Science.gov

Sample records for air flow inlet

  1. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  2. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  3. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  4. Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.

  5. Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan

    2004-01-01

    The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.

  6. Investigation of X24C-2 10-Stage Axial-Flow Compressor. 2; Effect of Inlet-Air Pressure and Temperature of Performance

    NASA Technical Reports Server (NTRS)

    Finger, Harold B.; Schum, Harold J.; Buckner, Howard Jr.

    1947-01-01

    Effect of inlet-air pressure and temperature on the performance of the X24-2 10-Stage Axial-Flow Compressor from the X24C-2 turbojet engine was evaluated. Speeds of 80, 89, and 100 percent of equivalent design speed with inlet-air pressures of 6 and 12 inches of mercury absolute and inlet-air temperaures of approximately 538 degrees, 459 degrees,and 419 degrees R ( 79 degrees, 0 degrees, and minus 40 degrees F). Results were compared with prior investigations.

  7. Investigation at supersonic and subsonic Mach numbers of auxiliary inlets supplying secondary air flow to ejector exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Hearth, Donald P; Cubbison, Robert W

    1956-01-01

    The results indicated increases in auxiliary-inlet pressure recovery with increases in scoop height relative to the boundary-layer thickness. The pressure recovery increased at about the same rate as theoretically predicted for an inlet in a boundary layer having a one-seventh power profile, but was only about 0.68 to 0.75 of the theoretically obtainable values. Under some operating conditions, flow from the primary jet was exhausted through the auxiliary inlet. This phenomenon could be predicted from the ejector pumping characteristics.

  8. The effect of different inlet conditions of air in a rectangular channel on convection heat transfer: Turbulence flow

    SciTech Connect

    Kurtbas, Irfan

    2008-10-15

    Theoretical and empirical correlations for duct flow are given for hydrodynamically and thermally developed flow in most of previous studies. However, this is commonly not a realistic inlet configuration for heat exchanger, in which coolant flow generally turns through a serpentine shaped passage before entering heat sinks. Accordingly, an experimental investigation was carried out to determine average heat transfer coefficients in uniformly heated rectangular channel with 45 and 90 turned flow, and with wall mounted a baffle. The channel was heated through bottom side with the baffle. In present work, a detailed study was conducted for three different height of entry channel (named as the ratio of the height of entry channel to the height of test section (anti H{sub c}=h{sub c}/H)) by varying Reynolds number (Re{sub Dh}). Another variable parameter was the ratio of the baffle height to the channel height (anti H{sub b}=h{sub b}/H). Only one baffle was attached on the bottom (heating) surface. The experimental procedure was validated by comparing the data for the straight channel with no baffle. Reynolds number (Re{sub Dh}) was varied from 2800 to 30,000, so the flow was considered as only turbulent regime. All experiments were conduced with air accordingly; Prandtl number (Pr) was approximately fixed at 0.71. The results showed that average Nusselt number for {theta}=45 and {theta}=90 were 9% and 30% higher, respectively, than that of the straight channel without baffle. Likewise, the pressure drop increased up to 4.4 to 5.3 times compare to the straight channel. (author)

  9. Investigation into air flow characteristics through inlet valve of directed ports

    SciTech Connect

    Liu, R.; Xiao, F.; Guan, L.; Liu, X.

    1994-09-01

    The velocity and turbulence intensity profiles at exit of intake valve from typical SI engine intake ports (horizontal and sloping directed ports) were measured by hot wire anemometry (HWA) in a steady flow rig. The characteristics of velocity and turbulence intensity distribution under different valve lifts and at distances along valve axis were analysed and compared between above two intake ports. Results showed that velocity and turbulence intensity profiles are strongly dependent on intake port form, valve lift and surrounding geometry. They vary not only around the valve head periphery but also along the valve axis. 9 refs., 14 figs.

  10. Heat transfer to two-phase air/water mixtures flowing in small tubes with inlet disequilibrium

    NASA Technical Reports Server (NTRS)

    Janssen, J. M.; Florschuetz, L. W.; Fiszdon, J. P.

    1986-01-01

    The cooling of gas turbine components was the subject of considerable research. The problem is difficult because the available coolant, compressor bleed air, is itself quite hot and has relatively poor thermophysical properties for a coolant. Injecting liquid water to evaporatively cool the air prior to its contact with the hot components was proposed and studied, particularly as a method of cooling for contingency power applications. Injection of a small quantity of cold liquid water into a relatively hot coolant air stream such that evaporation of the liquid is still in process when the coolant contacts the hot component was studied. No approach was found whereby heat transfer characteristics could be confidently predicted for such a case based solely on prior studies. It was not clear whether disequilibrium between phases at the inlet to the hot component section would improve cooling relative to that obtained where equilibrium was established prior to contact with the hot surface.

  11. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  12. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  13. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  14. Investigation of Aerodynamic and Icing Characteristics of a Flush Alternate Inlet Induction System Air Scoop

    NASA Technical Reports Server (NTRS)

    Lewis, James P.

    1953-01-01

    An investigation has been made in the NACA Lewis icing research tunnel to determine the aerodynamic and icing characteristics of a full-scale induction-system air-scoop assembly incorporating a flush alternate inlet. The flush inlet was located immediately downstream of the offset ram inlet and included a 180 deg reversal and a 90 deg elbow in the ducting between inlet and carburetor top deck. The model also had a preheat-air inlet. The investigation was made over a range of mass-air- flow ratios of 0 to 0.8, angles of attack of 0 and 4 deg airspeeds of 150 to 270 miles per hour, air temperatures of 0 and 25 F various liquid-water contents, and droplet sizes. The ram inlet gave good pressure recovery in both clear air and icing but rapid blockage of the top-deck screen occurred during icing. The flush alternate inlet had poor pressure recovery in both clear air and icing. The greatest decreases in the alternate-inlet pressure recovery were obtained at icing conditions of low air temperature and high liquid-water content. No serious screen icing was observed with the alternate inlet. Pressure and temperature distributions on the carburetor top deck were determined using the preheat-air supply with the preheat- and alternate-inlet doors in various positions. No screen icing occurred when the preheat-air system was operated in combination with alternate-inlet air flow.

  15. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  16. Inlet contour and flow effects on radiation

    NASA Technical Reports Server (NTRS)

    Ville, J. M.; Silcox, R. J.

    1980-01-01

    An experimental investigation of sound radiation from inlets with different contours with and without flow is being conducted to study the possibility of reducing noise radiated by aircraft engines. For each inlet configuration, complex directivity patterns and complex pressure reflection coefficients are measured as a function of a single space-time structure of the wave (up to a frequency of 4000Hz and an azimuthal wave number 6) and of flow velocity (up to Mach number 0.4) in a cylindrical duct located downstream the inlet. Experimental results of radiation from an unflanged duct are compared with theory. Effect of inlet contour and flow are deduced by comparing respectively unflanged duct and bellmouth measurements and, no flow and flow measurements with the bellmouth. Results are presented which indicate that the contour effect is significant near the cut-on frequency of a mode and emphasize the necessity for taking into account the inlet geometry in a radiation prediction. These results show also that internal flow has a weak effect on the amplitude of the directivity pattern

  17. Numerical simulation of scramjet inlet flow fields

    NASA Technical Reports Server (NTRS)

    Kumar, Ajay

    1986-01-01

    A computer program was developed to analyze supersonic combustion ramjet (scramjet) inlet flow fields. The program solves the three-dimensional Euler or Reynolds averaged Navier-Stokes equations in full conservation form by either the fully explicit or explicit-implicit, predictor-corrector method of MacCormack. Turbulence is modeled by an algebraic eddy-viscosity model. The analysis allows inclusion of end effects which can significantly affect the inlet flow field. Detailed laminar and turbulent flow results are presented for a symmetric-wedge corner, and comparisons are made with the available experimental results to allow assessment of the program. Results are then presented for two inlet configurations for which experimental results exist at the NASA Langley Research Center.

  18. Alpha-environmental continuous air monitor inlet

    DOEpatents

    Rodgers, John C.

    2003-01-01

    A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.

  19. Flow Control in a Compact Inlet

    NASA Astrophysics Data System (ADS)

    Vaccaro, John C.

    2011-12-01

    An experimental investigation of flow control, via various control jets actuators, was undertaken to eliminate separation and secondary flows in a compact inlet. The compact inlet studied was highly aggressive with a length-to-diameter ratio of 1.5. A brand new facility was designed and built to enable various actuation methodologies as well as multiple measurement techniques. Techniques included static surface pressure, total pressure, and stereoscopic particle image velocimetry. Experimental data were supplemented with numerical simulations courtesy of Prof. Kenneth Jansen, Dr. Onkar Sahni, and Yi Chen. The baseline flow field was found to be dominated by two massive separations and secondary flow structures. These secondary structures were present at the aerodynamic interface plane in the form of two counter-rotating vortices inducing upwash along centerline. A dominant shedding frequency of 350 Hz was measured both at the aerodynamic interface plane and along the lower surface of the inlet. Flow control experiments started utilizing a pair of control jets placed in streamwise locations where flow was found to separate. Tests were performed for a range of inlet Mach numbers from 0.2 to 0.44. Steady and unsteady static pressure measurements along the upper and lower walls of the duct were performed for various combinations of actuation. The parameters that were tested include the control jets momentum coefficient, their blowing ratio, the actuation frequency, as well as different combinations of jets. It was shown that using mass flux ratio as a criterion to define flow control is not sufficient, and one needs to provide both the momentum coefficient and the blowing ratio to quantify the flow control performance. A detailed study was undertaken on controlling the upstream separation point for an inlet Mach number of 0.44. Similar to the baseline flow field, the flow field associated with the activation of a two-dimensional control jet actuator was dominated by

  20. Inlet flow field investigation. Part 1: Transonic flow field survey

    NASA Technical Reports Server (NTRS)

    Yetter, J. A.; Salemann, V.; Sussman, M. B.

    1984-01-01

    A wind tunnel investigation was conducted to determine the local inlet flow field characteristics of an advanced tactical supersonic cruise airplane. A data base for the development and validation of analytical codes directed at the analysis of inlet flow fields for advanced supersonic airplanes was established. Testing was conducted at the NASA-Langley 16-foot Transonic Tunnel at freestream Mach numbers of 0.6 to 1.20 and angles of attack from 0.0 to 10.0 degrees. Inlet flow field surveys were made at locations representative of wing (upper and lower surface) and forebody mounted inlet concepts. Results are presented in the form of local inlet flow field angle of attack, sideflow angle, and Mach number contours. Wing surface pressure distributions supplement the flow field data.

  1. Large Eddy Simulation of Supersonic Inlet Flows

    DTIC Science & Technology

    1998-04-01

    SIMULATION OF SUPERSONIC INLET FLOWS 6. AUTHOR(S) PROF. PARVIZ MOIN PROF. SANJIVA K. LELE 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) STANFORD... Parviz Moin and Sanjiva K. Lele Stanford University Mechanical Engineering, Flow Physics & Computation Division Stanford, CA 94305-3030 Prepared...monitor. I am thankful to Professor Sanjiva Lele and Profes- sor Parviz Moin, and Keith Lucas for useful discussions! I am grateful to Professor Peter

  2. The Unsteady Response of an Axial Flow Turbo-Machinery Rotor to Inlet Flow Distortions.

    DTIC Science & Technology

    1978-10-12

    the rotor inflow velocity. Distorted inlet flow is a very realistic and prevalent problem in jet air - craft engines, and the consequences of...Turbomachinery In designing the blading of a compressor or turbine, the air flow is assumed to be steady. The existence of a uniform, steady flow is...surface of the air - k- foil. When this occurs in a compressor, surge can occur. Surge will result in very large fluctuating forces on the blades which

  3. PIE Nacelle Flow Analysis and TCA Inlet Flow Quality Assessment

    NASA Technical Reports Server (NTRS)

    Shieh, C. F.; Arslan, Alan; Sundaran, P.; Kim, Suk; Won, Mark J.

    1999-01-01

    This presentation includes three topics: (1) Analysis of isolated boattail drag; (2) Computation of Technology Concept Airplane (TCA)-installed nacelle effects on aerodynamic performance; and (3) Assessment of TCA inlet flow quality.

  4. Inlet boundary conditions for shock wave propagation problems in air ducts

    NASA Astrophysics Data System (ADS)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  5. Effect of end-wall boundary layer and inlet turbulence on the flow field structures in the turbine stage

    NASA Astrophysics Data System (ADS)

    Jelinek, Tomas; Straka, Petr; Uruba, Vaclav

    2016-06-01

    The article deals with the effects of the inlet flow parameters on the flow field structures in axial turbine stage. The experiment was performed on the axial turbine stage rig with an air as a working medium. The variable inlet channel produced the different inlet turbulence intensity and different inlet end-wall boundary layer thickness, resp. different inlet velocity distribution was applied. The turbulence was measured by CTA probes. The measured parameters of the inlet velocity distribution and turbulence intensity across the inlet channel height are presented. Based on the experimental inlet parameters the CFD fully turbulent calculation of the flow field was made. The differences in outlet kinetic energy loss, outlet vane angle and the turbulence distribution in the vane mid-span section are depicted. Changes of secondary flow structures with the different inlet end-wall boundary layer thickness were observed on the vane outlet parameters.

  6. Boundary-layer-ingesting inlet flow control system

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R. (Inventor); Allan, Brian G. (Inventor)

    2010-01-01

    A system for reducing distortion at the aerodynamic interface plane of a boundary-layer-ingesting inlet using a combination of active and passive flow control devices is disclosed. Active flow control jets and vortex generating vanes are used in combination to reduce distortion across a range of inlet operating conditions. Together, the vortex generating vanes can reduce most of the inlet distortion and the active flow control jets can be used at a significantly reduced control jet mass flow rate to make sure the inlet distortion stays low as the inlet mass flow rate varies. Overall inlet distortion, measured and described as average SAE circumferential distortion descriptor, was maintained at a value of 0.02 or less. Advantageous arrangements and orientations of the active flow control jets and the vortex generating vanes were developed using computational fluid dynamics simulations and wind tunnel experimentations.

  7. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  8. Cooling Air Inlet and Exit Geometries on Aircraft Engine Installations

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Corsiglia, Victor R.; Barlow, Philip R.

    1982-01-01

    A semispan wing and nacelle of a typical general aviation twin-engine aircraft was tested to evaluate the cooling capability and drag or several nacelle shapes; the nacelle shapes included cooling air inlet and exit variations. The tests were conducted in the Ames Research Center 40 x 80-ft Wind Tunnel. It was found that the cooling air inlet geometry of opposed piston engine installations has a major effect on inlet pressure recovery, but only a minor effect on drag. Exit location showed large effect on drag, especially for those locations on the sides of the nacelle where the suction characteristics were based on interaction with the wing surface pressures.

  9. Validation of WIND for a Series of Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Abbott, John M.; Cavicchi, Richard H.

    2002-01-01

    Validation assessments compare WIND CFD simulations to experimental data for a series of inlet flows ranging in Mach number from low subsonic to hypersonic. The validation procedures follow the guidelines of the AIAA. The WIND code performs well in matching the available experimental data. The assessments demonstrate the use of WIND and provide confidence in its use for the analysis of aircraft inlets.

  10. 47. View of "dry air inlets" to waveguides entering scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    47. View of "dry air inlets" to waveguides entering scanner building 105. Dried air is generated under pressure by Ingersoll-Rand dehumidified/dessicator and compressor system. View is at entrance from passageway that links into corner of scanner building. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Mackie, Scott A.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James L.

    2011-01-01

    Fail-safe, hybrid, flow control (HFC) is a promising technology for meeting high-speed cruise efficiency, low-noise signature, and reduced fuel-burn goals for future, Hybrid-Wing-Body (HWB) aircraft with embedded engines. This report details the development of HFC technology that enables improved inlet performance in HWB vehicles with highly integrated inlets and embedded engines without adversely affecting vehicle performance. In addition, new test techniques for evaluating Boundary-Layer-Ingesting (BLI)-inlet flow-control technologies developed and demonstrated through this program are documented, including the ability to generate a BLI-like inlet-entrance flow in a direct-connect, wind-tunnel facility, as well as, the use of D-optimal, statistically designed experiments to optimize test efficiency and enable interpretation of results. Validated improvements in numerical analysis tools and methods accomplished through this program are also documented, including Reynolds-Averaged Navier-Stokes CFD simulations of steady-state flow physics for baseline, BLI-inlet diffuser flow, as well as, that created by flow-control devices. Finally, numerical methods were employed in a ground-breaking attempt to directly simulate dynamic distortion. The advances in inlet technologies and prediction tools will help to meet and exceed "N+2" project goals for future HWB aircraft.

  12. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    NASA Technical Reports Server (NTRS)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  13. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the study presented, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft engines require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the current study is to advance the understanding of the flow interaction between a modern ultra-compact inlet and a transonic fan for future design applications. Many experimental/ analytical studies have been reported on the aerodynamics of compact inlets in aircraft engines. On the other hand, very few studies have been reported on the effects of flow distortion from these inlets on the performance of the following fan/compressor stages. The primary goal of the study presented is to investigate how flow interaction between an ultra-compact inlet and a transonic compressor influence the operating margin of the compressor. Both Unsteady Reynolds-averaged Navier-Stokes (URANS) and Large Eddy Simulation (LES) approaches are used to calculate the unsteady flow field, and the numerical results are used to study the flow interaction. The present study indicates that stall inception of the following compressor stage is affected directly based on how the distortion pattern evolves before it interacts with the fan/compressor face. For the present compressor, the stall initiates at the tip section with clean inlet flow and distortion pattern away from the casing itself seems to have limited impacts on the stall inception of the compressor. A counter-rotating swirl, which is generated due to flow separation inside the s-shaped compact duct, generates an increased flow angle near the blade tip. This increased flow angle near the rotor tip due to the secondary flow from the counter-rotating vortices is the primary reason for the reduced compressor stall margin.

  14. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    NASA Astrophysics Data System (ADS)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  15. Active Flow Control on a Boundary-Layer-Ingesting Inlet

    NASA Technical Reports Server (NTRS)

    Gorton, Susan Althoff; Owens, Lewis R.; Jenkins, Luther N.; Allan, Brian G.; Schuster, Ernest P.

    2004-01-01

    Boundary layer ingestion (BLI) is explored as means to improve overall system performance for Blended Wing Body configuration. The benefits of BLI for vehicle system performance benefit are assessed with a process derived from first principles suitable for highly-integrated propulsion systems. This performance evaluation process provides framework within which to assess the benefits of an integrated BLI inlet and lays the groundwork for higher-fidelity systems studies. The results of the system study show that BLI provides a significant improvement in vehicle performance if the inlet distortion can be controlled, thus encouraging the pursuit of active flow control (AFC) as a BLI enabling technology. The effectiveness of active flow control in reducing engine inlet distortion was assessed using a 6% scale model of a 30% BLI offset, diffusing inlet. The experiment was conducted in the NASA Langley Basic Aerodynamics Research Tunnel with a model inlet designed specifically for this type of testing. High mass flow pulsing actuators provided the active flow control. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion was determined by 120 total pressure measurements located at the aerodynamic interface plane. The test matrix was limited to a maximum freestream Mach number of 0.15 with scaled mass flows through the inlet for that condition. The data show that the pulsed actuation can reduce distortion from 29% to 4.6% as measured by the circumferential distortion descriptor DC60 using less than 1% of inlet mass flow. Closed loop control of the actuation was also demonstrated using a sidewall surface static pressure as the response sensor.

  16. A comparison of predicted and measured inlet distortion flows in a subsonic axial inlet flow compressor rotor

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1992-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. These Laser Anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A detailed comparison in the rotor relative reference frame between a Navier-Stokes solver and the measured experimental results showed good agreement between the predicted and measured flows. A primary flow is defined in the rotor and deviations and the computed predictions is made to assess the development of a passage vortex due to the distortion of the inlet flow. Computer predictions indicate that a distorted inlet profile has a minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  17. Effects of Inlet Icing on Performance of Axial-flow Turbojet Engine in Natural Icing Conditions

    NASA Technical Reports Server (NTRS)

    Acker, Loren W; Kleinknecht, Kenneth S

    1950-01-01

    A flight investigation in natural icing conditions was conducted to determine the effect of inlet ice formations on the performance of axial-flow turbojet engines. The results are presented for icing conditions ranging from a liquid-water content of 0.1 to 0.9 gram per cubic meter and water-droplet size from 10 to 27 microns at ambient-air temperature from 13 to 26 degrees F. The data show time histories of jet thrust, air flow, tail-pipe temperature, compressor efficiency, and icing parameters for each icing encounter. The effect of inlet-guide-vane icing was isolated and shown to account for approximately one-half the total reduction in performance caused by inlet icing.

  18. Experimental Investigation of a Hypersonic Inlet with Variable Sidewall for Flow Control

    NASA Astrophysics Data System (ADS)

    Rolim, T. C.; Lu, F. K.

    The main function of a scramjet inlet is to decelerate and compress the air for subsequent reaction with the fuel inside the combustor and, of course, contribute toward meeting the thrust requirement for the entire mission by providing adequate mass flow. It is desirable that the inlet be lightweight and that its geometry be capable of producing a uniform flow in an appropriate state to permit efficient mixing and subsequent combustion. Engine cycle analysis indicates that high contraction ratios CR are desirable for achieving high overall engine efficiency.

  19. Investigation of Unsteady Flow Interaction Between an Ultra-Compact Inlet and a Transonic Fan

    NASA Technical Reports Server (NTRS)

    Hah, Chunill; Rabe, Douglas; Scribben, Angie

    2015-01-01

    In the present study, unsteady flow interaction between an ultra-compact inlet and a transonic fan stage is investigated. Future combat aircraft require ultra-compact inlet ducts as part of an integrated, advanced propulsion system to improve air vehicle capability and effectiveness to meet future mission needs. The main purpose of the study is to advance the current understanding of the flow interaction between two different ultra-compact inlets and a transonic fan for future design applications. Both URANS and LES approaches are used to calculate the unsteady flow field and are compared with the available measured data. The present study indicates that stall inception is mildly affected by the distortion pattern generated by the inlet with the current test set-up. The numerical study indicates that the inlet distortion pattern decays significantly before it reaches the fan face for the current configuration. Numerical results with a shorter distance between the inlet and fan show that counter-rotating vortices near the rotor tip due to the serpentine diffuser affects fan characteristics significantly.

  20. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Cook Inlet Intrastate Air...

  1. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Cook Inlet Intrastate Air...

  2. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook Inlet Intrastate Air Quality Control Region (Alaska) consists of the territorial area encompassed by the boundaries... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Cook Inlet Intrastate Air...

  3. Operational test report for 241-AW tank inlet air control stations

    SciTech Connect

    Minteer, D.J., Westinghouse Hanford

    1996-07-03

    This document reports the results of operational testing on tank inlet air control stations in 241-AW tank farm. An air control station was installed on each of the six AW tanks. Operational testing consisted of a simple functional test of each station`s air flow controller, aerosol testing of each station`s HEPA filter, and final ventilation system balancing (i.e., tank airflows and vacuum level) using the air control stations. The test was successful and the units were subsequently placed into operation.

  4. Computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Button, S. L.

    1973-01-01

    In the course of designing inlets, particularly for VTOL and STOL propulsion systems, a calculational procedure utilizing three computer programs evolved. The chief program is the Douglas axisymmetric potential flow program called EOD which calculates the incompressible potential flow about arbitrary axisymmetric bodies. The other two programs, original with Lewis, are called SCIRCL AND COMBYN. Program SCIRCL generates input for EOD from various specified analytic shapes for the inlet components. Program COMBYN takes basic solutions output by EOD and combines them into solutions of interest, and applies a compressibility correction.

  5. DESIGN AND PERFORMANCE OF A LOW FLOW RATE INLET

    EPA Science Inventory

    Several ambient air samplers that have been designated by the U. S. EPA as Federal Reference Methods (FRMs) for measuring particulate matter nominally less than 10 um (PM10) include the use of a particular inlet design that aspirates particulate matter from the atmosphere at 1...

  6. The effect of inlet air vitiation on combustion efficiency

    SciTech Connect

    Zuomin, F.; Yijun, J.

    1985-01-01

    Experimental results of the effect of inlet air vitiation produced by a vitiating preheater on combustion efficiency of a turbojet combustor and a model ramjet combustor are presented in this paper. An empirical correlation and a calculation method based on stirred reactor theory are derived to correct the vitiation effect. Results obtained by means of these two methods are in good agreement with test data.

  7. Investigation of Flow Instabilities in the Inlet Ducts of DP-1C VTOL Aircraft

    NASA Technical Reports Server (NTRS)

    Lepicovsky, Jan

    2008-01-01

    An investigation of flow instabilities in the inlet ducts of a two-engine vertical takeoff and landing aircraft DP-1C is described in this report. Recent tests revealed that the engines stall during run ups while the aircraft is operating on the ground. These pop stalls occurred at relatively low power levels, sometimes as low as 60 percent of the engine full speed. Inability to run the engines up to the full speed level is attributed to in-ground effects associated with hot gas ingestion. Such pop stalls were never experienced when the aircraft was tested on a elevated grid platform, which ensured that the aircraft was operating in out-of-the-ground-effect conditions. Based on available information on problems experienced with other vertical takeoff and landing aircraft designs, it was assumed that the engine stalls were caused by partial ingestion of hot gases streaming forward from the main exit nozzle under the aircraft inlets, which are very close to the ground. It was also suggested that the nose wheel undercarriage, located between the inlets, may generate vortices or an unstable wake causing intense mixing of hot exit gases with incoming inlet flow, which would enhance the hot gas ingestion. After running a short three-day series of tests with fully instrumented engine inlets, it is now believed the most probable reason for engine pop stalls are random ingestions of a vortex generated between the two streams moving in opposite directions: outbound hot gas stream from the main nozzle close to the ground and inbound inlet flow above. Originally, the vortex is in a horizontal plane. However, at a certain velocity ratio of these two streams, the vortex attaches either to the ground or the aircraft surface at one end and the other end is swallowed by one of the aircraft inlets. Once the vortex enters the inlet duct, a puff of hot air can be sucked through the vortex core into the engine, which causes a serious inlet flow field distortion followed by an engine

  8. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  9. 40 CFR 81.54 - Cook Inlet Intrastate Air Quality Control Region.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 17 2010-07-01 2010-07-01 false Cook Inlet Intrastate Air Quality...) AIR PROGRAMS (CONTINUED) DESIGNATION OF AREAS FOR AIR QUALITY PLANNING PURPOSES Designation of Air Quality Control Regions § 81.54 Cook Inlet Intrastate Air Quality Control Region. The Cook...

  10. Investigation of flow fields within large scale hypersonic inlet models

    NASA Technical Reports Server (NTRS)

    Gnos, A. V.; Watson, E. C.; Seebaugh, W. R.; Sanator, R. J.; Decarlo, J. P.

    1973-01-01

    Analytical and experimental investigations were conducted to determine the internal flow characteristics in model passages representative of hypersonic inlets for use at Mach numbers to about 12. The passages were large enough to permit measurements to be made in both the core flow and boundary layers. The analytical techniques for designing the internal contours and predicting the internal flow-field development accounted for coupling between the boundary layers and inviscid flow fields by means of a displacement-thickness correction. Three large-scale inlet models, each having a different internal compression ratio, were designed to provide high internal performance with an approximately uniform static-pressure distribution at the throat station. The models were tested in the Ames 3.5-Foot Hypersonic Wind Tunnel at a nominal free-stream Mach number of 7.4 and a unit free-stream Reynolds number of 8.86 X one million per meter.

  11. The effects of inlet flow modification on cavitating inducer performance

    NASA Technical Reports Server (NTRS)

    Del Valle, J.; Braisted, D. M.; Brennen, C. E.

    1992-01-01

    This paper explores the effect of inlet flow modification on the cavitating and noncavitating performance of two cavitating inducers, one of simple helical design and the other a model of the low-pressure LOX pump in the Space Shuttle Main Engine. The modifications were generated by sections of honeycomb, both uniform and nonuniform. Significant improvement in the performance over a wide range of flow coefficients resulted from the use of either honeycomb section. Measurements of the axial and swirl velocity profiles of the flows entering the inducers were made in order to try to understand the nature of the inlet flow and the manner in which it is modified by the honeycomb sections.

  12. Active Control of Jet Engine Inlet Flows

    DTIC Science & Technology

    2007-03-31

    circumferential distortion pattern acts as an unsteady forcing function, inducing blade vibration that can result in structural fatigue and failure 3. This...after moderate vibrations of the duct model were observed under standard test conditions, a more rigid mounting system was adopted. Upstream of the...The design process started with determining the proper placement of the actuators. Using results from surface pressure tests and flow visualization

  13. Wind-Tunnel Investigation of Air Inlet and Outlet Openings on a Streamline Body

    NASA Technical Reports Server (NTRS)

    Becker, John V

    1951-01-01

    In connection with the general problem of providing air flow to an aircraft power plant located within a fuselage, an investigation was conducted in the Langley 8-foot high-speed tunnel to determine the effect on external drag and pressure distribution of air inlet openings located at the nose of a streamline body. Air outlet openings located at the tail and at the 21-percent and 63-percent stations of the body were also investigated. Boundary layer transition measurements were made and correlated with the force and the pressure data. Individual openings were investigated with the aid of a blower and then practicable combinations of inlet and outlet openings were tested. Various modifications to the internal duct shape near the inlet opening and the aerodynamic effects of a simulated gun in the duct were also studied. The results of the tests suggested that outlet openings should be designed so that the static pressure of the internal flow at the outlet would be the same as the static pressure of the external flow in the vicinity of the opening.

  14. Inlet Flow Control and Prediction Technologies for Embedded Propulsion Systems

    NASA Technical Reports Server (NTRS)

    McMillan, Michelle L.; Gissen, Abe; Vukasinovic, Bojan; Lakebrink, Matthew T.; Glezer, Ari; Mani, Mori; Mace, James

    2010-01-01

    Fail-safe inlet flow control may enable high-speed cruise efficiency, low noise signature, and reduced fuel-burn goals for hybrid wing-body aircraft. The objectives of this program are to develop flow control and prediction methodologies for boundary-layer ingesting (BLI) inlets used in these aircraft. This report covers the second of a three year program. The approach integrates experiments and numerical simulations. Both passive and active flow-control devices were tested in a small-scale wind tunnel. Hybrid actuation approaches, combining a passive microvane and active synthetic jet, were tested in various geometric arrangements. Detailed flow measurements were taken to provide insight into the flow physics. Results of the numerical simulations were correlated against experimental data. The sensitivity of results to grid resolution and turbulence models was examined. Aerodynamic benefits from microvanes and microramps were assessed when installed in an offset BLI inlet. Benefits were quantified in terms of recovery and distortion changes. Microvanes were more effective than microramps at improving recovery and distortion.

  15. Turbofan blade stresses induced by the flow distortion of a VTOL inlet at high angles of attack

    NASA Technical Reports Server (NTRS)

    Williams, R. C.; Diedrich, J. H.; Shaw, R. J.

    1983-01-01

    A 51-cm-diameter turbofan with a tilt-nacelle VTOL inlet was tested in the Lewis Research Center's 9- by 15-Ft Low Speed Wind Tunnel at velocities up to 72 m/s and angles of attack up to 120 deg. Fan-blade vibratory stress levels were investigated over a full aircraft operating range. These stresses were due to inlet air flow distortion resulting from (1) internal flow separation in the inlet, and (2) ingestion of the exterior nacelle wake. Stress levels are presented, along with an estimated safe operating envelope, based on infinite blade fatigue life.

  16. Experimental and numerical analyses of finned cross flow heat exchangers efficiency under non-uniform gas inlet flow conditions

    NASA Astrophysics Data System (ADS)

    Bury, Tomasz; Składzień, Jan; Widziewicz, Katarzyna

    2010-10-01

    The work deals with experimental and numerical thermodynamic analyses of cross-flow finned tube heat exchangers of the gas-liquid type. The aim of the work is to determine an impact of the gas non-uniform inlet on the heat exchangers performance. The measurements have been carried out on a special testing rig and own numerical code has been used for numerical simulations. Analysis of the experimental and numerical results has shown that the range of the non-uniform air inlet to the considered heat exchangers may be significant and it can significantly affect the heat exchanger efficiency.

  17. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    DOEpatents

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  18. On Supersonic-Inlet Boundary-Layer Bleed Flow

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Smith, Gregory E.

    1995-01-01

    Boundary-layer bleed in supersonic inlets is typically used to avoid separation from adverse shock-wave/boundary-layer interactions and subsequent total pressure losses in the subsonic diffuser and to improve normal shock stability. Methodologies used to determine bleed requirements are reviewed. Empirical sonic flow coefficients are currently used to determine the bleed hole pattern. These coefficients depend on local Mach number, pressure ratio, hole geometry, etc. A new analytical bleed method is presented to compute sonic flow coefficients for holes and narrow slots and predictions are compared with published data to illustrate the accuracy of the model. The model can be used by inlet designers and as a bleed boundary condition for computational fluid dynamic studies.

  19. FORTRAN program to generate engine inlet flow contour maps and distortion parameters

    NASA Technical Reports Server (NTRS)

    Dicus, J. H.

    1974-01-01

    A computer program is presented and described that generates jet engine inlet flow contour maps and inlet flow distortion parameters. The program input consists of an array of measurements describing the flow conditions at the engine inlet. User-defined distortion parameters may be calculated.

  20. Effectiveness of a serpentine inlet duct flow control scheme at design and off-design simulated flight conditions

    NASA Astrophysics Data System (ADS)

    Rabe, Angela C.

    An experimental investigation was conducted in a static ground test facility to determine the flow quality of a serpentine inlet duct incorporating active flow control for several simulated flight conditions. The total pressure distortion at the aerodynamic interface plane (AIP) was then used to predict the resulting stability for a compression system. This study was conducted using a model of a compact, low observable, engine inlet duct developed by Lockheed Martin. A flow control technique using air injection through microjets at 1% of the inlet mass flow rate was developed by Lockheed Martin to improve the quality of the flow exiting the inlet duct. Both the inlet duct and the flow control technique were examined at cruise condition and off-design simulated flight conditions (angle of attack and asymmetric distortion). All of the experimental tests were run at an inlet throat Mach number of 0.55 and a resulting Reynolds number of 1.76*105 based on the hydraulic diameter at the inlet throat. For each of the flight conditions tested, the flow control scheme was found to improve the flow uniformity and reduce the inlet distortion at the AIP. For simulated cruise condition, the total pressure recovery was improved by ˜2% with the addition of flow control. For the off-design conditions of angle of attack and asymmetric distortion, the total pressure recovery was improved by 1.5% and 2% respectively. All flight conditions tested showed a reduction in circumferential distortion intensity with flow control. The cruise condition case showed reduced maximum circumferential distortion of 70% with the addition of flow control. A reduction in maximum circumferential distortion of 40% occurred for the angle of attack case with flow control, and 30% for the asymmetric distortion case with flow control. The inlet total pressure distortion was used to predict the changes in stability margin of a compression system due to design and off-design flight conditions and the

  1. Application of rotor mounted pressure transducers to analysis of inlet turbulence. [flow distortion in turbofan engine inlet

    NASA Technical Reports Server (NTRS)

    Hanson, D. B.

    1976-01-01

    Miniature pressure transducers installed near the leading edge of a fan blade were used to diagnose the non-uniform flow entering a subsonic tip speed turbofan on a static test stand. The pressure response of the blade to the inlet flow variations was plotted in a form which shows the space-time history of disturbances ingested by the rotor. Also, periodically sampled data values were auto- and cross-correlated as if they had been acquired from fixed hot wire anemometers at 150 equally spaced angles around the inlet. With a clean inlet and low wind, evidence of long, narrow turbulence eddies was easily found both in the boundary layer of the fan duct and outside the boundary layer. The role of the boundary layer was to follow and amplify disturbances in the outer flow. These eddies frequently moved around the inlet with a corkscrew motion as they passed through.

  2. Experimental Measurement of Transonic Fan Wake Response to Uniform and Simulated Boundary Layer Ingesting Inlet Flows

    NASA Technical Reports Server (NTRS)

    O'Brien, Walter F.; Ferrar, Anthony M.; Arend, David

    2011-01-01

    BWB Aircraft with embedded engines and BLI inlets offer attractive advantages in terms of reduced noise from engines and increased range and fuel economy. The BLI inlet produces inlet distortion patterns that can reduce fan performance and stall margin, and can produce undesirable forced responses. Knowledge of the dynamic response of fan flow when subjected to flow distortions of the type produced by BLI inlets is important for the design of distortion tolerant fans. This project is investigating fan response to flow distortion by measuring the response of the fan of a JT15D engine to a flow pattern following the results of the NASA Inlet A BLI wind tunnel tests.

