelerating flow and a highly turbulent two-phase flow were obtained. Simultaneous measurements of the particle size and velocity served to quantify the particle response to the prevailing flow field. In the case of a flow incident upon a cylinder, the particle lag for a range of size classes was recorded. Results were also obtained in the flow generated by an atomizer operating on the leeward side of a flat disk bluff body in a coflowing air stream. Measurements of the mean axial, mean radial, and rms velocities and angles of trajectories were obtained for representative particle size classes. The air velocity and turbulence intensity were inferred from the seed particles on the order of one micrometer in diameter. Particles 9 micrometers and larger showed significant differences with respect to the gas phase mean velocity and turbulence intensity even at low velocities. In two-phase flows, reliable measurements of the continuous phase velocity and turbulence parameters requires the simultaneous measurement of particle size as a means for rejecting readings from large particles from the velocity pdf's.

  12. Images constructed from computed flow fields

    NASA Technical Reports Server (NTRS)

    Yates, Leslie A.

    1992-01-01

    A method for constructing interferograms, schlieren, and shadowgraphs from ideal- and real-gas, two- and three-dimensional computed flow fields is described. The computational grids can be structured or unstructured, and multiple grids are an option. The constructed images are compared to experimental images for several types of flow, including a ramp, a blunt-body, a nozzle, and a reacting flow. The constructed images simulate the features observed in the experimental images. They are sensitive to errors in the flow-field solutions and can be used to identify solution errors. In addition, techniques for obtaining phase shifts from experimental finite-fringe interferograms and for removing experimentally induced phase-shift errors are discussed. Both the constructed images and calculated phase shifts can be used for validation of computational fluid dynamics (CFD) codes.

  13. Tomographic optical emission spectroscopy of a high enthalpy air plasma flow.

    PubMed

    Hermann, Tobias; Löhle, Stefan; Fasoulas, Stefanos; Andrianatos, Andreas

    2016-12-20

    A method is presented allowing for locally resolved emission spectroscopy using a tomographic setup. The approach presented in this work is applied to a high enthalpy air plasma flow. The resulting data sets allow for a three-dimensional (3D) representation of the non-symmetric flow field using photographs of the test section and 2D representation of the spectrally resolved radiance of the flow field. An analysis of different exposure times shows that transient fluctuations of the plasma can result in substantial asymmetry that approaches symmetry only for longer exposure times when the temporal averaging of the emission is significant. The spectral data allows the analysis of species selective excitation and emission. A non-equilibrium between atomic and molecular excitation temperatures is concluded for the investigated air plasma flow field. The spatial distribution of atomic electronic excitation temperatures are close to rotational symmetry while molecular rotational and vibrational temperatures exhibit asymmetric behavior.

  14. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, G. S.; Mo, J. D.

    1991-01-01

    A Navier-Stokes code was developed for low thrust viscous nozzle flow field prediction. An implicit finite volume in an arbitrary curvilinear coordinate system lower-upper (LU) scheme is used to solve the governing Navier-Stokes equations and species transportation equations. Sample calculations of carbon dioxide nozzle flow are presented to verify the validity and efficiency of this code. The computer results are in reasonable agreement with the experimental data.

  15. Improved visualization of flow field measurements

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    1991-01-01

    A capability was developed that makes it possible to apply to measured flow field data the visualization tools developed to display numerical solutions for computational fluid dynamic problems. The measurement monitor surface (MMS) procedure was applied to the analysis of flow field measurements within a low aspect ratio transonic axial flow fan rotor obtained with 2-D laser anemometry. The procedure generates input for the visualization tools developed to display numerical solutions for computational fluid dynamics problems. The relative Mach number contour plots obtained by this method resemble the conventional contour plots obtained by more traditional methods. The results show that the MMS procedure can be used to generate input for the multidimensional processing and analysis tools developed for data from numerical flow field simulations. They show that an experimenter can apply the MMS procedure to his data and then use an interactive graphics program to display scalar quantities like the Mach number by profiles, carpet plots, contour lines, and surfaces using various colors. Also, flow directionality can be shown by display of vector fields and particle traces.

  16. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  17. Flow Transitions in a Rotating Magnetic Field

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.

    1996-01-01

    Critical Rayleigh numbers have been measured in a liquid metal cylinder of finite height in the presence of a rotating magnetic field. Several different stability regimes were observed, which were determined by the values of the Rayleigh and Hartmann numbers. For weak rotating magnetic fields and small Rayleigh numbers, the experimental observations can be explained by the existence of a single non-axisymmetric meridional roll rotating around the cylinder, driven by the azimuthal component of the magnetic field. The measured dependence of rotational velocity on magnetic field strength is consistent with the existence of laminar flow in this regime.

  18. Flow field and near and far sound field of a subsonic jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    1986-01-01

    Flow and sound field data are presented for a 2.54 cm diameter air jet at a Mach number of 0.50 and a Reynolds number of 300,000. Distributions of mean velocity, turbulence intensities, Reynolds stress, spectral components of turbulence as well as of the near field pressure, together with essential characteristics of the far field sound are reported. This detailed set of data for one particular flow, erstwhile unavailable in the literature, is expected to help promoote and calibrate subsonic jet noise theories. 'Source locations' in terms of the turbulence maxima, coupling between the entrainment dynamics and the near pressure field, the sound radiation paths, and the balance in mass, momentum and sound energy fluxes are discussed. The results suggest that the large scale coherent structures of the jet govern the 'source locations' by controlling the turbulence and also strongly influence the near field pressure fluctuations.

  19. A Study of Air Flow in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1939-01-01

    A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.

  20. Improved modeling techniques for turbomachinery flow fields

    SciTech Connect

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  1. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  2. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  3. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  4. Air channel distribution during air sparging: A field experiment

    SciTech Connect

    Leeson, A.; Hinchee, R.E.; Headington, G.L.; Vogel, C.M.

    1995-12-31

    Air sparging may have the potential to improve upon conventional groundwater treatment technologies. However, judging from studies published to date and theoretical analyses, it is possible that air sparging may have a limited effect on aquifer contamination. The basic mechanisms controlling air sparging are not well understood, and current monitoring practice does not appear adequate to quantitatively evaluate the process. During this study, the effective zone of influence, defined as the areas in which air channels form, was studied as a function of flowrate and depth of injection points. This was accomplished by conducting the air sparging test in an area with shallow standing water. Air sparging points were installed at various depths, and the zone of influence was determined visually.

  5. Digital enhancement of flow field images

    NASA Technical Reports Server (NTRS)

    Kudlinski, Robert A.; Park, Stephen K.

    1988-01-01

    Most photographs of experimentally generated fluid flow fields have inherently poor photographic quality, specifically low contrast. Thus, there is a need to establish a process for quickly and accurately enhancing these photographs to provide improved versions for physical interpretation, analysis, and publication. A sequence of digital image processing techniques which have been demonstrated to effectively enhance such photographs is described.

  6. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1989-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer-generated graphical representation. The fields obtained with a radially scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters of 3/16 inch to 1-1/2 inches I.D. (4.76 mm to 38.1 mm). The N(2) mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  7. Flow fields of low pressure vent exhausts

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.

    1990-01-01

    The flow field produced by low pressure gas vents are described based on experimental data obtained from tests in a large vacuum chamber. The gas density, pressure, and flux at any location in the flow field are calculated based on the vent plume description and the knowledge of the flow rate and velocity of the venting gas. The same parameters and the column densities along a specified line of sight traversing the plume are also obtained and shown by a computer generated graphical representation. The fields obtained with a radically scanning Pitot probe within the exhausting gas are described by a power of the cosine function, the mass rate, and the distance from the exit port. The field measurements were made for gas at pressures ranging from 2 to 50 torr venting from pipe fittings with diameters to 3/16 to 1-1/2 inches I.D. (4.76 to 38.1 mm). The N2 mass flow rates ranged from 2E-4 to 3.7E-1 g/s.

  8. Numerical simulation of scramjet inlet flow fields

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1986-01-01

    A computer program was developed to analyze supersonic combustion ramjet (scramjet) inlet flow fields. The program solves the three-dimensional Euler or Reynolds averaged Navier-Stokes equations in full conservation form by either the fully explicit or explicit-implicit, predictor-corrector method of MacCormack. Turbulence is modeled by an algebraic eddy-viscosity model. The analysis allows inclusion of end effects which can significantly affect the inlet flow field. Detailed laminar and turbulent flow results are presented for a symmetric-wedge corner, and comparisons are made with the available experimental results to allow assessment of the program. Results are then presented for two inlet configurations for which experimental results exist at the NASA Langley Research Center.

  9. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  10. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  11. Solid rocket motor aft field joint flow field analysis

    NASA Technical Reports Server (NTRS)

    Sabnis, Jayant S.; Gibeling, Edward J.; Mcdonald, Henry

    1987-01-01

    An efficient Navier-Stokes analysis was successfully applied to simulate the complex flow field in the vicinity of a slot in a solid rocket motor with segment joints. The capability of the computer code to resolve the flow near solid surfaces without using a wall function assumption was demonstrated. In view of the complex nature of the flow field in the vicinity of the slot, this approach is considered essential. The results obtained from these calculations provide valuable design information, which would otherwise be extremely difficult to obtain. The results of the axisymmetric calculations indicate the presence of a region of reversed axial flow at the aft-edge of the slot and show the over-pressure in the slot to be only about 10 psi. The results of the asymmetric calculations indicate that a pressure asymmetry more than two diameters downstream of the slot has no noticeable effect on the flow field in the slot. They also indicate that the circumferential pressure differential caused in the slot due to failure of a 15 deg section of the castable inhibitor will be approximately 1 psi.

  12. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  13. Ignition of hydrogen/air mixing layer in turbulent flows

    SciTech Connect

    Im, H.G.; Chen, J.H.; Law, C.K.

    1998-03-01

    Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

  14. Numerical computation of space shuttle orbiter flow field

    NASA Technical Reports Server (NTRS)

    Tannehill, John C.

    1988-01-01

    A new parabolized Navier-Stokes (PNS) code has been developed to compute the hypersonic, viscous chemically reacting flow fields around 3-D bodies. The flow medium is assumed to be a multicomponent mixture of thermally perfect but calorically imperfect gases. The new PNS code solves the gas dynamic and species conservation equations in a coupled manner using a noniterative, implicit, approximately factored, finite difference algorithm. The space-marching method is made well-posed by special treatment of the streamwise pressure gradient term. The code has been used to compute hypersonic laminar flow of chemically reacting air over cones at angle of attack. The results of the computations are compared with the results of reacting boundary-layer computations and show excellent agreement.

  15. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  18. Aspects of flow visualization and density field monitoring of stratified flows

    NASA Astrophysics Data System (ADS)

    Davies, Peter A.

    Stratified flows which have considerable and wide-range engineering relevance, particularly in the areas of offshore and coastal engineering, and air and water modeling are reviewed. Particular attention is given to internal waves and solitons in estuaries, shallow seas, fjords, and the deep oceans; pollutant dispersion in the atmosphere and coastal waters; energy storage and management systems; ventilation and fire safety; saline intrusion; rotating machinery; velocity measurements based on nonintrusive techniques; density field data; velocity measurements based on intrusive techniques; and density field monitoring.

  19. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  20. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  1. Field emission microplasma actuation for microchannel flows

    NASA Astrophysics Data System (ADS)

    Sashank Tholeti, Siva; Shivkumar, Gayathri; Alexeenko, Alina A.

    2016-06-01

    Microplasmas offer attractive flow control methodology for gas transport in microsystems where large viscous losses make conventional pumping methods highly inefficient. We study microscale flow actuation by dielectric-barrier discharge (DBD) with field emission (FE) of electrons, which allows lowering the operational voltage from kV to a few hundred volts and below. A feasibility study of FE-DBD for flow actuation is performed using 2D particle-in-cell method with Monte Carlo collisions (PIC/MCC) at 10 MHz in nitrogen at atmospheric pressure. The free diffusion dominated, high velocity field emission electrons create a large positive space charge and a body force on the order of 106 N m-3. The body force and Joule heat decrease with increase in dielectric thickness and electrode thickness. The body force also decreases at lower pressures. The plasma body force distribution along with the Joule heating is then used in the Navier-Stokes simulations to quantify the flow actuation in a microchannel. Theoretical analysis and simulations for plasma actuated planar Poiseuille flow show that the gain in flow rate is inversely proportional to Reynolds number. This theoretical analysis is in good agreement with the simulations for a microchannel with closely placed actuators under incompressible conditions. Flow rate of FE-DBD driven 2D microchannel is around 100 ml min-1 mm-1 for an input power of 64 μW mm-1. The gas temperature rises by 1500 K due to the Joule heating, indicating FE-DBD’s potential for microcombustion, micropropulsion and chemical sensing in addition to microscale pumping and mixing applications.

  2. The Flow Field Inside Ventricle Assist Device

    NASA Astrophysics Data System (ADS)

    Einav, Shmuel; Rosenfeld, Moshe; Avrahami, Idit

    2000-11-01

    The evaluation of innovative ventricle assist devices (VAD), is of major importance. A New Left Heart Assist Device, with an improved energy converter unit, has been investigated both numerically and experimentally. For this purpose, an experimental Continuous Digital Particle Imagining Velocimetry (CDPIV) is combined with a computational fluid dynamics (CFD) analysis. These tools complement each other to result into a comprehensive description of the complex 3D, viscous and time-dependent flow field inside the artificial ventricle. A 3D numerical model was constructed to simulate the VAD pump and a time-depended CFD analysis with moving walls was performed to predict the flow behaviour in the VAD during the cardiac cycle. A commercial finite element package was used to solve the Navier-Stokes equations (FIDAP, Fluent Inc., Evanston). In the experimental analysis, an optically clear elastic model of the VAD was placed inside a 2D CDPIV system. The CDPIV system is capable of sampling 15 velocity vector fields per second based on image-pairs intervals lower than 0.5 millisecond. Continuous sequences of experimental images, followed by their calculated velocity transient fields, are given as animated presentation of the distensible VAD. These results are used for validating the CFD simulations. Once validated, the CFD results provide a detailed 3D and time dependent description of the flow field, allowing the identification of stagnation or high shear stress regions.

  3. Flow-Field Surveys for Rectangular Nozzles

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts.

  4. Flow Field of a Human Cough

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jean

    2005-11-01

    Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.

  5. Real gas flow fields about three dimensional configurations

    NASA Technical Reports Server (NTRS)

    Balakrishnan, A.; Lombard, C. K.; Davy, W. C.

    1983-01-01

    Real gas, inviscid supersonic flow fields over a three-dimensional configuration are determined using a factored implicit algorithm. Air in chemical equilibrium is considered and its local thermodynamic properties are computed by an equilibrium composition method. Numerical solutions are presented for both real and ideal gases at three different Mach numbers and at two different altitudes. Selected results are illustrated by contour plots and are also tabulated for future reference. Results obtained compare well with existing tabulated numerical solutions and hence validate the solution technique.

  6. Field Emission Microplasma Actuated Microchannel Flow

    NASA Astrophysics Data System (ADS)

    Tholeti, Siva Sashank; Shivkumar, Gayathri; Alexeenko, Alina

    2015-11-01

    Flow actuation by dielectric barrier discharges (DBD) involve no moving parts and provide high power density for flow enhancement, heating and mixing applications in microthrusters, micropumps and microcombustors. Conventional micro-DBDs require voltages ~ kV for flow enhancement of a few m/s for 500 μm high channel. However for gaps <10 microns, field emission lowers the breakdown voltage following modified Paschen curve. We consider a micropump concept that takes advantage of the field emission from a micro-DBD with dielectric thickness of 3 μm and a peak voltage of -325 V at 10 MHz. At 760 Torr, for electrode thickness of 1 μm, Knudsen number with respect to the e-nitrogen collisions is 0.1. So, kinetic approach of particle-in-cell method with Monte Carlo collisions is applied in nitrogen at 300 K to resolve electron (ne) and ion (ni) number densities. Body force, fb = eE(ni-ne) , where, e is electron charge and E is electric field. The major source of heating from plasma is Joule heating, J.E, where J is current density. At 760 Torr, for fb,avg = 1 mN/cubic mm and J.E = 8 W/cubic mm, micro-DBD induced a flow with a velocity of 4.1 m/s for a 64 mW/m power input for a channel height of 500 μm. The PIC/MCC plasma simulations are coupled to a CFD solver for analysis of the resulting flow actuation in microchannels at various Reynolds numbers. This work was supported by NSF ECCS Grant No. 1202095.

  7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  8. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  9. Modeling field scale unsaturated flow and transport processes

    SciTech Connect

    Gelhar, L.W.; Celia, M.A.; McLaughlin, D.

    1994-08-01

    The scales of concern in subsurface transport of contaminants from low-level radioactive waste disposal facilities are in the range of 1 to 1,000 m. Natural geologic materials generally show very substantial spatial variability in hydraulic properties over this range of scales. Such heterogeneity can significantly influence the migration of contaminants. It is also envisioned that complex earth structures will be constructed to isolate the waste and minimize infiltration of water into the facility. The flow of water and gases through such facilities must also be a concern. A stochastic theory describing unsaturated flow and contamination transport in naturally heterogeneous soils has been enhanced by adopting a more realistic characterization of soil variability. The enhanced theory is used to predict field-scale effective properties and variances of tension and moisture content. Applications illustrate the important effects of small-scale heterogeneity on large-scale anisotropy and hysteresis and demonstrate the feasibility of simulating two-dimensional flow systems at time and space scales of interest in radioactive waste disposal investigations. Numerical algorithms for predicting field scale unsaturated flow and contaminant transport have been improved by requiring them to respect fundamental physical principles such as mass conservation. These algorithms are able to provide realistic simulations of systems with very dry initial conditions and high degrees of heterogeneity. Numerical simulation of the movement of water and air in unsaturated soils has demonstrated the importance of air pathways for contaminant transport. The stochastic flow and transport theory has been used to develop a systematic approach to performance assessment and site characterization. Hypothesis-testing techniques have been used to determine whether model predictions are consistent with observed data.

  10. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  11. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  12. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  13. Unsteady Flow Field in a Multistage Axial Flow Compressor

    NASA Technical Reports Server (NTRS)

    Suryavamshi, N.; Lakshminarayana, B.; Prato, J.

    1997-01-01

    The flow field in a multistage compressor is three-dimensional, unsteady, and turbulent with substantial viscous effects. Some of the specific phenomena that has eluded designers include the effects of rotor-stator and rotor-rotor interactions and the physics of mixing of velocity, pressure, temperature and velocity fields. An attempt was made, to resolve experimentally, the unsteady pressure and temperature fields downstream of the second stator of a multistage axial flow compressor which will provide information on rotor-stator interaction effects and the nature of the unsteadiness in an embedded stator of a three stage axial flow compressor. Detailed area traverse measurements using pneumatic five hole probe, thermocouple probe, semi-conductor total pressure probe (Kulite) and an aspirating probe downstream of the second stator were conducted at the peak efficiency operating condition. The unsteady data was then reduced through an ensemble averaging technique which splits the signal into deterministic and unresolved components. Auto and cross correlation techniques were used to correlate the deterministic total temperature and velocity components (acquired using a slanted hot-film probe at the same measurement locations) and the gradients, distributions and relative weights of each of the terms of the average passage equation were then determined. Based on these measurements it was observed that the stator wakes, hub leakage flow region, casing endwall suction surface corner region, and the casing endwall region away from the blade surfaces were the regions of highest losses in total pressure, lowest efficiency and highest levels of unresolved unsteadiness. The deterministic unsteadiness was found to be high in the hub and casing endwall regions as well as on the pressure side of the stator wake. The spectral distribution of hot-wire and kulite voltages shows that at least eight harmonics of all three rotor blade passing frequencies are present at this

  14. Close Air Support for the Field Army

    DTIC Science & Technology

    1964-05-25

    90. 76 of the 12th Air Support C omand , for consideration.4 From D plus 4 to D plus 7, requests for attacks on tar,:ets of’ opportunity were not...ibid. 3 8 Ibid. 9o evolved into the "Rover Joe" svstem of close air suooort. Rover Joe was based to an extent on the "Rover David " orinciple used in...tentacles (air sunport oart-4, air sunoort control, and rear links (liaison officer at iir force airfields). Rover David vas intended to be located

  15. Site 5 air sparging pilot test, Naval Air Station Cecil Field, Jacksonville, Florida.

    PubMed

    Murray, W A; Lunardini, R C; Ullo, F J; Davidson, M E

    2000-02-25

    A 72-h air sparging pilot test was conducted at Site 5 (Operable Unit 2), Naval Air Station Cecil Field, Jacksonville, FL, to determine performance parameters necessary for full-scale design. The sparge well was completed to a depth of 29 ft, several feet below the groundwater plume contaminated with volatile organic compounds (VOCs), primarily benzene, toluene, ethylbenzene, and xylenes (BTEX). Air flow rates supplied to the sparge well were 3 cubic feet/min (cfm) during the first day, 2 cfm during the second day, and 1 cfm during the third day. Water levels in monitoring wells initially rose approximately 2 ft during the first 4-5 h of the test, then receded back to pre-test equilibrium levels over the next 15 h, for a total duration of water mounding of about 20 h. A small (approximately 0.5 ft) water table drop, with subsequent recovery to equilibrium level, occurred each time the air sparging rate was decreased. Although there is considerable variation depending on direction from the sparge well, the average radius of influence varied from approximately 30 ft at 1 cfm to 50 ft at 3 cfm. The air sparge system was capable of increasing the dissolved oxygen from 0 to 6 or 7 mg/l within 12-15 h of air channels reaching a given location. A lag time of approximately 13 h was observed before air channels reached a radius of 30 ft and dissolved oxygen levels began to increase at that radius. CO(2) (stripped out of the groundwater by the sparging) decreased from a pre-test concentration of 150 to 20 mg/l at r=5 ft, and from 150 to 50 mg/l at r=30 ft, within a period of about 24 h. The rate of VOC mass removal during the pilot test was 0.06 lb/day at a sparge rate of 3 cfm, and it appears that air sparging will effect a rapid cleanup of the VOCs in the Site 5 groundwater plume.

  16. Field and Lava Flow Experiment Analysis of Vesicle Deformation as a Means of Determining Ancient Flow Direction

    NASA Astrophysics Data System (ADS)

    McColl, B.; Teasdale, R.

    2006-12-01

    The goal of this work is to test whether flow direction of ancient lavas can be determined from orientations of preserved vesicles. We have attempted to correlate field observations with lab experiments as a means of understanding the development of deformed vesicles. This work focuses on vesicles deformed parallel to the lava flow direction. On a fieldtrip, we observed deformed vesicles in basaltic lava flows at cinder cones in the Coso Volcanic Field. Other basalt flows with similarly deformed vesicles are also documented in the Lovejoy Basalt (Chico, CA) and in flows at Lava Beds National Monument, Medicine Lake Volcanic Field. We believe that the vesicles were deformed during lava flow emplacement and cooling. Analog flow experiments used materials with Newtonian behavior (honey, syrup) but Bingham fluid behavior is more similar to natural lavas so gelatin was also attempted. Experiments started with the analog fluids on a horizontal surface. Air was then injected into the fluids with a hypodermic needle and then the surface was inclined to approximately 4-5 degrees. The deformation of the bubbles in the analog fluids was recorded with digital photos taken from above the flows. In some cases, bubbles rose to the surface of the flow and were not deformed parallel to the flow direction. In other cases, bubbles were deformed and we recorded a bulbous end and elongate tail parallel to the flow direction. In all cases the bulbous end of deformed vesicles are directed down stream and a tail stretches behind. Honey best preserved vesicle deformation. Bubbles in syrup rose to the surface too quickly to document (even when syrup was chilled). Air injected into gelatin caused shear, releasing the air without forming bubbles. Future work will address analog material issues by using wax or polyethylene glycol (PEG). These materials are likely to better represent rheologies of basalt lavas during flow emplacement.

  17. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  18. Thermohydraulic analysis of the cooling air flow in a rack

    NASA Astrophysics Data System (ADS)

    Natusch, Andreas; Huchler, Markus

    Manned space laboratories like the US Space Station Freedom or the European COLUMBUS APM are equipped with so-called racks for subsystem and payload accommodation. An important resource is air for cooling the unit internal heat sources, the avionics air. Each unit inside the rack must be supplied with sufficient amount of air to cool down the unit to the allowable maximum temperature. In the course of the COLUMBUS Environmental Control and Life Support Subsystem (ECLSS) project, a thermohydraulic mathematical model (THMM) of a representative COLUMBUS rack was developed to analyze and optimize the distribution of avionic air inside this rack. A sensitivity and accuracy study was performed to determine the accuracy range of the calculated avionics flow rate distribution to the units. These calculations were then compared to measurement results gained in a rack airflow distribution test, which was performed with an equipped COLUMBUS subsystem rack to show the pressure distribution inside the rack. In addition to that cold flow study, the influence of the avionics air heating due to the unit dissipations on the airflow distribution and the cooling tenmperature was investigated in a detailed warm flow analysis.

  19. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  20. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  1. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  2. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  3. [Field investigations of the air pollution level of populated territories].

    PubMed

    Vinokurov, M V

    2014-01-01

    The assessment and management of air quality of settlements is one of the priorities in the field of environmental protection. In the management of air quality the backbone factor is the methodology of the organization, performance and interpretation of data of field investigations. The present article is devoted to the analysis of the existing methodological approaches and practical aspects of their application in the organization and performance of field investigations with the aim to confirm the adequacy of the boundaries of the sanitary protection zone in the old industrial regions, hygienic evaluation of the data of field investigations of the air pollution level.

  4. Near field flow structure of isothermal swirling flows and reacting non-premixed swirling flames

    SciTech Connect

    Olivani, Andrea; Solero, Giulio; Cozzi, Fabio; Coghe, Aldo

    2007-04-15

    Two confined lean non-premixed swirl-stabilized flame typologies were investigated in order to achieve detailed information on the thermal and aerodynamic field in the close vicinity of the burner throat and provide correlation with the exhaust emissions. Previous finding indicated the generation of a partially premixed flame with radial fuel injection and a purely diffusive flame with co-axial injection in a swirling co-flow. In the present work, the experimental study is reported which has been conducted on a straight exit laboratory burner with no quarl cone, fuelled by natural gas and air, and fired vertically upwards with the flame stabilized at the end of two concentric pipes with the annulus supplying swirled air and the central pipe delivering the fuel. Two fuel injection typologies, co-axial and radial (i.e., transverse), leading to different mixing mechanisms, have been characterized through different techniques: particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) for a comprehensive analysis of the velocity field, still photography for the detection of flame front and main visible features, and thermocouples for the temperature distribution. Isothermal flow conditions have been included in the experimental investigation to provide a basic picture of the flow field and to comprehend the modifications induced by the combustion process. The results indicated that, although the global mixing process and the main flame structure are governed by the swirl motion imparted to the air stream, the two different fuel injection methodologies play an important role on mixture formation and flame stabilization in the primary mixing zone. Particularly, it has been found that, in case of axial injection, the turbulent interaction between the central fuel jet and the backflow generated by the swirl can induce an intermittent fuel penetration in the recirculated hot products and the formation of a central sooting luminous plume, a phenomenon totally

  5. Experimental Study on Flow Field behind Backward-Facing Step Using Detonation-Driven Shock Tunnel

    NASA Astrophysics Data System (ADS)

    Kim, Tae-Hwan; Obara, Tetsuro; Ohyagi, Shigeharu; Yoshikawa, Masato

    As a research to develop a SCRAM-jet engine is actively conducted, a necessity to produce a high-enthalpy flow in a laboratory is increasing. In order to develop the SCRAM-jet engine, stabilized combustion in a supersonic flow-field should be attained, in which a duration time of flow is extremely short. Therefore, a mixing process of breathed air and fuel, which is injected into supersonic flow-fields is one of the most important problem. Since, the flow inside SCRAM-jet engine has high-enthalpy, an experimental facility is required to produce such high-enthalpy flow-field. In this study, a detonation-driven shock tunnel was built and was used to produce high-enthalpy flow. At first, a performance of this facility was investigated in order to obtain a Tayloring condition. Furthermore, SCRAM-jet combustor model equipped backward-facing step was installed at test section and flow-fields were visualized using color-schlieren technique. The fuel was injected perpendicular to the flow of Mach number three behind step. The height of backward-facing step and injection pressure were changed to investigate effects of the step on a mixing characteristic between air and fuel. The schlieren photograph and pressure histories show that the fuel was ignited behind step and the height of step is important factor to ignite a fuel in a supersonic flow-field.

