Science.gov

Sample records for air flow means

  1. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  2. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  3. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  4. Flow Measurement by Means of Light Interference

    NASA Technical Reports Server (NTRS)

    Zobel, Th.

    1949-01-01

    There has been under development for the high-speed wind tunnel of the LFA an optical measuring arrangement for the qualitative and quantitative investigation of flow. By the use of interference measurements, the determination of density at the surface of the bodies being tested in the air stream and in the vicinity of these bodies can be undertaken. The results obtained so far in the simple preliminary investigations show that it is possible, even at a low Reynolds number, to obtain the density field in the neighborhood of a test body by optical means. Simple analytical expressions give the relation between density, pressure, velocity, and temperature. In addition to this, the interference measurement furnishes valuable data on the state of the boundary layer, that is, the sort of boundary layer (whether laminar or turbulent), as well as the temperature and velocity distribution.

  5. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  6. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  7. Mean Curvature Flow in a Ricci Flow Background

    NASA Astrophysics Data System (ADS)

    Lott, John

    2012-07-01

    Following work of Ecker (Comm Anal Geom 15:1025-1061, 2007), we consider a weighted Gibbons-Hawking-York functional on a Riemannian manifold-with-boundary. We compute its variational properties and its time derivative under Perelman's modified Ricci flow. The answer has a boundary term which involves an extension of Hamilton's differential Harnack expression for the mean curvature flow in Euclidean space. We also derive the evolution equations for the second fundamental form and the mean curvature, under a mean curvature flow in a Ricci flow background. In the case of a gradient Ricci soliton background, we discuss mean curvature solitons and Huisken monotonicity.

  8. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  9. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  10. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  11. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  12. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  13. Quasisymmetric toroidal plasmas with large mean flows

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.; Nishimura, S.

    2011-08-15

    Geometric conditions for quasisymmetric toroidal plasmas with large mean flows on the order of the ion thermal speed are investigated. Equilibrium momentum balance equations including the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetric plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be independent of the toroidal angle in the Boozer coordinates, and consequently these systems need to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do not exist and the toroidal flow velocity cannot take any value other than a very limited class of eigenvalues corresponding to very rapid rotation especially for low beta plasmas.

  14. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  15. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  16. Vent means for closed air system impact-type seismic source

    SciTech Connect

    Airhart, T.P.

    1987-10-27

    This patent describes an apparatus for impacting a target comprising: (a) a hollow upstanding cylindrical housing having a closed upper end and open lower end and provided with a longitudinal bore; (b) a pressurized air supply vessel communicating with the bore through the first air passage; (c) piston means slidably interfitted with the bore for movement therein; (d) valve means for regulating air flow through the second air passage; (e) means for supporting the piston means in an upper most position in which piston means projects above and blocks the first air passage so as to isolate the air supply vessel from the bore and so as to engage the valve means in a manner to maintain the second air passage in an unblocked condition; (f) means for releasing the piston means such that the resultant gravity-induced movement is accompanied in sequence by disengagement with the valve means and unblocking of the first air passage; (g) means for returning the piston means to such upper most position.

  17. Validation of Interannual Differences of AIRS Monthly Mean Parameters

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Keita, Fricky; Molnar, Gyula

    2005-01-01

    Monthly mean fields of select geophysical parameters derived from analysis of AIRS/AMSU data, and their interannual differences, are shown and compared with analogous fields derived from other sources. All AIRS fields are derived using the AIRS Science Team Version 4 algorithm. Monthly mean results are shown for January 2004, as are interannual differences between January 2004 and January 2003. AIRS temperature and water vapor profile fields are compared with monthly mean collocated ECMWF 3 hour forecast and monthly mean TOVS Pathfinder Path A data. AIRS Tropospheric and Stratospheric coarse climate indicators are compared with analogous MSU products derived by Spencer and christy and found in the TOVS Pathfinder Path A data set. Total ozone is compared with results produced by TOMS. OLR is compared with OLR derived using CERES data and found in the TOVS Pathfinder Path A data set. AIRS results agree well in all cases, especially in the interannual difference sense.

  18. Transonic flow control by means of local energy deposition

    NASA Astrophysics Data System (ADS)

    Aul'Chenko, S. M.; Zamuraev, V. P.; Kalinina, A. P.

    2011-11-01

    Experimental data for the feasibility of transonic flow control by means of energy deposition are generalized. Energy supplied to the immediate vicinity of a body in stream before a compression shock is found to result in the nonlinear interaction of introduced disturbances with the shock and the surface in zones extended along the surface. A new, explosive gasdynamic mechanism behind the shift of the compression shock is discovered. It is shown that the nonlinear character of the interaction may considerably decrease the wave resistance of, e.g., transonic airfoils. It is found that energy supply from without stabilizes a transonic flow about an airfoil—the effect similar to the Khristianovich stabilization effect. The dependence of the energy deposition optimal frequency on the energy source parameters and Mach number of the incoming flow at which the resistance drops to the greatest extent is obtained. The influence of the real thermodynamic properties and viscosity of air is studied.

  19. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  20. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  1. Estimating instantaneous peak flow from mean daily flow

    NASA Astrophysics Data System (ADS)

    Chen, B.; Krajewski, W. F.

    2015-12-01

    While instantaneous peak flow (IPF) records have historically been necessary for practical applications in flood risk management and hydraulic structure design, mean daily flow (MDF) values are often all that are available. To address this problem, we propose a simple method, which requires only MDF records as its input and uses the rising and falling slopes of daily hydrographs, to estimate IPFs. We applied this method to 144 catchments in Iowa, USA, with drainage areas ranging from about 7 to 220,000 km2. This application involves about 3800 peak flow events originating from different flood generation mechanisms over the period from 1997 to 2014. About 55% of the catchments have prediction errors within ±10%, and 85% of the catchments have predictions errors within ±20%. The method works well for catchments larger than 500 km2, poorly for catchments smaller than 100 km2, and fairly well for catchments in between these sizes. The reduction in the method's effectiveness with decreasing catchment size is due to the fact that the smaller the catchment, the more information is lost when using MDF to characterize the instantaneous flow processes. Our proposed method is simple and promising in terms of estimating IPFs from MDFs for areas where IPF records are unavailable or are insufficient.

  2. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  3. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  4. Air flow cued spatial learning in mice.

    PubMed

    Bouchekioua, Youcef; Mimura, Masaru; Watanabe, Shigeru

    2015-01-01

    Spatial learning experiments in rodents typically employ visual cues that are associated with a goal place, even though it is now well established that they have poor visual acuity. We assessed here the possibility of spatial learning in mice based on an air flow cue in a dry version of the Morris water maze task. A miniature fan was placed at each of the four cardinal points of the circular maze, but only one blew air towards the centre of the maze. The three other fans were blowing towards their own box. The mice were able to learn the task only if the spatial relationship between the air flow cue and the position of the goal place was kept constant across trials. A change of this spatial relationship resulted in an increase in the time to find the goal place. We report here the first evidence of spatial learning relying on an air flow cue. PMID:25257773

  5. Mean flow and Reynolds stress structure over aeolian ripples

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl; Bédard, Otto; O'Brien, Patrick

    2015-04-01

    Mean flow and turbulence structure on transverse ripples have been well documented in hydrodynamic literature. However, very few studies have described the flow characteristics over aeolian ripples. This study adopted laser Doppler anemometry (LDA) to measure the wind field above granular ripples with different bimodal particle size distributions in a wind tunnel. Multiple runs were conducted to examine the vertical profiles of time-averaged horizontal and vertical velocities and Reynolds stress above four different locations: crest, lee slope, trough, and stoss slope. The rippled sand bed has a fine beige fraction with grain size smaller than 0.542 mm concentrated in the troughs and a coarse fraction dyed in red with grain size greater than 0.542 mm concentrated in the crests. The magnitude of the ripples at equilibrium is controlled by both wind velocity and the ratio of beige sand to red sand. Freestream velocity has a range between 8-11 m/s (above the saltation threshold of beige sand and below the threshold of red sand) and the percentage coarse by mass varies from 5.2% to 27.5% with median grain size from 0.289 mm to 0.399 mm. Experimental results indicate that the ripples have the wave length ranged between 20 mm and 140 mm with a characteristic ripple index (wave length/wave height) of 15. Flow streamlines are generally parallel to the bed surface, which is inconsistent with previous hydrodynamic observations that a return flow is usually found at the lee side of the ripples. Reynolds stress has demonstrated a strong spatial differentiation near the sand surface: greatest at crests and smallest at the troughs, however, this difference diminishes with elevation. This is an exploratory study on the turbulence characteristics of air flow above aeolian ripples, and we believe the finding of this research will enhance the understanding the interaction mechanisms between the air and bed morphology.

  6. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  7. Zonal flow formation in the presence of ambient mean shear

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-02-15

    The effect of mean shear flows on zonal flow formation is considered in the contexts of plasma drift wave turbulence and quasi-geostrophic turbulence models. The generation of zonal flows by modulational instability in the presence of large-scale mean shear flows is studied using the method of characteristics as applied to the wave kinetic equation. It is shown that mean shear flows reduce the modulational instability growth rate by shortening the coherency time of the wave spectrum with the zonal shear. The scalings of zonal flow growth rate and turbulent vorticity flux with mean shear are determined in the strong shear limit.

  8. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  9. Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas

    USGS Publications Warehouse

    Breaker, Brian K.

    2015-01-01

    Equations for two regions were found to be statistically significant for developing regression equations for estimating harmonic mean flows at ungaged basins; thus, equations are applicable only to streams in those respective regions in Arkansas. Regression equations for dry season mean monthly flows are applicable only to streams located throughout Arkansas. All regression equations are applicable only to unaltered streams where flows were not significantly affected by regulation, diversion, or urbanization. The median number of years used for dry season mean monthly flow calculation was 43, and the median number of years used for harmonic mean flow calculations was 34 for region 1 and 43 for region 2.

  10. Nitric oxide flow tagging in unseeded air.

    PubMed

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  11. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  12. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  13. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  14. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    SciTech Connect

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  15. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  16. Entrainment in oscillatory zero-mean flow

    NASA Astrophysics Data System (ADS)

    Medina, P.; Sanchez, M. A.

    2009-04-01

    The dynamical processes associated with the stably stratified atmospheric boundary layer or in the ocean thermocline are less well understood than those of its convective counterparts. This is due to its complexity, and the fact that buoyancy reduces entrainment across density interfaces. We present results on a series of laboratory experiments where a sharp density interface generated by either salt concentration or heat, advances due to grid stirred turbulence. We parametrize the level of buoyancy at the density interface by a local Richardson number defined in terms of the density difference across the interface, which may be due to a temperature or salinity jump. L is the integral lengthscale and u' is the r.m.s. velocity scale. So Ri = C L/u 2. The laboratory experiments were designed to compare the entrainment produced by zero-mean turbulence in heat or salt density interfaces. In the experiment we used a small perspex box of 15 by 10 cm in base, a small mesh grid (M= 0.8 cm ) driven by a motor. So as to generate the density interface by disolving salt in the bottom layer of the water column or by heating the top layer, we added the top light layer, which had a density difference carefully set up by means of a sponge float. The grid was set to oscillate with fixed frequency and stroke at the begining of the experiment and the velocity of advance of the interface Ve was measured by looking at a Shadowgraph or by video recording. The turbulent parameters are derived from previous measurements as a function of the distance between the grid center and the interface z as: l = 0.1 z and the turbulent velocity údecays inversely proportinal to the distance z. There are several mechanisms that produce mixing across the density interface. And there is a dependence of the Prandtl number on the Entrainment law. The entrainment is a power function of the local Richardson number, and the value of the empirical exponent n(Ri,Pr) is compared with previous results. The

  17. Persistence analysis of daily mean air temperature variation in Georgia

    NASA Astrophysics Data System (ADS)

    Matcharashvili, Teimuraz; Chelidze, Tamaz; Zhukova, Natalia; Mepharidze, Ekaterine; Sborshchikov, Alexander

    2010-05-01

    Extrapolation of observed linear trends is common practice in climate change researches on different scales. In this respect it is important, that though global warming is well established, the question of persistence of trends on regional scales remain controversial. Indeed, climate change for specific region and time by definition includes more than the simple average of weather conditions. Either random events or long-term changes, or more often combinations of them, can bring about significant swings in a variety of climate indicators from one time period to the next. Therefore in order to achieve further understanding of dynamics of climate change the character of stable peculiarities of analyzed dynamics should be investigated. Analysis of the character of long range correlations in climatological time series or peculiarities of their inherent memory is motivated exactly by this goal. Such analysis carried out on a different scales may help to understand spatial and temporal features of regional climate change. In present work the problem of persistence of observed trends in air temperature time series in Georgia was investigated. Longest available mean daily temperature time series of Tbilisi (1890-2008) were analyzed. Time series on shorter time scales of five stations in the West and East Georgia also were considered as well as monthly mean temperature time series of five stations. Additionally, temporally and spatially averaged daily and monthly mean air temperature time series were analyzed. Extent of persistence in mentioned time series were evaluated using R/S analysis calculation. Detrended and Multifractal Detrended Fluctuation Analysis as well as multi scaling analysis based on CWT have been used. Our results indicate that variation of daily or monthly mean temperatures reveals clear antipersistence on whole available time scale. It seems that antipersistence on global scale is general characteristics of mean air temperature variation and is not

  18. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  19. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  20. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  3. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  4. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  5. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  6. Can zonally symmetric inertial waves drive an oscillating mean flow?

    NASA Astrophysics Data System (ADS)

    Seelig, Torsten; Harlander, Uwe

    2016-04-01

    In the presentation [5] zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves [3] that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment [4]. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation [1, 2], a process currently discussed controversially. [1] Greatbatch, R., Brandt, P., Claus, M., Didwischus, S., Fu, Y.: On the width of the equatorial deep jets. J. Phys. Oceanogr. 42, 1729-1740 (2012) [2] Muench, J.E., Kunze, E.: Internal wave

  7. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  8. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  9. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  10. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  11. Noise from Supersonic Coaxial Jets. Part 1; Mean Flow Predictions

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Morris, Philip J.

    1997-01-01

    Recent theories for supersonic jet noise have used an instability wave noise generation model to predict radiated noise. This model requires a known mean flow that has typically been described by simple analytic functions for single jet mean flows. The mean flow of supersonic coaxial jets is not described easily in terms of analytic functions. To provide these profiles at all axial locations, a numerical scheme is developed to calculate the mean flow properties of a coaxial jet. The Reynolds-averaged, compressible, parabolic boundary layer equations are solved using a mixing length turbulence model. Empirical correlations are developed to account for the effects of velocity and temperature ratios and Mach number on the shear layer spreading. Both normal velocity profile and inverted velocity profile coaxial jets are considered. The mixing length model is modified in each case to obtain reasonable results when the two stream jet merges into a single fully developed jet. The mean flow calculations show both good qualitative and quantitative agreement with measurements in single and coaxial jet flows.

  12. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  13. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  14. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  15. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  16. Stability of aluminium reduction cells with mean flow

    NASA Astrophysics Data System (ADS)

    Kurenkov, A.; Thess, A.; Zikanov, O.; Segatz, M.; Droste, Ch.; Vogelsang, D.

    2004-06-01

    We report results of the linear stability analysis undertaken to investigate the effect of the mean flow of liquid metal on the stability of aluminum reduction cells. A simplified model of the cell is considered that consists of thin layers of aluminum and cryolite superimposed in an infinite horizontal channel with electrically non-conducting walls. A vertical uniform magnetic field and an electric current are applied in the opposite directions. In the basic steady state, a uniform flow of aluminum is assumed, while cryolite is at rest. The onset of the instability is caused by the action of two different mechanisms. The first is the Kelvin-Helmholtz instability of the mean flow. The second, essentially the MHD mechanism, is a consequence of destabilizing electromagnetic (Lorentz) forces produced by nonuniformities of the electric current due to interface deflections. We use the shallow water approximation and solve the problem for the cases of pure Kelvin-Helmholtz (zero magnetic field) and pure MHD (zero mean flow) instabilities and for the general case. We compute the stability chart and derive the parameters that determine the stability threshold. It is found that, while both playing a destabilizing role, the instability mechanisms do not affect each other. In particular, a uniform mean flow changes the direction of propagation of interfacial waves but leaves the MHD stability threshold unaltered. Figs 4, Refs 12.

  17. Acoustically excited heated jets. 3: Mean flow data

    NASA Technical Reports Server (NTRS)

    Lepicovsky, J.; Ahuja, K. K.; Brown, W. H.; Salikuddin, M.; Morris, P. J.

    1988-01-01

    This is Part 3 of a report on the excitability of heated jets under the influence of acoustic excitation. The effects of upstream internal acoustic excitation on jet mixing were described in Part 1. Part 2 described the effects of external excitation on flow mixing. Part 3 contains quantitative results from the measurements of mean Mach number and temperature and consists of radial profiles and centerline distributions measured at selected jet operating conditions for internally excited and unexcited jets. The mean flow data are presented in both graphical and tabulated forms. For the sake of completeness, this part contains temperature probe calibration curves also.

  18. The mean flow characteristics of a free swirling jet

    NASA Astrophysics Data System (ADS)

    Muhe, Hikmat

    1986-11-01

    A numerical model, based on experimental data, is presented for the flow characteristics of a jet spraying from between two closely spaced spinning disks. Account is taken of the radial flow velocities along three axes, the kinematic viscosity of the flow, the distance between the disks, and the rates of rotation of the disks. Laboratory data were collected on the associated velocity fluctuations by means of X-wire and simple hot-wire anemometry. The experiments showed, as predicted with the model, that radial velocity profiles will remain relatively stable for different jet thicknesses and tangential and radial velocities.

  19. Mean Line Pump Flow Model in Rocket Engine System Simulation

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Lavelle, Thomas M.

    2000-01-01

    A mean line pump flow modeling method has been developed to provide a fast capability for modeling turbopumps of rocket engines. Based on this method, a mean line pump flow code PUMPA has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The pump code can model axial flow inducers, mixed-flow and centrifugal pumps. The code can model multistage pumps in series. The code features rapid input setup and computer run time, and is an effective analysis and conceptual design tool. The map generation capability of the code provides the map information needed for interfacing with a rocket engine system modeling code. The off-design and multistage modeling capabilities of the code permit parametric design space exploration of candidate pump configurations and provide pump performance data for engine system evaluation. The PUMPA code has been integrated with the Numerical Propulsion System Simulation (NPSS) code and an expander rocket engine system has been simulated. The mean line pump flow code runs as an integral part of the NPSS rocket engine system simulation and provides key pump performance information directly to the system model at all operating conditions.

  20. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  1. A sonic boom propagation model including mean flow atmospheric effects

    NASA Astrophysics Data System (ADS)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  2. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  3. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean

  4. Cleaner Air in California May Mean Healthier Kids

    MedlinePlus

    ... all, Berhane said, the study suggests that curbing air pollution may benefit kids' respiratory health. "To parents, that ... and 2003-2012. Over that 20-year period, air pollution levels fell substantially, the study found. "Fine particle" ...

  5. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  6. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  7. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  8. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  9. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  10. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  11. Homogeneous turbulence subjected to mean flow with elliptic streamlines

    NASA Technical Reports Server (NTRS)

    Blaisdell, G. A.; Shariff, K.

    1994-01-01

    Direct numerical simulations are performed for homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. Qualitative comparisons are made with linear theory for cases with high Rossby number. The nonlinear transfer process is monitored using a generalized skewness. In general, rotation turns off the nonlinear cascade; however, for moderate ellipticities and rotation rates the nonlinear cascade is turned off and then reestablished. Turbulence statistics of interest in turbulence modeling are calculated, including full Reynolds stress budgets.

  12. Effects of mean flow on duct mode optimum suppression rates

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Wells, W. R.

    1976-01-01

    The nature of the solution to the convected acoustic wave equation and associated boundary conditions for rectangular ducts containing uniform mean flow is examined in terms of the complex mapping between the wall admittance and characteristic mode eigenvalues. It is shown that the Cremer optimum suppression criteria must be modified to account for the effects of flow below certain critical values of the nondimensional frequency parameter of duct height divided by sound wavelength. The implications of these results on the design of low frequency suppressors are considered.

  13. Integrated turbine-compressor provides air flow for cooling

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1970-01-01

    Modified supersonic turbine cycle provides cooling air to surrounding structures. Simplified mechanical design assures correct balance of air flow, allows direct issue of cool air to the structure, and assists in matching turbine work output to work input required by the compressor.

  14. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  15. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    SciTech Connect

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWA framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.

  16. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGESBeta

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  17. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  18. Gust response analysis for cascades operating in nonuniform mean flows

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Verdon, Joseph M.

    1991-01-01

    The linearized unsteady aerodynamic response of a cascade of airfoils subjected to entropic, vortical, and acoustic gusts is analyzed. Field equations for the first-order unsteady perturbation flow are obtained by linearizing the full time-dependent mass, momentum, and energy conservation equations about a nonlinear, isentropic, and irrotational mean or steady flow. A splitting technique is then used to decompose the unsteady velocity field into irrotational and rotational parts leading to field equations for the unsteady entropy, rotational velocity, and irrotational velocity fluctuations that are coupled only sequentially. The entropic and rotational velocity fluctuations can be described in terms of the mean-flow drift and stream functions which can be computed numerically. The irrotational unsteady velocity is described by an inhomogeneous linearized potential equation which contains a source term that depends on the rotational velocity field. This equation is solved via a finite difference technique. Results are presented to indicate the status of the numerical solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described leads to very efficient predictions of cascade unsteady aerodynamics phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  19. Gust response analysis for cascades operating in nonuniform mean flows

    NASA Technical Reports Server (NTRS)

    Hall, Kenneth C.; Verdon, Joseph M.

    1990-01-01

    The linearized unsteady aerodynamic response of a cascade of airfoils subjected to entropic, vortical, and acoustic gusts is analyzed. Field equations for the first-order unsteady perturbation flow are obtained by linearizing the full time-dependent mass, momentum, and energy conservation equations about a nonlinear, isentropic, and irrotational mean or steady flow. A splitting technique is then used to decompose the unsteady velocity field into irrotational and rotational parts leading to field equations for the unsteady entropy, rotational velocity, and irrotational velocity fluctuations that are coupled only sequentially. The entropic and rotational velocity fluctuations can be described in terms of the mean-flow drift and stream functions which can be computed numerically. The irrotational unsteady velocity is described by an inhomogeneous linearized potential equation which contains a source term that depends on the rotational velocity field. This equation is solved via a finite difference technique. Results are presented to indicate the status of the numerical solution procedure and to demonstrate the impact of blade geometry and mean blade loading on the aerodynamic response of cascades to vortical gust excitations. The analysis described leads to very efficient predictions of cascade unsteady aerodynamic phenomena making it useful for turbomachinery aeroelastic and aeroacoustic design applications.

  20. Torque fluctuations caused by upstream mean flow and turbulence

    NASA Astrophysics Data System (ADS)

    Farr, T. D.; Hancock, P. E.

    2014-12-01

    A series of studies are in progress investigating the effects of turbine-array-wake interactions for a range of atmospheric boundary layer states by means of the EnFlo meteorological wind tunnel. The small, three-blade model wind turbines drive 4-quadrant motor-generators. Only a single turbine in neutral flow is considered here. The motor-generator current can be measured with adequate sensitivity by means of a current sensor allowing the mean and fluctuating torque to be inferred. Spectra of torque fluctuations and streamwise velocity fluctuations ahead of the rotor, between 0.1 and 2 diameters, show that only the large-scale turbulent motions contribute significantly to the torque fluctuations. Time-lagged cross-correlation between upstream velocity and torque fluctuations are largest over the inner part of the blade. They also show the turbulence to be frozen in behaviour over the 2 diameters upstream of the turbine.

  1. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    NASA Astrophysics Data System (ADS)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  2. Mean-field description of plastic flow in amorphous solids

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Wyart, Matthieu

    Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation P (x) ~xθ , where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ = 1 / 2 . However, θ depends continuously on the applied shear stress, this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations, and captures reasonably well the value of exponents in three dimensions. These results support that it is the true mean-field model that applies in large dimension, and raise fundamental questions on the nature of the yielding transition.

  3. Mean-Field Description of Plastic Flow in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Wyart, Matthieu

    2016-01-01

    Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here, we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation P (x )˜xθ, where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ =1 /2 . However, θ depends continuously on the applied shear stress; this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations and captures reasonably well the value of exponents in three dimensions. Values of exponents in four dimensions are accurately predicted. These results support the fact that it is the true mean-field model that applies in large dimensions, and they raise fundamental questions about the nature of the yielding transition.

  4. Prediction of frequencies in thermosolutal convection from mean flows

    NASA Astrophysics Data System (ADS)

    Turton, Sam E.; Tuckerman, Laurette S.; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean.

  5. Prediction of frequencies in thermosolutal convection from mean flows.

    PubMed

    Turton, Sam E; Tuckerman, Laurette S; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean. PMID:25974582

  6. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  7. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  8. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  9. Unsteady Validation of a Mean Flow Boundary Condition for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Zhen, F.; Nallasamy, M.; Sawyer, S> ; Dyson, R.

    2004-01-01

    In this work, a previously developed mean flow boundary condition will be validated for unsteady flows. The test cases will be several reference benchmark flows consisting of vortical gusts convecting in a uniform mean flow, as well as the more realistic case of a vortical gust impinging on a loaded 2D cascade. The results will verify that the mean flow boundary condition both imposes the desired mean flow as well as having little or no effect on the instantaneous unsteady solution.

