Science.gov

Sample records for air flow means

  1. Control of airborne nickel welding fumes by means of a vertical laminar air flow system

    NASA Astrophysics Data System (ADS)

    Helms, T. C.

    1980-12-01

    The effectiveness of a clean room facility with laminar air flow in the control of nickel fumes is evaluated. The fumes are released from metal inert gas (MIG) and shielded metal arc (SMA) welding operations performed on mild steel using nickel filler materials. The laminar flow clean room approach to controlling welding fumes can be successful in certain small table top welding operations. However, almost any interferences that obstruct the downward airflow results in eddy currents and subsequent buildup of fumes by entrapment. Airflow patterns differ significantly when comparing table top operations to welding on large cylindrical and/or doughnut shaped items. After fifteen days of sampling, airflow was reduced to 140-150 feet per maximum. Additional prefiltering units would be required for efficient operation of a laminar air flow clean room in an actual shop situation.

  2. Control of airborne nickel welding fumes by means of a vertical laminar air flow system

    SciTech Connect

    Helms, T.C.

    1980-12-08

    The purpose of this study was to evaluate the effeciveness of a clean room facility with laminar air flow in the control of nickel fumes released from metal inert gas (MIG) and shielded metal arc (SMA) welding operations performed on mild steel using nickel filler materials. From data observed in these experiments, it appears that the laminar flow clean room approach to controlling welding fumes can be successful in certain small table top welding operations. However, almost any interferences that obstruct the downward airflow can result in eddy currents and subsequent build-up of fumes by entrapment. Airflow patterns differ significantly when comparing table top operations to welding on large cylindrical and/or doughnut shaped items. (JGB)

  3. The Impact of Dry Midlevel Air on Hurricane Intensity in Idealized Simulations with No Mean Flow

    NASA Technical Reports Server (NTRS)

    Braun, Scott A.; Sippel, Jason A.; Nolan, David S.

    2012-01-01

    This study examines the potential negative influences of dry midlevel air on the development of tropical cyclones (specifically, its role in enhancing cold downdraft activity and suppressing storm development). The Weather Research and Forecasting model is used to construct two sets of idealized simulations of hurricane development in environments with different configurations of dry air. The first set of simulations begins with dry air located north of the vortex center by distances ranging from 0 to 270 km, whereas the second set of simulations begins with dry air completely surrounding the vortex, but with moist envelopes in the vortex core ranging in size from 0 to 150 km in radius. No impact of the dry air is seen for dry layers located more than 270 km north of the initial vortex center (approximately 3 times the initial radius of maximum wind). When the dry air is initially closer to the vortex center, it suppresses convective development where it entrains into the storm circulation, leading to increasingly asymmetric convection and slower storm development. The presence of dry air throughout the domain, including the vortex center, substantially slows storm development. However, the presence of a moist envelope around the vortex center eliminates the deleterious impact on storm intensity. Instead, storm size is significantly reduced. The simulations suggest that dry air slows intensification only when it is located very close to the vortex core at early times. When it does slow storm development, it does so primarily by inducing outward- moving convective asymmetries that temporarily shift latent heating radially outward away from the high-vorticity inner core.

  4. Air flow visualization

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Smoke Flow Visualization shows the flow of air around a model airfoil at 100 feet per second. Photograph and caption published in Winds of Change, 75th Anniversary NASA publication (page xi), by James Schultz.

  5. Air Entraining Flows

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2001-11-01

    Air entraining flows are frequently encountered in Nature (e.g. breaking waves, waterfalls, rain over water bodies) and in technological applications (gas-liquid chemical reactors, water treatment, aquaculture, and others). Superficially, one may distinguish between transient events, such as a breaking wave, and steady situations, e.g. a falling jet. However, when viscosity is not important, the process of air entrainment turns out to be the consequence of local transient events even in steady flows. For example, surface disturbances convected by a nominally steady jet impact the receiving liquid, create a deep depression, which collapses entraining an air pocket. (In practice this basic mechanism is complicated by the presence of waves, vortical flows, and other factors.) This talk will describe several examples of air-entraining flows illustrating the fluid mechanic principles involved with high-speed movies and numerical computations.

  6. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  7. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  8. Flow Measurement by Means of Light Interference

    NASA Technical Reports Server (NTRS)

    Zobel, Th.

    1949-01-01

    There has been under development for the high-speed wind tunnel of the LFA an optical measuring arrangement for the qualitative and quantitative investigation of flow. By the use of interference measurements, the determination of density at the surface of the bodies being tested in the air stream and in the vicinity of these bodies can be undertaken. The results obtained so far in the simple preliminary investigations show that it is possible, even at a low Reynolds number, to obtain the density field in the neighborhood of a test body by optical means. Simple analytical expressions give the relation between density, pressure, velocity, and temperature. In addition to this, the interference measurement furnishes valuable data on the state of the boundary layer, that is, the sort of boundary layer (whether laminar or turbulent), as well as the temperature and velocity distribution.

  9. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  10. Automatic air flow control in air conditioning ducts

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1972-01-01

    Device is designed which automatically selects air flow coming from either of two directions and which can be adjusted to desired air volume on either side. Device uses one movable and two fixed scoops which control air flow and air volume.

  11. Mean Flow Boundary Conditions for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Nallasamy, M.; Sawyer, S.; Dyson, R.

    2003-01-01

    In this work, a new type of boundary condition for time-accurate Computational Aeroacoustics solvers is described. This boundary condition is designed to complement the existing nonreflective boundary conditions while ensuring that the correct mean flow conditions are maintained throughout the flow calculation. Results are shown for a loaded 2D cascade, started with various initial conditions.

  12. Air conditioning system and component therefore distributing air flow from opposite directions

    NASA Technical Reports Server (NTRS)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  13. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  14. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  15. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  16. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  17. 30 CFR 75.326 - Mean entry air velocity.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Mean entry air velocity. 75.326 Section 75.326... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.326 Mean entry air velocity. In exhausting face ventilation systems, the mean entry air velocity shall be at least 60 feet per...

  18. Quasisymmetric toroidal plasmas with large mean flows

    SciTech Connect

    Sugama, H.; Watanabe, T.-H.; Nunami, M.; Nishimura, S.

    2011-08-15

    Geometric conditions for quasisymmetric toroidal plasmas with large mean flows on the order of the ion thermal speed are investigated. Equilibrium momentum balance equations including the inertia term due to the large flow velocity are used to show that, for rotating quasisymmetric plasmas with no local currents crossing flux surfaces, all components of the metric tensor should be independent of the toroidal angle in the Boozer coordinates, and consequently these systems need to be rigorously axisymmetric. Unless the local radial currents vanish, the Boozer coordinates do not exist and the toroidal flow velocity cannot take any value other than a very limited class of eigenvalues corresponding to very rapid rotation especially for low beta plasmas.

  19. MEANS FOR VISUALIZING FLUID FLOW PATTERNS

    DOEpatents

    Lynch, F.E.; Palmer, L.D.; Poppendick, H.F.; Winn, G.M.

    1961-05-16

    An apparatus is given for determining both the absolute and relative velocities of a phosphorescent fluid flowing through a transparent conduit. The apparatus includes a source for exciting a narrow trsnsverse band of the fluid to phosphorescence, detecting means such as a camera located downstream from the exciting source to record the shape of the phosphorescent band as it passes, and a timer to measure the time elapsed between operation of the exciting source and operation of the camera.

  20. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  1. Validation of Interannual Differences of AIRS Monthly Mean Parameters

    NASA Technical Reports Server (NTRS)

    Susskind, Joel; Iredell, Lena; Keita, Fricky; Molnar, Gyula

    2005-01-01

    Monthly mean fields of select geophysical parameters derived from analysis of AIRS/AMSU data, and their interannual differences, are shown and compared with analogous fields derived from other sources. All AIRS fields are derived using the AIRS Science Team Version 4 algorithm. Monthly mean results are shown for January 2004, as are interannual differences between January 2004 and January 2003. AIRS temperature and water vapor profile fields are compared with monthly mean collocated ECMWF 3 hour forecast and monthly mean TOVS Pathfinder Path A data. AIRS Tropospheric and Stratospheric coarse climate indicators are compared with analogous MSU products derived by Spencer and christy and found in the TOVS Pathfinder Path A data set. Total ozone is compared with results produced by TOMS. OLR is compared with OLR derived using CERES data and found in the TOVS Pathfinder Path A data set. AIRS results agree well in all cases, especially in the interannual difference sense.

  2. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  3. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  4. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  5. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  6. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  7. Wood stove air flow regulating

    SciTech Connect

    Brefka, P.E.

    1983-10-04

    A wood stove has primary and secondary air regulator doors at the bottom and top, respectively, of the stove door each rotating about the axis of a tightening knob in the center of the door opposite a baffle plate that defines with the door inside an air channel open at the top and bottom.

  8. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  9. Mean curvature flow of a hyperbolic surface

    SciTech Connect

    Ovchinnikov, Yu. N.; Sigal, I. M.

    2011-12-15

    A four-parameter family of self-similar solutions is obtained to the mean curvature flow equation for a surface. This family is shown to be stable with respect to a small deformation of a hyperbolic surface. At time instant t*, a singular point is formed within a finite time interval, that is accompanied by a change in the topology of the surface. The solution is continued beyond the singular point. A relationship between the parameters describing the hyperbolic surface before and after the change in the surface topology is obtained. A particular case is analyzed when the unperturbed surface is a cylinder. A cylindrical surface is weakly unstable with respect to a perturbation in the form of a 'wide neck.' At the final stage of the development of the neck when its transverse size becomes much less than the cylinder radius at large distances from the neck, the surface flow in a wide region in the neighborhood of the neck is described by a universal two-parameter family of self-similar solutions. These solutions are stable with respect to small perturbations of the surface.

  10. Estimating instantaneous peak flow from mean daily flow

    NASA Astrophysics Data System (ADS)

    Chen, B.; Krajewski, W. F.

    2015-12-01

    While instantaneous peak flow (IPF) records have historically been necessary for practical applications in flood risk management and hydraulic structure design, mean daily flow (MDF) values are often all that are available. To address this problem, we propose a simple method, which requires only MDF records as its input and uses the rising and falling slopes of daily hydrographs, to estimate IPFs. We applied this method to 144 catchments in Iowa, USA, with drainage areas ranging from about 7 to 220,000 km2. This application involves about 3800 peak flow events originating from different flood generation mechanisms over the period from 1997 to 2014. About 55% of the catchments have prediction errors within ±10%, and 85% of the catchments have predictions errors within ±20%. The method works well for catchments larger than 500 km2, poorly for catchments smaller than 100 km2, and fairly well for catchments in between these sizes. The reduction in the method's effectiveness with decreasing catchment size is due to the fact that the smaller the catchment, the more information is lost when using MDF to characterize the instantaneous flow processes. Our proposed method is simple and promising in terms of estimating IPFs from MDFs for areas where IPF records are unavailable or are insufficient.