  6. Vibrational relaxation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Meador, Willard E.; Miner, Gilda A.; Heinbockel, John H.

    1993-01-01

    Mathematical formulations of vibrational relaxation are derived from first principles for application to fluid dynamic computations of hypersonic flow fields. Relaxation within and immediately behind shock waves is shown to be substantially faster than that described in current numerical codes. The result should be a significant reduction in nonequilibrium radiation overshoot in shock layers and in radiative heating of hypersonic vehicles; these results are precisely the trends needed to bring theoretical predictions more in line with flight data. Errors in existing formulations are identified and qualitative comparisons are made.

  7. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  8. Whole-Field Measurements of Turbulent Flow for the Study of Aero-optical Effects

    DTIC Science & Technology

    2007-11-02

    Aerooptical phenomena associated with the propagation of optical beams and imaging through turbulent index-of-refraction fields have been investigated...Using simultaneous imaging of optical -beam distortion and the turbulent index-or-refraction field, we have documented near-field behavior, following...of TECHNOLOGY Pasadena, California 91125 Whole-field measurements of turbulent flow for the study of aero- optical effects Paul E. Dimotakis Air

  9. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  10. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  11. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  12. Inviscid Flow Field Effects: Experimental results

    NASA Astrophysics Data System (ADS)

    Otten, L. J., III; Gilbert, K. G.

    1980-04-01

    The aero-optical distortions due to invisid flow effects over airborne laser turrets is investigated. Optical path differences across laser turret apertures are estimated from two data sources. The first is a theoretical study of main flow effects for a spherical turret assembly for a Mach number (M) of 0.6. The second source is an actual wind tunnel density field measurement on a 0.3 scale laser turret/fairing assembly, with M = 0.75. A range of azimuthal angles from 0 to 90 deg was considered, while the elevation angle was always 0 deg (i.e., in the plane of the flow). The calculated optical path differences for these two markedly different geometries are of the same order. Scaling of results to sea level conditions and an aperture diameter of 50 cm indicated up to 0.0007 cm of phase variation across the aperture for certain forward look angles and a focal length of F = -11.1 km. These values are second order for a 10.6 micron system.

  13. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  14. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  15. Improved Flow-Field Structures for Direct Methanol Fuel Cells

    SciTech Connect

    Gurau, Bogdan

    2013-05-31

    The direct methanol fuel cell (DMFC) is ideal if high energy-density liquid fuels are required. Liquid fuels have advantages over compressed hydrogen including higher energy density and ease of handling. Although state-of-the-art DMFCs exhibit manageable degradation rates, excessive fuel crossover diminishes system energy and power density. Although use of dilute methanol mitigates crossover, the concomitant lowering of the gross fuel energy density (GFED) demands a complex balance-of-plant (BOP) that includes higher flow rates, external exhaust recirculation, etc. An alternative approach is redesign of the fuel delivery system to accommodate concentrated methanol. NuVant Systems Inc. (NuVant) will maximize the GFED by design and assembly of a DMFC that uses near neat methanol. The approach is to tune the diffusion of highly concentrated methanol (to the anode catalytic layer) to the back-diffusion of water formed at the cathode (i.e. in situ generation of dilute methanol at the anode layer). Crossover will be minimized without compromising the GFED by innovative integration of the anode flow-field and the diffusion layer. The integrated flow-field-diffusion-layers (IFDLs) will widen the current and potential DMFC operating ranges and enable the use of cathodes optimized for hydrogen-air fuel cells.

  16. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  17. Measurement of velocity of air flow in the sinus maxillaris.

    PubMed

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  18. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  19. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  20. Vision and air flow combine to streamline flying honeybees.

    PubMed

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  1. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  2. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  3. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  4. Doppler Global Velocimetry Measurements for Supersonic Flow Fields

    NASA Technical Reports Server (NTRS)

    Meyers, James F.

    2005-01-01

    The application of Doppler Global Velocimetry (DGV) to high-speed flows has its origins in the original development of the technology by Komine et al (1991). Komine used a small shop-air driven nozzle to generate a 200 m/s flow. This flow velocity was chosen since it produced a fairly large Doppler shift in the scattered light, resulting in a significant transmission loss as the light passed through the Iodine vapor. This proof-of-concept investigation showed that the technology was capable of measuring flow velocity within a measurement plane defined by a single-frequency laser light sheet. The effort also proved that velocity measurements could be made without resolving individual seed particles as required by other techniques such as Fringe- Type Laser Velocimetry and Particle Image Velocimetry. The promise of making planar velocity measurements with the possibility of using 0.1-micron condensation particles for seeding, Dibble et al (1989), resulted in the investigation of supersonic jet flow fields, Elliott et al (1993) and Smith and Northam (1995) - Mach 2.0 and 1.9 respectively. Meyers (1993) conducted a wind tunnel investigation above an inclined flat plate at Mach 2.5 and above a delta wing at Mach 2.8 and 4.6. Although these measurements were crude from an accuracy viewpoint, they did prove that the technology could be used to study supersonic flows using condensation as the scattering medium. Since then several research groups have studied the technology and developed solutions and methodologies to overcome most of the measurement accuracy limitations:

  5. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  6. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  7. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  8. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  9. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  10. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  11. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  12. Fluctuating pressures in flow fields of jets

    NASA Technical Reports Server (NTRS)

    Schroeder, J. C.; Haviland, J. K.

    1976-01-01

    The powered lift configurations under present development for STOL aircraft are the externally blown flap (EBF), involving direct jet impingement on the aircraft flaps, and the upper surface blown (USB), where the jet flow is attached on the upper surface of the wing and directed downwards. Towards the goal of developing scaling laws to predict unsteady loads imposed on the structural components of these STOL aircraft from small model tests, the near field fluctuating pressure behavior for the simplified cases of a round free cold jet and the same jet impinging on a flat plate was investigated. Examples are given of coherences, phase lags (giving convection velocities), and overall fluctuating pressure levels measured. The fluctuating pressure levels measured on the flat plate are compared to surface fluctuating pressure levels measured on full-scale powered-lift configuration models.

  13. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  14. Low thrust viscous nozzle flow fields prediction

    NASA Technical Reports Server (NTRS)

    Liaw, Goang-Shin

    1987-01-01

    An existing Navier-Stokes code (PARC2D) was used to compute the nozzle flow field. Grids were generated by the interactive grid generator codes TBGG and GENIE. All computations were made on the NASA/MSFC CRAY X-MP computer. Comparisons were made between the computations and MSFC in-house wall pressure measurements for CO2 flow through a conical nozzle having an area ratio of 40. Satisfactory agreements exist between the computations and measurements for different stagnation pressures of 29.4, 14.7, and 7.4 psia, at stagnation temperature of 1060 R. However, agreements did not match precisely near the nozzle exit. Several reasons for the lack of agreement are possible. The computational code assumes a constant gas gamma, whereas the gamma i.e. the specific heat ratio for CO2 varied from 1.22 in the plenum chamber to 1.38 at the nozzle exit. The computations also assumes adiabatic and no-slip walls. Both assumptions may not be correct. Finally, it is possible that condensation occurs during the nozzle expansion at the low stagnation pressure. The next phase of the work will incorporate variable gamma and slip wall boundary conditions in the computational code and develop a more accurate computer code.

  15. Microgravity Geyser and Flow Field Prediction

    NASA Technical Reports Server (NTRS)

    Hochstein, J. I.; Marchetta, J. G.; Thornton, R. J.

    2006-01-01

    Modeling and prediction of flow fields and geyser formation in microgravity cryogenic propellant tanks was investigated. A computational simulation was used to reproduce the test matrix of experimental results performed by other investigators, as well as to model the flows in a larger tank. An underprediction of geyser height by the model led to a sensitivity study to determine if variations in surface tension coefficient, contact angle, or jet pipe turbulence significantly influence the simulations. It was determined that computational geyser height is not sensitive to slight variations in any of these items. An existing empirical correlation based on dimensionless parameters was re-examined in an effort to improve the accuracy of geyser prediction. This resulted in the proposal for a re-formulation of two dimensionless parameters used in the correlation; the non-dimensional geyser height and the Bond number. It was concluded that the new non-dimensional geyser height shows little promise. Although further data will be required to make a definite judgement, the reformulation of the Bond number provided correlations that are more accurate and appear to be more general than the previously established correlation.

  16. Flow field interactions between two tandem cyclists

    NASA Astrophysics Data System (ADS)

    Barry, Nathan; Burton, David; Sheridan, John; Thompson, Mark; Brown, Nicholas A. T.

    2016-12-01

    Aerodynamic drag is the primary resistive force acting on cyclists at racing speeds. Many events involve cyclists travelling in very close proximity. Previous studies have shown that interactions result in significant drag reductions for inline cyclists. However, the interaction between cyclist leg position (pedalling) and the vortical flow structures that contribute significantly to the drag on an isolated cyclist has not previously been quantified or described for tandem cyclists of varying separation. To this end, scale model cyclists were constructed for testing in a water channel for inline tandem configurations. Particle image velocimetry was used to capture time-averaged velocity fields around two tandem cyclists. Perhaps surprisingly, the wake of a trailing cyclist maintains strong similarity to the characteristic wake of a single cyclist despite a significant disturbance to the upstream flow. Together with streamwise velocity measurements through the wake and upstream of the trailing cyclist, this work supports previous findings, which showed that the trailing cyclist drag reduction is primarily due to upstream sheltering effects reducing the stagnation pressure on forward-facing surfaces.

  17. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust...

  18. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust...

  19. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust...

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust...

  2. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  3. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  4. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon; Salzman, Jack (Technical Monitor)

    2001-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2-second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet flow was significantly influenced by the gravity. The jet in microgravity was up to 70 percent wider than that in Earth gravity. The jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes a change in gravity in the drop tower.

  5. Development of the 1990 Kalapana Flow Field, Kilauea Volcano, Hawaii

    USGS Publications Warehouse

    Mattox, T.N.; Heliker, C.; Kauahikaua, J.; Hon, K.

    1993-01-01

    The 1990 Kalapana flow field is a complex patchwork of tube-fed pahoehoe flows erupted from the Kupaianaha vent at a low effusion rate (approximately 3.5 m3/s). These flows accumulated over an 11-month period on the coastal plain of Kilauea Volcano, where the pre-eruption slope angle was less than 2??. the composite field thickened by the addition of new flows to its surface, as well as by inflation of these flows and flows emplaced earlier. Two major flow types were identified during the development of the flow field: large primary flows and smaller breakouts that extruded from inflated primary flows. Primary flows advanced more quickly and covered new land at a much higher rate than breakouts. The cumulative area covered by breakouts exceeded that of primary flows, although breakouts frequently covered areas already buried by recent flows. Lava tubes established within primary flows were longer-lived than those formed within breakouts and were often reoccupied by lava after a brief hiatus in supply; tubes within breakouts were never reoccupied once the supply was interrupted. During intervals of steady supply from the vent, the daily areal coverage by lava in Kalapana was constant, whereas the forward advance of the flows was sporadic. This implies that planimetric area, rather than flow length, provides the best indicator of effusion rate for pahoehoe flow fields that form on lowangle slopes. ?? 1993 Springer-Verlag.

  6. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change.

  7. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  8. Field measurements of boundary-layer flows in ventilated rooms

    SciTech Connect

    Zhang, J.S.; Shaw, C.Y.; MacDonald, R.A.; Nguyen-Thi, L.C.; Kerr, G.

    1995-12-31

    Profiles of air velocity and turbulent kinetic energy near the surfaces of walls, ceilings, floors, and furnishings were measured under field conditions for four space layouts of an office building: a partitioned office room, a single office room, a small conference room, and a computer room. Three types of flows near the surfaces were identified based on the measured data: (1) near-stagnant flow that had mean velocities and turbulent kinetic energies of less than 0.05 {+-} 0.025 m/s (10 {+-} 5 fpm) and 0.001 {+-} 0.001 (m/s){sup 2} (38.75 {+-} 38.75 (fpm){sup 2}), respectively; (2) weak turbulence flow that had mean velocities and turbulent kinetic energies from 0.05 {+-} 0.025 to 0.25 {+-} 0.05 m/s (10 {+-} 5 to 50 {+-} 10 fpm) and from 0.001 {+-} 0.001 to 0.01 {+-} 0.002 (m/s){sup 2} (38.75 {+-} 38.75 to 387.5 {+-} 77.5 [fpm]{sup 2}), respectively. The results are useful for establishing realistic airflow conditions in testing and modeling contaminant emission from building materials and indoor furnishings.

  9. Far-field dispersal modeling for fuel-air-explosive devices

    SciTech Connect

    Glass, M.W.

    1990-05-01

    A computer model for simulating the explosive dispersal of a fuel agent in the far-field regime is described and is applied to a wide variety of initial conditions to judge their effect upon the resulting fuel/air cloud. This work was directed toward modeling the dispersal process associated with Fuel-Air-Explosives devices. The far-field dispersal regime is taken to be that time after the initial burster charge detonation in which the shock forces no longer dominate the flow field and initial canister and fuel mass breakup has occurred. The model was applied to a low vapor pressure fuel, a high vapor pressure fuel and a solid fuel. A strong dependence of the final cloud characteristics upon the initial droplet size distribution was demonstrated. The predicted fuel-air clouds were highly non-uniform in concentration. 18 refs., 86 figs., 4 tabs.

  10. Simulation study of the lethality effect of high-power laser with supersonic air flow

    NASA Astrophysics Data System (ADS)

    Peng, Xin; Zhao, Guomin; Chen, Minsun

    2016-10-01

    The lethality effect of high power laser on target is simulated with CFD method under different conditions of supersonic air flow on the surface of the target. Materials used in the experiments are 2cm aluminum plate. With the Mach number changing from 1 to 5, the lethality effects of the high power laser can be obtained from the simulations under these conditions of supersonic air flow. The flow-structure-laser coupling impact on the failure time of the target is discussed based on the simulation. Results show that with the increase of mach number, the effect on the aluminum plate is increase first and then decrease by the pressure. Because that it is obvious that the maximum area of pressure is away from the center of deformation region when the mach number is bigger than 5 . At the same time, when mach number is increase, the aerodynamic heating play more important role than the convective heat transfer on the temperature field of aluminum plate. there are two impacts from the supersonic flow. Firstly , the flow can produce the pressure on the surface of the aluminum plate. Secondly, the flow can produce aerodynamic heat on the aluminum plate.

  11. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  12. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  13. An air traffic flow management method based on mixed genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Ying

    2009-12-01

    With the air traffic congest problem becoming more and more severe, the study of air traffic flow management is more and more important. According to the character of air traffic flow management, the author analyzed the heuristic method and genetic algorithms, later put this two method together and give a new method of air traffic flow management-mixture genetic algorithms, It has global convergence, the simulation result demonstrates that the presented algorithm is effective.

  14. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  15. Gravitational Effects on Near Field Flow Structure of Low Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Griffin, D. W.; Yep, T. W.; Agrawal, A. K.

    2005-01-01

    Experiments were conducted in Earth gravity and microgravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2- second drop tower at NASA Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of site measurement technique for the whole field. The flow structure was characterized by distributions of angular deflection and helium mole percentage obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70 percent wider than that in Earth gravity. The global jet flow oscillations observed in Earth gravity were absent in microgravity, providing direct experimental evidence that the flow instability in the low density jet was buoyancy induced. The paper provides quantitative details of temporal flow evolution as the experiment undergoes change in gravity in the drop tower.

  16. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  17. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  18. Instantaneous velocity field imaging instrument for supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Legner, H. H.; Mcmanus, K. R.; Mulhall, P. A.; Parker, T. E.; Sonnenfroh, D. M.

    1993-01-01

    The technical tasks conducted to develop and demonstrate a new gas velocity measurement technique for high enthalpy reacting flows is described. The technique is based on Doppler-shifted Planar Laser-induced Fluorescence (PLIF) imaging of the OH radical. The imaging approach permits, in principle, single-shot measurements of the 2-D distribution of a single velocity component in the measurement plane, and is thus a technique of choice for applications in high enthalpy transient flow facilities. In contrast to previous work in this area, the present program demonstrated an approach which modified the diagnostic technique to function under the constraints of practical flow conditions of engineering interest, rather than vice-versa. In order to accomplish the experimental demonstrations, the state-of-the-art in PLIF diagnostic techniques was advanced in several ways. Each of these tasks is described in detail and is intended to serve as a reference in supporting the transition of this new capability to the fielded PLIF instruments now installed at several national test facilities. Among the new results of general interest in LlF-based flow diagnostics, a detailed set of the first measurements of the collisional broadening and shifting behavior of OH (1,0) band transitions in H7-air combustion environments is included. Such measurements are critical in the design of a successful strategy for PLIF velocity imaging; they also relate to accurate concentration and temperature measurements, particularly in compressible flow regimes. Furthermore, the results shed new light on the fundamental relationship between broadening and energy transfer collisions in OH A(sup 2)Sigma(+)v(sup ') = 1. The first single-pulse, spectrally-resolved measurements of the output of common pulsed dye lasers were also produced during the course of this effort. As with the OH broadening measurements, these data are a significant aspect of a successful velocity imaging strategy, and also have

  19. Electric field measurements in a kHz-driven He jet—the influence of the gas flow speed

    NASA Astrophysics Data System (ADS)

    Sobota, A.; Guaitella, O.; Sretenović, G. B.; Krstić, I. B.; Kovačević, V. V.; Obrusník, A.; Nguyen, Y. N.; Zajíčková, L.; Obradović, B. M.; Kuraica, M. M.

    2016-12-01

    This report focuses on the dependence of electric field strength in the effluent of a vertically downwards-operated plasma jet freely expanding into room air as a function of the gas flow speed. A 30 kHz AC-driven He jet was used in a coaxial geometry, with an amplitude of 2 kV and gas flow between 700 sccm and 2000 SCCM. The electric field was measured by means of Stark polarization spectroscopy of the He line at 492.19 nm. While the minimum and the maximum measured electric fields remained unchanged, the effect of the gas flow speed is to cause stretching of the measured profile in space—the higher the flow, the longer and less steep the electric field profile. The portion of the effluent in which the electric field was measured showed an increase of electric field with increasing distance from the capillary, for which the probable cause is the contraction of the plasma bullet as it travels through space away from the capillary. There are strong indications that the stretching of the electric field profile with increase in the flow speed is caused by differences in gas mixing as a function of the gas flow speed. The simulated gas composition shows that the amount of air entrained into the gas flow behaves in a similar way to the observed behaviour of the electric field. In addition we have shown that the visible length of the plasma plume is associated with a 0.027 molar fraction of air in the He flow in this configuration, while the maximum electric field measured was associated with a 0.014 molar fraction of air at gas flow rates up to 1500 SCCM (4.9 m s-1). At higher flows vortices occur in the effluent of the jet, as seen in Schlieren visualization of the gas flow with and without the discharge.

  20. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  1. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  2. Phonatory air flow characteristics of adductor spasmodic dysphonia and muscle tension dysphonia.

    PubMed

    Higgins, M B; Chait, D H; Schulte, L

    1999-02-01

    The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pa] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.

  3. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    NASA Astrophysics Data System (ADS)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  4. Observation of the avalanche of runaway electrons in air in a strong electric field.

    PubMed

    Gurevich, A V; Mesyats, G A; Zybin, K P; Yalandin, M I; Reutova, A G; Shpak, V G; Shunailov, S A

    2012-08-24

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  5. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  6. Reconstruction of velocity fields in electromagnetic flow tomography.

    PubMed

    Lehtikangas, Ossi; Karhunen, Kimmo; Vauhkonen, Marko

    2016-06-28

    Electromagnetic flow meters (EMFMs) are the gold standard in measuring flow velocity in process industry. The flow meters can measure the mean flow velocity of conductive liquids and slurries. A drawback of this approach is that the velocity field cannot be determined. Asymmetric axial flows, often encountered in multiphase flows, pipe elbows and T-junctions, are problematic and can lead to serious systematic errors. Recently, electromagnetic flow tomography (EMFT) has been proposed for measuring velocity fields using several coils and a set of electrodes attached to the surface of the pipe. In this work, a velocity field reconstruction method for EMFT is proposed. The method uses a previously developed finite-element-based computational forward model for computing boundary voltages and a Bayesian framework for inverse problems. In the approach, the vz-component of the velocity field along the longitudinal axis of the pipe is estimated on the pipe cross section. Different asymmetric velocity fields encountered near pipe elbows, solids-in-water flows in inclined pipes and in stratified or multiphase flows are tested. The results suggest that the proposed reconstruction method could be used to estimate velocity fields in complicated pipe flows in which the conventional EMFMs have limited accuracy. This article is part of the themed issue 'Supersensing through industrial process tomography'.

  7. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  8. Experimental results for a hypersonic nozzle/afterbody flow field

    NASA Technical Reports Server (NTRS)

    Spaid, Frank W.; Keener, Earl R.; Hui, Frank C. L.

    1995-01-01

    This study was conducted to experimentally characterize the flow field created by the interaction of a single-expansion ramp-nozzle (SERN) flow with a hypersonic external stream. Data were obtained from a generic nozzle/afterbody model in the 3.5 Foot Hypersonic Wind Tunnel at the NASA Ames Research Center, in a cooperative experimental program involving Ames and McDonnell Douglas Aerospace. The model design and test planning were performed in close cooperation with members of the Ames computational fluid dynamics (CFD) team for the National Aerospace Plane (NASP) program. This paper presents experimental results consisting of oil-flow and shadow graph flow-visualization photographs, afterbody surface-pressure distributions, rake boundary-layer measurements, Preston-tube skin-friction measurements, and flow field surveys with five-hole and thermocouple probes. The probe data consist of impact pressure, flow direction, and total temperature profiles in the interaction flow field.

  9. Use of computer graphics for visualization of flow fields

    NASA Technical Reports Server (NTRS)

    Watson, Val; Buning, Pieter; Choi, Diana; Bancroft, Gordon; Merritt, Fergus; Rogers, Stuart

    1987-01-01

    A high-performance graphics workstation has been combined with software developed for flow-field visualization to yield a highly effective tool for analysis of fluid-flow dynamics. After the flow fields are obtained from experimental measurements or computer simulations, the workstation permits one to interactively view the dynamics of the flow fields; e.g., the viewer can zoom into a region or rotate his viewing position about the region to study it in more detail. Several techniques for visualization of flow fields with this workstation are described in this paper and illustrated with a videotape available from the authors. The computer hardware and software required to create effective flow visualization displays are discussed. Additional software and hardware required to create videotapes or 16mm movies are also described. Limitations imposed by current workstation performance is addressed and future workstation performance is forecast.

  10. Flow field design development using the segmented cell approach

    SciTech Connect

    Bender, G.; Ramsey, J. C.

    2002-01-01

    We report on fuel cell flow-field development employing two-dimensional computational fluid dynamics (2-D CFD). Simulation of the flow distribution of a parallel channel flow-field, with a simple one-channel manifold, predicted inhomogeneous performance distribution within the cell. Further modeling, focusing on modification of the inlet and outlet flow fields, was used to predict a more homogeneous flow distribution in the flow-field. Attempts were made to verify the theoretical predictions experimentally by application of the segmented cell system. Measurements of the current distribution and CO transient response supported the 2-D CFD predictions. However, the margin of error between predicted and experimental results was considered insufficient to be of practical use. Future work will involve the evaluation of 3-D CFD to achieve the appropriate level of accuracy.

  11. Controlling flow direction in nanochannels by electric field strength

    NASA Astrophysics Data System (ADS)

    Gao, Xiang; Zhao, Tianshou; Li, Zhigang

    2015-08-01

    Molecular dynamics simulations are conducted to study the flow behavior of CsF solutions in nanochannels under external electric fields E . It is found that the channel surface energy greatly affects the flow behavior. In channels of high surface energy, water molecules, on average, move in the same direction as that of the electric field regardless of the strength of E . In low surface energy channels, however, water transports in the opposite direction to the electric field at weak E and the flow direction is changed when E becomes sufficiently large. The direction change of water flow is attributed to the coupled effects of different water-ion interactions, inhomogeneous water viscosity, and ion distribution changes caused by the electric field. The flow direction change observed in this work may be employed for flow control in complex micro- or nanofluidic systems.

  12. Navier-Stokes simulation of transonic wing flow fields using a zonal grid approach

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.

    1988-01-01

    The transonic Navier-Stokes code was used to simulate flow fields about isolated wings for workshop wind-tunnel and free-air cases using the thin-layer Reynolds-averaged Navier-Stokes equations. An implicit finite-difference scheme based on a diagonal version of the Beam-Warming algorithm was used to integrate the governing equations. A zonal grid approach was used to allow efficient grid refinement near the wing surface. The flow field was sensitive to the turbulent transition model, and flow unsteadiness was observed for a wind-tunnel case but not for the corresponding free-air case. The specification of experimental pressure at the wind-tunnel exit plane is the primary reason for the difference of these two numerical solutions.

  13. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  14. Bioventing Field Initiative at Keesler Air Force Base, Mississippi

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at Keesler AFB, Mississippi, as part of the Bioventing Field initiative for the U.S. Air Force Center...and installation of bioventing systems. Each site at the base is discussed individually, followed by a description of site activities at the...background area. The purpose of this Bioventing Field initiative is to measure the soil gas permeability and microbial activity at a contaminated site in

  15. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  16. Geology and hydrogeology of Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad, Bee and Goliad counties, Texas

    USGS Publications Warehouse

    Snyder, G.L.

    1995-01-01

    Large vertical hydraulic-head gradients are present between the unconfined Evangeline aquifer and confined Fleming aquifers at Naval Air Station Chase Field and Naval Auxiliary Landing Field Goliad. These gradients, together with the results of the aquifer test at Naval Air Station Chase Field and assumed characteristics of the confining units, indicate that downward flow of ground water probably occurs from the water-table aquifer to the underlying aquifers. The rate of downward flow between the two confined Fleming aquifers (from A-sand to B-sand) can be approximated using an estimate of vertical hydraulic conductivity of the intervening confining unit obtained from assumed storage characteristics and data from the aquifer test. Under the relatively high vertical hydraulic-head gradient induced by the aquifer test, ground-water movement from the A-sand aquifer to the B-sand aquifer could require about 490 years; and about 730 years under the natural gradient. Future increases in ground-water withdrawals from the B-sand aquifer might increase downward flow in the aquifer system of the study area.

  17. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  18. Field methods for measuring concentrated flow erosion

    NASA Astrophysics Data System (ADS)

    Castillo, C.; Pérez, R.; James, M. R.; Quinton, J. N.; Taguas, E. V.; Gómez, J. A.