  10. Fluid flow measurements by means of vibration monitoring

    NASA Astrophysics Data System (ADS)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  11. Flow distribution in unglazed transpired plate solar air heaters of large area

    SciTech Connect

    Gunnewiek, L.H.; Brundrett, E.; Hollands, K.G.T.

    1996-10-01

    Unglazed transpired plate solar air heaters have proven to be effective in heating outside air on a once-through basis for ventilation and drying applications. Outside air is sucked through unglazed plates having uniformly distributed perforations. The air is drawn into a plenum behind the plate and then supplied to the application by fans. Large collectors have been built that cover the sides of sizable buildings, and the problem of designing the system so that the air is sucked uniformly everywhere (or nearly so) has proven to be a challenging one. This article describes an analytical tool that has been developed to predict the flow distribution over the collector. It is based on modelling the flow-field in the plenum by means of a commercial CFD (computational fluid mechanics) code, incorporating a special set of boundary conditions to model the plate and the ambient air. The article presents the 2D version of the code, and applies it to the problem of predicting the flow distribution in still air (no wind) conditions, a situation well treated by a 2D code. Results are presented for a wide range of conditions, and design implications are discussed. An interesting finding of the study is that the heat transfer at the back of the plate can play an important role, and because of this heat transfer, the efficiency of a collector in nonuniform flow can actually be greater than that of the same collector in uniform flow. 15 refs., 7 figs.

  12. the nature of air flow near the inlets of blunt dust sampling probes

    NASA Astrophysics Data System (ADS)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  13. Zonal flow modes in a tokamak plasma with dominantly poloidal mean flows

    SciTech Connect

    Zhou Deng

    2010-10-15

    The zonal flow eigenmodes in a tokamak plasma with dominantly poloidal mean flows are theoretically investigated. It is found that the frequencies of both the geodesic acoustic mode and the sound wave increase with respect to the poloidal Mach number. In contrast to the pure standing wave form in static plasmas, the density perturbations consist of a standing wave superimposed with a small amplitude traveling wave in the poloidally rotating plasma.

  14. Supersonic Air Flow due to Solid-Liquid Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Peters, Ivo R.; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-01

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle—with the key difference that here the “nozzle” is a liquid cavity shrinking rapidly in time.

  15. Computational and experimental study of spin coater air flow

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  16. Low-noise flow valve for air ducts

    NASA Technical Reports Server (NTRS)

    Gallo, E. A.

    1970-01-01

    Valve assembly controls air flow from feeder into main duct, with minimum of turbulence, friction, pressure differential, and noise. Valve consists of damper, deflector, and spring. Streamlining of damper and deflector merges flow smoothly, while spring keeps damper and deflector in contact and eliminates valve chatter and damping vibrations.

  17. Mean flow generation mechanism by inertial waves and normal modes

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  18. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Bénard convective cell

    NASA Astrophysics Data System (ADS)

    Eidelman, A.; Elperin, T.; Gluzman, I.; Golbraikh, E.

    2014-06-01

    We present results of the study of a turbulent air flow with a large scale circulation in Rayleigh-Bénard rectangular convective cell with a heated bottom wall and a cooled top wall. Velocity fields were measured using Particle Image Velocimetry in two sets of mutually perpendicular planes parallel to the vertical walls of the cell. Experiments revealed the existence of the main roll, having a length scale of the order of the size of the cell, and elongated eddy rings adjacent to the bottom and top of the main roll. The mean horizontal velocity of the main roll and the mean vorticity of eddy rings are almost aligned in a large part of the flow. The helicity of the mean flow is quite high, and is the source of turbulent helicity. Since helicity of the mean flow and turbulence is quite large, the flow in Rayleigh-Bénard convective cell is well suited to study properties of helical turbulence. Spatial distribution of the turbulent kinetic energy is almost locally isotropic in the central region of the cell. Spectra and cross spectra of turbulent velocities reveal two distinct ranges in the inertial interval with the slopes close to -5 / 3 and -7 / 3. We believe that emergence of these two intervals is associated with energy and helicity cascades that affect turbulence. We also determined turbulent helicity using the measured velocity cross-spectra. We found that the magnitude of the length scale where the slope of the velocity spectra changes and the magnitude of the length scale defined as the ratio of turbulent energy to the helicity are approximately the same. The slopes of power law spectra of helicity in the intervals above and below the transition length scale are equal to -2 / 3 and -4 / 3, respectively. Remarkably, similar inertial sub-ranges in turbulent energy spectra were observed in various laboratory and geophysical turbulent flows.

  19. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  20. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  1. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  2. Evaporation of stationary alcohol layer in minichannel under air flow

    NASA Astrophysics Data System (ADS)

    Afanasyev, Ilya; Orlova, Evgenija; Feoktistov, Dmitriy

    2015-01-01

    This paper presents experimental investigation of effect of the gas flow rate moving parallel to the stationary liquid layer on the evaporation rate under the conditions of formation of a stable plane "liquid-gas" interface. The average evaporation flow rate of liquid layer (ethanol) by the gas flow (air) has been calculated using two independent methods. Obtained results have been compared with previously published data.

  3. The Nature of Air Flow About the Tail of an Airplane in a Spin

    NASA Technical Reports Server (NTRS)

    Scudder, N F; Miller, M P

    1932-01-01

    Air flow about the fuselage and empennage during a high-angle-of-attack spin was made visible in flight by means of titanium-tetrachloride smoke and was photographed with a motion-picture camera. The angular relation of the direction of the smoke streamer to the airplane axes was computed and compared with the angular direction of the motion in space derived from instrument measurement of the spin of the airplane for a nearly identical mass distribution. The results showed that the fin and upper part of the rudder were almost completely surrounded by dead air, which would render them inoperative; that the flow around the lower portion of the rudder and the fuselage was nonturbulent; and that air flowing past the cockpit in a high-angle-of-attack spin could not subsequently flow around control surfaces.

  4. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  5. Onset of turbulent mean dynamics in boundary layer flow

    NASA Astrophysics Data System (ADS)

    Hamman, Curtis; Sayadi, Taraneh; Moin, Parviz

    2012-11-01

    Statistical properties of turbulence in low Reynolds number boundary layers are compared. Certain properties are shown to approach an asymptotic state resembling higher Reynolds number flow much earlier during transition than previously thought. This incipient turbulence is less stochastic and more organized than developed turbulence farther downstream, but the mean dynamics and production mechanisms are remarkably similar. The onset of turbulence in our recent simulations is also similar to that observed in the bypass transition of Wu & Moin where continuous freestream turbulence, rather than small-amplitude linear waves, triggers transition. For these inflow disturbances, self-sustaining turbulence occurs rapidly after laminar flow breakdown without requiring a significant development length nor significant randomization. Slight disagreements with FST-induced bypass transition are observed that correlate with the extra strain a turbulent freestream would impose upon the near-wall dynamics. Nevertheless, the turbulence statistics are similar shortly after the skin-friction overshoot independent of upstream receptivity. This early onset of deterministic turbulence provides support for reduced-order modeling of turbulent boundary layers based on non-linear stability mechanisms.

  6. Annular fuel and air co-flow premixer

    SciTech Connect

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  7. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    NASA Astrophysics Data System (ADS)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  8. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  9. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  10. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  11. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  12. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  13. Three dimensional flow field in rocket pump inducers. Part 2: Mean flow and turbulence characteristics inside the rotor passage, and theoretical analysis

    NASA Technical Reports Server (NTRS)

    Lakshminarayana, B.; Gorton, C. A.

    1975-01-01

    The measurement and prediction is reported of three dimensional flow fields in an axial flow inducer operating at a flow coefficient of 0.065 with air as the test medium. The experimental investigations included measurements of the blade static pressure and blade limiting streamline angle, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Analytical investigations were conducted to predict the three-dimensional inviscid flow. Total relative velocity distributions indicate a substantial velocity deficiency near the tip at mid-passage. High turbulence intensities and turbulence stresses are concentrated within this core region. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects and backflows are found to exist within the long, narrow passages of the inducer, emphasizing the complex nature of inducer flow which makes accurate prediction of the flow behavior extremely difficult.

  14. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  15. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  16. A detailed study of mean-flow solutions for stability analysis of transitional flows

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.; Vatsa, V.; Otto, J.; Kumar, A.

    1993-01-01

    A finite-volume upwind-difference parabolized Navier-Stokes code is utilized to obtain laminar mean-flow solutions at Mach 3.5 on a half-angle cone of 5 deg at an angle-of-attack of 2 deg. A detailed study is conducted on this configuration; the main focus is the velocity profiles in the leeward and windward symmetry planes at various axial locations. Comparisons of the solution profiles are made with both a central-difference code that incorporates scalar and matrix dissipation models and another state-of-the-art upwind-difference finitevolume code. The results obtained emphasize the importance of using matrix dissipation models for schemes that require explicit artificial dissipation. These results also illustrate the accuracy and efficiency of the planeby-plane marching procedure for computing mean-flow solutions for predicting the onset of transition with linear instability.

  17. Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2004-01-01

    Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.

  18. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  19. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  20. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  1. The Wells turbine in an oscillating air flow

    SciTech Connect

    Raghunathan, S.; Ombaka,

    1984-08-01

    An experimental study of the performance of a 0.2 m diameter Wells self rectifying air turbine with NACA 0021 blades is presented. Experiments were conducted in an oscillating flowrig. The effects of Reynolds number and Strouhal number on the performance of the turbine were investigated. Finally comparison between the results with the predictions from uni-directional flow tests are made.

  2. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  3. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  4. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  5. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  6. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  7. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  8. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  9. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination. PMID:19398506

  10. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  11. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  12. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  13. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  14. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2014-12-01

    Global mean surface air temperature have risen by 0.74 °C over the last 100 years. However, the definition of mean surface air temperature is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean temperatures (Td1) over land have been taken to be the average of the daily maximum and minimum temperature measurements. All existing principle global temperature analyses over land are primarily based on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean air temperature using hourly air temperature observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5°×5° grids. Therefore, caution should be taken when using mean air temperature datasets based on Td1 to examine spatial patterns of global warming.

  15. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  16. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  17. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  18. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  19. High efficiency, down flow air filter sealing and support system

    SciTech Connect

    Mattison, A.H.

    1986-07-15

    An assembly of high efficiency air filter units through which essentially all air entering a clean space below the units must pass to remove particulate matter down to sub-micron size from the air, the assembly comprising: (a) a plurality of air filter units each having a filter core of pleated media sealed in air-tight engagement on four sides to a surrounding, box-like, rigid frame, having side and end members; (b) means for supporting the filter units adjacent the upper surfaces thereof from structure above the space with adjacent units having the side and end members thereof providing adjoining vertical surfaces in closely spaced relation with the lower surfaces of the units in essentially the same horizontal plane to form at least a portion of the top of the space; and (c) a caulking material filling all spaces between the adjoining vertical surfaces of adjacent filter units, effectively sealing the spaces and providing the sole means preventing passage of air around the units.

  20. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  1. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  2. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  3. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270

  4. Regenerator flow distribution by means of a burner

    SciTech Connect

    Tsai, Y.W.

    1983-03-01

    In a regenerative furnace of the type used for melting glass, employment of a gas stream (preferably from a high-velocity burner) in the plenum of the regenerator controls the gas flow distribution within the regenerator. The employment of this auxiliary burner makes the heating of the packing more uniform, minimizes localized overheating of the packing, and improves regenerator efficiency. This flow control device can be added readily to an existing operating furnace with no disruption of operation and at relatively low cost.

  5. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  6. Slug-plug flow analyses of stratified flows in a horizontal duct by means of MARS

    SciTech Connect

    Kunugi, T.; Ose, Y.; Banat, M.

    1999-07-01

    The objectives of this study are to perform the slug-plug flow analyses of stratified flows in a horizontal duct by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author which based on the piece-wise linear calculation as a volume tracking procedure and the continuum surface force model (CSF) for the surface tension, and to investigate the effect of the Bernoulli term for slug-plug flows, i.e., so-called the topological law, on the competition between inertial forces and gravitation forces. Some discussion on the primary jump condition at the interface in the MARS is described in the paper. The results of the direct numerical simulation (DNS) by the MARS are compared with the experimental one. The slugging positions obtained by the DNS are in good agreement with the experimental one. Since the mass conservation between before the plugging and after slugging can be shown by the DNS here, the authors may conclude that this physical/numerical model based on the MARS is reliable.

  7. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  8. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2014-03-01

    Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.

  9. A mean profile formulation for canonical wall-bounded turbulent flows consistent with the mean momentum equation

    NASA Astrophysics Data System (ADS)

    Philip, Jimmy; Marusic, Ivan; Klewicki, Joseph

    2012-11-01

    The mean velocity profile for wall bounded flows is formulated in a manner that is consistent with the magnitude ordering of terms and characteristic length scales associated with the mean momentum equation. Close to the wall, the viscous length characterizes the dynamics, and Prandtl's law-of-the-wall holds. In an outer inertial region where the dominant balance is between the Reynolds stress gradient and the pressure gradient (or mean advection), the mean flow is most closely approximated by a logarithmic function. The width of this region is (asymptotically) characterized by the outer length scale. As initially demonstrated by Wei et al. (2005), for all canonical wall-flows the mean viscous force retains dominant order out to a wall-normal location that, in inner units, is O (√{δ+}) , where δ+ is the Karman number. The present formulation respects these known properties. This formulation predicts that for low δ+ the log-law is approached from ``above'' the logarithmic line, while for high δ+ the log-law is attained from ``below.'' These subtle properties and the general functional form are shown to be in very good agreement with the mean velocity data available from boundary layer, pipe and channel flows.

  10. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  11. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  12. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  13. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  14. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  15. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  16. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  17. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  18. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  19. Exploratory investigation of the use of area suction to eliminate air-flow separation in diffusers having large expansion angles

    NASA Technical Reports Server (NTRS)

    Holzhauser, Curt A; Hall, Leo P

    1956-01-01

    Tests were made at a mean inlet Mach number of 0.2 with area suction applied to conical diffusers with expansion angles of 30 degrees and 50 degrees and exit to inlet area ratios of 2. Air-flow separation was eliminated with suction mass flows of 3 and 4 percent of the inlet mass flows for the 30 degrees and 50 degrees diffusers, respectively.

  20. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  1. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  2. Acoustic diffraction in a trifurcated waveguide with mean flow

    NASA Astrophysics Data System (ADS)

    Ayub, M.; Tiwana, M. H.; Mann, A. B.

    2010-12-01

    Diffraction of acoustic plane wave through a semi-infinite hard duct which is placed symmetrically inside an infinite soft/hard duct has been analyzed rigorously. Convective flow has been taken into consideration for the analysis. In this paper the applied method of solution is integral transform and Wiener-Hopf technique. The imposition of boundary conditions result in a 2×2 matrix Wiener-Hopf equation associated with a new canonical scattering problem which has been solved explicitly by expansion coefficient method. The graphs are plotted for sundry parameters of interest. Kernel functions are factorized. The results have applications to duct acoustics.

  3. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  4. Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children

    PubMed Central

    Torre, Hilda

    2012-01-01

    Objective: To analyse the changes in nasal air flow and school grades after rapid maxillary expansion (RME) in oral breathing children with maxillary constriction. Material and Methods: Forty-four oral breathing children (mean age 10.57 y) underwent orthodontic RME with a Hyrax screw. Forty-four age-matched children (mean age 10.64 y) with nasal physiological breathing and adequate transverse maxillary dimensions served as the control group. The maxillary widths, nasal air flow assessed via peak nasal inspiratory flow (PNIF), and school grades were recorded at baseline, and 6 months and one year following RME. Results: After RME, there were significant increases in all the maxillary widths in the study group. PNIF was reduced in the study group (60.91 ± 13.13 l/min) compared to the control group (94.50 ± 9.89 l/min) (P < 0.000) at the beginning of the study. Six months after RME, a significant improvement of PNIF was observed in the study group (36.43 ± 22.61). School grades were lower in the study group (85.52 ± 5.74) than in the control group (89.77 ± 4.44) (P < 0.05) at the baseline, but it increased six months after RME (2.77 ± 3.90) (P < 0.001) and one year later (5.02 ± 15.23) (P < 0.05). Conclusions: Nasal air flow improved in oral breathing children six months and one year after RME. School grades also improved, but not high enough to be academically significant. Key words:Maxillary constriction, oral breathing, nasal air flow, rapid maxillary expansion, school grades. PMID:22322516

  5. Three-Dimensional Mapping of Air Flow at an Urban Canyon Intersection

    NASA Astrophysics Data System (ADS)

    Carpentieri, Matteo; Robins, Alan G.; Baldi, Sandro

    2009-11-01

    In this experimental work both qualitative (flow visualisation) and quantitative (laser Doppler anemometry) methods were applied in a wind tunnel in order to describe the complex three-dimensional flow field in a real environment (a street canyon intersection). The main aim was an examination of the mean flow, turbulence and flow pathlines characterising a complex three-dimensional urban location. The experiments highlighted the complexity of the observed flows, particularly in the upwind region of the intersection. In this complex and realistic situation some details of the upwind flow, such as the presence of two tall towers, play an important role in defining the flow field within the intersection, particularly at roof level. This effect is likely to have a strong influence on the mass exchange mechanism between the canopy flow and the air aloft, and therefore the distribution of pollutants. This strong interaction between the flows inside and outside the urban canopy is currently neglected in most state-of-the-art local scale dispersion models.

  6. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  7. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  8. Effects of building-roof cooling on flow and air temperature in urban street canyons

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Jin; Pardyjak, Eric; Kim, Do-Yong; Han, Kyoung-Soo; Kwon, Byung-Hyuk

    2014-05-01

    The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.

  9. Optical observation of ultrafine droplets and air flows from newly designed supersonic air assist spray nozzles

    NASA Astrophysics Data System (ADS)

    Miyashiro, Seiji S.; Mori, H.; Takechi, H.

    2001-04-01

    One of the authors developed a new spray drying nozzle (special quadruplet fluid spray nozzle) for drug manufacturing and it has succeeded in manufacturing fine particles of 2 micrometer diameter of 1/15 ratios to those currently in use. The flow visualization results show that the two air jets become under-expanded on both edge sides of the nozzle, generate shock and expansion waves alternately on each side and reach the edge tip, where they collide, unite, and spout out while shock and expansion waves are again formed in the mixed jet. When the edge surfaces are supplied with water, the water is extended into thin film by the air jet and intensely disturbed. At the nozzle tip it is torn into droplets, which are further atomized afterwards in shock waves. At the spray tip, the friction with ambient air shears the droplets furthermore, and they decrease further in size.

  10. Linear Instability of a Uni-Directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.

    1996-01-01

    The effect of spanwise-periodic mean-flow distortions (i.e. streamwise-vortex structures) on the evolution of small-amplitude, single-frequency instability waves in an otherwise two-dimensional shear flow is investigated. The streamwise-vortex structures are taken to be just weak enough so that the spatially growing instability waves behave (locally) like linear perturbations about a uni-directional transversely sheared mean flow. Numerical solutions are computed and discussed for both the mean flow and the instability waves. The influence of the streamwise-vortex wavelength on the properties of the most rapidly growing instability wave is also discussed.

  11. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  12. Estimation of daily mean air temperature from satellite derived radiometric data

    NASA Technical Reports Server (NTRS)

    Phinney, D.

    1976-01-01

    The Screwworm Eradication Data System (SEDS) at JSC utilizes satellite derived estimates of daily mean air temperature (DMAT) to monitor the effect of temperature on screwworm populations. The performance of the SEDS screwworm growth potential predictions depends in large part upon the accuracy of the DMAT estimates.

  13. Flow Analysis over Batten Reinforced Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Townsend, Kurtis; Hicks, Travis; Hubner, James P.

    2008-11-01

    Flexible membrane wings modify the flow separation of low Reynolds number micro air vehicles (MAVs). A specific type of fixed-wing geometry is a batten-reinforced configuration in which the membrane is attached to a rigid frame with chordwise battens, allowing the vibration of the membrane at the trailing-edge. In this study, smoke-wire visualization and hot-wire anemometry, both near the trailing-edge and further downstream in the wake, are used to quantify the frequency and energy of these fluctuations for various cell geometries and flow angles-of-attack. Improvement in the wake momentum deficit will be analyzed to determine preferred membrane cell geometries for MAV flight conditions.

  14. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  15. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  16. Upper air teleconnections to Ob River flows and tree rings

    NASA Astrophysics Data System (ADS)

    Meko, David; Panyushkina, Irina; Agafonov, Leonid

    2015-04-01

    The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air

  17. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  18. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  19. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  20. Observed Temporal Evolution of Global Mean Age of Stratospheric Air for the 2002 to 2010 Period

    NASA Astrophysics Data System (ADS)

    Stiller, G. P.; von Clarmann, T.; Haenel, F.; Funke, B.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; Lopez-Puertas, M.

    2011-12-01

    According to model calculations, the meridional circulation is expected to intensify as a result of climate change, and mean age of stratospheric air is expected to decrease. However, an observational data set presented recently (Engel et al., 2009) and consisting of 27 balloon samples of the age of air tracers carbon dioxide and sulfur hexafluoride covering the years 1975 to 2005 did not confirm the model predictions. As a contribution to the ongoing discussion, an extensive observational data set, consisting of more than 1 Million SF6 vertical profiles distributed globally is presented here. It has been derived from the MIPAS instrument covering the period 2002 to 2010 and has been converted into mean age of stratospheric air by referring to a combined data set of in-situ and flask global mean tropospheric SF6 measurements provided by NOAA/ESRL. During conversion into age of air, the non-linearity of tropospheric SF6 increase has been corrected for by convolution with the age spectrum within an iterative approach. Monthly zonal means of mean age of air, binned at 10 deg latitude and 1-2 km altitude, were analyzed with respect to their temporal variation by fitting a regression model consisting of a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal absolute age of air and the age-of-air linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the

  1. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  2. Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1932-01-01

    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against.

  3. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  4. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  5. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  6. Laser ignition of hypersonic air-hydrogen flow

    NASA Astrophysics Data System (ADS)

    Brieschenk, S.; Kleine, H.; O'Byrne, S.

    2013-09-01

    An experimental investigation of the behaviour of laser-induced ignition in a hypersonic air-hydrogen flow is presented. A compression-ramp model with port-hole injection, fuelled with hydrogen gas, is used in the study. The experiments were conducted in the T-ADFA shock tunnel using a flow condition with a specific total enthalpy of 2.5 MJ/kg and a freestream velocity of 2 km/s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates that laser-induced ignition at the fuel-injection site can be effective in terms of hydroxyl production. A semi-empirical method to estimate the conditions in the laser-heated gas kernel is presented in the paper. This method uses blast-wave theory together with an expansion-wave model to estimate the laser-heated gas conditions. The spatially averaged conditions found with this approach are matched to enthalpy curves generated using a standard chemical equilibrium code (NASA CEA). This allows us to account for differences that are introduced due to the idealised description of the blast wave, the isentropic expansion wave as well as thermochemical effects.

  7. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  8. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  9. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  10. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  11. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  12. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  13. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  14. Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.

    2012-01-01

    Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.

  15. On The Evaluation of Debris Flows Dynamics By Means of Mathematical Models.

    NASA Astrophysics Data System (ADS)

    Arattano, M.; Franzi, L.

    When a given basin is interested by the presence of debris flow events, the prediction of the debris flows dynamic characteristics is generally done by means of the investi- gations on the past events. This analysis can be led by means of a detailed geological survey on the kind and shape of deposits on the debris fan or on the marks left by the debris flows, but this procedure cannot directly give any quantitative information about the dynamic characteristics of the debris flow itself, that have to be estimated by the application of well known formulas proposed in literature. The results of this procedure have been compared to those obtained by means of a mathematical simu- lation of a debris flow occurred in the Moscardo basin in 1996, that avails itself of the lymnographs recorded in three different gauges across the river. The comparison put into evidence the importance of time data recordings, without which the obtained results could be misleading.

  16. Wave / wave interaction production horizontal mean flows in stably stratified fluids

    NASA Astrophysics Data System (ADS)

    Galmiche, M.; Thual, O.; Bonneton, P.

    2000-01-01

    We show that internal wave/wave interactions in stratified fluids are able to produce strong horizontal mean currents. A simple analytical model allows us to estimate the amplitude of the time-periodic horizontal mean flow induced by the interaction of two monochromatic waves. This model shows that in some cases, the mean flow velocity can overgo a threshold beyond which critical layers and intense energy transfers from the waves to the mean flow are expected. This prediction is confirmed by direct pseudo-spectral simulations of the Navier-Stokes equations under the Boussinesq approximation. Such interactions may help to further understand the presence of strong vertical shear observed in the final stage of stratified flows in oceans and atmospheres.

  17. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  18. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  19. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  20. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  1. Effects of Rayleigh and Newtonian damping on wave-mean flow interaction

    NASA Technical Reports Server (NTRS)

    Hayashi, Y.

    1985-01-01

    A theoretical study is made of the effects of mean damping on wave-mean flow interactions. A condition is derived for the Eliassen-Palm flux divergence to balance the steady-state residual circulations induced by eddies in the presence of mean damping. It is shown by a simple analytical model that this balance holds for stratospheric planetary waves when the Rayleigh friction coefficient is one order smaller than the Newtonian cooling coefficient, although the tall mean flow condition is not violated. In this case, the Eliassen-Palm flux divergence can be interpreted as approximating the steady residual circulation (approximately equal to Lagrangian-mean circulations) induced by eddies as well as the net mean acceleration in the absence of mean damping. This balance is consistent with the stratospheric circulations of a dynamical model.