  11. Bulk reaction modeling of ducts with and without mean flow

    NASA Astrophysics Data System (ADS)

    Kakoty, S. K.; Roy, V. K.

    2002-07-01

    A general formulation for analysis of sound field in a uniform flow duct lined with bulk-reacting sound-absorbing material is presented here. Presented theoretical model predicts the rate of attenuation for symmetric as well as asymmetric modes in rectangular duct lined with loosely bound (bulk-reacting) sound-absorbing material, which allows acoustic propagation through the lining. The nature of attenuation in rectangular ducts lined on two and four sides with and without mean flow is discussed. Computed results are compared with published theoretical and experimental results. The presented model can be used as guidelines for the acoustic design of silencers, air-conditioning ducts, industrial fans, and other similar applications. copyright 2002 Acoustical Society of America.

  12. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  13. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  14. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  15. Air flow in snake ventilation.

    PubMed

    Clark, B D; Gans, C; Rosenberg, H I

    1978-02-01

    Ventilation in resting, unrestrained Boa constrictor, Python regius and Thanmophis s. sirtalis was monitored using various combinations of a closed Kopfkappe (head chamber), intratracheal pressure catheters, strain gauges around the trunk, and a flow meter connected to one of the nostrils. Records of intratracheal pressure with and without closing the Kopfkappe show that the latter device induces artifacts in the normal ventilatory pattern. Flow meter readings from quiescent snakes indicate that ventilation is biphasic (outflow-inflow-pause) rather than triphasic (outflow-inflow-outflow-pause), while simultaneous pressure and strain gauge records are variably tri- or quadriphasic.

  16. Mean flow and Reynolds stress structure over aeolian ripples

    NASA Astrophysics Data System (ADS)

    Li, Bailiang; McKenna Neuman, Cheryl; Bédard, Otto; O'Brien, Patrick

    2015-04-01

    Mean flow and turbulence structure on transverse ripples have been well documented in hydrodynamic literature. However, very few studies have described the flow characteristics over aeolian ripples. This study adopted laser Doppler anemometry (LDA) to measure the wind field above granular ripples with different bimodal particle size distributions in a wind tunnel. Multiple runs were conducted to examine the vertical profiles of time-averaged horizontal and vertical velocities and Reynolds stress above four different locations: crest, lee slope, trough, and stoss slope. The rippled sand bed has a fine beige fraction with grain size smaller than 0.542 mm concentrated in the troughs and a coarse fraction dyed in red with grain size greater than 0.542 mm concentrated in the crests. The magnitude of the ripples at equilibrium is controlled by both wind velocity and the ratio of beige sand to red sand. Freestream velocity has a range between 8-11 m/s (above the saltation threshold of beige sand and below the threshold of red sand) and the percentage coarse by mass varies from 5.2% to 27.5% with median grain size from 0.289 mm to 0.399 mm. Experimental results indicate that the ripples have the wave length ranged between 20 mm and 140 mm with a characteristic ripple index (wave length/wave height) of 15. Flow streamlines are generally parallel to the bed surface, which is inconsistent with previous hydrodynamic observations that a return flow is usually found at the lee side of the ripples. Reynolds stress has demonstrated a strong spatial differentiation near the sand surface: greatest at crests and smallest at the troughs, however, this difference diminishes with elevation. This is an exploratory study on the turbulence characteristics of air flow above aeolian ripples, and we believe the finding of this research will enhance the understanding the interaction mechanisms between the air and bed morphology.

  17. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  18. Zonal flow formation in the presence of ambient mean shear

    SciTech Connect

    Hsu, Pei-Chun; Diamond, P. H.

    2015-02-15

    The effect of mean shear flows on zonal flow formation is considered in the contexts of plasma drift wave turbulence and quasi-geostrophic turbulence models. The generation of zonal flows by modulational instability in the presence of large-scale mean shear flows is studied using the method of characteristics as applied to the wave kinetic equation. It is shown that mean shear flows reduce the modulational instability growth rate by shortening the coherency time of the wave spectrum with the zonal shear. The scalings of zonal flow growth rate and turbulent vorticity flux with mean shear are determined in the strong shear limit.

  19. Miniature electrooptical air flow sensor

    NASA Technical Reports Server (NTRS)

    Kershner, D. D. (Inventor)

    1984-01-01

    A sensor for measuring flow direction and airspeed that is suitable, because of its small size, for rapid instrumentation of research airplanes is described. A propeller driven sphere rotating at a speed proportional to airspeed presents a reflective target to an electro-optical system such that the duty cycle of the resulting electrical output is proportional to yaw angle and the frequency is proportional to airspeed.

  20. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  3. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  4. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  5. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  6. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  7. Generation of a mean flow by an internal wave

    NASA Astrophysics Data System (ADS)

    Semin, B.; Facchini, G.; Pétrélis, F.; Fauve, S.

    2016-09-01

    We experimentally study the generation of a mean flow by a two-dimensional progressive internal gravity wave. Due to the viscous damping of the wave, a non-vanishing Reynolds stress gradient forces a mean flow. When the forcing amplitude is low, the wave amplitude is proportional to the forcing and the mean flow is quadratic in the forcing. When the forcing amplitude is large, the mean flow decreases the wave amplitude. This feedback saturates both the wave and the mean flow. The profiles of the mean flow and the wave are compared with a one-dimensional analytical model. Decreasing the forcing frequency leads to a wave and a mean flow localized on a smaller height, in agreement with the model.

  8. Low-flow, base-flow, and mean-flow regression equations for Pennsylvania streams

    USGS Publications Warehouse

    Stuckey, Marla H.

    2006-01-01

    Low-flow, base-flow, and mean-flow characteristics are an important part of assessing water resources in a watershed. These streamflow characteristics can be used by watershed planners and regulators to determine water availability, water-use allocations, assimilative capacities of streams, and aquatic-habitat needs. Streamflow characteristics are commonly predicted by use of regression equations when a nearby streamflow-gaging station is not available. Regression equations for predicting low-flow, base-flow, and mean-flow characteristics for Pennsylvania streams were developed from data collected at 293 continuous- and partial-record streamflow-gaging stations with flow unaffected by upstream regulation, diversion, or mining. Continuous-record stations used in the regression analysis had 9 years or more of data, and partial-record stations used had seven or more measurements collected during base-flow conditions. The state was divided into five low-flow regions and regional regression equations were developed for the 7-day, 10-year; 7-day, 2-year; 30-day, 10-year; 30-day, 2-year; and 90-day, 10-year low flows using generalized least-squares regression. Statewide regression equations were developed for the 10-year, 25-year, and 50-year base flows using generalized least-squares regression. Statewide regression equations were developed for harmonic mean and mean annual flow using weighted least-squares regression. Basin characteristics found to be significant explanatory variables at the 95-percent confidence level for one or more regression equations were drainage area, basin slope, thickness of soil, stream density, mean annual precipitation, mean elevation, and the percentage of glaciation, carbonate bedrock, forested area, and urban area within a basin. Standard errors of prediction ranged from 33 to 66 percent for the n-day, T-year low flows; 21 to 23 percent for the base flows; and 12 to 38 percent for the mean annual flow and harmonic mean, respectively. The

  9. Dry season mean monthly flow and harmonic mean flow regression equations for selected ungaged basins in Arkansas

    USGS Publications Warehouse

    Breaker, Brian K.

    2015-01-01

    Equations for two regions were found to be statistically significant for developing regression equations for estimating harmonic mean flows at ungaged basins; thus, equations are applicable only to streams in those respective regions in Arkansas. Regression equations for dry season mean monthly flows are applicable only to streams located throughout Arkansas. All regression equations are applicable only to unaltered streams where flows were not significantly affected by regulation, diversion, or urbanization. The median number of years used for dry season mean monthly flow calculation was 43, and the median number of years used for harmonic mean flow calculations was 34 for region 1 and 43 for region 2.

  10. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  11. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1...

  12. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  13. GSOD Based Daily Global Mean Surface Temperature and Mean Sea Level Air Pressure (1982-2011)

    DOE Data Explorer

    Xuan Shi, Dali Wang

    2014-05-05

    This data product contains all the gridded data set at 1/4 degree resolution in ASCII format. Both mean temperature and mean sea level air pressure data are available. It also contains the GSOD data (1982-2011) from NOAA site, contains station number, location, temperature and pressures (sea level and station level). The data package also contains information related to the data processing methods

  14. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  15. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  16. Measurements of energy spectra in two-dimensional turbulence with sheared mean flow.

    NASA Astrophysics Data System (ADS)

    Fontana, P. W.; Kearney-Fischer, M.; Rogers, S.; Windell, S.

    2006-11-01

    Measurements of forced turbulence in the presence of mean flow shear in quasi-two-dimensional flows in a circular Couette cell are underway. Initial observations indicate suppression of the turbulence by the shear, as suggested by observations of transport barriers in geostrophic flows and laboratory fusion plasmas. The apparatus generates flows in a liquid film of dilute soap solution suspended freely in a horizontal annular channel. The channel is 7 cm wide with an average radius of 46.5 cm. Turbulence is forced electromagnetically, while mean flow shear is generated independently by rotating the outer boundary. The mean sheared flow profiles provide a new method of estimating the coefficient of drag between the films and the air; the result, ˜9 s-1, is compared with estimates from other soap film experiments using different techniques. Two-dimensional turbulence spectra are measured using particle imaging velocimetry, and data showing the effect of shear on the spectrum are presented.

  17. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  18. Mean velocities and Reynolds stresses in a juncture flow

    NASA Technical Reports Server (NTRS)

    Mcmahon, H.; Hubbartt, J.; Kubendran, L.

    1982-01-01

    Values of three mean velocity components and six turbulence stresses measured in a juncture flow are presented and discussed. The juncture flow is generated by a constant thickness body, having an elliptical leading edge, which is mounted perpendicular to a large flat plate along which a turbulent boundary layer is growing. The measurements were carried out at two streamwise stations in the juncture and were made using two single sensor hot-wire probes. The secondary flow in the juncture results in a considerable distortion in the mean velocity profiles. The secondary flow also transports turbulence in the juncture flow and has a large effect on the turbulence stresses. From visual inspection of the results, there is considerable evidence of similarity between the turbulent shear stresses and the mean flow strain rates. There is some evidence of similarity between the variations in the turbulent stress components.

  19. A survey of air flow models for multizone structures

    SciTech Connect

    Feustel, H.E.; Dieris, J.

    1991-03-01

    Air flow models are used to simulate the rates of incoming and outgoing air flows for a building with known leakage under given weather and shielding conditions. Additional information about the flow paths and air-mass flows inside the building can only by using multizone air flow models. In order to obtain more information on multizone air flow models, a literature review was performed in 1984. A second literature review and a questionnaire survey performed in 1989, revealed the existence of 50 multizone air flow models, all developed since 1966, two of which are still under development. All these programs use similar flow equations for crack flow but differ in the versatility to describe the full range of flow phenomena and the algorithm provided for solving the set of nonlinear equations. This literature review was found that newer models are able to describe and simulate the ventilation systems and interrelation of mechanical and natural ventilation. 27 refs., 2 figs., 1 tab.