  3. Blended Wing Body Systems Studies: Boundary Layer Ingestion Inlets With Active Flow Control

    NASA Technical Reports Server (NTRS)

    Geiselhart, Karl A. (Technical Monitor); Daggett, David L.; Kawai, Ron; Friedman, Doug

    2003-01-01

    A CFD analysis was performed on a Blended Wing Body (BWB) aircraft with advanced, turbofan engines analyzing various inlet configurations atop the aft end of the aircraft. The results are presented showing that the optimal design for best aircraft fuel efficiency would be a configuration with a partially buried engine, short offset diffuser using active flow control, and a D-shaped inlet duct that partially ingests the boundary layer air in flight. The CFD models showed that if active flow control technology can be satisfactorily developed, it might be able to control the inlet flow distortion to the engine fan face and reduce the powerplant performance losses to an acceptable level. The weight and surface area drag benefits of a partially submerged engine shows that it might offset the penalties of ingesting the low energy boundary layer air. The combined airplane performance of such a design might deliver approximately 5.5% better aircraft fuel efficiency over a conventionally designed, pod-mounted engine.

  4. Investigations on an axial flow fan stage subjected to circumferential inlet flow distortion and swirl

    NASA Astrophysics Data System (ADS)

    Govardhan, M.; Viswanath, K.

    1997-12-01

    The combined effects of swirl and circumferential inlet flow distortion on the flow field of an axial flow fan stage are reported in this paper. The study involves measurements at the inlet of the rotor and exit of the rotor and stator at design and off design flow conditions. The study indicated that at the design flow condition, swirl had caused deterioration of the performance in addition to that caused by distortion. Pressure rise imparted in the distortion zone is higher than in the free zone. The attenuation of distortion is high in the presence of swirl.

  5. Measurements of inlet flow distortions in an axial flow fan (6 and 9 blade rotor)

    NASA Technical Reports Server (NTRS)

    Barr, L. C.

    1978-01-01

    A large quantity of experimental data on inlet flow distortions in an axial flow fan were obtained. The purpose of the study was to determine the effects of design and operating variables and the type of distortion on the response of an axial flow turbomachinery rotor. Included are background information and overall trends observed in distortion attenuation and unsteady total pressure losses.

  6. Aerodynamic and Acoustic Performance of Two Choked-Flow Inlets Under Static Conditions

    NASA Technical Reports Server (NTRS)

    Miller, B. A.; Abbott, J. M.

    1972-01-01

    Tests were conducted to determine the aerodynamic and acoustic performance of two choking flow inlets under static conditions. One inlet choked the flow in the cowl throat by an axial translation of the inlet centerbody. The other inlet employed a translating grid of airfoils to choke the flow. Both inlets were sized to fit a 13.97 cm diameter fan with a design weight flow of 2.49 kg/sec. The inlets were operated in both the choked and unchoked modes over a range of weight flows. Measurements were made of inlet pressure recovery, flow distortion, surface static pressure distribution, and fan noise suppression. Choking of the translating centerbody inlet reduced blade passing frequency noise by 29 db while yielding a total pressure recovery of 0.985. Noise reductions were also measured at 1/3-octave band center frequencies of 2500, 5000, and 20,000 cycles. The translating grid inlet gave a total pressure recovery of 0.968 when operating close to the choking weight flow. However, an intermittent high intensity noise source was encountered with this inlet that precluded an accurate measurement of inlet noise suppression.

  7. Verification Assessment of Flow Boundary Conditions for CFD Analysis of Supersonic Inlet Flows

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2002-01-01

    Boundary conditions for subsonic inflow, bleed, and subsonic outflow as implemented into the WIND CFD code are assessed with respect to verification for steady and unsteady flows associated with supersonic inlets. Verification procedures include grid convergence studies and comparisons to analytical data. The objective is to examine errors, limitations, capabilities, and behavior of the boundary conditions. Computational studies were performed on configurations derived from a "parameterized" supersonic inlet. These include steady supersonic flows with normal and oblique shocks, steady subsonic flow in a diffuser, and unsteady flow with the propagation and reflection of an acoustic disturbance.

  8. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  9. Numerical analysis of flow features and operation characteristics of a rocket-based combined-cycle inlet in ejector mode

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Liu, Xiaowei; He, Guoqiang; Qin, Fei; Wei, Xianggeng; Yang, Bin; Liu, Jie

    2016-10-01

    A ready-made central strut-based rocket-based combined-cycle (RBCC) engine was numerically investigated in the ejector mode. The flow features in the RBCC inlet and the matching characteristics between the inlet and the embedded rocket during different flight regimes were examined in detail. It was necessary to perform integrated numerical simulations in the ejector mode within considerable pressure far fields around the inlet/exhaust system. The observed flow features and operation characteristics in the RBCC inlet were strongly correlated with the flight conditions, inlet configuration, and operation of the embedded rocket. It was further found that the integrated function status of multiple factors significantly influenced the performance of the RBCC engine in the ejector mode. The two parameters that macroscopically affected the performance most were the air entrainment mass and the drag of the RBCC inlet. To improve these parameters, it is vital to employ an appropriate design of the RBCC inlet and establish the optimal flight trajectory of the flight vehicle.

  10. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  11. Effects of selected design variables on three ramp, external compression inlet performance. [boundary layer control bypasses, and mass flow rate

    NASA Technical Reports Server (NTRS)

    Kamman, J. H.; Hall, C. L.

    1975-01-01

    Two inlet performance tests and one inlet/airframe drag test were conducted in 1969 at the NASA-Ames Research Center. The basic inlet system was two-dimensional, three ramp (overhead), external compression, with variable capture area. The data from these tests were analyzed to show the effects of selected design variables on the performance of this type of inlet system. The inlet design variables investigated include inlet bleed, bypass, operating mass flow ratio, inlet geometry, and variable capture area.

  12. Ultra high bypass Nacelle aerodynamics inlet flow-through high angle of attack distortion test

    NASA Technical Reports Server (NTRS)

    Larkin, Michael J.; Schweiger, Paul S.

    1992-01-01

    A flow-through inlet test program was conducted to evaluate inlet test methods and determine the impact of the fan on inlet separation when operating at large angles of attack. A total of 16 model configurations of approximately 1/6 scale were tested. A comparison of these flow-through results with powered data indicates the presence of the fan increased separation operation 3 degrees to 4 degrees over the flow through inlet. Rods and screens located at the fan face station, that redistribute the flow, achieved simulation of the powered-fan results for separation angle of attack. Concepts to reduce inlet distortion and increase angle of attack capability were also evaluated. Vortex generators located on the inlet surface increased inlet angle of attack capability up to 2 degrees and reduced inlet distortion in the separated region. Finally, a method of simulating the fan/inlet aerodynamic interaction using blockage sizing method has been defined. With this method, a static blockage device used with a flow-through model will approximate the same inlet onset of separation angle of attack and distortion pattern that would be obtained with an inlet model containing a powered fan.

  13. Flow control in axial fan inlet guide vanes by synthetic jets

    NASA Astrophysics Data System (ADS)

    Cyrus, V.; Trávníček, Z.; Wurst, P.; Kordík, J.

    2013-04-01

    Tested high pressure axial flow fan with hub/tip ratio of 0.70 and external diameter of 600 mm consisted of inlet guide vanes (IGV), rotor and stator blade rows. Fan peripheral velocity was 47 m/s. Air volume flow rate was changed by turning of rear part of the inlet guide vanes. At turning of 20 deg the flow was separated on the IGV profiles. The synthetic jets were introduced through radial holes in machine casing in the location before flow separation origin. Synthetic jet actuator was designed with the use of a speaker by UT AVCR. Its membrane had diameter of 63 mm. Excitation frequency was chosen in the range of 500 Hz - 700 Hz. Synthetic jets favourably influenced separated flow on the vane profiles in the distance of (5 - 12) mm from the casing surface. The reduction of flow separation area caused in the region near the casing the decrease of the profile loss coefficient approximately by 20%.

  14. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  15. Flow Visualization of a Scramjet Inlet - Isolator Model in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Seckin, S.; Yuceil, K. B.

    2013-04-01

    Understanding the physical mechanisms and having insight to the complex flowfield involving unstart phenomena in supersonic inlets has gained considerable attention especially in the area of scramjet inlet/isolator aerothermodynamics. In this study, Schlieren visualization and computational analysis of shock wave structures in ramjet/scramjet inlet/isolator models in supersonic flow have been performed. Experiments were performed in the supersonic wind tunnel at the Trisonic Research Laboratory in Istanbul Technical University. The test section floor and the existing mechanism underneath have been modified to be able to mount the designed inlet/isolator model on the floor of the test section. The inlet/isolator model with a 12- degree compression ramp is investigated at Mach 2 both computationally and experimentally. Computations were performed using Star-CCM+ software to investigate shock wave structures in and around the three dimensional inlet/isolator model as mounted on the test section floor as a guide for designing the experimental model. In the results, the effects of shock wave - boundary layer interactions with flow separations with were observed. Ensemble average of the density distributions on a series of planes from one side wall to the other from the CFD results agreed well with the Schlieren images obtained experimentally. The structure of the shock waves and angles obtained from the Schlieren images agree quite well with those obtained from the CFD results. The effects of lambda-shock formations which indicate possible boundary layer separations, reflections of shock waves, and shock wave - boundary layer interactions on inlet unstart phenomena have been discussed. In order to investigate inlet unstart mechanism further, different experimental setups have been suggested for future work.

  16. Calculation of external-internal flow fields for mixed-compression inlets

    NASA Technical Reports Server (NTRS)

    Chyu, W. J.; Kawamura, T.; Bencze, D. P.

    1986-01-01

    Supersonic inlet flows with mixed external-internal compressions were computed using a combined implicit-explicit (Beam-Warming-Steger/MacCormack) method for solving the three-dimensional unsteady, compressible Navier-Stokes equations in conservation form. Numerical calculations were made of various flows related to such inlet operations as the shock-wave intersections, subsonic spillage around the cowl lip, and inlet started versus unstarted conditions. Some of the computed results were compared with wind tunnel data.

  17. A study on flow development in an APU-style inlet and its effect on centrifugal compressor performance

    NASA Astrophysics Data System (ADS)

    Lou, Fangyuan

    The objectives of this research were to investigate the flow development inside an APU-style inlet and its effect on centrifugal compressor performance. The motivation arises from the increased applications of gas turbine engines installed with APU-style inlets such as unmanned aerial vehicles, auxiliary power units, and helicopters. The inlet swirl distortion created from these complicated inlet systems has become a major performance and operability concern. To improve the integration between the APU-style inlet and gas turbine engines, better understanding of the flow field in the APU-style inlet and its effect on gas turbine is necessary. A research facility for the purpose of performing an experimental investigation of the flow field inside an APU-style inlet was developed. A subcritical air ejector is used to continuously flow the inlet at desired corrected mass flow rates. The facility is capable of flowing the APU inlet over a wide range of corrected mass flow rate that matches the same Mach numbers as engine operating conditions. Additionally, improvement in the system operational steadiness was achieved by tuning the pressure controller using a PID control method and utilizing multi-layer screens downstream of the APU inlet. Less than 1% relative unsteadiness was achieved for full range operation. The flow field inside the rectangular-sectioned 90? bend of the APU-style inlet was measured using a 3-Component LDV system. The structures for both primary flow and the secondary flow inside the bend were resolved. Additionally, the effect of upstream geometry on the flow development in the downstream bend was also investigated. Furthermore, a Single Stage Centrifugal Compressor research facility was developed at Purdue University in collaboration with Honeywell to operate the APU-style inlet at engine conditions with a compressor. To operate the facility, extensive infrastructure for facility health monitoring and performance control (including lubrication

  18. Study of Gas Solid Flow Characteristics in Cyclone Inlet Ducts of A300Mwe CFB Boiler

    NASA Astrophysics Data System (ADS)

    Tang, J. Y.; Lu, X. F.; Lai, J.; Liu, H. Z.

    Gas solid flow characteristics in cyclone's inlet duct of a 300MW CFB boiler were studied in a cold circulating fluidized bed (CFB) experimental setup according to a 410t/h CFB boiler with a scale of 10∶1. Tracer particles were adopted in the experiment and their motion trajectories in the two kinds of cyclone's inlet ducts were photographed by a high-speed camera. By analyzing the motion trajectories of tracer particles, acceleration performance of particle phases in the two inlet ducts was obtained. Results indicate that the acceleration performance of particles in the long inlet duct is better than that in the short inlet duct, but the pressure drop of the long inlet duct is higher. Meanwhile, under the same operating conditions, both the separation efficiency and the pressure drop of the cyclone are higher when the cyclone is connected with the long inlet duct. Figs 11, Tabs 4 and refs 10.

  19. Potential and viscous flow in VTOL, STOL or CTOL propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.

    1975-01-01

    A method was developed for analyzing the flow in subsonic axisymmetric inlets at arbitrary conditions of freestream velocity, incidence angle, and inlet mass flow. An improved version of the method is discussed and comparisons of results obtained with the original and improved methods are given. Comparisons with experiments are also presented for several inlet configurations and for various conditions of the boundary layer from insignificant to separated. Applications of the method are discussed, with several examples given for specific cases involving inlets for VTOL lift fans and for STOL engine nacelles.

  20. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    NASA Technical Reports Server (NTRS)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  1. Experimental study of flow distribution and pressure loss with circumferential inlet and outlet manifolds

    NASA Technical Reports Server (NTRS)

    Dittrich, R. T.

    1972-01-01

    Water flow tests with circumferential inlet and outlet manifolds were conducted to determine factors affecting fluid distribution and pressure losses. Various orifice sizes and manifold geometries were tested over a range of flow velocities. With inlet manifolds, flow distribution was related directly to orifice discharge coefficients. A correlation indicated that nonuniform distribution resulted when the velocity head ratio at the orifice was not in the range of constant discharge coefficient. With outlet manifolds, nonuniform flow was related to static pressure variations along the manifold. Outlet manifolds had appreciably greater pressure losses than comparable inlet manifolds.

  2. Theoretical and experimental study of flow-control devices for inlets of indraft wind tunnels

    NASA Technical Reports Server (NTRS)

    Ross, James C.

    1989-01-01

    The design of closed circuit wind tunnels has historically been performed using rule of thumb which have evolved over the years into a body of useful guidelines. The development of indraft wind tunnels, however, has not been as well documented. The design of indraft wind tunnels is therefore generally performed using a more intuitive approach, often resulting in a facility with disappointing flow quality. The primary problem is a lack of understanding of the flow in the inlet as it passes through the required antiturbulence treatment. For wind tunnels which employ large contraction ratio inlets, this lack of understanding is not serious since the relatively low velocity of the flow through the inlet treatment reduces the sensitivity to improper inlet design. When designing a small contraction ratio inlet, much more careful design is needed in order to reduce the flow distortions generated by the inlet treatment. As part of the National Full Scale Aerodynamics Complex Modification Project, 2-D computational methods were developed which account for the effect of both inlet screens and guide vanes on the test section velocity distribution. Comparisons with experimental data are presented which indicate that the methods accurately compute the flow distortions generated by a screen in a nonuniform velocity field. The use of inlet guide vanes to eliminate the screen induced distortion is also demonstrated both computationally and experimentally. Extensions of the results to 3-D is demonstrated and a successful wind tunnel design is presented.

  3. Advantages of air conditioning and supercharging an LM6000 gas turbine inlet

    SciTech Connect

    Kolp, D.A.; Flye, W.M.; Guidotti, H.A.

    1995-07-01

    Of all the external factors affecting a gas turbine, inlet pressure and temperature have the greatest impact on performance. The effect of inlet temperature variations is especially pronounced in the new generation of high-efficiency gas turbines typified by the 40 MW GE LM6000. A reduction of 50 F (28 C) in inlet temperature can result in a 30 percent increase in power and a 4.5 percent improvement in heat rate. An elevation increase to 5,000 ft (1,524 m) above sea level decreases turbine output 17 percent; conversely supercharging can increase output more than 20 percent. This paper addresses various means of heating, cooling and supercharging LM6000 inlet air. An economic model is developed and sample cases are cited to illustrate the optimization of gas turbine inlet systems, taking into account site conditions, incremental equipment cost and subsequent performance enhancement.

  4. Effects of inlet distortion on the development of secondary flows in a subsonic axial inlet compressor rotor. Ph.D. Thesis - Toledo Univ., OH

    NASA Technical Reports Server (NTRS)

    Owen, Albert K.

    1991-01-01

    Detailed flow measurements were taken inside an isolated axial compressor rotor operating subsonically near peak efficiency. Laser anemometer measurements were made with two inlet velocity profiles. One profile consisted of an unmodified baseline flow, and the second profile was distorted by placing axisymmetric screens on the hub and shroud well upstream of the rotor. A primary flow is defined in the rotor and deviations from this primary flow for each inlet flow condition identified. A comparison between the two flow deviations is made to assess the development of a passage vortex due to the distortion of the inlet flow. A comparison of experimental results with computational predictions from a Navier-Stokes solver showed good agreement between predicted and measured flow. Measured results indicate that a distorted inlet profile has minimal effect on the development of the flow in the rotor passage and the resulting passage vortex.

  5. Performance of 4600-pound-thrust centrifugal-flow-type turbojet engine with water-alcohol injection at inlet

    NASA Technical Reports Server (NTRS)

    Glasser, Philip W

    1950-01-01

    An experimental investigation of the effects of injecting a water-alcohol mixture of 2:1 at the compressor inlet of a centrifugal-flow type turbojet engine was conducted in an altitude test chamber at static sea-level conditions and at an altitude of 20,000 feet with a flight Mach number of 0.78 with an engine operating at rated speed. The net thrust was augmented by 0.16 for both flight conditions with a ratio of injected liquid to air flow of 0.05. Further increases in the liquid-air ratio did not give comparable increases in thrust.

  6. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  7. Cavitation performance and flow characteristic in a centrifugal pump with inlet guide vanes

    NASA Astrophysics Data System (ADS)

    Tan, L.; Zha, L.; Cao, S. L.; Wang, Y. C.; Gui, S. B.

    2015-01-01

    The influence of prewhirl regulation by inlet guide vanes (IGVs) on cavitation performance and flow characteristic in a centrifugal pump is investigated. At the impeller inlet, the streamlines are regulated by the IGVs, and the axial velocity distribution is also influenced by the IGVs. Due to the total pressure loss on the IGVs, the cavitation performance of the centrifugal pump degrades. The cavitation area in impeller with IGVs is larger than one without IGVs. The specify values of total pressure loss between the suction pipe inlet and impeller inlet for three cavitation conditions show that the IGVs will generate additional pressure loss, which is related to the IGVs angles and cavitation conditions.

  8. Calculation procedures for potential and viscous flow solutions for engine inlets

    NASA Technical Reports Server (NTRS)

    Albers, J. A.; Stockman, N. O.

    1973-01-01

    The method and basic elements of computer solutions for both potential flow and viscous flow calculations for engine inlets are described. The procedure is applicable to subsonic conventional (CTOL), short-haul (STOL), and vertical takeoff (VTOL) aircraft engine nacelles operating in a compressible viscous flow. The calculated results compare well with measured surface pressure distributions for a number of model inlets. The paper discusses the uses of the program in both the design and analysis of engine inlets, with several examples given for VTOL lift fans, acoustic splitters, and for STOL engine nacelles. Several test support applications are also given.

  9. Effect of inlet-air humidity on the formation of oxides of nitrogen in a gas-turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.

    1973-01-01

    Tests were conducted to determine the effect of inlet-air humidity on the formation of oxides of nitrogen from a gas-turbine combustor. Combustor inlet-air temperature ranged from 450 F to 1050 F. The tests were run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NO sub x emission index was found to decrease with increasing inlet-air humidity at a constant exponential rate of 19 percent per mass percent water vapor in the air. This decrease of NO sub x emission index with increasing humidity was found to be independent of inlet-air temperature.

  10. Secondary flows in annular cascades and effects on flow in inlet guide vanes

    NASA Technical Reports Server (NTRS)

    Lieblein, Seymour; Ackley, Richard H

    1951-01-01

    Qualitative discussion is presented of the general nature of secondary flows in stationary annular cascades with thin wall boundary layers and radial design variation of circulation. Deviations from ideal mean outlet flows (based on blade-element performance) exist in potential-flow region of vanes because of conditions imposed by end-wall boundaries, displacement of wall boundary layers toward blade suction surfaces, and irrotationality requirement. As a consequence of existence of nonuniform radial flow across blade spacing, it may not generally be possible to obtain an arbitrarily specified design variation of the turning angle along the radial height of a blade row. Quantitative turning angle corrections due to effects of secondary flows in axial-flow compressor inlet guide vanes were obtained from induced deflections of a superimposed vortex system in conjunction with an empirically determined correlation factor.

  11. Apparatus and Method for Measuring Air Temperature Ahead of an Aircraft for Controlling a Variable Inlet/Engine Assembly

    NASA Technical Reports Server (NTRS)

    Gary, Bruce L. (Inventor)

    2001-01-01

    The apparatus and method employ remote sensing to measure the air temperature a sufficient distance ahead of the aircraft to allow time for a variable inlet/engine assembly to be reconfigured in response to the measured temperature, to avoid inlet unstart and/or engine compressor stall. In one embodiment, the apparatus of the invention has a remote sensor for measuring at least one air temperature ahead of the vehicle and an inlet control system for varying the inlet. The remote sensor determines a change in temperature value using at least one temperature measurement and prior temperature measurements corresponding to the location of the aircraft. The control system uses the change in air temperature value to vary the inlet configuration to maintain the position of the shock wave during the arrival of the measured air in the inlet. In one embodiment, the method of the invention includes measuring at least one air temperature ahead of the vehicle, determining an air temperature at the vehicle from prior air temperature measurements, determining a change in temperature value using the air temperature at the vehicle and the at least one air temperature measurement ahead of the vehicle, and using the change in temperature value to-reposition the airflow inlet, to cause the shock wave to maintain substantially the same position within the inlet as the airflow temperature changes within the inlet.

  12. Sea level static calibration of a compact multimission aircraft propulsion simulator with inlet flow distortion

    NASA Technical Reports Server (NTRS)

    Won, Mark J.

    1990-01-01

    Wind tunnel tests of propulsion-integrated aircraft models have identified inlet flow distortion as a major source of compressor airflow measurement error in turbine-powered propulsion simulators. Consequently, two Compact Multimission Aircraft Propulsion Simulator (CMAPS) units were statically tested at sea level ambient conditions to establish simulator operating performance characteristics and to calibrate the compressor airflow against an accurate bellmouth flowmeter in the presence of inlet flow distortions. The distortions were generated using various-shaped wire mesh screens placed upstream of the compressor. CMAPS operating maps and performance envelopes were obtained for inlet total pressure distortions (ratio of the difference between the maximum and minimum total pressures to the average total pressure) up to 35 percent, and were compared to baseline simulator operating characteristics for a uniform inlet. Deviations from CMAPS baseline performance were attributed to the coupled variation of both compressor inlet-flow distortion and Reynolds number index throughout the simulator operating envelope for each screen configuration. Four independent methods were used to determine CMAPS compressor airflow; direct compressor inlet and discharge measurements, an entering/exiting flow-balance relationships, and a correlation between the mixer pressure and the corrected compressor airflow. Of the four methods, the last yielded the least scatter in the compressor flow coefficient, approximately + or - 3 percent over the range of flow distortions.

  13. Suppression of Cavity-Driven Flow Separation in a Simulated Mixed Compression Inlet

    NASA Technical Reports Server (NTRS)

    Wendt, Bruce J.

    2000-01-01

    A test facility designed to simulate a bifurcated subsonic diffuser operating within a mixed compression inlet is described. The subsonic diffuser in this facility modeled a bypass cavity feature often used in mixed compression inlets for engine flow matching and normal shock control. A bypass cavity-driven flow separation was seen to occur in the subsonic diffuser without applied flow control. Flow control in the form of vortex generators and/or a partitioned bypass cavity cover plate were used to eliminate this flow separation, providing a 2% increase in area-averaged total pressure recovery, and a 70% reduction in circumferential distortion intensity.

  14. Several examples where turbulence models fail in inlet flow field analysis

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    1993-01-01

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  15. Several examples where turbulence models fail in inlet flow field analysis

    NASA Astrophysics Data System (ADS)

    Anderson, Bernhard H.

    Computational uncertainties in turbulence modeling for three dimensional inlet flow fields include flows approaching separation, strength of secondary flow field, three dimensional flow predictions of vortex liftoff, and influence of vortex-boundary layer interactions; computational uncertainties in vortex generator modeling include representation of generator vorticity field and the relationship between generator and vorticity field. The objectives of the inlet flow field studies presented in this document are to advance the understanding, prediction, and control of intake distortion and to study the basic interactions that influence this design problem.

  16. A comparative assessment of alternative combustion turbine inlet air cooling system

    SciTech Connect

    Brown, D.R.; Katipamula, S.; Konynenbelt, J.H.

    1996-02-01

    Interest in combustion turbine inlet air cooling (CTAC) has increased during the last few years as electric utilities face increasing demand for peak power. Inlet air cooling increases the generating capacity and decreases the heat rate of a combustion turbine during hot weather when the demand for electricity is generally the greatest. Several CTAC systems have been installed, but the general applicability of the concept and the preference for specific concepts is still being debated. Concurrently, Rocky Research of Boulder City, Nevada has been funded by the U.S. Department of Energy to conduct research on complex compound (ammoniated salt) chiller systems for low-temperature refrigeration applications.

  17. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  18. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow

    NASA Astrophysics Data System (ADS)

    Liu, Yixiong; Yang, Ce; Yang, Dengfeng; Zhang, Rui

    2016-04-01

    The aerodynamic performance, detailed unsteady flow and time-based excitations acting on blade surfaces of a radial flow turbine have been investigated with pulsation flow condition. The results show that the turbine instantaneous performance under pulsation flow condition deviates from the quasi-steady value significantly and forms obvious hysteretic loops around the quasi-steady conditions. The detailed analysis of unsteady flow shows that the characteristic of pulsation flow field in radial turbine is highly influenced by the pulsation inlet condition. The blade torque, power and loading fluctuate with the inlet pulsation wave in a pulse period. For the blade excitations, the maximum and the minimum blade excitations conform to the wave crest and wave trough of the inlet pulsation, respectively, in time-based scale. And toward blade chord direction, the maximum loading distributes along the blade leading edge until 20% chord position and decreases from the leading to trailing edge.

  19. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    NASA Astrophysics Data System (ADS)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  20. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    PubMed

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  1. Effect of Inlet and Outlet Flow Conditions on Natural Gas Parameters in Supersonic Separation Process

    PubMed Central

    Yang, Yan; Wen, Chuang; Wang, Shuli; Feng, Yuqing

    2014-01-01

    A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions. PMID:25338207

  2. Microelectrical Mechanical Systems Flow Control Used to Manage Engine Face Distortion in Compact Inlet Systems

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.

    1999-01-01

    Turbofan engine-face flow distortion is one of the most troublesome and least understood problems for designers of modern engine inlet systems. One concern is that there are numerous sources of flow-field distortion that are ingested by the inlet or generated within the inlet duct itself. Among these are: (1) flow separation at the cowl lip during in-flight maneuvering, (2) flow separation on the compression surfaces due to shock-wave/boundary layer interactions, (3) spillage of the fuselage boundary layer into the inlet duct, (4) ingestion of aircraft vortices and wakes emanating from upstream disturbances, and (5) strong secondary flow gradients and flow separation induced by wall curvature within the inlet duct itself. Most developing aircraft (including the B70, F-111, F-14, Mig-25, Tornado, and Airbus A300) have experienced one or more of these types of problems, particularly at high Mach numbers and/or extreme maneuver conditions when flow distortion at the engine face exceeded the allowable limits of the engine.

  3. Numerical Modeling of Active Flow Control in a Boundary Layer Ingesting Offset Inlet

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Berrier, Bobby L.

    2004-01-01

    This investigation evaluates the numerical prediction of flow distortion and pressure recovery for a boundary layer ingesting offset inlet with active flow control devices. The numerical simulations are computed using a Reynolds averaged Navier-Stokes code developed at NASA. The numerical results are validated by comparison to experimental wind tunnel tests conducted at NASA Langley Research Center at both low and high Mach numbers. Baseline comparisons showed good agreement between numerical and experimental results. Numerical simulations for the inlet with passive and active flow control also showed good agreement at low Mach numbers where experimental data has already been acquired. Numerical simulations of the inlet at high Mach numbers with flow control jets showed an improvement of the flow distortion. Studies on the location of the jet actuators, for the high Mach number case, were conducted to provide guidance for the design of a future experimental wind tunnel test.

  4. Convective heat transfer studies at high temperatures with pressure gradient for inlet flow Mach number of 0.45

    NASA Technical Reports Server (NTRS)

    Pedrosa, A. C. F.; Nagamatsu, H. T.; Hinckel, J. A.

    1984-01-01

    Heat transfer measurements were determined for a flat plate with and without pressure gradient for various free stream temperatures, wall temperature ratios, and Reynolds numbers for an inlet flow Mach number of 0.45, which is a representative inlet Mach number for gas turbine rotor blades. A shock tube generated the high temperature and pressure air flow, and a variable geometry test section was used to produce inlet flow Mach number of 0.45 and accelerate the flow over the plate to sonic velocity. Thin-film platinum heat gages recorded the local heat flux for laminar, transition, and turbulent boundary layers. The free stream temperatures varied from 611 R (339 K) to 3840 R (2133 K) for a T(w)/T(r,g) temperature ratio of 0.87 to 0.14. The Reynolds number over the heat gages varied from 3000 to 690,000. The experimental heat transfer data were correlated with laminar and turbulent boundary layer theories for the range of temperatures and Reynolds numbers and the transition phenomenon was examined.

  5. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection

    NASA Astrophysics Data System (ADS)

    Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.

    2011-09-01

    A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.

  6. Inlet Flow Test Calibration for a Small Axial Compressor Facility. Part 1: Design and Experimental Results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1994-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. The inlet region consisted of a long flowpath region with two series of support struts and a flapped inlet guide vane. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the inlet for a highly loaded two-stage axial compressor test. Several flow conditions and IGV angle settings were established in which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. A detailed discussion of the flowpath design along with a summary of the experimental results are provided in Part 1.

  7. Experimental investigation of the draft tube inlet flow of a bulb turbine

    NASA Astrophysics Data System (ADS)

    Vuillemard, J.; Aeschlimann, V.; Fraser, R.; Lemay, S.; Deschênes, C.

    2014-03-01

    In the BulbT project framework, a bulb turbine model was studied with a strongly diverging draft tube. At high discharge, flow separation occurs in the draft tube correlated to significant efficiency and power drops. In this context, a focus was put on the draft tube inlet flow conditions. Actually, a precise inlet flow velocity field is required for comparison and validation purposes with CFD simulation. This paper presents different laser Doppler velocimetry (LDV) measurements at the draft tube inlet and their analysis. The LDV was setup to measure the axial and circumferential velocity on a radius under the runner and a diameter under the hub. A method was developed to perform indirect measurement of the mean radial velocity component. Five operating conditions were studied to correlate the inlet flow to the separation in the draft tube. Mean velocities, fluctuations and frequencies allowed characterizing the flow. Using this experimental database, the flow structure was characterized. Phase averaged velocities based on the runner position allowed detecting the runner blade wakes. The velocity gradients induced by the blade tip vortices were captured. The guide vane wakes was also detected at the draft tube inlet. The recirculation in the hub wake was observed.

  8. Estimating Engine Airflow in Gas-Turbine Powered Aircraft with Clean and Distorted Inlet Flows

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Steenken, W. G.; Yuhas, A. J.

    1996-01-01

    The P404-GF-400 Powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the impact of inlet-generated total-pressure distortion on estimating levels of engine airflow. Five airflow estimation methods were studied. The Reference Method was a fan corrected airflow to fan corrected speed calibration from an uninstalled engine test. In-flight airflow estimation methods utilized the average, or individual, inlet duct static- to total-pressure ratios, and the average fan-discharge static-pressure to average inlet total-pressure ratio. Correlations were established at low distortion conditions for each method relative to the Reference Method. A range of distorted inlet flow conditions were obtained from -10 deg. to +60 deg. angle of attack and -7 deg. to +11 deg. angle of sideslip. The individual inlet duct pressure ratio correlation resulted in a 2.3 percent airflow spread for all distorted flow levels with a bias error of -0.7 percent. The fan discharge pressure ratio correlation gave results with a 0.6 percent airflow spread with essentially no systematic error. Inlet-generated total-pressure distortion and turbulence had no significant impact on the P404-GE400 engine airflow pumping. Therefore, a speed-flow relationship may provide the best airflow estimate for a specific engine under all flight conditions.

  9. Influence of leading edge bluntness on hypersonic flow in a generic internal-compression inlet

    NASA Astrophysics Data System (ADS)

    Borovoy, V.; Egorov, I.; Mosharov, V.; Radchenko, V.; Skuratov, A.; Struminskaya, I.

    2015-06-01

    Flow and heat transfer inside a generic inlet are investigated experimentally. The cross section of the inlet is rectangular. The inlet is installed on a flat plat at a significant distance from the leading edge. The experiments are performed in TsAGI wind tunnel UT-1M working in the Ludwieg tube mode at Mach number M∞ = 5 and Reynolds numbers (based on the plate length L = 320 mm) Re∞L = 23 · 106 and 13 · 106. Steady flow duration is 40 ms. Optical panoramic methods are used for investigation of flow outside and inside the inlet as well. For this purpose, the cowl and one of two compressing wedges are made of a transparent material. Heat flux distribution is measured by thin luminescent Temperature Sensitive Paint (TSP). Surface flow and shear stress visualization is performed by viscous oil containing luminophor particles. The investigation shows that at high contraction ratio of the inlet, an increase of plate or cowl bluntness to some critical value leads to sudden change of the flow structure.

  10. Experimental and Computational Study of Flow Interactions in a Generic Scramjet Inlet-Isolator

    NASA Astrophysics Data System (ADS)

    Idris, A. Che; Saad, M. R.; Zare-Behtash, H.; Kontis, K.

    A supersonic combustion ramjet (scramjet) inlet that is optimized for cruise conditions would experience an adverse flow conditions at off-design conditions. Strong viscous interactions, shock-shock interactions, glancing shock interactions, shockboundary layer interactions, flow separations and other problems could occur during such conditions [1][2].

  11. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.

    2006-01-01

    This paper will investigate the validation of the NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as a baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet experiment conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a free-stream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the fanface diameter. The numerical simulations with and without tunnel walls are performed, quantifying tunnel wall effects on the BLI inlet flow. A comparison is made between the numerical simulations and the BLI inlet experiment for the baseline and VG vane cases at various inlet mass flow rates. A comparison is also made to a BLI inlet jet configuration for varying actuator mass flow rates at a fixed inlet mass flow rate. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCP avg, very well within the designed operating range of the BLI inlet. A comparison of the average total pressure recovery showed that the simulations were able to predict the trends but had a negative 0.01 offset when compared to the experimental levels. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion levels for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe rake indicated that the circumferential distortion levels are very sensitive to the symmetry of

  12. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared wery well with the experimental data, and performed better than the Thomas model near the walls.

  13. Comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1992-01-01

    A numerical study was conducted to analyze the performance of different turbulence models when applied to the hypersonic NASA P8 inlet. Computational results from the PARC2D code, which solves the full two-dimensional Reynolds-averaged Navier-Stokes equation, were compared with experimental data. The zero-equation models considered for the study were the Baldwin-Lomax model, the Thomas model, and a combination of the Baldwin-Lomax and Thomas models; the two-equation models considered were the Chien model, the Speziale model (both low Reynolds number), and the Launder and Spalding model (high Reynolds number). The Thomas model performed best among the zero-equation models, and predicted good pressure distributions. The Chien and Speziale models compared very well with the experimental data, and performed better than the Thomas model near the walls.

  14. Altitude-Wind-Tunnel Investigation of a 3000-Pound-Thrust Axial-Flow Turbojet Engine. 6; Analysis of Effects of Inlet Pressure Losses

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D.; Palasics, John

    1948-01-01

    The losses in the inlet air ducts, the diffusers, and the de-icing equipment associated with turbojet engine installations cause a reduction in the total pressure at the inlet of the engine and result in reduced thrust and increased specific fuel consumption. An analytical evaluation of the effects of inlet losses on the net thrust and the fuel economy of a 3000-pound-thrust axial flow turbojet engine with a two-stage turbine is presented. The analysis is based on engine performance characteristics that were determined from experiments in the NACA Cleveland altitude wind tunnel. The experimental investigation did not include tests in which inlet losses were systematically varied, but the effects of these losses can be accurately estimated from the experimentally determined performance characteristics of the engine.