  2. A quasi-one-dimensional model of thermoacoustics in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Holzinger, Tobias; Baumgartner, Armin; Polifke, Wolfgang

    2015-01-01

    In thermoacoustic regenerators, the interaction of thermo-viscous boundary layers and axial temperature gradients causes a conversion from thermal energy to acoustic power or vice versa. In this paper, an improved analytical model for thermoacoustic boundary layer effects in the presence of mean flow is derived and analyzed. Previous formulations of the thermo-acoustic effect take into account effects of mean flow on acoustic propagation only implicitly, i.e. in as much as mean flow influences the mean temperature field. The new model, however, includes additional terms in the perturbation equations, which describe explicitly the interaction between steady mean flow and acoustics. For a parallel plate pore the three-dimensional thermoacoustic equations are derived and reduced to a transversally averaged system of differential equations by applying Green's function technique and suitable assumptions. The resulting one-dimensional perturbation equations are then solved numerically for two sets of boundary conditions to obtain the linear scattering matrix coefficients. The solutions, generated for a wide range of frequencies, can be applied in a low-order "network model" context to study the stability of thermoacoustic devices. The impact of mean flow on the thermoacoustic interaction is investigated and validated against full computational fluid dynamics simulations of laminar, compressible flow for one specific configuration. It is shown that at low frequencies (Womersley number < 1) the new formulation predicts the acoustic behavior more accurately than the earlier formulations. Finally, the ideas and benefit of further improved and more complex models for higher Mach numbers are discussed.

  3. Sampling Biases in Datasets of Historical Mean Air Temperature over Land

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun

    2014-04-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  4. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  5. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  6. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions

  7. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  8. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  9. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  10. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  11. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  12. Observed temporal evolution of global mean age of stratospheric air for the 2002 to 2010 period

    NASA Astrophysics Data System (ADS)

    Stiller, G. P.; von Clarmann, T.; Haenel, F.; Funke, B.; Glatthor, N.; Grabowski, U.; Kellmann, S.; Kiefer, M.; Linden, A.; Lossow, S.; López-Puertas, M.

    2012-04-01

    An extensive observational data set from MIPAS measurements, consisting of more than one million SF6 vertical profiles distributed globally has been condensed into monthly zonal means of mean age of air for the period September 2002 to January 2010, binned at 10° latitude and 1-2 km altitude. The data were analysed with respect to their temporal variation by fitting a regression model consisting of: a constant and a linear increase term, 2 proxies for the QBO variation, sinusoidal terms for the seasonal and semi-annual variation and overtones for the correction of the shapes to the observed data set. The impact of subsidence of mesospheric SF6-depleted air and in-mixing into non-polar latitudes on mid-latitudinal age of air and its linear increase was assessed and found to be small. The linear increase of mean age of stratospheric air was found to be positive and partly larger than the trend derived by Engel et al. (2009) for most of the Northern mid-latitudes, the middle stratosphere in the tropics, and parts of the Southern mid-latitudes, as well as for the Southern polar upper stratosphere. Multi-year decrease of age of air was found for the lowermost and the upper stratospheric tropics, for parts of Southern mid-latitudes, and for the Northern polar regions. Analyses of the amplitudes and phases of the seasonal variation shed light on the coupling between different stratospheric regions. In particular, the Northern mid-latitude stratosphere is well coupled to the tropics, while the Northern lowermost mid-latitudinal stratosphere is decoupled, confirming the separation of the shallow branch of the Brewer-Dobson circulation from the deep branch. We suggest an overall increased tropical upwelling, together with a weakening of mixing barriers, especially in the Northern hemisphere, as possible explanations for the observed patterns. Reference: Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T., Sugawara, S

  13. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  14. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  15. Pulsation-driven mean zonal and meridional flows in rotating massive stars

    NASA Astrophysics Data System (ADS)

    Lee, Umin; Mathis, Stéphane; Neiner, Coralie

    2016-04-01

    Zonal and meridional axisymmetric flows can deeply impact the rotational and chemical evolution of stars. Therefore, momentum exchanges between waves propagating in stars, differential rotation, and meridional circulation must be carefully evaluated. In this work, we study axisymmetric mean flows in rapidly and initially uniformly rotating massive stars driven by small amplitude non-axisymmetric κ-driven oscillations. We treat them as perturbations of second order of the oscillation amplitudes and derive their governing equations as a set of coupled linear ordinary differential equations. This allows us to compute 2D zonal and meridional mean flows driven by low frequency g and r modes in slowly pulsating B stars and p modes in β Cephei stars. Oscillation-driven mean flows usually have large amplitudes only in the surface layers. In addition, the kinetic energy of the induced 2D zonal rotational motions is much larger than that of the meridional motions. In some cases, meridional flows have a complex radial and latitudinal structure. We find pulsation-driven and rotation-driven meridional flows can have similar amplitudes. These results show the importance of taking wave - mean flow interactions into account when studying the evolution of massive stars.

  16. Mean flow generation by Görtler vortices in a rotating annulus with librating side walls

    NASA Astrophysics Data System (ADS)

    Ghasemi V., Abouzar; Klein, Marten; Harlander, Uwe; Kurgansky, Michael V.; Schaller, Eberhard; Will, Andreas

    2016-05-01

    Time periodic variation of the rotation rate of an annulus induces in supercritical regime an unstable Stokes boundary layer over the cylinder side walls, generating Görtler vortices in a portion of a libration cycle as a discrete event. Numerical results show that these vortices propagate into the fluid bulk and generate an azimuthal mean flow. Direct numerical simulations of the fluid flow in an annular container with librating outer (inner) cylinder side wall and Reynolds-averaged Navier-Stokes (RANS) equations as diagnostic equations are used to investigate generation mechanism of the retrograde (prograde) azimuthal mean flow in the bulk. First, we explain, phenomenologically, how absolute angular momentum of the bulk flow is mixed and changed due to the propagation of the Görtler vortices, causing a new vortex of basin size. Then we investigate the RANS equations for intermediate time scale of the development of the Görtler vortices and for long time scale of the order of several libration periods. The former exhibits sign selection of the azimuthal mean flow. Investigating the latter, we predict that the azimuthal mean flow is proportional to the libration amplitude squared and to the inverse square root of the Ekman number and libration frequency and then confirms this using the numerical data. Additionally, presence of an upscale cascade of energy is shown, using the kinetic energy budget of fluctuating flow.

  17. Tidal residual current and its role in the mean flow on the Changjiang Bank

    NASA Astrophysics Data System (ADS)

    Xuan, Jiliang; Yang, Zhaoqing; Huang, Daji; Wang, Taiping; Zhou, Feng

    2016-02-01

    The tidal residual current may play an important role in the mean flow in the Changjiang Bank region, in addition to other residual currents, such as the Taiwan Warm Current, the Yellow Sea Coastal Current, and the Yellow Sea Warm Current. In this paper, a detailed structure of the tidal residual current, in particular the meso-scale eddies, in the Changjiang Bank region is observed from model simulations, and its role in the mean flow is quantified using the well-validated Finite Volume Coastal Ocean Model. The tidal residual current in the Changjiang Bank region consists of two components: an anticyclonic regional-scale tidal residual circulation around the edge of the Changjiang Bank and some cyclonic meso-scale tidal residual eddies across the Changjiang Bank. The meso-scale tidal residual eddies occur across the Changjiang Bank and contribute to the regional-scale tidal residual circulation offshore at the northwest boundary and on the northeast edge of the Changjiang Bank, southeastward along the 50 m isobath. Tidal rectification is the major mechanism causing the tidal residual current to flow along the isobaths. Both components of the tidal residual current have significant effects on the mean flow. A comparison between the tidal residual current and the mean flow indicates that the contribution of the tidal residual current to the mean flow is greater than 50%.

  18. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    NASA Astrophysics Data System (ADS)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  19. Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.

    2013-01-01

    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.

  20. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1974-01-01

    The effort conducted to gather additional understanding of the complex inviscid and viscid effects existing within the passages of a three-bladed axial flow inducer operating at a flow coefficient of 0.065 is summarized. The experimental investigations included determination of the blade static pressure and blade limiting streamline angle distributions, and measurement of the three components of mean velocity, turbulence intensities and turbulence stresses at locations inside the inducer blade passage utilizing a rotating three-sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. Analytical investigations were conducted to predict the three-dimensional inviscid flow in the inducer by numerically solving the exact equations of motion, and to approximately predict the three-dimensional viscid flow by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate.

  1. Analysis of breathing air flow patterns in thermal imaging.

    PubMed

    Fei, Jin; Pavlidis, Ioannis

    2006-01-01

    We introduce a novel methodology to characterize breathing patterns based on thermal infrared imaging. We have retrofitted a Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO(2) absorption band (4130 - 4427 nm). We use this system to record the radiation information from within the breathing flow region. Based on this information we compute the mean dynamic thermal signal of breath. The breath signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then filter the high frequency noise due to tracking instability. We detect the breathing cycles through zero cross thresholding, which is insensitive to noise around the zero line. We normalize the breathing cycles and align them at the transition point from inhalation to exhalation. Then, we compute the mean breathing cycle. We use the first eight (8) harmonic components of the mean cycle to characterize the breathing pattern. The harmonic analysis highlights the intra-individual similarity of breathing patterns. Our method opens the way for desktop, unobtrusive monitoring of human respiration and may find widespread applications in clinical studies of chronic ailments. It also brings up the intriguing possibility of using breathing patterns as a novel biometric. PMID:17945610

  2. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  3. Methods for the calculation of axial wave numbers in lined ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1981-01-01

    A survey is made of the methods available for the calculation of axial wave numbers in lined ducts. Rectangular and circular ducts with both uniform and non-uniform flow are considered as are ducts with peripherally varying liners. A historical perspective is provided by a discussion of the classical methods for computing attenuation when no mean flow is present. When flow is present these techniques become either impractical or impossible. A number of direct eigenvalue determination schemes which have been used when flow is present are discussed. Methods described are extensions of the classical no-flow technique, perturbation methods based on the no-flow technique, direct integration methods for solution of the eigenvalue equation, an integration-iteration method based on the governing differential equation for acoustic transmission, Galerkin methods, finite difference methods, and finite element methods.

  4. Localization of an air target by means of GNSS-based multistatic radar

    NASA Astrophysics Data System (ADS)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  5. Analytical and experimental study of mean flow and turbulence characteristics inside the passages of an axial flow inducer

    NASA Technical Reports Server (NTRS)

    Gorton, C. A.; Lakshminarayana, B.

    1980-01-01

    The inviscid and viscid effects existing within the passages of a three bladed axial flow inducer operating at a flow coefficient of 0.065 are investigated. The blade static pressure and blade limiting streamline angle distributions were determined and the three components of mean velocity, turbulence intensities, and turbulence stresses were measured at locations inside the inducer blade passage utilizing a rotating three sensor hotwire probe. Applicable equations were derived for the hotwire data reduction analysis and solved numerically to obtain the appropriate flow parameters. The three dimensional inviscid flow in the inducer was predicted by numerically solving the exact equations of motion, and the three dimensional viscid flow was predicted by incorporating the dominant viscous terms into the exact equations. The analytical results are compared with the experimental measurements and design values where appropriate. Radial velocities are found to be of the same order as axial velocities within the inducer passage, confirming the highly three dimensional characteristic of inducer flow. Total relative velocity distribution indicate a substantial velocity deficiency near the tip at mid-passage which expands significantly as the flow proceeds toward the inducer trailing edge. High turbulence intensities and turbulence stresses are concentrated within this core region. Considerable wake diffusion occurs immediately downstream of the inducer trailing edge to decay this loss core. Evidence of boundary layer interactions, blade blockage effects, radially inward flows, annulus wall effects, and backflows are all found to exist within the long, narrow passages of the inducer.

  6. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  7. Nonlinear Instability of a Uni-directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Goldstein, Marvin E.

    1994-01-01

    It is well known that the presence of a weak cross flow in an otherwise two-dimensional shear flow results in a spanwise variation in the mean streamwise velocity profile that can lead to an amplification of certain three-dimensional disturbances through a kind of resonant-interaction mechanism (Goldstein and Wundrow 1994). The spatial evolution of an initially linear, finite-growth-rate, instability wave in such a spanwise-varying shear flow is considered, The base flow, which is governed by the three-dimensional parabolized Navier-Stokes equations, is initiated by imposing a spanwise- periodic cross-flow velocity on an otherwise two-dimensional shear flow at some fixed streamwise location. The resulting mean-flow distortion initially grows with increasing streamwise distance, reaches a maximum and eventually decays through the action of viscosity. This decay, which coincides with the viscous spread of of the shear layer, means that the local growth rate of the instability wave will eventually decrease as the wave propagates downstream. Nonlinear effects can then become important within a thin spanwise-modulated critical layer once the local instability-wave amplitude and growth rate become sufficiently large and small, respectively. The amplitude equation that describes this stage of evolution is shown to be a generalization of the one obtained by Goldstein and Choi (1989) who considered the related problem of the interaction of two oblique modes in a two-dimensional shear layer.

  8. Measurements in the turbulent boundary layer at constant pressure in subsonic and supersonic flow. Part 1: Mean flow

    NASA Technical Reports Server (NTRS)

    Collins, D. J.; Coles, D. E.; Hicks, J. W.

    1978-01-01

    Experiments were carried out to test the accuracy of laser Doppler instrumentation for measurement of Reynolds stresses in turbulent boundary layers in supersonic flow. Two facilities were used to study flow at constant pressure. In one facility, data were obtained on a flat plate at M sub e = 0.1, with Re theta up to 8,000. In the other, data were obtained on an adiabatic nozzle wall at M sub e = 0.6, 0.8, 1.0, 1.3, and 2.2, with Re theta = 23,000 and 40,000. The mean flow as observed using Pitot tube, Preston tube, and floating element instrumentation is described. Emphasis is on the use of similarity laws with Van Driest scaling and on the inference of the shearing stress profile and the normal velocity component from the equations of mean motion. The experimental data are tabulated.

  9. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.

    PubMed

    Herrling, Maria P; Guthausen, Gisela; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2015-05-01

    Biofilms on cylindrical carrier material originating from a lab-scale moving bed biofilm reactor (MBBR) were investigated by means of Magnetic Resonance Imaging (MRI). The aim of this study was to determine the local flow velocities at the inner face of the biofilm carrier. To get an insight into the mass transport processes, flow velocity maps of blank and with biofilm cultivated carriers were measured. A single carrier was placed in a tube in three different orientations and exposed to flow velocities of 0.21, 0.42, and 0.64 mm/s. The interplay of the biofilm morphology and the local flow pattern was then analyzed including the effect of the orientation of the carrier in relation to the upstream flow angle. Within this study, the biofilm carrier can be understood as an interconnected system of four sections in which the incoming fluid volume will be distributed depending on the biomass occupation and morphology. In sections with high biofilm occupation, the flow resistance is increased. Depending on the orientation of the carrier in the flow field, this effect leads to flow evasion through less covered sections showing higher flow velocities and consequently the risk of biofilm detachment. However, there was no clear correlation between biofilm coverage and flow ratio. PMID:25425488

  10. Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.

  11. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-01-01

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  12. Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    NASA Astrophysics Data System (ADS)

    Rädler, Karl-Heinz; Brandenburg, Axel; Del Sordo, Fabio; Rheinhardt, Matthias

    2011-10-01

    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Péclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.

  13. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  14. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  15. Influence of local air flow regimes on the ozone content of two Pyrenean valleys

    NASA Astrophysics Data System (ADS)

    Ezcurra, A.; Benech, B.; Echelecou, A.; Santamaría, J. M.; Herrero, I.; Zulueta, E.

    2013-08-01

    The Pyrenees Mountains, the natural border between France and Spain, have experienced a large increase in road traffic in the last decade. Due to this fact, a research program named PAP (Pollution Atmospheric in the Pyrenees) was established in 2004 by several laboratories from Spain and France to address the influence of meteorological regimes on the pollution levels of two adjacent valleys, Aspe valley (France) and Canfranc valley (Spain), situated in the center of the Pyrenean range. Pollution measurements show that mean ozone concentrations increase with height. In Sarrance, the site placed at the bottom of the valleys at 335 m above sea level (ASL), the mean ozone value was 23 ppb, whereas at the Pic Midi observatory (2877 m ASL), the top of the PAP network, the value found for mean ozone values was 52 ppb. A linear trend fits this altitudinal variation with a vertical gradient of 17 ppb km-1. The data demonstrate that the observatories located over 1400 m ASL do not show the classical mean daily ozone cycle, and that mean ozone concentrations throughout the day are nearly constant. By contrast, below 1400 m ASL, the classical mean daily ozone cycle is clear, reaching a maximum around noon. These findings indicate that the photochemical reactions are almost inactive at the elevated observatories and, as a result, it can be concluded that ozone levels at those locations are mostly caused by advection of aged air masses. Consequently, we could find that the gradient inside the valleys follows a linear trend of 29 ppb km-1. Finally, it has been observed that in north Foehn situations, intrusions of polluted air coming from the Free Troposphere (FT) can be detected in the upper part of the Spanish valley of Canfranc, where the mean daily ozone cycle changes significantly and becomes similar to the ones measured at the stations situated above 1400 m ASL. However, the results also pointed out that, except for the Foehn situations, the different local air flow

  16. Transmission of sound through nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Shaker, B. S.; Kaiser, J. E.

    1977-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined, circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. Although the theory is described for circular ducts, it is applicable to other duct configurations - annular, two dimensional, and rectangular. The theory is described for the linear problem, but the technique is general and has the advantage of being applicable to the nonlinear case as well as the linear case. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave. A computer program was developed. The mean flow model consists of a one dimensional flow in the core and a quarter-sine profile in the boundary layer. Results are presented for the reflection and transmission coefficients in ducts with varying slopes and carrying different mean flows.

  17. Inviscid and viscous flow computations by means of a lambda methodology: A review

    NASA Astrophysics Data System (ADS)

    Fortunato, B.

    1997-08-01

    The present paper provides a review of the more important results obtained by the author, sometimes with co-authors, solving inviscid and viscous compressible flows by means of a lambda methodology. In particular, an implicit numerical algorithm, called fast solver, has always been applied. This methodology separately integrates the compatibility conditions, written in terms of generalized Riemann variables, along appropriate bicharacteristic lines. The multi-dimensional flow problem is, thus, reduced to a sequence of simple quasi one-dimensional problems. The merits of this approach are demonstrated by means of the application of the method to the solution of three dimensional (3-D) subsonic and transonic inviscid flows, of two-dimensional (2-D) and 3-D viscous flows and of the 2-D flow around a vertical axis wind turbine. In the transonic case the shock wave is computed by means of a shock fitting technique, which enforces the proper shock jumps by an explicit use of the Rankine-Hugoniot equations; in the wind turbine case the blades are represented in a time-averaged sense by means of an actuator porous cylinder, having the turbine radius. The results are then compared with other numerical results and with experimental results.

  18. Gravity wave-induced mean flows and turbulence at the tropopause

    NASA Astrophysics Data System (ADS)

    McHugh, J. P.; Sharman, R.

    2012-12-01

    Unsteady gravity waves interacting with the tropopause are investigated using linear and nonlinear numerical simulations. The tropopause is modeled as the interface between two layers of constant Brunt-Väisälä frequency. The simulations are 2D with uniform horizontal flow, the background rotation is ignored, and the waves are generated by flow over an idealized isolated obstacle shape at the surface. The nonlinear simulations show a horizontal wave-induced mean flow at the tropopause similar to previous results treating horizontally periodic internal waves. The mean flow created by the impinging gravity waves is increased over the background wind below the tropopause and decreased above the tropopause. This effect is not present in the linear simulations. The nonlinear effect is felt more strongly for cases with higher mountain heights and larger values of the stability in the upper layer. The final steady mountain wave flow appears to permanently retain this mean flow change. The deceleration region above the tropopause results in a patch of slow-moving fluid near the interface which induces local regions of reduced Richardson number and may help explain some observational results of higher turbulence regions near the tropopause over mountainous regions.

  19. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  20. A quantitative theory for the mean velocity distribution of compressible ramp flow

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Tao; Wu, Bin; Zou, Hong-Yue; Li, Xin-Liang; Hussain, Fazle; She, Zhen-Su

    2013-11-01

    The flow induced by a compression ramp is of practical importance as a typical flow in the intake of a scramjet engine, yet no quantitative theory is available. This study proposes a quantitative theory for the mean velocity profile (MVP) of the compression ramp flow, based on a multi-layer description of turbulent boundary layers. Application of the theory on the direct numerical simulation (DNS) data shows that the mixing length function in the boundary layer after the reattachment point has a five-layer structure. A formula is given for the streamwise MVP, in very good agreement with the DNS data. Variation of the parameters in the formula with the spatial position is measured and discussed. These results further support the validity of the Structural Ensemble Dynamics approach to a wide class of wall-bounded flows, and a new modeling strategy for engineering computation of complex supersonic flows.

  1. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  2. Modeling of non-equilibrium phenomena in expanding flows by means of a collisional-radiative model

    SciTech Connect

    Munafò, A.; Lani, A.; Bultel, A.; Panesi, M.

    2013-07-15

    The effects of non-equilibrium in a quasi-one-dimensional nozzle flow are investigated by means of a collisional-radiative model. The gas undergoing the expansion is an air plasma and consists of atoms, molecules, and free electrons. In the present analysis, the electronic excited states of atomic and molecular species are treated as separate pseudo-species. Rotational and vibrational energy modes are assumed to be populated according to Boltzmann distributions. The coupling between radiation and gas dynamics is accounted for, in simplified manner, by using escape factors. The flow governing equations for the steady quasi-one-dimensional flow are written in conservative form and discretized in space by means of a finite volume method. Steady-state solutions are obtained by using a fully implicit time integration scheme. The analysis of the evolution of the electronic distribution functions reveals a substantial over-population of the high-lying excited levels of atoms and molecules in correspondence of the nozzle exit. The influence of optical thickness is also studied. The results clearly demonstrate that the radiative transitions, within the optically thin approximation, drastically reduce the over-population of high-lying electronic levels.

  3. Meaning

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  4. Turbulent Compressible Convection with Rotation. II. Mean Flows and Differential Rotation

    NASA Astrophysics Data System (ADS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  5. Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  6. Relationship between changes of chamber mechanical parameters and mean pressure-mean flow diagrams of the left ventricle.

    PubMed

    Negroni, J A; Lascano, E C; Pichel, R H

    1988-01-01

    A theoretical relationship between mean ventricular pressure (P) and mean ventricular outflow (Q) was developed based on a model of the left ventricle with elastic-resistive properties. Using a polynomial interpolation method, a fifth-order polynomial equation for the P-Q relationship was obtained. Its coefficients are functions of end-diastolic volume (VD), heart rate (HR), contractile state (CS), diastolic elastance (ED), asymmetry (S) of the elastance function E(t), and ventricular internal resistance factor (K). Effect of changes of these parameters indicated that normal and enhanced CS relations diverge toward the P axis but have a common intercept toward the Q axis. A similar effect was obtained with increased asymmetry of E(t). Changes in VD, HR and ED produced a parallel shift of the P-Q relation. The effect of K was negligible, however, which would reduce the description of the P-Q relationship to a third-order polynomial equation. A flow-dependent deactivation component was introduced, altering the asymmetry factor S, which decreases in a linear proportion to Q. This factor shifted the pump function graph downwards. We conclude that the theoretical description of the P-Q relation we present reproduces the experimental behavior of pump function diagrams reported in the literature (changes in VD, HR, and CS) and predicts the possible behavior due to other parameter changes. PMID:3400909

  7. A finite element algorithm for sound propagation in axisymmetric ducts containing compressible mean flow

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1977-01-01

    An accurate mathematical model for sound propagation in axisymmetric aircraft engine ducts with compressible mean flow is reported. The model is based on the usual perturbation of the basic fluid mechanics equations for small motions. Mean flow parameters are derived in the absence of fluctuating quantities and are then substituted into the equations for the acoustic quantities which were linearized by eliminating higher order terms. Mean swirl is assumed to be zero from the restriction of axisymmetry. A linear rectangular serendipity element is formulated from these equations using a Galerkin procedure and assembled in a special purpose computer program in which the matrix map for a rectangular mesh was specifically coded. Representations of the fluctuating quantities, mean quantities and coordinate transformations are isoparametric. The global matrix is solved by foreward and back substitution following an L-U decomposition with pivoting restricted internally to the blocks. Results from the model were compared with results from several alternative analyses and yielded satisfactory agreement.

  8. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-07-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterising the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal

  9. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  10. Experimental verification of the four-sensor probe model for flow diagnosis in air water flow in vertical pipe

    NASA Astrophysics Data System (ADS)

    Pradhan, S.; Mishra, R.

    2012-05-01

    Measuring the volumetric flow rate of each of the flowing components is required to be monitored in production logging applications. Hence it is necessary to measure the flow rates of gas, oil and water in vertical and inclined oil wells. An increasing level of interest has been shown by the researchers in developing system for the flow rate measurement in multiphase flows. This paper describes the experimental methodology using a miniature, local four-sensor probe for the measurement of dispersed flow parameters in bubbly two-phase flow for spherical bubbles. To establish interdependent among different parameters corresponding to dispersed flow, the available model has been used to experimentally obtain different parameters such as volume fraction, velocity and bubble shape of the dispersed phase in the bubbly air-water flow.