  20. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be...

  1. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  2. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  3. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  4. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  5. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    NASA Astrophysics Data System (ADS)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2014-03-01

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors.

  6. Mean flow and anisotropic cascades in decaying 2D turbulence

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki

    2015-11-01

    Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.

  7. Can zonally symmetric inertial waves drive an oscillating mean flow?

    NASA Astrophysics Data System (ADS)

    Seelig, Torsten; Harlander, Uwe

    2016-04-01

    In the presentation [5] zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves [3] that plays an important role for the quasi-biennial oscillation in the equatorial atmosphere. In geophysical flows that are stratified and rotating, pure gravity and inertial waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study a hierarchy of simple analytical and numerical models of zonally symmetric inertial wave-mean flow interactions is considered and the results are compared with data from a laboratory experiment [4]. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation [1, 2], a process currently discussed controversially. [1] Greatbatch, R., Brandt, P., Claus, M., Didwischus, S., Fu, Y.: On the width of the equatorial deep jets. J. Phys. Oceanogr. 42, 1729-1740 (2012) [2] Muench, J.E., Kunze, E.: Internal wave

  8. Spatial interpolation of monthly mean air temperature data for Latvia

    NASA Astrophysics Data System (ADS)

    Aniskevich, Svetlana

    2016-04-01

    Temperature data with high spatial resolution are essential for appropriate and qualitative local characteristics analysis. Nowadays the surface observation station network in Latvia consists of 22 stations recording daily air temperature, thus in order to analyze very specific and local features in the spatial distribution of temperature values in the whole Latvia, a high quality spatial interpolation method is required. Until now inverse distance weighted interpolation was used for the interpolation of air temperature data at the meteorological and climatological service of the Latvian Environment, Geology and Meteorology Centre, and no additional topographical information was taken into account. This method made it almost impossible to reasonably assess the actual temperature gradient and distribution between the observation points. During this project a new interpolation method was applied and tested, considering auxiliary explanatory parameters. In order to spatially interpolate monthly mean temperature values, kriging with external drift was used over a grid of 1 km resolution, which contains parameters such as 5 km mean elevation, continentality, distance from the Gulf of Riga and the Baltic Sea, biggest lakes and rivers, population density. As the most appropriate of these parameters, based on a complex situation analysis, mean elevation and continentality was chosen. In order to validate interpolation results, several statistical indicators of the differences between predicted values and the values actually observed were used. Overall, the introduced model visually and statistically outperforms the previous interpolation method and provides a meteorologically reasonable result, taking into account factors that influence the spatial distribution of the monthly mean temperature.

  9. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  10. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  11. Change point analysis of mean annual air temperature in Iran

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2015-06-01

    The existence of change point in the mean of air temperature is an important indicator of climate change. In this study, Student's t parametric and Mann-Whitney nonparametric Change Point Models (CPMs) were applied to test whether a change point has occurred in the mean of annual Air Temperature Anomalies Time Series (ATATS) of 27 synoptic stations in different regions of Iran for the period 1956-2010. The Likelihood Ratio Test (LRT) was also applied to evaluate the detected change points. The ATATS of all stations except Bandar Anzali and Gorgan stations, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series as an input file for the CPMs and LRT. Both the Student's t and Mann-Whitney CPMs detected the change point in the ATATS of (a) Tehran Mehrabad, Abadan, Kermanshah, Khoramabad and Yazd in 1992, (b) Mashhad and Tabriz in 1993, (c) Bandar Anzali, Babolsar and Ramsar in 1994, (d) Kerman and Zahedan in 1996 at 5% significance level. The likelihood ratio test shows that the ATATS before and after detected change points in these 12 stations are normally distributed with different means. The Student's t and Mann-Whitney CPMs suggested different change points for individual stations in Bushehr, Bam, Shahroud, and Gorgan. However, the LRT confirmed the change points in these four stations as 1997, 1996, 1993, and 1996, respectively. No change points were detected in the remaining 11 stations.

  12. Radiant energy receiver having improved coolant flow control means

    DOEpatents

    Hinterberger, H.

    1980-10-29

    An improved coolant flow control for use in radiant energy receivers of the type having parallel flow paths is disclosed. A coolant performs as a temperature dependent valve means, increasing flow in the warmer flow paths of the receiver, and impeding flow in the cooler paths of the receiver. The coolant has a negative temperature coefficient of viscosity which is high enough such that only an insignificant flow through the receiver is experienced at the minimum operating temperature of the receiver, and such that a maximum flow is experienced at the maximum operating temperature of the receiver. The valving is accomplished by changes in viscosity of the coolant in response to the coolant being heated and cooled. No remotely operated valves, comparators or the like are needed.

  13. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  14. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 91.416 Section 91.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test Procedures § 91.416 Intake air flow...

  15. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... background correction as described in § 1065.667. (2) In the following cases, you may use an intake-air flow...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  16. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... as described in § 1065.667. (2) In the following cases, you may use an intake-air flow meter signal...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  17. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... background correction as described in § 1065.667. (2) In the following cases, you may use an intake-air flow...-specific fuel consumption and fuel consumed. (b) Component requirements. We recommend that you use...

  18. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  19. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    PubMed

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. PMID:25462638

  20. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  1. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  2. Weighted-mean scheme for solving incompressible viscous flow

    NASA Technical Reports Server (NTRS)

    Huynh, Q. Q.

    1981-01-01

    The problem of how a boundary layer responds to the motion of a convexed vortex on a porous wall was investigated. The wall velocity is approximately given by Darcy's law. The vorticity-stream function approach was adopted for solving Navier-Stokes equations of two dimensional incompressible viscous flows. The weighted-mean scheme was used for constructing finite difference approximations of spatial derivatives. Several test problems were solved and numerical results demonstrate clearly the accuracy, stability, and efficiency of the scheme. The weighted mean scheme then can be applied to the vortical flow problem.

  3. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  4. A sonic boom propagation model including mean flow atmospheric effects

    NASA Astrophysics Data System (ADS)

    Salamone, Joe; Sparrow, Victor W.

    2012-09-01

    This paper presents a time domain formulation of nonlinear lossy propagation in onedimension that also includes the effects of non-collinear mean flow in the acoustic medium. The model equation utilized is an augmented Burgers equation that includes the effects of nonlinearity, geometric spreading, atmospheric stratification, and also absorption and dispersion due to thermoviscous and molecular relaxation effects. All elements of the propagation are implemented in the time domain and the effects of non-collinear mean flow are accounted for in each term of the model equation. Previous authors have presented methods limited to showing the effects of wind on ray tracing and/or using an effective speed of sound in their model equation. The present work includes the effects of mean flow for all terms included in the augmented Burgers equation with all of the calculations performed in the time-domain. The capability to include the effects of mean flow in the acoustic medium allows one to make predictions more representative of real-world atmospheric conditions. Examples are presented for nonlinear propagation of N-waves and shaped sonic booms. [Work supported by Gulfstream Aerospace Corporation.

  5. Lymphangion coordination minimally affects mean flow in lymphatic vessels.

    PubMed

    Venugopal, Arun M; Stewart, Randolph H; Laine, Glen A; Dongaonkar, Ranjeet M; Quick, Christopher M

    2007-08-01

    The lymphatic system returns interstitial fluid to the central venous circulation, in part, by the cyclical contraction of a series of "lymphangion pumps" in a lymphatic vessel. The dynamics of individual lymphangions have been well characterized in vitro; their frequencies and strengths of contraction are sensitive to both preload and afterload. However, lymphangion interaction within a lymphatic vessel has been poorly characterized because it is difficult to experimentally alter properties of individual lymphangions and because the afterload of one lymphangion is coupled to the preload of another. To determine the effects of lymphangion interaction on lymph flow, we adapted an existing mathematical model of a lymphangion (characterizing lymphangion contractility, lymph viscosity, and inertia) to create a new lymphatic vessel model consisting of several lymphangions in series. The lymphatic vessel model was validated with focused experiments on bovine mesenteric lymphatic vessels in vitro. The model was then used to predict changes in lymph flow with different time delays between onset of contraction of adjacent lymphangions (coordinated case) and with different relative lymphangion contraction frequencies (noncoordinated case). Coordination of contraction had little impact on mean flow. Furthermore, orthograde and retrograde propagations of contractile waves had similar effects on flow. Model results explain why neither retrograde propagation of contractile waves nor the lack of electrical continuity between lymphangions adversely impacts flow. Because lymphangion coordination minimally affects mean flow in lymphatic vessels, lymphangions have flexibility to independently adapt to local conditions.

  6. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  7. Air-Flow Simulation in Realistic Models of the Trachea

    SciTech Connect

    Deschamps, T; Schwartz, P; Trebotich, D

    2004-12-09

    In this article we present preliminary results from a new technique for flow simulation in realistic anatomical airways. The airways are extracted by means of Level-Sets methods that accurately model the complex and varying surfaces of anatomical objects. The surfaces obtained are defined at the sub-pixel level where they intersect the Cartesian grid of the image domain. It is therefore straightforward to construct embedded boundary representations of these objects on the same grid, for which recent work has enabled discretization of the Navier- Stokes equations for incompressible fluids. While most classical techniques require construction of a structured mesh that approximates the surface in order to extrapolate a 3D finite-element gridding of the whole volume, our method directly simulates the air-flow inside the extracted surface without losing any complicated details and without building additional grids.

  8. Estimates of Flow Duration, Mean Flow, and Peak-Discharge Frequency Values for Kansas Stream Locations

    USGS Publications Warehouse

    Perry, Charles A.; Wolock, David M.; Artman, Joshua C.