  15. Supersonic Inlet Flow Control Using Localized Arc Filament Plasma Actuators

    DTIC Science & Technology

    2011-05-10

    one of the diagnostics tool used to observe the flow. Olive oil particles are used to seed the flow for these measurements. The streaking of oil...eliminate image contamination due to ambient light and the arc filaments. The flow is seeded with olive oil particles by a TSI six-jet atomizer in the

  16. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    NASA Astrophysics Data System (ADS)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  17. Rarefied gas flow in microtubes at different inlet-outlet pressure ratios

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Garimella, S. V.

    2009-05-01

    A model is developed for rarefied gas flow in long microtubes with different inlet-outlet pressure ratios at low Mach numbers. The model accounts for significant changes in Knudsen number along the length of the tube and is therefore applicable to gas flow in long tubes encountering different flow regimes along the flow length. Predictions from the model show good agreement with experimental measurements of mass flow rate, pressure drop, and inferred streamwise pressure distribution obtained under different flow conditions and offer a better match with experiments than do those from a conventional slip flow model.

  18. Low pressure gas flow analysis through an effusive inlet using mass spectrometry

    NASA Technical Reports Server (NTRS)

    Brown, David R.; Brown, Kenneth G.

    1988-01-01

    A mass spectrometric method for analyzing flow past and through an effusive inlet designed for use on the tethered satellite and other entering vehicles is discussed. Source stream concentrations of species in a gaseous mixture are determined using a calibration of measured mass spectral intensities versus source stream pressure for standard gas mixtures and pure gases. Concentrations are shown to be accurate within experimental error. Theoretical explanations for observed mass discrimination effects as they relate to the various flow situations in the effusive inlet and the experimental apparatus are discussed.

  19. Numerical Modeling of Flow Control in a Boundary-Layer-Ingesting Offset Inlet Diffuser at Transonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Allan Brian G.; Owens, Lewis, R.

    2006-01-01

    This paper will investigate the validation of a NASA developed, Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, for a boundary-layer-ingesting (BLI) offset (S-shaped) inlet in transonic flow with passive and active flow control devices as well as the baseline case. Numerical simulations are compared to wind tunnel results of a BLI inlet conducted at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel. Comparisons of inlet flow distortion, pressure recovery, and inlet wall pressures are performed. The numerical simulations are compared to the BLI inlet data at a freestream Mach number of 0.85 and a Reynolds number of approximately 2 million based on the length of the fan-face diameter. The numerical simulations with and without wind tunnel walls are performed, quantifying effects of the tunnel walls on the BLI inlet flow measurements. The wind tunnel test evaluated several different combinations of jet locations and mass flow rates as well as a vortex generator (VG) vane case. The numerical simulations will be performed on a single jet configuration for varying actuator mass flow rates at a fix inlet mass flow condition. Validation of the numerical simulations for the VG vane case will also be performed for varying inlet mass flow rates. Overall, the numerical simulations were able to predict the baseline circumferential flow distortion, DPCPavg, very well for comparisons made within the designed operating range of the BLI inlet. However the CFD simulations did predict a total pressure recovery that was 0.01 lower than the experiment. Numerical simulations of the baseline inlet flow also showed good agreement with the experimental inlet centerline surface pressures. The vane case showed that the CFD predicted the correct trends in the circumferential distortion for varying inlet mass flow but had a distortion level that was nearly twice as large as the experiment. Comparison to circumferential distortion measurements for a 15 deg clocked 40 probe

  20. Analysis of Effects of Inlet Pressure Losses on Performance of Axial-Flow Type Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Sanders, Newell D; Palasics, John

    1948-01-01

    The experimentally determined performance characteristics of an axial-flow turbojet engine have been used to estimate the effects of inlet total-pressure losses on net thrust and specific fuel consumption at a constant engine speed. At low altitudes and flight Mach numbers, inlet pressure losses cause an increase in engine discharge temperature and it is possible that the maximum allowable turbine temperature maybe exceeded. An inlet absolute total-pressure loss of 10 percent will result in a thrust loss of 14 percent and a 15-percent increase in specific fuel consumption based on net thrust. At high altitudes and flight Mach numbers, choking conditions exist in the exhaust nozzle and the inlet pressure losses do not affect the discharge temperatures. Under these conditions, a 10-percent loss in inlet absolute total pressure produces a 22-percent loss in net thrust and a 16-percent increase in specific fuel consumption. If the exhaust-nozzle-outlet area is adjusted to compensate for the effect of inlet losses on discharge temperature in the nonchoking cases (low altitude and Mach numbers), the thrust and fuel consumption will be changed in a manner similar to the results obtained in the choking cases.

  1. Computation of inlet reference plane flow-field for a subscale free-jet forebody/inlet model and comparison to experimental data

    NASA Astrophysics Data System (ADS)

    McClure, M. D.; Sirbaugh, J. R.

    1991-02-01

    The computational fluid dynamics (CFD) computer code PARC3D was used to predict the inlet reference plane (IRP) flow field for a side-mounted inlet and forebody simulator in a free jet for five different flow conditions. The calculations were performed for free-jet conditions, mass flow rates, and inlet configurations that matched the free-jet test conditions. In addition, viscous terms were included in the main flow so that the viscous free-jet shear layers emanating from the free-jet nozzle exit were modeled. A measure of the predicted accuracy was determined as a function of free-stream Mach number, angle-of-attack, and sideslip angle.

  2. Study on the Effect of Inlet Fluctuation on Cavitation in a Cone Flow Channel.

    PubMed

    Hai, Liu; Shuping, Cao; Xiaohui, Luo

    2015-05-01

    A mathematical method was conducted to investigate the mechanism of formation of cavitation cloud, while the inlet stream contains a fluctuating flow. Based on the Rayleigh-Plesset equation and the static pressure distribution in a cone flow channel, parameters related to cavitation cloud are estimated, and the collapse pressure of the cavitation cloud is obtained by solving the equation of Mørch's model. Moreover, the effect of the amplitude and frequency of inlet fluctuation on cavitation is studied. Results revealed that the smaller the amplitude, the smaller the cloud and the lower the collapse pressure. And frequency of fluctuating stream was found to have a relative great effect on frequency of peak pressure but not so significant on peak collapse pressure and size of cloud. It is concluded that limiting the inlet fluctuation reduces the erosion and noise generated by cavitation collapse.

  3. The influence of inlet flow condition on the frequency of self-excited jet precession

    NASA Astrophysics Data System (ADS)

    Mi, J.; Nathan, G. J.; Wong, C. Y.

    2006-01-01

    A precessing jet flow can be generated naturally by a fluidic nozzle comprising a cylindrical nozzle-chamber with a large sudden expansion at its inlet and a small lip at its outlet. Such a precessing jet flow is offset with respect to the chamber axis, about which it rotates. The aim of the present study is to investigate the influence of the chamber-inlet configuration on the frequency of such precession. Three different inlet configurations, classified as long pipe, smooth contraction, and sharp-edged orifice plate, are tested. It is found that the frequency of precession from the orifice is highest, whereas that of the pipe jet is lowest. These differences appear to result partly from the distinct differences in their respective initial boundary layers.

  4. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  5. Benefits of compressor inlet air cooling for gas turbine cogeneration plants

    SciTech Connect

    De Lucia, M.; Lanfranchi, C.; Boggio, V.

    1996-07-01

    Compressor inlet air cooling is an effective method for enhancing the performance of gas turbine plants. This paper presents a comparative analysis of different solutions for cooling the compressor inlet air for the LM6000 gas turbine in a cogeneration plant operated in base load. Absorption and evaporative cooling systems are considered and their performance and economic benefits compared for the dry low-NO{sub x} LM6000 version. Reference is made to two sites in Northern and Southern Italy, whose climate data series for modeling the variations in ambient temperature during the single day were used to account for the effects of climate in the simulation. The results confirmed the advantages of inlet air cooling systems. In particular, evaporative cooling proved to be cost effective, though capable of supplying only moderate cooling, while absorption systems have a higher cost but are also more versatile and powerful in base-load operation. An integration of the two systems proved to be able to give both maximum performance enhancement and net economic benefit.

  6. Low-speed wind-tunnel investigation of the aerodynamic and acoustic performance of a translating grid choked flow inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Miller, B. A.; Golladay, R. L.

    1974-01-01

    The aerodynamic and acoustic performance of a translating grid choked-flow inlet was determined in a low-speed wind tunnel at free-stream velocities of 24, 32, and 45 m/sec and incidence angles of 0, 10, 20, 30, 35, 40, 45, and 50 deg. The inlet was sized to fit a 13.97- centimeter-diameter fan with a design weight flow of 2.49 kg/sec. Measurements were made to determine inlet total pressure recovery, flow distortion, and sound pressure level for both choked and unchoked geometries over a range of inlet weight flows. For the unchoked geometry, inlet total pressure recovery ranged from 0.983 to 0.989 at incidence angles less than 40 deg. At 40 deg incidence angle, inlet cowl separation was encountered which resulted in lower values of pressure recovery and higher levels of fan broadband noise. For the choked geometry, increasing total pressure losses occurred with increasing inlet weight flow that prevented the inlet from reaching full choked conditions with the particular fan used. These losses were attributed to the high Mach number drag rise characteristics of airfoil grid. At maximum attainable inlet weight flow, the total pressure recovery at static conditions was 0.935. The fan blade passing frequency and other fan generated pure tones were eliminated from the noise spectrum, but the broadband level was increased.

  7. Computer programs for calculating two-dimensional potential flow in and about propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Hawk, J. D.; Stockman, N. O.; Farrell, C. A., Jr.

    1978-01-01

    Incompressible potential flow calculations are presented that were corrected for compressibility in two-dimensional inlets at arbitrary operating conditions. Included are a statement of the problem to be solved, a description of each of the computer programs, and sufficient documentation, including a test case, to enable a user to run the program.

  8. Improved computer programs for calculating potential flow in propulsion system inlets

    NASA Technical Reports Server (NTRS)

    Stockman, N. O.; Farrell, C. A., Jr.

    1977-01-01

    Computer programs to calculate the incompressible potential flow corrected for compressibility in axisymmetric inlets at arbitrary operating conditions are presented. Included are a statement of the problem to be solved, a description of each of the programs and sufficient documentation, including a test case, to enable a user to run the programs.

  9. Management of Total Pressure Recovery, Distortion and High Cycle Fatigue in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2002-01-01

    It is the purpose of this study to demonstrate the viability and economy of Response Surface Methods (RSM) and Robustness Design Concepts (RDC) to arrive at micro-secondary flow control installation designs that maintain optimal inlet performance over a range of the mission variables. These statistical design concepts were used to investigate the robustness properties of 'low unit strength' micro-effector installations. 'Low unit strength' micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion.

  10. Literature search of publications concerning the prediction of dynamic inlet flow distortion and related topics

    NASA Technical Reports Server (NTRS)

    Schweikhhard, W. G.; Chen, Y. S.

    1983-01-01

    Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.

  11. Numerical Procedures for Inlet/Diffuser/Nozzle Flows

    NASA Technical Reports Server (NTRS)

    Rubin, Stanley G.

    1998-01-01

    Two primitive variable, pressure based, flux-split, RNS/NS solution procedures for viscous flows are presented. Both methods are uniformly valid across the full Mach number range, Le., from the incompressible limit to high supersonic speeds. The first method is an 'optimized' version of a previously developed global pressure relaxation RNS procedure. Considerable reduction in the number of relatively expensive matrix inversion, and thereby in the computational time, has been achieved with this procedure. CPU times are reduced by a factor of 15 for predominantly elliptic flows (incompressible and low subsonic). The second method is a time-marching, 'linearized' convection RNS/NS procedure. The key to the efficiency of this procedure is the reduction to a single LU inversion at the inflow cross-plane. The remainder of the algorithm simply requires back-substitution with this LU and the corresponding residual vector at any cross-plane location. This method is not time-consistent, but has a convective-type CFL stability limitation. Both formulations are robust and provide accurate solutions for a variety of internal viscous flows to be provided herein.

  12. Numerical Calibration of Mass Flow Plug for Inlet Testing

    NASA Technical Reports Server (NTRS)

    Sasson, Jonathan; Barnhart, Paul; Davis, David O.

    2015-01-01

    A simple control volume model has been developed to calculate the discharge coefficient through a mass flow plug (MFP) and validated with a calibration experiment. The maximum error of the model within the operating region of the MFP is 0.54%. The control volume analysis developed work is comprised of a sequence of flow calculations through the MFP. The model uses the MFP geometry and operating pressure and temperature to couple continuity, momentum, energy, an equation of state, and wall shear. The discharge coefficient calculation also includes the effects of boundary layer growth, including the reduction in cross-sectional flow area as characterized by the boundary layer displacement thickness. The last calculation in the sequence uses an integral method to calculate the growth of the boundary layer, from which the displacement thickness is then determined. The result of these successive calculations is an accurate one-dimension model of the velocity, pressure, and temperature through the MFP. For comparison, a computational fluid dynamic (CFD) calibration is shown, which when compared to the presented numerical model, had a lower accuracy with a maximum error of 1.35% in addition to being slower by a factor of 100."

  13. Experimental Research on Gas-Solid Flow in a Square Cyclone Separator with Double Inlets

    NASA Astrophysics Data System (ADS)

    Xiong, B.; Lu, X. F.; Amano, R. S.; Shu, C.

    A square cyclone separator with double inlets was developed for a new type Circulating Fluidized Bed (CFB) boiler arrangement scheme including two furnaces. Experiments on the performance and gas-solid flow recorded by a high-speed photography have been conducted in a cold test rig with a separator cross section 400mm×400mm. Experimental results indicated that with the inlet velocity of 22.4m/s and the inlet solids concentration of 4.9g/m3, the cut size is 15 μm, the critical size is 75μm, and the pressure drop coefficient is 1.7. The performance is also affected by the inlet velocity and solids concentration. The trajectory of particles shows that the particles swirl in the region near the wall and are easily separated. Especially, the instantaneous separation occurred at the corner is very significant for the improvement of the collection efficiency with the high inlet solids concentration for CFB boiler.

  14. A study on vortex flow control of inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Huang, Pao S.; Paschal, William A.; Cavatorta, Enrico

    1992-01-01

    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself.

  15. A study on vortex flow control on inlet distortion in the re-engined 727-100 center inlet duct using computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Huang, Pao S.; Paschal, William A.; Cavatorta, Enrico

    1992-01-01

    Computational fluid dynamics was used to investigate the management of inlet distortion by the introduction of discrete vorticity sources at selected locations in the inlet for the purpose of controlling secondary flow. These sources of vorticity were introduced by means of vortex generators. A series of design observations were made concerning the importance of various vortex generator design parameters in minimizing engine face circumferential distortion. The study showed that vortex strength, generator scale, and secondary flow field structure have a complicated and interrelated influence on the engine face distortion, over and above the initial geometry and arrangement of the generators. The installed vortex generator performance was found to be a function of three categories of variables: the inflow conditions, the aerodynamic characteristics associated with the inlet duct, and the design parameters related to the geometry, arrangement, and placement of the vortex generators within the outlet duct itself.

  16. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  17. Effects of Inlet Flow Conditions on Crossflow Jet Mixing

    NASA Technical Reports Server (NTRS)

    Liscinsky, D. S.; True, B.; Holdeman, J. D.

    1996-01-01

    An experimental investigation of the effects of mainstream turbulence, mainstream swirl and non-symmetric mass addition has been conducted for the isothermal mixing of multiple jets injected into a confined rectangular crossflow. Jet penetration and mixing in the near field was studied using planar Mie scattering to measure time-averaged mixture fraction distributions. Orifice configurations were used that were optimized for mixing performance based on previous experimental and computational results for a homogeneous approach flow. Mixing effectiveness, determined using a spatial unmixedness parameter based on the variance of the mean jet concentration distributions, was found to be minimally affected by free-stream turbulence but significantly influenced by the addition of swirl to the mainstream. The results for non-symmetric mass addition indicate that the concentration distribution of the flowfield can be tailored if desired.

  18. Calculation of two-dimensional inlet flow fields in a supersonic free stream: Program documentation and test cases

    NASA Technical Reports Server (NTRS)

    Biringen, S. H.; Mcmillan, O. J.

    1980-01-01

    The use of a computer code for the calculation of two dimensional inlet flow fields in a supersonic free stream and a nonorthogonal mesh-generation code are illustrated by specific examples. Input, output, and program operation and use are given and explained for the case of supercritical inlet operation at a subdesign Mach number (M Mach free stream = 2.09) for an isentropic-compression, drooped-cowl inlet. Source listings of the computer codes are also provided.

  19. Task 7: Endwall treatment inlet flow distortion analysis

    NASA Technical Reports Server (NTRS)

    Hall, E. J.; Topp, D. A.; Heidegger, N. J.; McNulty, G. S.; Weber, K. F.; Delaney, R. A.

    1996-01-01

    The overall objective of this study was to develop a 3-D numerical analysis for compressor casing treatment flowfields, and to perform a series of detailed numerical predictions to assess the effectiveness of various endwall treatments for enhancing the efficiency and stall margin of modern high speed fan rotors. Particular attention was given to examining the effectiveness of endwall treatments to counter the undesirable effects of inflow distortion. Calculations were performed using three different gridding techniques based on the type of casing treatment being tested and the level of complexity desired in the analysis. In each case, the casing treatment itself is modeled as a discrete object in the overall analysis, and the flow through the casing treatment is determined as part of the solution. A series of calculations were performed for both treated and untreated modern fan rotors both with and without inflow distortion. The effectiveness of the various treatments were quantified, and several physical mechanisms by which the effectiveness of endwall treatments is achieved are discussed.

  20. Wind-Tunnel Investigation of Air Inlet and Outlet Openings for Aircraft, Special Report

    NASA Technical Reports Server (NTRS)

    Rogallo, Francis M.; Gauvain, William E.

    1938-01-01

    An investigation was made in the NACA 5-foot vertical wind tunnel of a large variety of duct inlets and outlets to obtain information relative to their design for the cooling or the ventilation systems on aircraft. Most of the tests were of openings in a flat plate but, in order to determine the best locations and the effects of interference, a few tests were made of openings in an airfoil. The best inlet location for a system not including a blower was found to be at the forward stagnation point; for one including a blower, the best location was found to be in the region of lowest total head, probably in the boundary layer near the trailing edge. Design recommendations are given, and it is shown that correct design demands a knowledge of the external flow and of the internal requirements in addition to that obtained from the results of the wind tunnel tests.

  1. Local flow measurements at the inlet spike tip of a Mach 3 supersonic cruise airplane

    NASA Technical Reports Server (NTRS)

    Johnson, H. J.; Montoya, E. J.

    1973-01-01

    The flow field at the left inlet spike tip of a YF-12A airplane was examined using at 26 deg included angle conical flow sensor to obtain measurements at free-stream Mach numbers from 1.6 to 3.0. Local flow angularity, Mach number, impact pressure, and mass flow were determined and compared with free-stream values. Local flow changes occurred at the same time as free-stream changes. The local flow usually approached the spike centerline from the upper outboard side because of spike cant and toe-in. Free-stream Mach number influenced the local flow angularity; as Mach number increased above 2.2, local angle of attack increased and local sideslip angle decreased. Local Mach number was generally 3 percent less than free-stream Mach number. Impact-pressure ratio and mass flow ratio increased as free-stream Mach number increased above 2.2, indicating a beneficial forebody compression effect. No degradation of the spike tip instrumentation was observed after more than 40 flights in the high-speed thermal environment encountered by the airplane. The sensor is rugged, simple, and sensitive to small flow changes. It can provide accurate imputs necessary to control an inlet.

  2. Hydrodynamic Analysis of the Flow Field Induced by a Symmetrical Suction Elbow at the Pump Inlet

    NASA Astrophysics Data System (ADS)

    Muntean, S.; Bosioc, A. I.; Drăghici, I.; Anton, L. E.

    2016-11-01

    The paper investigates the hydrodynamic field generated by the symmetrical suction elbow at the pump impeller inlet. The full three-dimensional turbulent numerical investigation of the flow in the symmetrical suction elbow is performed using FLUENT then the flow non-uniformity generated by it is numerically computed. The numerical results on the annular cross section are qualitatively and quantitatively validated against LDV data. A good agreement between numerical results and experimental data is obtained on this cross section located downstream to the suction elbow and upstream to the pump impeller. The hydrodynamic flow structure with four vortices is identified plotting the vorticity field. The largest values of the vorticity magnitude are identified in the center of both vortices located behind the shaft. The vortex core location is plotted on four annular cross sections located along to the cylindrical part between the suction elbow and the pump inlet. Also, the three-dimensional distribution of the vortex core filaments is visualized and extracted. The shapes of vortex core filaments located behind the pump shaft agree well with its visualization performed on the test rig. As a result, the three-dimensional complex geometry of the suction elbow and the pump shaft are identified as the main sources of the flow non-uniformity at the pump inlet.

  3. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  4. Calculation of compressible flow about three-dimensional inlets with auxiliary inlets, slats and vanes by means of a panel method

    NASA Technical Reports Server (NTRS)

    Hess, J. L.; Friedman, D. M.; Clark, R. W.

    1985-01-01

    An efficient and user oriented method was constructed for calculating flow in and about complex inlet configurations. Efficiency is attained by: (1) the use of a panel method; (2) a technique of superposition for obtaining solutions at any inlet operating condition; and (3) employment of an advanced matrix iteration technique for solving large full systems of equations, including the nonlinear equations for the Kutta condition. User concerns are addressed by the provision of several novel graphical output options that yield a more complete comprehension of the flowfield than was possible previously.

  5. Laser Doppler techniques for the combined measurement of inlet flow and valve motion in IC engines

    NASA Astrophysics Data System (ADS)

    Gasparetti, M.; Paone, N.; Tomasini, E. P.

    1996-04-01

    A measurement methodology and a test set-up for the experimental investigation of internal combustion engines are presented. This system is based on a laser Doppler anemometer and a laser Doppler vibrometer which measure in a co-ordinated or simultaneous mode both the velocity of the intake flow and the motion of the inlet poppet valve. A synchronized data acquisition procedure allows the use of two optical instruments to analyse the effects of valve jumps and bounces on the inlet flow field. At high rpm, anomalous valve behaviour may appear. Fluid velocity measurements are taken inside the cylinder and the manifold of a motored automotive engine head at different rpm, up to a speed at which anomalous valve behaviour regularly occurs. Velocity data are processed in both time and frequency domains. This measurement system also represents a valuable tool to study resonance phenomena in ducts.

  6. Wake generator control of inlet flow to cancel flow distortion noise

    NASA Astrophysics Data System (ADS)

    Kota, V.; Wright, M. C. M.

    2006-08-01

    If the inlet flow to a fan is non-uniform, as is often the case for aircraft engines, then undesirable tonal noise can be generated. A number of authors have suggested using active cancellation to reduce the noise. The secondary field can either be generated by loudspeakers or by the fan itself if secondary non-uniformities are deliberately introduced into the flow. In the research reported here rods inserted radially into the duct were used to generate the secondary field. The distance by which each rod protrudes into the duct was adaptively adjusted in response to an array of in-duct microphones so as to minimise the radiated sound power, whereas previously only fixed rods have been considered. The ability of the steepest-descent algorithm to minimise in-duct sound power under suitable conditions, and hence reduce radiated sound power is demonstrated in both simulations and low Mach number experiments. It is shown how the ability of such a system to control noise depends on the number and position of the controller rods, and the number of acoustic duct modes to be controlled. Thus at low fan speed, when only one mode was present just two controllers achieved an in-duct noise reduction of 25 dB at the blade passing frequency, whereas at a higher fan speed with three modes present six controllers only achieved 2 dB. To implement such a scheme in practice, where large numbers of modes are typically present, it would be necessary to develop controller arrays with many actuators, but with low aerodynamic penalty. Such a system might also be useful in HVAC applications, or in wind-tunnel testing.

  7. New River Inlet DRI: Observations and Modeling of Flow and Material Exchange

    DTIC Science & Technology

    2012-09-30

    lagoons and rivers, a tidal inlet plays a significant role in the dynamics of much of the world’s coastline (Cromwell, 1973). Of practical importance...effort were to: 1) measure the intra- tidal three dimensional flow velocity distribution; 2) measure the concurrent suspended sediment concentration (the...accompanying sediment transports will be obtained by multiplying the concentration with the simultaneously measured velocity); 3) extract the tidal

  8. Summary of recent investigations of inlet flow distortion effect on engine stability

    NASA Technical Reports Server (NTRS)

    Graber, E. J., Jr.; Braithwaite, W. M.

    1974-01-01

    A review is presented of recent experimental results, analytical procedures and test techniques employed to evaluate the effects of inlet flow distortion on the stability characteristics of representative afterburning turbofan and turbojet compression systems. Circumferential distortions of pressure and temperature, separately and in combination are considered. Resulting engine sensitivity measurements are compared with predictions based on simplified parallel compressor models and with several distortion descriptor parameters.

  9. A Computational and Experimental Investigation of a Three-Dimensional Hypersonic Scramjet Inlet Flow Field. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Holland, Scott Douglas

    1991-01-01

    A combined computational and experimental parametric study of the internal aerodynamics of a generic three dimensional sidewall compression scramjet inlet configuration was performed. The study was designed to demonstrate the utility of computational fluid dynamics as a design tool in hypersonic inlet flow fields, to provide a detailed account of the nature and structure of the internal flow interactions, and to provide a comprehensive surface property and flow field database to determine the effects of contraction ratio, cowl position, and Reynolds number on the performance of a hypersonic scramjet inlet configuration.

  10. Some flow phenomena in a constant area duct with a Borda type inlet including the critical region

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Simoneau, R. J.

    1978-01-01

    Mass limiting flow characteristics for a 55 L/D tube with a Borda type inlet were assessed over large ranges of temperature and pressure, using fluid nitrogen. Under certain conditions, separation and pressure drop at the inlet was sufficiently strong to permit partial vaporization and the remaining fluid flowed through the tube as if it were a free jet. An empirical relation was determined which defines conditions under which this type of flow can occur. A flow coefficient is presented which enables estimations of flow rates over the experimental range. A flow rate stagnation pressure map for selected stagnation isotherms and pressure profiles document these flow phenomena.

  11. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Povitsky, Alex; Schkolnikov, Natalia; Njoroge, Norman; Coston, Calvin; Blankson, Isaiah M.

    2001-01-01

    The Fluid Mechanics and Acoustics Laboratory at Hampton University (HU/FM&AL) jointly with the NASA Glenn Research Center has conducted four connected subprojects under the reporting project. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of theoretical explanation of experimental facts and creation of accurate numerical simulation techniques and prediction theory for solution of current problems in propulsion systems of interest to the NAVY and NASA agencies. This work is also supported by joint research between the NASA GRC and the Institute of Mechanics at Moscow State University (IM/MSU) in Russia under a CRDF grant. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The FM&AL Team uses analytical methods, numerical simulations and possible experimental tests at the Hampton University campus. The fundamental idea uniting these subprojects is to use nontraditional 3D corrugated and composite nozzle and inlet designs and additional methods for exhaust jet noise reduction without essential thrust loss and even with thrust augmentation. These subprojects are: (1) Aeroperformance and acoustics of Bluebell-shaped and Telescope-shaped designs; (2) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round, diamond-round and other nozzles; (3) Measurement technique improvement for the HU Low Speed Wind Tunnel; a new course in the field of aerodynamics, teaching and training of HU students; experimental tests of Mobius-shaped screws: research and training; (4) Supersonic inlet shape optimization. The main outcomes during this reporting period are: (l) Publications: The AIAA Paper #00-3170 was presented at the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 17-19 June, 2000, Huntsville, AL. The AIAA

  12. Dynamics of a supersonic inlet-engine combination subjected to disturbances in fuel flow and inlet overboard bypass airflow

    NASA Technical Reports Server (NTRS)

    Wallhagen, R. E.; Paulovich, F. J.; Geyser, L. C.

    1972-01-01

    An axisymmetric mixed-compression supersonic inlet and a single-spool turbojet engine were dynamically tested at Mach 2.5. The propulsion system was subjected to sweep-frequency sinusoidal disturbances of either inlet overboard bypass airflow. The disturbances were at a logarithmic sweep rate of 1 decade per minute. Dynamic responses were taken of signals throughout the propulsion system. Selected signals were reduced relative to the prime propulsion system parameters. The experimental data are presented in Bode plots. Most of the plots are for a frequency range of 1.0 to 50 hertz.

  13. Flow characteristics of hypersonic inlets with different cowl-lip blunting methods

    NASA Astrophysics Data System (ADS)

    Lu, HongBo; Yue, LianJie; Chang, XinYu

    2014-04-01

    Under hypersonic flight conditions, the sharp cowl-lip leading edges have to be blunted because of the severe aerodynamic heating. This paper proposes four cowl-lip blunting methods and studies the corresponding flow characteristics and performances of the generic hypersonic inlets by numerical simulation under the design conditions of a flight Mach number of 6 and an altitude of 26 km. The results show that the local shock interference patterns in the vicinity of the blunted cowl-lips have a substantial influence on the flow characteristics of the hypersonic inlets even though the blunting radius is very small, which contribute to a pronounced degradation of the inlet performance. The Equal Length blunting Manner (ELM) is the most optimal in that a nearly even reflection of the ramp shock produces an approximately straight and weak cowl reflection shock. The minimal total pressure loss, the lowest cowl drag, maximum mass-capture and the minimal aeroheating are achieved for the hypersonic inlet. For the other blunting manners, the ramp shock cannot reflect evenly and produces more curved cowl reflection shock. The Type V shock interference pattern occurs for the Cross Section Cutting blunting Manner (CSCM) and the strongest cowl reflection shock gives rise to the largest flow loss and drag. The cowl-lip blunted by the other two blunting manners is subjected to the shock interference pattern that transits with an increase in the blunting radius. Accordingly, the peak heat flux does not fall monotonously with the blunting radius increasing. Moreover, the cowl-lip surface suffers from severe aerothermal load when the shear layer or the supersonic jet impinges on the wall.

  14. Evaluation of F/A-18A HARV inlet flow analysis with flight data

    NASA Technical Reports Server (NTRS)

    Smith, C. Frederic; Podleski, Steve D.; Barankiewicz, Wendy S.; Zeleznik, Susan Z.

    1995-01-01

    The F/A-18A aircraft has experienced engine stalls at high angles-of-attack and yaw flight conditions which were outside of its flight envelope. Future aircraft may be designed to operate routinely in this flight regime. Therefore, it is essential that an understanding of the inlet flow field at these flight conditions be obtained. Due to the complex interactions of the fuselage and inlet flow fields, a study of the flow within the inlet must also include external effects. Full Navier-Stokes (FNS) calculations on the F/A-18A High Alpha Research Vehicle (HARV) inlet for several angles-of-attack with sideslip and free stream Mach numbers have been obtained. The predicted forebody/fuselage surface static pressures agreed well with flight data. The surface static pressures along the inlet lip are in good agreement with the numerical predictions. The major departure in agreement is along the bottom of the lip at 30 deg and 60 deg angle-of-attack where a possible streamwise flow separation is not being predicted by the code. The circumferential pressure distributions at the engine face are in very good agreement with the numerical results. The variation in surface static pressure in the circumferential direction is very small with the exception of 60 angle-of-attack. Although the simulation does not include the effect of the engine, it appears that this omission has a second order effect on the circumferential pressure distribution. An examination of the unsteady flight test data base has shown that the secondary vortex migrates a significant distance with time. In fact, the extent of this migration increases with angle-of-attack with increasing levels of distortion. The effects of the engine on this vortex movement is unknown. This implies that the level of flow unsteadiness increases with increasing distortion. Since the computational results represent an asymptotic solution driven by steady boundary conditions, these numerical results may represent an arbitrary point

  15. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and air...

  16. Numerical prediction of a draft tube flow taking into account uncertain inlet conditions

    NASA Astrophysics Data System (ADS)

    Brugiere, O.; Balarac, G.; Corre, C.; Metais, O.; Flores, E.; Pleroy

    2012-11-01

    The swirling turbulent flow in a hydroturbine draft tube is computed with a non-intrusive uncertainty quantification (UQ) method coupled to Reynolds-Averaged Navier-Stokes (RANS) modelling in order to take into account in the numerical prediction the physical uncertainties existing on the inlet flow conditions. The proposed approach yields not only mean velocity fields to be compared with measured profiles, as is customary in Computational Fluid Dynamics (CFD) practice, but also variance of these quantities from which error bars can be deduced on the computed profiles, thus making more significant the comparison between experiment and computation.

  17. Use of potential flow theory to evaluate subsonic inlet data from a simulator-powered nacelle at cruise conditions

    NASA Technical Reports Server (NTRS)

    Bober, L. J.

    1974-01-01

    Incompressible potential flow theory corrected for compressibility effects, using the Lieblein-Stockman compressibility correction, was used to predict surface and flow field static pressures for a subsonic inlet at cruise conditions. The calculated internal and external surface static pressures were in good agreement with data at most conditions. The analysis was used to determine the capture stream-tube location and static-pressure distribution. Additive drag coefficients obtained from these results were consistently higher than those obtained using one-dimensional compressible flow theory. Increasing the distance between the inlet and boattail increased the cowl drag force. The effect of the boundary layer on internal and external surface static-pressure distributions was small at the design cruise condition. The analytical results may be used as an aid to data reduction and for predicting inlet mass flow, stagnation point location, and inlet additive drag.

  18. Three dimensional aerodynamics of an annular cascade in a non-uniform inlet flow

    NASA Technical Reports Server (NTRS)

    Manwaring, S. R.; Fleeter, S.

    1985-01-01

    Three-dimensional viscous and inviscid numerical analyses are currently being developed to predict the complex flow through turbomachine blade passages. To be of value to the designer, these numerical solutions must be evaluated and subsequent refinements directed by correlating predicted flow fields with data obtained from experiments which model the fundamental three-dimensional flow phenomena inherent in blade rows. This paper describes a series of experiments to provide such data. In particular, the effect of a potential and a rotational inlet flow field on the detailed three-dimensional aerodynamic performance of an extensively instrumented cambered airfoil cascade has been determined at two levels of aerodynamic loading. Data presented quantify the pressure and suction surface static pressure chordwise distributions on the hub, mean, and tip streamlines; the velocity distribution in the cascade aft-passage region; and the cascade exit region flow field. Appropriate data are correlated with predictions.

  19. Numerical and experimental investigation of VG flow control for a low-boom inlet

    NASA Astrophysics Data System (ADS)

    Rybalko, Michael

    The application of vortex generators (VGs) for shock/boundary layer interaction flow control in a novel external compression, axisymmetric, low-boom concept inlet was studied using numerical and experimental methods. The low-boom inlet design features a zero-angle cowl and relaxed isentropic compression centerbody spike, resulting in defocused oblique shocks and a weak terminating normal shock. This allows reduced external gas dynamic waves at high mass flow rates but suffers from flow separation near the throat and a large hub-side boundary layer at the Aerodynamic Interface Plane (AIP), which marks the inflow to the jet engine turbo-machinery. Supersonic VGs were investigated to reduce the shock-induced flow separation near the throat while subsonic VGs were investigated to reduce boundary layer radial distortion at the AIP. To guide large-scale inlet experiments, Reynolds-Averaged Navier-Stokes (RANS) simulations using three-dimensional, structured, chimera (overset) grids and the WIND-US code were conducted. Flow control cases included conventional and novel types of vortex generators at positions both upstream of the terminating normal shock (supersonic VGs) and downstream (subsonic VGs). The performance parameters included incompressible axisymmetric shape factor, post-shock separation area, inlet pressure recovery, and mass flow ratio. The design of experiments (DOE) methodology was used to select device size and location, analyze the resulting data, and determine the optimal choice of device geometry. Based on the above studies, a test matrix of supersonic and subsonic VGs was adapted for a large-scale inlet test to be conducted at the 8'x6' supersonic wind tunnel at NASA Glenn Research Center (GRC). Comparisons of RANS simulations with data from the Fall 2010 8'x6' inlet test showed that predicted VG performance trends and case rankings for both supersonic and subsonic devices were consistent with experimental results. For example, experimental surface oil

  20. A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2001-01-01

    It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and

  1. Bleed-boundary conditions for numerically simulated mixed-compression supersonic inlet flow

    NASA Technical Reports Server (NTRS)

    Chyu, W. J.; Howe, G. W.; Shih, T. I-P.

    1992-01-01

    A numerical study was performed to investigate boundary conditions for bleed openings that are needed in the numerical simulation of critical flow through turbojet inlets with bleed. Nine different boundary conditions (BCs) were devised and examined. Of the BCs examined, three were able to stabilize the terminal shock near the inlet's throat. This numerical study was based on the ensemble-averaged, unsteady, three-dimensional, compressible Navier-Stokes equations closed by the Baldwin-Lomax algebraic turbulence model. Solutions to the Navier-Stokes equations were obtained by using a hybrid implicit-explicit method (Beam and Warming/MacCormack). The multiblock grid system used in the solution procedure was generated by solving a set of elliptic partial differential equations. Solutions obtained were compared with available experimental data.