  11. Generating a Pulsatile Pulmonary Flow after Fontan Operation by Means of Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Mostafa

    2011-03-01

    This study considers blood flow in total cavopulmonary connection (TCPC) morphology, which is created in Fontan surgical procedure in patients with single ventricle heart disease. Ordinary process of TCPC operation reduces pulmonary blood flow pulsatility; because of right ventricle being bypassed. This phenomenon causes a lot of side effects for patients. A cardiac surgeon has suggested that keeping main pulmonary artery (MPA) partially open, would increase pulmonary flow pulsations. MPA gets closed in ordinary TCPC operation. The purpose of current study is to verify the effects of keeping MPA partially open on pulmonary flow pulsations, by means of computational fluid dynamics (CFD). 3D geometry is reconstructed from CT Angiography (CTA) scan of a patient who has undergone an ordinary TCPC procedure. The stenosed MPA or pulmonary stenosis (PS) is virtually added to the original geometry. Flow field is studied in six different models in which average antegrade flow (AF) -coming through PS- increases gradually. Results show that adding AF increases flow pulsations in both pulmonary arteries. Moreover, power loss increases with respect to average AF. We conclude that adding AF is an impressive way to increase pulsations of pulmonary flow, but energy losses should be considered too.

  12. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  13. The Herschel-Quincke tube: the attenuation conditions and their sensitivity to mean flow.

    PubMed

    Karlsson, Mikael; Glav, Ragnar; Abom, Mats

    2008-08-01

    The classic Herschel-Quincke tube is a parallel connection of two ducts yielding multiple noise attenuation maxima via destructive interference. This problem has been discussed to different degrees by a number of authors over the years. This study returns to the basics of the system for the purpose of furthering the understanding of the conditions necessary for noise attenuation and especially their sensitivity to mean flow. First, the transmission loss for an N-duct system with mean flow and arbitrary conditions of state in the different ducts is derived. Next, the two types of conditions yielding the attenuation maxima are studied. In addition to a discussion of the underlying physics, generic expressions for frequencies at which maximum attenuation occur are presented. Experiments without mean flow generally show good agreement with theory based on straight duct elements. However, more detailed models may be required for accurate simulations in the presence of mean flow. A simple model compensating for the losses associated with bends is shown to improve the results significantly for the geometry studied. PMID:18681565

  14. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

    NASA Astrophysics Data System (ADS)

    Henry, David; Sastre-Gomez, Silvia

    2016-04-01

    In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the {β} -plane approximation at the equator which incorporates a constant underlying current.

  15. A wave-envelope of sound propagation in nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.

    1979-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. The solution recovers the solution based on the method of multiple scales for slowly varying duct geometry. A computer program was developed based on the wave-envelope analysis for general mean flows. Results are presented for the reflection and transmission coefficients as well as the acoustic pressure distributions for a number of conditions: both straight and variable area ducts with and without liners and mean flows from very low to high subsonic speeds are considered.

  16. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  17. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  18. Flow properties in expansion tube with helium, argon, air, and CO2

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Test flow velocities from 5 to 7 km/sec were generated in a 6-in. expansion tube using helium, argon, air, and CO2 test gases. Pitot pressure profiles across the flow at the test section are presented for the four test gases, and measured flow quantities are compared to computer predicted values. Comparison of predicted and measured flow quantities suggests the expansion to be near thermochemical equilibrium for all test gases and implies the existence of a totally reflected shock at the secondary diaphragm. Argon, air, and CO2 flows were observed to attenuate while traversing the acceleration section, whereas no attenuation was observed for helium.

  19. Mean and fluctuating flow measurements in axisymmetric supersonic boundary layer flow subjected to distributed adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Gootzait, E.; Childs, M. E.

    1974-01-01

    Measurements have been made of the mean flow properties and turbulent fluctuations in adiabatic turbulent boundary layer flows subjected to distributed adverse pressure gradients. In the freestream region upstream of the adverse pressure gradient the Mach number was 3.86, the unit Reynolds number 5.3 million per foot. The boundary layer developed on the wall of an axisymmetric nozzle and straight test section. In order to avoid the effects of streamwise surface curvature the adverse pressure gradients at the test section wall were induced by contoured centerbodies mounted on the wind tunnel centerline. The flow under study simulated that which might be found in an axially symmetric engine inlet of a supersonic aircraft.

  20. Sound amplification at a rectangular T-junction with merging mean flows

    NASA Astrophysics Data System (ADS)

    Du, Lin; Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2016-04-01

    This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with merging mean flows. The primary motivation of the work is to explain the high sound amplification, recently seen experimentally, when introducing a small merging bias flow. The acoustic results are found solving the compressible Linearized Navier-Stokes Equations (LNSEs) in the frequency domain, where the base flow is first obtained using RANS with a k-ε turbulence model. The model predicts the measured scattering data well, including the amplitude and Strouhal number for the peak amplification, if the effect of eddy viscosity damping is included. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to pure grazing flow a strong unstable shear layer is created in the downstream main duct starting from the T-junction trailing edge. This means that the main region of vortex-sound interaction is moved away from the junction to a downstream region much larger than the junction width. To analyze the sound amplification in this region Howe's energy corollary and the growth of acoustic density are used.

  1. Analysis of the interactions between pentacene film and air molecules by means of Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    De Angelis, F.; Das, G.; Di Fabrizio, E.

    2008-09-01

    We report on the interactions between spin-coated pentacene films and molecules present in air (nitrogen, oxygen, and moisture) studied by means of micro-Raman spectroscopy. We found that while oxygen does not interact with pentacene, water molecules diffuse in the film proportionally to the relative humidity of the ambient, giving rise to an interaction that affects pentacene's optical properties. These findings are fully reversible when dry ambient is restored, and they could be ascribed to the formation of a reversible water-pentacene complex theoretically calculated. This interaction affects a specific pentacene vibration mode that could lead to reversible formation of electron traps involved in the degradation of the electrical performance of pentacene.

  2. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  3. Numerical Simulation of Two-phase Flow in a Microchannel with Air Gap

    NASA Astrophysics Data System (ADS)

    Liu, Xiaojun; Meinhart, Carl D.

    2001-11-01

    Fluid transport in nano- and micro-scale devices becomes more and more important. The potential advantages of micro-channel with air gap are studied. A simple one-dimensional model of air-water two-phase flow is investigated theoretically. The flow of water is driven by pressure drop. The air in the gap is driven by surface tension and friction forces that exist at the interface between the water and air. With the limitation that air flow rate is zero, the theoretical results are obtained based on continuity and Navier-Stokes equations. Because the viscosity of air is much less than that of water, under same pressure drop, the flow rate of water can be increased to as 4.76 times as that of normal channel without air gap. The theoretical results are tested by numerical simulation with three different software package (CFD2000, FEMLab and CFDRC) using a two-dimensional model. The interface shape, interface velocity, water flow rate and optimum height ratio are studied. Thenumerical results for different package match each other very well. The numerical results show that increasing water flow rate by adding air gap in the micro channel is practicable.

  4. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. PMID:26918522

  5. Buckling instability of thin films as a means to control or enhance fluid flow within microchannel

    NASA Astrophysics Data System (ADS)

    Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas

    2014-11-01

    Here we show that the buckling of thin, flexible plates can be used for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A confined, dielectric elastomeric film buckles out of the plane when exposed to an electric field. We use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. When embedded in a microfluidic channel, this mechanism can be used as a microvalve that controls the flow rate, or as a micropump that alters the flow rate. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. This novel means for dielectric actuation may improve voltage application, and the buckling microstructures may be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.

  6. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  7. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  8. Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow

    NASA Astrophysics Data System (ADS)

    Nascimento, Sheila Tavares; da Silva, Iran José Oliveira; Maia, Alex Sandro Campos; de Castro, Ariane Cristina; Vieira, Frederico Marcio Corrêa

    2014-03-01

    Body surface temperature can be used to evaluate thermal equilibrium in animals. The bodies of broiler chickens, like those of all birds, are partially covered by feathers. Thus, the heat flow at the boundary layer between broilers' bodies and the environment differs between feathered and featherless areas. The aim of this investigation was to use linear regression models incorporating environmental parameters and age to predict the surface temperatures of the feathered and featherless areas of broiler chickens. The trial was conducted in a climate chamber, and 576 broilers were distributed in two groups. In the first trial, 288 broilers were monitored after exposure to comfortable or stressful conditions during a 6-week rearing period. Another 288 broilers were measured under the same conditions to test the predictive power of the models. Sensible heat flow was calculated, and for the regions covered by feathers, sensible heat flow was predicted based on the estimated surface temperatures. The surface temperatures of the feathered and featherless areas can be predicted based on air, black globe or operative temperatures. According to the sensible heat flow model, the broilers' ability to maintain thermal equilibrium by convection and radiation decreased during the rearing period. Sensible heat flow estimated based on estimated surface temperatures can be used to predict animal responses to comfortable and stressful conditions.

  9. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  10. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  11. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  12. Variability of stratospheric mean age of air linked to residual circulation and eddy mixing

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Riese, Martin; Konopka, Paul; Müller, Rolf; Stiller, Gabi

    2014-05-01

    We analyze the effects of the stratospheric residual circulation and eddy mixing on the variability of mean age of air (AoA) within the framework of the isentropic zonal mean continuity equation. The AoA for the period 2002-2012 has been simulated with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim winds and diabatic heating rates. We find that throughout the stratosphere the effects of the residual circulation and of eddy mixing on AoA are opposite and cancel to a large degree, with the net AoA changes resulting from this delicate balance. Mixing increases AoA equatorwards of about 40 degrees by mixing in aged mid-latitude air, whereas it decreases AoA at higher latitudes. Throughout the tropical stratosphere and in the polar upper stratosphere AoA variability is dominated by the residual circulation. In the subtropics and mid-latitudes AoA variability is dominated mainly by eddy mixing and AoA is not a unique proxy for varibility in the residual circulation. The simulated AoA change during the last decade shows a nonuniform pattern, with a significant AoA increase in the northern hemisphere consistent with recent satellite observations by MIPAS, and decreasing AoA in the lowest stratosphere. Interpreting these AoA changes requires careful consideration of both changes in the residual circulation and changes in eddy mixing. The AoA decrease in the lowest stratosphere results from a strengthening residual circulation, related to an accelerating shallow residual circulation branch. Above about 450K simulated AoA evolves differently than below, with a clear increase in the northern subtropics and mid-latitudes and a decrease in the southern hemisphere. This AoA change pattern during the last decade appears to be related to a southward shift of the subtropical mixing barriers, in good agreement with recent analysis of MIPAS mean age and tracer data.

  13. Effects of mean flow convection, quadrupole sources and vortex shedding on airfoil overall sound pressure level

    NASA Astrophysics Data System (ADS)

    Wolf, William R.; Azevedo, João L. F.; Lele, Sanjiva K.

    2013-12-01

    This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness.

  14. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  15. Mean annual runoff and peak flow estimates based on channel geometry of streams in southeastern Montana

    USGS Publications Warehouse

    Omang, R.J.; Parrett, Charles; Hull, J.A.

    1983-01-01

    Equations using channel-geometry measurements were developed for estimating mean runoff and peak flows of ungaged streams in southeastern Montana. Two separate sets of esitmating equations were developed for determining mean annual runoff: one for perennial streams and one for ephemeral and intermittent streams. Data from 29 gaged sites on perennial streams and 21 gaged sites on ephemeral and intermittent streams were used in these analyses. Data from 78 gaged sites were used in the peak-flow analyses. Southeastern Montana was divided into three regions and separate multiple-regression equations for each region were developed that relate channel dimensions to peak discharge having recurrence intervals of 2, 5, 10, 25, 50, and 100 years. Channel-geometery relations were developed using measurements of the active-channel width and bankfull width. Active-channel width and bankfull width were the most significant channel features for estimating mean annual runoff for al types of streams. Use of this method requires that onsite measurements be made of channel width. The standard error of estimate for predicting mean annual runoff ranged from about 38 to 79 percent. The standard error of estimate relating active-channel width or bankfull width to peak flow ranged from about 37 to 115 percent. (USGS)

  16. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  17. Performance improvement of a cross-flow hydro turbine by air layer effect

    NASA Astrophysics Data System (ADS)

    Choi, Y. D.; Yoon, H. Y.; Inagaki, M.; Ooike, S.; Kim, Y. J.; Lee, Y. H.

    2010-08-01

    The purpose of this study is not only to investigate the effects of air layer in the turbine chamber on the performance and internal flow of the cross-flow turbine, but also to suggest a newly developed air supply method. Field test is performed in order to measure the output power of the turbine by a new air supply method. CFD analysis on the performance and internal flow of the turbine is conducted by an unsteady state calculation using a two-phase flow model in order to embody the air layer effect on the turbine performance effectively.The result shows that air layer effect on the performance of the turbine is considerable. The air layer located in the turbine runner passage plays the role of preventing a shock loss at the runner axis and suppressing a recirculation flow in the runner. The location of air suction hole on the chamber wall is very important factor for the performance improvement. Moreover, the ratio between air from suction pipe and water from turbine inlet is also significant factor of the turbine performance.

  18. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  19. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  20. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  1. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  2. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  3. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  4. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  5. Transmission of sound through nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Shaker, B. S.; Kaiser, J. E.

    1980-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite hard-walled or lined circular duct carrying compressible, sheared mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. A number of test cases that demonstrate the flexibility of the program are included. Convergence of the transmission coefficients and the acoustic pressure profiles with an increasing number of modes is illustrated.

  6. A mapped finite difference study of noise propagation in nonuniform ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Raad, Peter E.; White, James W.

    1987-01-01

    The primary objective of this work is to study noise propagation in acoustically lined variable area ducts with mean fluid flow. The method of study is numerical in nature and involves a body-fitted grid mapping procedure in conjunction with a factored-implicit finite difference technique. The mean fluid flow model used is two-dimensional, inviscid, irrotational, incompressible, and nonheat conducting. Fully-coupled solutions of the linearized gasdynamic equations are obtained for both positive and negative Mach numbers as well as for hard and soft wall conditions. The factored-implicit finite difference technique used did give rise to short wavelength perturbations, but these were dampened by the introduction of higher order artificial dissipation terms into the scheme. Results compared favorably with available numerical and experimental data.

  7. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  8. Effects of refraction by means flow velocity gradients on the standing wave pattern in three-dimensional, rectangular waveguides

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.

    1979-01-01

    The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.

  9. Hepa room air purifier

    SciTech Connect

    Davis, G.B.

    1986-12-16

    This patent describes a portable air purification apparatus comprising a housing including a base portion and cover means, the base portion including an air deflection means and a plate means mounted in spaced relationship to the air deflection means so as to create a substantially continuous air exhaust opening therebetween. A centrifugal fan means is disposed between the plate means and the air deflection means and is mounted so as to direct air radially outwardly therefrom through the air exhaust opening, at least one opening through the plate means to permit air flow therethrough to the centrifugal fan means. The motor means carried by the base portion and extends upwardly with respect to the opening in the plate means, the motor means having drive shaft means for driving the centrifugal fan means. An air filter means is mounted between the base portion and the cover means so that air is drawn therethrough toward the centrifugal fan means, and a means for secures the cover means relative to the base means to thereby retain the air filter means therebetween.

  10. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  11. Mean and turbulent flow development through an array of rotating elements

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2014-11-01

    The adjustment of an incoming boundary layer profile as it impacts and interacts with an array of elements has received significant attention in the context of terrestrial and aquatic canopies and more recently in the context of horizontal axis wind farms. The distance required for the mean flow profile to stabilize, the energy transport through the array, and the structure of the turbulence within the array are directly dependent upon such factors as the element height, density, rigidity/flexibility, frontal area distribution, element homogeneity, and underlying topography. In the present study, the mean and turbulent development of the flow through an array of rotating elements was examined experimentally. Element rotation has been shown to drastically alter wake dynamics of single and paired elements, but the possible extension of such rotation-driven dynamics had not previously been examined on larger groups of elements. Practically, such an array of rotating elements may provide insight into the flow dynamics of an array of vertical axis wind turbines. 2D particle image velocimetry was used along the length of the array in order to examine the effects of an increasing ratio of cylinder rotation speed to streamwise freestream velocity on flow development and structure. Work supported by a NSF Graduate Research Fellowship & Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the EFML.

  12. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  13. Analysis of potential climate change impact on mean flow in Somes, river basin, Romania

    NASA Astrophysics Data System (ADS)

    Mic, Rodica Paula; Corbuş, Ciprian

    2014-05-01

    This paper presents the results obtained by the National Institute of Hydrology and Water Management (NIHWM) in collaboration with the Swedish Meteorological and Hydrological Institute (SMHI) within the ECLISE project ("Enabling CLimate Information Services for Europe"). In order to estimate the modifications due by the climate change on the mean flow of the Somes river basin in the time horizon 2021 - 2050 the hydrological model WATBAL was used, a water balance model with monthly time step, using as input data series of monthly precipitation and mean monthly temperature. These series resulted from data processing of climate projections obtained by four regional climate models: CNRM_RM5.1_ARPEGE (A), HC_HadRM3Q0_HadCM3Q0 (B), SMHI_RCA3_BCM (C) and SMHI_RCA3_ECHAM5 (D). WATBAL model parameters were calibrated by the flow simulation in 33 analysed cross-sections from Somes river basin using as input data the monthly precipitation and mean monthly temperatures recorded at weather stations located into the area, during 1971-2000, considered as reference period. Hydrological simulation was performed taking into account two scenarios: Scenario 0, in which mean monthly discharge was computed for the reference period, considering the meteorological inputs simulated with climate models, and Scenario 1, which suppose the simulation of mean monthly discharge for the next period 2021-2050, with the same hydrological model, considering as inputs the climate change projections. Comparative analysis of water flow simulations in Somes river basin, regarding the regime of multi-annual mean monthly, seasonal and annual discharges, for the reference period and for the next period have been carried out. From the analysis performed in this study resulted that the variation of the multi-annual monthly mean discharges based on the 4 climate models considered in the assumption of climate change (period 2021-2050) compared to the current flowing regime (period 1971-2000) is often

  14. On the near field mean flow structure of transverse jets issuing into a supersonic freestream

    NASA Astrophysics Data System (ADS)

    Dickmann, Dean Anthony

    The near field mean flow structure of transverse jets issuing from a surface into supersonic crossflow is examined using numerical methods and separation topology. The Navier-Stokes solver Falcon, developed at Lockheed Martin, was used to simulate the interaction between the jet and freestream over a flat plate and a generic missile body. The near field flow structure included a lambda bow shock upstream of the jet interacting with the approaching boundary layer that forms a pair of horseshoe vortices while another lambda-structure closer to the jet formed a second pair of horseshoe vortices. As the jet was turned downstream by the crossflow, the so-called barrel shock terminates in a Mach disk while vortices formed within the jet plume. Downstream of the jet exit, new flow structure was identified in the form of three pairs of vortices. Horn, near field and far field wake vortices were present downstream of the jet as well as a series of compression waves resulting in a gradual pressure rise downstream of the jet overexpansion. The wave formations and the vortices formed from them affected separation topology, performance parameters and amplification coefficients. The current understanding of the flow structure in the near field of a transverse jet in supersonic flow must be amended to include these newly identified vortices and compression waves.

  15. The application of computational fluid dynamics to natural river channels: Eddy resolving versus mean flow approaches

    NASA Astrophysics Data System (ADS)

    Keylock, C. J.; Constantinescu, G.; Hardy, R. J.

    2012-12-01

    In the last decade, as computing power has increased, there has been an explosion in the use of eddy-resolving numerical methods in the engineering, earth and environmental sciences. For complex geomorphic flows, where accurate field investigations are difficult to perform and where experiments may be difficult to scale, these numerical approaches are beginning to give key insights into the nature of these flows. Eddy-resolving methods such as Large and Detached Eddy Simulation (LES/DES) may be contrasted with the time-averaged, three-dimensional simulations that only really began to be applied seriously in geomorphology fifteen years ago. While the potential of LES for geomorphology has been examined previously, DES is a relatively recent method that deserves further consideration. In this paper, we explain the method and then utilise examples from meander and confluence flows, as well as flow near the bed of a gravel bed river, to highlight the improvements to both the representation of the mean flow, and to the representation of time-varying processes, that result from the use of LES/DES. Some suggestions are provided for the future use of such techniques in geomorphology.

  16. Wave-mean flow interaction in the NCAR stratospheric general circulation model

    NASA Technical Reports Server (NTRS)

    Boville, B. A.

    1985-01-01

    A version of the NCAR General Circulation Model has been developed which extends from the surface into the mesosphere. The model was forced by climatological January sea surface temperatures and insolation and gives a fairly reasonable simulation of the troposphere and stratosphere. The transformed Eulerian formation is used to examine the interaction of the eddies with the mean flow in the winter hemisphere. The essence of the transformed Eulerian formation is an attempt to distinguish between the mean meridional circulation driven by diabatic heating and that driven by eddies. The net effect of eddies can then be determined, and is given by the Eliassen-Palm (EP) flux divergence. In practice, this method works reasonably well but is far from perfect. For instance, in the absence of eddy forcing, the winter stratosphere would go to radiative equilibrium and there would be no diabatic heating to drive a mean meridional circulation.

  17. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  18. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  19. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  20. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  1. On the effective hydraulic conductivity in mean vertical unsaturated steady flows

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; Santini, Alessandro

    2005-09-01

    Water flow in partially saturated heterogeneous porous formations is modelled by regarding the hydraulic parameters as stationary random space functions (RSFs). As a consequence, the flow variables are also RSFs, and we aim to develop a procedure to derive the effective hydraulic conductivity (EHC). The methodology relies on a perturbation approach which regards the variances of the hydraulic parameters as small quantities. By using the Gardner's [Gardner WR. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci 1958;85:228-32] two-parameters ( Ks, α) model for the local unsaturated conductivity, we obtain the EHC for any dimensionality d of the flow domain, and arbitrary correlation functions of the input RSFs. Unlike previous studies [e.g. Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 1. Statistically isotropic media. Water Resour Res 1985;21;447-56, Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 2. Statistically anisotropic media with variable α. Water Resour Res 1985:21:457-64], the EHC is represented here as product between the local scale conductivity valid for a domain of mean parameters, and a correction function κ∗ which depends on the medium heterogeneity structure and the mean pressure head. Generally, the correction function κ∗ is expressed by d-fold quadrature. These quadratures are further reduced after adopting specific (i.e. exponential and Gaussian) structure for the (cross) correlation functions involved in the computation of κ∗. We have also focused on some particular formation structures which are relevant for the applications, and permit simplification of the computational aspect, as well. We investigate effects of the heterogeneity formation properties as well as the mean head on the structure of κ∗. Overall, results suggest that, given the formation statistics

  2. Five-hole pitot probe time-mean velocity measurements in confined swirling flows

    NASA Technical Reports Server (NTRS)

    Yoon, H. K.; Lilley, D. G.

    1983-01-01

    Nonswirling and swirling nonreacting flows in an axisymmetric test section with an expansion ratio D/d = 2, which may be equipped with contraction nozzles of area ratios 2 and 4, are investigated. The effects of a number of geometric parameters on the flow-field are investigated, among them side-wall expansion angles of 90 and 45 deg, swirl vane angles of 0, 38, 45, 60, and 70 deg, and contraction nozzle locations L/D = 1 and 2 (if present). Data are acquired by means of a five-hole pitot probe enabling three time-mean velocity components in the axial, radial, and azimuthal directions to be measured. The velocities are extensively plotted and artistic impressions of recirculation zones are set forth. The presence of a swirler is found to shorten the corner recirculation zone and to generate a central recirculation zone followed by a precessing vortex core. A gradual inlet expansion has the effect of encouraging the flow to remain close to the sidewall and shortening the extent of the corner recirculation zone in all cases investigated.

  3. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  4. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  5. Investigation of statistical parameters of turbulent air flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Druzhinin, Oleg

    2013-04-01

    averaging over wavelength. The preliminary DNS results show that the wind flow is significantly affected by the stratification. If the Richardson number is sufficiently small, the instantaneous vector velocity fields manifest considerable airflow separation at the crests of the surface waves similar to that observed in physical experiments by PIV-technique. Alternatively the ensemble averaged velocity fields are non-separating and have typical structures similar to those observed in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. On the other hand, for large Richardson numbers the wind flow turbulence is superseded by internal lee waves radiated from the wave crests and dissipating at a critical level, at some distance above the crests. The DNS results are compared with the prediction of a theoretical model of a turbulent boundary layer, based on the system of Reynolds-averaged equations with the first-order closure hypothesis. The wind-wave interaction is considered within the quasi-linear approximation, i.e., wave-induced disturbances in the air flow are considered in the linear approximation, but the resistive effect of the wave momentum flux on the mean flow velocity profile is taken into account. This paper was supported by RFBR (project codes 10-05-00339-A, 10-05-91177-GFEN_A, 09-05-00779-A;, 11-05-00455-A).