    2012-04-01

    techniques (3D) for measuring erosion from concentrated flow (pole, laser profilemeter, photo-reconstruction and terrestrial LiDAR) The comparison between two- and three-dimensional methods has showed the superiority of the 3D techniques for obtaining accurate cross sectional data. The results from commonly-used 2D methods can be subject to systematic errors in areal cross section that exceed magnitudes of 10 % on average. In particular, the pole simplified method has showed a clear tendency to understimate areas. Laser profilemeter results show that further research on calibrating optical devices for a variety of soil conditions must be carried out to improve its performance. For volume estimations, photo-reconstruction results provided an excellent approximation to terrestrial laser data and demonstrate that this new remote sensing technique has a promising application field in soil erosion studies. 2D approaches involved important errors even over short measurement distances. However, as well as accuracy, the cost and time requirements of a technique must be considered.

  19. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  20. Background field method in the gradient flow

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi

    2015-10-01

    In perturbative consideration of the Yang-Mills gradient flow, it is useful to introduce a gauge non-covariant term (“gauge-fixing term”) to the flow equation that gives rise to a Gaussian damping factor also for gauge degrees of freedom. In the present paper, we consider a modified form of the gauge-fixing term that manifestly preserves covariance under the background gauge transformation. It is shown that our gauge-fixing term does not affect gauge-invariant quantities as does the conventional gauge-fixing term. The formulation thus allows a background gauge covariant perturbative expansion of the flow equation that provides, in particular, a very efficient computational method of expansion coefficients in the small flow time expansion. The formulation can be generalized to systems containing fermions.

  1. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.; Davis, S. J.; Kessler, W. J.; Sonnenfroh, D. M.

    1992-01-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties.

  2. Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows

    SciTech Connect

    Allen, M.G.; Davis, S.J.; Kessler, W.J.; Sonnenfroh, D.M. )

    1992-07-01

    The application of Doppler-shifted fluorescence imaging of velocity fields in supersonic reacting flows is analyzed. Focussing on fluorescence of the OH molecule in typical H2-air Scramjet flows, the effects of uncharacterized variations in temperature, pressure, and collisional partner composition across the measurement plane are examined. Detailed measurements of the (1,0) band OH lineshape variations in H2-air combustions are used, along with single-pulse and time-averaged measurements of an excimer-pumped dye laser, to predict the performance of a model velocimeter with typical Scramjet flow properties. The analysis demonstrates the need for modification and control of the laser bandshape in order to permit accurate velocity measurements in the presence of multivariant flow properties. 13 refs.

  3. Presence of Fusarium graminearum in air associated with sorghum fields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum can be included in crop rotations with wheat. However, there are no known reports on the effects of sorghum grown in rotation with wheat on the epidemiology of head scab caused by Fusarium graminearum. Conidia in air samples within two sorghum fields were collected by passive spore trapping ...

  4. Bioventing Field Initiative at Robins Air Force Base, Georgia

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at three sites at Robins Air Force Base (AFB), Georgia, as part of the Bioventing Field initiative for...respiration test, and installation of a bioventing system. The specific objectives of this task are described in the following section. The test sites at the

  5. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Department of Agriculture, or its equivalent. (2) A suitable supply of compressed air filtered to remove... specimen. The weight of the test specimen shall be that weight prescribed for the air flow instrument...

  6. Field Detection of Chemical Assimilation in A Basaltic Lava Flow

    NASA Technical Reports Server (NTRS)

    Young, K. E.; Bleacher, J. E.; Needham, D. H.; Evans, C. A.; Whelley, P. L.; Scheidt, S. P.; Williams, D. A.; Rogers, A. D.; Glotch, T.

    2017-01-01

    Lava channels are features seen throughout the inner Solar System, including on Earth, the Moon, and Mars. Flow emplacement is therefore a crucial process in the shaping of planetary surfaces. Many studies, including some completed by members of this team at the December 1974 lava flow, have investigated the dynamics of lava flow emplacement, both on Earth and on the Moon and how pre-flow terrain can impact final channel morphology, but far fewer have focused on how the compositional characteristics of the substrate over which a flow was em-placed influenced its final flow morphology. Within the length of one flow, it is common for flows to change in morphology, a quality linked to rheology (a function of multiple factors including viscosi-ty, temperature, composition, etc.). The relationship between rheology and temperature has been well-studied but less is known about the relationship between an older flow's chemistry and how the interaction between this flow and the new flow might affect lava rheology and therefore emplacement dynamics. Lava erosion. Through visual observations of active terrestrial flows, mechanical erosion by flowing lava has been well-documented. Lava erosion by which flow composition is altered as the active lava melts and assimilates the pre-flow terrain over which it moves is also hypothesized to affect channel formation. However, there is only one previous field study that geochemically documents the process in recent basaltic flow systems.

  7. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  8. Effect of air on water capillary flow in silica nanochannels

    NASA Astrophysics Data System (ADS)

    Zambrano, Harvey; Walther, Jens; Oyarzua, Elton

    2013-11-01

    Capillarity is a classical topic in fluid dynamics. The fundamental relationship between capillarity and surface tension is solidly established. Nevertheless, capillarity is an active research area especially as the miniaturization of devices is reaching the molecular scale. Currently, with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads to changes in the dynamics contact angle of the water meniscus.

  9. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  10. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  11. Electric field step in air gap streamer discharges

    SciTech Connect

    Zeng Rong; Zhuang Chijie; Yu Zhanqing; Li Zhizhao; Geng Yinan

    2011-11-28

    Electric field (E-field) in air gap streamer discharges under positive lightning impulse was measured by specifically developed integrated electro-optic sensors. An E-field step phenomenon was observed. The E-field firstly agreed with the Laplace field, then suddenly increased with a rise time of {mu}s. The occurrence probability of this phenomenon increased as the applied voltage increased. The discharge current waveforms and photos taken by a fast camera prove the E-field step was caused by the space net charge. From the E-step rise time and the corona area range, the average electron drift speed under the experiment situation was estimated about 0.2 x 10{sup 6} - 0.6x 10{sup 6} m/s.

  12. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-02

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  13. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  14. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  15. Flow Field Measurement of Mixing Driven by Buoyancy

    NASA Technical Reports Server (NTRS)

    Batur, C.; Zhong, H.

    2003-01-01

    Mixing driven by buoyancy-induced flows inside a cavity consists of stretching and folding of an interface. Measurement of the flow field using particle imaging velocimetry shows that during stretching the flow field has a single elliptic point, thus dominated by a single vortex. However, global bifurcation that results in folding introduces a hyperbolic point whereby the flow field degenerates to multiple vortex interactions. The short-lived coherent structure observed during mixing which results in the Rayleigh- Taylor morphology is attributed to vortex interactions. The mixing characteristics of non-homogeneous fluids driven by buoyancy are important towards understanding transport phenomenon in a microgravity environment. Mixing consists of stretching and folding of an interface due to a flow field whose intensity depends on the body force. For miscible liquids, the characteristic of the flow field determines whether mass transport is governed by diffusion or bulk stirring which induces mixing. For technologically important processes, transport of mass is governed by the coupling of the body force to scalar gradients such as concentration and or temperature' 2 3 . In order to lend insight into these classes of problems we consider a model experimental system to study mixing driven by buoyancy-induced flows. The characteristics of mixing is addressed from detail measurements of the flow field using particle imaging velocimetry (PIV), and its corresponding interface dynamics using image processing techniques.

  16. Flow damping due to stochastization of the magnetic field

    PubMed Central

    Ida, K.; Yoshinuma, M.; Tsuchiya, H.; Kobayashi, T.; Suzuki, C.; Yokoyama, M.; Shimizu, A.; Nagaoka, K.; Inagaki, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Evans, T.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kamiya, K.; Kasahara, H.; Kawamura, G.; Kato, D.; Kobayashi, M.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohdach, S.; Ohno, N.; Osakabe, M.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Sudo, S.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; Ii, T.; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.

    2015-01-01

    The driving and damping mechanism of plasma flow is an important issue because flow shear has a significant impact on turbulence in a plasma, which determines the transport in the magnetized plasma. Here we report clear evidence of the flow damping due to stochastization of the magnetic field. Abrupt damping of the toroidal flow associated with a transition from a nested magnetic flux surface to a stochastic magnetic field is observed when the magnetic shear at the rational surface decreases to 0.5 in the large helical device. This flow damping and resulting profile flattening are much stronger than expected from the Rechester–Rosenbluth model. The toroidal flow shear shows a linear decay, while the ion temperature gradient shows an exponential decay. This observation suggests that the flow damping is due to the change in the non-diffusive term of momentum transport. PMID:25569268

  17. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    PubMed Central

    Bonomi, Alberto G.; Salati, Stefano

    2010-01-01

    Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field. PMID:22163681

  18. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    PubMed

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  19. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  20. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, William D.

    1999-01-01

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions.

  1. Gradient isolator for flow field of fuel cell assembly

    DOEpatents

    Ernst, W.D.

    1999-06-15

    Isolator(s) include isolating material and optionally gasketing material strategically positioned within a fuel cell assembly. The isolating material is disposed between a solid electrolyte and a metal flow field plate. Reactant fluid carried by flow field plate channel(s) forms a generally transverse electrochemical gradient. The isolator(s) serve to isolate electrochemically a portion of the flow field plate, for example, transversely outward from the channel(s), from the electrochemical gradient. Further, the isolator(s) serve to protect a portion of the solid electrolyte from metallic ions. 4 figs.

  2. Granger causality estimate of information flow in temperature fields is consistent with wind direction

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Hartman, David; Paluš, Milan

    2014-05-01

    Granger causality analysis is designed to quantify whether one time series is useful in forecasting another. We apply the time domain Granger causality analysis based on autoregressive processes to gridded daily surface air temperature data. For each grid-point pair, the direction and strength of the causal influence were computed with the one-day lag, effectively assessing the direction of the information flow in the temperature field. In order to remove the influence of different distances of the grid-points in the original angularly regular grid of the NCEP/NCAR reanalysis, the data were transformed into an equidistant geodesic grid of 642 grid points. The strongest causalities have been found in the Northern Hemisphere's extratropics, where the temperature information is flowing eastward, in agreement with the prevailing westerlies. In contrast, only weak causalities have been observed in the tropics, which may be arising from higher spatio-temporal homogeneity. In the second step, we quantitatively compared this estimate of information flow with the actual wind directions from NCEP/NCAR reanalysis data transformed onto the equidistant geodesic grid of 642 points. This was done for the surface layer and for the 850, 700, 500, 300 and 100hPa layers. The direction of the information flow matches the flow of the air masses, particularly well in the Northern Hemisphere's extratropics, i.e. for the strongest causalities. This agreement holds throughout the troposphere, slightly increasing with the height up to 500hPa level, then remains the same until bottom stratosphere. The agreement between the information flow in the air temperature field and the flow of air masses suggests the Granger causality as a suitable tools for constructing directed climate networks.

  3. A novel potential/viscous flow coupling technique for computing helicopter flow fields

    NASA Technical Reports Server (NTRS)

    Summa, J. Michael; Strash, Daniel J.; Yoo, Sungyul

    1990-01-01

    Because of the complexity of helicopter flow field, a zonal method of analysis of computational aerodynamics is required. Here, a new procedure for coupling potential and viscous flow is proposed. An overlapping, velocity coupling technique is to be developed with the unique feature that the potential flow surface singularity strengths are obtained directly from the Navier-Stokes at a smoother inner fluid boundary. The closed-loop iteration method proceeds until the velocity field is converged. This coupling should provide the means of more accurate viscous computations of the near-body and rotor flow fields with resultant improved analysis of such important performance parameters as helicopter fuselage drag and rotor airloads.

  4. Influence of Local Flow Field on Flow Accelerated Corrosion Downstream from an Orifice

    NASA Astrophysics Data System (ADS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    Flow accelerated corrosion (FAC) rate downstream from an orifice was measured in a high-temperature water test loop to evaluate the effects of flow field on FAC. Orifice flow was also measured using laser Doppler velocimetry (LDV) and simulated by steady RANS simulation and large eddy simulation (LES). The LDV measurements indicated the flow structure did not depend on the flow velocity in the range of Re = 2.3×104 to 1.2×105. Flow fields predicted by RANS and LES agreed well with LDV data. Measured FAC rate was higher downstream than upstream from the orifice and the maximum appeared at 2D (D: pipe diameter) downstream. The shape of the profile of the root mean square (RMS) wall shear stress predicted by LES had relatively good agreement with the shape of the profile of FAC rate. This result indicates that the effects of flow field on FAC can be evaluated using the calculated wall shear stress.

  5. An experimental validation of a turbulence model for air flow in a mining chamber

    NASA Astrophysics Data System (ADS)

    Branny, M.; Karch, M.; Wodziak, W.; Jaszczur, M.; Nowak, R.; Szmyd, J. S.

    2014-08-01

    In copper mines, excavation chambers are ventilated by jet fans. A fan is installed at the inlet of the dead-end chamber, which is usually 20-30m long. The effectiveness of ventilation depends on the stream range generated by the fan. The velocity field generated by the supply air stream is fully three-dimensional and the flow is turbulent. Currently, the parameters of 3D air flows are determined using the CFD approach. This paper presents the results of experimental testing and numerical simulations of airflow in a laboratory model of a blind channel, aired by a forced ventilation system. The aim of the investigation is qualitative and quantitative verification of computer modelling data. The analysed layout is a geometrically re-scaled and simplified model of a real object. The geometrical scale of the physical model is 1:10. The model walls are smooth, the channel cross-section is rectangular. Measurements were performed for the average airflow velocity in the inlet duct equal 35.4m/s, which gives a Reynolds number of about 180 000. The components of the velocity vector were measured using the Particle Image Velocimetry approach. The numerical procedures presented in this paper use two turbulence models: the standard k-ɛ model and the Reynolds Stress model. The experimental results have been compared against the results of numerical simulations. In the investigated domain of flow - extending from the air inlet to the blind wall of the chamber - we can distinguish two zones with recirculating flows. The first, reaching a distance of about lm from the inlet is characterized by intense mixing of air. A second vortex is formed into a distance greater than lm from the inlet. Such an image of the velocity field results from both the measurements and calculations. Based on this study, we can conclude that the RSM model provides better predictions than the standard k-ɛ model. Good qualitative agreement is achieved between Reynolds Stress model predictions and measured

  6. Viscous and Interacting Flow Field Effects.

    DTIC Science & Technology

    1980-06-01

    and Experimental Pressure Distributions on a Circular Cylinder; Re =8.4 x 106. 21 S., -10 Co EXPERIMENT - CALCULATIONS, TRANMAX -5 0 10 Figure 18...theoretical and experimental study of the flow over a prolate spheroid is being investigated at t l- DFVLR. The first experiments were aimed at the...PRESSURE TAP regime in which experimental data are very scarce. 1I. Description of the Experiments 1.4500 0 0 Facility 0 The tests were conducted in the

  7. Flow field topology of submerged jets with fractal generated turbulence

    NASA Astrophysics Data System (ADS)

    Cafiero, Gioacchino; Discetti, Stefano; Astarita, Tommaso

    2015-11-01

    Fractal grids (FGs) have been recently an object of numerous investigations due to the interesting capability of generating turbulence at multiple scales, thus paving the way to tune mixing and scalar transport. The flow field topology of a turbulent air jet equipped with a square FG is investigated by means of planar and volumetric particle image velocimetry. The comparison with the well-known features of a round jet without turbulence generators is also presented. The Reynolds number based on the nozzle exit section diameter for all the experiments is set to about 15 000. It is demonstrated that the presence of the grid enhances the entrainment rate and, as a consequence, the scalar transfer of the jet. Moreover, due to the effect of the jet external shear layer on the wake shed by the grid bars, the turbulence production region past the grid is significantly shortened with respect to the documented behavior of fractal grids in free-shear conditions. The organization of the large coherent structures in the FG case is also analyzed and discussed. Differently from the well-known generation of toroidal vortices due to the growth of azimuthal disturbances within the jet shear layer, the fractal grid introduces cross-wise disturbs which produce streamwise vortices; these structures, although characterized by a lower energy content, have a deeper streamwise penetration than the ring vortices, thus enhancing the entrainment process.

  8. Free-surface flow of liquid oxygen under non-uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Bao, Shi-Ran; Zhang, Rui-Ping; Wang, Kai; Zhi, Xiao-Qin; Qiu, Li-Min

    2017-01-01

    The paramagnetic property of oxygen makes it possible to control the two-phase flow at cryogenic temperatures by non-uniform magnetic fields. The free-surface flow of vapor-liquid oxygen in a rectangular channel was numerically studied using the two-dimensional phase field method. The effects of magnetic flux density and inlet velocity on the interface deformation, flow pattern and pressure drop were systematically revealed. The liquid level near the high-magnetic channel center was lifted upward by the inhomogeneous magnetic field. The interface height difference increased almost linearly with the magnetic force. For all inlet velocities, pressure drop under 0.25 T was reduced by 7-9% due to the expanded local cross-sectional area, compared to that without magnetic field. This work demonstrates the effectiveness of employing non-uniform magnetic field to control the free-surface flow of liquid oxygen. This non-contact method may be used for promoting the interface renewal, reducing the flow resistance, and improving the flow uniformity in the cryogenic distillation column, which may provide a potential for enhancing the operating efficiency of cryogenic air separation.

  9. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  10. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  11. Interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field

    NASA Astrophysics Data System (ADS)

    Zhou, Sheng; Zheng, Xin-qian; Hou, An-ping; Lu, Ya-jun

    2005-12-01

    Unsteady separated flow is one of research frontiers in current aerodynamic. Great accomplishments have been acquired; however, most studies are on single body in a stream, such as studies on unsteady separated flows over airfoils. There are typical cases in the nature and engineering applications, in which several interacting bodies with relative motions are within the same flow field. These interacting unsteady separated flow fields not only are closely related to the phenomena of noise and flutter induced by flows, but also have strong influences on aerodynamic performances. With axial flow compressors as background, the present paper carried out studies on 'interaction of unsteady separated flow over multi-bodies moving relatively in the same flow field'. Experiment investigations carried out in the stationary annular cascade wind tunnel and the single-stage low-speed axial flow compressor experimental facility as well as relevant CFD simulations demonstrate that under properly organized interactions between all unsteady components, the time-space structure of unsteady separated flow field can be remarkably improved and the time-averaged aerodynamic performances be significantly enhanced accordingly. The maximum reduction of the loss coefficient reached 27.4% and 76.5% in the stationary annular cascade wind tunnel and the CFD simulation for single-stage axial flow compressor, respectively.

  12. Synthetic Jet Flow Field Database for CFD Validation

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Chen, Fang Jenq; Neuhart, Dan; Harris, Jerome

    2004-01-01

    An oscillatory zero net mass flow jet was generated by a cavity-pumping device, namely a synthetic jet actuator. This basic oscillating jet flow field was selected as the first of the three test cases for the Langley workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control. The purpose of this workshop was to assess the current CFD capabilities to predict unsteady flow fields of synthetic jets and separation control. This paper describes the characteristics and flow field database of a synthetic jet in a quiescent fluid. In this experiment, Particle Image Velocimetry (PIV), Laser Doppler Velocimetry (LDV), and hot-wire anemometry were used to measure the jet velocity field. In addition, the actuator operating parameters including diaphragm displacement, internal cavity pressure, and internal cavity temperature were also documented to provide boundary conditions for CFD modeling.

  13. Unsteady fluid dynamic model for propeller induced flow fields

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Ashby, Dale L.; Yon, Steven

    1991-01-01

    A potential flow based three-dimensional panel method was modified to treat time dependent flow conditions in which the body's geometry may vary with time. The main objective of this effort was the study of a flow field due to a propeller rotating relative to a nonrotating body which is otherwise moving at a constant forward speed. Calculated surface pressure, thrust and torque coefficient data for a four-bladed marine propeller/body compared favorably with previously published experimental results.

  14. Biofilm responses to smooth flow fields and chemical gradients in novel microfluidic flow cells

    PubMed Central

    Song, Jisun L.; Au, Kelly H.; Huynh, Kimberly T.

    2013-01-01

    We present two novel microfluidic flow cells developed to provide reliable control of flow distributions and chemical gradients in biofilm studies. We developed a single-inlet microfluidic flow cell to support biofilm growth under a uniform velocity field, and a double-inlet flow cell to provide a very smooth transverse concentration gradient. Both flow cells consist of a layer of polydimethylsiloxane (PDMS) bonded to glass cover slips and were fabricated using the replica molding technique. We demonstrate the capabilities of the flow cells by quantifying flow patterns before and after growth of Pseudomonas aeruginosa biofilms through particle imaging velocimetry, and by evaluating concentration gradients within the double-inlet microfluidic flow cell. Biofilm growth substantially increased flow complexity by diverting flow around biomass, creating high- and low-velocity regions and surface friction. Under a glucose gradient in the double-inlet flow cell, P. aeruginosa biofilms grew in proportion to the local glucose concentration, producing distinct spatial patterns in biofilm biomass relative to the imposed glucose gradient. When biofilms were subjected to a ciprofloxacin gradient, spatial patterns of fractions of dead cells were also in proportion to the local antibiotic concentration. These results demonstrate that the microfluidic flow cells are suitable for quantifying flow complexities resulting from flow-biofilm interactions and investigating spatial patterns of biofilm growth under chemical gradients. These novel microfluidic flow cells will facilitate biofilm research that requires flow control and in situ imaging, particularly investigations of biofilm-environment interactions. PMID:24038055

  15. Flow field studies using holographic interferometry at Langley

    NASA Astrophysics Data System (ADS)

    Burner, A. W.; Snow, W. L.; Goad, W. K.; Helms, V. T.; Gooderum, P. B.

    1982-09-01

    Some of the uses of holographic interferometry at Langley Research Center both for flow visualization and for density field determinations are described and tests in cryogenic flows at the Langley 0.3-Meter Transonic Cryogenic Tunnel are discussed. Experimental and theoretical fringe shift data are compared.

  16. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    PubMed

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  17. Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field

    DTIC Science & Technology

    2008-03-01

    John William Strutt , the third Baron of Rayleigh , or more commonly known as Lord Rayleigh , was the first to offer a correct explanation of the...FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD         THESIS       Steven Michael Meents, Captain, USAF...AFIT/GAE/ENY/08-M22 FILTERED RAYLEIGH SCATTERING MEASUREMENTS IN A BUOYANT FLOW FIELD THESIS Presented to the Faculty Department of Aeronautics

  18. Particle and flow field holography: A critical survey

    NASA Technical Reports Server (NTRS)

    Trolinger, James D.

    1987-01-01

    A brief background is provided for the fields of particle and flow visualization holography. A summary of methods currently in use is given, followed by a discussion of more recent and unique applications. The problem of data reduction is discussed. A state of the art summary is then provided with a prognosis of the future of the field. Particle and flow visualization holography are characterized as powerful tools currently in wide use and with significant untapped potential.

  19. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    PubMed

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  20. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  2. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  3. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  4. Cloud Patterns and the Upper Air Wind Field,

    DTIC Science & Technology

    1979-10-01

    34DZ" with respect to the other air. Or, if moisture, dust, or smoke is introduced into the flow upstrean from "DZ", then "DZ" acts as a southeastern...34DZ" results in matter such as dust, smoke , or moisture in the system to be vertically thickest in a band along the DZ axis. It may become thicker by...sunrise. Sometimes during summer or late spring when the low level enviroment is very moist, the outflow boundaries from the convection will continue to

  5. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  6. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  7. Air drilling for gas sands: Marianne Field, Sweetwater County, Wyoming

    SciTech Connect

    Wellborn, R.

    1983-08-01

    Marianne field is on the northeast flank of the Rock Springs uplift in Sweetwater County, Wyoming, just south of the town of Superior. The field is located where regional east dip averages 300 ft/mi (57 m/km). Numerous east-northeast-trending normal faults are present across the field with displacements ranging from 20 to 400 ft (6 to 120 m). Updip stratigraphic pinch-outs are responsible for gas accumulations in two separate Second Frontier sandstones with entrapment apparently not related to faulting. There are similar traps in various thin sandstone stringers in the Third Frontier and Muddy sandstones. In addition, a combination stratigraphic-fault trap for hydrocarbons appears to have been found in the Dakota and Lakota sandstones in one well; these horizons were abandoned for mechanical reasons before conclusive testing could be completed. All but one of the wells at Marianne field have been drilled either partially or completely with air. Consequently the potential to produce from various pay zones in nearly every well was determined prior to running production casing. This information generally cannot be obtained through drill stem testing in this area due to the formation damage from the drilling mud on the Cretaceous sandstone reservoirs. If an air-drilled gas reservoir was damaged later by drilling mud or cement, the potential was already known and it could be brought back through fracturing. The field consists of 6 gas wells and 5 dry holes.

  8. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    NASA Astrophysics Data System (ADS)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  9. The electromagnetic force field, fluid flow field and temperature profiles in levitated metal droplets

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation was developed for the electromagnetic force field, the flow field, the temperature field (and for transport controlled kinetics), in a levitation melted metal droplet. The technique of mutual inductances was employed for the calculation of the electromagnetic force field, while the turbulent Navier - Stokes equations and the turbulent convective transport equations were used to represent the fluid flow field, the temperature field and the concentration field. The governing differential equations, written in spherical coordinates, were solved numerically. The computed results were in good agreement with measurements, regarding the lifting force, and the average temperature of the specimen and carburization rates, which were transport controlled.

  10. Electric Discharge Flow Interaction in Parallel and Cross-Flow Electric Fields.

    DTIC Science & Technology

    1981-09-01

    was measured by a pitot-static probe (connected to a mercury manometer ) inserted in the exhaust opening of the test section. The probe was removed...fan was employed, blowing in the reverse direction from the normal flow, at an air flow speed too small to be measured by the pitot tube and mercury ... manometer . Results summarized on Figure 21 indicate an increase in power with increased electrode spacing. This is a fundamental improvement over the

  11. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  12. On the flow field around a Savonius rotor

    NASA Astrophysics Data System (ADS)

    Bergeles, G.; Athanassiadis, N.

    A model of a two-bucket Savonius rotor windmill was constructed and tested in a wind tunnel. The flow field around the rotor was examined visually and also quantitatively with the use of a hot wire. The flow visualization revealed an upstream influence on the flow field up to 3 rotor diameters away and a strong downwash downstream. Hot wire measurements showed a large velocity deficit behind the rotor and a quick velocity recovery downstream due to strong mixing; the latter was associated with high levels of turbulence. Energy spectra revealed that all turbulence was concentrated in a single harmonic corresponding to twice the rotational speed of the rotor.

  13. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  14. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  15. Numerical Simulations of Canted Nozzle and Scarfed Nozzle Flow Fields

    NASA Astrophysics Data System (ADS)

    Javed, Afroz; Chakraborty, Debasis

    2016-06-01

    Computational fluid dynamics (CFD) techniques are used for the analysis of issues concerning non-conventional (canted and scarfed) nozzle flow fields. Numerical simulations are carried out for the quality of flow in terms of axisymmetric nature at the inlet of canted nozzles of a rocket motor. Two different nozzle geometries are examined. The analysis of these simulation results shows that the flow field at the entry of the nozzles is non axisymmetric at the start of the motor. With time this asymmetry diminishes, also the flow becomes symmetric before the nozzle throat, indicating no misalignment of thrust vector with the nozzle axis. The qualitative flow fields at the inlet of the nozzles are used in selecting the geometry with lesser flow asymmetry. Further CFD methodology is used to analyse flow field of a scarfed nozzle for the evaluation of thrust developed and its direction. This work demonstrates the capability of the CFD based methods for the nozzle analysis problems which were earlier solved only approximately by making simplifying assumptions and semi empirical methods.

  16. The structure of the vorticity field in homogeneous turbulent flows

    NASA Technical Reports Server (NTRS)

    Rogers, Michael M.; Moin, Parviz

    1987-01-01

    The structures of the vorticity fields in several homogeneous irrotational straining flows and a homogeneous turbulent shear flow were examined using a database generated by direct numerical simulation of the unsteady Navier-Stokes equations. In all cases, strong evidence was found for the presence of coherent vortical structures. The initially isotropic vorticity fields were rapidly affected by imposed mean strain and the rotational component of mean shear and developed accordingly. In the homogeneous turbulent shear-flow cases, the roll-up of mean vorticity into characteristic hairpin vortices was clearly observed, supporting the view that hairpin vortices are an important vortical structure in all turbulent shear flows; the absence of mean shear in the homogeneous irrotational straining flows precludes the presence of hairpin-like vortices.