  2. Analysis of inlet flow distortion and turbulence effects on compressor stability

    NASA Technical Reports Server (NTRS)

    Melick, H. C., Jr.

    1973-01-01

    The effect of steady state circumferential total pressure distortion on the loss in compressor stall pressure ratio has been established by analytical techniques. Full scale engine and compressor/fan component test data were used to provide direct evaluation of the analysis. Specifically, since a circumferential total pressure distortion in an inlet system will result in unsteady flow in the coordinate system of the rotor blades, analysis of this type distortion must be performed from an unsteady aerodynamic point of view. By application of the fundamental aerothermodynamic laws to the inlet/compressor system, parameters important in the design of such a system for compatible operation have been identified. A time constant, directly related to the compressor rotor chord, was found to be significant, indicating compressor sensitivity to circumferential distortion is directly dependent on the rotor chord.

  3. Calculation of two-dimensional inlet flow fields by an implicit method including viscous effects: User's manual

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Mcmillan, O. J.

    1981-01-01

    Inlet flow fields for airbreathing missiles are calculated by the adaptation of a two dimensional computational method developed for the flow around airfoils. A supersonic free stream is assumed to allow the forebody calculation to be uncoupled from the inlet calculation. The inlet calculation employs an implicit, time marching finite difference procedure to solve the thin layer Navier-Stokes equations formulated in body fitted coordinates. The mathematical formulation of the problem and the solution algorithm are given. Numerical stability and accuracy as well as the initial and boundary conditions used are discussed. Instructions for program use and operation along with the overall program logic are also given.

  4. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  5. Secondary flow and heat transfer control in gas turbine inlet nozzle guide vanes

    NASA Astrophysics Data System (ADS)

    Burd, Steven Wayne

    1998-12-01

    Endwall heat transfer is a very serious problem in the inlet nozzle guide vane region of gas turbine engines. To resolve heat transfer concerns and provide the desired thermal protection, modern cooling flows for the vane endwalls tend to be excessive leading to lossy and inefficient designs. Coolant introduction is further complicated by the flow patterns along vane endwall surfaces. They are three-dimensional and dominated by strong, complex secondary flows. To achieve performance goals for next-generation engines, more aerodynamically efficient and advanced cooling concepts, including combustor bleed cooling, must be investigated. To this end, the overall performance characteristics of several combustor bleed flow designs are assessed in this experimental study. In particular, their contributions toward secondary flow control and component cooling are documented. Testing is performed in a large-scale, guide vane simulator comprised of three airfoils encased between one contoured and one flat endwall. Core flow is supplied to this simulator at an inlet chord Reynolds number of 350,000 and turbulence intensity of 9.5%. Combustor bleed cooling flow is injected through the contoured endwall via inclined slots. The slots vary in cross-sectional area, have equivalent slot widths, and are positioned with their leeward edges 10% of the axial chord ahead of the airfoil leading edges. Measurements with hot-wire anemometry characterize the inlet and exit flow fields of the cascade. Total and static pressure measurements document aerodynamic performance. Thermocouple measurements detail thermal fields and permit evaluation of surface adiabatic effectiveness. To elucidate the effects of bleed injection, data are compared to an experiment taken without bleed. The influence of bleed mass flow rate and slot geometry on the aerodynamic losses and thermal protection arc given. This study suggests that such combustor bleed flow cooling offers significant thermal protection without

  6. Hyperbolic/parabolic development for the GIM-STAR code. [flow fields in supersonic inlets

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Stalnaker, J. F.; Ratliff, A. W.

    1980-01-01

    Flow fields in supersonic inlet configurations were computed using the eliptic GIM code on the STAR computer. Spillage flow under the lower cowl was calculated to be 33% of the incoming stream. The shock/boundary layer interaction on the upper propulsive surface was computed including separation. All shocks produced by the flow system were captured. Linearized block implicit (LBI) schemes were examined to determine their application to the GIM code. Pure explicit methods have stability limitations and fully implicit schemes are inherently inefficient; however, LBI schemes show promise as an effective compromise. A quasiparabolic version of the GIM code was developed using elastical parabolized Navier-Stokes methods combined with quasitime relaxation. This scheme is referred to as quasiparabolic although it applies equally well to hyperbolic supersonic inviscid flows. Second order windward differences are used in the marching coordinate and either explicit or linear block implicit time relaxation can be incorporated.

  7. Installed F/A-18 inlet flow calculations at 60 deg angle-of-attack and 10 deg side slip

    NASA Technical Reports Server (NTRS)

    Podleski, S. D.

    1993-01-01

    This paper presents the results of PARC3D numerical calculations on a 19.78 percent scale forebody/inlet model of the F/A-18 at a Mach number of 0.20, an angle-of-attack of 60 deg, and a side-slip angle of 10 deg. The main purpose of these calculations is to support an upcoming wind-tunnel test program in the prediction of engine inlet compressor face total pressure recovery and flow distortion. The GRIDGEN system was used to generate a grid which includes the inlet and lip, and other aircraft components which are considered to be important to inlet performance, such as the ramp/splitter plate, the diverter and slot, and the deflected leading edge flap. PARC3D shows complex flow patterns on the fuselage surfaces below the leading edge extensions, on the ramp/splitter plate, inlet lip, and inside the inlet. PARC3D tends to underpredict total pressure recovery and overpredict the flow distortion at the inlet compressor face.

  8. Performance and economic enhancement of cogeneration gas turbines through compressor inlet air cooling

    NASA Astrophysics Data System (ADS)

    Delucia, M.; Bronconi, R.; Carnevale, E.

    1994-04-01

    Gas turbine air cooling systems serve to raise performance to peak power levels during the hot months when high atmospheric temperatures cause reductions in net power output. This work describes the technical and economic advantages of providing a compressor inlet air cooling system to increase the gas turbine's power rating and reduce its heat rate. The pros and cons of state-of-the-art cooling technologies, i.e., absorption and compression refrigeration, with and without thermal energy storage, were examined in order to select the most suitable cooling solution. Heavy-duty gas turbine cogeneration systems with and without absorption units were modeled, as well as various industrial sectors, i.e., paper and pulp, pharmaceuticals, food processing, textiles, tanning, and building materials. The ambient temperature variations were modeled so the effects of climate could be accounted for in the simulation. The results validated the advantages of gas turbine cogeneration with absorption air cooling as compared to other systems without air cooling.

  9. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    NASA Technical Reports Server (NTRS)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  10. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  11. Mach 10 experimental database of a three-dimensional scramjet inlet flow field

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    The present work documents the experimental database of a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall compression scramjet inlet configuration at Mach 10. A total of 356 channels of pressure data, including static pressure orifices, pitot pressures, and exit flow rakes, along with oil flow and infrared thermography, provided a detailed experimental description of the flow. Mach 10 tests were performed for three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). For the higher contraction ratios, a large forward separation of the inflow boundary layer was observed, making the high contraction ratio configurations unsuitable for flight operation. A decrease in the freestream unit Reynolds number (Re) of only a factor of 2 led to a similar upstream separation. Although the presence of such large-scale separations leads to the question of whether the inlet is started, the presence of internal oblique swept shock interactions on the sidewalls seems to indicate that at least in the classical sense, the inlet is not unstarted. The laminar inflow boundary layer therefore appears to be very sensitive to increases in contraction ratio (CR) or decreases in Reynolds number; only the CR = 3 configuration with 0.25, and 50 percent cowl at Re = 2.15 x 10(exp 6) per foot operated 'on design'.

  12. Flow and hydraulic characteristics of the Knik-Matanuska River estuary, Cook Inlet, southcentral Alaska

    USGS Publications Warehouse

    Lipscomb, S.W.

    1989-01-01

    A study of the riverine-estuarine reach of the Knik and Matanuska Rivers provided flow and hydraulic data for use in the design of additional bridges over the rivers. Hydraulic analysis is complicated because: (1) the lower reaches of the rivers merge in a complex system of interconnected channels; and (2) this reach is subject to unsteady flow conditions resulting from a semidiurnal tide wave propagated up the channel through Knik Arm from Cook Inlet, whose tidal range is among the largest in the world. Analysis of flows for the Knik River is further complicated by the historic formation and outburst flooding of glacier-dammed Lake George in the Upper Knik River basin. Peak flows on the Knik River due to breakout floods were as much as seven times greater than peak flows of non-breakout floods. The U.S. Geological Survey 's branch-network flow model was used to simulate flows within the study reach. For the Knik River, simulated flows were within 10% of measured values in most cases. The model was also used to simulate the flow, stage, and velocity that would be expected in the various channels under different bridge configurations. (USGS)

  13. Numerical Investigation of Engine Inlet Vane Hot-Air Anti-Icing System with Surface Air Film

    NASA Astrophysics Data System (ADS)

    Ma, Hui; Chen, Weijian; Zhang, Dalin

    The inlet vane of aircraft engine needs to be equipped with anti-icing system to prevent ice accretion on the leading edge due to flight safety requirements, and the engine bleed hot-air is mostly used to heat the vane surface in anti-icing system. In order to save the energy consumption, a new anti-icing structure was developed and investigated with numerical simulation. Besides the use of small tunnels to enhance the heat transfer characteristics, a narrow gap was opened and assigned on the vane surface at the end of the anti-icing tunnels, and the exhaust hot-air was released from the gap to form an air film on the outside surface, which was supposed to prevent the droplets from impinging to the surface and sweep the droplets away. The droplets impingement on the vane surface was investigated by solving the 3D Eulerian air/droplets twophase model, and the impingement results were compared with the original system. Meanwhile, the thermodynamic analysis of the anti-icing system was presented in this paper. The results indicate that the air film is effective to decrease the droplets impingement area, and the new structure could provide more heat flux for anti-icing than the regular anti-icing structure.

  14. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  15. Numerical simulation of self-excited oscillations in a ramjet inlet-diffuser flow

    NASA Technical Reports Server (NTRS)

    Hsieh, T.; Coakley, T.

    1985-01-01

    This paper describes numerical simulations of self-excited oscillations in a two-dimensional transonic inlet-diffuser flow by solving the Navier-Stokes equations with a two-equation turbulence model. The calculated amplitudes of oscillations for the terminal shock and the velocity fields compare well with experimental measurements; however, the predicted frequency of oscillations is about 50 percent higher. The formation of a pair of downstream-traveling, counter-rotating vortices at each cycle of velocity fluctuations, as reported experimentally, is vividly revealed by the numerical results.

  16. Effects of Inlet Distortion on the Development of Secondary Flows in a Subsonic Axial Inlet Compressor Rotor.

    DTIC Science & Technology

    1991-04-01

    0 30 0 0 0 0 0 0 0 0 0 0 307 BASELINE INLET, STATION 5 CP MT MT2 MT3 MT4 HTS HT6 HT7 "To MT9 mTi0-TANG 4EA5 1 0 0 0 0 0 0 0 28 9 0 2 0 0 0 0 14...I. LITERATURE SURVEY......................... 5 A. INTRODUCTION.......................... 5 B. ANALYTICALJ(NUMERICAL WORK... 5 C. EXPERIMENTAL WORK ..................... 10 II.APPARATUS AND FACILITIES .................... 22 A. INTRODUCTION

  17. Experimental Investigation of an Air-Cooled Turbine Operating in a Turbojet Engine at Turbine Inlet Temperatures up to 2500 F

    NASA Technical Reports Server (NTRS)

    Cochran, Reeves P.; Dengler, Robert P.

    1961-01-01

    An experimental investigation was made of an air-cooled turbine at average turbine inlet temperatures up to 2500 F. A modified production-model 12-stage axial-flow-compressor turbojet engine operating in a static sea-level stand was used as the test vehicle. The modifications to the engine consisted of the substitution of special combustor and turbine assemblies and double-walled exhaust ducting for the standard parts of the engine. All of these special parts were air-cooled to withstand the high operating temperatures of the investigation. The air-cooled turbine stator and rotor blades were of the corrugated-insert type. Leading-edge tip caps were installed on the rotor blades to improve leading-edge cooling by diverting the discharge of coolant to regions of lower gas pressure toward the trailing edge of the blade tip. Caps varying in length from 0.15- to 0.55-chord length were used in an attempt to determine the optimum cap length for this blade. The engine was operated over a range of average turbine inlet temperatures from about 1600 to about 2500 F, and a range of average coolant-flow ratios of 0.012 to 0.065. Temperatures of the air-cooled turbine rotor blades were measured at all test conditions by the use of thermocouples and temperature-indicating paints. The results of the investigation indicated that this type of blade is feasible for operation in turbojet engines at the average turbine inlet temperatures and stress levels tested(maximums of 2500 F and 24,000 psi, respectively). An average one-third-span blade temperature of 1300 F could be maintained on 0.35-chord tip cap blades with an average coolant-flow ratio of about 0.022 when the average turbine inlet temperature was 2500 F and cooling-air temperature was about 260 F. All of the leading-edge tip cap lengths improved the cooling of the leading-edge region of the blades, particularly at low average coolant-flow ratios. At high gas temperatures, such parts as the turbine stator and the combustor

  18. The comparative performance of an aviation engine at normal and high inlet air temperatures

    NASA Technical Reports Server (NTRS)

    Gardiner, Arthur W; Schey, Oscar W

    1928-01-01

    This report presents some results obtained during an investigation to determine the effect of high inlet air temperature on the performance of a Liberty 12 aviation engine. The purpose of this investigation was to ascertain, for normal service carburetor adjustments and a fixed ignition advance, the relation between power and temperature for the range of carburetor air temperatures that may be encountered when supercharging to sea level pressure at altitudes of over 20,000 feet and without intercooling when using plain aviation gasoline and mixtures of benzol and gasoline. The results show that for the conditions of test, both the brake and indicated power decrease with increase in air temperature at a faster rate than given by the theoretical assumption that power varies inversely as the square root of the absolute temperature. On a brake basis, the order of the difference in power for a temperature difference of 120 degrees F. Is 3 to 5 per cent. The observed relation between power and temperature when using the 30-70 blend was found to be linear. But, although these differences are noted, the above theoretical assumption may be considered as generally applicable except where greater precision over a wide range of temperatures is desired, in which case it appears necessary to test the particular engine under the given conditions. (author)

  19. An experimental setup for the study of the steady air flow in a diesel engine chamber

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín; José Vega, Emilio; Castilla, Alejandro; Marcos, Alberto; María Montanero, José; Barrio, Raúl

    2012-04-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  20. CFD numerical simulation of Archimedes spiral inlet hydrocyclone

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Wei, L.; Chang, B. H.; Xing, J. L.; Jia, K.

    2013-12-01

    For traditional linear type inlet, hydrocyclone has an unstable inner field, high turbulence intensity and low separation efficiency, this paper proposes an inlet mode that uses an Archimedes spiral hydrocyclone. A Mixture liquid-solid multiphase flow model combined with the kinetic theory of granular flow was used to simulate the high concentration water-sand-air three-phase flow in a hydrocyclone. We analyzed the pressure field, velocity field and turbulent kinetic energy and compared with traditional linear type inlet hydrocyclone inner field. The results show that Archimedes spiral inlet hydrocyclone's pressure field is evenly distributed. The Archimedes spiral inlet hydrocyclone can guide and accelerate the mixture flow and produce small forced vortex and less short circuit flow. The particles easily go to the outer vortex and are separated. The Archimedes spiral inlet hydrocyclone has effectively improved the stability of inner flow field and separation efficiency.

  1. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Gauging devices, top loading and unloading devices... and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air inlet...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  2. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to... DOT-111AW and 115AW) § 179.220-17 Gauging devices, top loading and unloading devices, venting and...

  3. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  4. 49 CFR 179.220-17 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.220-17 Section 179.220-17 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  5. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Gauging devices, top loading and unloading devices, venting and air inlet devices. 179.200-16 Section 179.200-16 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF...

  6. Inlet flow distortion in turbomachinery - Comparison of theory and experiment in a transonic fan stage

    NASA Technical Reports Server (NTRS)

    Seidel, B. S.; Matwey, M. D.

    1983-01-01

    Consideration is given to both velocity and temperature circumferential inlet distortions at upstream infinity (Seidel et al., 1980). The blade rows here are modeled as semiactuator disks, and losses and quasi-steady deviation angle correlations are included in the analysis. The governing equations are linearized, and the perturbations in stagnation pressure and stagnation temperature at upstream infinity are represented as Fourier series. The flow in the rotor is modeled as inviscid, one-dimensional, unsteady, and compressible. the flow is steady elsewhere. The deviation angles for the rotor and stator are taken to be functions of the relative inlet angle and Mach number, and use is made of the correlations contained in Johnson and Bullock (1965). It is assumed that the losses in relative stagnation pressure in the rotor and stator occur across the trailing edge. Boundary conditions applied at the various stations furnish the equations that make it possible to solve for the several quantities introduced in the linearization of the governing equations.

  7. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.

    PubMed

    Lin, Shiang-Chi; Yen, Pei-Wen; Peng, Chien-Chung; Tung, Yi-Chung

    2012-09-07

    Flow cytometry is a technique capable of optically characterizing biological particles in a high-throughput manner. In flow cytometry, three dimensional (3D) hydrodynamic focusing is critical for accurate and consistent measurements. Due to the advantages of microfluidic techniques, a number of microfluidic flow cytometers with 3D hydrodynamic focusing have been developed in recent decades. However, the existing devices consist of multiple layers of microfluidic channels and tedious fluidic interconnections. As a result, these devices often require complicated fabrication and professional operation. Consequently, the development of a robust and reliable microfluidic flow cytometer for practical biological applications is desired. This paper develops a microfluidic device with a single channel layer and single sheath-flow inlet capable of achieving 3D hydrodynamic focusing for flow cytometry. The sheath-flow stream is introduced perpendicular to the microfluidic channel to encircle the sample flow. In this paper, the flow fields are simulated using a computational fluidic dynamic (CFD) software, and the results show that the 3D hydrodynamic focusing can be successfully formed in the designed microfluidic device under proper flow conditions. The developed device is further characterized experimentally. First, confocal microscopy is exploited to investigate the flow fields. The resultant Z-stack confocal images show the cross-sectional view of 3D hydrodynamic with flow conditions that agree with the simulated ones. Furthermore, the flow cytometric detections of fluorescence beads are performed using the developed device with various flow rate combinations. The measurement results demonstrate that the device can achieve great detection performances, which are comparable to the conventional flow cytometer. In addition, the enumeration of fluorescence-labelled cells is also performed to show its practicality for biological applications. Consequently, the microfluidic

  8. Review and evaluation of recent developments in melic inlet dynamic flow distortion prediction and computer program documentation and user's manual estimating maximum instantaneous inlet flow distortion from steady-state total pressure measurements with full, limited, or no dynamic data

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Dennon, S. R.

    1986-01-01

    A review of the Melick method of inlet flow dynamic distortion prediction by statistical means is provided. These developments include the general Melick approach with full dynamic measurements, a limited dynamic measurement approach, and a turbulence modelling approach which requires no dynamic rms pressure fluctuation measurements. These modifications are evaluated by comparing predicted and measured peak instantaneous distortion levels from provisional inlet data sets. A nonlinear mean-line following vortex model is proposed and evaluated as a potential criterion for improving the peak instantaneous distortion map generated from the conventional linear vortex of the Melick method. The model is simplified to a series of linear vortex segments which lay along the mean line. Maps generated with this new approach are compared with conventionally generated maps, as well as measured peak instantaneous maps. Inlet data sets include subsonic, transonic, and supersonic inlets under various flight conditions.

  9. Reduced order modeling and active flow control of an inlet duct

    NASA Astrophysics Data System (ADS)

    Ge, Xiaoqing

    Many aerodynamic applications require the modeling of compressible flows in or around a body, e.g., the design of aircraft, inlet or exhaust duct, wind turbines, or tall buildings. Traditional methods use wind tunnel experiments and computational fluid dynamics (CFD) to investigate the spatial and temporal distribution of the flows. Although they provide a great deal of insight into the essential characteristics of the flow field, they are not suitable for control analysis and design due to the high physical/computational cost. Many model reduction methods have been studied to reduce the complexity of the flow model. There are two main approaches: linearization based input/output modeling and proper orthogonal decomposition (POD) based model reduction. The former captures mostly the local behavior near a steady state, which is suitable to model laminar flow dynamics. The latter obtains a reduced order model by projecting the governing equation onto an "optimal" subspace and is able to model complex nonlinear flow phenomena. In this research we investigate various model reduction approaches and compare them in flow modeling and control design. We propose an integrated model-based control methodology and apply it to the reduced order modeling and active flow control of compressible flows within a very aggressive (length to exit diameter ratio, L/D, of 1.5) inlet duct and its upstream contraction section. The approach systematically applies reduced order modeling, estimator design, sensor placement and control design to improve the aerodynamic performance. The main contribution of this work is the development of a hybrid model reduction approach that attempts to combine the best features of input/output model identification and POD method. We first identify a linear input/output model by using a subspace algorithm. We next project the difference between CFD response and the identified model response onto a set of POD basis. This trajectory is fit to a nonlinear

  10. Computation of transonic potential flow about 3 dimensional inlets, ducts, and bodies

    NASA Technical Reports Server (NTRS)

    Reyhner, T. A.

    1982-01-01

    An analysis was developed and a computer code, P465 Version A, written for the prediction of transonic potential flow about three dimensional objects including inlet, duct, and body geometries. Finite differences and line relaxation are used to solve the complete potential flow equation. The coordinate system used for the calculations is independent of body geometry. Cylindrical coordinates are used for the computer code. The analysis is programmed in extended FORTRAN 4 for the CYBER 203 vector computer. The programming of the analysis is oriented toward taking advantage of the vector processing capabilities of this computer. Comparisons of computed results with experimental measurements are presented to verify the analysis. Descriptions of program input and output formats are also presented.

  11. Importance of inlet boundary conditions for numerical simulation of combustor flows

    NASA Technical Reports Server (NTRS)

    Sturgess, G. J.; Syed, S. A.; Mcmanus, K. R.

    1983-01-01

    Fluid dynamic computer codes for the mathematical simulation of problems in gas turbine engine combustion systems are required as design and diagnostic tools. To eventually achieve a performance standard with these codes of more than qualitative accuracy it is desirable to use benchmark experiments for validation studies. Typical of the fluid dynamic computer codes being developed for combustor simulations is the TEACH (Teaching Elliptic Axisymmetric Characteristics Heuristically) solution procedure. It is difficult to find suitable experiments which satisfy the present definition of benchmark quality. For the majority of the available experiments there is a lack of information concerning the boundary conditions. A standard TEACH-type numerical technique is applied to a number of test-case experiments. It is found that numerical simulations of gas turbine combustor-relevant flows can be sensitive to the plane at which the calculations start and the spatial distributions of inlet quantities for swirling flows.

  12. An experimental and computational investigation of flow in a radial inlet of an industrial pipeline centrifugal compressor

    SciTech Connect

    Flathers, M.B.; Bache, G.E.; Rainsberger, R.

    1996-04-01

    The flow field of a complex three-dimensional radial inlet for an industrial pipeline centrifugal compressor has been experimentally determined on a half-scale model. Based on the experimental results, inlet guide vanes have been designed to correct pressure and swirl angle distribution deficiencies. The unvaned and vaned inlets are analyzed with a commercially available fully three-dimensional viscous Navier-Stokes code. Since experimental results were available prior to the numerical study, the unvaned analysis is considered a postdiction while the vaned analysis is considered a prediction. The computational results of the unvaned inlet have been compared to the previously obtained experimental results. The experimental method utilized for the unvaned inlet is repeated for the vaned inlet and the data have been used to verify the computational results. The paper will discuss experimental, design, and computational procedures, grid generation, boundary conditions, and experimental versus computational methods. Agreement between experimental and computational results is very good, both in prediction and postdiction modes. The results of this investigation indicate that CFD offers a measurable advantage in design, schedule, and cost and can be applied to complex, three-dimensional radial inlets.

  13. Ducted fan inlet/exit and rotor tip flow improvements for vertical lift systems

    NASA Astrophysics Data System (ADS)

    Akturk, Ali

    The current research utilized experimental and computational techniques in 5" and 22" diameter ducted fan test systems that have been custom designed and manufactured. Qualitative investigation of flow around the ducted fan was also performed using smoke flow visualizations. Quantitative measurements consisted of 2D and 3D velocity measurements using planar and Stereoscopic Particle Image Velocimetry (PIV and SPIV), high resolution total pressure measurements using Kiel total pressure probes and real time six-component force and torque measurements. The computational techniques used in this thesis included a recently developed radial equilibrium based rotor model(REBRM) and a three dimensional Reynolds-Averaged Navier Stokes (RANS) based CFD model. A radial equilibrium based rotor model (REBRM) developed by the author was effectively integrated into a three-dimensional RANS based computational system. The PIV measurements and computational flow predictions using (REBRM) near the fan inlet plane were in a good agreement at hover and forward flight conditions. The aerodynamic modifications resulting from the fan inlet flow distortions in forward flight regime were clearly captured in 2D PIV results. High resolution total pressure measurements at the downstream of the fan rotor showed that tip leakage, rotor hub separation, and passage flow related total pressure losses were dominant in hover condition. However, the losses were dramatically increased in forward flight because of inlet lip separation and distortion. A novel ducted fan inlet flow conditioning concept named "Double Ducted Fan" (DDF) was developed. The (DDF) concept has a potential to significantly improve the performance and controllability of VTOL UAVs and many other ducted fan based vertical lift systems. The new concept that will significantly reduce the inlet lip separation related performance penalties used a secondary stationary duct system to control "inlet lip separation" occurring especially at

  14. Investigation on the use of a Freely Rotating Rotor at the Cowl Face of a Supersonic Conical Inlet to Reduce Inlet Flow Distortion

    NASA Technical Reports Server (NTRS)

    Goldberg, Theodore J.; Boxer, Emanuel

    1959-01-01

    An investigation has been made on the use of a freely rotating rotor at the cowl face of a supersonic conical diffuser to determine its effectiveness in reducing inlet flow distortion and the penalty in terms of total-pressure loss imposed by such a device when distortions are negligible. Tests were made with a rotor having an inlet tip diameter of 2.18 inches and a ratio of hub radius to tip radius of 0.52, in conjunction with a conical inlet having a 25 deg semi-vertex cone angle, at a Mach number of 2.1 over an angle-of-attack range of 0 deg to 8 deg. A simplified analysis showing that a supersonic, freely rotating rotor with maximum solidity for noninterference between blades will operate in an undistorted flow with a total-pressure defect of 1 percent or less was experimentally verified. Overall total-pressure distortions of 0.1 to 0.4 and Mach number distortions of 0.4 to 1.4, obtained at 4 deg to 8 deg angle of attack, were reduced about 30 percent and 23 percent, respectively, because of the presence of the rotor, with no measurable total-pressure loss. The rotor increased the peak total-pressure recovery at the simulated combustion chamber 1 1/2 and 3 1/2 percent at 6 deg and 8 deg angles of attack, respectively. This increase is attributed to lower diffusion duct losses as a consequence of a more uniform flow created by the rotor.

  15. S-Duct Engine Inlet Flow Control Using SDBD Plasma Streamwise Vortex Generators

    NASA Astrophysics Data System (ADS)

    Kelley, Christopher; He, Chuan; Corke, Thomas

    2009-11-01

    The results of a numerical simulation and experiment characterizing the performance of plasma streamwise vortex generators in controlling separation and secondary flow within a serpentine, diffusing duct are presented. A no flow control case is first run to check agreement of location of separation, development of secondary flow, and total pressure recovery between the experiment and numerical results. Upon validation, passive vane-type vortex generators and plasma streamwise vortex generators are implemented to increase total pressure recovery and reduce flow distortion at the aerodynamic interface plane: the exit of the S-duct. Total pressure recovery is found experimentally with a pitot probe rake assembly at the aerodynamic interface plane. Stagnation pressure distortion descriptors are also presented to show the performance increase with plasma streamwise vortex generators in comparison to the baseline no flow control case. These performance parameters show that streamwise plasma vortex generators are an effective alternative to vane-type vortex generators in total pressure recovery and total pressure distortion reduction in S-duct inlets.

  16. Inlet flow test calibration for a small axial compressor rig. Part 2: CFD compared with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, D. P.; Prahst, P. S.

    1995-01-01

    An axial compressor test rig has been designed for the operation of small turbomachines. A flow test was run to calibrate and determine the source and magnitudes of the loss mechanisms in the compressor inlet for a highly loaded two-stage axial compressor test. Several flow conditions and inlet guide vane (IGV) angle settings were established, for which detailed surveys were completed. Boundary layer bleed was also provided along the casing of the inlet behind the support struts and ahead of the IGV. Several computational fluid dynamics (CFD) calculations were made for selected flow conditions established during the test. Good agreement between the CFD and test data were obtained for these test conditions.

  17. A comparative study of turbulence models in predicting hypersonic inlet flows

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh

    1993-01-01

    A computational study has been conducted to evaluate the performance of various turbulence models. The NASA P8 inlet, which represents cruise condition of a typical hypersonic air-breathing vehicle, was selected as a test case for the study; the PARC2D code, which solves the full two dimensional Reynolds-averaged Navier-Stokes equations, was used. Results are presented for a total of six versions of zero- and two-equation turbulence models. Zero-equation models tested are the Baldwin-Lomax model, the Thomas model, and a combination of the two. Two-equation models tested are low-Reynolds number models (the Chien model and the Speziale model) and a high-Reynolds number model (the Launder and Spalding model).

  18. Development of an Experimental Data Base to Validate Compressor-Face Boundary Conditions Used in Unsteady Inlet Flow Computations

    NASA Technical Reports Server (NTRS)

    Sajben, Miklos; Freund, Donald D.

    1998-01-01

    The ability to predict the dynamics of integrated inlet/compressor systems is an important part of designing high-speed propulsion systems. The boundaries of the performance envelope are often defined by undesirable transient phenomena in the inlet (unstart, buzz, etc.) in response to disturbances originated either in the engine or in the atmosphere. Stability margins used to compensate for the inability to accurately predict such processes lead to weight and performance penalties, which translate into a reduction in vehicle range. The prediction of transients in an inlet/compressor system requires either the coupling of two complex, unsteady codes (one for the inlet and one for the engine) or else a reliable characterization of the inlet/compressor interface, by specifying a boundary condition. In the context of engineering development programs, only the second option is viable economically. Computations of unsteady inlet flows invariably rely on simple compressor-face boundary conditions (CFBC's). Currently, customary conditions include choked flow, constant static pressure, constant axial velocity, constant Mach number or constant mass flow per unit area. These conditions are straightforward extensions of practices that are valid for and work well with steady inlet flows. Unfortunately, it is not at all likely that any flow property would stay constant during a complex system transient. At the start of this effort, no experimental observation existed that could be used to formulate of verify any of the CFBC'S. This lack of hard information represented a risk for a development program that has been recognized to be unacceptably large. The goal of the present effort was to generate such data. Disturbances reaching the compressor face in flight may have complex spatial structures and temporal histories. Small amplitude disturbances may be decomposed into acoustic, vorticity and entropy contributions that are uncoupled if the undisturbed flow is uniform. This study

  19. The effect of inlet stagnation supercooling degree on the aerodynamics of the steam flow field around a rotor tip section

    NASA Astrophysics Data System (ADS)

    Beheshti Amiri, H.; Kermani, M. J.

    2015-01-01

    In this paper, the effects of inlet stagnation supercooling degree on the aerodynamics of the flow field around the rotor tip section of a steam turbine are investigated. To do so, non-equilibrium thermodynamics model for simulating the condensing flow is employed. The results show that formation of liquid droplets and their further growth can remarkably change the design parameters like deviation angle, pressure loss coefficient, mass flow rate and shock wave pattern.

  20. Wind tunnel tests of a zero length, slotted-lip engine air inlet for a fixed nacelle V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Woollett, R. R.; Beck, W. E., Jr.; Glasgow, E. R.

    1982-01-01

    Zero length, slotted lip inlet performance and associated fan blade stresses were determined during model tests using a 20 inch diameter fan simulator in the NASA-LeRC 9 by 15 foot low speed wind tunnel. The model configuration variables consisted of inlet contraction ratio, slot width, circumferential extent of slot fillers, and length of a constant area section between the inlet throat and fan face. The inlet performance was dependent on slot gap width and relatively independent of inlet throat/fan face spacer length and slot flow blockage created by 90 degree slot fillers. Optimum performance was obtained at a slot gap width of 0.36 inch. The zero length, slotted lip inlet satisfied all critical low speed inlet operating requirements for fixed horizontal nacelles subsonic V/STOL aircraft.

  1. Effectiveness of an inlet flow turbulence control device to simulate flight noise fan in an anechoic chamber

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Wazyniak, J. A.; Shaw, L. M.; Mackinnon, M. J.

    1977-01-01

    A hemispherical inlet flow control device was tested on a 50.8 cm. (20-inch) diameter fan stage in the NASA-Lewis anechoic chamber. The control device used honeycomb and wire mesh to reduce turbulence intensities entering the fan. Far field acoustic power level results show about a 5 db reduction in blade passing tone and about 10 dB reduction in multiple pure tone sound power at 90% design fan speed with the inlet device in place. Hot film cross probes were inserted in the inlet to obtain data for two components of the turbulence at 65 and 90% design fan speed. Without the flow control device, the axial intensities were below 1.0%, while the circumferential intensities were almost twice this value. The inflow control device significantly reduced the circumferential turbulence intensities and also reduced the axial length scale.

  2. Blade row dynamic digital compressor program. Volume 1: J85 clean inlet flow and parallel compressor models

    NASA Technical Reports Server (NTRS)

    Tesch, W. A.; Steenken, W. G.

    1976-01-01

    The results are presented of a one-dimensional dynamic digital blade row compressor model study of a J85-13 engine operating with uniform and with circumferentially distorted inlet flow. Details of the geometry and the derived blade row characteristics used to simulate the clean inlet performance are given. A stability criterion based upon the self developing unsteady internal flows near surge provided an accurate determination of the clean inlet surge line. The basic model was modified to include an arbitrary extent multi-sector parallel compressor configuration for investigating 180 deg 1/rev total pressure, total temperature, and combined total pressure and total temperature distortions. The combined distortions included opposed, coincident, and 90 deg overlapped patterns. The predicted losses in surge pressure ratio matched the measured data trends at all speeds and gave accurate predictions at high corrected speeds where the slope of the speed lines approached the vertical.

  3. Interface of an uncoupled boundary layer algorithm with an inviscid core flow algorithm for unsteady supersonic engine inlets

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Sakowski, Barbara

    1992-01-01

    An uncoupled boundary layer algorithm was combined with an inviscid core flow algorithm to model flows within supersonic engine inlets. The inviscid flow algorithm that was used was the LArge Perturbation INlet Code (LAPIN). The boundary layer and inviscid core flow algorithms were formulated in different manners. The boundary layer algorithm was two dimensional and solved in nonconservation form, while the core flow algorithm was one dimensional and solved in conservation form. In order to interface the two codes, the following modifications were important. The coordinate system was set up to maintain the parabolic nature of the boundary layer algorithm while approaching the one dimensional core flow solution far from a wall. The pressure gradient used in the boundary layer equation was calculated using the core flow values and the boundary layer equations, so the boundary layer solution smoothly approached the core flow values far from the wall. Flaring was used for the advection terms perpendicular to the core flow to maintain the stability of the algorithm. With these modifications, the combined viscous/inviscid algorithm matched well experimental observations of pressure distributions with a supersonic inlet.

  4. Interface of an uncoupled boundary layer algorithm with an inviscid core flow algorithm for unsteady supersonic engine inlets

    NASA Technical Reports Server (NTRS)

    Darling, Douglas; Sakowski, Barbara

    1992-01-01

    An uncoupled boundary layer algorithm was combined with an inviscid core flow algorithm to model flows within supersonic engine inlets. The inviscid flow algorithm that was used was the LArge Perturbation INlet Code (LAPIN). The boundary layer and inviscid core flow algorithms were formulated in different manners. The boundary layer algorithm was two dimensional and solved in nonconservation form, while the core flow algorithm was one dimensional and solved in conservation form. In order to interface the two codes, the following modifications were important. The coordinate system was set up to maintain the parabolic nature of the boundary layer algorithm while approaching the one dimensional core flow solution far from a wall. The pressure gradient used in the boundary layer equation was calculated using the core flow values and the boundary layer equations, so the boundary layer solution smoothly approached the core flow values far from the wall. Flaring was used for the advection terms perpendicular to the core flow to maintain the stability of the algorithm. With these modifications, the combined viscous/inviscid algorithm matched well with experimental observations of pressure distributions with a supersonic inlet.

  5. Mach 10 computational study of a three-dimensional scramjet inlet flow field

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10 (exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes.

  6. Mach 10 computational study of a three-dimensional scramjet inlet flow field

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.