    2004-01-01

    Streamflow statistics of flow duration and peak-discharge frequency were estimated for 4,771 individual locations on streams listed on the 1999 Kansas Surface Water Register. These statistics included the flow-duration values of 90, 75, 50, 25, and 10 percent, as well as the mean flow value. Peak-discharge frequency values were estimated for the 2-, 5-, 10-, 25-, 50-, and 100-year floods. Least-squares multiple regression techniques were used, along with Tobit analyses, to develop equations for estimating flow-duration values of 90, 75, 50, 25, and 10 percent and the mean flow for uncontrolled flow stream locations. The contributing-drainage areas of 149 U.S. Geological Survey streamflow-gaging stations in Kansas and parts of surrounding States that had flow uncontrolled by Federal reservoirs and used in the regression analyses ranged from 2.06 to 12,004 square miles. Logarithmic transformations of climatic and basin data were performed to yield the best linear relation for developing equations to compute flow durations and mean flow. In the regression analyses, the significant climatic and basin characteristics, in order of importance, were contributing-drainage area, mean annual precipitation, mean basin permeability, and mean basin slope. The analyses yielded a model standard error of prediction range of 0.43 logarithmic units for the 90-percent duration analysis to 0.15 logarithmic units for the 10-percent duration analysis. The model standard error of prediction was 0.14 logarithmic units for the mean flow. Regression equations used to estimate peak-discharge frequency values were obtained from a previous report, and estimates for the 2-, 5-, 10-, 25-, 50-, and 100-year floods were determined for this report. The regression equations and an interpolation procedure were used to compute flow durations, mean flow, and estimates of peak-discharge frequency for locations along uncontrolled flow streams on the 1999 Kansas Surface Water Register. Flow durations, mean

  9. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  10. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  11. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  12. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  13. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimetric (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single CW laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640 x 480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  14. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  15. Air flow testing on aerodynamic truck

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This photograph illustrates a standard passenger van modified at the Dryden Flight Research Center to investigate the aerodynamics of trucks. The resulting vehicle--re-fashioned with sheet metal--resembled a motor home, with rounded vertical corners on the vehicle's front and rear sections. For subsequent tests, researchers installed a 'boat tail' structure, shown in the photograph. During a decade spanning the 1970s and 1980s, Dryden researchers conducted tests to determine the extent to which adjustments in the shape of trucks reduced aerodynamic drag and improved efficiency. During the tests, the vehicle's sides were fitted with tufts, or strings, that showed air flow. The investigators concluded that rounding the vertical corners front and rear reduced drag by 40 percent, yet decreased the vehicle's internal volume by only 1.3 percent. Rounding both the vertical and horizontal corners cut drag by 54 percent, resulting in a three percent loss of internal volume. A second group of tests added a faired underbody and a boat tail, the latter feature resulting in drag reduction of about 15 percent.

  16. Homogeneous turbulence subjected to mean flow with elliptic streamlines

    NASA Technical Reports Server (NTRS)

    Blaisdell, G. A.; Shariff, K.

    1994-01-01

    Direct numerical simulations are performed for homogeneous turbulence with a mean flow having elliptic streamlines. This flow combines the effects of rotation and strain on the turbulence. Qualitative comparisons are made with linear theory for cases with high Rossby number. The nonlinear transfer process is monitored using a generalized skewness. In general, rotation turns off the nonlinear cascade; however, for moderate ellipticities and rotation rates the nonlinear cascade is turned off and then reestablished. Turbulence statistics of interest in turbulence modeling are calculated, including full Reynolds stress budgets.

  17. Energy flow model for thin plate considering fluid loading with mean flow

    NASA Astrophysics Data System (ADS)

    Han, Ju-Bum; Hong, Suk-Yoon; Song, Jee-Hun

    2012-11-01

    Energy Flow Analysis (EFA) has been developed to predict the vibration energy density of system structures in the high frequency range. This paper develops the energy flow model for the thin plate in contact with mean flow. The pressure generated by mean flow affects energy governing equation and power reflection-transmission coefficients between plates. The fluid pressure is evaluated by using velocity potential and Bernoulli's equation, and energy governing equations are derived by considering the flexural wavenumbers of a plate, which are different along the direction of flexural wave and mean flow. The derived energy governing equation is composed of two kinds of group velocities. To verify the developed energy flow model, various numerical analyses are performed for a simple plate and a coupled plate for several excitation frequencies. The EFA results are compared with the analytical solutions, and correlations between the EFA results and the analytical solutions are verified.

  18. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust Emission Test Procedures § 89.414 Air...

  19. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  20. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    DOE PAGES

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWAmore » framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.« less

  1. Prognostic residual mean flow in an ocean general circulation model and its relation to prognostic Eulerian mean flow

    SciTech Connect

    Saenz, Juan A.; Chen, Qingshan; Ringler, Todd

    2015-05-19

    Recent work has shown that taking the thickness-weighted average (TWA) of the Boussinesq equations in buoyancy coordinates results in exact equations governing the prognostic residual mean flow where eddy–mean flow interactions appear in the horizontal momentum equations as the divergence of the Eliassen–Palm flux tensor (EPFT). It has been proposed that, given the mathematical tractability of the TWA equations, the physical interpretation of the EPFT, and its relation to potential vorticity fluxes, the TWA is an appropriate framework for modeling ocean circulation with parameterized eddies. The authors test the feasibility of this proposition and investigate the connections between the TWA framework and the conventional framework used in models, where Eulerian mean flow prognostic variables are solved for. Using the TWA framework as a starting point, this study explores the well-known connections between vertical transfer of horizontal momentum by eddy form drag and eddy overturning by the bolus velocity, used by Greatbatch and Lamb and Gent and McWilliams to parameterize eddies. After implementing the TWA framework in an ocean general circulation model, we verify our analysis by comparing the flows in an idealized Southern Ocean configuration simulated using the TWA and conventional frameworks with the same mesoscale eddy parameterization.

  2. Computed Turbulent Free Shear Flow Of Air

    NASA Technical Reports Server (NTRS)

    Viegas, J. R.; Rubesin, M. W.

    1992-01-01

    Standard k-epsilon model of turbulence yields fairly accurate results. Symposium paper discusses numerical simulation of turbulent free shear flow of nonreacting compressible fluid. Ability to compute such flows essential to advances in design.

  3. Eddy structure and mean flow effects in strong convection

    NASA Astrophysics Data System (ADS)

    Hunt, J.; Zilitinkevich, S.; Nieuwstadt, F.; Fernando, H.; Princevac, M.

    2003-04-01

    Recent research has shown how in turbulent thermal convection above a horizontal plane where a buoyancy flux is produced (e.g. by heat or by diffusion of dense fluid) characteristic forms of eddy structure interact with processes at the horizontal plane and with horizontal mean velocity field (1). If the flux is produced through a diffusive solid geophysical flow, surface, (e.g. in the solid part of Earth's core or in freezing ice) the eddy structure takes the form of unsteady puffs, because the fluid motion causes variations in the temperature buoyancy at the liquid/solid interface. But if the flux is constant and independent of the fluid motion (e.g. by radiative flux) then the usual quasi-steady plumes are formed. A geophysically significant effect of these differences in eddy structure is the influence on the entrainment rate at inversion layers/thermocline bounding the convective turbulent regions. In the presence of a weak mean velocity gradient no greater than the turbulence intensity, any plumes may be advected (and their structure changed to become puff-like) and/or may be bent over, depending on the strength and vertical extent of the shear. Laboratory experiments, numerical simulation and a simple model demonstrate that in the latter situation the mean flow is amplified by the turbulence, a form of anisotropic, inhomogeneous upscale eddy transport with wide geophysical applications (2). (1) Hunt, J.C.R., Vrieling, A.J., Nieuwstadt, F.T.M. and Fernando, H.J.S., `The influence of the thermal conductivity of the lower boundary on eddy motion in convection', J. Fluid Mech. - submitted 2003. (2) Krishnamurti, R. and Howard, L.N., `Mean flow set up by tilted plumes in a confined space', Proc. Nat. Acad. Sci., 78, 1981.

  4. Physical modeling of air flow during air sparging remediation.

    PubMed

    Hu, Liming; Wu, Xiaofeng; Liu, Yan; Meegoda, Jay N; Gao, Shengyan

    2010-05-15

    Air sparging (AS) is one of the most efficient techniques for remediating saturated soils and groundwater contaminated with volatile organic compounds. A series of physical modeling tests for different sizes of porous media under varied injection pressure were conducted to investigate the effect of particle size and air injection pressure on size and shape of the zone of influence (ZOI). The test results show that ZOI can be expressed by two components: the horizontal expansion due to pneumatic fracture or preferential intrusion around the injection point and the angle of ZOI which is the angle between the vertical line and the boundary of ZOI. There exists a limited angle of ZOI for each type of porous media. The measured minimum and maximum air injection pressures in 1g tests are compared with corresponding theoretical values, and it is found that the measured minimum injection pressure is slightly lower than the theoretical value, while the measured maximum injection pressure is much higher than the theoretical maximum injection pressure. Centrifugal test results confirmed nonapplicability of theoretical maximum injection pressure to air sparging design. All of the above provide valuable information for design and theoretical modeling of air sparging for groundwater remediation.

  5. Mean flow scaling in transitionally-rough turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Schultz, Michael P.; Flack, Karen A.

    2008-11-01

    Results of an experimental investigation of the flow over several mildly-rough surfaces are presented. Three fine-grit sandpaper surfaces and two commercial ship bottom paints were tested over a large Reynolds number range (Reθ = 2,600 -- 30,000) in order to document the roughness function (δU^+) behavior in the transitionally-rough flow regime. In all cases the root-mean-square roughness height was a very small fraction of the boundary layer thickness (krms/δ<1/1,100). The results indicate that the mean velocity profiles for the rough surfaces agree with smooth-wall profiles using outer scaling. However, some significant differences in the behavior of δU^+ in the transitionally-rough flow regime are noted among the five rough surfaces. For example, the roughness functions for the sandpaper surfaces show reasonable agreement with the results of Nikuradse for uniform sand, while the paint surfaces do not. These results, along with others from the literature, will be used to illustrate how surface topography may give rise to the differences that are observed in roughness functions for the transitionally-rough regime.

  6. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    NASA Astrophysics Data System (ADS)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  7. Phonation time, phonation volume and air flow rate in normal adults.

    PubMed

    Prathanee, B; Watthanathon, J; Ruangjirachuporn, P

    1994-12-01

    The purpose of this study was to determine the average phonation time, phonation volume and air flow rate, as well as the relationship between each of these parameters during two conditions (normal and deep breaths). Researchers expect to use these averages in screening of voice disorders. One hundred and three subjects, 67 males and 36 females, were studied. The instruments were a 9 liter respirometer, a tape recorder and a stop watch. The results indicated that the parameters for males were significantly greater than those for females. In addition, the findings suggested that the values of mean phonation time, phonation volume and air flow rate during deep breath were significantly greater than those during normal breath (p < 0.05). The phonation time was inversely related to the air flow rate. However, there was a positive relationship between phonation time and phonation volume, as well as between phonation volume and air flow rate. The findings supported our hypothesises.

  8. Mean-Field Description of Plastic Flow in Amorphous Solids

    NASA Astrophysics Data System (ADS)

    Lin, Jie; Wyart, Matthieu

    2016-01-01

    Failure and flow of amorphous materials are central to various phenomena including earthquakes and landslides. There is accumulating evidence that the yielding transition between a flowing and an arrested phase is a critical phenomenon, but the associated exponents are not understood, even at a mean-field level where the validity of popular models is debated. Here, we solve a mean-field model that captures the broad distribution of the mechanical noise generated by plasticity, whose behavior is related to biased Lévy flights near an absorbing boundary. We compute the exponent θ characterizing the density of shear transformation P (x )˜xθ, where x is the stress increment beyond which they yield. We find that after an isotropic thermal quench, θ =1 /2 . However, θ depends continuously on the applied shear stress; this dependence is not monotonic, and its value at the yield stress is not universal. The model rationalizes previously unexplained observations and captures reasonably well the value of exponents in three dimensions. Values of exponents in four dimensions are accurately predicted. These results support the fact that it is the true mean-field model that applies in large dimensions, and they raise fundamental questions about the nature of the yielding transition.

  9. Prediction of frequencies in thermosolutal convection from mean flows.

    PubMed

    Turton, Sam E; Tuckerman, Laurette S; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean.