  17. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  18. Stability Analysis of Flow Induced by the Traveling Magnetic Field

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin

    2003-01-01

    Re-circulating flow in molten metal columns can be conveniently induced by the axisymmetric traveling magnetic field. A number of applications can benefit from this technique, such as mixing under microgravity environment, or.crysta1 growth from metallic melts. For small magnetic field excitations, the flow is laminar and stationary. As the imposed field increases, a more complex flow will set up in the cylindrical column. Conditions for stable laminar flow are of importance for practical applications. In this work, a linear stability analysis is performed in order to determine the onset of the bifurcation in the system. Here the analysis is restricted to the axisymmetric modes and the low-frequency regime.

  19. Convective Flow Induced by Localized Traveling Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Mazuruk, Konstantin; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    An axisymmetric traveling magnetic field induces a meridional base flow in a cylindrical zone of an electrically conducting liquid. This remotely induced flow can be conveniently controlled, in magnitude and direction, and can have benefits for crystal growth applications. In particular, it can be used to offset natural convection. For long vertical cylinders, non-uniform and localized in the propagating direction, magnetic fields are required for this purpose. Here we investigate a particular form of this field, namely that induced by a set of a few electric current coils. An order of magnitude reduction of buoyancy convection is theoretically demonstrated for a vertical Bridgman crystal growth configuration.

  20. Three dimensional flow field measurements of a 4:1 aspect ratio subsonic jet

    NASA Technical Reports Server (NTRS)

    Morrison, G. L.; Swan, D. H.

    1989-01-01

    Flow field measurements for a subsonic rectangular cold air jet with an aspect ratio of 4:1 (12.7 x 50.8 mm) at a Mach number of 0.09 and Re of 100,000 have been carried out using a three-dimensional laser Doppler anemometer system. Mean velocity measurements show that the jet width spreads more rapidly along the minor axis than along the major axis. The outward velocities, however, are not significantly different for the two axes, indicating the presence of enhanced mixing along the minor axis. The jet slowly changes from a rectangular jet to a circular jet as the flow progresses downstream.

  1. Paper-based flow fractionation system for preconcentration and field-flow fractionation.

    NASA Astrophysics Data System (ADS)

    Hong, Seokbin; Kwak, Rhokyun; Kim, Wonjung

    2015-11-01

    We present a novel paper-based flow fractionation system for preconcentration and field-flow fractionation. The paper fluidic system consisting of a straight channel connected with expansion regions can generate a fluid flow with a constant flow rate for 10 min without any external pumping devices. The flow bifurcates with a fraction ratio of up to 30 depending on the control parameters of the channel geometry. Utilizing this simple paper-based bifurcation system, we developed a continuous-flow preconcentrator and a field-flow fractionator on a paper platform. Our experimental results show that the continuous-flow preconcentrator can produce a 33-fold enrichment of the ion concentration and that the flow fractionation system successfully separates the charged dyes. Our study suggests simple, cheap ways to construct preconcentration and field-flow fractionation systems for paper-based microfluidic diagnostic devices. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (NRF-2015R1A2A2A04006181).

  2. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part I: Flow Patterns and Their Transitions

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Etay, Jacqueline; Na, Xianzhao; Zhang, Xinde; Fautrelle, Yves

    2016-04-01

    In this study, an Archimedean helical permanent magnetic field was constructed and its driving effects on liquid metal were examined. A magnetic stirrer was constructed using a series of arc-like magnets. The helical distribution of its magnetic field, which was confirmed via Gauss probe measurements and numerical simulations, can be considered a combination of rotating and traveling magnetic fields. The characteristics of the flow patterns, particularly the transitions between the meridian secondary flow (two vortices) and the global axial flow (one vortex), driven by this magnetic field were quantitatively measured using ultrasonic Doppler velocimetry. The transient and modulated flow behaviors will be presented in a companion article. The D/ H dimension ratio was used to characterize the transitions of these two flow patterns. The results demonstrated that the flow patterns depend on not only the intrinsic structure of the magnetic field, e.g., the helix lead angle, but also the performance parameters, e.g., the dimensional ratio of the liquid bulk. The notable opposing roles of these two flow patterns in the improvement of macrosegregations when imposing such magnetic fields near the solidifying front were qualitatively addressed.

  3. Analysis of a solar collector field water flow network

    NASA Technical Reports Server (NTRS)

    Rohde, J. E.; Knoll, R. H.

    1976-01-01

    A number of methods are presented for minimizing the water flow variation in the solar collector field for the Solar Building Test Facility at the Langley Research Center. The solar collector field investigated consisted of collector panels connected in parallel between inlet and exit collector manifolds to form 12 rows. The rows were in turn connected in parallel between the main inlet and exit field manifolds to complete the field. The various solutions considered included various size manifolds, manifold area change, different locations for the inlets and exits to the manifolds, and orifices or flow control valves. Calculations showed that flow variations of less than 5 percent were obtainable both inside a row between solar collector panels and between various rows.

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  5. Evaluation of membrane filter field monitors for microbiological air sampling

    NASA Technical Reports Server (NTRS)

    Fields, N. D.; Oxborrow, G. S.; Puleo, J. R.; Herring, C. M.

    1974-01-01

    Due to area constraints encountered in assembly and testing areas of spacecraft, the membrane filter field monitor (MF) and the National Aeronautics and Space Administration-accepted Reyniers slit air sampler were compared for recovery of airborne microbial contamination. The intramural air in a microbiological laboratory area and a clean room environment used for the assembly and testing of the Apollo spacecraft was studied. A significantly higher number of microorganisms was recovered by the Reyniers sampler. A high degree of consistency between the two sampling methods was shown by a regression analysis, with a correlation coefficient of 0.93. The MF samplers detected 79% of the concentration measured by the Reyniers slit samplers. The types of microorganisms identified from both sampling methods were similar.

  6. Encapsulated graphene field-effect transistors for air stable operation

    SciTech Connect

    Alexandrou, Konstantinos Kymissis, Ioannis; Petrone, Nicholas; Hone, James

    2015-03-16

    In this work, we report the fabrication of encapsulated graphene field effects transistors (GFETs) with excellent air stability operation in ambient environment. Graphene's 2D nature makes its electronics properties very sensitive to the surrounding environment, and thus, non-encapsulated graphene devices show extensive vulnerability due to unintentional hole doping from the presence of water molecules and oxygen limiting their performance and use in real world applications. Encapsulating GFETs with a thin layer of parylene-C and aluminum deposited on top of the exposed graphene channel area resulted in devices with excellent electrical performance stability for an extended period of time. Moisture penetration is reduced significantly and carrier mobility degraded substantially less when compared to non-encapsulated control devices. Our CMOS compatible encapsulation method minimizes the problems of environmental doping and lifetime performance degradation, enabling the operation of air stable devices for next generation graphene-based electronics.

  7. Geomagnetic Field Effects on the Imaging Air Shower Cherenkov Technique

    NASA Astrophysics Data System (ADS)

    Commichau, S.C.; Biland, A.; Kranich, D.; de los Reyes, R.; Moralejo, A.; Sobczyńska, D.

    Imaging Air Cherenkov Telescopes (IACTs) detect the Cherenkov light flashes of Extended Air Showers (EAS) triggered by VHE gamma-rays impinging on the Earth's atmosphere. Due to the overwhelming background from hadron induced EAS, the discrimination of the rare gamma-like events is rather difficult, in particular at energies below 100 GeV. The influence of the Geomagnetic Field (GF) on the EAS development can further complicate this discrimination and, in addition, also systematically affect the gamma-efficiency and energy resolution of an IACT. Here we present the results from dedicated Monte Carlo (MC) simulations for the MAGIC telescope site, show the GF effects on real data as well as possible corrections for these effects.

  8. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow

    PubMed Central

    Moore, Lee R.; Williams, P. Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J.; Zborowski, Maciej

    2013-01-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation. PMID:24141316

  9. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    PubMed

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  10. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  11. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  12. Numerical Simulation of Flow Field Within Parallel Plate Plastometer

    NASA Technical Reports Server (NTRS)

    Antar, Basil N.

    2002-01-01

    Parallel Plate Plastometer (PPP) is a device commonly used for measuring the viscosity of high polymers at low rates of shear in the range 10(exp 4) to 10(exp 9) poises. This device is being validated for use in measuring the viscosity of liquid glasses at high temperatures having similar ranges for the viscosity values. PPP instrument consists of two similar parallel plates, both in the range of 1 inch in diameter with the upper plate being movable while the lower one is kept stationary. Load is applied to the upper plate by means of a beam connected to shaft attached to the upper plate. The viscosity of the fluid is deduced from measuring the variation of the plate separation, h, as a function of time when a specified fixed load is applied on the beam. Operating plate speeds measured with the PPP is usually in the range of 10.3 cm/s or lower. The flow field within the PPP can be simulated using the equations of motion of fluid flow for this configuration. With flow speeds in the range quoted above the flow field between the two plates is certainly incompressible and laminar. Such flows can be easily simulated using numerical modeling with computational fluid dynamics (CFD) codes. We present below the mathematical model used to simulate this flow field and also the solutions obtained for the flow using a commercially available finite element CFD code.

  13. Laboratory observation of magnetic field growth driven by shear flow

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Dorf, L.; Sun, X.; Feng, Y.; Sears, J.; Weber, T.

    2014-04-01

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow vi, magnetic field B, current density J, and plasma pressure. The electron flow ve can be inferred, allowing the evaluation of the Hall J ×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×ve×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δBz. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  14. Laboratory observation of magnetic field growth driven by shear flow

    SciTech Connect

    Intrator, T. P. Feng, Y.; Sears, J.; Weber, T.; Dorf, L.; Sun, X.

    2014-04-15

    Two magnetic flux ropes that collide and bounce have been characterized in the laboratory. We find screw pinch profiles that include ion flow v{sub i}, magnetic field B, current density J, and plasma pressure. The electron flow v{sub e} can be inferred, allowing the evaluation of the Hall J×B term in a two fluid magnetohydrodynamic Ohm's Law. Flux ropes that are initially cylindrical are mutually attracted and compress each other, which distorts the cylindrical symmetry. Magnetic field is created via the ∇×v{sub e}×B induction term in Ohm's Law where in-plane (perpendicular) shear of parallel flow (along the flux rope) is the dominant feature, along with some dissipation and magnetic reconnection. We predict and measure the growth of a quadrupole out-of-plane magnetic field δB{sub z}. This is a simple and coherent example of a shear flow driven dynamo. There is some similarity with two dimensional reconnection scenarios, which induce a current sheet and thus out-of-plane flow in the third dimension, despite the customary picture that considers flows only in the reconnection plane. These data illustrate a general and deterministic mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence.

  15. [Invention of an air forced ventilated micro-isolation cage and rack system--environment within the cages: ventilation, air flow].

    PubMed

    Kurosawa, T; Yoshida, K; Okamoto, M; Tajima, M

    1993-10-01

    A forced air ventilation system for small laboratory animals was developed. The system consists of an air handling unit with air supply and exhaust fans, a rack, hard cage covers with a large diameter air inlet and an outlet, and shoe box cages. Air flow from the supply duct, to the exhaust duct and within the cage were observed. Variations in air flow among cages was minimal. The optimal air exchange rate of the cages in this system was determined to be 60 times per hour based on the results obtained in the present study. At this air exchange rate, air flow at the base of the cages had a velocity of less than 0.09m/sec, which was within the range of recommended values for humans. The observed results show that the system developed is capable of sustaining a laboratory animal microenvironment well in terms of air flow, without too much energy cost.

  16. Analytical comparison of hypersonic flight and wind tunnel viscous/inviscid flow fields

    NASA Technical Reports Server (NTRS)

    Fivel, H. J.; Masek, R. V.; Mockapetris, L. J.

    1975-01-01

    Flow fields were computed about blunted, 0.524 and 0.698 radians, cone configurations to assess the effects of nonequilibrium chemistry on the flow field geometry, boundary layer edge conditions, boundary layer profiles, and heat transfer and skin friction. Analyses were conducted at typical space shuttle entry conditions for both laminar and turbulent boundary layer flow. In these calculations, a wall temperature of 1365 K (2000 F) was assumed. The viscous computer program used in this investigation was a modification of the Blottner non-similar viscous code which incorporated a turbulent eddy viscosity model after Cebeci. The results were compared with equivalent calculations for similar (scaled) configurations at typical wind tunnel conditions. Wind tunnel test gases included air, nitrogen, CF4 and helium. The viscous computer program used for wind tunnel conditions was the Cebeci turbulent non-similar computer code.

  17. Selecting MODFLOW cell sizes for accurate flow fields.

    PubMed

    Haitjema, H; Kelson, V; de Lange, W

    2001-01-01

    Contaminant transport models often use a velocity field derived from a MODFLOW flow field. Consequently, the accuracy of MODFLOW in representing a ground water flow field determines in part the accuracy of the transport predictions, particularly when advective transport is dominant. We compared MODFLOW ground water flow rates and MODPATH particle traces (advective transport) for a variety of conceptual models and different grid spacings to exact or approximate analytic solutions. All of our numerical experiments concerned flow in a single confined or semiconfined aquifer. While MODFLOW appeared robust in terms of both local and global water balance, we found that ground water flow rates, particle traces, and associated ground water travel times are accurate only when sufficiently small cells are used. For instance, a minimum of four or five cells are required to accurately model total ground water inflow in tributaries or other narrow surface water bodies that end inside the model domain. Also, about 50 cells are needed to represent zones of differing transmissivities or an incorrect flow field and (locally) inaccurate ground water travel times may result. Finally, to adequately represent leakage through aquitards or through the bottom of surface water bodies it was found that the maximum allowable cell dimensions should not exceed a characteristic leakage length lambda, which is defined as the square root of the aquifer transmissivity times the resistance of the aquitard or stream bottom. In some cases a cell size of one-tenth of lambda is necessary to obtain accurate results.

  18. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    1998-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  19. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, Mahlon S.; Zawodzinski, Christine

    2001-01-01

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field therebetween for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells.

  20. Fuel cell with metal screen flow-field

    DOEpatents

    Wilson, M.S.; Zawodzinski, C.

    1998-08-25

    A polymer electrolyte membrane (PEM) fuel cell is provided with electrodes supplied with a reactant on each side of a catalyzed membrane assembly (CMA). The fuel cell includes a metal mesh defining a rectangular flow-field pattern having an inlet at a first corner and an outlet at a second corner located on a diagonal from the first corner, wherein all flow paths from the inlet to the outlet through the square flow field pattern are equivalent to uniformly distribute the reactant over the CMA. In a preferred form of metal mesh, a square weave screen forms the flow-field pattern. In a particular characterization of the present invention, a bipolar plate electrically connects adjacent fuel cells, where the bipolar plate includes a thin metal foil having an anode side and a cathode side; a first metal mesh on the anode side of the thin metal foil; and a second metal mesh on the cathode side of the thin metal foil. In another characterization of the present invention, a cooling plate assembly cools adjacent fuel cells, where the cooling plate assembly includes an anode electrode and a cathode electrode formed of thin conducting foils; and a metal mesh flow field there between for distributing cooling water flow over the electrodes to remove heat generated by the fuel cells. 11 figs.

  1. Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad

    2011-04-01

    Traffic during operation at a junction undergoes different flow conditions and modal events which result into dynamic fleet characteristics generating more emissions and stronger vehicle-induced heat and wakes generating obscure dispersion. Traffic in a manner operated at junctions often creates pockets of higher concentrations the locations of which shift as a result of the combine effects of traffic dynamics and random airflow. This research examined the impacts of traffic dynamics and meteorology on the levels and locations of higher concentrations of pollutant CO, NO 2 and PM within the influence of signalized traffic intersection and a conventional two-lane roundabout in a response to varying flow conditions and emissions resulted from the traffic operations. Three line source dispersion models have been used to determine the impact on air quality. Emissions have been calculated for different scenarios developed from different combinations of semi-empirical and field based time and space-mean speeds and lane-width based density when traffic undergoes free, interrupted and congested-flow conditions during operation. It has been found that the locations of highest concentrations within the domain change as traffic with different modal share encounters different flow conditions at different times of a day.

  2. Numerical Simulation of Non-Rotating and Rotating Coolant Channel Flow Fields. Part 1

    NASA Technical Reports Server (NTRS)

    Rigby, David L.

    2000-01-01

    Future generations of ultra high bypass-ratio jet engines will require far higher pressure ratios and operating temperatures than those of current engines. For the foreseeable future, engine materials will not be able to withstand the high temperatures without some form of cooling. In particular the turbine blades, which are under high thermal as well as mechanical loads, must be cooled. Cooling of turbine blades is achieved by bleeding air from the compressor stage of the engine through complicated internal passages in the turbine blades (internal cooling, including jet-impingement cooling) and by bleeding small amounts of air into the boundary layer of the external flow through small discrete holes on the surface of the blade (film cooling and transpiration cooling). The cooling must be done using a minimum amount of air or any increases in efficiency gained through higher operating temperature will be lost due to added load on the compressor stage. Turbine cooling schemes have traditionally been based on extensive empirical data bases, quasi-one-dimensional computational fluid dynamics (CFD) analysis, and trial and error. With improved capabilities of CFD, these traditional methods can be augmented by full three-dimensional simulations of the coolant flow to predict in detail the heat transfer and metal temperatures. Several aspects of turbine coolant flows make such application of CFD difficult, thus a highly effective CFD methodology must be used. First, high resolution of the flow field is required to attain the needed accuracy for heat transfer predictions, making highly efficient flow solvers essential for such computations. Second, the geometries of the flow passages are complicated but must be modeled accurately in order to capture all important details of the flow. This makes grid generation and grid quality important issues. Finally, since coolant flows are turbulent and separated the effects of turbulence must be modeled with a low Reynolds number

  3. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.

  4. Gravitational Effects on Near-Field Flow Structure of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Yep, Tze-Wing; Agrawal, Ajay K.; Griffin, DeVon

    2004-01-01

    Experiments were conducted in earth gravity and micro gravity to acquire quantitative data on near field flow structure of helium jets injected into air. Microgravity conditions were simulated in the 2.2 s drop tower at NASA John H. Glenn Research Center. The jet flow was observed by quantitative rainbow schlieren deflectometry, a non-intrusive line of sight measurement technique suited for the microgravity environment. The flow structure was characterized by distribution of helium mole fraction obtained from color schlieren images taken at 60 Hz. Results show that the jet in microgravity was up to 70% wider than that in Earth gravity. Experiments reveal that the global flow oscillations observed in Earth are absent in microgravity. Quantitative deatails are provided of the evolution as the experiment undergoes changes in gravity in the drop tower.

  5. Three dimensional flow field in rocket pump inducers. Part 2: Mean flow and turbulence characteristics inside the rotor passage, and theoretical analysis

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Gorton, C. A.

    1975-01-01

    The measurement and prediction is reported of three dimensional flow fields in an axial flow inducer operating at a flow coefficient of 0.065 with air as the test medium. The experimental investigations included measurements of the blade static pressure and blade limiting streamline angle, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Analytical investigations were conducted to predict the three-dimensional inviscid flow. Total relative velocity distributions indicate a substantial velocity deficiency near the tip at mid-passage. High turbulence intensities and turbulence stresses are concentrated within this core region. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects and backflows are found to exist within the long, narrow passages of the inducer, emphasizing the complex nature of inducer flow which makes accurate prediction of the flow behavior extremely difficult.

  6. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  7. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  8. Flow Driven by an Archimedean Helical Permanent Magnetic Field. Part II: Transient and Modulated Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Wang, Xiaodong; Fautrelle, Yves; Etay, Jacqueline; Na, Xianzhao; Baltaretu, Florin

    2016-12-01

    The present study considers the transient and modulated flow behaviors of liquid metal driven by a helical permanent magnetic field. The transient process, in which the fluid at rest experiences an increase in the angular velocity, is observed both in secondary and global axial flow with duration time less than 1 second. The flow fields are measured quantitatively to reveal the evolution of the transient flow, and the transient process is due to the variation of the electromagnetic force. Besides, the modulated flow behaviors of global axial flow, which is significantly different from that of secondary flow, is expected to avoid flow-induced macrosegregation in solidification process if the modulated time is suitable because its direction reversed periodically with the modulated helical stirrer. In addition, an optimal modulation frequency, under which the magnetic field could efficiently stir the solute at the solidification front, exists both in secondary and global axial flow (0.1 Hz and 0.625 Hz, respectively). Future investigations will focus on additional metallic alloy solidification experiments.

  9. Experimental Analysis of 3D Flow in Scroll Casing of Multi-Blade Fan for Air-Conditioner

    NASA Astrophysics Data System (ADS)

    Kitadume, Michio; Kawahashi, Masaaki; Hirahara, Hiroyuki; Uchida, Tadashi; Yanagawa, Hideki

    The multi-blade fan, which has been widely used as a blower for air-conditioning systems of vehicles, is one of the well-established fluid machinery. However, many factors must be considered in its practical design because the flow generated in the fan is quite complicated with three-dimensionality and unsteadiness. The fundamental fan performance is primarily determined by the impeller of the fan, and is also affected by the scroll casing. However, the theoretical estimation of the effect of the casing on the performance has not been well established. In order to estimate the casing effect on fan performance, detailed three-dimensional (3D) flow analysis in the casing is necessary. Stereoscopic PIV (SPIV) is one of the useful techniques for experimental analysis of 3D flow fields. There are some difficulties in practical application of SPIV for flow analysis in fluid machinery with complicated geometry, but the results obtained provide useful information for understanding the 3D flow field. In this report, experimental investigation of the flow in the scroll casing has been carried out using PIV and SPIV under the premise of downsizing automobile air conditioner fans.

  10. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  11. Field-effect Flow Control in Polymer Microchannel Networks

    NASA Technical Reports Server (NTRS)

    Sniadecki, Nathan; Lee, Cheng S.; Beamesderfer, Mike; DeVoe, Don L.

    2003-01-01

    A new Bio-MEMS electroosmotic flow (EOF) modulator for plastic microchannel networks has been developed. The EOF modulator uses field-effect flow control (FEFC) to adjust the zeta potential at the Parylene C microchannel wall. By setting a differential EOF pumping rate in two of the three microchannels at a T-intersection with EOF modulators, the induced pressure at the intersection generated pumping in the third, field-free microchannel. The EOF modulators are able to change the magnitude and direction of the pressure pumping by inducing either a negative or positive pressure at the intersection. The flow velocity is tracked by neutralized fluorescent microbeads in the microchannels. The proof-of-concept of the EOF modulator described here may be applied to complex plastic ,microchannel networks where individual microchannel flow rates are addressable by localized induced-pressure pumping.

  12. The mantle flow field beneath western North America.

    PubMed

    Silver, P G; Holt, W E

    2002-02-08

    Although motions at the surface of tectonic plates are well determined, the accompanying horizontal mantle flow is not. We have combined observations of surface deformation and upper mantle seismic anisotropy to estimate this flow field for western North America. We find that the mantle velocity is 5.5 +/- 1.5 centimeters per year due east in a hot spot reference frame, nearly opposite to the direction of North American plate motion (west-southwest). The flow is only weakly coupled to the motion of the surface plate, producing a small drag force. This flow field is probably due to heterogeneity in mantle density associated with the former Farallon oceanic plate beneath North America.

  13. Patterns in the sky: Natural visualization of aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Campbell, James F.; Chambers, Joseph R.

    1994-01-01

    The objective of the current publication is to present the collection of flight photographs to illustrate the types of flow patterns that were visualized and to present qualitative correlations with computational and wind tunnel results. Initially in section 2, the condensation process is discussed, including a review of relative humidity, vapor pressure, and factors which determine the presence of visible condensate. Next, outputs from computer code calculations are postprocessed by using water-vapor relationships to determine if computed values of relative humidity in the local flow field correlate with the qualitative features of the in-flight condensation patterns. The photographs are then presented in section 3 by flow type and subsequently in section 4 by aircraft type to demonstrate the variety of condensed flow fields that was visualized for a wide range of aircraft and flight maneuvers.

  14. Modelling low-Reynolds-number effects in the turbulent air flow over water waves

    NASA Astrophysics Data System (ADS)

    Meirink, Jan F.; Makin, Vladimir K.

    2000-07-01

    In studies of the turbulent air flow over water waves it is usually assumed that the effect of viscosity near the water surface is negligible, i.e. the Reynolds number, Re = u[low asterisk][lambda]/v, is considered to be high. However, for short waves or low wind speeds this assumption is not valid. Therefore, a second-order turbulence closure that takes into account viscous effects is used to simulate the air flow. The model shows reasonable agreement with laboratory measurements of wave-induced velocity profiles. Next, the dependence of the dimensionless energy flux from wind to waves, or growth rate, on Re is investigated. The growth rate of waves that are slow compared to the wind is found to increase strongly when Re decreases below 104, with a maximum around Re = 800. The numerical model predictions are in good agreement with analytical theories and laboratory observations. Results of the study are useful in field conditions for the short waves in the spectrum, which are particularly important for remote sensing applications.

  15. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  16. Propulsion efficiency and imposed flow fields of a copepod jump.

    PubMed

    Jiang, Houshuo; Kiørboe, Thomas

    2011-02-01

    Pelagic copepods jump to relocate, to attack prey and to escape predators. However, there is a price to be paid for these jumps in terms of their energy costs and the hydrodynamic signals they generate to rheotactic predators. Using observed kinematics of various types of jumps, we computed the imposed flow fields and associated energetics of jumps by means of computational fluid dynamics simulations by modeling the copepod as a self-propelled body. The computational fluid dynamics simulation was validated by particle image velocimetry data. The flow field generated by a repositioning jump quickly evolves into two counter-rotating viscous vortex rings that are near mirror image of one another, one in the wake and one around the body of the copepod; this near symmetrical flow may provide hydrodynamic camouflage because it contains no information about the position of the copepod prey within the flow structure. The flow field associated with an escape jump sequence also includes two dominant vortex structures: one leading wake vortex generated as a result of the first jump and one around the body, but between these two vortex structures is an elongated, long-lasting flow trail with flow velocity vectors pointing towards the copepod; such a flow field may inform the predator of the whereabouts of the escaping copepod prey. High Froude propulsion efficiency (0.94-0.98) was obtained for individual power stroke durations of all simulated jumps. This is unusual for small aquatic organisms but is caused by the rapidity and impulsiveness of the jump that allows only a low-cost viscous wake vortex to travel backwards.

  17. Numerical Predictions and Experimental Results of Air Flow in a Smooth Quarter-Scale Nacelle

    SciTech Connect

    BLACK, AMALIA R.; SUO-ANTTILA, JILL M.; GRITZO, LOUIS A.; DISIMILE, PETER J.; TUCKER, JAMES R.

    2002-06-01

    Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and WLCAN (a CFD-based fire field model with a Cartesian ''brick'' shaped grid). The flow conditions examined in this study correspond to the same Reynolds number as test data from the full-scale nacelle simulator at the 46 Test Wing. Pre-test simulations of a quarter-scale test fixture were performed using CFD-ACE and WLCAN prior to fabrication. Based on these pre-test simulations, a quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Post-test calculations have been performed for the conditions of the experiment and compared with experimental results obtained from the quarter-scale test fixture. In addition, several different simulations were performed to assess the sensitivity of the predictions to the grid size, to the turbulence models, and to the use of wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between WLCAN and CFD-ACE results in the angled

  18. Heat-flow mapping at the Geysers Geothermal Field

    SciTech Connect

    Thomas, R.P.