    1995-01-01

    The present work documents the computational results for a combined computational and experimental parametric study of the internal aerodynamics of a generic three-dimensional sidewall-compression scramjet inlet configuration at Mach 10. The three-dimensional Navier-Stokes code SCRAMIN was chosen for the computational portion of the study because it uses a well-known and well-proven numerical scheme and has shown favorable comparison with experiment at Mach numbers between 2 and 6. One advantage of CFD was that it provided flow field data for a detailed examination of the internal flow characteristics in addition to the surface properties. The experimental test matrix at Mach 10 included three geometric contraction ratios (3, 5, and 9), three Reynolds numbers (0.55 x 10(exp 6) per foot, 1.14 x 10(exp 6) per foot, and 2.15 x 10(exp 6) per foot), and three cowl positions (at the throat and two forward positions). Computational data for two of these configurations (the contraction ratio of 3, Re = 2.15 x 10(exp 6) per foot, at two cowl positions) are presented along with a detailed analysis of the flow interactions in successive computational planes.

  7. Measurements of Tidally Forced Bedforms, Sediment Transport, Flow and Turbulence at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Traykovski, P.; Geyer, W. R.

    2012-12-01

    Observations of bedforms and near-bed hydrodynamics in New River Inlet, NC reveal a highly temporally and spatially variable bedform field with rapid migration rates. Time series measurements were conducted at two tidally dominated stations with instrumented frames, and spatial surveys were conducted with a small vessel and REMUS AUV. The spatial surveys showed that the bedforms were largest in the ~3 m deep tidal channels, with wavelengths of ~4 m and heights of ~40 cm. These channels also had the strongest tidal flows with ebb directed velocities of up to 1.5 m/s, and coarsest sand. On the finer grained shoals, bedforms were smaller with wavelengths less than 1 m. Time series measurements of the bedforms taken with rotary sidescan and pencil beam sonars revealed most of the variability occurred at semi-diurnal tidal and spring-neap tidal time scales. The largest ~4 m wavelength bedforms only occurred on spring tides and bedforms were smaller during neap tides. At the measurement sites, the flow and bedforms were tidally dominated with the bedforms responding to wave forcing less than 20% of the time during periods of flood and high tides with energetic wave forcing. On individual tidal cycles, the bedforms changed from ebb directed asymmetry to flood direct asymmetry and migrated approximately one wavelength. The relationship between flow asymmetry, with ebb dominated flows, and bedform migration asymmetry will be examined. Flow and turbulence above the bedforms was measured with a multi-frequency pulse coherent Doppler profiler and two ADVs. The velocity profiles show pronounced wake velocity deficits when large bedform crests were present just upstream of the profiler. Turbulence levels as a function of bedform geometry, location, and forcing flow will be examined. The measurements of flow and turbulence, combined with bedform geometry and migration measurements and suspended sediment transport measurements from a 3-frequency acoustic backscatter system will

  8. A Computational and Experimental Study of Coflow Laminar Methane/Air Diffusion Flames: Effects of Fuel Dilution, Inlet Velocity, and Gravity

    NASA Technical Reports Server (NTRS)

    Cao, S.; Ma, B.; Bennett, B. A. V.; Giassi, D.; Stocker, D. P.; Takahashi, F.; Long, M. B.; Smooke, M. D.

    2014-01-01

    The influences of fuel dilution, inlet velocity, and gravity on the shape and structure of laminar coflow CH4-air diffusion flames were investigated computationally and experimentally. A series of nitrogen-diluted flames measured in the Structure and Liftoff in Combustion Experiment (SLICE) on board the International Space Station was assessed numerically under microgravity (mu g) and normal gravity (1g) conditions with CH4 mole fraction ranging from 0.4 to 1.0 and average inlet velocity ranging from 23 to 90 cm/s. Computationally, the MC-Smooth vorticity-velocity formulation was employed to describe the reactive gaseous mixture, and soot evolution was modeled by sectional aerosol equations. The governing equations and boundary conditions were discretized on a two-dimensional computational domain by finite differences, and the resulting set of fully coupled, strongly nonlinear equations was solved simultaneously at all points using a damped, modified Newton's method. Experimentally, flame shape and soot temperature were determined by flame emission images recorded by a digital color camera. Very good agreement between computation and measurement was obtained, and the conclusions were as follows. (1) Buoyant and nonbuoyant luminous flame lengths are proportional to the mass flow rate of the fuel mixture; computed and measured nonbuoyant flames are noticeably longer than their 1g counterparts; the effect of fuel dilution on flame shape (i.e., flame length and flame radius) is negligible when the flame shape is normalized by the methane flow rate. (2) Buoyancy-induced reduction of the flame radius through radially inward convection near the flame front is demonstrated. (3) Buoyant and nonbuoyant flame structure is mainly controlled by the fuel mass flow rate, and the effects from fuel dilution and inlet velocity are secondary.

  9. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R., Jr.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3-Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCPavg, the circumferential distortion level at the engine

  10. Optimal Design of Passive Flow Control for a Boundary-Layer-Ingesting Offset Inlet Using Design-of-Experiments

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Owens, Lewis R.; Lin, John C.

    2006-01-01

    This research will investigate the use of Design-of-Experiments (DOE) in the development of an optimal passive flow control vane design for a boundary-layer-ingesting (BLI) offset inlet in transonic flow. This inlet flow control is designed to minimize the engine fan-face distortion levels and first five Fourier harmonic half amplitudes while maximizing the inlet pressure recovery. Numerical simulations of the BLI inlet are computed using the Reynolds-averaged Navier-Stokes (RANS) flow solver, OVERFLOW, developed at NASA. These simulations are used to generate the numerical experiments for the DOE response surface model. In this investigation, two DOE optimizations were performed using a D-Optimal Response Surface model. The first DOE optimization was performed using four design factors which were vane height and angles-of-attack for two groups of vanes. One group of vanes was placed at the bottom of the inlet and a second group symmetrically on the sides. The DOE design was performed for a BLI inlet with a free-stream Mach number of 0.85 and a Reynolds number of 2 million, based on the length of the fan-face diameter, matching an experimental wind tunnel BLI inlet test. The first DOE optimization required a fifth order model having 173 numerical simulation experiments and was able to reduce the DC60 baseline distortion from 64% down to 4.4%, while holding the pressure recovery constant. A second DOE optimization was performed holding the vanes heights at a constant value from the first DOE optimization with the two vane angles-of-attack as design factors. This DOE only required a second order model fit with 15 numerical simulation experiments and reduced DC60 to 3.5% with small decreases in the fourth and fifth harmonic amplitudes. The second optimal vane design was tested at the NASA Langley 0.3- Meter Transonic Cryogenic Tunnel in a BLI inlet experiment. The experimental results showed a 80% reduction of DPCP(sub avg), the circumferential distortion level at the

  11. Aerodynamic Design of a Dual-Flow Mach 7 Hypersonic Inlet System for a Turbine-Based Combined-Cycle Hypersonic Propulsion System

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    2008-01-01

    A new hypersonic inlet for a turbine-based combined-cycle (TBCC) engine has been designed. This split-flow inlet is designed to provide flow to an over-under propulsion system with turbofan and dual-mode scramjet engines for flight from takeoff to Mach 7. It utilizes a variable-geometry ramp, high-speed cowl lip rotation, and a rotating low-speed cowl that serves as a splitter to divide the flow between the low-speed turbofan and the high-speed scramjet and to isolate the turbofan at high Mach numbers. The low-speed inlet was designed for Mach 4, the maximum mode transition Mach number. Integration of the Mach 4 inlet into the Mach 7 inlet imposed significant constraints on the low-speed inlet design, including a large amount of internal compression. The inlet design was used to develop mechanical designs for two inlet mode transition test models: small-scale (IMX) and large-scale (LIMX) research models. The large-scale model is designed to facilitate multi-phase testing including inlet mode transition and inlet performance assessment, controls development, and integrated systems testing with turbofan and scramjet engines.

  12. The induction of water to the inlet air as a means of internal cooling in aircraft-engine cylinders

    NASA Technical Reports Server (NTRS)

    Rothrock, Addison M; Krsek, Alois, Jr; Jones, Anthony W

    1943-01-01

    Report presents the results of investigations conducted on a full-scale air-cooled aircraft-engine cylinder of 202-cubic inch displacement to determine the effects of internal cooling by water induction on the maximum permissible power and output of an internal-combustion engine. For a range of fuel-air and water-fuel ratios, the engine inlet pressure was increased until knock was detected aurally, the power was then decreased 7 percent holding the ratios constant. The data indicated that water was a very effective internal coolant, permitting large increases in engine power as limited by either knock or by cylinder temperatures.

  13. Ice Protection of Turbojet Engines by Inertia Separation of Water III : Annular Submerged Inlets

    NASA Technical Reports Server (NTRS)

    Von Glahn, Uwe

    1948-01-01

    Aerodynamic and icing studies were conducted on a one-half-scale model of an annular submerged inlet for use with axial-flow turbojet engines. Pressure recoveries, screen radial-velocity profiles, circumferential mass-flow variations, and icing characteristics were determined at the compressor inlet. In order to be effective in maintaining water-free induction air, the inlet gap must be extremely small and ram-pressure recoveries consequently are low, the highest achieved being 65 percent at inlet-velocity ratio of 0.86. All inlets exhibited considerable screen icing. Severe mass-flow shifts occurred at angles of attack.

  14. Effect of inlet-air humidity, temperature, pressure, and reference Mach number on the formation of oxides of nitrogen in a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Marchionna, N. R.; Diehl, L. A.; Trout, A. M.

    1973-01-01

    Tests were conducted to determine the effect of inlet air humidity on the formation of oxides of nitrogen (NOx) from a gas turbine combustor. Combustor inlet air temperature ranged from 506 K (450 F) to 838 K (1050 F). The tests were primarily run at a constant pressure of 6 atmospheres and reference Mach number of 0.065. The NOx emission index was found to decrease with increasing inlet air humidity at a constant exponential rate: NOx = NOx0e-19H (where H is the humidity and the subscript 0 denotes the value at zero humidity). the emission index increased exponentially with increasing normalized inlet air temperature to the 1.14 power. Additional tests made to determine the effect of pressure and reference Mach number on NOx showed that the NOx emission index varies directly with pressure to the 0.5 power and inversely with reference Mach number.

  15. The Influence of Inlet Asymmetry on Steam Turbine Exhaust Hood Flows.

    PubMed

    Burton, Zoe; Hogg, Simon; Ingram, Grant L

    2014-04-01

    It has been widely recognized for some decades that it is essential to accurately represent the strong coupling between the last stage blades (LSB) and the diffuser inlet, in order to correctly capture the flow through the exhaust hoods of steam turbine low pressure cylinders. This applies to any form of simulation of the flow, i.e., numerical or experimental. The exhaust hood flow structure is highly three-dimensional and appropriate coupling will enable the important influence of this asymmetry to be transferred to the rotor. This, however, presents challenges as the calculation size grows rapidly when the full annulus is calculated. The size of the simulation means researchers are constantly searching for methods to reduce the computational effort without compromising solution accuracy. However, this can result in excessive computational demands in numerical simulations. Unsteady full-annulus CFD calculation will remain infeasible for routine design calculations for the foreseeable future. More computationally efficient methods for coupling the unsteady rotor flow to the hood flow are required that bring computational expense within realizable limits while still maintaining sufficient accuracy for meaningful design calculations. Research activity in this area is focused on developing new methods and techniques to improve accuracy and reduce computational expense. A novel approach for coupling the turbine last stage to the exhaust hood employing the nonlinear harmonic (NLH) method is presented in this paper. The generic, IP free, exhaust hood and last stage blade geometries from Burton et al. (2012. "A Generic Low Pressure Exhaust Diffuser for Steam Turbine Research,"Proceedings of the ASME Turbo Expo, Copenhagen, Denmark, Paper No. GT2012-68485) that are representative of modern designs, are used to demonstrate the effectiveness of the method. This is achieved by comparing results obtained with the NLH to those obtained with a more conventional mixing

  16. [Invention of an air forced ventilated micro-isolation cage and rack system--environment within the cages: ventilation, air flow].

    PubMed

    Kurosawa, T; Yoshida, K; Okamoto, M; Tajima, M

    1993-10-01

    A forced air ventilation system for small laboratory animals was developed. The system consists of an air handling unit with air supply and exhaust fans, a rack, hard cage covers with a large diameter air inlet and an outlet, and shoe box cages. Air flow from the supply duct, to the exhaust duct and within the cage were observed. Variations in air flow among cages was minimal. The optimal air exchange rate of the cages in this system was determined to be 60 times per hour based on the results obtained in the present study. At this air exchange rate, air flow at the base of the cages had a velocity of less than 0.09m/sec, which was within the range of recommended values for humans. The observed results show that the system developed is capable of sustaining a laboratory animal microenvironment well in terms of air flow, without too much energy cost.

  17. ON THE MODIFICATION OF THE LOW FLOW-RATE PM10 DICHOTOMOUS SAMPLER INLET

    EPA Science Inventory

    A popular flat-topped inlet used for the collection of atmospheric particulate matter was modified to reduce water intrusion during rain and snow events. Simple alterations in the intake region of this inlet were made, including a larger drain hole, a one piece top plate, and ...

  18. An investigation of several NACA 1-series inlets at Mach numbers from 0.4 to 1.29 for mass flow ratios near 1.0

    NASA Technical Reports Server (NTRS)

    Re, R. J.

    1975-01-01

    An investigation to determine the performance of eight NACA 1-series inlets at massflow ratios near 1.0 was conducted in the Langley 16-foot transonic tunnel. The inlet diameter ratios (ratio of inlet diameter to maximum diameter) were 0.85 and 0.89 for an inlet length ratio (ratio of inlet length to maximum diameter) of 1.0. Inlet lip radius varied from 0.061 cm to 0.251 cm, and internal contraction area ratio (ratio of inlet area to throat area) varied from 1.006 to 1.201. Reynolds number based on model maximum diameter ranged from 3,600,000 at a Mach number of 400,000 to 5,900,000 at a Mach number of 1.29. The results indicate that nearly uniform pressure distributions on a given inlet were obtained over a limited range of mass-flow ratios and Mach numbers. When inlet lip thickness was increased by means of lip radius or contraction ratio, the inlet critical Mach number decreased. Drag-divergence Mach number inferred from forebody pressure integrations was above 0.94 for most of the inlets tested.

  19. Effects of small-scale, high intensity inlet turbulence on flow in a two-dimensional diffuser

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Gonzalez, G.

    1984-01-01

    The flow through a 2D experimental diffuser with channel width 2.60 cm and divergence angle (2 theta) 9 or 20 deg is investigated experimentally for inlet Reynolds number 78,300 and velocity 43.9 m/s, with and without vertical rods to generate inlet turbulence in excess of the limits defined by Hoffmann (1981) and Hoffmann and Gonzales (1983). Measurements are obtained using a thermal wall-flow-direction probe and a single hot-wire velocity probe, and the results are presented graphically. Significant increases in the pressure-recovery coefficient of the diffuser (10 percent at 9 deg and 22 percent at 20 deg) are attributed to the action of turbulence to reduce distortion and delay separation, thus creating an altered flow condition with symmetrical velocity profiles.

  20. Modification of Cabinet Fans with Inlet Air Guide Fairings to Improve Performance.

    DTIC Science & Technology

    1983-04-01

    CHAMPAIGN IL W H DOLAN ANLSIFE PR 83 CERL-TR-E-i~i F /G 13/1i N EIND IllIflI2.8 25 36 1111.8 1.4 L16 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF...fan inlet conditions. By observing airflow within the cabinet, a DO ,~~ F 10 EDIIONOF NOV6 ISOSOETEUNCLASS IFIED SACUSSTV CLASSIFICATION OF THIS PAGE...7 F ,.vousA.F i 7$ __. DISCHARGE PLATE CONNECTING FAN WHEEL TO FAN SHAFT. ROTATING FAN WHEEL Fig.,e 1. Double Width, Double Inlet (DWDI) centrifugal

  1. Frit inlet field-flow fractionation techniques for the characterization of polyion complex self-assemblies.

    PubMed

    Till, Ugo; Gaucher, Mireille; Amouroux, Baptiste; Gineste, Stéphane; Lonetti, Barbara; Marty, Jean-Daniel; Mingotaud, Christophe; Bria, Carmen R M; Williams, S Kim Ratanathanawongs; Violleau, Frédéric; Mingotaud, Anne-Françoise

    2017-01-20

    Polymer self-assemblies joining oppositely charged chains, known as polyion complexes (PICs), have been formed using poly(ethyleneoxide - b - acrylic acid)/poly(l-lysine), poly(ethyleneoxide-b-acrylic acid)/dendrigraft poly(l-lysine) and poly[(3-acrylamidopropyl) trimethylammonium chloride - b - N - isopropyl acrylamide]/poly(acrylic acid). The self-assemblies have been first characterized in batch by Dynamic Light Scattering. In a second step, their analysis by Flow Field-Flow Fractionation techniques (FlFFF) was examined. They were shown to be very sensitive to shearing, especially during the focus step of the fractionation, and this led to an incompatibility with asymmetrical FlFFF. On the other hand, Frit Inlet FlFFF proved to be very efficient to observe them, either in its symmetrical (FI-FlFFF) or asymmetrical version (FI-AsFlFFF). Conditions of elution were found to optimize the sample recovery in pure water. Spherical self-assemblies were detected, with a size range between 70-400nm depending on the polymers. Compared to batch DLS, FI-AsFlFFF clearly showed the presence of several populations in some cases. The influence of salt on poly(ethyleneoxide-b-acrylic acid) (PEO-PAA) 6000-3000/dendrigraft poly(l-lysine) (DGL 3) was also assessed in parallel in batch DLS and FI-AsFlFFF. Batch DLS revealed a first process of swelling of the self-assembly for low concentrations up to 0.8M followed by the dissociation. FI-AsFlFFF furthermore indicated a possible ejection of DGL3 from the PIC assembly for concentrations as low as 0.2M, which could not be observed in batch DLS.

  2. Two-stage fan. 2: Data and performance with redesigned second stage rotor uniform and distorted inlet flows

    NASA Technical Reports Server (NTRS)

    Messenger, H. E.; Keenan, M. J.

    1974-01-01

    A two-stage fan with a first rotor tip speed of 1450 ft/sec (441.96 m/sec) and no inlet guide vanes was tested with uniform and distorted inlet flows, with a redesigned second rotor having a part span shroud to prevent flutter, with variable-stagger stators set in nominal positions, and without rotor casing treatment. The fan achieved a pressure ratio 2.8 at a corrected flow of 185.4 lbm/sec (84.0 kg/sec), an adiabatic efficiency of 85.0 percent, and a stall margin of 12 percent. The redesigned second rotor did not flutter. Tip radial distortion reduced the stall margin at intermediate speed, but had little effect on stall margin at high or low speeds. Hub radial distortion reduced the stall margin at design speed but increased stall margin at low speed. Circumferential distortion reduced stall pressure ratio and flow to give approximately the same stall lines with uniform inlet flow. Distortions were attenuated by the fan. For Vol. 1, see N74-11421.

  3. Application of Computational Fluid Dynamics to the Study of Vortex Flow Control for the Management of Inlet Distortion

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Gibb, James

    1992-01-01

    The present study demonstrates that the Reduced Navier-Stokes code RNS3D can be used very effectively to develop a vortex generator installation for the purpose of minimizing the engine face circumferential distortion by controlling the development of secondary flow. The computing times required are small enough that studies such as this are feasible within an analysis-design environment with all its constraints of time and costs. This research study also established the nature of the performance improvements that can be realized with vortex flow control, and suggests a set of aerodynamic properties (called observations) that can be used to arrive at a successful vortex generator installation design. The ultimate aim of this research is to manage inlet distortion by controlling secondary flow through an arrangements of vortex generators configurations tailored to the specific aerodynamic characteristics of the inlet duct. This study also indicated that scaling between flight and typical wind tunnel test conditions is possible only within a very narrow range of generator configurations close to an optimum installation. This paper also suggests a possible law that can be used to scale generator blade height for experimental testing, but further research in this area is needed before it can be effectively applied to practical problems. Lastly, this study indicated that vortex generator installation design for inlet ducts is more complex than simply satisfying the requirement of attached flow, it must satisfy the requirement of minimum engine face distortion.

  4. Experimental investigation of the inlet detector configuration variation in the flow field at Mach 1.9

    NASA Technical Reports Server (NTRS)

    Hwang, Kyu C.; Tiwari, Surrendra N.; Miley, Stanley J.

    1995-01-01

    In recent years, active research has been conducted to study the technological feasibility of supersonic laminar flow control on the wing of the High Speed Civil Transport (HSCT). For this study, the F-16XL has been chosen due to its highly swept crank wing planform that closely resembles the HSCT configurations. During flights, it is discovered that the shock wave generated from the aircraft inlet introduces disturbances on the wing where the data acquisition is conducted. The flow field about a supersonic inlet is characterized by a complex three dimensional pattern of shock waves generated by the geometrical configuration of a deflector and a cowl lip. Hence, in this study, experimental method is employed to investigate the effects of the variation of deflector configuration on the flow field, and consequently, the possibility of diverting the incoming shock-disturbances away from the test section. In the present experiments, a model composed of a simple circular tube with a triangular deflector is designed to study the deflector length and the deflector base width variation in the flow field. Experimental results indicate that the lowest external pressure ratio is observed at the junction where the deflector lip and the inlet cowl lip merge. Also, it is noted that the external pressure ratio, the internal pressure ratio, the coefficient of spillage drag, and the shock standoff distance decrease as the deflector length increases. In addition, the Redefined Total Pressure Recovery Ratio (RTPRR) increases with an increase in the deflector length. Results from the study of the effect of the deflector's base width variation on the flow field indicate that the lowest external pressure ratio is observed at the junction between the inlet cowl lip and the deflector lip. As the base width of the deflector increases, the external pressure ratio at 0 rotation increases, whereas the external pressure ratio at 180 rotation decreases. In addition, the internal pressure ratio

  5. Dynamics of autoignitive DME/air coflow flames in oscillating flows

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Zhao, Peng; Mueller, Michael; Law, Chung

    2016-11-01

    The structure and dynamics of laminar nonpremixed dimethyl ether (DME)/air coflow flames were investigated at elevated temperatures and pressures, conditions at which autoignition times become competitive with flame times. Computations with detailed chemistry were performed for DME and heated coflow air at 30 atm with uniform but sinusoidally oscillating inlet velocities. These unsteady cases were compared with steady flames to elucidate the effect of oscillation frequency on the flame dynamics. In the oscillating reacting flow, periodic but hysteretic transition occurs between a multibrachial autoignition front that locates downstream at high inlet velocity and a tribrachial flame that locates upstream at low inlet velocity. The finite induction time for autoignition results in this hysteretic behavior, which diminishes at lower oscillation frequency as there is more time for chemistry to respond to the hydrodynamic changes and consequently approach steady state.

  6. Flow Control Application on a Submerged Inlet Characterized by Three-Component LDV

    DTIC Science & Technology

    2010-12-01

    31 U/Us Velocity distribution of the jet over the reference velocity . 38 Uav/u∞ Inlet to free stream velocity characterization . . . . . . . . 40 mr...free stream at the compressor dictates the efficiency and performance of the engine, therefore, the inlet efficiency affects the entire performance of...right of Figure 9, the seven degree angle replaced by the thirteen degree angle. The down- stream distance calculates from the known information. The

  7. Inlet Flow Characteristics During Rapid Maneuvers for an F/A-18A Airplane

    NASA Technical Reports Server (NTRS)

    Steenken, William G.; Williams, John G.; Walsh, Kevin R.

    1999-01-01

    The F404-GE-400 engine powered F/A-18A High Alpha Research Vehicle (HARV) was used to examine the characteristics of inlet airflow during rapid aircraft maneuvers. A study of the degree of similarity between inlet data obtained during rapid aircraft maneuvers and inlet data obtained at steady aerodynamic attitudes was conducted at the maximum engine airflow of approximately 145 Ibm/sec using a computer model that was generated from inlet data obtained during steady aerodynamic maneuvers. Results show that rapid-maneuver inlet recoveries agreed very well with the recoveries obtained at equivalent stabilized angle-of-attack conditions. The peak dynamic circumferential distortion values obtained during rapid maneuvers agreed within 0.01 units of distortion over the 10 - 38 degree angle of attack range with the values obtained during steady aerodynamic maneuvers while similar agreement was found for the peak dynamic radial distortion values up to 29 degrees angle-of-attack. Exceedences of the rapid-maneuver peak dynamic circumferential distortion values relative to the peak distortion model values at steady attitudes occurred only at low or negative angles of attack and were inconsequential from an engine-stability assessment point of view. The results of this study validate the current industry practice of testing at steady aerodynamic conditions to characterize inlet recovery and peak dynamic distortion levels.

  8. Internal flow characteristics of a multistage compressor with inlet pressure distortion. [J85-13 turbojet engine studies

    NASA Technical Reports Server (NTRS)

    Debogdan, C. E.; Moss, J. E., Jr.; Braithwaite, W. M.

    1977-01-01

    The measured distribution of compressor interstage pressures and temperatures resulting from a 180 deg inlet-total-pressure distortion for a J85-13 turbojet engine is reported. Extensive inner stage instrumentation combined with stepwise rotation of the inlet distortion gave data of high circumferential resolution. The steady-state pressures and temperatures along with the amplitude, extent, and location of the distorted areas are given. Data for 80, 90, and 100 percent of rotor design speed are compared with clean (undistorted) inlet flow conditions to show pressure and temperature behavior within the compressor. Both overall and stagewise compressor performances vary only slightly when clean and distorted inlet conditions are compared. Total and static pressure distortions increase in amplitude in the first few stages of the compressor and then attenuate fairly uniformly to zero at the discharge. Total-temperature distortion induced by the pressure distortion reached a maximum amplitude by the first two stages and decayed only a little through the rest of the compressor. Distortion amplitude tended to peak in line with the screen edges, and, except for total and static pressure in the tip zone, there was little swirl in the axial direction.

  9. Choked-Flow Inlet Orifice Bubbler for Creating Small Bubbles in Mercury

    SciTech Connect

    Wendel, Mark W; Abdou, Ashraf A; Riemer, Bernie

    2013-01-01

    Pressure waves created in liquid mercury pulsed spallation targets like the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory, induce cavitation damage on the target container. The cavitation damage is thought to limit the lifetime of the target for power levels at and above 1 MW. One way to mitigate the damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, creating a bubble size distribution that is sufficiently large and disperse in mercury is challenging due to the high surface tension. Also, measuring the population is complicated by the opacity and the high level of turbulent mixing. Recent advances in bubble diagnostics by batch sampling the mercury made it possible to compare bubble populations for different techniques in a SNS-1/20th scale test loop. More than 10 bubblers were tested and the most productive bubblers were taken for in-beam testing at the Los Alamos Neutron Science Center (LANSCE) WNR user facility. One bubbler design, referred to as the inlet-orifice bubbler, that showed moderate success in creating populations also has an added advantage that it could easily be included in the existing SNS full-scale mercury target configuration. Improvements to the bubbler were planned including a reduction of the nozzle size to choke the gas injection, thus steadying the injected mass flow and allowing multiple nozzles to work off of a common plenum. For the first time, reliable bubble population data are available in the prototypical target geometry and can be compared with populations that mitigated cavitation damage. This paper presents those experimental results.

  10. Calculation of the flow field including boundary layer effects for supersonic mixed compression inlets at angles of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    The flow field in supersonic mixed compression aircraft inlets at angle of attack is calculated. A zonal modeling technique is employed to obtain the solution which divides the flow field into different computational regions. The computational regions consist of a supersonic core flow, boundary layer flows adjacent to both the forebody/centerbody and cowl contours, and flow in the shock wave boundary layer interaction regions. The zonal modeling analysis is described and some computational results are presented. The governing equations for the supersonic core flow form a hyperbolic system of partial differential equations. The equations for the characteristic surfaces and the compatibility equations applicable along these surfaces are derived. The characteristic surfaces are the stream surfaces, which are surfaces composed of streamlines, and the wave surfaces, which are surfaces tangent to a Mach conoid. The compatibility equations are expressed as directional derivatives along streamlines and bicharacteristics, which are the lines of tangency between a wave surface and a Mach conoid.

  11. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  12. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  13. Performance of a J85-13 compressor with clean and distorted inlet flow

    NASA Technical Reports Server (NTRS)

    Milner, E. J.; Wenzel, L. M.

    1975-01-01

    The results presented are of a series of experimental tests in which a J85-13 turbojet engine was subjected to both distorted and undistorted inlet total pressure conditions. A distinctive feature of the data base obtained is that it includes compressor interstage information not previously recorded for a J85-13 engine. Each of the eight compressor stages was instrumented to obtain the characteristics of the individual stages for undistorted inlet conditions, and these data are documented in the report along with the undistorted compressor overall performance. Also included in the report is the overall performance of the compressor exposed to 14 different distorted-inlet conditions - 10 circumferential patterns and 4 radial patterns. The distortion patterns were introduced using screens that spoiled from 8 to 50 percent of the compressor face area; the distortion screen density, or the area blocked by the screen wire per unit area of screen, varied from 26 to 69 percent.

  14. Two-stage fan. 3: Data and performance with rotor tip casing treatment, uniform and distorted inlet flows

    NASA Technical Reports Server (NTRS)

    Burger, G. D.; Hodges, T. R.; Keenan, M. J.

    1975-01-01

    A two stage fan with a 1st-stage rotor design tip speed of 1450 ft/sec, a design pressure ratio of 2.8, and corrected flow of 184.2 lbm/sec was tested with axial skewed slots in the casings over the tips of both rotors. The variable stagger stators were set in the nominal positions. Casing treatment improved stall margin by nine percentage points at 70 percent speed but decreased stall margin, efficiency, and flow by small amounts at design speed. Treatment improved first stage performance at low speed only and decreased second stage performance at all operating conditions. Casing treatment did not affect the stall line with tip radially distorted flow but improved stall margin with circumferentially distorted flow. Casing treatment increased the attenuation for both types of inlet flow distortion.

  15. An Interactive Preliminary Design System of High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Liou, May-Fun; Benson, Thomas J.; Trefny, Charles J.

    2010-01-01

    This paper demonstrates a simulation-based aerodynamic design process of high speed inlet. A genetic algorithm is integrated into the design process to facilitate the single objective optimization. The objective function is the total pressure recovery and is obtained by using a PNS solver for its computing efficiency. The system developed uses existing software of geometry definition, mesh generation and CFD analysis. The process which produces increasingly desirable design in each genetic evolution over many generations is automatically carried out. A generic two-dimensional inlet is created as a showcase to demonstrate the capabilities of this tool. A parameterized study of geometric shape and size of the showcase is also presented.

  16. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann

    2016-02-01

    Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the

  17. Investigation of Performance Improvements Including Application of Inlet Guide Vanes to a Cross-flow Fan

    DTIC Science & Technology

    2009-09-01

    configurations while a butterfly valve in the exhaust duct was used for throttling studies. Figure 18 shows the horizontal inlet configuration...vertical thrust in a single seat VTOL aircraft, researchers at both the Naval Postgraduate School and Syracuse University have urged further

  18. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  19. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  20. CFD Analysis to Study Effect of Circular Vortex Generator Placed in Inlet Section to Investigate Heat Transfer Aspects of Solar Air Heater

    PubMed Central

    Gawande, Vipin B.; Dhoble, A. S.; Zodpe, D. B.

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate. PMID:25254251

  1. CFD analysis to study effect of circular vortex generator placed in inlet section to investigate heat transfer aspects of solar air heater.

    PubMed

    Gawande, Vipin B; Dhoble, A S; Zodpe, D B

    2014-01-01

    CFD analysis of 2-dimensional artificially roughened solar air heater duct with additional circular vortex generator, inserted in inlet section is carried out. Circular transverse ribs on the absorber plate are placed as usual. The analysis is done to investigate the effect of inserting additional vortex generator on the heat transfer and flow friction characteristics inside the solar air heater duct. This investigation covers relative roughness pitch in the range of 10 ≤ P/e ≤ 25 and relevant Reynolds numbers in the range of 3800 ≤ Re ≤ 18000. Relative roughness height (e/D) is kept constant as 0.03 for analysis. The turbulence created due to additional circular vortex generator increases the heat transfer rate and at the same time there is also increase in friction factor values. For combined arrangement of ribs and vortex generator, maximum Nusselt number is found to be 2.05 times that of the smooth duct. The enhancement in Nusselt number with ribs and additional vortex generator is found to be 1.06 times that of duct using ribs alone. The maximum increase in friction factor with ribs and circular vortex generator is found to be 2.91 times that of the smooth duct. Friction factor in a combined arrangement is 1.114 times that in a duct with ribs alone on the absorber plate. The augmentation in Thermal Enhancement Factor (TEF) with vortex generator in inlet section is found to be 1.06 times more than with circular ribs alone on the absorber plate.

  2. Thermo-Flow Structure and Epitaxial Uniformity in Large-Scale Metalorganic Chemical Vapor Deposition Reactors with Rotating Susceptor and Inlet Flow Control

    NASA Astrophysics Data System (ADS)

    Soong, Chyi-Yeou; Chyuan, Chung-Hsing; Tzong, Ruey-Yau

    1998-10-01

    The transport phenomena in large-scale metalorganic chemical vapor deposition (MOCVD) reactors with a rotating susceptor are investigated by numerical simulation of thin-film epitaxial growth of gallium arsenide. We are mainly concerned with the thermo-flow structure, its influence on epitaxial growth rate, and the means of improving epilayer flatness. The effects of susceptor rotation and thermo-flow conditions on gas flow, temperature and concentration fields are studied. The present results show the flow structure and transport characteristics in various flow regimes. A parameter map and the associated correlations of boundary curves of the flow-mode transition are proposed. It is demonstrated that the epilayer flatness can be tuned either by properly controlling the vortex strength in a rotation-dominated flow regime and/or by employing an inlet flow control technique proposed in the present work.

  3. Effects on inlet technology on cruise speed selection

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Santman, D. M.; Horie, G.; Miller, L. D.

    1980-01-01

    The impact of cruise speed on technology level for certain aircraft components is examined. External-compression inlets were compared with mixed compression, self starting inlets at cruise Mach numbers of 2.0 and 2.3. Inlet engine combinations that provided the greatest aircraft range were identified. Results show that increased transonic to cruise corrected air flow ratio gives decreased range for missions dominated by supersonic cruise. It is also found important that inlets be designed to minimize spillage drag at subsonic cruise, because of the need for efficient performance for overland operations. The external compression inlet emerged as the probable first choice at Mach 2.0, while the self starting inlet was the probable first choice at Mach 2.3. Airframe propulsion system interference effects were significant, and further study is needed to assess the existing design methods and to develop improvements.

  4. A noninvasive technique for the evaluation of diversion cross flow at the inlet of a simulated fuel rod bundle

    SciTech Connect

    Sedaghat, A.; Castellana, F.S.; Hsu, R.H.; Macduff, R.B.

    1988-03-01

    Diversion cross flow was characterized from a two-subchannel simulation of a nuclear fuel assembly using a gamma camera. The gamma camera alllowed external monitoring over the length of the test assembly, thereby eliminating experimental problems associated with flow partitioning and an isokinetic withdrawal system, allowing the possibility of noninvasive measurement. The experiment was performed by providing fixed but different flow rates to each subchannel. The higher mass flow rate stream was traced with a gamma-emitting radionuclide, /sup 99m/Tc pertechnetate. Activity in each subchannel was measured by the camera. Diversion length was found to be relatively small and strongly dependent on gap spacing. Effective lateral velocity through the gap was also evaluated. With some exceptions, the results were in good agreement with the predictions of the subchannel analysis computer code COBRA IIIC. At a high inlet axial mass velocity ratio of 4, however, the agreement with the prediction was poor.

  5. Supersonic Elliptical Ramp Inlet

    NASA Technical Reports Server (NTRS)

    Adamson, Eric E. (Inventor); Fink, Lawrence E. (Inventor); Fugal, Spencer R. (Inventor)

    2016-01-01

    A supersonic inlet includes a supersonic section including a cowl which is at least partially elliptical, a ramp disposed within the cowl, and a flow inlet disposed between the cowl and the ramp. The ramp may also be at least partially elliptical.

  6. An inlet air washer/chiller system for combined cycle planet repowering

    SciTech Connect

    Sengupta, U.; Soroka, G. )

    1989-01-01

    A conditioning method to achieve increased output at any relative humidity condition is an air washer and absorption chiller arrangement. At elevated temperatures and low humidity, the air washer operates as an evaporative cooler without the chiller in operation. In this mode, the air washer will give similar results as a media type evaporative cooler at a fraction of the pressure loss. In the air washer plus chiller operating mode the chiller maintains cooling effectiveness of the air washer during periods of high relative humidity. This makes such a system very appropriate anywhere relative humidity is high. Many combined cycle plants utilize supplemental firing of the heat recovery steam generators to offset the loss of gas turbine power at high ambient temperatures. This paper shows that in contrast to supplementary firing, the combination air washer/chiller system can generate power more efficiently and at lower cost.