  10. Prediction of frequencies in thermosolutal convection from mean flows

    NASA Astrophysics Data System (ADS)

    Turton, Sam E.; Tuckerman, Laurette S.; Barkley, Dwight

    2015-04-01

    Motivated by studies of the cylinder wake, in which the vortex-shedding frequency can be obtained from the mean flow, we study thermosolutal convection driven by opposing thermal and solutal gradients. In the archetypal two-dimensional geometry with horizontally periodic and vertical no-slip boundary conditions, branches of traveling waves and standing waves are created simultaneously by a Hopf bifurcation. Consistent with similar analyses performed on the cylinder wake, we find that the traveling waves of thermosolutal convection have the RZIF property, meaning that linearization about the mean fields of the traveling waves yields an eigenvalue whose real part is almost zero and whose imaginary part corresponds very closely to the nonlinear frequency. In marked contrast, linearization about the mean field of the standing waves yields neither zero growth nor the nonlinear frequency. It is shown that this difference can be attributed to the fact that the temporal power spectrum for the traveling waves is peaked, while that of the standing waves is broad. We give a general demonstration that the frequency of any quasimonochromatic oscillation can be predicted from its temporal mean.

  11. Simulation of air-droplet mixed phase flow in icing wind-tunnel

    NASA Astrophysics Data System (ADS)

    Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li

    2013-07-01

    Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.

  12. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  13. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    PubMed

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  14. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  15. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  16. Minimum detectable air velocity by thermal flow sensors.

    PubMed

    Issa, Safir; Lang, Walter

    2013-08-19

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s.

  17. Minimum Detectable Air Velocity by Thermal Flow Sensors

    PubMed Central

    Issa, Safir; Lang, Walter

    2013-01-01

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s. PMID:23966190

  18. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement specifications. 90.416 Section 90.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures §...

  19. Unsteady Validation of a Mean Flow Boundary Condition for Computational Aeroacoustics

    NASA Technical Reports Server (NTRS)

    Hixon, R.; Zhen, F.; Nallasamy, M.; Sawyer, S> ; Dyson, R.

    2004-01-01

    In this work, a previously developed mean flow boundary condition will be validated for unsteady flows. The test cases will be several reference benchmark flows consisting of vortical gusts convecting in a uniform mean flow, as well as the more realistic case of a vortical gust impinging on a loaded 2D cascade. The results will verify that the mean flow boundary condition both imposes the desired mean flow as well as having little or no effect on the instantaneous unsteady solution.

  20. Fluid flow measurements by means of vibration monitoring

    NASA Astrophysics Data System (ADS)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  1. Computational and experimental study of spin coater air flow

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  2. Mean flow generation mechanism by inertial waves and normal modes

    NASA Astrophysics Data System (ADS)

    Will, Andreas; Ghasemi, Abouzar

    2016-04-01

    The mean flow generation mechanism by nonlinearity of the inertial normal modes and inertial wave beams in a rotating annular cavity with longitudinally librating walls in stable regime is discussed. Inertial normal modes (standing waves) are excited when libration frequency matches eigenfrequencies of the system. Inertial wave beams are produced by Ekman pumping and suction in a rotating cylinder and form periodic orbits or periodic ray trajectories at selected frequencies. Inertial wave beams emerge as concentrated shear layers in a librating annular cavity, while normal modes appear as global recirculation cells. Both (inertial wave beam and mode) are helical and thus intrinsically non-linear flow structures. No second mode or wave is necessary for non-linearity. We considered the low order normal modes (1,1), (2,1) and (2,2) which are expected to be excited in the planetary objects and investigate the mean flow generation mechanism using two independent solutions: 1) analytical solution (Borcia 2012) and 2) the wave component of the flow (ω0 component) obtained from the direct numerical simulation (DNS). It is well known that a retrograde bulk mean flow is generated by the Ekman boundary layer and E1/4-Stewartson layer close to the outer cylinder side wall due to libration. At and around the normal mode resonant frequencies we found additionally a prograde azimuthal mean flow (Inertial Normal Mode Mean Flow: INMMF) in the bulk of the fluid. The fluid in the bulk is in geostrophic balance in the absence of the inertial normal modes. However, when INMMF is excited, we found that the geostrophic balance does not hold in the region occupied by INMMF. We hypothesize that INMMF is generated by the nonlinearity of the normal modes or by second order effects. Expanding the velocity {V}(u_r,u_θ,u_z) and pressure (p) in a power series in ɛ (libration amplitude), the Navier-Stokes equations are segregated into the linear and nonlinear parts at orders ɛ1 and ɛ^2

  3. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  4. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  5. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  6. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  7. Mass flow rate measurements in gas-liquid flows by means of a venturi or orifice plate coupled to a void fraction sensor

    SciTech Connect

    Oliveira, Jorge Luiz Goes; Passos, Julio Cesar

    2009-01-15

    Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air-water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454-457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil-air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601-606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%. (author)

  8. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  9. Means of atmospheric air pollution reduction during drilling wells

    NASA Astrophysics Data System (ADS)

    Shkitsa, L.; Yatsyshyn, T.; Lyakh, M.; Sydorenko, O.

    2016-08-01

    The process of drilling oil and gas wells is the source of air pollution through drilling mud evaporation containing hazardous chemical substances. The constructive solution for cleaning device of downhole tool that contains elements covering tube and clean the surface from the mud in the process of rising from the well is offered. Inside the device is filled with magnetic fluid containing the substance neutralizing hazardous substances. The use of the equipment proposed will make it possible to avoid penetration of harmful substances into the environment and to escape the harmful effects of aggressive substances for staff health and increase rig's fire safety.

  10. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  11. Mean flow velocity patterns within a ventricular assist device.

    PubMed

    Baldwin, J T; Tarbell, J M; Deutsch, S; Geselowitz, D B

    1989-01-01

    A laser Doppler anemometry system was used to measure fluid velocities at 127 locations within a plexiglas model of the 70 cm3 Penn State electric ventricular assist device (VAD) fitted with Bjork-Shiley convexo-concave tilting disk valves. The velocity measurements were made using a seeded blood analog fluid that matched the kinematic viscosity of blood and the refractive index of plexiglas. At each location, 250 instantaneous velocity realizations were collected at eight instances during the pump cycle. The data were filtered and averaged to calculate mean (ensemble averaged) velocities. The results indicate that the largest mean velocities are created during systole in the VADs outlet tract, and during diastole in the major orifice of the mitral valve. A single vortex centered roughly about the axis of the cylindrical portion of the pump is created during early diastole. This vortex, which persists into early systole, provides good washing of the VAD walls. However, it does appear to impede the flow entering the VAD through the minor orifice of the mitral valve. High velocities also occur during diastole along the minor orifice wall of the outlet tract and are directed into the chamber. These retrograde velocities suggest the presence of a regurgitant jet near the wall of the prosthetic valve.

  12. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    NASA Astrophysics Data System (ADS)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  13. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  14. Reducing minimum air flow at low boiler loads

    SciTech Connect

    McDonald, B.L.; Lange, H.B.; Brown, R.L.

    1997-09-01

    One aspect of boiler operation that impairs performance at low loads is the practice of maintaining the flow of air to the boiler at or above 25% of the full-load air flow even though the boiler load may be reduced well below 25%. This is done in accordance with National Fire Protection Association (NFPA) Standard 8502, a guideline which boiler insurers generally require. The intent of the minimum air flow rate guideline is to reduce the likelihood of a boiler explosion being caused by an unexpected accumulation of unburned fuel in the boiler, by maintaining a minimum purge rate through the boiler. Operation at high excess air reduces boiler efficiency, increases NO{sub x} emissions and, in some cases, negatively impacts flame stability. Under a contract with EPRI, Carnot is currently engaged in a program aimed at more fully establishing the economics of and technical basis for safe reduced air flow operation at low boiler loads and developing guidelines for its implementation on any boiler. In Phase 1 of this program, discussions were initiated with the NFPA, and detailed boiler combustion and heat-transfer analyses were combined with cost models to quantify the benefits and costs of reduced air flow operation on a wide variety of boilers. The cost/benefit analysis investigated gas- and/or oil-fired boilers including tangential, wall and opposed-fired designs. Phase 2 of the program is to consist of a series of demonstrations of reduced air flow operation on working utility boilers. These demonstrations are to cover gas, oil and coal fuels and the major boiler design types.

  15. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  16. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  17. The study of indoor air pollution by means of magnetometry

    NASA Astrophysics Data System (ADS)

    Jelenska, M.; Górka-Kostrubiec, B.; Król, E.

    2012-04-01

    The aim of this study is to establish what kind of outside pollution penetrate into indoor spaces. Here we report preliminary results of magnetic monitoring study of indoor air pollution by particulate matter (PM) measured inside flats and houses placed in different locations in Warsaw area. Indoor air pollution level was evaluated by measuring magnetic properties of dust taken from vacuum cleaners used in private flats. The dust samples were taken from about 180 locations in Warsaw distributed in such polluted places as city centre or communication lines with heavy traffic and in unpolluted suburb places. The locations were also distributed according to height above ground level. There were taken in flats situated from first to 16th floors. The basic magnetic parameters such us, χ mass magnetic susceptibility, hysteresis loop parameters: coercive force (Hc), coercivity of remanence (Hcr), saturation magnetization (Ms) and saturation remanent magnetization (Mrs or SIRM) and χfd frequency dependence of susceptibility, have been used to identify indoor pollution level and to characterize domain state and granulometry of magnetic minerals. Identification of magnetic minerals have been made by measuring decay curve of SIRM during heating to temperature of 700 °C. For chosen samples concentration of 20 elements were measured. The most frequent values of susceptibility of dust are between 50 and 150 10-8 m3/kg with the maximum around 100 10-8 m3/kg. Thermomagnetic analysis for dust differs from that for soil samples taken in the vicinity. SIRM(T) curves for dust show remanence loss at 320 °C and at 520- 540 °C. This is diagnostic for pyrrhotite and magnetite as dominant magnetic minerals. Some samples demonstrate loss of remanence at 160 °C and at temperature characteristic for magnetite. Soil samples do not show pyrrhotite presence or loss of remanence at 160 °C. Display of hysteresis parameters on Day-Dunlop plot indicates predominance of SD/MD grains with

  18. Air-segmented amplitude-modulated multiplexed flow analysis.

    PubMed

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  19. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  20. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  1. Axial and Centrifugal Compressor Mean Line Flow Analysis Method

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    This paper describes a method to estimate key aerodynamic parameters of single and multistage axial and centrifugal compressors. This mean-line compressor code COMDES provides the capability of sizing single and multistage compressors quickly during the conceptual design process. Based on the compressible fluid flow equations and the Euler equation, the code can estimate rotor inlet and exit blade angles when run in the design mode. The design point rotor efficiency and stator losses are inputs to the code, and are modeled at off design. When run in the off-design analysis mode, it can be used to generate performance maps based on simple models for losses due to rotor incidence and inlet guide vane reset angle. The code can provide an improved understanding of basic aerodynamic parameters such as diffusion factor, loading levels and incidence, when matching multistage compressor blade rows at design and at part-speed operation. Rotor loading levels and relative velocity ratio are correlated to the onset of compressor surge. NASA Stage 37 and the three-stage NASA 74-A axial compressors were analyzed and the results compared to test data. The code has been used to generate the performance map for the NASA 76-B three-stage axial compressor featuring variable geometry. The compressor stages were aerodynamically matched at off-design speeds by adjusting the variable inlet guide vane and variable stator geometry angles to control the rotor diffusion factor and incidence angles.