  6. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  7. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  8. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  9. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Astrophysics Data System (ADS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-07-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  10. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-04-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw , the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  11. Air- coupled ultrasonic testing of CFRP rods by means of guided waves

    NASA Astrophysics Data System (ADS)

    Kažys, Rymantas; Raišutis, Renaldas; Žukauskas, Egidijus; Mažeika, Liudas; Vladišauskas, Alfonsas

    2010-01-01

    One of the most important parts of the gliders is a lightweight longeron reinforcement made of carbon fibre reinforced plastics (CFRP) rods. These small diameter (a few millimetres) rods during manufacturing are glued together in epoxy filled matrix in order to build the arbitrary spar profile. However, the defects presenting in the rods such as brake of fibres, lack of bonding, reduction of density affect essentially the strength of the construction and are very complicated in repairing. Therefore, appropriate non-destructive testing techniques of carbon fibber rods should be applied before gluing them together. The objective of the presented work was development of NDT technique of CFRP rods used for aerospace applications, which is based on air- coupled excitation/reception of guided waves. The regularities of ultrasonic guided waves propagating in both circular and rectangular cross-section CFRP rods immersed into water were investigated and it was shown that the guided waves propagating along sample of the rod create leaky waves which are radiated into a surrounding medium. The ultrasonic receiver scanned over the rod enables to pick-up the leaky waves and to determine the non-uniformities of propagation caused by the defects. Theoretical investigations were carried out by means of numerical simulations based on a 2D and 3D finite differences method. By modelling and experimental investigations it was demonstrated that presence of any type of the defect disturbs the leaky wave and enables to detect them. So, the spatial position of defects can be determined also. It was shown that such important defects as a disbond of the plies essentially reduce or even completely suppress the leaky wave, so they can be detected quit easily.

  12. Pressure probe and hot-film probe rsponses to acoustic excitation in mean flow

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Jones, M. G.

    1986-01-01

    An experiment was conducted to compare the relative responses of a hot-film probe and a pressure probe positioned in a flow duct carrying mean flow and progressive acoustic waves. The response of each probe was compared with that of a condenser-type microphone flush mounted in the duct wall for flow Mach numbers up to about 0.5. The response of the pressure probe was less than that of the flush-mounted microphone by not more than about 2.1 dB at the highest centerline Mach number. This decreased response of the probe can likely be attributed to flow-induced impedance changes at the probe sensor orifices. The response of the hot-film probe, expressed in terms of fluctuating pressure, was greater than that of the flush-mounted microphone by as much as 6.0 dB at the two higher centerline Mach numbers. Removal of the contribution from fluctuating temperature in the hot-film analytical model greatly improved the agreement between the two transducer responses.

  13. Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models

    SciTech Connect

    Munafò, A. Magin, T. E.

    2014-09-15

    The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.

  14. A study of the influence of mean flow on the acoustic performance of Herschel-Quincke tubes

    PubMed

    Torregrosa; Broatch; Payri

    2000-04-01

    In this paper, a simple flow model is used in order to assess the influence of mean flow and dissipation on the acoustic performance of the classical two-duct Herschel-Quincke tube. First, a transfer matrix is obtained for the system, which depends on the values of the Mach number in the two branches. These Mach numbers are then estimated separately by means of an incompressible flow calculation. Finally, both calculations are used to study the way in which mean flow affects the position and value of the characteristic attenuation and resonances of the system. The results indicate the nontrivial character of the influence observed. PMID:10790011

  15. Climatology of Wave-Mean Flow Interaction and Stratospheric Ozone Transport

    NASA Astrophysics Data System (ADS)

    Monier, E.; Weare, B. C.

    2008-12-01

    The troposphere-stratosphere coupling is currently drawing a lot of interest since the stratosphere was shown to have a significant impact on climate change. In this study, the Transformed Eulerian-Mean formulation and the ECMWF ERA-40 reanalysis are used to investigate the processes responsible for the wave-mean flow interaction. In addition, ozone seasonal variability is also studied in order to better understand the dynamical transport of ozone and its significance compared to the radiative-chemical effects. Results show that the dissipative forces and the advection by the residual mean meridional circulation have a significant contribution to the time rate of change of the stratospheric polar vortex. The dissipative forces has a magnitude comparable to that of the Eliassen-Palm Flux divergence or the residual mean meridional circulation and is consistent in location and magnitude with an orographic gravity wave drag forcing or the fact that the Brewer Dobson circulation is too strong in the ERA-40 reanalysis. In addition, the ozone chemical net production term is consistent with ozone production in the Tropics and ozone loss in early winter at midlatitude. The ozone transport is dominated by advection by the vertical component of the residual mean meridional circulation and by the divergence of the net eddy flux horizontal component. Overall, the Northern hemisphere is dominated by stationary processes due to the influence of orography and land-sea heating contrasts while the Southern hemisphere is marked by a combination of stationary and transient processes that have very different contributions.

  16. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    PubMed Central

    Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s).

  17. Analysis of parameters of air passing through the rain zone in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Čížek, Jan; Nožička, Jiří

    2015-05-01

    The research in the field of cooling towers shows that a rigorous determination of each parameter of air passing through areas with water drops is increasingly important. The transfer of heat, mass and momentum is represented, on the side of the air, as temperature and humidity increase and static pressure decrease due to the interaction between the flowing air and falling drops. The present article focuses on the description of the experimental setup allowing the measurement of these parameters on both the air and the water side, and possible ways to analyze measured values.

  18. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.

    PubMed

    Geoghegan, Trudyanne S; Hageman, Kimberly J; Hewitt, Andrew J

    2014-03-01

    Pesticide volatilisation and subsequent vapour drift reduce a pesticide's efficiency and contribute to environmental contamination. High-volume air samplers (HVSs) are often used to measure pesticide concentrations in air but these samplers are expensive to purchase and require network electricity, limiting the number and type of sites where they can be deployed. The flow-through sampler (FTS) presents an opportunity to overcome these limitations. The FTS is a wind-driven passive sampler that has been developed to quantify organic contaminants in remote ecosystems. FTSs differ from other passive samplers in that they turn into the wind and use the wind to draw air through the sampling media. The main objective of this work was to evaluate the FTS in a near-field pesticide vapour drift study by comparing the concentrations of pyrimethanil in air measured using one HVS and three FTSs placed in the same location. Pyrimethanil was sprayed onto a vineyard as part of normal pest management procedures. Air samples were collected every eight hours for 48 h. The volume of air sampled by the FTSs was calculated using the measured relationship between ambient wind speed and the wind speed inside the sampler as determined with a separate wind tunnel study. The FTSs sampled 1.7 to 40.6 m(3) of air during each 8 h sampling period, depending on wind speed, whereas the mean volume sampled by the HVS was 128.7 m(3). Mean pyrimethanil concentrations ranged from 0.4 to 3.2 μg m(-3) of air. Inter-sampler reproducibility, as represented by percent relative standard deviation, for the three FTSs was ∼20%. The largest difference in FTS-derived versus HVS-derived pyrimethanil concentrations occurred during the lowest wind-speed period. During this period, it is likely that the FTS predominately acted like a traditional diffusion-based passive sampler. As indicated by both types of sampler, pyrimethanil concentrations in air changed by a factor of ∼2 during the two days after spaying

  19. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-05-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  20. An analytic Green's function for a lined circular duct containing uniform mean flow

    NASA Astrophysics Data System (ADS)

    Rienstra, Sjoerd W.; Tester, Brian J.

    2008-11-01

    An analytic Green's function is derived for a lined circular duct, both hollow and annular, containing uniform mean flow, from first principles by Fourier transformation. The derived result takes the form of a common mode series. We show that the analytic Green's function for a lined hollow circular duct, containing uniform mean flow, is essentially identical to that used by Tester et al. in the Cargill splice scattering model. The explicit form of the Green's function for the annular duct is new. A more comprehensive causality analysis suggests the possibility of certain upstream modes being really downstream instabilities. As their growth rates are usually exceptionally large, including these modes as instabilities is both not practical and in disagreement with most (not all) experiments. Therefore, we outline the possibility but do not include them in the presented examples. We follow the "modelling assumption" that all modes decay in their respective direction of propagation. To illustrate the advantages of our analytic result compared to the matrix inversion technique of Alonso et al., we compute the mode amplitudes from both methods for a typical aircraft engine intake condition. The comparisons show good agreement without flow, irrespective of how many modes are included in the matrix inversion for the numerical mode amplitudes. With flow, the mode amplitudes do not agree but as the number of modes included in the matrix inversion is increased, enough to include any important surface waves, the numerically obtained modal amplitudes of Alonso et al. appear to be converging to the present analytical result. In practical applications our closed form analytic Green's function will be computationally more efficient, especially at high frequencies of practical interest to aero-engine applications, and the analytic form for the mode amplitudes could permit future modelling advances not possible from the numerical equivalent. It also may have application to post

  1. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  2. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  3. Gravitational tides on Jupiter. 3: Atmospheric response and mean flow acceleration

    NASA Astrophysics Data System (ADS)

    Ioannou, P. J.; Lindzen, R. S.

    1994-04-01

    The gravitational tidal response at the visible cloud level of Jupiter is obtained as a function of static stability in the planetary interior. It is suggested that confirmation of the presence of static stability in the planetary interior could be achieved by observing tidal fields at cloud level. We also calculate the mean flow acceleration induced by tidal fields and suggest that, if the interior is even marginally statically stable, the tides may provide the momentum source maintaining the alternating zonal jets observed at the cloud level of the planet.

  4. Propagation of high amplitude higher order sounds in slightly soft rectangular ducts, carrying mean flow

    NASA Technical Reports Server (NTRS)

    Wang, K. S.; Vaidya, P. G.

    1975-01-01

    The resonance expansion method, developed to study the propagation of sound in rigid rectangular ducts is applied to the case of slightly soft ducts. Expressions for the generation and decay of various harmonics are obtained. The effect of wall admittance is seen through a dissipation function in the system of nonlinear differential equations, governing the generation of harmonics. As the wall admittance increases, the resonance is reduced. For a given wall admittance this phenomenon is stronger at higher input intensities. Both the first and second order solutions are obtained and the results are extended to the case of ducts having mean flow.

  5. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations

    NASA Astrophysics Data System (ADS)

    López, D.; Domínguez, D.; Gonzalo, J.

    2014-12-01

    This paper defines a methodology to carry out optimizations of rocket/missile geometries by means of krigingbased algorithms applied to simulations made with computational fluid dynamic (CFD) codes. The first part of the paper is focused on the validation of the open source CFD code against a well-studied 3-dimmensional test case in supersonic conditions. The impact of several turbulence models, different numerical schemes to discretize the equations and different mesh resolution levels have been analyzed demonstrating the performance of using wall functions for supersonic flow. Good agreements between numerical, theoretical and experimental results are obtained and some general guidelines are extracted. The best accuracy is obtained with SST k-omega turbulence model with meshes suitable for the use of wall functions in the boundary cells. Then, with this configuration for the simulations, an air-ejected rocket fairing is selected to apply a geometrical optimization. The selected method is kriging-based, where a statistical model is generated by means of several numerical experiments dependent on a certain number of design parameters; the final objective is to find the minimum drag coefficient for the model, keeping enough room inside the fairing to install the requested payload. This kriging-based method allows obtaining the samples in a parallel manner, looking for the optimum design at the generated metamodel and hence improving its accuracy adding new samples if needed.

  6. Determining the physical vulnerability of roads to debris flow by means of an expert judgement approach

    NASA Astrophysics Data System (ADS)

    Winter, M. G.; Smith, J. T.; Fotopoulou, S.; Pitlakis, K.; Mavrouli, O.-C.; Corominas, J.; Argyroudis, S.

    2012-04-01

    The physical vulnerability of roads to debris flow is expressed through fragility functions that relate flow volume to damage probabilities. Fragility relationships are essential components of quantitative risk assessments (QRA) as they allow for the estimation of risk within a consequence-based framework. To the best of the Authors' knowledge this is the first time that fragility curves have been produced in order to provide the conditional probability for a road to be in, or to exceed, a certain damage state for a given debris flow volume. Preliminary assessments were undertaken by means of a detailed questionnaire. A total of 47 returns were received from experts in 17 countries: 32% academia, 51% the commercial sector and 17% governments. Fragility curves have been defined for three damage states (limited damage, serious damage and destroyed) for each of low speed and high speed roads in order to cover the typical characteristics of roads vulnerable to debris flow. The probability of any given damage state being met or exceeded by a debris flow of a given volume (10 to 100,000m3) was derived from the mean of the responses received. Inevitably there was a degree of scatter in the results and the treatment of such variation, or 'experimental errors', was crucial to understanding the data and to developing the fragility curves. Both qualitative and quantitative methods of arriving at these preliminary fragility curves were utilised. The nature of the data is such that unless all respondents return that value the average probability at the largest flow volume cannot reach unity; as a result the upper ends of each curve were forced to unity and in order to account for larger potential volumes manual extrapolation was undertaken to 1,000,000m3. In addition to an assessment of the probabilities of given damage states being exceeded respondents to the questionnaire were polled as to their level of experience and confidence in their ability to provide a valid and

  7. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  8. An experimental study of USB flap noise reduction through mean flow modification. [Upper Surface Blown

    NASA Technical Reports Server (NTRS)

    Joshi, M. C.; Yu, J. C.

    1979-01-01

    The effect of mean flow modification on the noise production of upper surface blown flaps has been studied experimentally. Mean velocity profile at the nozzle exit was modified from the usual 'top-hat' shape to 'Gamma' and 'L'-shaped profiles. The 'L'-modification caused noise reduction around and above the peak frequency of the 'top-hat' spectrum when compared on an equal thrust per exit area basis. Modification to 'Gamma'-shaped profile resulted in a shift of the spectrum to lower frequencies and a lower overall noise reduction. These modifications alter the development of the large scale disturbances in the upper shear layer and trailing edge wake of the wall jet geometry.

  9. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and...

  10. The impact of upstream blocking, drainage flow and the geostrophic pressure gradient on the persistence of cold-air pools

    NASA Astrophysics Data System (ADS)

    Zängl, G.

    2003-01-01

    Idealized numerical simulations are performed to investigate dynamical mechanisms affecting the persistence of cold-air pools in basins and valleys. The first orography type considered is a shallow elongated basin located upstream of a mountain ridge. For sensitivity tests, the mountain ridge is removed. The second type is a basin embedded in a plateau-like mountain ridge. In part of the simulations, this basin has an outflow towards the lee-side plain so as to assess the impact of the drainage flow.The large-scale flow is taken to be in geostrophic balance. In the standard setting, it is perpendicular to the basin and the ridge. The main effect of a large-scale pressure gradient is to induce a circulation within a cold-air pool until the upper boundary of the cold pool is inclined such as to compensate for the ambient pressure gradient. The cold air accumulates where the ambient pressure is lowest. For a shallow basin, this means that part of the cold air may be lost due to advection out of the basin. The upstream influence of a mountain ridge in the lee of a shallow basin is found to be twofold. It tends to deflect the low-level flow towards the lower pressure, leading to an additional ridge-parallel force on the cold-air pool. On the other hand, the absolute wind speed is reduced, diminishing the turbulent mixing near the top of the cold pool. The simulations show that the first effect prevails for ridge-normal flow while second effect may dominate for other flow directions. Drainage flow out of a valley is found to be very important as it promotes the penetration of warm air into valleys very effectively. It may cause a cold pool in a deep valley to disappear more quickly than a cold pool in a shallow basin. Sensitivity tests show that the persistence of a cold pool depends on its depth, on its vertically integrated heat deficit, and on the maximum heat deficit at the bottom of the cold pool.

  11. On the compressible Hart-McClure and Sellars mean flow motions

    NASA Astrophysics Data System (ADS)

    Maicke, Brian A.; Saad, Tony; Majdalani, Joseph

    2012-09-01

    We consider the compressible flow analogue of the solution known colloquially as the Hart-McClure profile. This potential motion is used to describe the mean flow in the original energy-based combustion instability framework. In this study, we employ the axisymmetric compressible form of the potential equation for steady, inviscid, irrotational flow assuming uniform injection of a calorically perfect gas in a porous, right-cylindrical chamber. This equation is expanded to order {M}_w^4 using a Rayleigh-Janzen sequence in powers of {M}_w^2 , where Mw is the wall Mach number. At leading order, we readily recover the original Hart-McClure profile and, at {M}_w^2 , a closed-form representation of the compressible correction. By way of confirmation, the same solution is re-constructed using a novel application of the vorticity-streamfunction technique. In view of the favorable convergence properties of the Rayleigh-Janzen expansion, the resulting approximation can be relied upon from the headwall down to the sonic point and slightly beyond in a long porous tube or nozzleless chamber. As a windfall, the compressible Sellars motion that arises in the reverse flow problem driven by wall suction is deduced. Based on the simple closed-form expressions that prescribe this motion, the principal flow attributes are quantified parametrically and compared to existing incompressible and one-dimensional theories. In this effort, the local Mach number and pressure are calculated and shown to provide an improved formulation when gauged against one-dimensional theory. Our results are also compared to the two-dimensional axisymmetric solution obtained by Majdalani ["On steady rotational high speed flows: The compressible Taylor-Culick profile," Proc. R. Soc. London, Ser. A 463, 131-162 (2007), 10.1098/rspa.2006.1755]. After rescaling the axial coordinate by the critical length Ls, a parametrically-free form is obtained that is essentially independent of the Mach number. This behavior

  12. A modeling of air flow in a street canyon

    NASA Astrophysics Data System (ADS)

    Nuterman, R. B.; Starchenko, Alexander V.

    2004-02-01

    Steady plane-parallel isothermal turbulent flow of a viscous incompressible liquid above a surface with elements of a roughness is considered. Buildings and road with vehicle emissions for a city canyon. Reynolds equations and Boussinesq assumption are used to solve the considered problem. We apply the no-slip boundary conditions on the rigid walls, simple gradient conditions on the upper and outflow boundaries and known distributions of flow parameters on inflow boundary. Turbulent parameters are calculated on the basis of "k--ɛ" model of turbulence with near-wall functions approach for energy of turbulence k and dissipation ɛ. A numerical solution of the problem is found with using of finite-volume method and the SIMPLE algorithm. Influence of atmospheric parameters on pollutant dispersion in a street canyon is investigated. Also influences of the geometrical factors of a city street canyon on a pattern of turbulent flow and distribution of harmful impurity concentration emitting from urban vehicles are investigated. The adverse meteorological situations resulting in accumulation of the harmful substances in street canyon are shown.

  13. Control of low Reynolds number flows by means of fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Gursul, I.; Cleaver, D. J.; Wang, Z.

    2014-01-01

    There is great interest in small aircraft known as Micro Air Vehicles and mini Unmanned Air Vehicles due to the wide range of possible applications. This article reviews recent work that aims to exploit the flexibility of the wing structure in order to increase lift and thrust, and delay stall. Wing flexibility has often been considered to be unwanted for large conventional aircraft and measures are taken to limit the deformation. In contrast, very small aircraft flying at low speeds are not necessarily subject to the same limitation. This approach is only applicable to small aircraft because the frequencies of the wing structure and fluid flow instabilities are close to each other. Consequently, small amplitude and high-frequency motions will be considered. We first start with rigid airfoils and wings in forced plunging motion, which mimics the bending oscillations. The main advantage of this approach is the freedom to vary the frequency within a wide range. Two mechanisms of high-lift production on the oscillating rigid airfoils are discussed. In the first one, leading-edge vortex dynamics and different modes of vortex topology play an important role on the time-averaged lift and thrust at post-stall angles of attack. Existence of optimal frequencies and amplitudes are demonstrated, and their relation to other phenomena is discussed. In the second mechanism of high-lift, trailing-edge vortex dynamics leads to bifurcated/asymmetric flows at pre-stall angles of attack. Deflected wakes can lead to time-averaged lift coefficients higher than those for the first mechanism. Some aspects of lift enhancement can be sensitive to the airfoil shape. For three-dimensional finite wings, lift enhancement due to the leading-edge vortices and existence of optimal frequencies are similar to the two-dimensional case. Vortex dynamics of the leading-edge vortex and tip vortex is discussed in detail. Leading-edge sweep is shown to be beneficial in the reattachment of the separated

  14. Mean Ages of Stratospheric Air Derived From in Situ Observations of CO2, CH4, and N2O

    NASA Technical Reports Server (NTRS)

    Andrews, A. E.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Jost, H.; Podolske, J. R.; Webster, C. R.; Herman, R. L.; Scott, D. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N2O obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are less than 0.5 year throughout the stratosphere and less than 0.3 year for air older than 2 years (N2O less than 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is approximately 2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (approx. 25-32 km) is relatively constant with respect to altitude at 5 plus or minus 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within 11 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N2O. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.

  15. Investigate wave-mean flow interaction and transport in the extratropical winter stratosphere

    NASA Technical Reports Server (NTRS)

    Smith, Anne K.

    1993-01-01

    The grant supported studies using several models along with observations in order to investigate some questions of wave-mean flow interaction and transport in the extratropical winter stratosphere. A quasi-geostrophic wave model was used to investigate the possibility that resonant growth of planetary wave 2 may have played a role in the sudden stratospheric warming of February 1979. The results of the time-dependent integration support the interpretation of resonance during February, 1979. Because of the possibility that the model treatment of critical line interactions exerted a controlling influence on the atmospheric dynamics, a more accurate model was needed for wave-mean flow interaction studies. A new model was adapted from the 3-dimensional primitive equation model developed by K. Rose and G. Brasseur. In its present form the model is global, rather than hemispheric; it contains an infrared cooling algorithm and a parameterized solar heating; it has parameterized gravity wave drag; and the chemistry has been entirely revised.

  16. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  17. Uncertainties have a Meaning: Quantitative Interpretation of the Relationship between Subsurface Flow and Geological Data Quality

    NASA Astrophysics Data System (ADS)

    Wellmann, J.; Regenauer-Lieb, K.; Western Australian Geothermal Centre of Excellence

    2011-12-01

    We present a new method to assess system-based measures to classify uncertainties in geological models and in subsurface flow fields. Information entropy is proposed to evaluate uncertainties in geological models, and thermal entropy production is proposed to analyze uncertainties related to hydrothermal flow. As these measures have a fundamental theoretical basis and are related to the internal state of the system, they can be interpreted quantitatively and, consequently, give uncertainties a meaning. Information entropy values are directly related to the state of uncertainty of a geological model. For a point within the model, information entropy is a measure of the minimum number of geological units that could occur at its location. If the information entropy is zero, only one unit is possible and no uncertainty exists. If the value is greater than zero, at least two units are probable. If it increases above 1, three units can occur. In general the measure provides a weight of probabiliy for different states. A strong point of the method is that it gives an entropy measure for the state of the entire model and therefore lends itself as a robust measure to quantitatively compare uncertainties in difference models. In a similar sense, the thermal entropy production provides a quantitative measure of the thermodynamic state of a hydrothermal system. When the entropy production is zero, the system must be in a conductive steady state for a closed system. If the entropy production is larger than zero, the system can be in a convective or transient conductive state. For higher values of entropy production, the convective units show higher complexities and, hence, uncertainty of the hydrothermal field increases. Moreover, the average model entropy production gives a measure of the convective vigour that can be expected in the system. This is directly related to the efficiency of heat transfer over the system. The measure is therefore not only useful for a

  18. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  19. Effect of Moist Air on Transonic Internal Flow around a Plate

    NASA Astrophysics Data System (ADS)

    Hasan, A. B. M. Toufique; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong

    The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this causes often serious problems such as the aeroacoustic noise and the vibration. In the transonic or supersonic flow where vapor is contained in the main flow, the rapid expansion of the flow may give rise to a non-equilibrium condensation. In the present study, the effect of non-equilibrium condensation of moist air on the shock induced flow field oscillation around a plate was investigated numerically. The results showed that in the case with non-equilibrium condensation, the flow field aerodynamic unsteadiness is reduced significantly compared with those without the non-equilibrium condensation.

  20. Regional analysis of the mean annual maximum peak flow in South West Europe

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Thomas; Cooper, David

    2010-05-01

    The work reported here is a pilot study carried out as part of the EU FP7 project Mirage, and aims to derive flood frequency relationships for temporary rivers in the Mediterranean region. Regional studies of flood characteristics are often limited to national, or even sub-national, regions. Reasons for these spatially limited studies are manifold, but include: lack of international co-operation, difficulties in getting access to hydrometric data from other countries, and inconsistencies in national datasets for deriving catchment characteristics. As part of this study, preliminary regional datasets from south-west Europe of flood statistics and relevant catchment descriptors have been derived. The annual maximum peak flow data have been obtained from the UNESCO/FRIEND project and includes 381 time series of daily river flow from Portugal, Spain and southern France. Note that a majority of these data comes from perennial rivers. The catchment descriptors including catchment area, mean annual rainfall, soil properties and land-use characteristics. These characteristics have been derived from pan-European dataset including the SRTM (90m) dtm, gridded precipitation data from CRU (18km), the JRC soil database (1km) and CORINE land-cover data (250m). The logarithm of the mean annual maximum peak flow (QBAR) has been linked to a subset of log-transformed catchment descriptors using a linear regression-type model, including correlation in both observations and regression model errors. The existence of model error correlation suggests that the data contains more between-catchment variation in QBAR than can be explained by the catchment descriptors alone. Thus, further research is needed to identify additional explanatory variables with the potential to be made available on a pan-European scale.

  1. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  2. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  3. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  4. Air flow phenomena in the model of the blind drift

    NASA Astrophysics Data System (ADS)

    Jaszczur, Marek; Karch, Michał; Zych, Marcin; Hanus, Robert; Petryka, Leszek; Świsulski, Dariusz

    2016-03-01

    In the presented paper, Particle Image Velocimetry (PIV) has been used to investigate flow pattern and turbulent structure in the model of blind drift. The presented model exist in mining, and has been analyzed to resolve ventilation issues. Blind region is particularly susceptible to unsafe methane accumulation. The measurement system allows us to evaluate all components of the velocity vector in channel cross-section simultaneously. First order and second order statistic of the velocity fields from different channel cross-section are computed and analyzed.