  7. Installed F/A-18 inlet flow calculations at 30 degrees angle-of-attack: A comparative study

    NASA Technical Reports Server (NTRS)

    Smith, C. Frederic; Podleski, Steve D.

    1994-01-01

    different for each solution. These discrepancies are attributed to differences in the grid resolution and turbulence modeling. All solutions predict that this vortex is ingested by the inlet. The predicted inlet total pressure recoveries are lower than data and the distortions are higher than data. The results obtained with the revised grid were significantly improved from the original grid results. The original grid results indicated the ingested vortex migrated to the engine face and caused additional distortions to those already present due to secondary flow development. The revised grid results indicate that the ingested vortex is dissipated along the inlet duct inboard wall. The TLNS results indicate the flow at the engine face was much more distorted than the FNS results and is attributed to the pole boundary condition introducing numerical distortions into the flow field.

  8. Health woes tied to low air flow

    SciTech Connect

    Barber, J.

    1984-01-23

    Occupants in buildings with heating, ventilating, and air conditioning (HVAC) systems which limit fresh air flow may suffer a variety of illnesses because of the buildup of noxious contaminants. Building managers need to continue conservation efforts, but they should also meet the air standards set by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) which are in the process of being strengthened. Cases of building sickness caused by indoor air pollution have increased during the past decade, prompting ASHRAE to expedite the revision of its specifications.

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  10. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  11. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  12. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  14. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  15. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  16. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail; Patel, Kaushal; Coston, Calvin; Blankson, Isaiah M.

    2003-01-01

    The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. Results obtained are based on analytical methods, numerical simulations and experimental tests at the NASA LaRC and Hampton University computer complexes and experimental facilities. The main objective of this research is injection, mixing and combustion enhancement in propulsion systems. The sub-projects in the reporting period are: (A) Aero-performance and acoustics of Telescope-shaped designs. The work included a pylon set application for SCRAMJET. (B) An analysis of sharp-edged nozzle exit designs for effective fuel injection into the flow stream in air-breathing engines: triangular-round and diamond-round nozzles. (C) Measurement technique improvements for the HU Low Speed Wind Tunnel (HU LSWT) including an automatic data acquisition system and a two component (drag-lift) balance system. In addition, a course in the field of aerodynamics was developed for the teaching and training of HU students.

  17. DYNLET1: Dynamic Implicit Numerical Model of One-Dimensional Tidal Flow through Inlets

    DTIC Science & Technology

    1991-09-01

    tor)’ ), tdoiemrer il -0 Budogel Papie- -rrt Rfdro0 crn P-rJ,. C𔃾 ’~ ihn r r > 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND...MONITORING US Army Cors of r , Leers AGENCY REPORT NUMBER ",-ashi n4ton, 1)C :1314-1Ouo 11. SUPPLEMENTARY NOTES Avai[able from Natir.,nai Technicai...i rctan ce-’rve. quantitative studies o inlets rare pre orLnt.,. , :Au .c. 4I,, Ii ror its nL- lmenlsional mode lin1g of the ol’,’li’. I t ilt 5. r

  18. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  19. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  20. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  1. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  2. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H.; Gilinsky, Mikhail M.

    2001-01-01

    Three connected sub-projects were conducted under reported project. Partially, these sub-projects are directed to solving the problems conducted by the HU/FM&AL under two other NASA grants. The fundamental idea uniting these projects is to use untraditional 3D corrugated nozzle designs and additional methods for exhaust jet noise reduction without essential thrust lost and even with thrust augmentation. Such additional approaches are: (1) to add some solid, fluid, or gas mass at discrete locations to the main supersonic gas stream to minimize the negative influence of strong shock waves forming in propulsion systems; this mass addition may be accompanied by heat addition to the main stream as a result of the fuel combustion or by cooling of this stream as a result of the liquid mass evaporation and boiling; (2) to use porous or permeable nozzles and additional shells at the nozzle exit for preliminary cooling of exhaust hot jet and pressure compensation for non-design conditions (so-called continuous ejector with small mass flow rate; and (3) to propose and analyze new effective methods fuel injection into flow stream in air-breathing engines. Note that all these problems were formulated based on detailed descriptions of the main experimental facts observed at NASA Glenn Research Center. Basically, the HU/FM&AL Team has been involved in joint research with the purpose of finding theoretical explanations for experimental facts and the creation of the accurate numerical simulation technique and prediction theory for solutions for current problems in propulsion systems solved by NASA and Navy agencies. The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analysis for advanced aircraft and rocket engines. The F&AL Team uses analytical methods, numerical simulations, and possible experimental tests at the Hampton University campus. We will present some management activity

  3. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Morgan, Morris H., III; Gilinsky, Mikhail M.

    2004-01-01

    In this project on the first stage (2000-Ol), we continued to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). At the second stage (2001-03), FM&AL team concentrated its efforts on solving of problems of interest to Glenn Research Center (NASA GRC), especially in the field of propulsion system enhancement. The NASA GRC R&D Directorate and LaRC Hyper-X Program specialists in a hypersonic technology jointly with the FM&AL staff conducted research on a wide region of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines. The last year the Hampton University School of Engineering & Technology was awarded the NASA grant, for creation of the Aeropropulsion Center, and the FM&AL is a key team of the project fulfillment responsible for research in Aeropropulsion and Acoustics (Pillar I). This work is supported by joint research between the NASA GRC/ FM&AL and the Institute of Mechanics at Moscow State University (IMMSU) in Russia under a CRDF grant. The main areas of current scientific interest of the FM&AL include an investigation of the proposed and patented advanced methods for aircraft engine thrust and noise benefits. This is the main subject of our other projects, of which one is presented. The last year we concentrated our efforts to analyze three main problems: (a) new effective methods fuel injection into the flow stream in air-breathing engines; (b) new re-circulation method for mixing, heat transfer and combustion enhancement in propulsion systems and domestic industry application; (c) covexity flow The research is focused on a wide regime of problems in the propulsion field as well as in experimental testing and theoretical and numerical simulation analyses for advanced aircraft and rocket engines (see, for

  4. Preliminary Investigation of a Conical Spike Inlet in Combination with a Vertical-wedge Auxiliary Inlet at Mach Number 1.9

    NASA Technical Reports Server (NTRS)

    Beke, Andrew; Allen, John L; Williams, Thomas

    1955-01-01

    Pressure-recovery characteristics of a nacelle-type-spike inlet in combination with a vertical-wedge auxiliary scoop are presented for a free-stream Mach number of 1.9 at zero angle of attack. The auxiliary scoop provided 17 percent additional air flow with a drop in critical pressure recovery from 0.86 to 0.81. However, in terms of inlet-engine matching, the pressure recovery of the undersized spike inlet operating at a specified corrected air flow increased with the scoop open, for example, from 0.69 to 0.81.

  5. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  7. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  8. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  9. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  10. Sound radiation from a high speed axial flow fan due to the inlet turbulence quadrupole interaction

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Rosenbaum, B. M.; Albers, L. U.

    1974-01-01

    A formula is obtained for the total acoustic power spectra radiated out the front of the fan as a function of frequency. The formula involves the design parameters of the fan as well as the statistical properties of the incident turbulence. Numerical results are calculated for values of the parameters in the range of interest for quiet fans tested at the Lewis Research Center. As in the dipole analysis, when the turbulence correlation lengths become equal to the interblade spacing, the predicted spectra exhibit peaks around the blade passing frequency and its harmonics. There has recently been considerable conjecture about whether the stretching of turbulent eddies as they enter a stationary fan could result in the inlet turbulence being the dominant source of pure tones from nontranslating fans. The results of the current analysis show that, unless the turbulent eddies become quite elongated, this noise source contributes predominantly to the broadband spectrum.

  11. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  12. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  13. An experimental validation of a turbulence model for air flow in a mining chamber

    NASA Astrophysics Data System (ADS)

    Branny, M.; Karch, M.; Wodziak, W.; Jaszczur, M.; Nowak, R.; Szmyd, J. S.

    2014-08-01

    In copper mines, excavation chambers are ventilated by jet fans. A fan is installed at the inlet of the dead-end chamber, which is usually 20-30m long. The effectiveness of ventilation depends on the stream range generated by the fan. The velocity field generated by the supply air stream is fully three-dimensional and the flow is turbulent. Currently, the parameters of 3D air flows are determined using the CFD approach. This paper presents the results of experimental testing and numerical simulations of airflow in a laboratory model of a blind channel, aired by a forced ventilation system. The aim of the investigation is qualitative and quantitative verification of computer modelling data. The analysed layout is a geometrically re-scaled and simplified model of a real object. The geometrical scale of the physical model is 1:10. The model walls are smooth, the channel cross-section is rectangular. Measurements were performed for the average airflow velocity in the inlet duct equal 35.4m/s, which gives a Reynolds number of about 180 000. The components of the velocity vector were measured using the Particle Image Velocimetry approach. The numerical procedures presented in this paper use two turbulence models: the standard k-ɛ model and the Reynolds Stress model. The experimental results have been compared against the results of numerical simulations. In the investigated domain of flow - extending from the air inlet to the blind wall of the chamber - we can distinguish two zones with recirculating flows. The first, reaching a distance of about lm from the inlet is characterized by intense mixing of air. A second vortex is formed into a distance greater than lm from the inlet. Such an image of the velocity field results from both the measurements and calculations. Based on this study, we can conclude that the RSM model provides better predictions than the standard k-ɛ model. Good qualitative agreement is achieved between Reynolds Stress model predictions and measured

  14. An Experimental Investigation of NACA Submerged Inlets at High Subsonic Speeds I: Inlets Forward of the Wing Leading Edge

    NASA Technical Reports Server (NTRS)

    Hall, Charles F; Barclay, F Dorn

    1948-01-01

    This report covers the first part of an experimental investigation of NACA submerged inlets at four locations on the fuselage of a fighter airplane model for Mach numbers from 0.30 to 0.875. Data are presented showing the characteristics of the model without inlets and with inlets 16.7 percent of the root chord forward of the wing-root leading edge and equipped with small boundary-layer deflectors. The data show that variations in the mass of air entering the inlet had a large effect on the ram-recovery ratio. Representative values of ram-recovery ratio were 0.50 with zero flow, 0.90 with 0.6 mass-flow coefficient, and 0.95 with 1.00 mass-flow coefficient. Variations in Mach number and angle of attack, in general, caused less than a 0.03 variation in the ram-recovery ratio.

  15. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-01-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  16. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-10-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  17. Numerical modeling of turbulent swirling flow in a multi-inlet vortex nanoprecipitation reactor using dynamic DDES

    NASA Astrophysics Data System (ADS)

    Hill, James C.; Liu, Zhenping; Fox, Rodney O.; Passalacqua, Alberto; Olsen, Michael G.

    2015-11-01

    The multi-inlet vortex reactor (MIVR) has been developed to provide a platform for rapid mixing in the application of flash nanoprecipitation (FNP) for manufacturing functional nanoparticles. Unfortunately, commonly used RANS methods are unable to accurately model this complex swirling flow. Large eddy simulations have also been problematic, as expensive fine grids to accurately model the flow are required. These dilemmas led to the strategy of applying a Delayed Detached Eddy Simulation (DDES) method to the vortex reactor. In the current work, the turbulent swirling flow inside a scaled-up MIVR has been investigated by using a dynamic DDES model. In the DDES model, the eddy viscosity has a form similar to the Smagorinsky sub-grid viscosity in LES and allows the implementation of a dynamic procedure to determine its coefficient. The complex recirculating back flow near the reactor center has been successfully captured by using this dynamic DDES model. Moreover, the simulation results are found to agree with experimental data for mean velocity and Reynolds stresses.

  18. Effect of swirling inlet condition on the flow field in a stenosed arterial vessel model.

    PubMed

    Ha, Hojin; Lee, Sang-Joon

    2014-01-01

    Blood flow in an artery is closely related to atherosclerosis progression. Hemodynamic environments influence platelet activation, aggregation, and rupture of atherosclerotic plaque. The existence of swirling flow components in an artery is frequently observed under in vivo conditions. However, the fluid-dynamic roles of spiral flow are not fully understood to date. In this study, the spiral blood flow effect in an axisymmetric stenosis model was experimentally investigated using particle image velocimetry velocity field measurement technique and streakline flow visualization. Spiral inserts with two different helical pitches (10D and 10/3D) were installed upstream of the stenosis to induce swirling flows. Results show that the spiral flow significantly reduces the length of recirculation flow and provokes early breakout of turbulent transition, but variation of swirling intensity does not induce significant changes of turbulence intensity. The present results about the spiral flow effects through the stenosis will contribute in achieving better understanding of the hemodynamic characteristics of atherosclerosis and in discovering better diagnosis procedures and clinical treatments.

  19. Flow-induced vibrations of the SSME LOX inlet tee vanes

    NASA Technical Reports Server (NTRS)

    O'Connor, G. M.; Jones, J.

    1988-01-01

    This paper describes the results of a program initiated to identify the cause and the mechanism of 4-kHz vibrations of the Space Shuttle main engine's (SSME's) LOX inlet tee, which were revealed in 17 percent of the SSMEs during ground tests. The results of the engines' inspection, structural analyses, computational fluid dynamics studies, literature reviews, expert consultations, and laboratory testings identified the probable cause of the 4-kHz vibrations being related to the fact that the walls of some tees were thinner than in the mojority of tees, resulting in less stiff structures. The mechanism of the vibrations was identified as vortex shedding in combination with a structural coupling with the thrust cone, which increased the vane mobility, which, in turn, aggravated the fluid coupling with the thrust cone. As a result, the vane mobility was increased, aggravating the fluid coupling with the vanes. An internal modification was developed and was successfully demonstrated on an engine that had previously exhibited a 4-kHz problem.

  20. Analysis of an advanced ducted propeller subsonic inlet

    NASA Technical Reports Server (NTRS)

    Iek, Chanthy; Boldman, Donald R.; Ibrahim, Mounir

    1992-01-01

    A time marching Navier-Stokes code called PARC (PARC2D for 2-D/axisymmetric and PARC3D for 3-D flow simulations) was validated for an advanced ducted propeller (ADP) subsonic inlet. The code validation for an advanced ducted propeller (ADP) subsonic inlet. The code validation was implemented for a non-separated flow condition associated with the inlet operating at angles-of-attack of 0 and 25 degrees. The inlet test data were obtained in the 9 x 15 ft Low Speed Wind Tunnel at NASA Lewis Research Center as part of a cooperative study with Pratt and Whitney. The experimental study focused on the ADP inlet performance for take-off and approach conditions. The inlet was tested at a free stream Mach number of 0.2, at angles-of-attack between O and 35 degrees, and at a maximum propeller speed of 12,000 RPM which induced a corrected air flow rate of about 46 lb/sec based on standard day conditions. The computational grid and flow boundary conditions (BC) were based on the actual inlet geometry and the funnel flow conditions. At the propeller face, two types of BC's were applied: a mass flow BC and a fixed flow properties BC. The fixed flow properties BC was based on a combination of data obtained from the experiment and calculations using a potential flow code. Comparison of the computational results with the test data indicates that the PARC code with the propeller face fixed flow properties BC provided a better prediction of the inlet surface static pressures than the predictions when the mass flow BC was used. For an angle-of-attack of 0 degrees, the PARC2D code with the propeller face mass flow BC provided a good prediction of inlet static pressures except in the region of high pressure gradient. With the propeller face fixed flow properties BC, the PARC2D code provided a good prediction of the inlet static pressures. For an angle-of-attack of 25 degrees with the mass flow BC, the PARC3D code predicted statis pressures which deviated significantly from the test data

  1. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  2. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  3. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  4. A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows

    NASA Technical Reports Server (NTRS)

    Coakley, T. J.; Hsieh, T.

    1985-01-01

    Numerical simulation of steady and unsteady transonic diffuser flows using two different computer codes are discussed and compared with experimental data. The codes solve the Reynolds-averaged, compressible, Navier-Stokes equations using various turbulence models. One of the codes has been applied extensively to diffuser flows and uses the hybrid method of MacCormack. This code is relatively inefficient numerically. The second code, which was developed more recently, is fully implicit and is relatively efficient numerically. Simulations of steady flows using the implicit code are shown to be in good agreement with simulations using the hybrid code. Both simulations are in good agreement with experimental results. Simulations of unsteady flows using the two codes are in good qualitative agreement with each other, although the quantitative agreement is not as good as in the steady flow cases. The implicit code is shown to be eight times faster than the hybrid code for unsteady flow calculations and up to 32 times faster for steady flow calculations. Results of calculations using alternative turbulence models are also discussed.

  5. Advanced Methods for Aircraft Engine Thrust and Noise Benefits: Nozzle-Inlet Flow Analysis

    NASA Technical Reports Server (NTRS)

    Gilinsky, Mikhail; Morgan, Morris H.; Hardin, Jay C.; Mosiane, Lotlamoreng; Kaushal, Patel; Blankson, Isaiah M.

    2000-01-01

    In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines

  6. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  7. Investigation of Aerodynamic and Icing Characteristics of Water-Inertia-Separation Inlets for Turbojet Engines

    NASA Technical Reports Server (NTRS)

    VonGlahn, Uwe; Blatz, R. E.

    1950-01-01

    The results of an investigation of several internal water-inertia-separation inlets consisting of a main duct and an alternate duct designed to prevent automatically the entrance of large quantities of water into a turbojet engine in icing conditions are presented. Total-pressure losses and icing characteristics for a direct-ram inlet and the inertia-separation inlets are compared at similar aerodynamic and simulated icing conditions. Complete ice protection for inlet guide vanes could not be achieved with the inertia-separation inlets investigated. Approximately 8 percent of the volume of water entering the nacelles remained. In the air passing into the compressor inlet. Heavy alternate-duct-elbow ice formations caused by secondary inertia separation resulted in rapid total-pressure losses and decreases in mass flow. The duration in an icing condition for an inertia-separation- inlet, without local surface heating, was increased approximately four times above that for a direct-ram inlet with a compressor-inlet screen. For normal nonicing operation, the inertia-separation- inlet total-pressure losses were comparable to a direct-ram installation. The pressure losses and the circumferential uniformity of the mass flow in all the inlets were relatively independent of angle of attack. Use of an inertia-separation inlet would in most cases require a larger diameter nacelle than a direct-ram inlet in order to obtain an alternate duct sufficiently large to pass the required engine air flow at duct Mach numbers below 1.0 at the minimum area.

  8. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter....

  9. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter....

  10. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter....

  11. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter....

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter....

  13. Low speed test of the aft inlet designed for a tandem fan V/STOL nacelle

    NASA Technical Reports Server (NTRS)

    Rhoades, W. W.; Ybarra, A. H.

    1980-01-01

    An approximately .25 scale model of a Tandem Fan nacelle designed for a Type A V/STOL aircraft configuration was tested in a 10-by-10 foot wind tunnel. A 12 inch, tip driven, turbofan simulator was used to provide the suction source for the aft fan inlet. The front fan inlet was faired over for this test entry. Model variables consisted of a long aft inlet cowl, a short aft inlet cowl, a shaft simulator, blow-in door passages and diffuser vortex generators. Inlet pressure recovery, distortion, inlet angle of attack separation limits were evaluated at tunnel velocities from 0 to 240 knots, angles of attack from -10 to 40 degrees and inlet flow rates representative of throat Mach numbers of 0.1 to 0.6. High inlet performance and stable operation was verified at all design forward speed and angle of attack conditions. The short aft inlet configuration provided exceptionally high pressure recovery except at the highest combination of angle of attack and forward speed. The flow quality at the fan face was somewhat degraded by the addition of blow-in door passages to the long aft inlet configuration due to the pressure disturbances generated by the flow entering the diffuser through the auxiliary air passages.

  14. On-column polymer-imbedded graphite inlet electrode for capillary electrophoresis coupled on-line with flow injection analysis in a poly(dimethylsiloxane) interface.

    PubMed

    Samskog, Jenny; Bergström, Sara K; Jönsson, Mats; Klett, Oliver; Wetterhall, Magnus; Markides, Karin E

    2003-06-01

    A method for coupling an electrophoretic driven separation to a liquid flow, using conventional fused-silica capillaries and a soft polymeric interface is presented. A novel design of the electrode providing high voltage to the electrophoretic separation was also developed. The electrode consisted of a conductive polyimide/graphite imbedded coating immobilized onto the capillary electrophoresis (CE) column inlet. This integrated electrode gave the same separation performance as a commonly used platinum electrode. The on-column electrode also showed good electrochemical stability in chronoamperometric experiments. In addition, with this electrode design, the electrode position relative to the inlet end of the CE column will always be constant and well defined. The on-line flow injection analysis (FIA)-CE system was used with electrospray ionization (ESI)-time of flight (TOF)-mass spectrometry detection. The preparation of the PDMS (poly(dimethylsiloxane)) interface for FIA-CE is described in detail and used for initial tests of the on-column polymer-imbedded graphite inlet electrode. In this interface, a pressure-driven liquid flow, a make up CE electrolyte and a CE column inlet meet in a two-level cross (95 microm ID) in the PDMS structure, enabling independent flow characterization.

  15. Mid-section of a can-annular gas turbine engine with a radial air flow discharged from the compressor section

    DOEpatents

    Little, David A.; McQuiggan, Gerard; Wasdell, David L.

    2016-10-25

    A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).

  16. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    NASA Astrophysics Data System (ADS)

    Muszyński, Tomasz; Kozieł, Sławomir Marcin

    2016-09-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

  17. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. User's manual

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    The TranAir computer program calculates transonic flow about arbitrary configurations at subsonic, transonic, and supersonic freestream Mach numbers. TranAir solves the nonlinear full potential equations subject to a variety of boundary conditions modeling wakes, inlets, exhausts, porous walls, and impermeable surfaces. Regions with different total temperature and pressure can be represented. The user's manual describes how to run the TranAir program and its graphical support programs.

  18. Exploratory study of the effects of injection configurations and inlet flow conditions on the characteristics of flow in spherical chambers

    NASA Technical Reports Server (NTRS)

    Johnson, B. V.

    1972-01-01

    Flow visualization studies were conducted to evaluate techniques for injecting simulated-fuel and simulated-propellant gases into a spherical cavity for application to open-cycle gaseous-core nuclear rockets. Preliminary studies were conducted with six simulated-fuel injectors and eight simulated-propellant injection configurations. Additional tests were conducted with the best configuration to determine the effect of weight-flow ratio, gas density ratio, injector location, and flow distribution on the simulated-fuel containment characteristics.

  19. Experimental and Computational Investigation of Flow in a Transonic Compressor Inlet

    DTIC Science & Technology

    2005-09-01

    pressure. The calibration air pressure was set at pressures, 0 to 16 inches of mercury in 2 inches of mercury increments, and the electrical outputs... mercury converted to Pascals global Pressures_1 global analog_pressure_1 analog_pressure_1=PMD_1608FS_3_1; x=[0 2 4 6 8 10 12 14 16]’*3386.39...digital pmd1608fs_2 % First calibration. %(5/3/05) %pressure in inches of mercury converted to Pascals global Pressures_2 global

  20. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  1. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  2. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  3. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    NASA Astrophysics Data System (ADS)

    Bomela, Christian Loangola

    --o turbulence model produced a mean flow velocity profile at the middle of the annular diffuser portion that had the best overall match with the experiment. The RNG k --epsilon, however, better predicted the diffuser performance along the exhaust diffuser length by means of the pressure recovery coefficient. These results were obtained using uniform inflow conditions and steady-state simulations. As such, the last phase of our investigations involved varying the inflow parameters like the turbulence intensity, the inlet flow temperature, and the flow angularity, which constitute important characteristics of the turbine blade wake, to investigate their impact on the diffuser design and performance. These isothermal CFD simulations revealed that by changing the flow temperature from 15 to 427°C, the pressure recovery coefficient significantly increased. However, it has been shown that the increase of temperature had no effects on the size of the reversed flow region and the thickness of the separated casing boundary layer, although the flow appears to be more turbulent. Furthermore, it has been established that an optimum turbulence intensity of about 4% produced comparable diffuser performance as the experiment. We also found that a velocity angle of about 2.5° at the last turbine stage will ensure a better exhaust diffuser performance.

  4. Attic inlet technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rising fuel costs have driven development of alternative heat sources for poultry growers. Attic inlets are employed to pre-heat incoming ventilation air to reduce fuel usage. Attic temperatures are at least 10 °F warmer than the outside temperature at least 80% of the time and offers a source of...

  5. Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.

    PubMed

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G

    2012-11-02

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.

  6. Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation

    PubMed Central

    Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.

    2012-01-01

    An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189

  7. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  8. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  9. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  10. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  11. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  12. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  13. An experimental study of the effects of an inlet flow conditioner on the noise of a low speed axial flow fan

    NASA Astrophysics Data System (ADS)

    Scoles, J.; Ollerhead, J. B.

    1981-01-01

    The effects of inflow condition on the noise generated by a 40kW, 560mm diameter, seven blade ducted fan at speeds up to 5000rpm in an anechoic chamber were measured. A 1.25m diameter hemisperical honeycomb flow conditioner (HFC) which could be fitted with an internal gauze liner was used. Fan entry flow was measured by static and rotating hot-wire anemometers. Noise levels in the first few harmonics of blade passing frequency are very sensitive to inflow condition, but the HFC reduces them to a residual level independent of upstream disturbance levels. Broadband noise is reduced (by a smaller amount) at high blade angles and flow rates. No systematic effect of the gauze liner is detected. Experimental difficulties are caused by unsteadiness in the chamber airflow which causes harmonic level fluctuations with amplitudes of up to 10dB. Although the inlet flow conditioner reduces these fluctuations markedly, long term variations reduce confidence in the data.

  14. Effect of a 180 deg-extent inlet pressure distortion on the internal flow conditions of a TF30-P-3

    NASA Technical Reports Server (NTRS)

    Debogdan, C. E.; Dicus, J. H.; Evans, D. G.; Soeder, R. H.

    1975-01-01

    The measured effects of inlet pressure distortion on the internal flow temperatures and pressures of a TF30-P-3 afterburning turbofan engine are reported. Extensive inner-stage instrumentation combined with stepwise rotation of pressure distortion provided a high degree of circumferential resolution in the data. The steady-state spatial variation in pressures, temperature, and calculated flow velocity and the amplitude and extent of the distorted sectors are given. Data are presented for runs of 77 and 90 percent of low-speed-rotor design speed at pressure distortion levels two-thirds of that required to stall the engine. These data are compared with data taken at clean-inlet conditions. Results indicate that the inlet pressure distortion was quickly attenuated within the compressor, except at the hub of the low-pressure compressor. The distorted sectors also swirled and varied in extent as they passed through the engine. Average velocities within the compressor were about equal to the clean-inlet values.

  15. Experimental study of laminar flow forced-convection heat transfer in air flowing through offset plates heated by radiation heat flux

    SciTech Connect

    Ali, A.H.H.; Kishinami, Koki; Hanaoka, Yutaka; Suzuki, Jun

    1998-04-01

    An experimental study of the steady state laminar flow forced-convection heat transfer of air flowing through offset plates located between two parallel plates and heated by radiation heat flux was carried out. The ranges of parameters tested were incident radiation heat fluxes of 500, 700, and 1,000 W/m{sup 2}. With Re ranging from 650 to 2,560, the inlet air bulk temperatures changed from 18.2 to 70 C and the tilting angle of the unit with the horizontal ranged from 0 to 90{degree} respectively. The results show that the rate of the increase in the local Nusselt number was observed to be proportional with Re up to 1,900, while it became less sensitive over Re range of 1,900--2,500. Also, in this range of Re, with the inlet air temperature of 20 C, the angle of inclination of the unit has no effect on the local Nusselt number. Increasing the incident radiation heat flux in the case of higher values of Re leads to a slight decrease in the value of the local Nusselt number. The effect of the inlet air bulk temperature on the forced-convection heat transfer coefficient shows, in the case of the horizontal position, an increase in the inlet air bulk temperature leads to slight decreases in the value of the average Nusselt number, while it leads to significant decreases in the value of the average Nusselt number as the tilting angle increases up to the vertical position. This effect is clearer in the case of Re = 650 rather than Re = 2,550. This work has application to solar collectors.

  16. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  17. Gas carburizing of steel with furnace atmospheres formed In Situ from propane and air: Part II. Analysis of the characteristics of gas flow in a batch-type sealed quench furnace

    NASA Astrophysics Data System (ADS)

    Stickels, C. A.; Mack, C. M.

    1980-09-01

    Gas flow dynamics in a batch-type sealed quench carburizing furnace were studied for operations utilizing low inlet gas flow rates. By analyzing the rate of change of furnace atmosphere composition when a sudden change is made in the inlet gas composition, it is shown that a significant amount of gas circulation occurs between the hot furnace chamber and the unheated vestibule. This circulation has the effect of increasing the mean residence time of gases within the furnace. A long mean residence time is advantageous for carburizing when the inlet gases consist of an airJhydrocarbon blend rather than prereacted endothermic gas.

  18. Air flow patterns in the operating theatre.

    PubMed

    Howorth, F H

    1980-04-01

    Bacteria-carrying particles and exhaled anaesthetic gases are the two contaminants found in the air flow patterns of operating rooms. Their origin, direction and speed were illustrated by a motion picture using Schlieren photography and smoke tracers. Compared with a conventionally well air conditioned operating theatre, it was shown that a downward flow of clean air reduced the number of bacteria-carrying particles at the wound site by sixty times. The Exflow method of achieving this without the restriction of any side panels or floor obstruction was described. The total body exhaust worn by the surgical team was shown to reduce the bacteria count by a further eleven times. Clinical results show that when both these systems are used together, patient infection was reduced from 9 per cent to between 0.3 per cent and 0.5 per cent, even when no pre-operative antibiotics were used. Anaesthetic gas pollution was measured and shown to be generally 1000 p.p.m. at the head of the patient, in induction, operating and recovery rooms, also in dental and labour rooms. A high volume low pressure active scavenging system was described together with its various attachments including one specially for paediatric scavenging. Results showed a reduction of nitrous oxide pollution to between zero and 3 p.p.m. The economy and cost effectiveness of both these pollution control systems was shown to be good due to the removal of health hazards from patients and theatre staff.

  19. A novel ram-air plasma synthetic jet actuator for near space high-speed flow control

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Xia, Zhixun; Luo, Zhenbing; Wang, Lin; Deng, Xiong

    2017-04-01

    As a promising high-speed flow control technique, plasma synthetic jet actuator (PSJA) has the superiorities of requiring no moving parts or flow supplies, extremely fast response, wide frequency band and high efflux speed. However, it has limitations for application: in near space, the air in the cavity which is used to generate the puled plasma jet becomes rare, and the low refill rate often leads to insufficient recovery which limits the working frequency. In order to overcome these limitations, a novel actuator called ram-air plasma synthetic jet actuator (RPSJA) is proposed. Inspired by the ramjet, the principle of this actuator is to take advantage of the tremendous dynamic pressure of the high-speed inflow using an added ram-air inlet. Numerical investigations were conducted to demonstrate the feasibility of such an actuator. The results show that, compared with PSJA, the air in the chamber becomes denser and the refill rate is notably increased owing to the ;ram-air effect; of RPSJA. Based on the flow characteristic analysis, a revised actuator with a stepped ram-air inlet is proposed and investigated as well, and the results show that the performance is improved as the stepped height rises.

  20. Calculation of the flow field in supersonic mixed-compression inlets at angle of attack using the three-dimensional method of characteristics with discrete shock wave fitting

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1978-01-01

    The influence of molecular transport is included in the computation by treating viscous and thermal diffusion terms in the governing partial differential equations as correction terms in the method of characteristics scheme. The development of a production type computer program is reported which is capable of calculating the flow field in a variety of axisymmetric mixed-compression aircraft inlets. The results agreed well with those produced by the two-dimensional method characteristics when axisymmetric flow fields are computed. For three-dimensional flow fields, the results agree well with experimental data except in regions of high viscous interaction and boundary layer removal.

  1. Investigation of Thrust Augmentation of a 1600-pound Thrust Centrifugal-flow-type Turbojet Engine by Injection of Refrigerants at Compressor Inlets

    NASA Technical Reports Server (NTRS)

    Jones, William L.; Dowman, Harry W.

    1947-01-01

    Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.

  2. Theoretical and experimental internal flow characteristics of a 13.97-centimeter-diameter inlet at STOL takeoff and approach conditions

    NASA Technical Reports Server (NTRS)

    Albers, J. A.

    1973-01-01

    The theoretical and experimental internal flow characteristics of a 13.97-cm-diam inlet with centerbody retracted and extended are presented at STOL takeoff and approach operating conditions. The theoretical results were obtained from incompressible potential flow corrected for compressibility and boundary layer. Comparisons between theoretical internal surface static-pressure distributions and experimental data are presented for free-stream velocities of 0, 24, 32, and 45 m/sec for a range of inlet incidence angles from 0 to 50 deg. Surface static-pressure distributions are illustrated at circumferential locations of 0, 60, 120, and 180 deg. Surface Mach number distributions from the stagnation point to the diffuser exit are presented along with turbulent boundary-layer shape factors. In general, good agreement was found between the theoretical and experimental surface static pressure distributions.

  3. Aerodynamic performance of axial-flow fan stage operated at nine inlet guide vane angles. [to be used on vertical lift aircraft

    NASA Technical Reports Server (NTRS)

    Moore, R. D.; Reid, L.

    1979-01-01

    The overall performance of a fan stage with nine inlet guide vane angle settings is presented. These data were obtained over the stable flow range at speeds from 60 to 120 percent of design for vane setting angles from -25 to 42.5 degrees. At design speed and design inlet guide vane angle, the stage has a peak efficiency of 0.892 at a pressure ratio of 1.322 and a flow of 25.31 kg/s. The stall margin based on peak efficiency and stall was 20 percent. Based on an operating line passing through the peak efficiency point at the design setting angle, the useful operating range of the stage at design speed is limited by stall at the positive setting angles and by choke at the negative angles. At design the calculated static thrust along the operating line varied from 68 to 114 percent of that obtained at design setting angle.

  4. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  5. Radial inlet guide vanes for a combustor

    DOEpatents

    Zuo, Baifang; Simons, Derrick; York, William; Ziminsky, Willy S

    2013-02-12

    A combustor may include an interior flow path therethrough, a number of fuel nozzles in communication with the interior flow path, and an inlet guide vane system positioned about the interior flow path to create a swirled flow therein. The inlet guide vane system may include a number of windows positioned circumferentially around the fuel nozzles. The inlet guide vane system may also include a number of inlet guide vanes positioned circumferentially around the fuel nozzles and adjacent to the windows to create a swirled flow within the interior flow path.

  6. Experimental modeling of air blowing into a turbulent boundary layer using an external pressure flow

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    We have experimentally investigated the characteristics of an incompressible turbulent boundary layer on a plane plate upon the passive blowing of air through a fine-perforated surface and flushing it by supplying an external pressure flow through a wind tunnel using an intake device equipped with an attachment for draining the boundary layer on the inactive side of the plate. A stable decrease in the local values of the surface coefficient of friction, which reaches 80% at the end of the perforated region, has been detected over the length of the plate. The possibility of controlling surface friction by changing the velocity of the external flow and selecting the meshes and filters at the inlet to the flow passage has been demonstrated.

  7. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  8. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  9. IPAC-Inlet Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A series of analyses have been developed which permit the calculation of the performance of common inlet designs. The methods presented are useful for determining the inlet weight flows, total pressure recovery, and aerodynamic drag coefficients for given inlet geometric designs. Limited geometric input data is required to use this inlet performance prediction methodology. The analyses presented here may also be used to perform inlet preliminary design studies. The calculated inlet performance parameters may be used in subsequent engine cycle analyses or installed engine performance calculations for existing uninstalled engine data.

  10. Centrifugal pump inlet pressure site affects measurement.

    PubMed

    Augustin, Simon; Horton, Alison; Butt, Warwick; Bennett, Martin; Horton, Stephen

    2010-09-01

    During extracorporeal life support (ECLS), blood is exposed to a myriad of unphysiological factors that can affect outcome. One aspect of this is the sub-atmospheric pressure generated by the ECLS pump and imparted to blood elements along the pump inlet line. This pressure can be measured on the inlet line close to the pump head by adding a connector, or at the venous cannula connection site. We compared the two measurement sites located at both points; between the venous cannula-inlet tubing and inlet tubing-pump, with a range of cannulae and flows. We also investigated the effects on inlet pressure from pump afterload and increasing inlet tubing length.

  11. Method for Determining Optimum Injector Inlet Geometry

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P. (Inventor); Myers, W. Neill (Inventor)

    2015-01-01

    A method for determining the optimum inlet geometry of a liquid rocket engine swirl injector includes obtaining a throttleable level phase value, volume flow rate, chamber pressure, liquid propellant density, inlet injector pressure, desired target spray angle and desired target optimum delta pressure value between an inlet and a chamber for a plurality of engine stages. The method calculates the tangential inlet area for each throttleable stage. The method also uses correlation between the tangential inlet areas and delta pressure values to calculate the spring displacement and variable inlet geometry of a liquid rocket engine swirl injector.