  2. Mean Flow and Noise Prediction for a Separate Flow Jet With Chevron Mixers

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle; Bridges, James; Khavaran, Abbas

    2004-01-01

    Experimental and numerical results are presented here for a separate flow nozzle employing chevrons arranged in an alternating pattern on the core nozzle. Comparisons of these results demonstrate that the combination of the WIND/MGBK suite of codes can predict the noise reduction trends measured between separate flow jets with and without chevrons on the core nozzle. Mean flow predictions were validated against Particle Image Velocimetry (PIV), pressure, and temperature data, and noise predictions were validated against acoustic measurements recorded in the NASA Glenn Aeroacoustic Propulsion Lab. Comparisons are also made to results from the CRAFT code. The work presented here is part of an on-going assessment of the WIND/MGBK suite for use in designing the next generation of quiet nozzles for turbofan engines.

  3. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  4. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  5. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  6. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  7. Litter ammonia losses amplified by higher air flow rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...

  8. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal...

  9. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  10. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Ahmed, S. A.

    1984-01-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  11. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  12. Transverse glow discharges in supersonic air and methane flows

    SciTech Connect

    Denisova, N. V.; Postnikov, B. V.; Fomin, V. M.

    2006-03-15

    Transverse glow discharges in supersonic air and methane flows are studied both experimentally and theoretically. The experiments show that a diffuse volume discharge filling the whole cross section of the flow can easily be initiated in air, whereas a diffuse discharge in a methane flow shows a tendency to transition into a constricted mode. The electron transport coefficients (mobility and drift velocity) and the kinetic coefficients (such as collisional excitation rates of the vibrational levels of a methane molecule, as well as dissociation and ionization rates) are calculated by numerically solving the Boltzmann equation for the electron energy distribution function. The calculated coefficients are used to estimate the parameters of the plasma and the electric field in the positive column of a discharge in methane.

  13. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination. PMID:19398506

  14. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.

  15. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  16. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  17. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  18. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  19. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  20. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  1. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  2. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  3. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  4. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  5. Slug-plug flow analyses of stratified flows in a horizontal duct by means of MARS

    SciTech Connect

    Kunugi, T.; Ose, Y.; Banat, M.

    1999-07-01

    The objectives of this study are to perform the slug-plug flow analyses of stratified flows in a horizontal duct by means of the MARS (Multi-interfaces Advection and Reconstruction Solver) developed by the author which based on the piece-wise linear calculation as a volume tracking procedure and the continuum surface force model (CSF) for the surface tension, and to investigate the effect of the Bernoulli term for slug-plug flows, i.e., so-called the topological law, on the competition between inertial forces and gravitation forces. Some discussion on the primary jump condition at the interface in the MARS is described in the paper. The results of the direct numerical simulation (DNS) by the MARS are compared with the experimental one. The slugging positions obtained by the DNS are in good agreement with the experimental one. Since the mass conservation between before the plugging and after slugging can be shown by the DNS here, the authors may conclude that this physical/numerical model based on the MARS is reliable.

  6. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  7. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  8. The effect of external mean flow on sound transmission through double-walled cylindrical shells lined with poroelastic material

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2014-03-01

    Sound transmission through a system of double shells, lined with poroelastic material in the presence of external mean flow, is studied. The porous material is modeled as an equivalent fluid because shear wave contributions are known to be insignificant. This is achieved by accounting for the energetically most dominant wave types in the calculations. The transmission characteristics of the sandwich construction are presented for different incidence angles and Mach numbers over a wide frequency range. It is noted that the transmission loss exhibits three dips on the frequency axis as opposed to flat panels where there are only two such frequencies—results are discussed in the light of these observations. Flow is shown to decrease the transmission loss below the ring frequency, but increase this above the ring frequency due to the negative stiffness and the damping effect added by the flow. In the absence of external mean flow, porous material provides superior insulation for most part of the frequency band of interest. However, in the presence of external flow, this is true only below the ring frequency—above this frequency, the presence of air gap in sandwich constructions is the dominant factor that determines the acoustic performance. In the absence of external flow, an air gap always improves sound insulation.

  9. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  10. Vision and air flow combine to streamline flying honeybees.

    PubMed

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  11. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  12. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  13. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  14. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  15. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  16. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  17. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  18. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  19. Expiratory flow limitation in compressed air divers and oxygen divers.

    PubMed

    Tetzlaff, K; Friege, L; Reuter, M; Haber, J; Mutzbauer, T; Neubauer, B

    1998-10-01

    Divers are exposed to dense gases under hyperbaric and hyperoxic conditions and, therefore, may be at risk of developing respiratory disease. Long-term effects on respiratory function have been found in commercial divers who perform deep dives. This study was conducted to detect possible lung function changes in scuba divers who dive in shallow water using compressed air or oxygen as a breathing gas. A cross-sectional sample of 180 healthy male divers (152 air divers and 28 oxygen divers) and 34 healthy male controls underwent a diving medical examination including body plethysmography, diffusion capacity measurement and a cold-air isocapnic hyperventilation test (CAIH). Air divers and oxygen divers had a lower mid-expiratory flow at 25% of vital capacity (MEF25) than controls (p<0.01 and p<0.05, respectively). Oxygen divers also had a decreased mid-expiratory flow at 50% of vital capacity (MEF50) (p<0.05). Divers' groups and controls did not differ with respect to age, smoking or medical history. The prevalence of airway hyperresponsiveness to CAIH was 1.4% (n=3 divers). MEF25 and MEF50 were inversely related to years of diving (p<0.01 and p<0.001, respectively). The pattern of lung function changes obtained in scuba divers is consistent with small airways dysfunction and the association between diving exposure and lung function changes may indicate long-term effects on respiratory function.

  20. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    USGS Publications Warehouse

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  1. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  2. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    PubMed

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-01

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  3. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  4. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  5. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  6. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  7. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  8. Dynamics of compressible air flow in ducts with heat exchange

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M.

    1986-12-01

    An investigation into the effect of heat addition on subsonic flow of an air stream in a constant-area duct preceded by a convergent nozzle is carried out. A nozzle flow apparatus with a heat exchanger encasing the constant-area duct has been built for this purpose. Hot water is provided from an electric boiler where the flow rate and the in-flow hot water temperature could be controlled. It is confirmed experimentally, as predicted analytically, that heat transfer to the gas decreases its local static pressure along the duct axis, and that this decrease is associated with an increase in Mach number toward M = 1 at the exit (thermal choking). In the case of subsonic flow, the additional entropy generated by the heat interaction exceeding the amount that produces thermal choking can only be accommodated by moving to a new Rayleigh line, at a decreased flow rate which lowers the inlet Mach number. The good correlation between the experimental results and the analytical derivations illustrates that the experimental arrangement has potential for further experiments and investigations.

  9. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  10. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  11. Streamwise mean flow and turbulent intensity profiles in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Vassilicos, John Christos; Laval, Jean-Philippe; Foucaut, Jean-Marc; Stanislas, Michel; Imperial-Lille Collaboration

    2015-11-01

    The Townsend-Perry attached eddy spectral model predicts that theintegral length-scale varies very slowly with distance to the wall inthe intermediate layer. The only way for the integral length scale'svariation to be more realistic while keeping with the Townsend-Perryattached eddy spectrum is to add a new wavenumber range to the modelat wavenumbers smaller than that spectrum. This necessary additionalso accounts for the high Reynolds number outer peak of the turbulentkinetic energy in the intermediate layer. An analytic expression isobtained for this outer peak in agreement with extremely high Reynoldsnumber data by Hultmark, Vallikivi, Bailey & Smits (2012,2013). Townsend's (1976) production-dissipation balance and thefinding of Dallas, Vassilicos & Hewitt (2009) that, in theintermediate layer, the eddy turnover time scales with skin frictionvelocity and distance to the wall implies that the mean flow gradienthas an outer peak at the same location as the turbulent kineticenergy. This is seen in the data of Hultmark, Vallikivi, Bailey Smits (2012, 2013). The same approach also predicts that the mean flowgradient has a logarithmic decay at distances to the wall larger thanthe position of the outer peak. This qualitative prediction is alsosupported by the aforementioned data.

  12. Zonal mean flow excitation due to inertial waves propagating in the meridional plane

    NASA Astrophysics Data System (ADS)

    Seelig, T.; Harlander, U.; Borcia, I. D.; Egbers, C.

    2012-04-01

    The large-scale oscillation of the atmosphere and oceans is organized by many processes. Waves are a main part. They transport momentum and transfer this locally to the environment. Slowly variating mean flows come into existence, that influence the variability of weather and climate. The quasi-biennial oscillation (QBO) and equatorial deep jets (EDJ) are prominent examples for wave-driven mean flows. The rotation of the earth and associated propagating inertial waves are of main importance for such wave-mean flow interactions. Because of that, we want tho clarify theoretically and later experimentally, wether and how a mean flow will be excitated through inertial waves. We discuss a simple model for the inertial-wave-driven mean flow obtained from the primitive equations. Plumb [1] described the generation of a 'mean zonal motion' due to momentum transport of vertically propagating gravity waves. Based on the mathematical analogy we show that in the meridional plane, propagating inertial waves can transfer their momentum in the same manner to a sheared mean flow. Even an oscillating mean flow can be driven by the inertial waves in close analogy to gravity-wave-driven mean flow variations. [1] Plumb, R. A.: Momentum transport by the thermal tide in the stratosphere of Venus. Quart. J. Roy. Meteor. Soc. 101, 763-776 (1975)

  13. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  14. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    PubMed

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  15. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  16. A root-mean-square pressure fluctuations model for internal flow applications

    NASA Technical Reports Server (NTRS)

    Chen, Y. S.

    1985-01-01

    A transport equation for the root-mean-square pressure fluctuations of turbulent flow is derived from the time-dependent momentum equation for incompressible flow. Approximate modeling of this transport equation is included to relate terms with higher order correlations to the mean quantities of turbulent flow. Three empirical constants are introduced in the model. Two of the empirical constants are estimated from homogeneous turbulence data and wall pressure fluctuations measurements. The third constant is determined by comparing the results of large eddy simulations for a plane channel flow and an annulus flow.

  17. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  18. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... dilution system, you may use a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a... § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow meter to determine instantaneous diluted exhaust flow rates or total diluted exhaust flow over a...