    1986-10-31

    Pertinent data were compiled for 187 temperature-gradient holes in the vicinity of The Geysers Geothermal field. Terrain-correction techniques were applied to most of the temperature-gradient data, and a temperature-gradient map was constructed. Cutting samples from 16, deep, production wells were analyzed for thermal conductivity. From these samples, the mean thermal conductivities were determined for serpentinized ultramafic rock, greenstone, and graywacke. Then, a heat flow map was made. The temperature-gradient and heat-flow maps show that The Geysers Geothermal field is part of a very large, northwesterly-trending, thermal anomaly; the commercially productive portion of the field may be 100 km/sup 2/ in area. The rate that heat energy flows through the surface by thermal conduction is estimated at 1.79 x 10/sup 9/MJ per year. The net heat energy loss from commercial production for 1983 is estimated at 180.14 x 10/sup 9/MJ.

  19. Magnetic field generation from shear flow in flux ropes

    NASA Astrophysics Data System (ADS)

    Intrator, T. P.; Sears, J.; Gao, K.; Klarenbeek, J.; Yoo, C.

    2012-10-01

    In the Reconnection Scaling Experiment (RSX) we have measured out of plane quadrupole magnetic field structure in situations where magnetic reconnection was minimal. This quadrupole out of plane magnetic signature has historically been presumed to be the smoking gun harbinger of reconnection. On the other hand, we showed that when flux ropes bounced instead of merging and reconnecting, this signature could evolve. This can follow from sheared fluid flows in the context of a generalized Ohms Law. We reconstruct a shear flow model from experimental data for flux ropes that have been experimentally well characterized in RSX as screw pinch equilibria, including plasma ion and electron flow, with self consistent profiles for magnetic field, pressure, and current density. The data can account for the quadrupole field structure.

  20. Flow field measurements in the cell culture unit.

    PubMed

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-10-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  1. Flow field measurements in the cell culture unit

    NASA Technical Reports Server (NTRS)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  2. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  3. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  4. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  5. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  6. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  7. Turbulence, flow and transport: hints from reversed field pinch

    NASA Astrophysics Data System (ADS)

    Vianello, N.; Antoni, V.; Spada, E.; Spolaore, M.; Serianni, G.; Cavazzana, R.; Bergsåker, H.; Cecconello, M.; Drake, J. R.

    2006-04-01

    The interplay between sheared E × B flows and turbulence has been experimentally investigated in the edge region of the Extrap-T2R reversed field pinch experiment. Electrostatic fluctuations are found to rule the momentum balance equation representing the main driving term for sheared flows which counterbalances anomalous viscous damping. The driving role of electrostatic fluctuations is proved by the spatial structure of the Reynolds stress and by the time behaviour of the mean energy production term which supports the existence of an energy exchange from the small scales of turbulence to the larger scales of the mean flow.

  8. Analysis of supersonic combustion flow fields with embedded subsonic regions

    NASA Technical Reports Server (NTRS)

    Dash, S.; Delguidice, P.

    1972-01-01

    The viscous characteristic analysis for supersonic chemically reacting flows was extended to include provisions for analyzing embedded subsonic regions. The numerical method developed to analyze this mixed subsonic-supersonic flow fields is described. The boundary conditions are discussed related to the supersonic-subsonic and subsonic-supersonic transition, as well as a heuristic description of several other numerical schemes for analyzing this problem. An analysis of shock waves generated either by pressure mismatch between the injected fluid and surrounding flow or by chemical heat release is also described.

  9. Turbulence in Flowing Soap Films: Velocity, Vorticity, and Thickness Fields

    SciTech Connect

    Rivera, M.; Vorobieff, P.; Ecke, R.E.

    1998-08-01

    We report experimental measurements of the velocity, vorticity, and thickness fields of turbulent flowing soap films using a modified particle-image velocimetry technique. These data yield the turbulent energy and enstrophy of the two-dimensional flows with microscale Reynolds numbers of about 100 and demonstrate the effects of compressibility arising from variations in film thickness. Despite the compressibility of the flow, real-space correlations of velocity, vorticity, and enstrophy flux are consistent with theoretical predictions for two-dimensional turbulence. {copyright} {ital 1998} {ital The American Physical Society }

  10. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  11. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  12. CFD-based aero-optical analysis of flow fields over two-dimensional cavities with active flow control

    NASA Astrophysics Data System (ADS)

    Tan, Yan

    Prediction and control of optical wave front distortions and aberrations in a high energy laser beam due to interaction with an unsteady highly non-uniform flow field is of great importance in the development of directed energy weapon systems for Unmanned Air Vehicles (UAV). The unsteady shear layer over the weapons bay cavity is the primary cause of this distortion of the optical wave front. The large scale vortical structure of the shear layer over the cavity can be significantly reduced by employing an active flow control technique combined with passive flow control. This dissertation explores various active and passive control methods to suppress the cavity oscillations and thereby improve the aero-optics of cavity flow. In active flow control technique, a steady or a pulsed jet is applied at the sharp leading edge of cavities of different aspect ratios L/D (=2, 4, 15), where L and D are the width and the depth of a cavity respectively. In the passive flow control approach, the sharp leading or trailing edge of the cavity is modified into a round edge of different radii. Both of these active and passive flow control approaches are studied independently and in combination. Numerical simulations are performed, with and without active flow control for subsonic free stream flow past two-dimensional sharp and round leading or trailing edge cavities using Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with a two-equation Shear Stress Transport (SST) turbulence model or a hybrid SST/Large Eddy Simulation (LES) model. Aero-optical analysis is developed and applied to all the simulation cases. Index of refraction and Optical Path Difference (OPD) are compared for flow fields without and with active flow control. Root-Mean-Square (RMS) value of OPD is calculated and compared with the experimental data, where available. The effect of steady and pulsed blowing on buffet loading on the downstream face of the cavity is also computed. Using the numerical

  13. High-throughput flowing upstream sperm sorting in a retarding flow field for human semen analysis.

    PubMed

    Wu, Jen-Kuei; Chen, Peng-Chun; Lin, Yu-Nan; Wang, Chia-Woei; Pan, Li-Chern; Tseng, Fan-Gang

    2017-03-13

    In this paper, we propose a microfluidic device capable of generating a retarding flow field for the sorting and separation of human motile sperm in a high-throughput manner. The proposed sorting/separation process begins with a rapid flow field in a straight-flow zone to carry sperm into a sorting zone to maintain the sperm's mobility. The sorting zone consists of a diffuser-type sperm sorter to differentiate sperm with different motilities based on the flowing upstream nature of human sperm in a retarding flow field. The dead sperm will then be separated from the live ones by passing through a dumbbell flow field to the outlet for disposal. The proposed flowing upstream sperm sorter (FUSS) is designed to imitate the selection mechanism found in the female body when sperm swim into the uterus. The experimental results demonstrate the utility of this device with regard to throughput (approximately 200 000 sperm per minute and a maximum of 200 million cells per mL), efficiency (90% of selected sperm are mobile), and the ability to select sperm with high motility (∼20% of sperm with a velocity exceeding 120 μm s(-1)). The proposed device is suitable for intrauterine insemination as well as in vitro fertilization thanks to the highly efficient sorting process not interfering with the natural function and energy resource of human sperm.

  14. Vehicular air pollution, playgrounds, and youth athletic fields.

    PubMed

    Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri

    2006-07-01

    In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.

  15. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  16. Fine coal flotation in a centrifugal field with an air sparged hydrocyclone

    SciTech Connect

    Miller, J.D.; van Camp, M.C.

    1982-11-01

    Preliminary results are reported for the design and development of a pilot-scale air-sparged hydrocyclone for cleaning fine coal (590 ..mu..m, - 28 mesh) containing 24% ash and 1.6% sulphur. The principle of separation is the flotation of hydrophobic coal particles in the centrifugal field generated by the fluid flow in the air-sparged hydrocyclone. This 152 mm hydrocyclone has a nominal capacity of 0.9 ton/h, and experimental results suggest that separations vastly superior to a water-only cyclone are possible. In addition, the separation efficiency is as good, if not better, than that achieved with conventional flotation cells. Typical results indicate that 75% clean coal can be recovered at 15% ash leaving a tailing product of almost 50% ash.

  17. Laboratory Observation Of Magnetic Field Growth Driven By Shear Flow

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sun, X.; Dorf, L.; Sears, J.; Weber, T.; Lapenta, G.

    2012-12-01

    We have measured in the laboratory profiles of magnetic flux ropes, that include ion flow, magnetic field, current density, and plasma pressure. These data allow a complete screw pinch equilibrium with guide magnetic field to be reconstructed, and the electron flows to be inferred. We use this information to evaluate the Hall JxB term in a two fluid magnetohydrodynamic Ohms Law. The difference between ion and electron flows allows us to show experimentally and theoretically that the sheared electron flows can account for the generation of magnetic field. For example we show a measured quadrupole out of plane magnetic field B_z structure that occurs even in the absence of magnetic reconnection. This out of plane quadrupole pattern has historically been used as a signature of magnetic reconnection, especially with small to vanishing guide field. Recent theoretical analyses have pointed out that this presumption need not be true. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  18. A novel approach to improve operation and performance in flow field-flow fractionation.

    PubMed

    Johann, Christoph; Elsenberg, Stephan; Roesch, Ulrich; Rambaldi, Diana C; Zattoni, Andrea; Reschiglian, Pierluigi

    2011-07-08

    A new system design and setup are proposed for the combined use of asymmetrical flow field-flow fractionation (AF4) and hollow-fiber flow field-flow fractionation (HF5) within the same instrumentation. To this purpose, three innovations are presented: (a) a new flow control scheme where focusing flow rates are measured in real time allowing to adjust the flow rate ratio as desired; (b) a new HF5 channel design consisting of two sets of ferrule, gasket and cap nut used to mount the fiber inside a tube. This design provides a mechanism for effective and straightforward sealing of the fiber; (c) a new AF4 channel design with only two fluid connections on the upper plate. Only one pump is needed to deliver the necessary flow rates. In the focusing/relaxation step the two parts of the focusing flow and a bypass flow flushing the detectors are created with two splits of the flow from the pump. In the elution mode the cross-flow is measured and controlled with a flow controller device. This leads to reduced pressure pulsations in the channel and improves signal to noise ratio in the detectors. Experimental results of the separation of bovine serum albumin (BSA) and of a mix of four proteins demonstrate a significant improvement in the HF5 separation performance, in terms of efficiency, resolution, and run-to-run reproducibility compared to what has been reported in the literature. Separation performance in HF5 mode is shown to be comparable to the performance in AF4 mode using a channel with two connections in the upper plate.

  19. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  20. Penn State axial flow turbine facility: Performance and nozzle flow field

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Zaccaria, M.; Itoh, S.

    1991-01-01

    The objective is to gain a thorough understanding of the flow field in a turbine stage including three-dimensional inviscid and viscid effects, unsteady flow field, rotor-stator interaction effects, unsteady blade pressures, shear stress, and velocity field in rotor passages. The performance of the turbine facility at the design condition is measured and compared with the design distribution. The data on the nozzle vane static pressure and wake characteristics are presented and interpreted. The wakes are found to be highly three-dimensional, with substantial radial inward velocity at most spanwise locations.

  1. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  2. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  3. Air Vehicles Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2005-3060 AIR VEHICLES TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020 : Prediction Of... Technology Integration Program (AVTIP) 5b. GRANT NUMBER Delivery Order 0020 : Prediction Of Manufacturing Tolerances For Laminar Flow 5c. PROGRAM

  4. Numerical simulations of turbulent flow fields caused by spraying of water on large releases of hydrogen fluoride

    SciTech Connect

    Fthenakis, V.M. ); Schatz, K.W. )

    1991-05-01

    The effectiveness of water sprays in absorbing HF releases was recently demonstrated in extended laboratory and field tests. In this paper, computer simulations are presented of the Hawk, Nevada Test Site, series of field tests. The model used, HFSPRAY, is a Eulerean/Lagrangian model which simulates the momentum, mass and energy interactions between a water spray and a turbulent plume of HF in air; the model can predict the flow velocities, temperature, water vapor, and HF concentration fields in two-dimensional large- geometries for spraying in any direction, (i.e., down-flow, inclined-down-flow, up-flow, and co-current horizontal flow). The model was validated against recent data on spraying of water on large releases of HF. 17 refs., 11 figs., 4 tabs.

  5. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    SciTech Connect

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points over a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.

  6. Fiber optic distributed temperature sensor mapping of a jet-mixing flow field

    DOE PAGES

    Lomperski, Stephen; Gerardi, Craig; Pointer, William David

    2015-03-04

    In this paper, we introduce the use of a Rayleigh backscatter-based distributed fiber optic sensor to map the temperature field in air flow for a thermal fatigue application. The experiment involves a pair of air jets at 22 and 70°C discharging from 136 mm hexagonal channels into a 1 × 1 × 1.7 m tank at atmospheric pressure. A 40 m-long, Φ155 µm fiber optic sensor was wound back and forth across the tank midplane to form 16 horizontal measurement sections with a vertical spacing of 51 mm. This configuration generated a 2D temperature map with 2800 data points overmore » a 0.76 × 1.7 m plane. Fiber optic sensor readings were combined with PIV and infrared measurements to relate flow field characteristics to the thermal signature of the tank lid. The paper includes sensor stability data and notes issues encountered using the distributed temperature sensor in a flow field. In conclusion, sensors are sensitive to strain and humidity, and so accuracy relies upon strict control of both.« less

  7. Computational Analysis of Flow Field Inside Coral Colony

    NASA Astrophysics Data System (ADS)

    Hossain, Md Monir; Staples, Anne

    2015-11-01

    Development of the flow field inside coral colonies is a key issue for understanding coral natural uptake, photosynthesis and wave dissipation capabilities. But most of the computations and experiments conducted earlier, measured the flow outside the coral reef canopies. Experimental studies are also constrained due to the limitation of measurement techniques and limited environmental conditions. Numerical simulations can be an answer to overcome these shortcomings. In this work, a detailed, three-dimensional simulation of flow around a single coral colony was developed to examine the interaction between coral geometry and hydrodynamics. To simplify grid generation and minimize computational cost, Immersed Boundary method (IBM) was implemented. The computation of IBM involves identification of the interface between the solid body and the fluid, establishment of the grid/interface relation and identification of the forcing points on the grid and distribution of the forcing function on the corresponding points. LES was chosen as the framework to capture the turbulent flow field without requiring extensive modeling. The results presented will give insight into internal coral colony flow fields and the interaction between coral and surrounding ocean hydrodynamics.

  8. Evaluation of ground-water flow by particle tracking, Wright-Patterson Air Force Base, Ohio

    USGS Publications Warehouse

    Cunningham, W.L.; Sheets, R.A.; Schalk, C.W.

    1994-01-01

    The U.S. Geological Survey (USGS) and Wright-Patterson Air Force Base (WPAFB) began a Basewide Monitoring Program (BMP) in 1992. The purpose of the BMP was to establish a long-term ground-water and surface- water sampling network in order to (1) characterize current ground-water and surface-water quality; (2) describe water-quality changes as water enters, flows across, and exits Base boundaries; (3) conduct statistical analyses of water quality; and (4) estimate the effect of WPAFB on regional water quality. As part of the BMP, the USGS conducted ground-water particle-tracking analyses based on a ground-water-flow model produced during a previous USGS study. This report briefly describes the previous USGS study, the inherent assumptions of particle-tracking analyses, and information on the regional ground-water-flow field as inferred from particle pathlines. Pathlines for particles placed at the Base boundary and particles placed within identified Installation Restoration Program sites are described.

  9. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  10. Rapid Numerical Simulation of Viscous Axisymmetric Flow Fields

    NASA Technical Reports Server (NTRS)

    Tweedt, Daniel L.; Chima, Rodrick V.

    1995-01-01

    A two-dimensional Navier-Stokes code has been developed for rapid numerical simulation of axisymmetric flow fields, including flow fields with an azimuthal velocity component. The azimuthal-invariant Navier-Stokes equations in a cylindrical coordinate system are mapped to a general body-fitted coordinate system, with the streamwise viscous terms then neglected by applying the thin-layer approximation. Turbulence effects are modeled using an algebraic model, typically the Baldwin-Lomax turbulence model, although a modified Cebeci-Smith model can also be used. The equations are discretized using central finite differences and solved using a multistage Runge-Kutta algorithm with a spatially varying time step and implicit residual smoothing. Results are presented for calculations of supersonic flow over a waisted body-of-revolution, transonic flow through a normal shock wave in a straight circular duct of constant cross sectional area, swirling supersonic (inviscid) flow through a strong shock in a straight radial duct, and swirling subsonic flow in an annular-to-circular diffuser duct. Comparisons between computed and experimental results are in fair to good agreement, demonstrating that the viscous code can be a useful tool for practical engineering design and analysis work.

  11. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    PubMed

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  12. Effect of an electric field on the stability of contaminated film flow down an inclined plane

    NASA Astrophysics Data System (ADS)

    Blyth, M. G.

    The stability of a liquid film flowing down an inclined plane is considered when the film is contaminated by an insoluble surfactant and subjected to a uniform normal electric field. The liquid is treated as a perfect conductor and the air above the film is treated as a perfect dielectric. Previous studies have shown that, when acting in isolation, surfactant has a stabilizing influence on the flow while an electric field has a destabilizing influence. The competition between these two effects is the focus of the present study. The linear stability problem is formulated and solved at arbitrary parameter values. An extended form of Squire's theorem is presented to argue that attention may be confined to two-dimensional disturbances. The stability characteristics for Stokes flow are described exactly; the growth rates of the normal modes at finite Reynolds number are computed numerically. We plot the neutral curves dividing regions of stability and instability, and trace how the topology of the curves changes as the intensity of the electric field varies both for a clean and for a contaminated film. With a sufficiently strong electric field, the neutral curve for a clean film consists of a lower branch trapping an area of stable modes around the origin, and an upper branch above which the flow is stable. With surfactant present, a similar situation obtains, but with an additional island of stable modes disjoint from the upper and lower branches.

  13. Analytical solutions for flow fields near continuous wall reactive barriers

    NASA Astrophysics Data System (ADS)

    Klammler, Harald; Hatfield, Kirk

    2008-05-01

    Permeable reactive barriers (PRBs) are widely applied for in-situ remediation of contaminant plumes transported by groundwater. Besides the goal of a sufficient contaminant remediation inside the reactive cell (residence time) the width of plume intercepted by a PRB is of critical concern. A 2-dimensional analytical approach is applied to determine the flow fields towards rectangular PRBs of the continuous wall (CW) configuration with and without impermeable side walls (but yet no funnel). The approach is based on the conformal mapping technique and assumes a homogeneous aquifer with a uniform ambient flow field. The hydraulic conductivity of the reactive material is furthermore assumed to exceed the conductivity of the aquifer by at least one order of magnitude as to neglect the hydraulic gradient across the reactor. The flow fields are analyzed regarding the widths and shapes of the respective capture zones as functions of the dimensions (aspect ratio) of the reactive cell and the ambient groundwater flow direction. Presented are an improved characterization of the advantages of impermeable side walls, a convenient approach to improved hydraulic design (including basic cost-optimization) and new concepts for monitoring CW PRBs. Water level data from a CW PRB at the Seneca Army Depot site, NY, are used for field demonstration.

  14. Computational analysis of hypersonic airbreathing aircraft flow fields

    NASA Technical Reports Server (NTRS)

    Dwoyer, Douglas L.; Kumar, Ajay

    1987-01-01

    The general problem of calculating the flow fields associated with hypersonic airbreathing aircraft is presented. Unique aspects of hypersonic aircraft aerodynamics are introduced and their demands on computational fluid dynamics are outlined. Example calculations associated with inlet/forebody integration and hypersonic nozzle design are presented to illustrate the nature of the problems considered.

  15. Field Operations and Enforcement Manual for Air Pollution Control. Volume I: Organization and Basic Procedures.

    ERIC Educational Resources Information Center

    Weisburd, Melvin I.

    The Field Operations and Enforcement Manual for Air Pollution Control, Volume I, explains in detail the following: sources and classification of pollutants; meteorological influence on air quality; the air pollution control agency; the field enforcement officer; the enforcement process; prosecuting violation; and inspection techniques including…

  16. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    PubMed

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant.

  17. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  18. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  19. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  20. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  1. Near-field dispersal modeling for liquid fuel-air explosives

    SciTech Connect

    Gardner, D.R.

    1990-07-01

    The near-field, explosive dispersal of a liquid into air has been explored using a combination of analytical and numerical models. The near-field flow regime is transient, existing only as long as the explosive forces produced by the detonation of the burster charge dominate or are approximately equal in magnitude to the aerodynamic drag forces on the liquid. The near-field model provides reasonable initial conditions for the far-field model, which is described in a separate report. The near-field model consists of the CTH hydrodynamics code and a film instability model. In particular, the CTH hydrodynamics code is used to provide initial temperature, pressure, and velocity fields, and bulk material distribution for the far-field model. The film instability model is a linear stability model for a radially expanding fluid film, and is used to provide a lower bound on the breakup time and an upper and lower bound on the initial average drop diameter for the liquid following breakup. Predictions of the liquid breakup time and the initial arithmetic average drop diameter from the model compare favorably with the sparse experimental data. 26 refs., 20 figs., 8 tabs.

  2. On the flow field about an electrophoretic particle

    NASA Astrophysics Data System (ADS)

    Orsini, Gabriele; Tricoli, Vincenzo

    2012-10-01

    The flow field about an electrophoretic body is theoretically investigated by analytical methods. An effective boundary condition for the electric potential at particle surface is derived. This condition, which generalizes the one obtained by Levich [Physicochemical Hydrodynamics (Prentice-Hall, Englewood Cliffs, 1962), Chap. 9, p. 475], captures the effect of (convective and electromigratory) surface current in the Debye layer and is valid as far as it is legitimate to neglect ion-concentration gradient in the bulk liquid. Conditions for negligible concentration gradients are also presented and discussed. The effect of surface current determines a deviation from Morrison's "classical" theory, which predicts irrotational flow-field for any particle shape with electrophoretic velocity given by the well-known Smoluchowski formula and always directed along the applied electric field. It is shown here that in the presence of the above effect the irrotationality of the flow field is not preserved if the particle surface has non-uniform curvature. However, irrotational flow-field still subsists for a sphere and a cylinder and is analytically determined in terms of a new non-dimensional parameter, referred to as the electrophoretic number. The case of spheroidal objects is also examined in detail. In this case the flow field, though not strictly irrotational, is shown to be nearly approximated by an irrotational flow-field, which is also determined over wide ranges of electrophoretic number and spheroid aspect ratio. The quality of this approximation is expressed as a relative error on the Helmholtz-Smoluchowski condition and numerically evaluated both in longitudinal and transverse configuration. The limiting cases of spheroid degenerating into a needle and a disk are also addressed. In all above cases the respective mobilities deviate from Smoluchowski's formula and depend on the electrophoretic number. An important effect of surface ion-transport in the double layer is

  3. Mean-field dynamo action in renovating shearing flows.

    PubMed

    Kolekar, Sanved; Subramanian, Kandaswamy; Sridhar, S

    2012-08-01

    We study mean-field dynamo action in renovating flows with finite and nonzero correlation time (τ) in the presence of shear. Previous results obtained when shear was absent are generalized to the case with shear. The question of whether the mean magnetic field can grow in the presence of shear and nonhelical turbulence, as seen in numerical simulations, is examined. We show in a general manner that, if the motions are strictly nonhelical, then such mean-field dynamo action is not possible. This result is not limited to low (fluid or magnetic) Reynolds numbers nor does it use any closure approximation; it only assumes that the flow renovates itself after each time interval τ. Specifying to a particular form of the renovating flow with helicity, we recover the standard dispersion relation of the α(2)Ω dynamo, in the small τ or large wavelength limit. Thus mean fields grow even in the presence of rapidly growing fluctuations, surprisingly, in a manner predicted by the standard quasilinear closure, even though such a closure is not strictly justified. Our work also suggests the possibility of obtaining mean-field dynamo growth in the presence of helicity fluctuations, although having a coherent helicity will be more efficient.

  4. Drop Breakup in Fixed Bed Flows as Model Stochastic Flow Fields

    NASA Technical Reports Server (NTRS)

    Shaqfeh, Eric S. G.; Mosler, Alisa B.; Patel, Prateek

    1999-01-01

    We examine drop breakup in a class of stochastic flow fields as a model for the flow through fixed fiber beds and to elucidate the general mechanisms whereby drops breakup in disordered, Lagrangian unsteady flows. Our study consists of two parallel streams of investigation. First, large scale numerical simulations of drop breakup in a class of anisotropic Gaussian fields will be presented. These fields are generated spectrally and have been shown in a previous publication to be exact representations of the flow in a dilute disordered bed of fibers if close interactions between the fibers and the drops are dynamically unimportant. In these simulations the drop shape is represented by second and third order small deformation theories which have been shown to be excellent for the prediction of drop breakup in steady strong flows. We show via these simulations that the mechanisms of drop breakup in these flows are quite different than in steady flows. The predominant mechanism of breakup appears to be very short lived twist breakups. Moreover, the occurrence of breakup events is poorly predicted by either the strength of the local flow in which the drop finds itself at breakup, or the degree of deformation that the drop achieves prior to breakup. It is suggested that a correlation function of both is necessary to be predictive of breakup events. In the second part of our research experiments are presented where the drop deformation and breakup in PDMS/polyisobutylene emulsions is considered. We consider very dilute emulsions such that coalescence is unimportant. The flows considered are simple shear and the flow through fixed fiber beds. Turbidity, small angle light scattering, dichroism and microscopy are used to interrogate the drop deformation process in both flows. It is demonstrated that breakup at very low capillary numbers occurs in both flows but larger drop deformation occurs in the fixed bed flow. Moreover, it is witnessed that breakup in the bed occurs

  5. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  6. Field Test of Room-to-Room Uniformity of Ventilation Air Distribution in Two New Houses

    SciTech Connect

    Hendron, Robert; Anderson, Ren; Barley, Dennis; Rudd, Armin; Townsend, Aaron; Hancock, Ed

    2006-12-01

    This report describes a field test to characterize the uniformity of room-to-room ventilation air distribution under various operating conditions by examining multi-zone tracer gas decay curves and calculating local age-of-air.

  7. Mantle flow field in the southern Ryukyu subduction system

    NASA Astrophysics Data System (ADS)

    Lin, S.; Kuo, B.

    2012-12-01

    The Okinawa trough in the Ryukyu subduction system is the only active back arc basin formed within a continental lithosphere. Recent shear-wave splitting measurements show variable fast directions along the trough suggesting complex three-dimensional flow field in the mantle wedge. In this study we use numerical subduction models to explore the effects of plate thickness variations caused by non-uniform lithospheric stretching on the dynamics in the southern Ryukyu subduction system. We calculate orientations of infinite strain axes as a proxy for olivine lattice preferred orientations and orientations of seismic anisotropy. Our models demonstrate that flow patterns may vary significantly with depth near the plate edge as a result of the along-arc variations in lithospheric thickness. The model results show that the toroidal circulation around the lateral slab edge predominates at greater depths. The thick neighboring lithosphere acts as an effective barrier of the lateral mass exchanges in the shallow portion of the mantle wedge. The wedge material is drawn in horizontally toward the plate edge from the central region of the subduction zone induced by pressure gradients, opposite to the inwards lateral flow at greater depths. Model predictions for the lattice preferred orientations of olivine aggregates agree reasonably well with the observed shear-wave splitting patterns. The results suggest that the depth-varying flow field near the subduction zone edge and the westward flow components in the shallow portion of the mantle wedge may contribute to complex patterns of seismic anisotropy and arc isotopic systematics.