  12. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  13. Inlet/Body Integration Preliminary Design for Supersonic Air-Breathing Missiles Using Automated Multi-Discilinary Optimization

    DTIC Science & Technology

    2000-06-01

    configuration, 33 ometry necessitate sophisticated numerical codes rameters to be d fine theigura tio and refined spatial discretizations which are...get there. The development strategy the exit location of the inlet subsonic diffuser is followed by Aerospatiale Matra Missiles and Rut- fixed. Second...approxi- Parameter Name Value mate 2- D /3- D geometrical models and low accu- 1 Missile diameter (caliber) 1 D racy physical analysis models. 2 Base diameter

  14. Fundamental Study of Direct Contact Cold Energy Release by Flowing Hot Air through Ice Particles Packed Layer

    NASA Astrophysics Data System (ADS)

    Aoyama, Sigeo; Inaba, Hideo

    This paper has dealt with the direct contact heat exchange characteristics between ice particles (average ice particle diameter : 3.10mm) packed in the rectangular cold energy storage vessel and flowing hot air as a heat transfer medium. The hot air bubbles ascended in the fluidized ice particles layer, and they were cooled down directly by melting ice particles. The temperature efficiency increased as Reynolds number Re increased because the hot air flowing in the layer became active. The dehumidity efficiency increased with an increase in modified Stefan number and Re, since the heat capacity of inlet air and heat transfer coefficient increased. Finally, some empirical correlations for temperature efficiency, dehumidity efficiency and the completion time of cold energy release were derived in terms of various nondimensional parameters.

  15. Effect of inlet ingestion of a wing tip vortex on compressor face flow and turbojet stall margin

    NASA Technical Reports Server (NTRS)

    Mitchell, G. A.

    1975-01-01

    A two-dimensional inlet was alternately mated to a coldpipe plug assembly and a J85-GE-13 turbojet engine, and placed in a Mach 0.4 stream so as to ingest the tip vortex of a forward mounted wing. Vortex properties were measured just forward of the inlet and at the compressor face. Results show that ingestion of a wing tip vortex by a turbojet engine can cause a large reduction in engine stall margin. The loss in stall compressor pressure ratio was primarily dependent on vortex location and rotational direction and not on total-pressure distortion.

  16. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  17. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  18. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  19. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  20. A comparative study of Full Navier-Stokes and Reduced Navier-Stokes analyses for separating flows within a diffusing inlet S-duct

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Reddy, D. R.; Kapoor, K.

    1993-01-01

    A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier Stokes (RNS) initial value space marching solution technique has been applied to a class of separated flow problems within a diffusing S-duct configuration characterized by vortex-liftoff. Both the FNS and the RNS solution technique were able to capture the overall flow physics of vortex lift-off, and gave remarkably similar results which agreed reasonably well with the experimental measured averaged performance parameters of engine face total pressure recovery and distortion. However, the Full Navier-Stokes and Reduced Navier-Stokes also consistently predicted separation further downstream in the M2129 inlet S-duct than was indicated by experimental data, thus compensating errors were present in the two Navier-Stokes analyses. The difficulties encountered in the Navier-Stokes separations analyses of the M2129 inlet S-duct center primarily on turbulence model issues, and these focused on two distinct but different phenomena, namely, (1) characterization of low skin friction adverse pressure gradient flows, and (2) description of the near wall behavior of flows characterized by vortex lift-off.

  1. Two-dimensional symmetrical inlets with external compression

    NASA Technical Reports Server (NTRS)

    Ruden, P

    1950-01-01

    The purpose of inlets like, for instance, those of air-cooled radiators and scoops is to take a certain air quantity out of the free stream and to partly convert the free-stream velocity into pressure. In the extreme case this pressure conversion may occur either entirely in the interior of the inlet (inlet with internal compression) or entirely in the free stream ahead of the inlet (inlet with external compression). In this report a theory for two-dimensional inlets with external compression is developed and illustrated by numerical examples. Intermediary forms between inlets with internal and external compression which can be derived from the latter are briefly discussed.

  2. An investigation of several NACA 1 series axisymmetric inlets at Mach numbers from 0.4 to 1.29. [wind tunnel tests over range of mass-flow ratios and at angle of attack

    NASA Technical Reports Server (NTRS)

    Re, R. J.

    1974-01-01

    An investigation was conducted in the Langley 16-foot transonic tunnel to determine the performance of seven inlets having NACA 1-series contours and one inlet having an elliptical contour over a range of mass-flow ratios and at angle of attack. The inlet diameter ratio varied from 0.81 to 0.89; inlet length ratio varied from 0.75 to 1.25; and internal contraction ratio varied from 1.009 to 1.093. Reynolds number based on inlet maximum diameter varied from 3.4 million at a Mach number of 0.4 to 5.6 million at a Mach number of 1.29.

  3. Inlet nozzle assembly

    DOEpatents

    Christiansen, D.W.; Karnesky, R.A.; Knight, R.C.; Precechtel, D.R.; Smith, B.G.

    1985-09-09

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  4. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  5. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  6. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  7. Solar assist and filter construction for dryer inlet

    SciTech Connect

    Commander, B.C.

    1981-07-21

    An air inlet construction for a domestic clothes dryer is described including a pair of selectively usable air inlet ports. One of the air inlet ports opens outwardly to the area immediately adjacent and exterior of the dryer and the other inlet port opens into the interior of a non-domestically heated portion of the building in which the dryer is disposed, but which portion is subject to being heated by solar energy during the daylight hours.

  8. Module bay with directed flow

    DOEpatents

    Torczynski, John R.

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  9. A comparative study of full Navier-Stokes and Reduced Navier-Stokes analyses for separating flows within a diffusing inlet S-duct

    NASA Technical Reports Server (NTRS)

    Anderson, B. H.; Reddy, D. R.; Kapoor, K.

    1993-01-01

    A three-dimensional implicit Full Navier-Stokes (FNS) analysis and a 3D Reduced Navier-Stokes (RNS) initial value space marching solution technique has been applied to a class of separate flow problems within a diffusing S-duct configuration characterized as vortex-liftoff. Both Full Navier-Stokes and Reduced Navier-Stokes solution techniques were able to capture the overall flow physics of vortex lift-off, however more consideration must be given to the development of turbulence models for the prediction of the locations of separation and reattachment. This accounts for some of the discrepancies in the prediction of the relevant inlet distortion descriptors, particularly circumferential distortion. The 3D RNS solution technique adequately described the topological structure of flow separation associated with vortex lift-off.

  10. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    NASA Technical Reports Server (NTRS)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  11. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  12. FLOW FIELD IN SUPERSONIC MIXED-COMPRESSION INLETS AT ANGLE OF ATTACK USING THE THREE DIMENSIONAL METHOD OF CHARACTERISTICS WITH DISCRETE SHOCK WAVE FITTING

    NASA Technical Reports Server (NTRS)

    Bishop, A. R.

    1994-01-01

    This computer program calculates the flow field in the supersonic portion of a mixed-compression aircraft inlet at non-zero angle of attack. This approach is based on the method of characteristics for steady three-dimensional flow. The results of this program agree with those produced by the two-dimensional method of characteristics when axisymmetric flow fields are calculated. Except in regions of high viscous interaction and boundary layer removal, the results agree well with experimental data obtained for threedimensional flow fields. The flow field in a variety of axisymmetric mixed compression inlets can be calculated using this program. The bow shock wave and the internal shock wave system are calculated using a discrete shock wave fitting procedure. The internal flow field can be calculated either with or without the discrete fitting of the internal shock wave system. The influence of molecular transport can be included in the calculation of the external flow about the forebody and in the calculation of the internal flow when internal shock waves are not discretely fitted. The viscous and thermal diffussion effects are included by treating them as correction terms in the method of characteristics procedure. Dynamic viscosity is represented by Sutherland's law and thermal conductivity is represented as a quadratic function of temperature. The thermodynamic model used is that of a thermally and calorically perfect gas. The program assumes that the cowl lip is contained in a constant plane and that the centerbody contour and cowl contour are smooth and have continuous first partial derivatives. This program cannot calculate subsonic flow, the external flow field if the bow shock wave does not exist entirely around the forebody, or the internal flow field if the bow flow field is injected into the annulus. Input to the program consists of parameters to control execution, to define the geometry, and the vehicle orientation. Output consists of a list of parameters

  13. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  14. Inlet spillage drag tests and numerical flow-field analysis at subsonic and transonic speeds of a 1/8-scale, two-dimensional, external-compression, variable-geometry, supersonic inlet configuration

    NASA Technical Reports Server (NTRS)

    Hawkins, J. E.; Kirkland, F. P.; Turner, R. L.

    1976-01-01

    Accurate spillage drag and pressure data are presented for a realistic supersonic inlet configuration. Results are compared with predictions from a finite-differencing, inviscid analysis computer procedure. The analytical technique shows good promise for the evaluation of inlet drag, but necessary refinements were identified. A detailed description of the analytical procedure is contained in the Appendix.

  15. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  16. The Effects of Air Preheat and Number of Orifices on Flow and Emissions in an RQL Mixing Section

    NASA Technical Reports Server (NTRS)

    Holdeman, James D.; Chang, Clarence T.

    2007-01-01

    This study was motivated by a goal to understand the mixing and emissions in the rich-burn/quick-mix/lean-burn (RQL) combustor scheme that has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine combustors. The study reported in this paper was a reacting jet-in-crossflow experiment at atmospheric pressure in a cylindrical duct. The jets were injected from the perimeter of the duct through round-hole orifices into a fuel-rich mainstream flow. The number of orifices investigated in this study gave over- to optimum to underpenetrating jets at a jet-to-mainstream momentum-flux ratio of 57. The size of individual orifices was decreased as their number increased to maintain a constant total area. The jet-to-mainstream mass-flow ratio was held constant at 2.5. The experiments focused on the effects of the number of orifices and inlet air preheat and were conducted in a facility that provided the capability for independent variation of jet and main inlet air preheat temperature. The number of orifices was found to have a significant effect on mixing and the distributions of species, but very little effect on overall NOx emissions, suggesting that an aerodynamically optimum mixer may not minimize NOx emissions. Air preheat was found to have very little effect on mixing and the distributions of major species, but preheat did increase NOx emissions significantly. Although the air jets injected in the quick-mix section of a RQL combustor may comprise over 70% of the total air flow, the overall NOx emission levels were found to be more sensitive to mainstream air preheat than to jet stream air preheat.

  17. Boundary conditions for unsteady supersonic inlet analyses

    NASA Astrophysics Data System (ADS)

    Mayer, David W.; Paynter, Gerald C.

    1994-06-01

    New bleed and compressor face boundary conditions have been developed to improve the accuracy of unsteady supersonic inlet calculations. The new bleed boundary conditions relate changes in the bleed hole discharge coefficient to changes in the local flow conditions; the local bleed flow rate can more than double as a shock moves forward over a bleed band in response to inlet flow disturbances. The effects of inlet flow disturbances on the flow at the compressor face are represented more realistically with this new boundary condition than with traditional fixed static pressure or mass flow conditions.

  18. Plasma control of shock wave configuration in off-design mode of M = 2 inlet

    NASA Astrophysics Data System (ADS)

    Falempin, Francois; Firsov, Alexander A.; Yarantsev, Dmitry A.; Goldfeld, Marat A.; Timofeev, Konstantin; Leonov, Sergey B.

    2015-03-01

    The objective of this work was to study the steering effect of a weakly ionized plasma on a supersonic flow structure in a two-dimensional aerodynamic configuration with a three-shock compression ramp in an off-design operational mode. Experiments were performed in wind tunnel T-313 of ITAM SB RAS, with the model air inlet designed for operation at a flow of Mach number M = 2. The inlet was tested at M = 2, 2.5, and 3 and with Re = (25-36) × 106/m and an angle of attack AoA = 0°, 5°, and 8°. For the regulation of the inlet characteristics, a plasma generator with electrical power W pl = 2-10 kW was flush-mounted upstream of the compression ramp. A significant plasma effect on the shock configuration at the inlet and on the flow parameters after air compression is considered. It is shown that the main shock wave angle is controllable by means of the plasma power magnitude and, therefore, can be accurately adjusted to the cowl lip of an inlet with a fixed geometry. An additional plasma effect has been demonstrated through a notable increase in the pressure recovery coefficient in a flowpass extension behind the inlet because of an nearly isentropic pattern of flow compression with the plasma turned on. Numerical simulation brings out the details of 3D distribution of the flow structure and parameters throughout the model at thermal energy deposition in inlet near the compression surfaces. We conclude that the plasma-based technique may be a feasible method for expanding supersonic inlet operational limits.

  19. Effects of inlet distortion on gas turbine combustion chamber exit temperature profiles

    NASA Astrophysics Data System (ADS)

    Maqsood, Omar Shahzada

    Damage to a nozzle guide vane or blade, caused by non-uniform temperature distributions at the combustion chamber exit, is deleterious to turbine performance and can lead to expensive and time consuming overhaul and repair. A test rig was designed and constructed for the Allison 250-C20B combustion chamber to investigate the effects of inlet air distortion on the combustion chamber's exit temperature fields. The rig made use of the engine's diffuser tubes, combustion case, combustion liner, and first stage nozzle guide vane shield. Rig operating conditions simulated engine cruise conditions, matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either side. An even distribution of inlet air to the combustion chamber did not create a uniform temperature profile and varying the inlet distribution of air exacerbated the profile's non-uniformity. The design of the combustion liner promoted the formation of an oval-shaped toroidal vortex inside the chamber, creating localized hot and cool sections separated by 90° that appeared in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most mass flow rate and decreasing the temperature of the hot section on the opposite side. Keywords: Allison 250, Combustion, Dual-Entry, Exit Temperature Profile, Gas Turbine, Pattern Factor, Reverse Flow.

  20. 40 CFR 1066.630 - PDP, SSV, and CFV flow rate calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.630 PDP, SSV, and CFV flow rate....15 K. p in = static absolute pressure at the PDP inlet. T in = absolute temperature at the PDP inlet... cross-sectional area. R = molar gas constant. p in = static absolute pressure at the venturi inlet....

  1. Afterburner performance of film-vaporizing V-gutters for inlet temperatures up to 1255 K

    NASA Technical Reports Server (NTRS)

    Branstetter, J. R.; Reck, G. M.

    1973-01-01

    Combustion tests of five variations of an integral, spray-bar - flameholder combination were conducted in a 0.49-m-diameter duct. Emphasis was on low levels of augmentation. Fuel impinged on guide plates, mixed with a controlled amount of inlet air, vaporized, and was guided into the V-gutter wake. Combustor length was 0.92 m. Good performance was demonstrated at fuel-air ratios less than 0.025 for inlet temperatures of 920 to 1255 K. Maximum combustion efficiency occured in the vicinity of fuel-air ratios of 0.02 and was 92 to 100 percent, depending on the inlet temperature. Lean blowout fuel-air ratios were in the vicinity of 0.005. Improvements in rich-limit blowout resulted from enlarging the guide-flow passageway areas. Other means of extending the operating range are suggested. A simplified afterburner concept for application to advanced engines is described.

  2. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT. Fifteenth quarterly report, 14 February 1994--13 May 1994

    SciTech Connect

    Miller, J.D.

    1994-08-10

    During this quarter of the DOE project, ``Characterization of Multiphase Fluid Flow During Air-Sparged Hydrocyclone Flotation``, the x-ray CT measurements were correlated with the results from the flotation experiments reported in the 13th quarterly report. In this regard the axial view of the flow regimes in the ASH during steady state operation were constructed from the radial density profiles as revealed by x-ray CT measurements. Construction of the axial view of the flow regimes was explained in the last quarterly report. By studying the characteristics of the flow regimes from these axial views and relating them with flotation recovery data, a phenomenological description of ASH flotation was possible. The effect of two operating variables, inlet pressure and dimensionless flow rate ratio (A* = air flow rate/slurry flow rate), are reported in this quarterly report.

  3. Performance Characteristics of an Axial-flow Transonic Compressor Operating up to Tip Relative Inlet Mach Number of 1.34

    NASA Technical Reports Server (NTRS)

    Creagh, John W R

    1956-01-01

    Performance data are presented for a transonic axial-flow compressor rotor designed to operate at a tip speed of 1300 ft/sec with maximum relative tip Mach number of 1.37. The compressor had an inlet diameter of 16 inches, a hub-tip diameter ratio of 0.5 and design specific weight flow of 31.1 (lb/sec/(sq ft frontal area). Experimental values of relative total-pressure-loss coefficient were considerably higher than the assumed values. This disparity, hub choking, and application of the simple radial-equilibrium concept are discussed. The data of this report are used to extend previously presented correlation plots of compressor design parameters to higher Mach numbers.

  4. Numerical solutions of Navier-Stokes equations for compressible turbulent two/three dimensional flows in terminal shock region of an inlet/diffuser

    NASA Technical Reports Server (NTRS)

    Liu, N. S.; Shamroth, S. J.; Mcdonald, H.

    1983-01-01

    The multidimensional ensemble averaged compressible time dependent Navier Stokes equations in conjunction with mixing length turbulence model and shock capturing technique were used to study the terminal shock type of flows in various flight regimes occurring in a diffuser/inlet model. The numerical scheme for solving the governing equations is based on a linearized block implicit approach and the following high Reynolds number calculations were carried out: (1) 2 D, steady, subsonic; (2) 2 D, steady, transonic with normal shock; (3) 2 D, steady, supersonic with terminal shock; (4) 2 D, transient process of shock development and (5) 3 D, steady, transonic with normal shock. The numerical results obtained for the 2 D and 3 D transonic shocked flows were compared with corresponding experimental data; the calculated wall static pressure distributions agree well with the measured data.

  5. Scramjet Inlets

    DTIC Science & Technology

    2010-09-01

    integration et gestion thermique) 14. ABSTRACT The supersonic combustion ramjet, or scramjet, is the engine cycle most suitable for sustained...and the stream thrust of the flow exiting the engine. The flow enters the engine at ambient conditions and at the flight velocity, so calculation of

  6. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    NASA Astrophysics Data System (ADS)

    Katunská, Jana; Bullová, Iveta; Špaková, Miroslava

    2016-12-01

    The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now), by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  7. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  8. Inlet Housing for a Partial-Admission Turbine

    NASA Technical Reports Server (NTRS)

    Moye, Ralph; Myers, William; Baker, Kevin

    2004-01-01

    An inlet housing for a partial-admission turbine has been designed to cause the inlet airflow to make a smooth transition from an open circular inlet to an inlet slot. The smooth flow is required for purposes of measuring inlet flow characteristics and maximizing the efficiency of the turbine. A partial-admission turbine is a turbine in which the inlet slot occupies less than a complete circle around the rotor axis. In this case, the inlet slot occupies a 90 arc. The present special inlet-housing design is needed because the "bull nose" shape of a conventional turbine inlet housing fails to provide the required smooth transition in a partial-admission configuration and thereby gives rise to a loss of turbine efficiency and inaccuracies in inlet flow measurements. Upon entering the inlet housing through the circular opening, the flow encounters a "tongue"-shaped passageway, which serves as a ramp that diverts the flow to the first of two straight passages. This first passageway occupies a 90 arc and has a length equal to two passage heights. Instrumentation rakes for measuring the characteristics of the inlet flow are installed in this passageway. Just past the first straight passageway is the second one, which is narrower and leads to the 90 turbine inlet slot. This passageway is used to smooth the flow immediately prior to its passage through the turbine inlet slot. The length of this second passageway equals the length of the chord of a turbine vane. The inlet housing incorporates small ports for measuring static pressures at various locations of the flow, and incorporates bosses for the installation of the instrumentation rakes. The inlet housing also includes a flange at its inlet end for attachment to a circular inlet duct and a flange at its outlet end for attachment to the outer casing of the turbine.

  9. Experimental study on the inlet fogging system using two-fluid nozzles

    NASA Astrophysics Data System (ADS)

    Suryan, Abhilash; Kim, Dong Sun; Kim, Heuy Dong

    2010-04-01

    Large-capacity compressors in industrial plants and the compressors in gas turbine engines consume a considerable amount of power. The compression work is a strong function of the ambient air temperature. This increase in compression work presents a significant problem to utilities, generators and power producers when electric demands are high during the hot months. In many petrochemical process industries and gas turbine engines, the increase in compression work curtails plant output, demanding more electric power to drive the system. One way to counter this problem is to directly cool the inlet air. Inlet fogging is a popular means of cooling the inlet air to air compressors. In the present study, experiments have been performed to investigate the suitability of two-fluid nozzle for inlet fogging. Compressed air is used as the driving working gas for two-fluid nozzle and water at ambient conditions is dragged into the high-speed air jet, thus enabling the entrained water to be atomized in a very short distance from the exit of the two-fluid nozzle. The air supply pressure is varied between 2.0 and 5.0 bar and the water flow rate entrained is measured. The flow visualization and temperature and relative humidity measurements are carried out to specify the fogging characteristics of the two-fluid nozzle.

  10. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  11. 49 CFR 179.200-16 - Gauging devices, top loading and unloading devices, venting and air inlet devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Gauging devices, top loading and unloading devices... DOT-111AW and 115AW) § 179.200-16 Gauging devices, top loading and unloading devices, venting and air...). In no case shall the wall thickness be less than that specified in § 179.201-1. (f) When top...

  12. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  13. Analytical prediction of the performance and stability of a J85-13 compressor with distorted inlet flow

    NASA Technical Reports Server (NTRS)

    Milner, E. J.

    1977-01-01

    The parallel compressor concept was studied using a compressor model based on the overall clean-inlet performance map obtained from experimental tests in an altitude chamber using a General Electric J85-13 turbojet engine. The model, which includes a static-pressure balance calculation at compressor discharge, was exercised at conditions corresponding to 10 different screen-induced distortion patterns included in the experimental data base. The spoiled area of these patterns ranged from 30 deg to 180 deg, and the distortion screen density, or the area blocked by the screen wire per unit area of screen, varied from 26 to 69 percent. The study indicates that at the higher corrected speeds, the analytical surge lines obtained are good representations of the corresponding experimental surge lines and are independent of distortion angle or distortion angle or distortion level.

  14. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    NASA Technical Reports Server (NTRS)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  15. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  16. Internal Shock Interactions in Propulsion/Airframe Integrated Three-Dimensional Sidewall Compression Scramjet Inlets

    NASA Technical Reports Server (NTRS)

    Holland, Scott D.; Perkins, John N.

    1992-01-01

    The advantages and design requirements of propulsion/airframe integration for high Mach number flight have led to extensive study of the three-dimensional sidewall compression scramjet inlet in recent years. Recent research publications have indicated testing over a broad range of Mach number (2 to 18) in a variety of test gases, such as air, helium, and tetrafluoromethane. Multiple experimental techniques have been employed to obtain detailed internal shock interaction data, performance data, and inlet starting limits. Computational fluid dynamics has been effectively used for preliminary parametric studies as well as in parallel with experiments to aid in the explanation of unusual or unexpected flow phenomena. Inlets of this genre afford a relatively simple, generic geometry while producing a highly complex, three-dimensional flow field dominated by shock/shock and shock/boundary layer interactions. While the importance of the viscous effects in high speed inlet interactions is recognized, the present work addresses in a parametric fashion the inviscid effects of leading edge sweep, sidewall compression, and inflow Mach number on the internal shock structure in terms of inlet compression and mass capture. In the process, the source of the of the Mach number invariance with leading edge sweep for a constant sidewall compression class of inlet is identified, and a previously undocumented spillage phenomenon in a constant effective wedge angle class of inlets is discussed.

  17. The Origin of Inlet Buzz in a Mach 1.7 Low Boom Inlet Design

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Weir, Lois

    2014-01-01

    Supersonic inlets with external compression, having a good level performance at the critical operating point, exhibit a marked instability of the flow in some subcritical operation below a critical value of the capture mass flow ratio. This takes the form of severe oscillations of the shock system, commonly known as "buzz". The underlying purpose of this study is to indicate how Detached Eddy Simulation (DES) analysis of supersonic inlets will alter how we envision unsteady inlet aerodynamics, particularly inlet buzz. Presented in this paper is a discussion regarding the physical explanation underlying inlet buzz as indicated by DES analysis. It is the normal shock wave boundary layer separation along the spike surface which reduces the capture mass flow that is the controlling mechanism which determines the onset of inlet buzz, and it is the aerodynamic characteristics of a choked nozzle that provide the feedback mechanism that sustains the buzz cycle by imposing a fixed mean corrected inlet weight flow. Comparisons between the DES analysis of the Lockheed Martin Corporation (LMCO) N+2 inlet and schlieren photographs taken during the test of the Gulfstream Large Scale Low Boom (LSLB) inlet in the NASA 8x6 ft. Supersonic Wind Tunnel (SWT) show a strong similarity both in turbulent flow field structure and shock wave formation during the buzz cycle. This demonstrates the value of DES analysis for the design and understanding of supersonic inlets.

  18. Boundary conditions for unsteady supersonic inlet analyses

    NASA Astrophysics Data System (ADS)

    Mayer, David W.; Paynter, Gerald C.

    1994-06-01

    New bleed and compresor face boundary conditions have been developed to improve the accuracy of unsteady supersonic inlet calculations. The new bleed boundary condition relates changes in the bleed hole discharge coefficient to change the local flow conditions; the local bleed flow rate can more than double as a shock moves forward over a bleed band in response to inlet flow disturbances. The stability margin of the inlet is strongly dependent on the throat bleed configuration since the locally rapid increase in bleed flow has a stong effect on the motion of the normal shock. The new compressor face boundary condition accounts for changes in the unsteady flow conditions at the compressor face by specifying the compressor face corrected mass flow or Mach number either as a constant or as a linear function of the stagnation conditions. The effects of inlet flow disturbances on the flow at the compressor face are represented more realistically with this new boundary condition than with traditional fixed static pressure or mass flow conditions. Euler calculations of the dynamic response of an inlet flow to a flow disturbance at the compressor face with 20- and 90-deg throat bleed hole angles are reported. These results indicate that an extra margin of stability for the inlet is obtained with 90-deg bleed holes because the increase in bleed flow rate as the shock moves forward over a bleed is much larger for 90-deg holes than for 20-deg holes.

  19. Inlet Geomorphology Evolution

    DTIC Science & Technology

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  20. Experimental determination of the boundary layer at air-sample inlet positions on the NASA CV 990 aircraft

    NASA Technical Reports Server (NTRS)

    Bowen, S. W.; Vedder, J. F.; Condon, E. P.

    1984-01-01

    Full-scale, in-flight measurements of the boundary-layer thickness, velocity profile, and flow angle have been made at several sample collection stations on the fuselage of the NASA CV 990. These results are given as functions of Mach number, Reynolds number, yaw, and angle of attack.

  1. Aeroacoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.

    1977-01-01

    A low speed wind tunnel test demonstrated the aerodynamic and acoustic performance of a scoop inlet. Engine noise is directed upward by the extended lower lip of the scoop inlet. In addition, more of the scoop airflow comes in from above the inlet than below, leading to relatively higher surface velocities on the upper lip and lower surface velocities on the lower lip. These lower velocities on the lower lip result in a higher attainable angle of attack before internal flow separation occurs.

  2. Waves, Currents, & Bathymetric Evolution Near Inlets

    DTIC Science & Technology

    2013-09-30

    Jessup , A., R. Holman, C. Chickadel, S. Elgar; G. Farquharson, M . Haller, A. Kurapov, T. Özkan- Haller, B. Raubenheimer, J. Thomson, DARLA: Data...remotely sensed observations ( Jessup et al. 2012). Figure 1. Array of in situ wave and current sensors (white circles) deployed at New River...the inlet channel in depths from 1 to 10 m ]. (ii) Katama Inlet A numerical model for the water levels and flows in a two-inlet system was developed

  3. Axial flow reversal and its significance in air-sparged hydrocyclone (ASH) flotation

    SciTech Connect

    Miller, J.D.; Das, A.; Yin, D.

    1995-12-31

    In recent years the potential of air-sparged hydrocyclone (ASH) flotation for fine coal cleaning has been demonstrated both in pilot plant testing and in a plant-site demonstration program. Further improvements in the ASH technology will depend, to some extent, on improved understanding of the complex multiphase fluid flow. Froth transport plays a very important role in determining the efficiency of fine coal cleaning by ASH flotation. It should be noted that the surface of zero axial velocity is of particular significance in froth transport because the location of this surface actually accounts for the amount of froth being transported to the overflow. In this regard, the axial flow reversal has been examined based on specially designed tracer experiments. On the basis of these experimental results, modeling efforts were made to characterize the flow pattern in the ASH. The theoretical predictions based on turbulent fluid dynamic considerations were found to describe experimental observations regarding the surface of zero axial velocity. These results that define the surface of zero axial velocity together with froth phase features established from X-ray CT measurements provide an excellent description of the flow characteristics in ASH flotation and explain the effect of various process variables, such as dimensionless area (A*), dimensionless flowrate (Q*), inlet pressure, percent solids, etc., on flotation recovery. On this basis it is expected that further advances in the design and operation of the ASH system can be made, leading to more efficient use of the ASH technology for fine coal cleaning.

  4. A Study of Air Flow in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1939-01-01

    A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.

  5. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  6. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  7. Inlet Engineering Toolbox

    DTIC Science & Technology

    2014-10-31

    ADDRESS(ES) U.S. Army Engineer Research and Development Center,CIRP - The Coastal Inlets Research Program,3909 Halls Ferry Road,Vicksburg,MS,39180... Coastal Inlets Research Program Inlet Engineering Toolbox The Inlet Engineering Toolbox (IET) Work Unit develops desktop PC and web-based tools to...aid in studies of the consequences of engineering actions at coastal inlets and adjacent beaches. District scientists and engineers need rapid

  8. Investigation of High-Subsonic Performance Characteristics of a 12 Degree 21-Inch Conical Diffuser, Including the Effects of Change in Inlet-Boundary-Layer Thickness

    NASA Technical Reports Server (NTRS)

    Copp, Martin R.; Klevatt, Paul L.

    1950-01-01

    Investigations were conducted of a 12 degree 21-inch conical diffuser of 2:l area ratio to determine the interrelation of boundary layer growth and performance characteristics. surveys were made of inlet and exit from, longitudinal static pressures were recorded, and velocity profiles were obtained through an inlet Reynolds number range, determined From mass flows and based on inlet diameter of 1.45 x 10(exp 6) to 7.45 x 10(exp 6) and a Mach number range of 0.11 to approximately choking. These investigations were made to two thicknesses of inlet boundary layer. The mean value, over the entire range of inlet velocities, of the displacement thickness of the thinner inlet boundary layer was approximately 0.035 inch and that of the thicker inlet boundary layer was approximately six times this value. The loss coefficient in the case of the thinner inlet boundary layer had a value between 2 to 3 percent of the inlet impact pressure over most of the air-flow range. The loss coefficient with the thicker inlet boundary layer was of the order of twice that of the thinner inlet boundary layer at low speeds and approximately three times at high speeds. In both cases the values were substantially less than those given in the literature for fully developed pipe flow. The static-pressure rise for the thinner inlet boundary layer was of the order of 95 percent of that theoretically possible over the entire speed range. For the thicker inlet boundary layer the static pressure rise, as a percentage of that theoretically possible, ranged from 82 percent at low speeds to 68 percent at high speeds.

  9. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  10. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  11. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  12. Multiducted Inlet Combustor Research and Development.

    DTIC Science & Technology

    1982-10-01

    qualitative data from the multi-ducted inlet combustor configuration for flow analysis and matematical modeling purposes. The major portion of the support...data on multi-ducted inlet combustor configurations. These efforts will provide the information necessary to perform flow field analysis and aid in the...instrumentation, test program, data reduction, data presentation, flow field analysis and math modelling efforts, and conclusions and recommendations. SECTION 2

  13. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of fuel, inlet air, and... batch-sampled concentrations. (iii) For calculating the dilution air flow for background correction...

  14. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of fuel, inlet air, and... batch-sampled concentrations. (iii) For calculating the dilution air flow for background correction...

  15. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter. (a) Application. You may use fuel flow in combination with a chemical balance of fuel, inlet air, and... batch-sampled concentrations. (iii) For calculating the dilution air flow for background correction...

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  18. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  19. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  20. Correlation and analysis of oil flow data for an air-breathing missile model

    NASA Technical Reports Server (NTRS)

    Stoy, S. L.; Dillon, J. L.; Roman, A. P.

    1985-01-01

    This paper will present the results of an oil flow investigation on an airbreathing missile model. This oil flow study examined the flow around the model, which can be configured with both axisymmetric and two-dimensional inlets. Flow visualization analyses were conducted for both types of geometries by examining the surface flow patterns made visible by the oil flows for Mach numbers of 2.5 and 3.95. The analysis has shown the extent of flow spillage around the inlet which has helped explain the force and moment data collected during previous testing of the model. The oil flow data has also been used to develop guidelines for modeling the location of the crossflow separation line along inlet fairings. Finally, the oil flow analysis has been used to identify unique features of the boattail flow. These boattail flow characteristics have been correlated with previous oil flow analysis of noncircular body models. This paper demonstrates the use of this type of oil flow analysis in developing missile flow field analysis and aerodynamic predictions ranging from impact angle methods through Navier-Stokes methods.

  1. Wave and Wind Effects on Inlet Circulation

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.; Wargula, A.; Orescanin, M. M.; Hopkins, J.; Elgar, S.

    2014-12-01

    Observations and numerical simulations of the water circulation and morphological change in two separate, well-mixed inlets will be compared with each other. Tides, winds, waves, and currents were measured from May 1 to 28, 2012 in and near New River Inlet, NC. Offshore significant wave heights were 0 to 3 m, and wind speeds ranged from 0 to 16 m/s. The long, narrow inlet is about 1000 m wide where it opens onto the ebb shoal, narrows to 100 m wide about 1000 m inland, and connects to the Intracoastal Waterway (which connects to additional ocean inlets about 12 and 36 km north and south, respectively) about 3000 m inland. Tides in the inlet are progressive and inlet flows are in phase with water depths. Measurements also were collected during the summers of 2011-2014, including during Hurricanes Irene and Sandy (offshore significant wave heights > 5 m and winds > 15 m/s), in Katama Bay, MA, which connects to Vineyard Sound via Edgartown Channel and to the Atlantic Ocean via Katama Inlet. During this period, Katama Inlet migrated east about 1000 m, narrowed from 400 to 100 m wide, changed depth from 7 to 2 m, and lengthened from 200 to 1000 m. Tidal flows in Katama Inlet are forced by sea level gradients resulting from the 3-hr phase lag between tides in Vineyard Sound and the Atlantic Ocean. Analyses of the momentum balances suggest that waves drive flows into the mouths of the inlets during storms. The timing of the storms relative to ebb and flood, and wind effects, may affect the discharge and sediment transport through the inlet. Winds and waves also drive alongshore flows on the ebb shoals. Lateral flows at bends in New River Inlet, which may be important to the along-inlet transfer of momentum and to mixing, are affected by winds. The importance of connections to additional inlets in multi-inlet systems will be discussed. Funded by ONR, ASD(R&E), NSF, Sea Grant, and NDSEG.

  2. STUDY PROGRAM FOR TURBO-COOLER FOR PRODUCING ENGINE COOLING AIR.

    DTIC Science & Technology

    VANES , STAGNATION POINT, DECELERATION, ACCELERATION, SUPERSONIC DIFFUSERS, TURBINE BLADES , EVAPOTRANSPIRATION, LIQUID COOLED, HEAT TRANSFER, GAS BEARINGS, SEALS...HYPERSONIC AIRCRAFT , COOLING + VENTILATING EQUIPMENT), (*GAS TURBINES , COOLING + VENTILATING EQUIPMENT), HYPERSONIC FLOW, AIR COOLED, AIRCRAFT ... ENGINES , FEASIBILITY STUDIES, PRESSURE, SUPERSONIC CHARACTERISTICS, DESIGN, HEAT EXCHANGERS, COOLING (U) AXIAL FLOW TURBINES , DUCT INLETS, INLET GUIDE

  3. Inlet flow distortion in turbomachinery. I - Comparison of theory and experiment in a transonic fan stage. II - A parameter study

    NASA Technical Reports Server (NTRS)

    Seidel, B. S.; Matwey, M. D.; Adamczyk, J. J.

    1980-01-01

    In the present paper, a semi-actuator-disk theory is reviewed that was developed previously for the distorted inflow to a single-stage axial-flow compressor. Flow distortion occurs far upstream; it may be a distortion in stagnation temperature, stagnation pressure, or both. Losses, quasi-steady deviation angles, and reference incidence correlations are included in the analysis, and both subsonic and transonic relative Mach numbers are considered. The theory is compared with measurements made in a transonic fan stage, and a parameter study is carried out to determine the influence of solidity on the attenuation of distortions in stagnation pressure and stagnation temperature.