  5. Modeling Air Flow in the Lungs during In-exsufflation

    NASA Astrophysics Data System (ADS)

    Bukiet, Bruce; Chaudhry, Hans; Kirshblum, Steven; Bach, John

    2003-11-01

    Patients with weak respiratory systems experience build-up of fluid in the lungs. This can lead to infection and hospitalization. Although endotracheal suctioning can help relieve this problem, it is invasive and uncomfortable. Patients prefer the non-invasive mechanical in-exsufflation technique. In this talk, we describe these techniques for easing the problem of mucus build-up and present ideas for mathematical and computational modeling of the flow in the branches of the lungs during mechanical in-exsufflation. The implications of the results of the computations on the safety of the technique and on patient treatment are also discussed.

  6. 77 FR 43141 - Air Carrier Hazardous Materials Passenger Notification Requirements: Acceptable Means of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-23

    ...: Acceptable Means of Compliance AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of public... Notification Requirements and Acceptable Means of Compliance with 49 CFR 175.25. The public meeting, to be held... to submit comments and participate in discussions concerning the acceptability of various means...

  7. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    their inertia are important and influence droplets dynamics and spatial distribution and their impact on the carrier air-flow. The results show that droplets, whose settling velocity is of the order of the air friction velocity, accumulate preferentially in the vicinity of the water surface, in the viscous sublayer and buffer regions of the boundary layer. Under the influence of droplets turbulent wind stress is reduced and mean wind velocity is increased as compared to the droplet-free case. These effects become more pronounced for larger droplet mass fractions and smaller surface-wave slopes. This work is supported by RFBR (Nos. 14-05-00367, 14-05-91767, 15-35-20953, 16-55-52025, 16-05-00839) and by the Russian Science Foundation (Nos. 14-17-00667, 15-17-20009).

  8. Responses of the rat olfactory epithelium to retronasal air flow.

    PubMed

    Scott, John W; Acevedo, Humberto P; Sherrill, Lisa; Phan, Maggie

    2007-03-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very nonpolar, hydrophobic odorants were used. Although the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the nonpolar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recordings from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally versus retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  9. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  10. Drainage of the air film during drop impact on flowing liquid films

    NASA Astrophysics Data System (ADS)

    Che, Zhizhao; Matar, Omar

    2015-11-01

    Immediately upon the impact of a droplet on a liquid or a solid, a thin air cushion is formed by trapping air beneath the droplet. The drainage of the air film is critical in determining the eventual outcome of the impact. Here we propose a model to study the drainage of the gas film between a droplet and a flowing liquid film. The effects of a wide range of parameters influencing the drainage process are studied, such as the fluid viscosities, the surface tension, the velocity of the droplet, the velocity of the liquid film. The results show that the tangential movement of the liquid film can delay the drainage of the air film and promote the bouncing of droplets. This confirms our previous experimental results, which show that during the impact of droplets on flow liquid films, the probability of bouncing increases with the Reynolds number of the liquid film. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  11. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  12. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  13. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  14. Air shear driven flow of thin perfluoropolyether polymer films

    NASA Astrophysics Data System (ADS)

    Scarpulla, Michael A.; Mate, C. Mathew; Carter, Malika D.

    2003-02-01

    We have studied the wind driven movement of thin perfluoropolyether (PFPE) polymer films on silicon wafers and CNx overcoats using the blow-off technique. The ease with which a liquid polymer film moves across a surface when sheared is described by a shear mobility χS, which can be interpreted both in terms of continuum flow and in terms of wind driven diffusion. Generally, we find that the movement of PFPE films can be described as a flow process with an effective viscosity, even when the film thickness is smaller than the polymer's diameter of gyration. Only in the special case of sparse coverage of a polymer with neutral end groups is the motion better described by a wind driven diffusion process. The addition of alcohol end groups to the PFPE polymer chain results in strong interactions with the substrate, creating a restricted layer having an effective viscosity an order of magnitude larger than the mobile layer that sits on top of the restricted layer.

  15. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  16. Accurate burner air flow measurement for low NO{sub x} burners

    SciTech Connect

    Earley, D.; Penterson, C.

    1998-07-01

    In 1990, Congress enacted an amendment to the Clean Air Act that required reductions in NO{sub x} emissions through the application of low NO{sub x} burner systems on fossil fueled utility steam generators. For most of the existing steam generator population, the original burning equipment incorporated highly turbulent burners that created significant in-furnace flame interaction. Thus, the measurement and control of air flow to the individual burners was much less critical than in recent years with low NO{sub x} combustion systems. With low NO{sub x} systems, the reduction of NO{sub x} emissions, as well as minimizing flyash unburned carbon levels, is very much dependent on the ability to control the relative ratios of air and fuel on a per-burner basis and their rate of mixing, particularly in the near burner zones. Air Monitor Corporation (AMC) and DB Riley, Inc. (DBR), and a large Midwestern electric utility have successfully developed and applied AMC's equipment to low NO{sub x} coal burners in order to enhance NO{sub x} control combustion systems. The results have improved burner optimization and provided real time continuous air flow balancing capability and the control of individual burner stoichiometries. To date, these enhancements have been applied to wall-fired low NO{sub x} systems for balancing individual burner air flows in a common windbox and to staged combustion systems. Most recently, calibration testing in a wind tunnel facility of AMC's individual burner air measurement (IBAM{trademark}) probes installed in DB Riley's low NO{sub x} CCV{reg{underscore}sign} burners has demonstrated the ability to produce reproducible and consistent air flow measurement accurate to within 5%. This paper will summarize this product development and quantify the benefits of its application to low NO{sub x} combustion systems.

  17. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  18. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  19. Noise emission and propagation in an air flow

    NASA Astrophysics Data System (ADS)

    Legendre, R.

    1983-01-01

    Sound propagation from a jet engine on an aircraft moving at a constant airspeed is examined in terms of the turbulent field, the near field, and the far field. The near and far fields are irrotational disturbances of a permanently adiabatic flow for which the entropy and enthalpy are the critical parameters. The propagation velocity of the noise is formulated, together with the extent of the acoustic field. The acoustic excitation is shown to dominate the extent of the acoustic field, while the pseudo-noise and the sound density are equal to the sound pressure and are not noise sources. The unsteady part of the turbulence noise is controlled by the pressure gradient, particularly that around the axes of the eddies.

  20. Hydrogeology and simulation of ground-water flow at Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Hinaman, Kurt C.; Tenbus, Frederick J.

    2000-01-01

    , water drains off these highs and the vertical gradients decrease. At the south end of Dover Air Force Base, hydrographs of water levels in the Frederica aquifer show that off-Base pumping can cause the water levels to decline below sea level during part of the year.A 4-layer, steady-state numerical model of ground-water flow was developed for Dover Air Force Base and the surrounding area. The upper two layers represent the upper and lower surficial aquifers, which are in the Columbia Formation. In some areas of the model, a semi-confining unit is used to represent an intermittent clay layer between the upper and lower surficial aquifer. This semi-confining unit causes the local groundwater highs in the surficial aquifer. The third model layer represents the upper part of the Calvert Formation, a confining unit. The fourth model layer represents the Frederica aquifer. The model was calibrated to hydraulic heads and to ground-water discharge in Pipe Elm Branch, both of which were measured in September 1997. For the calibrated model, the root-mean-squared errors for the hydraulic heads and the ground-water discharge in the Pipe Elm Branch were 9 percent of the range of head and 3 percent of discharge, respectively. Heads simulated by use of the model were consistent with a map showing average water levels in the region. The U.S. Geological Survey?s MODPATH program was used to simulate ground-water-flow directions for several areas on the Base. This analysis showed the effects of the local groundwater highs. In these areas, ground water can flow from the highs and then dramatically change flow direction as it enters the lower surficial aquifer. The steady-state model has several limitations. The entire ground-water system is under transient hydraulic conditions, due mainly to seasonal and yearly changes in recharge and to withdrawal from irrigation wells. Yet this steady-state model is still considered to be an effective tool for understanding the ground-water-flow system u

  1. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  2. Visualization research on high efficiency and low NOx combustion technology with multiple air-staged and large angle counter flow of fuel-rich jet

    NASA Astrophysics Data System (ADS)

    Li, Y. Y.; Li, Y.; Lin, Z. C.; Fan, W. D.; Zhang, M. C.

    2010-03-01

    In this paper, a new technique for tangentially fired pulverized coal boiler, high efficiency and low NOx combustion technology with multiple air-staged and large angle counter flow of fuel-rich jet (ACCT for short), is proposed. Based on traditional air staged and rich-lean combustion technique, a NOx reduction area is introduced through air injection between primary combustion zone and secondary combustion zone. To verify the characters of this technique, experiment with a new developed visualization method, image processing on smog tracing with fractal dimension, is carried out on a cold model of 300 MW furnace designed with this technique. The result shows, compared to injection without counter flow, the center lines of counter flow injection go deeper into the chamber and form a smaller tangential circle, which means the rotating momentum of entire vortex is feebler and the exit gyration is weaker. It also shows that with counter flow, the fractal dimensions of boundary between primary jet and front fire side air is bigger, which means more intense turbulence and better mix. As a conclusion, with fractal dimension, image processing on smog tracing method can be a quantificational, convenient and effective visualization way without disturbing the flow field, and it's also acknowledged that ACCT has the following superiorities: high burn out rate, low NOx emission, stable burning, slagging preventing, and temp-bias reducing.

  3. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  4. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  5. Numerical analyses of passive and active flow control over a micro air vehicle with an optimized airfoil

    NASA Astrophysics Data System (ADS)

    Gada, Komal Kantilal

    Numerical investigations of an optimized thin airfoil with a passive and an active flow control device (riblets and rotary cylinder) have been performed. The objectives of the thesis were to investigate the tip vortices reduction using riblets and decrease in flow separation, using a rotary cylinder for improved lift-to-drag ratio. The investigations has application potentials in improving performances of Micro Air Vehicles (MAVs). The airfoil has a chord length of 19.66 cm and a span of 25 cm. with the free stream mean velocity was set at 20 m/s. The Reynolds number was calculated as 3 x 10 4. Investigations with base model of the airfoil have shown flow separation at approximately 85% chord length at an angle of attack of 17 degrees. For investigation using passive flow control device, i.e. riblets, investigations were performed for different radial sizes but at a fixed location. It was found that with 1 mm radial size riblet, the tip vortices were reduced by approximately 95%, as compared to the baseline model. Although negligible lift-to-drag improvement was seen, a faster dissipation rate in turbulent kinetic energy was observed. Furthermore, investigations were carried out using the active flow control device. The rotary cylinder with a 0.51 cm in diameter was placed slightly downstream of the location of flow separation, i.e. at x/c = 0.848. Investigations were performed at different cylinder's rotations, corresponding to different tangential velocities of being higher than, equal to and less than the free stream mean velocity. Results have shown approximately 10% improvement in lift to drag ratio when the tangential velocity is near the free stream mean velocity. Further investigation may include usage of the riblets and the rotary cylinder combined, to increase the stability as well as the lift-to-drag ratio of the MAVs.

  6. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  7. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  8. Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow

    NASA Astrophysics Data System (ADS)

    Fomichev, V. P.; Yadrenkin, M. A.

    2013-01-01

    New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.

  9. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  10. Self-Consistent Multiscale Theory of Internal Wave, Mean-Flow Interactions

    SciTech Connect

    Holm, D.D.; Aceves, A.; Allen, J.S.; Alber, M.; Camassa, R.; Cendra, H.; Chen, S.; Duan, J.; Fabijonas, B.; Foias, C.; Fringer, O.; Gent, P.R.; Jordan, R.; Kouranbaeva, S.; Kovacic, G.; Levermore, C.D.; Lythe, G.; Lifschitz, A.; Marsden, J.E.; Margolin, L.; Newberger, P.; Olson, E.; Ratiu, T.; Shkoller, S.; Timofeyev, I.; Titi, E.S.; Wynn, S.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The research reported here produced new effective ways to solve multiscale problems in nonlinear fluid dynamics, such as turbulent flow and global ocean circulation. This was accomplished by first developing new methods for averaging over random or rapidly varying phases in nonlinear systems at multiple scales. We then used these methods to derive new equations for analyzing the mean behavior of fluctuation processes coupled self consistently to nonlinear fluid dynamics. This project extends a technology base relevant to a variety of multiscale problems in fluid dynamics of interest to the Laboratory and applies this technology to those problems. The project's theoretical and mathematical developments also help advance our understanding of the scientific principles underlying the control of complex behavior in fluid dynamical systems with strong spatial and temporal internal variability.

  11. Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Sánchez-Vílchez, José Manuel; Cortijo, Julio; Hueso, José L; Riera, Jaime; Moratal, David

    2014-04-01

    Primary ciliary dyskinesia implies cilia with defective or total absence of motility, which may result in sinusitis, chronic bronchitis, bronchiectasis and male infertility. Diagnosis can be difficult and is based on an abnormal ciliary beat frequency (CBF) and beat pattern. In this paper, we present a method to determine CBF of isolated cells through the analysis of phase-contrast microscopy images, estimating cilia motion by means of an optical flow algorithm. After having analyzed 28 image sequences (14 with a normal beat pattern and 14 with a dyskinetic pattern), the normal group presented a CBF of 5.2 ± 1.6 Hz, while the dyskinetic patients presented a 1.9 ± 0.9 Hz CBF. The cutoff value to classify a dyskinetic specimen was set to 3.45 Hz (sensitivity 0.86, specificity 0.93). The presented methodology has provided excellent results to objectively diagnose PCD. PMID:24438822

  12. Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2007-01-01

    During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.

  13. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  14. Emission of Sound from Turbulence Convected by a Parallel Mean Flow in the Presence of a Confining Duct

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Leib, Stewart J.

    1999-01-01

    An approximate method for calculating the noise generated by a turbulent flow within a semi-infinite duct of arbitrary cross section is developed. It is based on a previously derived high-frequency solution to Lilley's equation, which describes the sound propagation in a transversely-sheared mean flow. The source term is simplified by assuming the turbulence to be axisymmetric about the mean flow direction. Numerical results are presented for the special case of a ring source in a circular duct with an axisymmetric mean flow. They show that the internally generated noise is suppressed at sufficiently large upstream angles in a hard walled duct, and that acoustic liners can significantly reduce the sound radiated in both the upstream and downstream regions, depending upon the source location and Mach number of the flow.

  15. The meaning of air quality and flue gas emission standards for public acceptance of new thermal power plants.

    PubMed

    Barbalić, N; Marijan, G; Marić, M

    2000-06-01

    For the time being only 30-40% of the electric energy supply in Croatia comes from burning fossil fuel. New capacities of 800-1400 MW for the next decade will have to rely on the exclusive use of fossil fuels in thermal power plants (TPP). Public opinion will probably have a decisive influence on the issuing of construction permissions. The potential adverse effects on air seem to be the main argument against construction of TPPs. The priority is therefore to unambiguously state what air quality is warranted in the influenced area for the whole operation period of a TPP. It is important that the public should understand the real meaning of current air quality standards and emission limits. The only known way to do it today is through comparison with the corresponding standards and limits accepted worldwide. This paper discusses some important aspects of such comparison. PMID:11103526

  16. Eliminating primary air axial flow fan stall at the D. B. Wilson station

    SciTech Connect

    Studley, B.C. ); Schmidt, E. ); Foreman, J.D. )

    1990-01-01

    Having originally chosen two axial flow primary air fans operating in parallel to deliver pulverized coal to this 440 Mw facility because of their high efficiencies and precise flow control, a program for first controlling and then eliminating fan stall was undertaken. An axial flow fan stalls when air flow separation occurs around the blades. This results in heavy turbulence with the fan no longer operating on its normal performance curve and consequently a rapid decrease in both pressure and flow is experienced. In addition, this condition results in high vibration which over time can be destructive to the fan. The immediate effect is obviously a sudden decrease in fuel flow followed b y both steam flow and electrical output. Although fan stall is a potential drawback of axial flow fans, the program implemented, which is described in this paper, has been successful at first controlling and recently eliminating fan stall all together. This was possible through an extensive test program and finally the installation of anti-stall rings on both fans. The net result of this operating improvement has been improved availability, reliability and capacity, in addition to higher fan discharge pressures as the anti-stall rings have modified the pressure-versus-volume curves of the fan similar to the characteristics of a cof a centrifugal fan.

  17. Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.

    PubMed

    Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad

    2015-08-01

    An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments. PMID:26241787

  18. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  19. A Navier-Stokes-Based Approach for Mean Flow Perturbation Analysis

    NASA Astrophysics Data System (ADS)

    Bhaumik, Swagata; Gaitonde, Datta; Waindim, Mbu; The Ohio State University Team

    2014-11-01

    The manner in which a basic state, obtained from a time-averaged unsteady flowfield, processes perturbations can provide significant insight into the cause and evolution of instabilities. A widely used approach is based on Parabolized Stability Equations (PSE), which limits streamwise mean flow variation and is often applied to 2-D base flows. To avoid some of these issues, we advance a Navier-Stokes-based method, which can address non-trivial three-dimensional fields. The method stems from that employed by Touber and Sandham (Theor. Comput. Fluid. Dyn., 23, 79, 2009) to analyze global modes in nominally 2-D shock-wave turbulent-boundary layer interactions (STBLI). We first develop its theoretical underpinnings by examining conditions under which it degenerates to traditional methods. We then illustrate the application by considering perturbations to an entropy layer at Mach 6, a turbulent supersonic jet at Mach 1.3 and STBLI at Mach 2.3. For the entropy layer and jet cases, known linear stability and PSE results are successfully reproduced, while global modes are obtained for STBLI. The results not only validate the proposed technique, but also demonstrate its suitability in analyzing instabilities for any general 3D basic state, including impulse response. Sponsored by AFOSR.

  20. Improved global prediction of 300 nautical mile mean free air anomalies

    NASA Technical Reports Server (NTRS)

    Cruz, J. Y.

    1982-01-01

    Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.

  1. Mean circulation and high-frequency flow amplification in the Sable Gully

    NASA Astrophysics Data System (ADS)

    Greenan, Blair J. W.; Petrie, Brian D.; Cardoso, Diana A.

    2014-06-01

    The Sable Gully, a broad, shelf break submarine canyon approximately 40 km east of Sable Island on the eastern Scotian Shelf, separates Banquereau and Sable Island Banks. Unique among canyons on the eastern Canadian continental shelf because of its depth, steep slopes and extension far onto the shelf, its ecological significance and increasing human pressures led to its designation in 2004 under Canada's Oceans Act as the first Marine Protected Area (MPA) in the Atlantic Region. To improve the state of knowledge of the Gully MPA, a multi-disciplinary field program was carried out in 2006-07; the physical oceanographic component consisted of the deployment (April 2006) and recovery (August 2007) of four current meter moorings and CTD surveys. Analysis of this 16-month mooring deployment demonstrates that the mean circulation above the canyon rim (~200 m) is characterized by a southwestward flow that appears unaffected by the canyon topography. There is also some indication of the existence of an eddy at rim depth. Below 500 m, the circulation is dominated by an upcanyon flow (of order 0.02 m s-1) at the mooring array (halfway between the canyon head and mouth). The mean, 200 m-bottom transport towards the head of the Gully was estimated as 35,500 m3 s-1, implying an upwelling velocity of 1.7×10-4 m s-1 (14 m d-1) over the area. Results also show bottom-intensified tidal flows and non-linear constituents due to the interaction of K1, O1, M2 and S2 components along the thalweg of the canyon; the strong overtides and compound tides observed in the Gully make it unique among canyons. Further analyses provide evidence of enhanced mixing in the Gully (Kv~180×10-4 m2 s-1), which is approximately 20 times that observed on the adjoining Scotian Shelf. Total variance of the currents in the Gully is about 2.5 times greater than that observed on the nearby continental slope with an equivalent water depth.

  2. Climatology and trends in the forcing of the stratospheric zonal-mean flow

    NASA Astrophysics Data System (ADS)

    Monier, E.; Weare, B. C.

    2011-04-01

    The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40). This study outlines the considerable contribution of unresolved waves, dominated by gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later. This temporal shift is associated with long-term changes in the planetary wave activity that are mainly due to synoptic waves. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This is associated with a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980-2001 period. Ozone depletion is well known for strengthening westerly winds through the thermal wind balance, which in turn causes a reduction in wave activity in high latitudes. This study suggests that the decrease in planetary wave activity provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. Finally, we identify long-term changes in the Brewer-Dobson circulation that, this study suggests, are largely caused by trends in the planetary wave activity during winter and by trends in the gravity wave forcing otherwise.

  3. Photosensitizer fluorescence dynamics at its diffusion in blood flow for different means of cells concentrations

    NASA Astrophysics Data System (ADS)

    Maryakhina, V. S.; Gun'kov, V. V.

    2016-04-01

    In the paper the mathematical model of kinetics of interaction of the injected compound with biological liquid flow has been described for different means of cells concentrations connected on packed cell volume. It is considered that biological liquid contains a three phases such as water, peptides and cells. At the time, the injected compound can interact with peptides and cells which are "trap" for him. The obtained distribution of the compound connects on changes of its fluorescence spectra. It is shown that fluorescence intensivity change is different at 560, 580 and 590 nm. The curves do not have monotonic nature. There is a sharp curves decline in the first few seconds, next, it are increasing. Curves inflection time slightly depends on the cells concentration and is 7-9 seconds. At the time stationary concentration significantly depends on this parameter in contrast to blood viscosity. As long s cells concentration is primarily mean of the packed cell volume, the model can be important for pharmacokinetics and preparations delivery. It can be also used for fluorescent biomedical diagnostics of cancer tumour.

  4. An experimental study on the effect of air bubble injection on the flow induced rotational hub

    SciTech Connect

    Nouri, N.M.; Sarreshtehdari, A.

    2009-01-15

    Modification of shear stress due to air bubbles injection in a rotary device was investigated experimentally. Air bubbles inject to the water flow crosses the neighbor of the hub which can rotate just by water flow shear stresses, in this device. Increasing air void fraction leads to decrease of shear stresses exerted on the hub surface until in high void fractions, the hub motion stopped as observed. Amount of skin friction decrease has been estimated by counting central hub rotations. Wall shear stress was decreased by bubble injection in all range of tested Reynolds number, changing from 50,378 to 71,238, and also by increasing air void fraction from zero to 3.06%. Skin friction reduction more than 85% was achieved in this study as maximum measured volume of air fraction injected to fluid flow while bubbles are distinct and they do not make a gas layer. Significant skin friction reduction obtained in this special case indicate that using small amount of bubble injection causes large amount of skin friction reduction in some rotary parts in the liquid phases like as water. (author)

  5. A blunted cone in a supersonic high-enthalpy nonequilibrium air flow

    NASA Astrophysics Data System (ADS)

    Sakharov, V. I.; Shtapov, V. V.; Vasilevskiy, E. B.; Zhestkov, B. E.

    2015-06-01

    A calculation and experimental study was conducted with the flow, heat flux, and pressure distributions over the front and side surfaces of a blunt cone in a nonequilibrium high-enthalpy (h0 = 25 MJ/kg) supersonic (M = 4) air flow. The experiments were performed in a VAT-104 wind tunnel (WT), TsAGI. The nose part of the model with a small-radius nose Rw = 10 mm and half angle θ = 10° was inside the "Mach cone" of the underexpanded jet flowing out from the WT nozzle. Numerical and experimental results are in good agreement.

  6. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  7. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron

    2015-05-01

    In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.

  8. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  9. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  10. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  11. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  12. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  13. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  14. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  15. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  16. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  17. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  18. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  19. Two-phase air/oil flow in aero engine bearing chambers: Characterization of oil film flows

    SciTech Connect

    Glahn, A.; Wittig, S.

    1996-07-01

    For the design of secondary air and lubrication oil systems, a sufficient knowledge of two-phase flow and heat transfer phenomena under bearing chamber flow conditions is required. The characterization of oil film flows at the bearing chamber walls is one of the major tasks for a better understanding of these processes and, therefore, a necessity for improvements of the efficiency of aero engines. The present paper gives a contribution to this subject. Utilizing a fiber-optic LDV setup, measurements of oil film velocity profiles have been performed in the high-speed bearing chamber rig simulating real engine conditions. All data have been compared with different theoretical approaches, which have been derived from a force balance at a liquid film element, including geometric conditions and temperature dependent fluid properties, and by approaches for the eddy viscosity available in the literature.

  20. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  1. Experimental investigation on the interfacial characteristics of stratified air-water two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Hudaya, Akhmad Zidni; Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto, Indarto

    2016-06-01

    The interfacial wave characteristics of stratified air-water two-phase flow in a horizontal pipe were experimentally investigated by using the flush-mounted constant electric current method (CECM) sensors. The experiments were conducted in a horizontal two-phase flow loop 9.5 m long (L) consisting of transparent acrylic pipe of 26 mm i.d. (D). To obtain the stratified flow pattern, the superficial gas and liquid velocities were set to 1.02 - 3.77 m/s and 0.016 - 0.92 m/s, respectively. Several interfacial wave patterns as described by several investigators were identified. The common parameters such as liquid hold-up, probability distribution function, wave velocity and wave frequency were investigated as the function of the liquid and gas flow rates. The interfacial curvature was calculated on the basis of the liquid hold-up data from the CECM sensors and the liquid film thickness data from the image processing technique in the previous work. As a result, it was found that the mean liquid hold-up decreases with the increase of the superficial gas velocity. In the same sub flow pattern, the wave velocity increases as the superficial gas velocity increases. On the other hand, in the two-dimensional wave region, the dominant frequency decreases with the increase of the superficial liquid velocity.