  8. Navier-Stokes Flow Field Analysis of Compressible Flow in a Pressure Relief Valve

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Wang, Ten-See; Shih, Ming-Hsin; Soni, Bharat K.

    1993-01-01

    The present study was motivated to analyze the complex flow field involving gaseous oxygen (GOX) flow in a relief valve (RV). The 9391 RV, pictured in Figure 1, was combined with the pilot valve to regulate the actuation pressure of the main valve system. During a high-pressure flow test at Marshall Space Flight Center (MSFC) the valve system developed a resonance chatter, which destroyed most of the valve body. Figures 2-4 show the valve body before and after accident. It was understood that the subject RV has never been operated at 5500 psia. In order to fully understand the flow behavior in the RV, a computational fluid dynamics (CFD) analysis is carried out to investigate the side load across the piston sleeve and the erosion patterns resulting from flow distribution around piston/nozzle interface.

  9. Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.

    PubMed

    Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D

    2017-04-01

    Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.

  10. Path planning in uncertain flow fields using ensemble method

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Le Maître, Olivier P.; Hoteit, Ibrahim; Knio, Omar M.

    2016-10-01

    An ensemble-based approach is developed to conduct optimal path planning in unsteady ocean currents under uncertainty. We focus our attention on two-dimensional steady and unsteady uncertain flows, and adopt a sampling methodology that is well suited to operational forecasts, where an ensemble of deterministic predictions is used to model and quantify uncertainty. In an operational setting, much about dynamics, topography, and forcing of the ocean environment is uncertain. To address this uncertainty, the flow field is parametrized using a finite number of independent canonical random variables with known densities, and the ensemble is generated by sampling these variables. For each of the resulting realizations of the uncertain current field, we predict the path that minimizes the travel time by solving a boundary value problem (BVP), based on the Pontryagin maximum principle. A family of backward-in-time trajectories starting at the end position is used to generate suitable initial values for the BVP solver. This allows us to examine and analyze the performance of the sampling strategy and to develop insight into extensions dealing with general circulation ocean models. In particular, the ensemble method enables us to perform a statistical analysis of travel times and consequently develop a path planning approach that accounts for these statistics. The proposed methodology is tested for a number of scenarios. We first validate our algorithms by reproducing simple canonical solutions, and then demonstrate our approach in more complex flow fields, including idealized, steady and unsteady double-gyre flows.

  11. Time-to-Passage Judgments in Nonconstant Optical Flow Fields

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Hecht, Heiko

    1995-01-01

    The time until an approaching object will pass an observer (time to passage, or TTP) is optically specified by a global flow field even in the absence of local expansion or size cues. Kaiser and Mowafy have demonstrated that observers are in fact sensitive to this global flow information. The present studies investigate two factors that are usually ignored in work related to TTP: (1) non-constant motion functions and (2) concomitant eye rotation. Non-constant velocities violate an assumption of some TTP derivations, and eye rotations may complicate heading extraction. Such factors have practical significance, for example, in the case of a pilot accelerating an aircraft or executing a roll. In our studies, a flow field of constant-sized stars was presented monocularly on a large screen. TIP judgments had to be made on the basis of one target star. The flow field varied in its acceleration pattern and its roll component. Observers did not appear to utilize acceleration information. In particular, TTP with decelerating motion were consistently underestimated. TTP judgments were fairly robust with respect to roll, even when roll axis and track vector were decoupled. However, substantial decoupling between heading and track vector led to a decrement in performance, in both the presence and the absence of roll.

  12. Laboratory Observation of Magnetic Field Growth Driven by Shear Flow

    NASA Astrophysics Data System (ADS)

    Intrator, Thomas; Dorf, L.; Sun, X.; Sears, J.; Weber, T.; Feng, Y.

    2013-04-01

    We have measured in the laboratory profiles of magnetic flux ropes, that include ion flow, magnetic field, current density, and plasma pressure. The electron flows v_e can therefore be inferred, and we use this information to evaluate the Hall J × B term in a two fluid magnetohydrodynamic Ohm’s Law. Mutually attracted and compressed flux ropes break the cylindrical symmetry. This simple and coherent example of shear flow supports magnetic field growth corresponding to non vanishing curl × v_e × B. In the absence of magnetic reconnection we measure and predict a quadrupole out of plane magnetic field δBz, even though this has historically been invoked to be the signature of Hall magnetic reconnection. This provides a natural and general mechanism for large scale sheared flows to acquire smaller scale magnetic features, disordered structure, and possibly turbulence. *Supported by DOE Office of Fusion Energy Sciences under LANS contract DE-AC52-06NA25369, NASA Geospace NNHIOA044I, Basic

  13. Investigations of Internal Flow Fields of Constant-Area Mixing-Tubes under Starting-Limit Conditions

    NASA Astrophysics Data System (ADS)

    Kitamura, Eijiro; Tomioka, Sadatake; Sakuranaka, Noboru; Watanabe, Syuichi; Masuya, Goro

    Flow fields in the constant-area mixing tubes of ejector jets were investigated under the starting-limit conditions of an aerodynamic choking mode by performing numerical simulations and cold flow experiments. Pressure recovery was almost completed in the shock-train region. The length of the shock-train region (Lst) was measured under various conditions. Lst was proportional to the mass flow rate ratio of the secondary flow to the primary flow when this ratio was less than 0.15. On the other hand, Lst became almost constant when the mass flow rate ratio exceeded 0.15. Numerical studies showed that this change was caused by the difference in the mechanism of the flow fields. In the cases with low air mass flow rates, the primary and secondary flows almost mixed in a region between the inlets of the mixing tubes and the choking points. The pressure was recovered by a pseudo-shock-wave generated downstream of the choking point. On the other hand, when the mass flow rate ratio was higher than 0.15, the primary and secondary flows were clearly separated at the choking point. The pressure recovery was achieved by the mixing between the primary and secondary flows downstream of the choking point.

  14. A kinematic investigation of the influence of anvil air flow over convective nephsystems on high-level horizontal flow

    NASA Technical Reports Server (NTRS)

    Balogun, E. E.

    1977-01-01

    The interactions between horizontal ambient flow and divergent wind fields, such as those that obtain atop cumulonimbus complexes, were investigated (theoretically) kinematically. The following were observed from the results of the analyses. First, for a particular divergent field, the relative mass flux over the area of the nephsystem decreased as the strength of the horizontal flow increased. Secondly, while in some of the cases analyzed the interaction between the two flows only resulted in the fanning out of streamlines and a slight redistribution in the wind speed, in many cases backflows and a total reorganization of the wind field occurred. Backflows have a blocking effect on the horizontal flow. Some of the computed patterns were compared with upper level cloud vectors (from geostationary satellite photographs). The comparison indicated that the computed resultant wind field could be used to explain some features of such satellite-derived wind fields.

  15. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  16. Origin and Control of the Flow Structure on Unmanned Combat Air Vehicle

    DTIC Science & Technology

    2007-12-01

    Prescrtbed by ANSI Ski Z3S.18 AFOSR Final Repot 013108 ORIGIN AND CONTROL OF THE FLOW STRUCTURE ON UNMANNED COMBAT AIR VEHICLES AFOSR GRANT #FA9550-05...1991) described low-dimensional models for flows past a grooved channel and circular cylinders. By employing a Galerkin method, a governing partial

  17. Comparison of Orbiter PRCS Plume Flow Fields Using CFD and Modified Source Flow Codes

    NASA Technical Reports Server (NTRS)

    Rochelle, Wm. C.; Kinsey, Robin E.; Reid, Ethan A.; Stuart, Phillip C.; Lumpkin, Forrest E.

    1997-01-01

    The Space Shuttle Orbiter will use Reaction Control System (RCS) jets for docking with the planned International Space Station (ISS). During approach and backout maneuvers, plumes from these jets could cause high pressure, heating, and thermal loads on ISS components. The object of this paper is to present comparisons of RCS plume flow fields used to calculate these ISS environments. Because of the complexities of 3-D plumes with variable scarf-angle and multi-jet combinations, NASA/JSC developed a plume flow-field methodology for all of these Orbiter jets. The RCS Plume Model (RPM), which includes effects of scarfed nozzles and dual jets, was developed as a modified source-flow engineering tool to rapidly generate plume properties and impingement environments on ISS components. This paper presents flow-field properties from four PRCS jets: F3U low scarf-angle single jet, F3F high scarf-angle single jet, DTU zero scarf-angle dual jet, and F1F/F2F high scarf-angle dual jet. The RPM results compared well with plume flow fields using four CFD programs: General Aerodynamic Simulation Program (GASP), Cartesian (CART), Unified Solution Algorithm (USA), and Reacting and Multi-phase Program (RAMP). Good comparisons of predicted pressures are shown with STS 64 Shuttle Plume Impingement Flight Experiment (SPIFEX) data.

  18. Performance enhancement of iron-chromium redox flow batteries by employing interdigitated flow fields

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; Zeng, L.; Yan, X. H.; Zhao, T. S.

    2016-09-01

    The catalyst for the negative electrode of iron-chromium redox flow batteries (ICRFBs) is commonly prepared by adding a small amount of Bi3+ ions in the electrolyte and synchronously electrodepositing metallic particles onto the electrode surface at the beginning of charge process. Achieving a uniform catalyst distribution in the porous electrode, which is closely related to the flow field design, is critically important to improve the ICRFB performance. In this work, the effects of flow field designs on catalyst electrodeposition and battery performance are investigated. It is found that compared to the serpentine flow field (SFF) design, the interdigitated flow field (IFF) forces the electrolyte through the porous electrode between the neighboring channels and enhances species transport during the processes of both the catalyst electrodeposition and iron/chromium redox reactions, thus enabling a more uniform catalyst distribution and higher mass transport limitation. It is further demonstrated that the energy efficiency of the ICRFB with the IFF reaches 80.7% at a high current density (320 mA cm-2), which is 8.2% higher than that of the ICRFB with the SFF. With such a high performance and intrinsically low-cost active materials, the ICRFB with the IFF offers a great promise for large-scale energy storage.

  19. Flow field around a sphere colliding against a wall.

    NASA Astrophysics Data System (ADS)

    Zenit, R.; Hunt, M. L.

    1998-11-01

    This study investigates the flow field and the fluid agitation generated by particle collisions. The motion of a particle towards a wall, or towards another particle, will result in a collision if the Reynolds number of the flow is large. As the particle approaches the wall, the fluid in the gap between the particle and the wall will be displaced. When the particle touches the wall and rebounds, the direction of the flow will reverse. This process produces a considerable agitation in the fluid phase. To study this process an immersed pendulum experiment was built to produce controlled collisions of particles. A fine string is attached to a particle, which is positioned at rest from some initial angle. Once released, the particle accelerates towards a wall, or to another suspended particle, resulting in a collision. The fluid is seeded with neutrally buoyant micro-spheres, which illuminated by a laser sheet serve as flow tracers. The motion of the particles and tracers is recorded using a high speed digital camera. The images are digitally processed to calculate displacements and velocities for different times before and after the collision. Flow fields are obtained for different impact velocities, particle diameters and solid-fluid density ratios, as well as for particle-wall and particle-particle collisions. Preliminary results show that for the flow conditions tested, the rebound of the particle is dependent on the shape of the wake behind the particle at the moment of collision, and not only on the flow in the gap between the particle and the wall. The amount of collision-generated agitation appears to increase with impact velocity and density ratio.

  20. Flow Web: a graph based user interface for 3D flow field exploration

    NASA Astrophysics Data System (ADS)

    Xu, Lijie; Shen, Han-Wei

    2010-01-01

    While there have been intensive efforts in developing better 3D flow visualization techniques, little attention has been paid to the design of better user interfaces and more effective data exploration work flow. In this paper, we propose a novel graph-based user interface called Flow Web to enable more systematic explorations of 3D flow data. The Flow Web is a node-link graph that is constructed to highlight the essential flow structures where a node represents a region in the field and a link connects two nodes if there exist particles traveling between the regions. The direction of an edge implies the flow path, and the weight of an edge indicates the number of particles traveling through the connected nodes. Hierarchical flow webs are created by splitting or merging nodes and edges to allow for easy understanding of the underlying flow structures. To draw the Flow Web, we adopt force based graph drawing algorithms to minimize edge crossings, and use a hierarchical layout to facilitate the study of flow patterns step by step. The Flow Web also supports user queries to the properties of nodes and links. Examples of the queries for node properties include the degrees, complexity, and some associated physical attributes such as velocity magnitude. Queries for edges include weights, flow path lengths, existence of circles and so on. It is also possible to combine multiple queries using operators such as and , or, not. The FlowWeb supports several types of user interactions. For instance, the user can select nodes from the subgraph returned by a query and inspect the nodes with more details at different levels of detail. There are multiple advantages of using the graph-based user interface. One is that the user can identify regions of interest much more easily since, unlike inspecting 3D regions, there is very little occlusion. It is also much more convenient for the user to query statistical information about the nodes and links at different levels of detail. With

  1. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  2. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  3. Control of turbulent boundary layer through air blowing due to external-flow resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-07-01

    The possibility to control turbulent incompressible boundary layer using air blowing through a finely perforated wall presenting part of the streamlined flat-plate surface was examined. The control was exercised via an action on the state and characteristics of the near-wall flow exerted by controlled (through variation of external-pressure-flow velocity) blowing of air through an air intake installed on the idle side of the plate. A stable reduction of the local values of skin friction coefficient along the model, reaching 50 % at the end of the perforated area, has been demonstrated. The obtained experimental and calculated data are indicative of a possibility to model the process of turbulentboundary-layer control by air blowing due to external-flow resources.

  4. Impact of melting snow on the valley flow field and precipitation phase transition

    NASA Astrophysics Data System (ADS)

    Thériault, Julie M.; Milbrandt, Jason A.; Doyle, Jonathan; Minder, Justin R.; Thompson, Gregory; Sarkadi, Noemi; Geresdi, Istvan

    2015-04-01

    The prediction of precipitation phase and intensity in complex terrain is challenging when the surface temperature is near 0 °C. In calm weather conditions, melting snow often leads to a 0 °C-isothermal layer. The temperature feedback from melting snow generates cold dense air moving downslope, hence altering the dynamics of the storm. A correlation has been commonly observed between the direction of the valley flow and the precipitation phase transition in complex terrain. This study examines the impact of temperature feedback from melting snow on the direction of the valley flow when the temperature is near 0 °C. Semi-idealized two-dimensional simulations using the Weather Research and Forecasting model were conducted for a case of moderate precipitation in the Pacific Coast Ranges. The results demonstrate that the temperature feedbacks caused by melting snow affect the direction of the flow in valleys. Several microphysics schemes (1-moment bulk, 2-moment bulk, and bin), which parameterize snow in different ways, all produced a valley flow reversal but at different rates. Experiments examining sensitivity to the initial prescribed snow mixing ratio aloft were conducted to study the threshold precipitation at which this change in the direction of the valley flow field can occur. All prescribed snow fields produced a change in the valley wind velocity but with different timings. Finally, the evolution of the rain-snow boundary with the different snowfields was also studied and compared with the evolution of the wind speed near the surface. It was found that the change in the direction of the valley flow occurs after the 0 °C isotherm reaches the base of the mountain. Overall this study showed the importance to account for the latent heat exchange from melting snow. This weak temperature feedback can impact, in some specific weather conditions, the valley flow field in a mountainous area.

  5. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    NASA Technical Reports Server (NTRS)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  6. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  7. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  8. Field measurement of basal forces generated by erosive debris flows

    USGS Publications Warehouse

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  9. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  10. Air Ejector Pumping Enhancement Through Pulsing Primary Flow

    DTIC Science & Technology

    2005-12-01

    CFD ) analysis show that pulsing the primary jet flow, an active metho of flow control, improved ejector performance. The physics of this improvement...without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis show that pulsing the...other shapes. A tube without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis

  11. Field calibration of polyurethane foam (PUF) disk passive air samplers for PCBs and OC pesticides.

    PubMed

    Chaemfa, Chakra; Barber, Jonathan L; Gocht, Tilman; Harner, Tom; Holoubek, Ivan; Klanova, Jana; Jones, Kevin C

    2008-12-01

    Different passive air sampler (PAS) strategies have been developed for sampling in remote areas and for cost-effective simultaneous spatial mapping of POPs (persistent organic pollutants) over differing geographical scales. The polyurethane foam (PUF) disk-based PAS is probably the most widely used. In a PUF-based PAS, the PUF disk is generally mounted inside two stainless steel bowls to buffer the air flow to the disk and to shield it from precipitation and light. The field study described in this manuscript was conducted to: compare performance of 3 different designs of sampler; to further calibrate the sampler against the conventional active sampler; to derive more information on field-based uptake rates and equilibrium times of the samplers. Samplers were also deployed at different locations across the field site, and at different heights up a meteorological tower, to investigate the possible influence of sampler location. Samplers deployed <5m above ground, and not directly sheltered from the wind gave similar uptake rates. Small differences in dimensions between the 3 designs of passive sampler chamber had no discernable effect on accumulation rates, allowing comparison with previously published data.

  12. The initial generation of waves in an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, Ken

    2001-11-01

    The initial generation of surface waves over the ocean has a long been a problem of great interest. With the globally averaged wind speed in the range 6-7 m/s, and 40 % of the time below 6 m/s, much of the air-sea interface is in a low wind speed regime, and therefore the initial generation of waves under these conditions is of special interest. There is also a transition in the surface heat flux and surface cool skin at these low wind speeds when gravity capillary waves are first generated. We present the results of laboratory and field experiments, and numerical studies, on the stability of a wind-driven water surface to the initial generation of surface waves. Using modern quantitative flow visualization techniques, we show that the classical wave generation problem, where the wind is linearly accelerated over a still water surface, leads to the generation of a two-dimensional wave field. At this stage, the flow in the water phase has been observed to be sub-critical. These results are compared with numerical solutions of the stability of the coupled air-water problem obtained by solving both the linear and non-linear Orr-Sommerfeld coupled equations. The effects of non-linearity will be discussed. In addition, we show that the wave generation problem is accompanied by the turbulent transition of the water surface boundary layer through the formation and dislocation of Langmuir circulations. Field data suggest that this transition, rather than microscale breaking waves, first disrupt the cool skin. We show that this turbulent transition also marks the change from a two- to three-dimensional surface wave field as the coherent sub-surface velocities modulate the waves. This rapid evolution from 2D to 3D surface wave patterns in the early stages of the wave generation implies that 2D models for wind-wave generation might only apply in the very early stages of wave growth. This will be discussed in light of linear and non-linear wave generation models.

  13. The Nature of Air Flow About the Tail of an Airplane in a Spin

    NASA Technical Reports Server (NTRS)

    Scudder, N F; Miller, M P

    1932-01-01

    Air flow about the fuselage and empennage during a high-angle-of-attack spin was made visible in flight by means of titanium-tetrachloride smoke and was photographed with a motion-picture camera. The angular relation of the direction of the smoke streamer to the airplane axes was computed and compared with the angular direction of the motion in space derived from instrument measurement of the spin of the airplane for a nearly identical mass distribution. The results showed that the fin and upper part of the rudder were almost completely surrounded by dead air, which would render them inoperative; that the flow around the lower portion of the rudder and the fuselage was nonturbulent; and that air flowing past the cockpit in a high-angle-of-attack spin could not subsequently flow around control surfaces.

  14. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  15. Soil water flow dynamics in a managed cutover peat field, Quebec: Field and laboratory investigations

    NASA Astrophysics Data System (ADS)

    Schlotzhauer, Susanne M.; Price, Jonathan S.

    1999-12-01

    In this paper concerned with soil water dynamics in a managed cutover peat field, the microscale hydrological processes and parameters governing water flow and storage through variably saturated peat are investigated. An open water ditch-reservoir enhanced wetting of adjacent cutover peat, maintaining the water table depth above 43 cm during the summer, surface soil moisture above 45%, and water tension in the surface layer above -45 mbar. Desaturation of pores was noted in the -2 and -10 cm depths, but at -30 and -50 cm a decrease in moisture content of several percent was associated with compression of the peat as the water table dropped. Air entry occurred only at pressures below -15 mbar. Seasonal subsidence resulted in cumulative vertical displacement in excess of 10 cm during the study period. Typical settlements in the peat ranged between 11 and 23% of the lowering of the water table. Considerable hysteresis was observed, and vertical displacement was 5 times greater in response to water loss, compared to rewetting. The specific storage (Ss) in the 180 cm thick deposit averaged 9.4 × 10-4 cm-1 during drying periods but averaged only 2.6 × 10-4 cm-1 on rewetting.Ss was more important than specific yield (Sy) in the overall aquifer storativity. Transient hydraulic properties resulted from the shifting soil structure. The increase in peat bulk density caused by drying increased the water retention capacity and decreased hydraulic conductivity. Mean saturated hydraulic conductivity was 15 cm d-1 and decreased 2 orders of magnitude as the degree of saturation dropped from 1 to 0.4. The horizontal/vertical anisotropy ratio was 4. The changing surface elevation in response to seasonal subsidence had a profound influence on the nature of the storage changes and hydraulic parameters of the peat soil.

  16. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  17. Flow-Field Surveys for Rectangular Nozzles. Supplement

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2012-01-01

    Flow field survey results for three rectangular nozzles are presented for a low subsonic condition obtained primarily by hot-wire anemometry. The three nozzles have aspect ratios of 2:1, 4:1 and 8:1. A fourth case included has 2:1 aspect ratio with chevrons added to the long edges. Data on mean velocity, turbulent normal and shear stresses as well as streamwise vorticity are presented covering a streamwise distance up to sixteen equivalent diameters from the nozzle exit. These detailed flow properties, including initial boundary layer characteristics, are usually difficult to measure in high speed flows and the primary objective of the study is to aid ongoing and future computational and noise modeling efforts. This supplement contains data files, charts and source code.

  18. Elevator mode convection in flows with strong magnetic fields

    SciTech Connect

    Liu, Li; Zikanov, Oleg

    2015-04-15

    Instability modes in the form of axially uniform vertical jets, also called “elevator modes,” are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  19. Elevator mode convection in flows with strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Liu, Li; Zikanov, Oleg

    2015-04-01

    Instability modes in the form of axially uniform vertical jets, also called "elevator modes," are known to be the solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to the actual flow state is limited by three-dimensional breakdown caused by rapid growth of secondary instabilities. We consider a flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are stable and, thus, not just relevant, but a dominant feature of the flow. We then explore the hypothesis suggested by recent experimental data that an analogous instability to modes of slow axial variation develops in finite-length ducts, where it causes large-amplitude fluctuations of temperature. The implications for liquid metal blankets for tokamak fusion reactors that potentially invalidate some of the currently pursued design concepts are discussed.

  20. Longitudinal Dispersivity in a Radial Diverging Flow Field

    NASA Astrophysics Data System (ADS)

    Seaman, J. C.; Wilson, M.; Bertsch, P. M.; Aburime, S. A.

    2005-12-01

    Hydrodynamic dispersion is an important factor controlling contaminant migration in the subsurface environment. However, few comprehensive data sets exist for evaluating the impact of travel distance and site heterogeneity on solute dispersion under non-uniform flow conditions. In addition, anionic tracers are often used to estimate physical transport parameters based on an erroneous assumption of conservative (i.e., non-reactive) behavior. Therefore, a series of field experiments using tritiated water and several other commonly used hydrologic tracers (Br, Cl, FBAs) were conducted in the water-table aquifer on the U.S. Department of Energy's Savannah River Site (Aiken, SC) to evaluate solute transport processes in a diverging radial flow field. For each experiment, tracer-free groundwater was injected for approximately 24 hours at a fixed rate of 56.7 L/min (15 gpm) to establish a forced radial gradient prior to the introduction of a tracer pulse. After the tracer pulse, the forced gradient was maintained throughout the experiment using non-labeled groundwater. Tracer migration was monitored using a set of six sampling wells radially spaced at approximate distances of 1.5, 3, and 4.5 meters from a central injection well. Each sampling well was further divided into three discrete sampling depths that were monitored continuously throughout the course of the tracer experiment. At various time intervals, discrete groundwater samples were collected from all 18 sampling ports for tritium analysis. Longitudinal dispersivity for tritium breakthrough at each sampling location was estimated using analytical approximations of the convection dispersion equation (CDE) for radial flow assuming an instantaneous Dirac pulse and a pulse of known duration. The results were also compared to dispersivity values derived from fitting the tracer data to analytical solutions derived from assuming uniform flow conditions. Tremendous variation in dispersivity values and tracer arrival

  1. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  2. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  3. On the stability of an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, W. Kendall

    2000-11-01

    We present the results of a study of the stability of the interface of an accelerated coupled air-water flow. We develop a general solution of the two-layer, laminar parallel flow driven by a pressure gradient in the air. The velocity profiles in both fluids are given by analytical functions for pressure gradients that can be represented as power series in time. The stability of the coupled flow is then examined by solving the two layer Orr-Sommerfeld equations allowing for linear displacements of the interface. In the simple case of the linearly accelerating flow, we find that the flow is always stable for an air velocity below 0.6 m s-1. Instabilities first appear in the form of surface waves with a phase speed of approximately 30 cm s-1 and a wavenumber of O(1) cm-1. In cases when the flow in the air is turbulent, and represented by a continuously differentiable analytical approximation of the log-linear mean velocity profile, we find that the flow is rapidly unstable to surface waves. Comparisons are made with the previous computations of Kawai (1979) and Wheless and Csanady (1993), and with the measurements of Veron and Melville (2000).

  4. Unsteady Simulation of a Landing-Gear Flow Field

    NASA Technical Reports Server (NTRS)

    Li, Fei; Khorrami, Mehdi R.; Malik, Mujeeb R.

    2002-01-01

    This paper presents results of an unsteady Reynolds-averaged Navier-Stokes simulation of a landing-gear flow field. The geometry of the four-wheel landing gear assembly consists of several of the fine details including the oleo-strut, two diagonal struts, a door, yokes/pin and a flat-plate simulating the wing surface. The computational results, obtained by using 13.3 million grid points, are presented with an emphasis on the characteristics of the unsteadiness ensuing from different parts of the landing-gear assembly, including vortex shedding patterns and frequencies of dominant oscillations. The results show that the presence of the diagonal struts and the door significantly influence the flow field. Owing to the induced asymmetry, vortices are shed only from one of the rear wheels and not the other. Present computations also capture streamwise vortices originating from the upstream corners of the door.

  5. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, Mahlon S.

    1997-01-01

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers.

  6. Fuel cell with interdigitated porous flow-field

    DOEpatents

    Wilson, M.S.

    1997-06-24

    A polymer electrolyte membrane (PEM) fuel cell is formed with an improved system for distributing gaseous reactants to the membrane surface. A PEM fuel cell has an ionic transport membrane with opposed catalytic surfaces formed thereon and separates gaseous reactants that undergo reactions at the catalytic surfaces of the membrane. The fuel cell may also include a thin gas diffusion layer having first and second sides with a first side contacting at least one of the catalytic surfaces. A macroporous flow-field with interdigitated inlet and outlet reactant channels contacts the second side of the thin gas diffusion layer for distributing one of the gaseous reactants over the thin gas diffusion layer for transport to an adjacent one of the catalytic surfaces of the membrane. The porous flow field may be formed from a hydrophilic material and provides uniform support across the backside of the electrode assembly to facilitate the use of thin backing layers. 9 figs.