  19. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-01

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  20. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  1. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  2. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  3. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  4. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed. PMID:25288476

  5. Intraoral air pressure and oral air flow under different bleed and bite-block conditions.

    PubMed

    Putnam, A H; Shelton, R L; Kastner, C U

    1986-03-01

    Intraoral pressures and oral flows were measured as normal talkers produced /p lambda/ and /si/ under experimental conditions that perturbed the usual aeromechanical production characteristics of the consonants. A translabial pressure-release device was used to bleed off intraoral pressure during /p/. Bite-blocks were used to open the anterior bite artificially during /s/. For /p/, intraoral pressure decreased and translabial air leakage increased as bleed orifice area increased. For /s/, flow increased as the area of sibilant constriction increased, but differential pressure across the /s/ oral constriction did not vary systematically with changes in its area. Flow on postconsonantal vowels /lambda/ and /i/ did not vary systematically across experimental conditions. The data imply that maintenance of perturbed intraoral pressure was more effective when compensatory options included opportunity for increased respiratory drive and structural adjustments at the place of consonant articulation rather than increased respiratory drive alone.

  6. Investigation of air flow in open-throat wind tunnels

    NASA Technical Reports Server (NTRS)

    Jacobs, Eastman N

    1930-01-01

    Tests were conducted on the 6-inch wind tunnel of the National Advisory Committee for Aeronautics to form a part of a research on open-throat wind tunnels. The primary object of this part of the research was to study a type of air pulsation which has been encountered in open-throat tunnels, and to find the most satisfactory means of eliminating such pulsations. In order to do this it was necessary to study the effects of different variable on all of the important characteristics of the tunnel. This paper gives not only the results of the study of air pulsations and methods of eliminating them, but also the effects of changing the exit-cone diameter and flare and the effects of air leakage from the return passage. It was found that the air pulsations in the 6-inch wind tunnel could be practically eliminated by using a moderately large flare on the exit cone in conjunction with leakage introduced by cutting holes in the exit cone somewhat aft of its minimum diameter.

  7. Influence of Visitors' Flows on Indoor Air Quality of Museum Premises

    NASA Astrophysics Data System (ADS)

    Dovgaliuk, Volodymyr; Lysak, Pavlo

    2012-06-01

    The article considers the influence of visitors' flows on indoor air quality of museum premises and work of ventilation and air conditioning systems. The article provides the analysis of the heat input from visitors, the results of mathematical simulation of visitors flow influence on indoor air quality. Several advice options are provided on application of variable air volume systems for provision of constant indoor air quality.

  8. Flow Simulation of Solid Rocket Motors. 2; Sub-Scale Air Flow Simulation of Port Flows

    NASA Technical Reports Server (NTRS)

    Yeh, Y. P.; Ramandran, N.; Smith, A. W.; Heaman, J. P.

    2000-01-01

    The injection-flow issuing from a porous medium in the cold-flow simulation of internal port flows in solid rocket motors is characterized by a spatial instability termed pseudoturbulence that produces a rather non-uniform (lumpy) injection-velocity profile. The objective of this study is to investigate the interaction between the injection- and the developing axial-flows. The findings show that this interaction generally weakens the lumpy injection profile and affects the subsequent development of the axial flow. The injection profile is found to depend on the material characteristics, and the ensuing pseudoturbulence is a function of the injection velocity, the axial position and the distance from the porous wall. The flow transition (from laminar to turbulent) of the axial-flow is accelerated in flows emerging from smaller pores primarily due to the higher pseudoturbulence produced by the smaller pores in comparison to that associated with larger pores. In flows with rather uniform injection-flow profiles (weak or no pseudoturbulence), the axial and transverse velocity components in the porous duct are found to satisfy the sine/cosine analytical solutions derived from inviscid assumptions. The transition results from the present study are compared with previous results from surveyed literature, and detailed flow development measurements are presented in terms of the blowing fraction, and characterizing Reynolds numbers.

  9. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    SciTech Connect

    Compton, J.A.

    1994-10-01

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another`s estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended.

  10. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  11. Transonic moist air flow around a circular arc blade with bump

    NASA Astrophysics Data System (ADS)

    Hasan, A. B. M. Toufique; Matsuo, Shigeru; Setoguchi, Toshiaki; Kim, Heuy Dong

    2009-12-01

    The unsteady phenomena in the transonic flow around airfoils are observed in the flow field of fan, compressor blades and butterfly valves, and this causes often serious problems such as aeroacoustic noise and the vibration. In recent years, the effect of bump wall on the flow field around an airfoil has been investigated experimentally and as a result, it was observed that the bump wall is effective for the control of shock wave on the airfoil. In the transonic or supersonic flow field, a rapid expansion of moist air or steam gives rise to non-equilibrium condensation. In the present study, the effect of non-equilibrium condensation of moist air on the self-excited shock wave oscillation around a circular arc blade with or without a bump on the blade was investigated numerically. The results showed that the non-equilibrium condensation significantly reduced the flow field unsteadiness such as root mean of pressure oscillation and frequency compared to the case without the non-equilibrium condensation.

  12. Thermal effects on bacterial bioaerosols in continuous air flow.

    PubMed

    Jung, Jae Hee; Lee, Jung Eun; Kim, Sang Soo

    2009-08-01

    Exposure to bacterial bioaerosols can have adverse effects on health, such as infectious diseases, acute toxic effects, and allergies. The search for ways of preventing and curing the harmful effects of bacterial bioaerosols has created a strong demand for the study and development of an efficient method of controlling bioaerosols. We investigated the thermal effects on bacterial bioaerosols of Escherichia coli and Bacillus subtilis by using a thermal electric heating system in continuous air flow. The bacterial bioaerosols were exposed to a surrounding temperature that ranged from 20 degrees C to 700 degrees C for about 0.3 s. Both E. coli and B. subtilis vegetative cells were rendered more than 99.9% inactive at 160 degrees C and 350 degrees C of wall temperature of the quartz tube, respectively. Although the data on bacterial injury showed that the bacteria tended to sustain greater damage as the surrounding temperature increased, Gram-negative E. coli was highly sensitive to structural injury but Gram-positive B. subtilis was slightly more sensitive to metabolic injury. In addition, the inactivation of E. coli endotoxins was found to range from 9.2% (at 200 degrees C) to 82.0% (at 700 degrees C). However, the particle size distribution and morphology of both bacterial bioaerosols were maintained, despite exposure to a surrounding temperature of 700 degrees C. Our results show that thermal heating in a continuous air flow can be used with short exposure time to control bacterial bioaerosols by rendering the bacteria and endotoxins to a large extent inactive. This result could also be useful for developing more effective thermal treatment strategies for use in air purification or sterilization systems to control bioaerosols.

  13. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  14. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  15. Mean flow generation in a rotating straight and sloping wall annulus with librating walls

    NASA Astrophysics Data System (ADS)

    Ghasemi V., Abouzar; Klein, Marten; Seelig, Torsten; Harlander, Uwe; Schaller, Eberhard; Will, Andreas

    2014-05-01

    The work presented is about the investigation of the mean flow generation mechanism in a rotating straight and sloping wall annulus with librating walls. Three mean flow generation mechanism may be identified: the mean flow driven by inertial wave-wave interaction, mean flow driven by the action of Reynolds stress and mean flow driven by friction. Direct numerical simulation together with a laboratory experiment is used to investigate it. An incompressible Navier-Stokes solver with the equations formulated for volume fluxes in generalized curvilinear coordinates has been used. In terms of geometry, the current investigation is divided into two parts: mean flow generation mechanism in (i) a sloping wall annulus and (ii) a straight wall annulus. For the sloping wall annulus we investigated mean flow induced by inertial wave-wave interaction and friction. Under consecutive reflections in a sloping wall annulus inertial waves may form wave attractors. It will be shown that when boundary layer over the sloping wall is centrifugally stable, a retrograde mean flow may be generated due to the focusing of inertial wave beam from the sloping wall via the inertial wave-wave interaction. In addition, we observed a prograde mean flow which is induced by the effect of friction and is scaled as a Stewartson layer. We studied the appearance of this mean flow by librating top/bottom lids and sloping wall either independently or together. A comparison with laboratory experiment (PIV) will be shown. In the second part, mean flow in a straight wall annulus induced by the effect of Reynolds stress and friction is investigated. To study mean flow generation mechanism, we allow top/bottom lids and inner and outer cylinder side walls librate either together or independently. It has been shown experimentally (Noir et al. 2010) that a retrograde mean flow in the bulk of the fluid is due to the nonlinearity of the Ekman boundary layer and instability of the Stokes boundary layer and inertial

  16. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.148 Type C supplied-air respirator, continuous flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  17. Flow patterns of natural convection in an air-filled vertical cavity

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  18. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  19. Mass transfer from a sphere in an oscillating flow with zero mean velocity

    NASA Technical Reports Server (NTRS)

    Drummond, Colin K.; Lyman, Frederic A.

    1990-01-01

    A pseudospectral numerical method is used for the solution of the Navier-Stokes and mass transport equations for a sphere in a sinusoidally oscillating flow with zero mean velocity. The flow is assumed laminar and axisymmetric about the sphere's polar axis. Oscillating flow results were obtained for Reynolds numbers (based on the free-stream oscillatory flow amplitude) between 1 and 150, and Strouhal numbers between 1 and 1000. Sherwood numbers were computed and their dependency on the flow frequency and amplitude discussed. An assessment of the validity of the quasi-steady assumption for mass transfer is based on these results.

  20. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  1. Boundary-Layer Stability Analysis of the Mean Flows Obtained Using Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Liao, Wei; Malik, Mujeeb R.; Lee-Rausch, Elizabeth M.; Li, Fei; Nielsen, Eric J.; Buning, Pieter G.; Chang, Chau-Lyan; Choudhari, Meelan M.

    2012-01-01

    Boundary-layer stability analyses of mean flows extracted from unstructured-grid Navier- Stokes solutions have been performed. A procedure has been developed to extract mean flow profiles from the FUN3D unstructured-grid solutions. Extensive code-to-code validations have been performed by comparing the extracted mean ows as well as the corresponding stability characteristics to the predictions based on structured-grid solutions. Comparisons are made on a range of problems from a simple at plate to a full aircraft configuration-a modified Gulfstream-III with a natural laminar flow glove. The future aim of the project is to extend the adjoint-based design capability in FUN3D to include natural laminar flow and laminar flow control by integrating it with boundary-layer stability analysis codes, such as LASTRAC.

  2. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  3. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  4. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  5. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  6. Effect of air-flow on the evaluation of refractive surgery ablation patterns.

    PubMed

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez-Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-02-28

    An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

  7. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  8. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  9. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  10. The evolution of hairpin vortices in subcritical air channel flow

    NASA Astrophysics Data System (ADS)

    Svizher, A.; Cohen, J.