  2. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  3. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  4. Three-dimensional Simulations of the Mean Air Transport During the 1997 Forest Fires in Kalimantan, Indonesia Using a Mesoscale Numerical Model

    NASA Astrophysics Data System (ADS)

    Roswintiarti, O.; Raman, S.

    - This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.

  5. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  7. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.

    PubMed

    Vankova, Nina; Tcholakova, Slavka; Denkov, Nikolai D; Ivanov, Ivan B; Vulchev, Vassil D; Danner, Thomas

    2007-08-15

    Systematic experimental study of the effects of several factors on the mean and maximum drop sizes during emulsification in turbulent flow is performed. These factors include: (1) rate of energy dissipation, epsilon; (2) interfacial tension, sigma; (3) viscosity of the oil phase, eta(D); (4) viscosity of the aqueous phase, eta(C); and (5) oil volume fraction, Phi. The emulsions are prepared by using the so-called "narrow-gap homogenizer" working in turbulent regime of emulsification. The experiments are performed at high surfactant concentration to avoid the effect of drop-drop coalescence. For emulsions prepared in the inertial turbulent regime, the mean and the maximum drop sizes increase with the increase of eta(D) and sigma, and with the decrease of epsilon. In contrast, Phi and eta(C) affect only slightly the mean and the maximum drop sizes in this regime of emulsification. These results are described very well by a theoretical expression proposed by Davies [Chem. Eng. Sci. 40 (1985) 839], which accounts for the effects of the drop capillary pressure and the viscous dissipation inside the breaking drops. The polydispersity of the emulsions prepared in the inertial regime of emulsification does not depend significantly on sigma and epsilon. However, the emulsion polydispersity increases significantly with the increase of oil viscosity, eta(D). The experiments showed also that the inertial turbulent regime is inappropriate for emulsification of oils with viscosity above ca. 500 mPa s, if drops of micrometer size are to be obtained. The transition from inertial to viscous turbulent regime of emulsification was accomplished by a moderate increase of the viscosity of the aqueous phase (above 5 mPa s in the studied systems) and/or by increase of the oil volume fraction, Phi>0.6. Remarkably, emulsions with drops of micrometer size are easily formed in the viscous turbulent regime of emulsification, even for oils with viscosity as high as 10,000 mPa s. In this regime

  8. Meteorological adjustment of yearly mean values for air pollutant concentration comparison

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Neustadter, H. E.

    1976-01-01

    Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.

  9. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Astrophysics Data System (ADS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-03-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  10. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  11. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  12. Combined experimental and computational investigation of sterile air flows in surgical environments

    NASA Astrophysics Data System (ADS)

    McNeill, James; Hertzberg, Jean; Zhai, Zhiqiang

    2010-11-01

    Surgical environments in hospitals utilize downward, low-turbulence, sterile air flow across the patient to inhibit transmission of infectious diseases to the surgical site. Full-scale laboratory experiments using particle image velocimetry were conducted to investigate the air distribution above the patient area. Computational fluid dynamics models were developed to further investigate the air distribution within the operating room in order to determine the impact of ventilation design of airborne infectious disease pathways. Both Reynolds-averaged Navier-Stokes equations and large eddy simulation techniques are currently being used in the computational modeling to study the effect of turbulence modeling on the indoor air distribution. CFD models are being calibrated based on the experimental data and will be used to study the probability of infectious particles entering the sterile region of the room.

  13. Permeability Estimation of Porous Rock by Means of Fluid Flow Simulation and Digital Image Analysis

    NASA Astrophysics Data System (ADS)

    Winardhi, C. W.; Maulana, F. I.; Latief, F. D. E.

    2016-01-01

    Permeability plays an important role to determine the characteristics of how fluids flow through a porous medium which can be estimated using various methods. Darcy's law and the Kozeny-Carman equation are two of the most utilized methods in estimating permeability. In Darcy's law, permeability can be calculated by applying a pressure gradient between opposing sides of inlet-outlet of a certain direction. The permeability then depends on the fluid viscosity and the flowrate. The Kozeny-Carman equation is an empirical equation which depends on several parameters such as shape factor of the pore, tortuosity, specific surface area, and porosity to determine the permeability. For both methods, digital image obtained by means of Micro CT-Scan is used. In this research, the permeability estimation using the Darcy's law was conducted by simulating fluid flow through the digital image using Lattice Boltzmann Method (LBM). As for the Kozeny-Carman equation, digital image analysis was used to obtain the required parameters. Two Kozeny-Carman equations were used to calculate the permeability of the samples. The first equation (KC1) depends on pore shape factor, porosity, tortuosity, and specific surface area while the second equation (KC2) only depends on pore radius, porosity, and tortuosity. We investigate the methods by first testing on three simple pipe models which vary in the radii. By using the result from Darcy's law as a reference, we compare the results from the Kozeny-Carman equations. From the calculation, KC2 yield smaller difference to the reference. The three methods were then applied to the Fontainebleau sandstone to verify the previous result.

  14. An Experimental Investigation of the Flow of Air in a Flat Broadening Channel

    NASA Technical Reports Server (NTRS)

    Vedernikoff, A. N.

    1944-01-01

    The wide use of diffusers, in various fields of technology, has resulted in several experimental projects to study the action and design of diffusers. Most of the projects dealt with steam (steam turbine nozzles). But diffusers have other applications - that is, ventilators, smoke ducts, air coolers, refrigeration, drying, and so forth. At present there is another application for diffusers in wind-tunnel design. Because of higher requirements and increased power of such installations more attention must be paid to the correctness of work and the decrease in losses due to every section of the tunnel. A diffuser, being one of the component parts of a tunnel , can in the event of faulty construction introduce considerable losses. Therefore, in the design of the new CAHI wind tunnel, it was suggested that an experimental study of diffusers be made, with a view to applying the results to wind tunnels. The experiments conducted by K. K. Baulin in the laboratories of CAHI upon models of diffusers of different cross sections, lengths, and angles of divergence, were a valuable source of experimental data. They were of no help, however, in reaching any conclusion regarding the optimum shape because of the complexity and diversity of the factors which all appeared simultaneously, thereby precluding the.study of the effects of any one factor separately. On the suggestion of the director of the CAHI,Prof. B. N. Ureff, it was decided to experiment on a two-dimensional diffuser model and determine the effect, of the angle of divergence. The author is acquainted with two experimental projects of like nature: the first was conducted with water, the other with air. The first of these works, although containing a wealth of experimental data, does not indicate the nature of flow or its relation to the angle of divergence. The second work is limited to four angles - that is, 12 deg, 24 deg, 45 deg, 90 deg. The study of this diffuser did not supply any information about the effect of

  15. Controlling the sonic boom from a thin body by means of local heating of the incoming flow

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2013-11-01

    The problem of reduction of the sonic boom level by heating the flow in front of the body is solved numerically. A combined method of “phantom bodies” is used for calculations. The sonic boom generated by an axisymmetric thin body for the flight Mach number of 2 with different levels of energy supply to the incoming flow is calculated. The calculation results show that the sonic boom can be reduced by means of local heat supply to a supersonic gas flow. Reduction of the sonic boom level is provided by specific gas-dynamic features of the flow behind the heat supply zone.

  16. Detection of Zero-Mean-Frequency Zonal Flows in the Core of a High-Temperature Tokamak Plasma

    SciTech Connect

    Gupta, D. K.; Fonck, R. J.; McKee, G. R.; Schlossberg, D. J.; Shafer, M. W.

    2006-09-22

    A low-frequency, spectrally broad ({delta}f{approx}10 kHz) poloidal flow structure that peaks near zero frequency is observed in time-resolved measurements of the turbulence velocity field in the core region (r/a{approx}0.6-0.9) of DIII-D tokamak plasmas. These flows exhibit a long poloidal wavelength (low m) and a short radial coherence length comparable to the ambient turbulence decorrelation length. Characteristics of these observed poloidal flows are consistent with the theoretically predicted residual or zero-mean-frequency zonal flows.

  17. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    NASA Astrophysics Data System (ADS)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  18. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  19. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  20. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  1. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  2. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  3. Effect of the Entrapped air on Water Flow in Heterogeneous Soil: Experimental Set- up

    NASA Astrophysics Data System (ADS)

    Snehota, M.; Sobotkova, M.; Cislerova, M.

    2008-12-01

    Temporal variations of steady state water flow rates were observed in laboratory infiltration experiments done on a sample of compacted sand and on an undisturbed soil sample (Eutric Cambisol). These variations are found to be in relation with entrapped air content. Infiltration-outflow experiments consisted of a series of ponded infiltration runs with seepage face boundary condition at the lower end of columns. The amount of the entrapped was derived from continuous weighing of the sample. The initial water contents were different for each run, which led to different amount of the air trapped in the soil during the first stages of infiltrations. The results of the experiments done on undisturbed soil showed that the flux rates and water contents varied during quasi-steady state. This finding contradicts the standard theory. The fluctuations of the water content during the steady state flow can be ascribed to the variations in volume of the entrapped air. Similarly, shape of the bromide breakthrough curve, which were performed simultaneously during the quasi-steady state varied for undisturbed soil. The same behaviour was not observed in the sample of homogeneous sand. Computer tomography was used to characterize the structure of the undisturbed soil sample with focus on potential preferential flow pathways, which are likely to host the entrapped air. To formulate more general conclusions, an extended series of infiltration outflow and bromide breakthrough experiments is in progress. This research has been supported by research project GACR 103/08/1552 and MSMT CEZ MSM 6840770002.

  4. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  5. Information system "BW_Abfluss": regionalisation of flood, mean and low flow parameters

    NASA Astrophysics Data System (ADS)

    Blatter, A. S.; Liebert, J.; Preuss, P. A.; Szabadics, J.; Ihringer, J.

    2007-06-01

    On behalf of and in close collaboration with the institution of environment, measurements and conservation of the federal state of Baden-Württemberg (Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg/LUBW/ see http://www.lubw.baden-wuerttemberg.de/) an innovative regionnalisation concept has been developed. This concept allows the supply of flood, mean or low flow parameters for 10 790 sites in Baden-Württemberg and an evaluation of the predicted impact of climate change on the flood situation. The extensive data basis for this regionalisation concept with numerous input parameters and varied result reporting made it necessary to select an appropriate database structure. New software was developed to help with the calculations, notably for: - upgrading the official areal water system register (Gewässerkundliches Flächenverzeichnis/GKFV) - proofing tools to maintain consistency - automatic parameter derivation with the software ESRI© ArcInfo. The results were published in electronic form and included a stand-alone geo-information software for easy and fast retrieval of data and results. The objective of this article is to describe the implementation of these new concepts for coupling Geographic Information System (GIS) and database needs to reach the identified requirements.

  6. Cruise ships flow rate emission evaluated by means of a passive DOAS instrument

    NASA Astrophysics Data System (ADS)

    Masieri, S.; Premuda, M.; Bortoli, D.; Kostadinov, I.; Petritoli, A.; Ravegnani, F.; Giovanelli, G.

    2009-09-01

    The emissions of the cruise ships, in terms of nitrogen dioxide (NO2) and sulphur dioxide (SO2), are evaluated with the DOAS scanning spectrometer TropoGAS (Tropospheric Gas Analyser Spectrometer) developed at ISAC CNR in close collaboration with the CGE-UE. The slant columns amounts of the above mentioned compounds are obtained with the application of the Differential Optical Absorption Spectroscopy (DOAS) technique to the spectral measurements carried out with the TropoGAS instrument. This last is linked with an optical fibre to a simple scanning optical system allowing for measurements in multiple axis configurations. The measurements are carried out across the Giudecca Channel in Venice, during two field campaigns performed in July and in October 2007. The instrumental setup, the DOAS method and the technique for the evaluation of the ships emissions, are described. The results of flow rate emissions for NO2 and SO2 are presented and discussed. Their mean values are about 12g/s and 4 g/s for NO2 and SO2 respectively.

  7. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  8. The use of autonomous unmanned vehicles for measuring the mean flow field in riverine environments

    NASA Astrophysics Data System (ADS)

    Tuggle, C.; Macmahan, J. H.; Brown, J.; Reniers, A. J.

    2010-12-01

    Autonomous unmanned vehicles (AUVs) are commonly used in oceanic, estuarine and, more recently, riverine environments because they are small, versatile, moving platforms equipped with a suite of instruments for measuring environmental conditions. However, moving vessel observations, particularly those associated acoustic Doppler current profiler (ADCP) observations, can be problematic owing to instrument noise, flow fluctuations, and spatial variability. As part of a riverine field experiment conducted in the Kootenai River, ID in August 2010, a spatial map of the mean horizontal and vertical velocity fields in a 200m wide, 8 m deep, and 0.5m/s meandering reach was obtained using two different AUV platforms: SeaRobotics unmanned surface vehicle (USV) and YSI/OceanServer Technology IVER-II unmanned underwater vehicle (UUV). The USV has dual-propellers navigating with GPS and was able to station-keep to within 1 m for 10 minutes at various locations within the reach in order to obtain the 3-D velocity field. Obtaining a statistically confident estimate of the mean velocity profile requires an appropriate time-interval to average instrument noise and environmental fluctuations. It has been previously proposed that 10 minutes is an adequate time interval when using an ADCP in a river. Preliminary results show that a shorter time interval is adequate, which would allow for increased spatial coverage. The UUV has a station-keeping capability when at the surface, but owing to its single propeller, it operates best by performing slow (0.2-0.35m/s) moving transects. Since the UUV is moving in a system that is spatially non-homogenous, additional errors in the mean velocity profile can be introduced due to spatial variability. An evaluation of the velocity profile quality, current measuring performance and minimum averaging time interval requirements are discussed for each platform, including the appropriate mission planning considerations for riverine observations. In

  9. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  10. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  11. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Astrophysics Data System (ADS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-11-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  12. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  13. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  14. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  15. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  16. Preliminary analysis of problem of determining experimental performance of air-cooled turbine II : methods for determining cooling-air-flow characteristics

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H , Jr

    1950-01-01

    In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.

  17. Numerical Simulation of Flows in a Cyclone Chamber with Different Conditions of Air Inlet and Outlet

    NASA Astrophysics Data System (ADS)

    Pitsukha, E. A.

    2014-09-01

    A numerical investigation of flows in a cyclone chamber has been carried out at the fraction of bottom blast φ =0-0.5, at the values of the dimensionless pinch diameter dout/D =0.7 with different locations and configurations of nozzles for air intake. In the simulation of swirling flows, the well-known k-ɛ and k-ω turbulence models, as well as the laminar flow model, were used. A satisfactory agreement between the results of numerical simulation and experimental data at dout/D =0.5-0.7 is obtained. For a chamber with a relative pinch diameter dout/D =0.3 the calculated flow parameters differ substantially from experimental values.

  18. Investigation of the motion and heat transfer of water droplets in the swirling air flow in weightlessness

    NASA Astrophysics Data System (ADS)

    Gubaidullin, D. A.; Fedyaev, V. L.; Morenko, I. V.; Snigerev, B. A.; Galimov, E. R.

    2016-06-01

    The motion and heat transfer of water droplets with a swirling air flow is investigated. Flow was considered in a cylindrical chamber in the absence of gravity. We created a mathematical model of this problem and made appropriate calculations. The features of the air flow at a tangential feeding it into the chamber, and the motion of the drops, their thermal behaviour are founded. We presented the recommendations for the rational choice of parameters of the apparatus and rational operation regime.

  19. The Lagrangian coordinate system and what it means for two-dimensional crowd flow models

    NASA Astrophysics Data System (ADS)

    van Wageningen-Kessels, Femke; Leclercq, Ludovic; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-02-01

    A continuum crowd flow model is solved using the Lagrangian coordinate system. The system has proven to give computational advantages over the traditional Eulerian coordinate system for (one-dimensional) road traffic flow. Our extension of the model and simulation method to (two-dimensional) crowd flow paves the way to explore the advantages for crowd flow simulation. Detailed analysis of the advantages is left for future research. However, this paper provides a first exploration and shows that a model and simulation method for two-dimensional crowd flow can be developed using Lagrangian numerical techniques and that it leads to accurate simulation results.

  20. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    SciTech Connect

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at an altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).

  1. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    DOE PAGESBeta

    Aab, Alexander

    2015-03-09

    We present the first hybrid measurement of the average muon number in air showers at ultra-high energies, initiated by cosmic rays with zenith angles between 62° and 80° . Our measurement is based on 174 hybrid events recorded simultaneously with the Surface Detector array and the Fluorescence Detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the Surface Detector array at anmore » altitude of 1450 m above sea level, contains on average (2.68 ± 0.04 ± 0.48 (sys.)) × 107 muons with energies larger than 0.3 GeV. Finally, the logarithmic gain d ln Nµ/d ln E of muons with increasing energy between 4 × 1018 eV and 5 × 1019 eV is measured to be (1.029 ± 0.024 ± 0.030 (sys.)).« less

  2. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  3. Lysozyme fractionation from egg white at pilot scale by means of tangential flow membrane adsorbers: Investigation of the flow conditions.

    PubMed

    Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich

    2016-03-18

    The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52mgcm(-2)). Further, it was shown that either higher flow rates (0.39mgcm(-2) vs. 0.57mgcm(-2) at 1CVmin(-1) or 20CVmin(-1), respectively) or higher amounts of the target protein in the feed (0.24mgcm(-2) vs. 0.85mgcm(-2) for 2.5 or 39.0g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148

  4. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  5. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  6. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  7. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  8. A wind tunnel study of the flow field within and around open-top chambers used for air pollution studies

    NASA Astrophysics Data System (ADS)

    Davis, J. M.; Riordan, A. J.; Lawson, R. E.

    1983-02-01

    The EPA Meteorological Wind Tunnel was used to examine the flow field in and around models of open-top field-plant growth chambers used to assess the effects of pollutant gases on plant growth. Baffles designed to reduce the ingress of ambient air into the chamber through the open top were tested; the mean flow and turbulence in the simulated boundary layer with and without the chambers were compared (the chamber was operated with and without the pollutant flow system on); and the effects of surrounding chambers on the concentration field were measured. Results showed that a baffle with a reduced opening vertically above the test area maintained the highest uniform concentration in the test area. The major differences between the three (no chamber and the chamber with flow on and off) mean velocity profiles occurred below z/h = 2.0 ( h is chamber height) and at z/h ≤ 4.2. The three Reynolds stress profiles were similar above z/h = 2.0. Downwind of the chamber, the Reynolds stresses in the on-mode were greater than those in the off-mode above z/h = 1.1. The reverse was true below that point. Both longitudinal and vertical intensities above and downwind of the chamber were greater with the mixture flow system on rather than off, below about z/h < 1.5. Lateral variations in the mean wind indicated that the mean velocity was greater with the mixture flow system on except near the centerline where the reverse was true. The concentrations in the downwind wake resembled those for a cube. The location of a cylinder within a regular array had some effect on its internal gas concentration. Locations near the upwind and downwind edges of the array were associated with lower concentrations, although for all locations the highest internal values were always found at the lowest portion of the upwind wall. With active cylinders downwind, the gas plume emitted from a source cylinder at the windward edge of the array was forced 0.5 h higher and the centerline meandered laterally

  9. Climatology and trends in the forcing of the stratospheric zonal-mean flow

    NASA Astrophysics Data System (ADS)

    Monier, E.; Weare, B. C.

    2011-12-01

    The momentum budget of the Transformed Eulerian-Mean (TEM) equation is calculated using the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis (ERA-40) and the National Centers for Environmental Prediction (NCEP) Reanalysis 2 (R-2). This study outlines the considerable contribution of unresolved waves, deduced to be gravity waves, to the forcing of the zonal-mean flow. A trend analysis, from 1980 to 2001, shows that the onset and break down of the Northern Hemisphere (NH) stratospheric polar night jet has a tendency to occur later in the season in the more recent years. This temporal shift follows long-term changes in planetary wave activity that are mainly due to synoptic waves, with a lag of one month. In the Southern Hemisphere (SH), the polar vortex shows a tendency to persist further into the SH summertime. This also follows a statistically significant decrease in the intensity of the stationary EP flux divergence over the 1980-2001 period. Ozone depletion is well known for strengthening the polar vortex through the thermal wind balance. However, the results of this work show that the SH polar vortex does not experience any significant long-term changes until the month of December, even though the intensification of the ozone hole occurs mainly between September and November. This study suggests that the decrease in planetary wave activity in November provides an important feedback to the zonal wind as it delays the breakdown of the polar vortex. In addition, the absence of strong eddy feedback before November explains the lack of significant trends in the polar vortex in the SH early spring. A long-term weakening in the Brewer-Dobson (B-D) circulation in the polar region is identified in the NH winter and early spring and during the SH late spring and is likely driven by the decrease in planetary wave activity previously mentioned. During the rest of the year, there are large discrepancies in the representation of the B-D circulation and

  10. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  11. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  12. Spatial Characteristics of Roughness Sublayer Mean Flow and Turbulence Over a Realistic Urban Surface

    NASA Astrophysics Data System (ADS)

    Giometto, M. G.; Christen, A.; Meneveau, C.; Fang, J.; Krafczyk, M.; Parlange, M. B.

    2016-04-01

    Single-point measurements from towers in cities cannot properly quantify the impact of all terms in the turbulent kinetic energy (TKE) budget and are often not representative of horizontally-averaged quantities over the entire urban domain. A series of large-eddy simulations (LES) is here performed to quantify the relevance of non-measurable terms, and to explore the spatial variability of the flow field over and within an urban geometry in the city of Basel, Switzerland. The domain has been chosen to be centered around a tower where single-point turbulence measurements at six heights are available. Buildings are represented through a discrete-forcing immersed boundary method and are based on detailed real geometries from a surveying dataset. The local model results at the tower location compare well against measurements under near-neutral stability conditions and for the two prevailing wind directions chosen for the analysis. This confirms that LES in conjunction with the immersed boundary condition is a valuable model to study turbulence and dispersion within a real urban roughness sublayer (RSL). The simulations confirm that mean velocity profiles in the RSL are characterized by an inflection point z_{γ } located above the average building height z_h . TKE in the RSL is primarily produced above z_{γ } , and turbulence is transported down into the urban canopy layer. Pressure transport is found to be significant in the very-near-wall regions. Further, spatial variations of time-averaged variables and non-measurable dispersive terms are important in the RSL above a real urban surface and should therefore be considered in future urban canopy parametrization developments.

  13. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  14. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  15. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  16. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  17. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  18. Long-distance correlation and zonal flow structures induced by mean ExB shear flows in the biasing H-mode at TEXTOR

    SciTech Connect

    Xu, Y.; Jachmich, S.; Weynants, R. R.; Schoor, M. van; Vergote, M.; Kraemer-Flecken, A.; Schmitz, O.; Unterberg, B.

    2009-11-15

    Long-distance toroidal correlations of potential and density fluctuations have been investigated at the TEXTOR tokamak [H. Soltwisch et al., Plasma Phys. Controlled Fusion 26, 23 (1984)] in edge electrode-biasing experiments. During the biasing-induced H-mode, the dc ExB shear flow triggers a zonal flow structure and hence long-distance correlation in potential fluctuations, whereas for density fluctuations there is nearly no correlation. These results indicate an intimate interaction between the mean and zonal flows, and the significance of long range correlations in improved-confinement regimes.

  19. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  20. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  1. Computation of two-dimensional flows past ram-air parachutes

    NASA Astrophysics Data System (ADS)

    Mittal, S.; Saxena, P.; Singh, A.

    2001-03-01

    Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright

  2. Incompressible laminar flow through hollow fibers: a general study by means of a two-scale approach

    NASA Astrophysics Data System (ADS)

    Borsi, Iacopo; Farina, Angiolo; Fasano, Antonio

    2011-08-01

    We study the laminar flow of an incompressible Newtonian fluid in a hollow fiber, whose walls are porous. We write the Navier-Stokes equations for the flow in the inner channel and Darcy's law for the flow in the fiber, coupling them by means of the Beavers-Joseph condition which accounts for the (possible) slip at the membrane surface. Then, we introduce a small parameter {\\varepsilon ≪ 1} (the ratio between the radius and the length of the fiber) and expand all relevant quantities in powers of ɛ. Averaging over the fiber cross section, we find the velocity profiles for the longitudinal flow and for the cross-flow, and eventually, we determine the explicit expression of the permeability of the system. This work is also preliminary to the study of more complex systems comprising a large number of identical fibers (e.g., ultrafiltration modules and dialysis).

  3. A Subgrid Model for Predicting Air Entrainment Rates in Bubbly Flows

    NASA Astrophysics Data System (ADS)

    Ma, Jingsen; Oberai, Assad A.; Drew, Donald E.; Lahey, Richard T., Jr.; Moraga, Francisco J.

    2008-11-01

    In this talk we present a fairly simple subgrid air entrainment model that accurately predicts the rate of air entrainment, which is critical in simulating multiphase (air/water) flows. The derivation of this model begins by assuming that a thin sheet of air is carried into the water by the inertia of the liquid at the free surface. A momentum balance on the entrained gas layer results in an expression for the entrained volumetric gas flow rate, in terms of the local liquid velocity, gas viscosity etc., which are readily available from a multiphase RANS-type simulation. This model has been validated against extensive experimental data on both plunging jets and hydraulic jumps over a wide range of liquid velocities. It was implemented in a two-fluid computational fluid dynamics code (CFDShipM) to be used to predict the void fraction distribution underneath a plunging liquid jet at different depths and jet velocities. The results were found to match the experimental observations very well. The application of this model to more challenging problems, including hydraulic jumps and full-scale ship simulations, is currently underway.