  7. Potential field cellular automata model for pedestrian flow.

    PubMed

    Zhang, Peng; Jian, Xiao-Xia; Wong, S C; Choi, Keechoo

    2012-02-01

    This paper proposes a cellular automata model of pedestrian flow that defines a cost potential field, which takes into account the costs of travel time and discomfort, for a pedestrian to move to an empty neighboring cell. The formulation is based on a reconstruction of the density distribution and the underlying physics, including the rule for resolving conflicts, which is comparable to that in the floor field cellular automaton model. However, we assume that each pedestrian is familiar with the surroundings, thereby minimizing his or her instantaneous cost. This, in turn, helps reduce the randomness in selecting a target cell, which improves the existing cellular automata modelings, together with the computational efficiency. In the presence of two pedestrian groups, which are distinguished by their destinations, the cost distribution for each group is magnified due to the strong interaction between the two groups. As a typical phenomenon, the formation of lanes in the counter flow is reproduced.

  8. Earth's field NMR flow meter: preliminary quantitative measurements.

    PubMed

    Fridjonsson, Einar O; Stanwix, Paul L; Johns, Michael L

    2014-08-01

    In this paper we demonstrate the use of Earth's field NMR (EF NMR) combined with a pre-polarising permanent magnet for measuring fast fluid velocities. This time of flight measurement protocol has a considerable history in the literature; here we demonstrate that it is quantitative when employing the Earth's magnetic field for signal detection. NMR signal intensities are measured as a function of flow rate (0-1m/s) and separation distance between the permanent magnet and the EF NMR signal detection. These data are quantitatively described by a flow model, ultimately featuring no free parameters, that accounts for NMR signal modulation due to residence time inside the pre-polarising magnet, between the pre-polarising magnet and the detection RF coil and inside the detection coil respectively. The methodology is subsequently demonstrated with a metallic pipe in the pre-polarising region.

  9. Mixing, chemical reaction and flow field development in ducted rockets

    SciTech Connect

    Vanka, S.P.; Craig, R.R.; Stull, F.D.

    1984-09-01

    Calculations have been made of the three-dimensional mixing, chemical reaction, and flow field development in a typical ducted rocket configuration. The governing partial differential equations are numerically solved by an iterative finite-difference solution procedure. The physical models include the k approx. epsilon turbulence model, one-step reaction, and mixing controlled chemical reaction rate. Radiation is neglected. The mean flow structure, fuel dispersal patterns, and temperature field are presented in detail for a base configuration with 0.058 m (2 in.) dome height, 45/sup 0/ side arm inclination, and with gaseous ethylene injected from the dome plate at an eccentric location. In addition, the influences of the geometrical parameters such as dome height, inclination of the side arms, and location of the fuel injector are studied.

  10. A high-performance flow-field structured iron-chromium redox flow battery

    NASA Astrophysics Data System (ADS)

    Zeng, Y. K.; Zhou, X. L.; An, L.; Wei, L.; Zhao, T. S.

    2016-08-01

    Unlike conventional iron-chromium redox flow batteries (ICRFBs) with a flow-through cell structure, in this work a high-performance ICRFB featuring a flow-field cell structure is developed. It is found that the present flow-field structured ICRFB reaches an energy efficiency of 76.3% with a current density of 120 mA cm-2 at 25 °C. The energy efficiency can be as high as 79.6% with an elevated current density of 200 mA cm-2 at 65 °C, a record performance of the ICRFB in the existing literature. In addition, it is demonstrated that the energy efficiency of the battery is stable during the cycle test, and that the capacity decay rate of the battery is 0.6% per cycle. More excitingly, the high performance of the flow-field structured battery significantly lowers the capital cost at 137.6 kWh-1, which is 28.2% lower than that of the conventional ICRFB for 8-h energy storage.

  11. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    The detailed knowledge of the interaction of wind with surface water waves is necessary for correct parameterization of turbulent exchange at the air-sea interface in prognostic models. At sufficiently strong winds, sea-spray-generated droplets interfere with the wind-waves interaction. The results of field experiments and laboratory measurements (Andreas et al., JGR 2010) show that mass fraction of air-borne spume water droplets increases with the wind speed and their impact on the carrier air-flow may become significant. Phenomenological models of droplet-laden marine atmospheric boundary layer (Kudryavtsev & Makin, Bound.-Layer Met. 2011) predict that droplets significantly increase the wind velocity and suppress the turbulent air stress. The results of direct numerical simulation (DNS) of a turbulent particle-laden Couette flow over a flat surface show that inertial particles may significantly reduce the carrier flow vertical momentum flux (Richter & Sullivan, GRL 2013). The results also show that in the range of droplet sizes typically found near the air-sea interface, particle inertial effects are significant and dominate any particle-induced stratification effects. However, so far there has been no attempt to perform DNS of a droplet-laden air-flow over waved water surface. In this report, we present results of DNS of droplet-laden, turbulent Couette air-flow over waved water surface. The carrier, turbulent Couette-flow configuration in DNS is similar to that used in previous numerical studies (Sullivan et al., JFM 2000, Shen et al., JFM 2010, Druzhinin et al., JGR 2012). Discrete droplets are considered as non-deformable solid spheres and tracked in a Lagrangian framework, and their impact on the carrier flow is modeled with the use of a point-force approximation. The droplets parameters in DNS are matched to the typical known spume-droplets parameters in laboratory and field experiments. The DNS results show that both gravitational settling of droplets and

  12. Laser Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field

    DTIC Science & Technology

    1991-06-01

    Velocimetry Measurements of Oscillating Airfoil Dynamic Stall Flow Field By M.S.Chandrasekharal Navy-NASA Joint Institute of Aeronautics and Fluid Mechanics ...tunnel of the Fluid Mechanics Laboratory(FML) angle information. The other could be used for the at NASA Ames Research Center (ARC). It is one of...were on throat is always kept choked so that no disturbances a different traverse mechanism , but this was driven as can propagate upstream into the

  13. Theoretical analysis of magnetic field interactions with aortic blood flow

    SciTech Connect

    Kinouchi, Y.; Yamaguchi, H.; Tenforde, T.S.

    1996-04-01

    The flow of blood in the presence of a magnetic field gives rise to induced voltages in the major arteries of the central circulatory system. Under certain simplifying conditions, such as the assumption that the length of major arteries (e.g., the aorta) is infinite and that the vessel walls are not electrically conductive, the distribution of induced voltages and currents within these blood vessels can be calculated with reasonable precision. However, the propagation of magnetically induced voltages and currents from the aorta into neighboring tissue structures such as the sinuatrial node of the heart has not been previously determined by any experimental or theoretical technique. In the analysis presented in this paper, a solution of the complete Navier-Stokes equation was obtained by the finite element technique for blood flow through the ascending and descending aortic vessels in the presence of a uniform static magnetic field. Spatial distributions of the magnetically induced voltage and current were obtained for the aortic vessel and surrounding tissues under the assumption that the wall of the aorta is electrically conductive. Results are presented for the calculated values of magnetically induced voltages and current densities in the aorta and surrounding tissue structures, including the sinuatrial node, and for their field-strength dependence. In addition, an analysis is presented of magnetohydrodynamic interactions that lead to a small reduction of blood volume flow at high field levels above approximately 10 tesla (T). Quantitative results are presented on the offsetting effects of oppositely directed blood flows in the ascending and descending aortic segments, and a quantitative estimate is made of the effects of assuming an infinite vs. a finite length of the aortic vessel in calculating the magnetically induced voltage and current density distribution in tissue.

  14. Numerical Analysis of Flow Evolution in a Helium Jet Injected into Ambient Air

    NASA Technical Reports Server (NTRS)

    Satti, Rajani P.; Agrawal, Ajay K.

    2005-01-01

    A computational model to study the stability characteristics of an evolving buoyant helium gas jet in ambient air environment is presented. Numerical formulation incorporates a segregated approach to solve for the transport equations of helium mass fraction coupled with the conservation equations of mixture mass and momentum using a staggered grid method. The operating parameters correspond to the Reynolds number varying from 30 to 300 to demarcate the flow dynamics in oscillating and non-oscillating regimes. Computed velocity and concentration fields were used to analyze the flow structure in the evolving jet. For Re=300 case, results showed that an instability mode that sets in during the evolution process in Earth gravity is absent in zero gravity, signifying the importance of buoyancy. Though buoyancy initiates the instability, below a certain jet exit velocity, diffusion dominates the entrainment process to make the jet non-oscillatory as observed for the Re=30 case. Initiation of the instability was found to be dependent on the interaction of buoyancy and momentum forces along the jet shear layer.

  15. A Critical Survey of Optimization Models for Tactical and Strategic Aspects of Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo

    1997-01-01

    This document presents a critical review of the principal existing optimization models that have been applied to Air Traffic Flow Management (TFM). Emphasis will be placed on two problems, the Generalized Tactical Flow Management Problem (GTFMP) and the Ground Holding Problem (GHP), as well as on some of their variations. To perform this task, we have carried out an extensive literature review that has covered more than 40 references, most of them very recent. Based on the review of this emerging field our objectives were to: (i) identify the best available models; (ii) describe typical contexts for applications of the models; (iii) provide illustrative model formulations; and (iv) identify the methodologies that can be used to solve the models. We shall begin our presentation below by providing a brief context for the models that we are reviewing. In Section 3 we shall offer a taxonomy and identify four classes of models for review. In Sections 4, 5, and 6 we shall then review, respectively, models for the Single-Airport Ground Holding Problem, the Generalized Tactical FM P and the Multi-Airport Ground Holding Problem (for the definition of these problems see Section 3 below). In each section, we identify the best available models and discuss briefly their computational performance and applications, if any, to date. Section 7 summarizes our conclusions about the state of the art.

  16. Development of flow/steric field-flow fractionation as a routine process control method

    SciTech Connect

    Barman, B.N.

    1988-08-30

    Researchers studied the feasibility of using the Flow/Steric Field-Flow Fractionation (Flow/StFFF) method for the characterization of particulate materials with diameters in the 1-100 micrometers range. Studies on the optimization of the method for the separation and characterization of different size particulate samples, as well as on the role of the crossflow field and channel flowrate on the separation and resolution, were performed with a number of spherical polystyrene divinylbenzene latex standards and included in the report. Applicability of the method as a fast and reliable practical tool for industrial process control, particularly for grinding operations, was examined by analyzing a number of samples obtained by grinding. Examples of materials considered include coal, limestone and glass.

  17. Macropore flow at the field scale: predictive performance of empirical models and X-ray CT analyzed macropore characteristics

    NASA Astrophysics Data System (ADS)

    Naveed, M.; Moldrup, P.; Schaap, M.; Tuller, M.; Kulkarni, R.; Vögel, H.-J.; Wollesen de Jonge, L.

    2015-11-01

    Predictions of macropore flow is important for maintaining both soil and water quality as it governs key related soil processes e.g. soil erosion and subsurface transport of pollutants. However, macropore flow currently cannot be reliably predicted at the field scale because of inherently large spatial variability. The aim of this study was to perform field scale characterization of macropore flow and investigate the predictive performance of (1) current empirical models for both water and air flow, and (2) X-ray CT derived macropore network characteristics. For this purpose, 65 cylindrical soil columns (6 cm diameter and 3.5 cm height) were extracted from the topsoil (5 to 8.5 cm depth) in a 15 m × 15 m grid from an agricultural loamy field located in Silstrup, Denmark. All soil columns were scanned with an industrial CT scanner (129 μm resolution) and later used for measurements of saturated water permeability, air permeability and gas diffusivity at -30 and -100 cm matric potentials. Distribution maps for both water and air permeabilities and gas diffusivity reflected no spatial correlation irrespective of the soil texture and organic matter maps. Empirical predictive models for both water and air permeabilities showed poor performance as they were not able to realistically capture macropore flow because of poor correlations with soil texture and bulk density. The tested empirical model predicted well gas diffusivity at -100 cm matric potential, but relatively failed at -30 cm matric potential particularly for samples with biopore flow. Image segmentation output of the four employed methods was nearly the same, and matched well with measured air-filled porosity at -30 cm matric potential. Many of the CT derived macropore network characteristics were strongly interrelated. Most of the macropore network characteristics were also strongly correlated with saturated water permeability, air permeability, and gas diffusivity. The correlations between macropore

  18. Flow field around Vorticella: Mixing with a reciprocal stroke

    NASA Astrophysics Data System (ADS)

    Pepper, Rachel E.; Roper, Marcus; Stone, Howard A.

    2008-11-01

    Vorticella is a stalked protozoan. It has an extremely fast biological spring, whose contraction is among the fastest biological motions relative to size. Though the Vorticella body is typically only 30 μm across, the contracting spring accelerates it up to speeds of centimeters per second. Vorticella live in an aqueous environment attached to a solid substrate and use their spring to retract their body towards the substrate. The function of the rapid retraction is not known. Many hypothesize that it stirs the surrounding liquid and exposes the Vorticella to fresh nutrients. We evaluate this hypothesis by modeling the Vorticella as a sphere moving normal to a wall, with a stroke that moves towards the wall at high Reynolds number, and away from the wall at low Reynolds number. We approximate the flow during contraction as potential flow, while the flow during re-extension is considered Stokes flow. The analytical results are compared to the flow field obtained with a finite element (Comsol Multiphysics) simulation of the full Navier-Stokes equations.

  19. Metrology of confined flows using wide field nanoparticle velocimetry

    PubMed Central

    Ranchon, Hubert; Picot, Vincent; Bancaud, Aurélien

    2015-01-01

    The manipulation of fluids in micro/nanofabricated systems opens new avenues to engineer the transport of matter at the molecular level. Yet the number of methods for the in situ characterization of fluid flows in shallow channels is limited. Here we establish a simple method called nanoparticle velocimetry distribution analysis (NVDA) that relies on wide field microscopy to measure the flow rate and channel height based on the fitting of particle velocity distributions along and across the flow direction. NVDA is validated by simulations, showing errors in velocity and height determination of less than 1% and 8% respectively, as well as with experiments, in which we monitor the behavior of 200 nm nanoparticles conveyed in channels of ~1.8 μm in height. We then show the relevance of this assay for the characterization of flows in bulging channels, and prove its suitability to characterize the concentration of particles across the channel height in the context of visco-elastic focusing. Our method for rapid and quantitative flow characterization has therefore a broad spectrum of applications in micro/nanofluidics, and a strong potential for the optimization of Lab-on-Chips modules in which engineering of confined transport is necessary. PMID:25974654

  20. Mathematical modeling of flow field in ceramic candle filter

    NASA Astrophysics Data System (ADS)

    Seo, Taewon; Kim, Heuy-Dong; Choi, Joo-Hong; Chung, Jae Hwa

    1998-06-01

    Integrated gasification combined cycle (IGCC) is one of the candidates to achieve stringent environmental regulation among the clean coal technologies. Advancing the technology of the hot gas cleanup systems is the most critical component in the development of the IGCC. Thus the aim of this study is to understand the flow field in the ceramic filter and the influence of ceramic filter in removal of the particles contained in the hot gas flow. The numerical model based on the Reynolds stress turbulence model with the Darcy’s law in the porous region is adopted. It is found that the effect of the porosity in the flowfield is negligibly small while the effect of the filter length is significant. It is also found as the permeability decreases, the reattachment point due to the flow separation moves upstream. This is because the fluid is sucked into the filter region due to the pressure drop before the flow separation occurs. The particle follows well with the fluid stream and the particle is directly sucked into the filter due to the pressure drop even in the flow separation region.

  1. Quantitative three-dimensional holographic interferometry for flow field analysis

    NASA Astrophysics Data System (ADS)

    Holden, C. M. E.; Parker, S. C. J.; Bryanston-Cross, P. J.

    Holographic interferometry offers the potential for quantitative, wholefield analysis of three-dimensional compressible flows. The technique is non-intrusive, does not require the introduction of seeding particles, and records the entire flow information within the pulse duration of a Q-switched ruby laser (~30ns). At present, however, holographic interferometry is mainly used qualitatively due to the practical restrictions of data recording, acquisition and processing. To address the potential of holographic flow analysis a prototype multi-channel interferometer has been designed and preliminary wind tunnel results have been obtained. The proposed configuration uses specular illumination which, unlike comparable diffuse systems, does not suffer from fringe localisation and speckle noise. Beam collimation and steering through the flow field is achieved in a single operation by the use of holographic optical elements (HOEs). The resulting design is compact, light efficient, has aberration compensation, and the recorded data are conducive to both tomographic analysis and direct comparison to computational fluid dynamics (CFD) predictions. Holograms have been recorded of simple two-dimensional and axisymmetric compressible flows, to compare the accuracy of holographic density measurements with data from conventional pressure sensors and CFD codes. Data extraction from the holograms, and the elimination of rigid body motion, was achieved using digital Fourier transform fringe analysis. The introduction of phase errors by image processing has been investigated by analysing simulated fringe patterns generated from a combination of experimental amplitude information and computer generated phase data.

  2. Phase-stepping interferometric system for capturing instantaneous flow field under harsh environments

    NASA Astrophysics Data System (ADS)

    Burner, Alpheus W.; Yu, Enxi; Cha, Soyoung S.

    2003-04-01

    Interferometric reconstruction of a flow field usually consists of three steps. The first is to record interferograms, the second is to extract phase information from interferograms and the final is for numerical inversion of the phase data. In interferometric flow recording, test section enclosures and opaque models are frequently present, blocking a portion of the probing rays or restricting the view angle of the field to produce a partial data set especially for interferometric tomography. It also involves very harsh environments with external vibrations and disturbances of the ambient air. The ill-posed problem is susceptible to experimental noise and can produce serious distortions in reconstruction. Interferometric reconstruction of flow fields thus needs accurate phase information extraction. The major problem encountered in interferometry is that it is extremely sensitive to external disturbances including the vibration of the optical setup. This is true especially for aerodynamic wind tunnel testing. For successful application of interferometry to experimental fluid mechancis and heat/mass transfer, efficient mechanisms for accurate flow-field recording and information extraction are thus very necessary. In interferometric recording, use of the phase stepping techniques is desirable whenever possible, since they provide the most accuracy. However, they are not applicable under disturbing conditions; that is, under harsh environments. In an effort to provide accurate interferometric data, we device interferogram recording and reduction techniques. They are based on a phase-stepping method: however, applicable to harsh environments including wind tunnel testing. Here we present the governing concepts, investigation results, and application demonstration of our approaches for practical flow measurements. The developed approaches are tested through phoase extraction and 3D reconstruction of an experimental flow field, which is designed for future wind tunnel

  3. Field calibration of two types of microphones in hyperbaric air

    NASA Astrophysics Data System (ADS)

    Smith, Paul F.; Carpenter, Susan; Green, John

    1990-01-01

    The response of two microphones, one a condenser microphone and the other a diaphragm-activated piezoelectric ceramic microphone, were measured in compressed air at pressures as great as 810 kilopascals (8 atmospheres). The response of each microphone was compared to that of a hydrophone operated in air as a microphone. The results show that the two types of microphone respond similarly to high ambient pressure. Both types are less sensitive to sound pressure in compressed air than in air at normal pressures, and the frequency responses of both microphones are altered. The results are useful in the analyses of ambient noise measurements done during experiments in compressed air.

  4. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    SciTech Connect

    Mohr, D.H.; Merz, P.H.

    1995-05-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature.

  5. Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

    SciTech Connect

    Jump, D.A.; Walker, I.S.; Modera, M.P.

    1996-08-01

    Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.

  6. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  7. The morphology and evolution of the Stromboli 2002-2003 lava flow field--An example of a basaltic flow field emplaced on a steep slope

    USGS Publications Warehouse

    Lodato, Luigi; Harris, A.; Spampinato, L.; Calvari, Sonia; Dehn, J.; Patrick, M.

    2007-01-01

    The use of a hand-held thermal camera during the 2002–2003 Stromboli effusive eruption proved essential in tracking the development of flow field structures and in measuring related eruption parameters, such as the number of active vents and flow lengths. The steep underlying slope on which the flow field was emplaced resulted in a characteristic flow field morphology. This comprised a proximal shield, where flow stacking and inflation caused piling up of lava on the relatively flat ground of the vent zone, that fed a medial–distal lava flow field. This zone was characterized by the formation of lava tubes and tumuli forming a complex network of tumuli and flows linked by tubes. Most of the flow field was emplaced on extremely steep slopes and this had two effects. It caused flows to slide, as well as flow, and flow fronts to fail frequently, persistent flow front crumbling resulted in the production of an extensive debris field. Channel-fed flows were also characterized by development of excavated debris levees in this zone (Calvari et al. 2005). Collapse of lava flow fronts and inflation of the upper proximal lava shield made volume calculation very difficult. Comparison of the final field volume with that expecta by integrating the lava effusion rates through time suggests a loss of ~70% erupted lava by flow front crumbling and accumulation as debris flows below sea level. Derived relationships between effusion rate, flow length, and number of active vents showed systematic and correlated variations with time where spreading of volume between numerous flows caused an otherwise good correlation between effusion rate, flow length to break down. Observations collected during this eruption are useful in helping to understand lava flow processes on steep slopes, as well as in interpreting old lava–debris sequences found in other steep-sided volcanoes subject to effusive activity.

  8. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.

    PubMed

    Cui, X G; Gutheil, E

    2011-11-10

    The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.

  9. Penetration of conductive plasma flows across a magnetic field

    NASA Astrophysics Data System (ADS)

    Plechaty, Christopher Ryan

    2008-02-01

    Plasma interacts with magnetic fields in a variety of natural and laboratory settings. While a magnetic field "traps" isolated charged particles, plasma penetration across magnetic field is observed in many situations where a plasma-magnetic interface exists. For example, in the realm of pulsed power technology, this behavior is important for magnetically insulated transmission lines and for plasma opening switches. In the realm of astrophysics, the nature of the interaction between the solar wind plasma and the Earth's magnetic field affects the reliability of telecommunication devices and satellites. Experiments were performed at the Nevada Terawatt Facility to investigate how a conductive plasma penetrates an externally applied magnetic field. In experiment, a plasma flow was produced by laser ablation. This plasma was observed to penetrate an externally applied magnetic field produced by a 0.6 MA pulsed power generator. In experiment, the duration of the laser pulse was changed by three orders of magnitude, from ns (GW pulse power) to ps (TW) . This resulted in a significant variation of the plasma parameters, which in turn led to the actuation of different magnetic field penetration mechanisms.

  10. Flow field measurements around a Mars lander model using hot film anemometers under simulated Mars surface conditions

    NASA Technical Reports Server (NTRS)

    Greene, G. C.; Keafer, L. S., Jr.; Marple, C. G.; Foughner, J. T., Jr.

    1972-01-01

    Results are presented from a wind-tunnel investigation of the flow field around a 0.45-scale model of a Mars lander. The tests were conducted in air at values of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number equivalent to those anticipated on Mars. The effects of Reynolds number, model orientation with respect to the airstream, and the position of a dish-type antenna on the flow field were determined. An appendix is included which describes the calibration and operational characteristics of hot-film anemometers under simulated Mars surface conditions.

  11. Coupling Linearized Far-Field Boundary Conditions with Nonlinear Near-Field Solutions in Transonic Flow

    DTIC Science & Technology

    1988-02-29

    Plate and a NACA 64A010 Airfoil Section . 31 3. Spatial Variations of Velocity Potentials on a Flat Plate and MBB-A3 Airfoil Section ........ 32 4...39 14. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack w ith M = 0.80...44 22. Steady Flow Field Mach Number Variation for a NACA 64A010 Airfoil at a 10 Angle of Attack 23. W ith M = 0.78

  12. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  13. Flow through an Array of Superhydrophopic Pillars: The Role of the Air-Water Interface Shape on Drag Reduction

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Hyun; Rothstein, Jonathan

    2016-11-01

    In this study, measurements of the pressure drop and the velocity fields associated with the flow of water through a regular array of superhydrophobic pillars were systematically performed to investigate the role of the air-water interface shape on drag reduction. A microfluidic channel was created with circular and superhydrophobic apple-core-shaped pillars bridging across the entire channel. The apple-core-shaped pillars were designed to trap an air pocket along the side of the pillars. The shape of the interface was systematically modified from concave to convex by changing the static pressure within the microchannel. For superhydrophobic pillars having a circular cross section, D /D0 = 1.0, a drag reduction of 7% and a slip velocity of 20% the average channel velocity along the air-water interface were measured. At large static pressures, the interface was driven into the pillars resulting in a decrease in the effective size of the pillars, an increase in the effective spacing between pillars and a pressure drop reduction of as much as 18% when the interface was compressed to D /D0 = 0.8. At low static pressures, the pressure drop increased significantly even as the slip velocity increased as the expanding air-water interface constricted flow through the array of pillars. This research was supported by the National Science Foundation under Grant CBET-1334962.

  14. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  15. Water management in a single cell proton exchange membrane fuel cells with a serpentine flow field

    NASA Astrophysics Data System (ADS)

    Hassan, Nik Suhaimi Mat; Daud, Wan Ramli Wan; Sopian, Kamaruzzaman; Sahari, Jaafar

    Gas and water management is the key to achieving good performance from a polymer electrolyte membrane fuel cell (PEMFC) stack. Imbalance between production and evaporation rates can result in either flooding of the electrodes or membrane dehydration, both of which severely limit fuel cell performance. In the present study, a mathematical model was developed to evaluate moisture profiles of hydrogen and air flows in the flow field channels of both the anode and the cathode. For model validation, a single fuel cell was designed with an active area of 200 cm 2. Six humidity sensors were installed in the flow fields of both the anode and the cathode at 457 mm, 1266 mm and 2532 mm from the inlets. The experiment was performed using an Arbin Fuel Cell Test Station. The temperature was varied (25 °C, 40 °C, 50 °C and 60 °C), while hydrogen and air velocities were fixed at 3 L min -1 and 6 L min -1, respectively, during the operation of the single cell. The feed relative humidity at the anode was fixed at 1.0, while the feed relative humidity at the cathode was fixed at 0.005 (dry air). All humidity sensor readings were taken at steady state after 2 h of operation. Model predictions were then compared with experimental results by using the least squares algorithm. The moisture content was found to decrease along the flow field at the anode, but to increase at the cathode. The moisture content profile at the anode was shown to depend on the moisture Peclet number, which decreased with temperature. On the other hand, the moisture profile at the cathode was shown to depend on both the Peclet number and the Damkohler number. The trend of the Peclet number in the cathode followed closely that of the anode. The Damkohler number decreased with temperature, indicating increasing moisture mass transfer with temperature. The moisture profile models were successfully validated by the published data of the estimated overall mass transfer coefficient and moisture effective

  16. Interim Report for Bioventing Field Initiative at Robins Air Force Base, Georgia

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at Robins Air Force Base (AFB), Georgia, as part of the Bioventing Field Initiative for the U.S. Air...soil gas survey, air permeability test, in situ respiration tests, and installation of bioventing systems. The specific objectives of this task are described in the following section.

  17. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  18. Holocene Flows of the Cima Volcanic Field, Mojave Desert, Part 2: Flow Rheology from Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Robertson, T.; Whittington, A. G.; Soldati, A.; Sehlke, A.; Beem, J. R.; Gomez, F. G.

    2014-12-01

    Lava flow morphology is often utilized as an indicator of rheological behavior during flow emplacement. Rheological behavior can be characterized by the viscosity and yield strength of lava, which in turn are dependent on physical and chemical properties including crystallinity, vesicularity, and bulk composition. We are studying the rheology of a basaltic lava flow from a monogenetic Holocene cinder cone in the Cima lava field (Mojave Desert, California). The flow is roughly 2.5 km long and up to 700m wide, with a well-developed central channel along much of its length. Samples were collected along seven different traverses across the flow, along with real-time kinematic (RTK) GPS profiles to allow levee heights and slopes to be measured. Surface textures change from pahoehoe ropes near the vent to predominantly jagged `a`a blocks over the majority of the flow, including all levees and the toe. Chemically the lava shows little variation, plotting on the trachybasalt-basanite boundary on the total alkali-silica diagram. Mineralogically the lava is dominated by plagioclase, clinopyroxene and olivine phenocrysts, with abundant flow-aligned plagioclase microcrystals. The total crystal fraction is ~50% near the vent, with higher percentages in the distal portion of the flow. Vesicularity varies between ~10 and more than ~60%. Levees are ~10-15m high with slopes typically ~25-35˚, suggesting a yield strength at final emplacement of ~150,000 Pa. The effective emplacement temperature and yield strength of lava samples will be determined using the parallel-plate technique. We will test the hypothesis that these physical and rheological properties of the lava during final emplacement correlate with spatial patterns in flow morphology, such as average slope and levee width, which have been determined using remote sensing observations (Beem et al. 2014).