  4. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    NASA Astrophysics Data System (ADS)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  5. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  6. Wind- and Tide-Driven Cross-Inlet Circulation at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The importance of cross-channel wind forcing to inlet circulation is examined using observations of winds, waves, water levels, and currents collected in and near New River Inlet, NC during May 2012. Although the direct effect of local wind forcing may be neglected in the subtidal along-inlet momentum balance, which is dominated by the pressure gradient, wave radiation stress gradient, and bottom friction, cross-inlet winds may have a significant effect on along-inlet dynamics by driving cross-inlet flows (approximately 0.1 to 0.3 m/s), which can mix lateral and vertical gradients in momentum and water properties. New River Inlet is 1000 m wide at the mouth and tapers to 100 m wide about 1000 m away from the mouth after two sharp 90° bends. Five colocated pressure gages and current profilers were deployed from the shallow (2-3 m water depth) ebb shoal outside the mouth through the deep (5-10 m depth) inlet channel to 200 m beyond the first 90° bend. The inlet is well mixed, and along-inlet tidal currents ranged from +/- 1.5 m/s, offshore significant wave heights from 0.5 to 2.5 m, and wind speeds from 0 to 16 m/s. Time series of currents and winds were lowpass-filtered to examine subtidal wind effects. At the first 90° bend, both surface and bottom cross-inlet flows were correlated (r2 = 0.6) with cross-inlet wind velocity. On the shallow ebb shoal, the cross-inlet flows also were correlated with cross-inlet wind velocity (r2 = 0.6). Cross-inlet flows exhibited a two-layer response to the wind inside the inlet and a depth-uniform response outside the mouth. The observations will be used to examine the momentum balance governing temporal and spatial variations in cross-inlet wind effects on inlet circulation. Funding provided by the Office of Naval Research, the Assistant Secretary of Defense for Research and Engineering, and a National Defense Science and Engineering Graduate Fellowship.

  7. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  8. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  9. Coastal Inlets Research Program

    DTIC Science & Technology

    2015-02-09

    FEB 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Coastal Inlets Research Program 5a. CONTRACT NUMBER...S) AND ADDRESS(ES) U.S. Army Engineer Research and Development Center,CIRP - The Coastal Inlets Research Program,3909 Halls Ferry Road,Vicksburg,MS...CIRP.aspx Coastal Inlets Research Program The Coastal Inlets Research Program (CIRP) is a R&D Program funded through the Operations & Maintenance

  10. Effect of inlet disturbances on fan inlet noise during a static test

    NASA Technical Reports Server (NTRS)

    Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.

    1977-01-01

    Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.

  11. Measurements of average heat-transfer and friction coefficients for subsonic flow of air in smooth tubes at high surface and fluid temperatures

    NASA Technical Reports Server (NTRS)

    Humble, Leroy V; Lowdermilk, Warren H; Desmon, Leland G

    1951-01-01

    An investigation of forced-convection heat transfer and associated pressure drops was conducted with air flowing through smooth tubes for an over-all range of surface temperature from 535 degrees to 3050 degrees r, inlet-air temperature from 535 degrees to 1500 degrees r, Reynolds number up to 500,000, exit Mach number up to 1, heat flux up to 150,000 btu per hour per square foot, length-diameter ratio from 30 to 120, and three entrance configurations. Most of the data are for heat addition to the air; a few results are included for cooling of the air. The over-all range of surface-to-air temperature ratio was from 0.46 to 3.5.

  12. Curved centerline air intake for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Ruehr, W. C.; Younghans, J. L.; Smith, E. B. (Inventor)

    1980-01-01

    An inlet for a gas turbine engine was disposed about a curved centerline for the purpose of accepting intake air that is flowing at an angle to engine centerline and progressively turning that intake airflow along a curved path into alignment with the engine. This curved inlet is intended for use in under the wing locations and similar regions where airflow direction is altered by aerodynamic characteristics of the airplane. By curving the inlet, aerodynamic loss and acoustic generation and emission are decreased.

  13. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  14. Thermohydraulic analysis of the cooling air flow in a rack

    NASA Astrophysics Data System (ADS)

    Natusch, Andreas; Huchler, Markus

    Manned space laboratories like the US Space Station Freedom or the European COLUMBUS APM are equipped with so-called racks for subsystem and payload accommodation. An important resource is air for cooling the unit internal heat sources, the avionics air. Each unit inside the rack must be supplied with sufficient amount of air to cool down the unit to the allowable maximum temperature. In the course of the COLUMBUS Environmental Control and Life Support Subsystem (ECLSS) project, a thermohydraulic mathematical model (THMM) of a representative COLUMBUS rack was developed to analyze and optimize the distribution of avionic air inside this rack. A sensitivity and accuracy study was performed to determine the accuracy range of the calculated avionics flow rate distribution to the units. These calculations were then compared to measurement results gained in a rack airflow distribution test, which was performed with an equipped COLUMBUS subsystem rack to show the pressure distribution inside the rack. In addition to that cold flow study, the influence of the avionics air heating due to the unit dissipations on the airflow distribution and the cooling tenmperature was investigated in a detailed warm flow analysis.

  15. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  16. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  17. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  18. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  19. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Astrophysics Data System (ADS)

    So, R. M. C.; Ahmed, S. A.

    1984-04-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  20. Pressure compensated flow control valve

    DOEpatents

    Minteer, Daniel J.

    1999-01-01

    The invention is an air flow control valve which is capable of maintaining a constant flow at the outlet despite changes in the inlet or outlet pressure. The device consists of a shell assembly with an inlet chamber and outlet chamber separated by a separation plate. The chambers are connected by an orifice. Also located within the inlet chamber is a port controller assembly. The port controller assembly consists of a differential pressure plate and port cap affixed thereon. The cap is able to slide in and out of the orifice separating the inlet and outlet chambers. When the pressure differential is sufficient, the differential pressure plate rises or falls to maintain a constant air flow. Movement of the port controller assembly does not require the use of seals, diaphragms, tight tolerances, bushings, bearings, hinges, guides, or lubricants.

  1. Optimal Micro-Scale Secondary Flow Control for the Management of High Cycle Fatigue and Distortion in Compact Inlet Diffusers

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Keller, Dennis J.

    2002-01-01

    The purpose of this study on micro-scale secondary flow control (MSFC) is to study the aerodynamic behavior of micro-vane effectors through their factor (i.e., the design variable) interactions and to demonstrate how these statistical interactions, when brought together in an optimal manner, determine design robustness. The term micro-scale indicates the vane effectors are small in comparison to the local boundary layer height. Robustness in this situation means that it is possible to design fixed MSFC robust installation (i.e.. open loop) which operates well over the range of mission variables and is only marginally different from adaptive (i.e., closed loop) installation design, which would require a control system. The inherent robustness of MSFC micro-vane effector installation designs comes about because of their natural aerodynamic characteristics and the manner in which these characteristics are brought together in an optimal manner through a structured Response Surface Methodology design process.

  2. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  3. Thermal Analysis on Mono-Block Type Divertor Based on Subcooled Flow Boiling Critical Heat Flux Data against Inlet Subcooling in Short Vertical Tube

    NASA Astrophysics Data System (ADS)

    Hata, Koichi; Shiotsu, Masahiro; Noda, Nobuaki

    The subcooled flow boiling critical heat fluxes (CHFs) and the heat transfer coefficients (HTCs) data for the tube length, L, of 49, 99 and 149 mm with 9-mm inner diameter were applied to thermal analysis on the Mono-block type divertor of LHD. Incident CHFs for the divertor with the cooling tube diameter, d, of 10 mm and the carbon armor outer diameter, D, of 26 and 33 mm were numerically analyzed based on the measured CHFs and HTCs at the inlet pressure of around 800 kPa. The numerical solutions were also compared with those for the Flat-plate type divertor, which were numerically analyzed for the divertor with the cooling tube diameter d=10 mm and the divertor width, w, ranging from 16 to 30 mm. It is confirmed that the ratio of the one-side heating CHF data, qcr,inc, to the uniform heating CHF data, qcr,sub, can be represented as the simple equation based on the numerical solutions. The values of the qcr,inc for L=50, 100 and 150 mm were estimated with various D/d and w/d at higher pressures.

  4. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  5. Preliminary Results of the Determination of Inlet-Pressure Distortion Effects on Compressor Stall and Altitude Operating Limits of the J57-P-1 Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Wallner, L. E.; Lubick, R. J.; Chelko, L. J.

    1955-01-01

    During an investigation of the J57-P-1 turbojet engine in the Lewis altitude wind tunnel, effects of inlet-flow distortion on engine stall characteristics and operating limits were determined. In addition to a uniform inlet-flow profile, the inlet-pressure distortions imposed included two radial, two circumferential, and one combined radial-circumferential profile. Data were obtained over a range of compressor speeds at an altitude of 50,000 and a flight Mach number of 0.8; in addition, the high- and low-speed engine operating limits were investigated up to the maximum operable altitude. The effect of changing the compressor bleed position on the stall and operating limits was determined for one of the inlet distortions. The circumferential distortions lowered the compressor stall pressure ratios; this resulted in less fuel-flow margin between steady-state operation and compressor stall. Consequently, the altitude operating Limits with circumferential distortions were reduced compared with the uniform inlet profile. Radial inlet-pressure distortions increased the pressure ratio required for compressor stall over that obtained with uniform inlet flow; this resulted in higher altitude operating limits. Likewise, the stall-limit fuel flows required with the radial inlet-pressure distortions were considerably higher than those obtained with the uniform inlet-pressure profile. A combined radial-circumferential inlet distortion had effects on the engine similar to the circumferential distortion. Bleeding air between the two compressors eliminated the low-speed stall limit and thus permitted higher altitude operation than was possible without compressor bleed.

  6. Influence of combustion-preheating vitiation on operability of a hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Liu, K.; Zhu, Y.; Gao, W.; Yang, J.; Jin, Y.; Wu, Y.

    2016-11-01

    Vitiation of the test flow with combustion products is inherent in combustion wind tunnels, and its effect on experimental results needs to be clarified. In this study, the influence of air vitiation on the startability and performance of a hypersonic inlet is investigated through two-dimensional (2D) numerical simulation. The study examines the vitiation effects introduced by carbon dioxide and water vapor, on the basis of maintaining the static pressure, static temperature and Mach number of the incoming flow. The starting Mach number limits of the inlet are estimated, and it is found that both of these vitiation components lower the starting limit of the inlet. This suggests that the experimental results acquired by tests in combustion wind tunnels overestimate the startability of an inlet and, therefore, combustion-preheated facilities may not be completely trusted in this respect. Deviations in the inlet performance caused by the vitiation are also detected. These are nevertheless minor as long as the flow is at the same started or unstarted condition. A further analysis reveals that it is mainly the increase in the heat capacity, and the resulting weaker shock/compression waves and shock-wave/boundary-layer interactions that account for the aforementioned effects.

  7. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  8. EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR

    SciTech Connect

    Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

    2009-11-30

    Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

  9. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  10. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  11. The Effect of Inlet Cannula Length on the Intraventricular Flow Field An In Vitro Flow Visualization Study Using the Evaheart LVAD.

    PubMed

    May-Newman, Karen; Moon, Juyeun; Ramesh, Varsha; Montes, Ricardo; Campos, Josue; Herold, Brian; Isingoma, Paul; Motomura, Tadashi; Benkowski, Robert

    2017-03-20

    LVAD inflow cannula malposition is a significant risk for pump thrombosis. Thrombus development is influenced by altered flow dynamics, such as stasis or high shear that promote coagulation. The goal of this study was to measure the intraventricular flow field surrounding the apical inflow cannula of the Evaheart centrifugal LVAD, and assess flow stasis, vortex structures and pulsatility for a range of cannula insertion depths and support conditions. Experimental studies were performed using a mock loop with a customized silicone left ventricle (LV) and the Evaheart LVAD. A transparent inflow cannula was positioned at 1cm, 2cm, or 3cm insertion depth into the LV and the velocity field in the LV midplane was measured for two levels of LVAD support: 1800rpm and 2300rpm. The LV velocity field exhibits a diastolic vortex ring whose size, path and strength are affected by the flow conditions and cannula position. During diastole, the large clockwise midplane vortex grows, but its circulation and kinetic energy are reduced with cannula insertion depth. The counter-clockwise vortex is smaller and exhibits more complex behavior, reflecting a flow split at 3cm. Overall, the 1cm cannula insertion depth produces the flow pattern that exhibits the least apical flow stasis and greatest pulsatility and should correlate to a lower risk of thrombus formation.

  12. External-Compression Supersonic Inlet Design Code

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  13. Measurement of velocity of air flow in the sinus maxillaris.

    PubMed

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  14. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  15. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  16. Vision and air flow combine to streamline flying honeybees.

    PubMed

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  17. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  18. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  19. Comprehensive numerical simulation analysis of flow and mass transfer by tuning inlet conditions in solution circulating technique focused to grow quality KDP crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoli; Cheng, Min; Yang, Sen; Huang, Yi

    2017-04-01

    The inclusions are easily to be generated because of the nonuniform distribution of supersaturation of crystal surface in KDP crystal growth process, and the inclusions can reduce the growth quality of crystal. So in order to increase the growth rate of crystal and improve the uniformity of surface supersaturation, the numerical simulation of hydrodynamics and mass transfer in the growth of KDP crystal by using solution circulating method have been performed in this paper. The KDP crystal is in eccentric motion in the calculation model, and the effects of inlet velocities, positions of inlet pipe, and incident angles on the crystal growth are discussed. The surface supersaturation and standard deviation of supersaturation are obtained as functions of different inlet velocities, positions of inlet pipe, and incident angles. The value of surface supersaturation is higher and the standard deviation of surface supersaturation is lower when the inlet pipe and crystal are at the same height. Besides, the uniformity of crystal is improved obviously when the axis of inlet pipe is tangent to the rotation track of R-Py tip.

  20. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  1. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  2. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  3. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  4. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  5. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  6. Mixed exhaust flow supersonic jet engine and method

    SciTech Connect

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  7. Aeroacoustic performance of a scoop inlet

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.

    1977-01-01

    Results of a low speed wind tunnel test program are presented which demonstrate the aerodynamic and acoustic performance of a scoop inlet. Engine noise that would normally propagate toward the ground is directed upward by the extended lower lip of the scoop inlet. In addition, more of the scoop airflow comes in from above the inlet than below, leading to relatively higher surface velocities on the upper lip and lower surface velocities on the lower lip. These lower velocities on the lower lip result in a higher attainable angle of attack before internal flow separation occurs.

  8. Surfactant-Induced Flow in Unsaturated Porous Media: Implications for Air-Water Interfacial Area Determination

    NASA Astrophysics Data System (ADS)

    Costanza-Robinson, M. S.; Zheng, Z.; Estabrook, B.; Henry, E. J.; Littlefield, M. H.

    2011-12-01

    Air-water interfacial area (AI) in porous media is an important factor governing equilibrium contaminant retention, as well as the kinetics of interphase mass transfer. Interfacial-partitioning tracer (IPT) tests are a common technique for measuring AI at a given moisture saturation (SW), where AI is calculated based on the ratio of arrival times of a surfactant and a non-reactive tracer. At surfactant concentrations often used, the aqueous surface tension of the interfacial tracer solution is ~30% lower than that of the resident porewater in the system, creating transient surface tension gradients during the IPT measurement. Because surface tension gradients create capillary pressure gradients, surfactant-induced unsaturated flow may occur during IPT tests, a process that would violate fundamental assumptions of constant SW, of steady-state flow, and of nonreactive and surfactant tracers experiencing the same transport conditions. To examine the occurrence and magnitude of surfactant-induced flow, we conducted IPT tests for unsaturated systems at ~84% initial SW using surfactant input concentrations that bracket concentrations commonly used. Despite constant boundary conditions (constant inlet flux and outlet pressure), the introduction of the surfactant solution induced considerable transience in column effluent flowrate and SW. Real-time system mass measurements revealed drainage of 20-40% SW, with the amount of drainage and the maximum rate of drainage proportional to the influent surfactant concentration, as would be expected. Because AI is inversely related to SW, the use of higher surfactant concentrations should yield larger AI estimates. Measured AI values, however, showed no clear relationship to surfactant concentration or the time-averaged SW of the system. These findings cast doubt on the reliability of IPT for AI determination.

  9. Computational analysis of ramjet engine inlet interaction

    NASA Technical Reports Server (NTRS)

    Duncan, Beverly; Thomas, Scott

    1992-01-01

    A computational analysis of a ramjet engine at Mach 3.5 has been conducted and compared to results obtained experimentally. This study focuses on the behavior of the inlet both with and without combustor backpressure. Increased backpressure results in separation of the body side boundary layer and a resultant static pressure rise in the inlet throat region. The computational results compare well with the experimental data for static pressure distribution through the engine, inlet throat flow profiles, and mass capture. The computational analysis slightly underpredicts the thickness of the engine body surface boundary layer and the extent of the interaction caused by backpressure; however, the interaction is observed at approximately the same level of backpressure both experimentally and computationally. This study demonstrates the ability of two different Navier-Stokes codes, namely RPLUS and PARC, to calculate the flow features of this ramjet engine and to provide more detailed information on the process of inlet interaction and unstart.

  10. Evaluation of the performance of the cross-flow air classifier in manufactured sand processing via CFD-DEM simulations

    NASA Astrophysics Data System (ADS)

    Petit, H. A.; Irassar, E. F.; Barbosa, M. R.

    2017-03-01

    Manufactured sands are particulate materials obtained as by product of rock crushing. Particle sizes in the sand can be as high as 6 mm and as low as a few microns. The concrete industry has been increasingly using these sands as fine aggregates to replace natural sands. The main shortcoming is the excess of particles smaller than <0.075 mm (Dust). This problem has been traditionally solved by a washing process. Air classification is being studied to replace the washing process and avoid the use of water. The complex classification process can only been understood with the aid of CFD-DEM simulations. This paper evaluates the applicability of a cross-flow air classifier to reduce the amount of dust in manufactured sands. Computational fluid dynamics (CFD) and discrete element modelling (DEM) were used for the assessment. Results show that the correct classification set up improves the size distribution of the raw materials. The cross-flow air classification is found to be influenced by the particle size distribution and the turbulence inside the chamber. The classifier can be re-designed to work at low inlet velocities to produce manufactured sand for the concrete industry.

  11. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust...

  12. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust...

  13. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust...

  14. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust...

  15. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust...

  16. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  17. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  18. Variable geometry for supersonic mixed-compression inlets

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A.; Smeltzer, D. B.

    1974-01-01

    Study of two-dimensional and axisymmetric supersonic mixed-compression inlet systems has shown that the geometry of both systems can be varied to provide adequate transonic airflow to satisfy the airflow demand of most jet engines. Collapsing geometry systems for both types of inlet systems provide a generous amount of transonic airflow for any design Mach number inlet system. However, the mechanical practicality of collapsing centerbodies for axisymmetric inlet systems is doubtful. Therefore, translating centerbody axisymmetric inlets with auxiliary airflow systems to augment the transonic airflow capability are an attractive alternative. Estimates show that the capture mass-flow ratio at Mach number 1.0 can be increased approximately 0.20 for a very short axisymmetric inlet system designed for Mach number 2.37. With this increase in mass-flow ratio, even variable-cycle engine transonic airflow demand can be matched without oversizing the inlet at the design Mach number.

  19. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  20. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change.

  1. Indicator providing continuous indication of the presence of a specific pollutant in air

    NASA Technical Reports Server (NTRS)

    Miller, C. G.; Bartera, R. E. (Inventor)

    1976-01-01

    A continuous HCl in-air indicator was developed which consists of a tube-like element with an inlet end through which a continuous stream of air containing HCl enters. The air flows downstream from the inlet end and exits the element's outlet end. Positioned between the element's inlet and outlet ends are first and second spaced apart photoelectric units, which are preferably positioned adjacent the inlet and outlet ends, respectively. Ammonia gas is injected into the air, flowing through the element, at a position between the two photoelectric units. The ammonia gas reacts with the HCl in the air to form ammonium chloride particles. The difference between the outputs of the two photoelectric units is an indication of the amount of HCl in the air stream.

  2. Attic Inlet Technology Update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Attic inlets are a popular addition for new construction and energy saving retrofits. Proper management of attic inlets is necessary to get maximum benefits from the system and reduce the likelihood of moisture-related problems in the structure. Solar energy levels were determined for the continen...

  3. Stepped inlet optical panel

    DOEpatents

    Veligdan, James T.

    2001-01-01

    An optical panel includes stacked optical waveguides having stepped inlet facets collectively defining an inlet face for receiving image light, and having beveled outlet faces collectively defining a display screen for displaying the image light channeled through the waveguides by internal reflection.

  4. Investigation on Multiple-Pulse Propulsion Performance for a Parabolic Nozzle with Inlet Slit

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Hong, Yanji; Song, Junling

    2011-11-01

    The multiple-pulse impulse coupling coefficient Cm is lower than the single pulse one with the same laser parameters. It is always explained that air recovery in nozzle does not work on time. Three kinds of parabolic nozzles are employed to improve air recovery in the experiments and simulation. There exist inlet slits on side wall of them with width of 1 mm, 2 mm, respectively. The curves of thrust and the process of flow fluid field are presented to study the slit effects on Cm under 20 Hz pulse frequency. The results show: an inlet slit can accelerate the air breathing process in the nozzle and Cm for each pulse exhibits a little variation; the lower Cm is obtained due to the increasing energy loss by a larger size slit; the flat-roofed nozzle gets higher Cm than others.

  5. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter...) between the fuel, inlet air, and raw exhaust to calculate raw exhaust flow as described in § 1065.650, as... calibration and verifications in § 1065.320. (c) Recirculating fuel. In any fuel-flow measurement, account...

  6. 40 CFR 1065.220 - Fuel flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.220 Fuel flow meter...) between the fuel, inlet air, and raw exhaust to calculate raw exhaust flow as described in § 1065.650, as... calibration and verifications in § 1065.320. (c) Recirculating fuel. In any fuel-flow measurement, account...

  7. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  8. An air traffic flow management method based on mixed genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Ying

    2009-12-01

    With the air traffic congest problem becoming more and more severe, the study of air traffic flow management is more and more important. According to the character of air traffic flow management, the author analyzed the heuristic method and genetic algorithms, later put this two method together and give a new method of air traffic flow management-mixture genetic algorithms, It has global convergence, the simulation result demonstrates that the presented algorithm is effective.

  9. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  10. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  11. Noise suppression with high Mach number inlets

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Cherng, J. G.; Tag, I.

    1976-01-01

    Experimental results were obtained for two types of high Mach number inlets, one with a translating centerbody and a fixed geometry inlet (collapsing cowl) with no centerbody. The aerodynamic and acoustic performance of these inlets was examined. The effects of area ratio, length/diameter ratio, and lip geometry were among several parameters investigated. The translating centerbody type inlet was found to be superior to the collapsing cowl both acoustically and aerodynamically, particularly for area ratios greater than 1.5. Comparison of length/diameter ratio and area ratio effects on performance near choked flow showed the latter to be more significant. Also, greater high frequency noise attenuation was achieved by increasing Mach number from low to high subsonic values.

  12. Air turbo-ramjet engine

    SciTech Connect

    Kepler, C.E.

    1991-12-24

    This patent describes a jet engine capable of being used to power an aircraft throughout a range of speeds from subsonic to high supersonic. It comprises means for bounding an internal passage centered on an axis and including, in succession as considered in the direction of axial flow of incoming air into and through the passage, a fixed-area air inlet section, a diverging passage section, a mixing section, a combustion section, and an outlet section; fan means situated in the air inlet section and including a rotor mounted in the bounding means for rotation about the axis and including a plurality of circumferentially spaced rotor blade members; means for selectively rotating the rotor about the axis with attendant impelling action of the rotor blade members on the air flowing therebetween; and means for selectively discharging air from a region of the passage situated between the air inlet section and the diverging passage section to the exterior of the bounding means, both at subsonic and supersonic speeds of the aircraft, when the amount of incoming air passing through the fixed-area inlet section exceeds that required in the combustion section.

  13. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  14. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, R.F.; Dietrich, D.D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability is disclosed. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three. 6 figs.

  15. Miniature piezo electric vacuum inlet valve

    DOEpatents

    Keville, Robert F.; Dietrich, Daniel D.

    1998-03-24

    A miniature piezo electric vacuum inlet valve having a fast pulse rate and is battery operated with variable flow capability. The low power (<1.6 watts), high pulse rate (<2 milliseconds), variable flow inlet valve is utilized for mass spectroscopic applications or other applications where pulsed or continuous flow conditions are needed. The inlet valve also has a very minimal dead volume of less than 0.01 std/cc. The valve can utilize, for example, a 12 Vdc input/750 Vdc, 3 mA output power supply compared to conventional piezo electric valves which require preloading of the crystal drive mechanism and 120 Vac, thus the valve of the present invention is smaller by a factor of three.

  16. Phonatory air flow characteristics of adductor spasmodic dysphonia and muscle tension dysphonia.

    PubMed

    Higgins, M B; Chait, D H; Schulte, L

    1999-02-01

    The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pa] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.

  17. Water-tunnel investigation of concepts for alleviation of adverse inlet spillage interactions with external stores

    NASA Technical Reports Server (NTRS)

    Neuhart, Dan H.; Rhode, Matthew N.

    1990-01-01

    A test was conducted in the NASA Langley 16- by 24-Inch Water Tunnel to study alleviation of the adverse interactions of inlet spillage flow on the external stores of a fighter aircraft. A 1/48-scale model of a fighter aircraft was used to simulate the flow environment around the aircraft inlets and on the downstream underside of the fuselage. A controlled inlet mass flow was simulated by drawing water into the inlets. Various flow control devices were used on the underside of the aircraft model to manipulate the vortical inlet spillage flow.

  18. Flight test results of an automatic support system on board a YF-12A airplane. [for jet engine inlet air control

    NASA Technical Reports Server (NTRS)

    Love, J. E.

    1974-01-01

    An automatic support system concept that isolated faults in an existing nonavionics subsystem was flight tested up to a Mach number of 3. The adaptation of the automated support concept to an existing system (the jet engine automatic inlet control system) caused most of the problems one would expect to encounter in other applications. These problems and their solutions are discussed. Criteria for integrating automatic support into the initial design of new subsystems are included in the paper. Cost effectiveness resulted from both the low maintenance of the automated system and the man-hour saving resulting from the real time diagnosis of the monitored subsystem.

  19. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  20. Supersonic Inlet with Pylons Set and Star-Shaped Forebody for Mixing, Combustion and Thrust Enhancement

    NASA Technical Reports Server (NTRS)

    Gilinsky, M.; Gonor, A. L.; Khaikine, V. A.; Blankson, I. M.

    2003-01-01

    Two new approaches are discussed in this paper for application in the Scramjet inlet of an air-breathing propulsion system: 1) In the first approach, the pylon set is installed in the rectangular inlet near the cowl front edge. For a quasi-axisymmetric inlet, a similar set is installed along the Star-shaped forebody axis. This set contains 3 - 4 airfoil-shaped strips or cross-sectional rings depending on the type of inlet. The inlets: rectangular, axisymmetric or star-shaped, are located at different distances from the forebody. Fuel injection takes place through these pylons, which provides for uniform mixing downstream. The locations, sizes and angles of these pylons are very important for efficient application. Optimal values of geometrical parameters were determined from multi-parametric NSE-based numerical simulations of the laminar and turbulent external/internal flows. These simulations have shown significant benefits for mixing, combustion and thrust of the proposed approach by comparison with traditional well-known designs. Experimental tests will be conducted soon at the NASA LaRC and Institute of Mechanics at Moscow State University. Preliminary estimates are very promising.

  1. Prediction of Wind Tunnel Effects on the Installed F/A-18A Inlet Flow Field at High Angles-of-attack

    NASA Technical Reports Server (NTRS)

    Smith, Crawford F.

    1995-01-01

    NASA Lewis is currently engaged in a research effort as a team member of the High Alpha Technology Program (HATP) within NASA. This program utilizes a specially equipped F/A-18A, the High Alpha Research Vehicle (HARV), in an ambitious effort to improve the maneuverability of high performance military aircraft at low subsonic speed, high angle of attack conditions. The overall objective of the Lewis effort is to develop inlet technology that will ensure efficient airflow delivery to the engine during these maneuvers. One part of the Lewis approach utilizes computational fluid dynamics codes to predict the installed performance of inlets for these highly maneuverable aircraft. Wind tunnel tests were a major component of the Lewis program. Since the available wind tunnel was small (9 x 15 ft) as compared to the scale of the model of the F/A-18A (19.78 percent), there were questions about the capability to obtain useful inlet performance data. The blockage effects were expected to be very large. This report represents the results of an analysis to determine how the wind tunnel walls effect inlet performance at several angles of attack. The predictions for the external particle traces along the fuselage indicate the influence of the wind tunnel side wall under the model is greater at 30 deg angle of attack than at 50 deg angle of attack on the under Leading Edge Extension (LEX) vortex trajectory. The side wall above the model appears to have negligible influence on the under LEX vortex. This may be due to the LEX acting as 'shield' to the upper wall effects. As expected, the wind tunnel has a significant influence on the external forces. The lift and drag coefficients increase significantly for the wind tunnel model as compared to free stream conditions. The wind tunnel had a small effect on the inlet recovery and on inlet total pressure distortion patterns. The predicted recoveries for the wind tunnel model are within one percentage point of the model recoveries in

  2. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  3. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  4. Improving commercial broiler attic inlet ventilation thorugh CFD analysis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of solar heated attic air is an area of increasing interest in commercial poultry production. Attic inlets satisfy the demand for alternative heating while being simple to implement in an existing poultry house. A number of demonstration projects have suggested that attic inlets may decrease...

  5. Analysis of Buzz in a Supersonic Inlet

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2012-01-01

    A dual-stream, low-boom supersonic inlet designed for use on a small, Mach 1.6 aircraft was tested experimentally in the 8- by 6-Foot Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center (GRC). The tests showed that the inlet had good recovery and stable operation over large mass flow range. The inlet went into buzz at mass flows well below that needed for engine operation, and the experiments generated a wealth of data during buzz. High frequency response pressure measurements and high-speed schlieren videos were recorded for many buzz events. The objective of the present work was to use computational fluid dynamics (CFD) to predict some of the experimental data taken during buzz, compare those predictions to the experimental data, and to use both datasets to explain the physics of the buzz cycle. The calculations were done with the Wind-US CFD code using a second-order time-accurate differencing scheme and the SST turbulence model. Computed Mach number contours were compared with schlieren images, and ensemble-averaged unsteady pressures were compared to data. The results showed that the buzz cycle consisted partly of spike buzz, an unsteady oscillation of the main shock at the spike tip while the inlet pressure dropped, and partly of choked flow while the inlet repressurized. Most of the results could be explained by theory proposed by Dailey in 1954, but did not support commonly used acoustic resonance explanations.

  6. Mach 4 Test Results of a Dual-Flowpath, Turbine Based Combined Cycle Inlet

    NASA Technical Reports Server (NTRS)

    Albertson, Cindy w.; Emami, Saied; Trexler, Carl A.

    2006-01-01

    An experimental study was conducted to evaluate the performance of a turbine based combined cycle (TBCC) inlet concept, consisting of a low speed turbojet inlet and high speed dual-mode scramjet inlet. The main objectives of the study were (1) to identify any interactions between the low and the high speed inlets during the mode transition phase in which both inlets are operating simultaneously and (2) to determine the effect of the low speed inlet operation on the performance of the high speed inlet. Tests were conducted at a nominal freestream Mach number of 4 using an 8 percent scale model representing a single module of a TBCC inlet. A flat plate was installed upstream of the model to produce a turbulent boundary layer which simulated the full-scale vehicle forebody boundary layer. A flowmeter/back pressure device, with remote actuation, was attached aft of the high speed inlet isolator to simulate the back pressure resulting from dual-mode scramjet combustion. Results indicate that the inlets did not interact with each other sufficiently to affect inlet operability. Flow spillage resulting from a high speed inlet unstart did not propagate far enough upstream to affect the low speed inlet. Also, a low speed inlet unstart did not cause the high speed inlet to unstart. The low speed inlet improved the performance of the high speed inlet at certain conditions by diverting a portion of the boundary layer generated on the forebody plate.

  7. Inlet Geomorphology Evolution Work Unit

    DTIC Science & Technology

    2015-10-30

    Coastal Inlets Research Program Inlet Geomorphology Evolution Work Unit The Inlet Geomorphology Evolution work unit of the CIRP develops methods...morphologic response. Presently, the primary tool of the Inlet Geomorphology Evolution work unit is the Sediment Mobility Tool (SMT), which allows the user

  8. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  9. Estimation of additive forces and moments for supersonic inlets

    NASA Technical Reports Server (NTRS)

    Perkins, Stanley C., Jr.; Dillenius, Marnix F. E.

    1991-01-01

    A technique for estimating the additive forces and moments associated with supersonic, external compression inlets as a function of mass flow ratio has been developed. The technique makes use of a low order supersonic paneling method for calculating minimum additive forces at maximum mass flow conditions. A linear relationship between the minimum additive forces and the maximum values for fully blocked flow is employed to obtain the additive forces at a specified mass flow ratio. The method is applicable to two-dimensional inlets at zero or nonzero angle of attack, and to axisymmetric inlets at zero angle of attack. Comparisons with limited available additive drag data indicate fair to good agreement.

  10. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  11. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Department of Agriculture, or its equivalent. (2) A suitable supply of compressed air filtered to remove... specimen. The weight of the test specimen shall be that weight prescribed for the air flow instrument...

  12. Development of an Air Brayton solar receiver

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Various receiver configurations and operating conditions were examined. The interface requirements between the receiver/concentrator/power module were addressed. Production cost estimates were obtained to determine the cost of the receiver during the 1980 timeframe. A conceptual design of an air Brayton solar receiver is presented based on the results. The following design goals were established: (1)peak thermal input power - 85 KWt; (2)receiver outlet air temperature - 1500 F; (3)receiver inlet air temperature - 1050 F; (4)design mass flow rate - 0.533 lb/sec; and (5)design receiver inlet pressure - 36.75 psia.

  13. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  14. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  15. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-02

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  16. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  17. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  18. Ignition of hydrogen/air mixing layer in turbulent flows

    SciTech Connect

    Im, H.G.; Chen, J.H.; Law, C.K.

    1998-03-01

    Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

  19. Computational study of inlet injection for a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine

    NASA Technical Reports Server (NTRS)

    Gonzalez, D. E.

    1995-01-01

    A computational simulation of reacting 2-D and 3-D flowfields in a model inlet section of a Pre-Mixed, Shock-Induced Combustion (PM/SIC) engine concept was performed. LARCK, a multi-dimensional Navier-Stokes code with finite-rate kinetics chemistry developed at NASA LaRC by J.A. White, was adapted for this simulation. The flow conditions in the simulation match those envisioned for the PM/SIC engine experiments currently planned at LaRC. The reacting flowfields were Mach 6.3 freestream air and Mach 2 hydrogen at various pressure and temperature conditions injected through a slot injector at the base of the inlet section. In the PM/SIC engine, fuel is injected at the inlet section upstream of the combustor, and reaction is initiated by the shock wave at the inlet which increases the gas temperature and pressure beyond the kinetic limits for reaction. Many challenges exist prior to establishing shock-controlled combustion as a practical engine concept. These challenges include fuel injection schemes that can provide proper fuel-air mixing without creating large losses in the inlet section, and control of the combustion process so that early ignition or combustion propagation through the inlet boundary layer does not occur. For this project, a parametrics study was carried out to model the fuel injection of hydrogen at different flow conditions. It was found that, as the fuel temperature and pressure were increased, the potential for pre-ignition was high at a short distance downstream of the slot injector. The next stage of this work will investigate injection techniques for enhancing mixing of fuel and air in a manner that prevents or reduces the potential for premature ignition observed numerically.

  20. Top-mounted inlet system feasibility for transonic-supersonic fighter aircraft. [V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Williams, T. L.; Hunt, B. L.; Smeltzer, D. B.; Nelms, W. P.

    1981-01-01

    The more salient findings are presented of recent top inlet performance evaluations aimed at assessing the feasibility of top-mounted inlet systems for transonic-supersonic fighter aircraft applications. Top inlet flow field and engine-inlet performance test data show the influence of key aircraft configuration variables-inlet longitudinal position, wing leading-edge extension planform area, canopy-dorsal integration, and variable incidence canards-on top inlet performance over the Mach range of 0.6 to 2.0. Top inlet performance data are compared with those or more conventional inlet/airframe integrations in an effort to assess the viability of top-mounted inlet systems relative to conventional inlet installations.