  4. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor. PMID:26343789

  5. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  6. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks. PMID:25844537

  7. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  8. Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Rodica; Busuioc, Aristita; Stefan, Sabina

    2002-08-01

    This paper investigates the temporal and spatial variability of the seasonal mean of maximum air temperature in Romania and its links with the large-scale atmospheric circulation. The Romanian data sets are represented by time series at 14 stations. The large-scale parameters are represented by the observed sea-level pressure (SLP) and geopotential height at 500 hPa (Z500). The period analysed was 1922-98 for winter and 1960-98 for all seasons. Before analysis, the original temperature data were tested to detect for inhomogeneity using the standard normal homogeneity test. Empirical orthogonal functions (EOFs) were used to analyse the spatial and temporal variability of the local and large-scale parameters and to eliminate noise from the original data set. The time series associated with the first EOF pattern of the SLP and mean maximum temperature in Romania were analysed from trend and shifts point of view using the Pettitt and Mann-Kendall tests respectively. The covariance map computed using the Z500 and the seasonal mean of maximum temperature in Romania were used as additional methods to identify the large-scale circulation patterns influencing the local variability.Significant increasing trends were found for winter and summer mean maximum temperature in Romania, with upward shifts around 1947 and 1985 respectively. During autumn, a decreasing trend with a downward shift around 1969 was detected. These changes seem to be real, since they are connected to similar changes in the large-scale circulation. So, the intensification of the southwesterly circulation over Europe since 1933 overlapped with the enhancement of westerly circulation after the 1940s could be the reason for the change in winter mean maximum temperature. The slight weakening of the southwesterly circulation during autumn could be one of the reasons for the decrease in the regime of the mean maximum temperature for autumn seasons. Additionally, the covariance map technique reveals the

  9. Monitoring of surface velocity of hyper-concentrated flow in a laboratory flume by means of fully-digital PIV

    NASA Astrophysics Data System (ADS)

    Termini, Donatella; Di Leonardo, Alice

    2016-04-01

    High flow conditions, which are generally characterized by high sediment concentrations, do not permit the use of traditional measurement equipment. Traditional techniques usually are based on the intrusive measure of the vertical profile of flow velocity and on the linking of water depth with the discharge through the rating curve. The major disadvantage of these measurement techniques is that they are difficult to use and not safe for operators especially in high flow conditions. The point is that, as literature shows (see as an example Moramarco and Termini, 2015), especially in such conditions, the measurement of surface velocity distribution is important to evaluate the mean flow velocity and, thus, the flow discharge. In the last decade, image-based techniques have been increasingly used for surface velocity measurements (among others Joeau et al., 2008). Experimental program has been recently conducted at the Hydraulic laboratory of the Department of Civil, Environmental, Aerospatial and of Materials Engineering (DICAM) - University of Palermo (Italy) in order to analyze the propagation phenomenon of hyper-concentrated flow in a defense channel. The experimental apparatus includes a high-precision camera and a system allowing the images recording. This paper investigates the utility and the efficiency of the digital image-technique for remote monitoring of surface velocity in hyper-concentrated flow by the aid of data collected during experiments conducted in the laboratory flume. In particular the present paper attention is focused on the estimation procedure of the velocity vectors and on their sensitivity with parameters (number of images, spatial resolution of interrogation area,) of the images processing procedure. References Jodeau M., A. Hauet, A. Paquier, Le Coz J., Dramais G., Application and evaluation of LS-PIV technique for the monitoring of river surface in high flow conditions, Flow Measurements and Instrumentation, Vol.19, No.2, 2008, pp.117

  10. Effects of the 7-8-year cycle in daily mean air temperature as a cross-scale information transfer

    NASA Astrophysics Data System (ADS)

    Jajcay, Nikola; Hlinka, Jaroslav; Paluš, Milan

    2015-04-01

    Using a novel nonlinear time-series analysis method, an information transfer from larger to smaller scales of the air temperature variability has been observed in daily mean surface air temperature (SAT) data from European stations as the influence of the phase of slow oscillatory phenomena with periods around 6-11 years on amplitudes of the variability characterized by smaller temporal scales from a few months to 4-5 years [1]. The strongest effect is exerted by an oscillatory mode with the period close to 8 years and its influence can be seen in 1-2 °C differences of the conditional SAT means taken conditionally on the phase of the 8-year cycle. The size of this effect, however, changes in space and time. The changes in time are studied using sliding window technique, showing that the effect evolves in time, and during the last decades the effect is stronger and significant. Sliding window technique was used along with seasonal division of the data, and it has been found that the cycle is most pronounced in the winter season. Different types of surrogate data are applied in order to establish statistical significance and distinguish the effect of the 7-8-yr cycle from climate variability on shorter time scales. [1] M. Palus, Phys. Rev. Lett. 112 078702 (2014) This study is supported by the Ministry of Education, Youth and Sports of the Czech Republic within the Program KONTAKT II, Project No. LH14001.

  11. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  12. A description of eddy-mean flow feedbacks in equatorial and boundary current systems of the South Indian Ocean

    NASA Astrophysics Data System (ADS)

    Aguiar-González, Borja; Ponsoni, Leandro; Maas, Leo R. M.; Ridderinkhof, Herman; van Aken, Hendrik

    2015-04-01

    While many observational and modeling efforts have addressed eddy-mean flow interactions acting over nearly idealized zonal jets, little is know about whether findings in those studies can be extended to current systems with different configurations in the real ocean. This topic is of special interest for ocean-climate models where eddy interactions with the mean flow may be unresolved, demanding further insight on the mechanism by which the eddy field and the mean circulation should feed back in a realistic representation of future climate change scenarios. Following this motivation, we investigate local exchange of momentum and kinetic energy operating in a variety of eddy-mean flow systems of the South Indian Ocean (SIO). To this aim we use 21 years (1993-2013) of newly processed satellite altimetry observations, and adopt a definition of the mean flow as a seasonally-dependent temporal mean where the eddy field encompasses the daily instantaneous deviation from the altimeter-derived velocities. This approach allows time-varying feedbacks to evolve throughout the year. We find that the eddy field feeds back on the mean circulation, contributing importantly to the overall seasonal strengthening and weakening of all current systems involved in the tropical and subtropical gyre of the SIO. Although significant contributions to the momentum and energy balances were also obtained along the Agulhas (Return) Current and the Antarctic Circumpolar Current (ACC), they exhibit a weak/absent seasonal cycle, suggesting that the strength of these dynamical processes is mostly persistent throughout the year. Spatial distribution of the eddy kinetic energy conversion rates and the convergence of horizontal eddy momentum fluxes indicate that over regions where the eddy field draws energy from the mean flow through barotropic instabilities, the current is importantly decelerated by alongstream eddy forces on its upstream side, while further downstream the situation reverses with

  13. Theoretical study of the effect of liquid desiccant mass flow rate on the performance of a cross flow parallel-plate liquid desiccant-air dehumidifier

    NASA Astrophysics Data System (ADS)

    Mohammad, Abdulrahman Th.; Mat, Sohif Bin; Sulaiman, M. Y.; Sopian, K.; Al-abidi, Abduljalil A.

    2013-11-01

    A computer simulation using MATLAB is investigated to predict the distribution of air stream parameters (humidity ratio and temperature) as well as desiccant parameters (temperature and concentration) inside the parallel plate absorber. The present absorber consists of fourteen parallel plates with a surface area per unit volume ratio of 80 m2/m3. Calcium chloride as a liquid desiccant flows through the top of the plates to the bottom while the air flows through the gap between the plates making it a cross flow configuration. The model results show the effect of desiccant mass flow rate on the performance of the dehumidifier (moisture removal and dehumidifier effectiveness). Performance comparisons between present cross-flow dehumidifier and another experimental cross-flow dehumidifier in the literature are carried out. The simulation is expected to help in optimizing of a cross flow dehumidifier.

  14. Evaluating long-term trends in mean- and high- river flows using a network of reference stations in Ireland

    NASA Astrophysics Data System (ADS)

    Wilby, R. L.; Murphy, C.; Harrigan, S.; Hall, J.

    2012-12-01

    This paper describes the development of a reference hydrometric network for Ireland established primarily for the detection of climate driven trends in mean and high river flows. Thirty-five stations were identified for inclusion in the network plus a further 8 from the UK Benchmark Network. Their average record length is 40 years with a minimum of 28 and maximum of 63 years. Time series were derived for eight river flow indices: annual and seasonal mean flows and the annual maximum 1-, 10- and 30-day flows. Mann Kendall and Theil Sen statistics were applied to all indices using fixed and variable start/end dates. Trends in the winter mean are found to be highly dependent on the chosen period of analysis with the longest records showing increased flows. Contrary to expectations (of regional climate change scenarios), increases are also evident for long-term summer mean flows. High flow metrics exhibit positive and persistent trends that are less affected by inter-annual variability and period of record. Overall, there is strong spatial coherence in these patterns of change, linked to temporal variations in precipitation. Our results highlight the dangers of using conventional fixed periods such as 1961-1990 for trend detection, recognising that there is always a trade-off between record length, density of the network, and geographic coverage. Furthermore, outliers at the beginning of the record can be an artefact of the original motivation for installing the gauging station(s). In this case, water resource concerns during a markedly dry period in the mid-1970s favour positive trends over subsequent decades. Future work will focus on detection times for climate change signals and the identification of sentinel sites for discerning early signs of anthropogenic climate change across Ireland. Broader lessons for monitoring and detection of anthropogenic climate change signals will also be distilled.

  15. The Nature, Meaning, and Measure of Teacher Flow in Elementary Schools: A Test of Rival Hypotheses

    ERIC Educational Resources Information Center

    Beard, Karen Stansberry; Hoy, Wayne K.

    2010-01-01

    Purpose: This inquiry is the first comprehensive, empirical analysis of the nature and measurement of flow in elementary teachers. The clearest sign of flow is the merging of action and awareness, that is, the degree to which an activity becomes spontaneous and automatic and individuals lose conscious awareness of themselves as they perform a task…

  16. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer

    PubMed Central

    García-Ramos, F. Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans. PMID:22969363

  17. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  18. Interfacial area measurement and transport modeling in air-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Fu, Xinyu

    In two-fluid model, the interfacial area concentration (IAC) is an important parameter that characterizes the interaction of two-phases at the interface. The accuracy of IAC modeling and local measurements largely affects the efficiency of designing and assessing two-phase flow systems. The prediction of the dynamical evolution of IAC is one of the most challenging tasks in research and application. This thesis is focused on developing advanced local measurement techniques to obtain reliable two-phase parameters and implementing efficient theoretical models for IAC source and sink terms in a two-group interfacial area transport equation based on experiments. In this study, an advanced local measurement technique using a four-sensor conductivity probe has been presented for obtaining IAC in air-water flows. It extends the existing conductivity probe method to slug and churn-turbulent flows with a unified probe design and comprehensive signal processing system. Sophisticated algorithm and software have been implemented that is robust in handling most practical conditions with high reliability. Systematic analyses on the issues of probe applications and benchmarks have been performed. The improved four-sensor method has also been applied to flow conditions with significant local recirculation, which was considered the most challenging situation for local measurement in two-phase flow. Using the well-established instrumentation, solid databases for a two-inch air-water loop have been built with sufficient information on the axial development and the radial distribution of the local parameters. Mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed, including the shearing-off of small bubbles from slug/cap bubbles, the wake entrainment of group-1 bubble into group-2 bubble, the wake acceleration and coalescence between group-2 bubbles, and the breakup of group-2 bubbles due to surface instability. Prediction of

  19. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  20. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  1. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  2. Asthma ski day: cold air sports safe with peak flow monitoring.

    PubMed

    Silvers, W; Morrison, M; Wiener, M

    1994-08-01

    The Colorado Asthma Ski Day, an annual cross-country and alpine skiing event, encourages children with asthma to participate fully in outdoor winter sports. Since cold air and exercise can trigger bronchospasm, we examined the peak expiratory flow rates of 80 children who attended Asthma Ski Day 1992 or Asthma Ski Day 1993 to establish a safety profile for this event. Peak expiratory flow rates were measured prior to skiing, at lunchtime, and at the end of the day's activities. We asked the children to pretreat with their regular medications, as prescribed by their physicians, to use their bronchodilator inhalers p.r.n., and to report to our medical station if an episode of acute asthma occurred. The average age of the participants was 9.5 years, and the average baseline daytime peak flow rate was 100.03% of predicted. The average percent change in peak flow rates during the day was an increase of 5.00%. Our results demonstrate that with medical supervision, peak expiratory flow rate monitoring, and properly administered medications, peak flow rates can be stabilized and even improve during cold-weather exercise to an extent that safety concerns need not restrict children with asthma from engaging in exercise or cold-weather sports. The Colorado Asthma Ski Day can serve as a model event for other organizations that want to promote outdoor activities for children with asthma. PMID:8067591

  3. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  4. Customized turbulent flow fields generated by means of an active grid

    NASA Astrophysics Data System (ADS)

    Hoelling, Michael; Reinke, Nico; Peinke, Joachim

    2014-11-01

    Wind tunnel experiments, which should clarify the interaction of wind energy converters and the ambient turbulent field, should be performed under realistic flow conditions. For the generation of realistic turbulent flow conditions we use an active grid. This grid allows for the generation of flows with high turbulence intensity and even to repeat those turbulent fields to a certain degree. Moreover, flow features are to a certain extent tuneable, e.g. velocity increments distributions or energy density spectrum, realized by individually controllable horizontal and vertical rotating axes, which are equipped with flaps. The rotation patterns of the axes over time are defined in an excitation protocol. The challenge is designing an excitation protocol, which generates a flow flied for a specific application. A general approach is still missing. Our approach allows estimating the flow features to given excitation protocols. The approach is based on the assumption that the flow field behind an active grid consists basically of different turbulent pulses, which belong to the excitation setting. Our approach gives a sequence of those pulses, which we call synthetic velocity time series, which is made on a computer.

  5. Variable density flow in porous media. A study by means of pore level numerical simulations

    NASA Astrophysics Data System (ADS)

    Bouhouch, A.; Prat, M.; Boisson, H.

    1999-07-01

    This paper is devoted to the modelling of isothermal low Reynolds and Mach numbers transient compressible flow through porous media. Traditionally, this type of flow at the macroscopic level is described by the classical Darcy's law combined with a mass balance that includes the transient term. This model is called the classic model. The aim of this paper is to explore the validity of this classic model. To this end, the flow of an ideal gas is considered within two-dimensional model porous media. The flow is due to the imposed pressure variations at the outlet of the fluid domain. At the microscopic level, the flow is computed by solving the full compressible Navier-Stokes equations in two dimensions. Special attention is given to the outlet boundary conditions. The analysis is based on the comparison between the macroscopic data, obtained on the one hand by spatially averaging the microscopic results, and on the other hand by solving the problem directly at the macroscopic level. Situations for which a good agreement is found between the two series of data and situations for which discrepancies are observed are exhibited. These various behaviours are discussed in terms of the various time scales controlling the flow and are explained by analysing the flow structure at pore level. Copyright

  6. Method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.; Fletcher, Douglas G.

    1990-01-01

    Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations owing to turbulence can be measured in air flows associated with high-speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainties in the temperature and density measurements can be less than 2 percent, if the signal uncertainties are dominated by photon statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

  7. A method for measuring temperatures and densities in hypersonic wind tunnel air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Fletcher, Douglas G.; Mckenzie, Robert L.

    1990-01-01

    Laser-induced fluorescence in oxygen, in combination with Raman scattering, is shown to be an accurate means by which temperature, density, and their fluctuations due to turbulence can be measured in air flows associated with high-speed wind tunnels. For temperatures above 60 K and densities above 0.01 amagat, the uncertainty in the temperature and density measurements can be less than 2 and 3 percent, respectively, if the signal uncertainties are dominated by photon-statistical noise. The measurements are unaffected by collisional quenching and can be achieved with laser fluences for which nonlinear effects are insignificant. Temperature measurements using laser-induced fluorescence alone have been demonstrated at known densities in the range of low temperatures and densities which are expected in a hypersonic wind tunnel.

  8. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    PubMed

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions. PMID:25443098

  9. Interfacial area transport across vertical elbows in air-water two-phase flow

    NASA Astrophysics Data System (ADS)

    Yadav, Mohan Singh

    The accurate prediction of two-phase flow using the two-fluid model requires closure relations for the interfacial area concentration ( ai), which can be provided by the interfacial area transport equation (IATE). Models have been developed for the IATE in straight pipe geometries. However, to analyze practical systems, it is important that the IATE accounts for flows in pipes with varying orientation that are interconnected via different flow restrictions. In view of this, the current study performs experiments to investigate the geometric effects of 90- degree vertical elbows in air-water two-phase flows and develops a one-group IATE applicable to vertical-upward-to-horizontal two-phase flows. The experimental facility consists of both vertical and horizontal sections constructed from 50.8 mm inner diameter acrylic pipes that are interconnected via 90-degree glass elbows. The elbows have a radius of curvature of Rc/D = 3 and are installed at L/D = 63 and 244.7 from the inlet. Experiments are performed to characterize the elbow-effect on both global and local two-phase flow parameters. A four-sensor conductivity probe is used to acquire detailed measurements of local two-phase flow parameters at thirteen axial locations along the test section in eight flow conditions that are within the bubbly flow regime at inlet. The measurements show that in bubbly flow conditions, the vertical-upward elbow causes a characteristic bimodal-type bubble distribution and the change in this distribution farther downstream of the elbow corresponds to the dissipation of the elbow-effects. In view of developing the IATE for vertical-upward to horizontal two-phase flows, predictive models for the dissipation length of the elbow-effect and closure relations for advection of gas-phase, pressure loss, and covariance of bubble interactions are developed. The new models are evaluated against the current experimental database. Overall, the model predictions agree with the data within +/-7

  10. Sound generation and upstream influence due to instability waves interacting with non-uniform mean flows

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.

    1984-01-01

    Attention is given to the sound produced by artificially excited, spatially growing instability waves on subsonic shear layers. Real flows that always diverge in the downstream direction allow sound to be produced by the interaction of the instability waves with the resulting streamwise variations of the flow. The upstream influence, or feedback, can interact with the splitter plate lip to produce a downstream-propagating instability wave that may under certain conditions be the same instability wave that originally generated the upstream influence. The present treatment is restricted to very low Mach number flows, so that compressibility effects can only become important over large distances.

  11. Mean flow characteristics for the oblique impingement of an axisymmetric jet

    NASA Technical Reports Server (NTRS)

    Foss, J. F.; Kleis, S. J.

    1975-01-01

    The oblique impingement of an axisymmetric jet has been investigated. A summary of the data and the analytical interpretations of the dominant mechanisms which influence the flow are reported. The major characteristics of the shallow angle oblique jet impingement flow field are: (1) minimal dynamic spreading as revealed by the surface pressure field, (2) pronounced kinematic spreading as revealed by the jet flow velocity field, (3) a pronounced upstream shift of the stagnation point from the maximum pressure point, (4) the production of streamwise vorticity by the impingement process.

  12. Experiments in a high-amplitude Kinoshita meandering channel: 1. Implications of bend orientation on mean and turbulent flow structure

    NASA Astrophysics Data System (ADS)

    Abad, Jorge D.; Garcia, Marcelo H.

    2009-02-01

    Meandering rivers exhibit complex planform patterns with both upstream and downstream valley oriented meander bends. In order to describe the effects of bend orientation on long-term river evolution, it is of great importance to be able to describe bend orientation (curvature) effects on the hydrodynamics of the flow as a first approximation. Mean flow and turbulence characteristics were investigated experimentally in a periodic, asymmetric, meandering channel herein called "the Kinoshita channel". The channel planform configuration retains high-order harmonic modes. Upstream and downstream valley oriented meander bends can be studied by reversing the flow. A flat, smooth bed (without sediment) condition has been considered to avoid further complexity. Spatial distributions of mean flow (e.g., velocities) and turbulence parameters (Reynolds stresses, turbulent kinetic energy) were observed at several cross sections along the meander wavelength. Measurements show that at the bend apex, the core of maximum velocity is found near the inner bank for both planform orientations. At the same cross section, observations show that when bends are oriented upstream valley, the secondary flow is not as well developed as in the case where bends are oriented downstream valley. Furthermore, for the upstream condition the energy gradient is smaller than that for the downstream condition, suggesting that the friction (i.e., flow resistance) due to curvature is higher for the downstream-skewed condition. Implications about having upstream and downstream bends in the meandering river migration framework are also discussed herein.

  13. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  14. Taylor-Aris dispersion in the presence of shear-enhanced diffusion and variable mean flow

    NASA Astrophysics Data System (ADS)

    Rubinstein, Gregory; Christov, Ivan; Stone, Howard

    2012-11-01

    Controlling the dispersion of colloidal suspensions is important in applications ranging from drug delivery to water purification. Previously, Griffiths and Stone [EPL (2012) 97, 58005] considered the influence of shear-induced diffusion on the Taylor-Aris dispersion of a colloidal suspension flowing in a cylindrical pipe. In this work, we extend their analysis to a radial outflow geometry, which features velocity variations along the flow direction. We found that the shear-induced diffusion due to the hydrodynamic interactions between the colloidal particles tends to decrease dispersion in the flow direction, as does the decrease in the velocity as the fluid flows radially outward. Using the method of multiple time scales, we derived an averaged dispersion equation that demonstrates the impact of these two effects. We also extended our methodology to coupled dispersion problems, in which the suspended particulate phase releases heat into the ambient fluid or the colloidal particles dissolve into the solvent medium.

  15. A difference theory for noise propagation in an acoustically lined duct with mean flow

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  16. A difference theory for noise propagation in an acoustically lined duct with mean flow.

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Rice, E. J.

    1973-01-01

    A finite difference formulation is presented for sound propagation in a two-dimensional straight soft-walled duct with uniform flow. The difference analysis is developed in terms of complex notation. The governing acoustic difference equations and the appropriate displacement boundary conditions associated with uniform flow are presented. Example calculations are presented for the sound attenuation in straight hard and soft-walled ducts. At present the finite Mach number case is solved only for the one-dimensional hard walled duct.

  17. Three dimensional mean flow and turbulence characteristics of the near wake of a compressor rotor blade

    NASA Technical Reports Server (NTRS)

    Ravindranath, A.; Lakshminarayana, B.

    1980-01-01

    The investigation was carried out using the rotating hot wire technique. Measurements were taken inside the end wall boundary layer to discern the effect of annulus and hub wall boundary layer, secondary flow, and tip leakage on the wake structure. Static pressure gradients across the wake were measured using a static stagnation pressure probe insensitive to flow direction changes. The axial and the tangential velocity defects, the radial component of velocity, and turbulence intensities were found to be very large as compared to the near and far wake regions. The radial velocities in the trailing edge region exhibited characteristics prevalent in a trailing vortex system. Flow near the blade tips found to be highly complex due to interaction of the end wall boundary layers, secondary flows, and tip leakage flow with the wake. The streamwise curvature was found to be appreciable near the blade trailing edge. Flow properties in the trailing edge region are quite different compared to that in the near and far wake regions with respect to their decay characteristics, similarity, etc. Fourier decomposition of the rotor wake revealed that for a normalized wake only the first three coefficients are dominant.

  18. Dynamical Simulation of Cloudy Boundary Layer Flow during Cold Air Outbreaks.

    NASA Astrophysics Data System (ADS)

    Yuen, Chiu-Wai

    A two-dimensional primitive equation planetary boundary layer model has been constructed and applied to simulate downwind evolution of coupled dynamical, thermodynamical and cloud properties in the planetary boundary layer (PBL) developed during cold air outbreaks over warm ocean. A layered parametric approach is adopted to model the inversion -capped convective boundary layer filled with shallow cumuli, or topped by stratocumulus or cloud free air. Turbulent and convective cloud fluxes are determined from modifications and generalizations of recent published parameterization schemes. A one-dimensional version of the model is first applied to a local simulation of trade wind flow. Vertical distributions of momentum flux and wind in the cumulus -filled baroclinic PBL are realistically simulated compared to observations, confirming the validity of the momentum flux parameterization scheme assembled in this research. A steady-state linear analysis for a cloud-free mixed layer flowing from land over a warm ocean clarifies the basic dynamical and thermodynamical adjustments to differential friction and heating. Downwind warming and deepening of PBL produces counteracting pressure gradient forces, while heating-induced subsidence occurs only in places where boundary layer baroclinity is strong. Comparative numerical experiments for moderate intensity air-sea interaction illustrate the importance of nonprecipitating cumulus convection and large scale environmental conditions. Such factors as baroclinity, static stability, moisture content, upwind inversion strength and height exert strong controls on the downwind evolution of PBL and clouds. Boundary layer flow is influenced by the basic geostrophic wind distribution and the PBL depth is also sensitive to large scale vertical velocity. The response of an advective boundary layer to stronger wind is different from that of a horizontally homogeneous boundary layer. In a simulation of an intense air mass transformation

  19. Visualization of Rotor Tip Secondary Flows with Blade Tip Air Discharge and Suction in a Low-speed Turbine

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W

    1956-01-01

    Smoke was used to visualize outer-wall secondary flows in a low-speed turbine utilizing rotor tip air discharge and suction. Photographs as well as visual observations of the effect of tip air discharge and suction were made by independently varying the direction and quantity of the tip air discharge and suction, and varying tip clearance, and main-stream air speed. In addition, the cross-sectional area of the hollow blade discharge opening was varied for the case of tip air discharge.

  20. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.