  19. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  20. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  1. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    SciTech Connect

    Roy, R.P.; Kim, Y.W.; Tong, T.W.

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  2. The 3D Flow Field Around an Embedded Planet

    NASA Astrophysics Data System (ADS)

    Fung, Jeffrey; Artymowicz, Pawel; Wu, Yanqin

    2015-10-01

    3D modifications to the well-studied 2D flow topology around an embedded planet have the potential to resolve long-standing problems in planet formation theory. We present a detailed analysis of the 3D isothermal flow field around a 5 Earth-mass planet on a fixed circular orbit, simulated using our graphics processing unit hydrodynamics code PEnGUIn. We find that, overall, the horseshoe region has a columnar structure extending vertically much beyond the Hill sphere of the planet. This columnar structure is only broken for some of the widest horseshoe streamlines, along which high altitude fluid descends rapidly into the planet’s Bondi sphere, performs one horseshoe turn, and exits the Bondi sphere radially in the midplane. A portion of this flow exits the horseshoe region altogether, which we refer to as the “transient” horseshoe flow. The flow continues as it rolls up into a pair of up-down symmetric horizontal vortex lines shed into the wake of the planet. This flow, unique to 3D, affects both planet accretion and migration. It prevents the planet from sustaining a hydrostatic atmosphere due to its intrusion into the Bondi sphere, and leads to a significant corotation torque on the planet, unanticipated by 2D analysis. In the reported simulation, starting with a {{Σ }}˜ {r}-3/2 radial surface density profile, this torque is positive and partially cancels with the negative differential Lindblad torque, resulting in a factor of three slower planet migration rate. Finally, we report 3D effects can be suppressed by a sufficiently large disk viscosity, leading to results similar to 2D.

  3. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  4. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  5. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  6. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  7. Method of electric field flow fractionation wherein the polarity of the electric field is periodically reversed

    DOEpatents

    Stevens, Fred J.

    1992-01-01

    A novel method of electric field flow fractionation for separating solute molecules from a carrier solution is disclosed. The method of the invention utilizes an electric field that is periodically reversed in polarity, in a time-dependent, wave-like manner. The parameters of the waveform, including amplitude, frequency and wave shape may be varied to optimize separation of solute species. The waveform may further include discontinuities to enhance separation.

  8. Different elution modes and field programming in gravitational field-flow fractionation. III. Field programming by flow-rate gradient generated by a programmable pump.

    PubMed

    Plocková, J; Chmelík, J

    2001-05-25

    Gravitational field-flow fractionation (GFFF) utilizes the Earth's gravitational field as an external force that causes the settlement of particles towards the channel accumulation wall. Hydrodynamic lift forces oppose this action by elevating particles away from the channel accumulation wall. These two counteracting forces enable modulation of the resulting force field acting on particles in GFFF. In this work, force-field programming based on modulating the magnitude of hydrodynamic lift forces was implemented via changes of flow-rate, which was accomplished by a programmable pump. Several flow-rate gradients (step gradients, linear gradients, parabolic, and combined gradients) were tested and evaluated as tools for optimization of the separation of a silica gel particle mixture. The influence of increasing amount of sample injected on the peak resolution under flow-rate gradient conditions was also investigated. This is the first time that flow-rate gradients have been implemented for programming of the resulting force field acting on particles in GFFF.

  9. Meeting in Florida: Using Asymmetric Flow Field-Flow Fractionation (AF4) to Determine C60 Colloidal Size Distributions

    EPA Science Inventory

    The study of nanomaterials in environmental systems requires robust and specific analytical methods. Analytical methods which discriminate based on particle size and molecular composition are not widely available. Asymmetric Flow Field-Flow Fractionation (AF4) is a separation...

  10. Three Dimensional Viscous Flow Field in an Axial Flow Turbine Nozzle Passage

    NASA Technical Reports Server (NTRS)

    Ristic, D.; Lakshminarayana, B.

    1997-01-01

    The objective of this investigation is experimental and computational study of three dimensional viscous flow field in the nozzle passage of an axial flow turbine stage. The nozzle passage flow field has been measured using a two sensor hot-wire probe at various axial and radial stations. In addition, two component LDV measurements at one axial station (x/c(sum m) = 0.56) were performed to measure the velocity field. Static pressure measurements and flow visualization, using a fluorescent oil technique, were also performed to obtain the location of transition and the endwall limiting streamlines. A three dimensional boundary layer code, with a simple intermittency transition model, was used to predict the viscous layers along the blade and endwall surfaces. The boundary layers on the blade surface were found to be very thin and mostly laminar, except on the suction surface downstream of 70% axial chord. Strong radial pressure gradient, especially close to the suction surface, induces strong cross flow components in the trailing edge regions of the blade. On the end-walls the boundary layers were much thicker, especially near the suction corner of the casing surface, caused by secondary flow. The secondary flow region near the suction-casing surface corner indicates the presence of the passage vortex detached from the blade surface. The corner vortex is found to be very weak. The presence of a closely spaced rotor downstream (20% of the nozzle vane chord) introduces unsteadiness in the blade passage. The measured instantaneous velocity signal was filtered using FFT square window to remove the periodic unsteadiness introduced by the downstream rotor and fans. The filtering decreased the free stream turbulence level from 2.1% to 0.9% but had no influence on the computed turbulence length scale. The computation of the three dimensional boundary layers is found to be accurate on the nozzle passage blade surfaces, away from the end-walls and the secondary flow region. On

  11. Performance of underfloor air distribution: Results of a field study

    SciTech Connect

    Fisk, William; Faulkner, David; Sullivan, Douglas

    2004-09-02

    Underfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include easy relocation of air supply diffusers, energy savings, and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13 percent higher than expected in a space with well-mixed air, suggesting a 13 percent reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C (2-4 F). This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10 percent. The occupants level of satisfaction with thermal conditions w as well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.

  12. Measurements of Turbulent Flow Field in Separate Flow Nozzles with Enhanced Mixing Devices - Test Report

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2002-01-01

    As part of the Advanced Subsonic Technology Program, a series of experiments was conducted at NASA Glenn Research Center on the effect of mixing enhancement devices on the aeroacoustic performance of separate flow nozzles. Initial acoustic evaluations of the devices showed that they reduced jet noise significantly, while creating very little thrust loss. The explanation for the improvement required that turbulence measurements, namely single point mean and RMS statistics and two-point spatial correlations, be made to determine the change in the turbulence caused by the mixing enhancement devices that lead to the noise reduction. These measurements were made in the summer of 2000 in a test program called Separate Nozzle Flow Test 2000 (SFNT2K) supported by the Aeropropulsion Research Program at NASA Glenn Research Center. Given the hot high-speed flows representative of a contemporary bypass ratio 5 turbofan engine, unsteady flow field measurements required the use of an optical measurement method. To achieve the spatial correlations, the Particle Image Velocimetry technique was employed, acquiring high-density velocity maps of the flows from which the required statistics could be derived. This was the first successful use of this technique for such flows, and shows the utility of this technique for future experimental programs. The extensive statistics obtained were likewise unique and give great insight into the turbulence which produces noise and how the turbulence can be modified to reduce jet noise.

  13. Horizontal flow fields observed in Hinode G-band images. II. Flow fields in the final stages of sunspot decay

    NASA Astrophysics Data System (ADS)

    Verma, M.; Balthasar, H.; Deng, N.; Liu, C.; Shimizu, T.; Wang, H.; Denker, C.

    2012-02-01

    Context. Generation and dissipation of magnetic fields is a fundamental physical process on the Sun. In comparison to flux emergence and the initial stages of sunspot formation, the demise of sunspots still lacks a comprehensive description. Aims: The evolution of sunspots is most commonly discussed in terms of their intensity and magnetic field. Here, we present additional information about the three-dimensional flow field in the vicinity of sunspots towards the end of their existence. Methods: We present a subset of multi-wavelengths observations obtained with the Japanese Hinode mission, the Solar Dynamics Observatory (SDO), and the Vacuum Tower Telescope (VTT) at Observatorio del Teide, Tenerife, Spain during the time period 2010 November 18-23. Horizontal proper motions were derived from G-band and Ca ii H images, whereas line-of-sight velocities were extracted from VTT echelle Hα λ656.28 nm spectra and Fe i λ630.25 nm spectral data of the Hinode/Spectro-Polarimeter, which also provided three-dimensional magnetic field information. The Helioseismic and Magnetic Imager on board SDO provided continuum images and line-of-sight magnetograms, in addition to the high-resolution observations for the entire disk passage of the active region. Results: We perform a quantitative study of photospheric and chromospheric flow fields in and around decaying sunspots. In one of the trailing sunspots of active region NOAA 11126, we observe moat flow and moving magnetic features (MMFs), even after its penumbra had decayed. We also detect a superpenumbral structure around this pore. We find that MMFs follow well-defined, radial paths from the spot all the way to the border of a supergranular cell surrounding the spot. In contrast, flux emergence near the other sunspot prevents the establishment of similar well ordered flow patterns, which could be discerned around a tiny pore of merely 2 Mm diameter. After the disappearance of the sunspots/pores, a coherent patch of abnormal

  14. Blunt Body Near-Wake Flow Field at Mach 10

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Hannemann, Klaus

    1997-01-01

    Tests were conducted in a Mach 10 air flow to examine the reattachment process of a free shear layer associated with the near wake of a 70 deg half angle, spherically blunted cone having a cylindrical after body. The nominal free-stream Reynolds number based on model diameter ranged from 0.25 x l0(exp 6) to 1 x l0(exp 6) and the angle of incidence set at 0 and +/- 20 deg. The present study was designed to complement previously reported Mach 6 perfect air tests as well as results obtained in several hypervelocity facilities capable of producing real gas effects. Surface heating rates were inferred from temperature time histories from coaxial surface thermocouples on the model forebody and thin film resistance gages along the model base and cylindrical after body. Limited forebody, base, and support sting surface pressures were obtained with piezoresistive Experimental results are compared to laminar perfect gas predictions provided by a 3-0 Navier Stokes code (NSHYP). Shear layer impingement on the instrumented cylindrical after body resulted in a localized heating maximum that was 16 to 18percent of the forebody stagnation point and a factor of 2 higher than laminar predictions, suggesting a transitional or turbulent shear layer. transducers.

  15. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  16. An analysis of the flow field in the region of the ASRM field joints

    NASA Technical Reports Server (NTRS)

    Dill, Richard A.; Whitesides, Harold R.

    1992-01-01

    The flow field in the region of a solid rocket motor field joint is very important since fluid dynamic and mechanical propellant stresses can couple to cause a motor failure at a joint. Presented here is an examination of the flow field in the region of the Advanced Solid Rocket Motor (ASRM) field joints. The analyses were performed as a first step in assessing the design of the ASRM forward and aft field joints in order to assure the proper operation of the motor prior to further development of test firing. The analyses presented here were performed by employing a two-dimensional axisymmetric assumption. Fluent/BFC, a three dimensional full Navier-Stokes flow field code, was used to make the numerical calculations. This code utilizes a staggered grid formulation along with the SIMPLER numerical algorithm. Wall functions are used to determine the character of the laminar sublayer, and a standard kappa-epsilon turbulence model is used to close the fluid dynamic equations. The analyses performed to this date verify that the ASRM field joint design operates properly. The fluid dynamic stresses at the field joints are small due to the inherent design of the field joints. A problem observed in some other solid rocket motors is that large fluid dynamic stresses are generated at the motor joint on the downstream propellant grain due to forward facing step geometries. The design of the ASRM field joints are such that this is not a problem as shown by the analyses. Also, the analyses of the inhibitor stub left protruding into the port flow from normal propellant burn back show that more information is necessary to complete these analyses. These analyses were performed as parametric analyses in relation to the height of the inhibitor stub left protruding into the motor port. A better estimate of the amount of the inhibitor stub remaining at later burn times must be determined since the height which the inhibitor stub protrudes into the port flow drastically affects the fluid

  17. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.

    PubMed

    Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna

    2017-03-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.

  18. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  19. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  20. Soap film as a 2D system: Diffusion and flow fields

    NASA Astrophysics Data System (ADS)

    Vivek, Skanda; Weeks, Eric

    2014-03-01

    We use microrheology to measure the 2D (interfacial) viscosity of soap films. Microrheology uses the diffusivity of tracer particles suspended in the soap film to infer viscosity. Our tracer particles are colloids of diameters d = 0.10 and 0.18 microns. We measure the interfacial viscosity of soap films ranging in thickness from 0.1 to 3 microns. The thickness of these films is measured using the infrared absorbance of the water based soap films. From film thickness, viscosity of the fluid used to make the film and particle diffusivity, we can infer the interfacial viscosity due to the surfactant layers at the film/air interfaces. We find positive constant interfacial viscosities for thin films (h/d < 5), within error. For thicker films, we find negative viscosities, indicating 3D effects begin to play a role, as air stresses become less important. The transition from 2D to 3D properties as a function of h/d is sharp at about h/d=6. Additionally, we measure larger length scale flow fields from correlated particle motions and find good agreement with what is expected from the theory of 2D fluids for all our films. In conclusion, single particle diffusion shows a sharp transition away from 2D like behavior as h/d increases, but the long-range flow fields still act as 2D.

  1. Velocity Measurements of Free Surface Liquid Metal Flows in a Magnetic Field

    NASA Astrophysics Data System (ADS)

    Pfeffer, Scott; Ji, Hantao; Nornberg, Mark; Rhoads, John

    2008-11-01

    A potential probe diagnostic was developed and calibrated to map the velocity profile of free-surface liquid metal channel flow and quantify the effect an applied magnetic field played in shaping the velocity profile. The setup for this experiment consists of a wide aspect ratio channel sealed from the air, with argon replacing the air in the channel, placed within an electromagnet capable of producing more than a 2000 Gauss field perpendicular to the flow. An alloy of GaInSn, which is liquid at room temperature, is pumped through the channel by a screw pump at a specified rate. The velocity profile is obtained by measuring the voltage across pairs of probes. Various materials were used to determine which probe material would maximize the signal from the voltage induced by the Hall effect and reduce the voltage due to thermoelectric effects. Extensive calibration was then carried out to ensure an accurate velocity measurement. After amplification and filtering this signal gives us a good measurement of the velocity of the liquid metal over the cross-section of a specific probe.

  2. Field flow fractionation techniques to explore the "nano-world".

    PubMed

    Contado, Catia

    2017-04-01

    Field flow fractionation (FFF) techniques are used to successfully characterize several nanomaterials by sizing nano-entities and producing information about the aggregation/agglomeration state of nanoparticles. By coupling FFF techniques to specific detectors, researchers can determine particle-size distributions (PSDs), expressed as mass-based or number-based PSDs. This review considers FFF applications in the food, biomedical, and environmental sectors, mostly drawn from the past 4 y. It thus underlines the prominent role of asymmetrical flow FFF within the FFF family. By concisely comparing FFF techniques with other techniques suitable for sizing nano-objects, the advantages and the disadvantages of these instruments become clear. A consideration of select recent publications illustrates the state of the art of some lesser-known FFF techniques and innovative instrumental set-ups.

  3. Microscal Thermal Flow Field Fractionation of DNA by Size

    NASA Astrophysics Data System (ADS)

    Pearce, Jennifer; Alfahani, Faihan

    2015-11-01

    We present results from a lattice-Boltzmann-base Brownian Dynamics simulation on the separation of DNA by length using thermal flow field fractionation in a microfluidic device. A temperature gradient in combination with fluid flow allows us to separate long and short strands of DNA. Shorter DNA fragments have higher Soret coefficients and therefore migrate more strongly in the temperature gradient than long strands. They are therefore closer to the channel walls and have a lower mean velocity than longer strands. The retention time in the channel for longer DNA chains is significantly shorter than for small chains. This technique has the advantage that long strands can be processed quickly, unlike traditional agarose gel techniques which require longer times for longer fragments.

  4. SUPERSONIC AND HYPERSONIC INTERFERENCE FLOW FIELDS AND HEATING

    NASA Technical Reports Server (NTRS)

    Morris, D. J.

    1994-01-01

    Small areas of high heat transfer and pressure can occur on a vehicle surface due to the influence of an impinging shock on the local flow. A method was needed to determine peak pressure and heating of these areas. This package is a system of computer programs designed to calculate two-dimensional shock interference patterns for six types of interference flows. Results also include properties of the inviscid flow field and the inviscid-viscous interaction at the surface along with peak pressure and peak heating at the impingement point. The six types of interference flow patterns considered are: 1) Type I interference patterns, occurring when two weak shocks of opposite families, BS (bow shock) and IS (impingment shock), intersect when the flow upstream of the impingement point is supersonic, or in the case of a blunt body, takes place well below the sonic point. 2) Type II interference pattern occurs when two shocks of opposite families (bow shock and impinging shock) intersect. Both shocks are weak as in type I, but are of such strength that in order to turn the flow, a Mach reflection must exist in the center of the flow field with an embedded subsonic region occurring between the intersection points (A & B) and the accompanying shear layers. Type II interference occurs on a blunt body when the impinging shock intersects the bow shock near the sonic point. 3) Type III shock interference pattern occurs when a weak impinging shock intersects a strong detached bow shock. On a blunt body the shock intersection occurs near or above the lower sonic point. 4) Type IV interference can occur when the impinging shock intersects a strong bow shock ahead of a subsonic flow region. On a blunt body this shock intersection is located between the lower sonic point and just above the body axis. The impinging shock causes a displacement of the bow shock and the formation of a supersonic jet that is embedded in the subsonic region. A jet bow shock is produced when the jet impinges

  5. Bioventing Field Initiative at Galena and Campion Air Force Stations, Alaska

    DTIC Science & Technology

    2007-11-02

    This report describes the activities conducted at Galena Air Force Station (AFS) and Campion AFS, Alaska, as part of the Bioventing Field Initiative...air permeability test, in situ respiration tests, and installation of bioventing systems. The specific objectives of this Bioventing Field Initiative

  6. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  7. Three-Dimensional Flow Fields and Bedform Migration in a Field-Scale Meandering Channel

    NASA Astrophysics Data System (ADS)

    Kozarek, J. L.; Palmsten, M. L.; Calantoni, J.; Khosronejad, A.; Sotiropoulos, F.

    2012-12-01

    The St. Anthony Falls Laboratory Outdoor StreamLab (OSL) at the University of Minnesota was constructed in 2008 as field-scale sand bed meandering stream channel within a vegetated floodplain. This state-of-the-art facility provides the unique opportunity to investigate physical, chemical, and biological stream and floodplain processes in a controlled outdoor environment with laboratory-quality measurement capabilities. The research presented here summarizes results from several experiments conducted in the OSL examining the effect of three-dimensional (3-D) flow fields on sediment transport and bedform development. Specifically, we examined bedform dimensions and flow fields in two scenarios 1) in the vicinity immobile rock structures, and 2) on the quasi-equilibrium bar that formed on the inner bank of a meander. A combination of methods were used for each study to determine the rate of scour hole formation, quasi-equilibrium bed elevation and variation in bed elevation, and bedform size and spacing. Bed topography data were collected at 1 cm resolution under live-bed conditions using a downward looking sonar probe attached to a mobile data acquisition (DAQ) cart. At each DAQ station, repeat scans were collected giving insight into the 3-dimensionality of bedforms in a meandering channel with and without rock structures. Supplementary data were collected at transects under two flow and sediment conditions (280 L/s and 6 kg/min and 199 L/s and 4 kg/min, for water and sediment, respectively) using an acoustic Doppler velocimeter (ADV) and a profiling ADV to measure 3-D flow fields and concurrent velocity and bed elevation data. These data were used in conjunction with data from optical remote sensing of bedform migration in the OSL to provide a validation dataset for a high-resolution 3-D hydro-morphodynamic model that is being used to simulate flow and sediment transport processes in meandering channels with embedded rock structures (Khosronejad et al. Adv. in

  8. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  9. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  10. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    NASA Astrophysics Data System (ADS)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  11. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  12. Magnetic Field Generation and Particle Energization in Relativistic Shear Flows

    NASA Astrophysics Data System (ADS)

    Liang, Edison; Boettcher, Markus; Smith, Ian

    2012-10-01

    We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.

  13. Steady hydromagnetic flows in open magnetic fields. II - Global flows with static zones

    NASA Technical Reports Server (NTRS)

    Tsinganos, K.; Low, B. C.

    1989-01-01

    A theoretical study of an axisymmetric steady stellar wind with a static zone is presented, with emphasis on the situation where the global magnetic field is symmetrical about the stellar equator and is partially open. In this scenario, the wind escapes in open magnetic fluxes originating from a region at the star pole and a region at an equatorial belt of closed magnetic field in static equilibrium. The two-dimensional balance of the pressure gradient and the inertial, gravitational, and Lorentz forces in different parts of the flow are studied, along with the static interplay between external sources of energy (heating and/or cooling) distributed in the flow and the pressure distribution.

  14. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  15. Verifying a Simplified Fuel Oil Flow Field Measurement Protocol

    SciTech Connect

    Henderson, H.; Dentz, J.; Doty, C.

    2013-07-01

    The Better Buildings program is a U.S. Department of Energy program funding energy efficiency retrofits in buildings nationwide. The program is in need of an inexpensive method for measuring fuel oil consumption that can be used in evaluating the impact that retrofits have in existing properties with oil heat. This project developed and verified a fuel oil flow field measurement protocol that is cost effective and can be performed with little training for use by the Better Buildings program as well as other programs and researchers.

  16. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  17. Impact of air traffic emissions on airport air quality. Multi-scale modeling, test bed and field measurements

    NASA Astrophysics Data System (ADS)

    Ramaroson, R.; Vuillot, F.; Durand, Y.; Courbet, B.; Janin, F.; Copalle, A.; Guin, C.; Paux, E.; Vannier, F.; Talbaut, M.; Weill, M.

    2004-12-01

    Air traffic emissions are playing a significant role in airport air quality. Engine emissions contribute to the ozone and PM formation. There is an emergence of a need to develop advanced numerical tools and airport emission databases for air pollution studies. Field monitoring at airports necessary to support model assessment is still limited in time and space. The French ONERA AIRPUR project has focused on three objectives: emission inventories; dispersion models; field measurements. Results are presented and discussed in this paper. The ground spatial distribution of LTO emissions using realistic aircraft trajectories, aircraft-engine classification by ICAO, fuel flow methodology and diurnal variations of fleet number, is presented and discussed. Exhaust species time evolution is simulated using a chemical-dispersion model. Results show high emissions of NOx during LTO, and a maximum of CO and Hydrocarbons during taxi. Depending on seasons, the NOx lifetime is varying differently; lower concentration is calculated far away from LTO emissions. Longer-lived pollutants such as ozone are formed downstream and require the use of advanced dispersion models. For this reason, two interactive models coupling the micro and the regional scales are developed and used in this work. A 3D CFD model (CEDRE) simulates the flow characteristics around buildings and the dispersion of emissions. CEDRE boundary conditions are provided by the 3D nested dispersion model MEDIUM/MM5, which includes a surface boundary layer chemistry and calculates the concentration of pollutants from the local to the airport vicinities. The CFD results show a tracer accumulation calculated downstream beside terminals, consistent with observations at some mega-airports. Sensibility studies are conducted to highlight the impact of emissions on ozone formation with MEDIUM. Results show that longer-lived species are produced downstream, their concentration depending on NOx, aromatics and VOC released by

  18. Experimental study on the flow field behind a backward-facing step using a detonation-driven shock tunnel

    NASA Astrophysics Data System (ADS)

    Kim, T.-H.; Yoshikawa, M.; Obara, T.; Ohyagi, S.

    2006-03-01

    The supersonic combustion RAM jet (SCRAM jet) engine is expected to be used in next-generation space planes and hypersonic airliners. To develop the engine, stabilized combustion in a supersonic flow field must be attained even though the residence time of flow is extremely short. A mixing process for breathed air and fuel injected into the supersonic flow field is therefore one of the most important design problems. Because the flow inside the SCRAM jet engine has high enthalpy, an experimental facility is required to produce the high-enthalpy flow field. In this study, a detonation-driven shock tunnel was built to produce a high-enthalpy flow, and a model SCRAM jet engine equipped with a backward-facing step was installed in the test section of the facility to visualize flow fields using a color schlieren technique and high-speed video camera. The fuel was injected perpendicularly to a Mach 3 flow behind the backward-facing step. The height of the step, the injection distance and injection pressure were varied to investigate the effects of the step on air/fuel mixing characteristics. The results show that the recirculation region increases as the fuel injection pressure increases. For injection behind the backward-facing step, mixing efficiency is much higher than with a flat plate. Also, the injection position has a significant influence on the size of the recirculation region generated behind the backward-facing step. The schlieren photograph and pressure histories measured on the bottom wall of the SCRAM jet engine model show that the fuel was ignited behind the step.

  19. Simultaneous 3D Strain and Flow Fields Measurement of a Model Artery under Unsteady Flows

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Sheng, Jian

    2011-11-01

    Fluid-Structure Interaction imposes challenges in both aero-elasticity and biomedical studies. A simultaneous solid deformation and fluid flow measurement technique based on digital in-line holographic particle tracking velocimetry (PTV) has been developed. It allows us to measure concurrently 3D strain field of a deforming structure and the unsteady flow near it. To facilitate the measurement, both wall and flow are seeded with tracer particles distinguished by size. The motion of these tracers provides the 3D deformation of the wall and the 3D velocity distribution of the flow separately. A fully index matched facility including transparent artery and NaI solution is constructed to enable observations near the wall or through the complex geometry. An arterial model with the inner diameter of 9.5 mm and the thickness of 0.9 mm is manufactured from the cross-linked transparent PDMS at the mixing ratio of 1:10 and doped with mono-dispersed 19 μm polystyrene particles. A cinematic holographic PTV system is used to trace the 3D particle motion in the model and flow simultaneously. Preliminary study is performed within a sample volume of 15 × 15 × 75 mm with the spatial resolution of 7.4 μm in lateral and 10 μm in depth. Uncertainty and accuracy analysis will be reported. NSF Grant No: CBET-0844647.

  20. Compressed air energy storage system two-phase flow experiment

    SciTech Connect

    Kumamaru, Hiroshige; Ohtsu, Iwao; Murata, Hideo

    1996-08-01

    A water/CO{sub 2}-combination test facility, having a vertical shaft height of {approximately} 25 m and a shaft inner diameter of 0.2 m, has been constructed in simulating a water/air full-size CAES system, having a shaft height of {approximately} 1,000 m and an inner diameter of {approximately} 3 m. Totally fifteen experiments have been performed in this test facility. In an experiment of CO{sub 2} high-concentration ({approximately} 0.4 MPa) and medium water injection velocity ({approximately} 0.5 m/s), the shaft void fraction during gas charging to a lower reservoir (i.e. during water injection to the shaft) became highest in all the experiment. This experiment may correspond to the severest situation in a full-size CAES system; however, the blowout did not occur in this experiment. In an experiment of CO{sub 2} high-concentration({approximately} 0.4 MPa) and very-high injection velocity ({approximately} 2.5 m/s), after gas charging stopped, CO{sub 2}-supersaturated water, remained in the shaft, formed bubbles vigorously, and thereafter the blowout occurred. However, the injection velocity of {approximately} 2.5 m/s corresponds to a velocity of {approximately} 100 m/s in a full-size CAES system and may be unreal.