    2001-11-01

    Experimental investigation of artificially generated hairpin vortical structures in air channel flow has been performed. The basic plane Poiseuille flow at a range of Reynolds numbers from 1000 to 2000, based on half channel height and centreline velocity, has been disturbed by injecting smoke through a streamwise slot located at the bottom channel wall. Employing hot-wire anemometry and PIV measurements, the characteristics of these hairpin structures and the parameters that govern their generation and evolution have been studied. In order to carefully examine the topology and dynamics of these coherent structures, the instantaneous three-dimensional velocity (and vorticity) distribution over the entire sample volume is required. To accomplish this task Holographic PIV system has been built. The optical setup consists of two mutually perpendicular hybrid HPIV systems for simultaneous recording of two holograms. By combining these holograms, all three coordinates indicating the particle position may be achieved at the same level of accuracy. Switching the reference beam between the Laser pulses (by electrooptic Pockels cell), enables one to reconstruct separately the double exposed holograms for future cross-correlation analysis. Preliminary results obtained in this experimental setup are promising.

  11. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  12. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  13. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  14. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  15. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  16. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends.

  17. Sampling biases in datasets of historical mean air temperature over land.

    PubMed

    Wang, Kaicun

    2014-01-01

    Global mean surface air temperature (Ta) has been reported to have risen by 0.74°C over the last 100 years. However, the definition of mean Ta is still a subject of debate. The most defensible definition might be the integral of the continuous temperature measurements over a day (Td0). However, for technological and historical reasons, mean Ta over land have been taken to be the average of the daily maximum and minimum temperature measurements (Td1). All existing principal global temperature analyses over land rely heavily on Td1. Here, I make a first quantitative assessment of the bias in the use of Td1 to estimate trends of mean Ta using hourly Ta observations at 5600 globally distributed weather stations from the 1970s to 2013. I find that the use of Td1 has a negligible impact on the global mean warming rate. However, the trend of Td1 has a substantial bias at regional and local scales, with a root mean square error of over 25% at 5° × 5° grids. Therefore, caution should be taken when using mean Ta datasets based on Td1 to examine high resolution details of warming trends. PMID:24717688

  18. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  19. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-01

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  20. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-01

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip. PMID:20721045

  1. On the one-dimensional acoustic propagation in conical ducts with stationary mean flow.

    PubMed

    Barjau, Ana

    2007-12-01

    This paper proposes a direct time-domain calculation of the time-domain responses of anechoic conical tubes with steady weak mean flow. The starting point is the approximated linear one-dimensional wave equation governing the velocity potential for the case of steady flow with low Mach number. A traveling solution with general space-dependent propagation velocity is then proposed from which the inward and outward pressure and velocity impulse responses can be obtained. The results include the well-known responses of conical and cylindrical ducts with zero mean flow.

  2. Convective heat transfer characteristics of laminar pulsating pipe air flow

    NASA Astrophysics Data System (ADS)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  3. Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.

    PubMed

    Reddy, K R; Adams, J A

    2000-02-25

    This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.

  4. Structure of the Small Amplitude Motion on Transversely Sheared Mean Flows

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Afsar, Mohamed Z.; Leib, Stewart J.

    2013-01-01

    This paper considers the small amplitude unsteady motion of an inviscid non-heat conducting compressible fluid on a transversely sheared mean flow. It extends a previous result given in Goldstein (1978(b) and 1979(a)) which shows that the hydrodynamic component of the motion is determined by two arbitrary convected quantities in the absence of solid surfaces or other external sources. The result is important because it can be used to specify appropriate boundary conditions for unsteady surface interaction problems on transversely sheared mean flows in the same way that the vortical component of the Kovasznay (1953) decomposition is used to specify these conditions for surface interaction problems on uniform mean flows. But unlike the Kovasznay (1953) case the arbitrary convected quantities no longer bear a simple relation to the physical variables. One purpose of this paper is to derive a formula that relates these quantities to the (physically measurable) vorticity and pressure fluctuations in the flow.

  5. Mean and Oscillating Plasma Flows and Turbulence Interactions across the L-H Confinement Transition

    SciTech Connect

    Conway, G. D.; Angioni, C.; Ryter, F.; Sauter, P.; Vicente, J.

    2011-02-11

    A complex interaction between turbulence driven ExB zonal flow oscillations, i.e., geodesic acoustic modes (GAMs), the turbulence, and mean equilibrium flows is observed during the low to high (L-H) plasma confinement mode transition in the ASDEX Upgrade tokamak. Below the L-H threshold at low densities a limit-cycle oscillation forms with competition between the turbulence level and the GAM flow shearing. At higher densities the cycle is diminished, while in the H mode the cycle duration becomes too short to sustain the GAM, which is replaced by large amplitude broadband flow perturbations. Initially GAM amplitude increases as the H-mode transition is approached, but is then suppressed in the H mode by enhanced mean flow shear.

  6. Mean flow and variability in the Kuroshio Extension from Geosat altimetry data

    NASA Technical Reports Server (NTRS)

    Qiu, BO; Kally, Kathryn A.; Joyce, Terrence M.

    1991-01-01

    The mean flow and temporal and spatial variations of the Kuroshio Extension in the region of 140-180 deg E and 30-40 deg N are investigated using altimeter data from the Geosat Exact Repeat Mission (ERM). Mean surface height profiles are estimated along individual tracks by assuming the velocity profile of the Kuroshio Extension to be Gaussian-shaped and by successively fitting this synthetic current's height profile to the residual height data. The mean profiles from ascending and descending tracks are used to derive the mean surface height by an inverse method and to obtain the absolute surface height fields for the first 2.5 yr of the Geosat ERM. Both the mean and the instantaneous height fields thus derived compare well with the available hydrographic data and the SST patterns from the NOAA satellites. Effects of deep mean flow and baroclinic shear are found to be important in explaining the observed propagation speeds.

  7. Associations between air pollution and peak expiratory flow among patients with persistent asthma.

    PubMed

    Qian, Zhengmin; Lin, Hung-Mo; Chinchilli, Vernon M; Lehman, Erik B; Stewart, Walter F; Shah, Nirav; Duan, Yinkang; Craig, Timothy J; Wilson, William E; Liao, Duanping; Lazarus, Stephen C; Bascom, Rebecca

    2009-01-01

    Responses of patients with persistent asthma to ambient air pollution may be different from those of general populations. For example, asthma medications may modify the effects of ambient air pollutants on peak expiratory flow (PEF). Few studies examined the association between air pollution and PEF in patients with persistent asthma on well-defined medication regimens using asthma clinical trial data. Airway obstruction effects of ambient air pollutants, using 14,919 person-days of daily self-measured peak expiratory flow (PEF), were assessed from 154 patients with persistent asthma during the 16 wk of active treatment in the Salmeterol Off Corticosteroids Study trial. The three therapies were an inhaled corticosteroid, an inhaled long-acting beta-agonist, and placebo. The participants were nonsmokers aged 12 through 63 yr, recruited from 6 university-based ambulatory care centers from February 1997 to January 1999. Air pollution data were derived from the U.S. Environmental Protection Agency Aerometric Information Retrieval System. An increase of 10 ppb of ambient daily mean concentrations of NO2 was associated with a decrease in PEF of 1.53 L/min (95% confidence interval [CI] -2.93 to -0.14) in models adjusted for age, gender, race/ethnicity, asthma clinical center, season, week, daily average temperature, and daily average relative humidity. The strongest association between NO2 and PEF was observed among the patients treated with salmeterol. Negative associations were also found between PEF and SO2 and between PEF and PM(10), respectively. The results show that the two medication regimens protected against the effects of PM(10). However, salmeterol increased the sensitivity to NO2 and triamcinalone enhanced the sensitivity to SO2.

  8. Numerical simulation of flow in a circular duct fitted with air-jet vortex generators

    NASA Astrophysics Data System (ADS)

    Küpper, Christoph; Henry, Frank S.

    2002-04-01

    Most of the fundamental studies of the use of air-jet vortex generators (AJVGs) have concentrated on their potential ability to inhibit boundary layer separation on aerofoils. However, AJVGs may be of use in controlling or enhancing certain features of internal duct flows. For example, they may be of use in controlling the boundary layer at the entrance to engine air intakes, or as a means of increasing mixing and heat transfer. The objective of this paper is to analyse the flow field in the proximity of an air-jet vortex generator array in a duct by using two local numerical models, i.e. a simple flat plate model and a more geometrically faithful sector model. The sector model mirrors the circular nature of the duct's cross-section and the centre line conditions on the upper boundary. The flow was assumed fully turbulent and was solved using the finite volume, Navier-Stokes Code CFX 4 (CFDS, AEA Technology, Harwell) on a non-orthogonal, body-fitted, grid using the k- turbulence model and standard wall functions. Streamwise, vertical and cross-stream velocity profiles, circulation and peak vorticity decay, peak vorticity paths in cross-stream and streamwise direction, cross-stream vorticity profiles and cross-stream wall shear stress distributions were predicted. Negligible difference in results was observed between the flat plate and the sector model, since the produced vortices were small relative to the duct diameter and close to the surface. The flow field was most enhanced, i.e. maximum thinning of the boundary layer, with a configuration of 30° pitch and 75° skew angle. No significant difference in results could be observed between co- and counter-rotating vortex arrays. Copyright

  9. Methods for the calculation of axial wave numbers in lined ducts with mean flow

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1981-01-01

    A survey is made of the methods available for the calculation of axial wave numbers in lined ducts. Rectangular and circular ducts with both uniform and non-uniform flow are considered as are ducts with peripherally varying liners. A historical perspective is provided by a discussion of the classical methods for computing attenuation when no mean flow is present. When flow is present these techniques become either impractical or impossible. A number of direct eigenvalue determination schemes which have been used when flow is present are discussed. Methods described are extensions of the classical no-flow technique, perturbation methods based on the no-flow technique, direct integration methods for solution of the eigenvalue equation, an integration-iteration method based on the governing differential equation for acoustic transmission, Galerkin methods, finite difference methods, and finite element methods.

  10. Ring waves as a mass transport mechanism in air-driven core-annular flows.

    PubMed

    Camassa, Roberto; Forest, M Gregory; Lee, Long; Ogrosky, H Reed; Olander, Jeffrey

    2012-12-01

    Air-driven core-annular fluid flows occur in many situations, from lung airways to engineering applications. Here we study, experimentally and theoretically, flows where a viscous liquid film lining the inside of a tube is forced upwards against gravity by turbulent airflow up the center of the tube. We present results on the thickness and mean speed of the film and properties of the interfacial waves that develop from an instability of the air-liquid interface. We derive a long-wave asymptotic model and compare properties of its solutions with those of the experiments. Traveling wave solutions of this long-wave model exhibit evidence of different mass transport regimes: Past a certain threshold, sufficiently large-amplitude waves begin to trap cores of fluid which propagate upward at wave speeds. This theoretical result is then confirmed by a second set of experiments that show evidence of ring waves of annular fluid propagating over the underlying creeping flow. By tuning the parameters of the experiments, the strength of this phenomenon can be adjusted in a way that is predicted qualitatively by the model.

  11. Nonlinear Instability of a Uni-directional Transversely Sheared Mean Flow

    NASA Technical Reports Server (NTRS)

    Wundrow, David W.; Goldstein, Marvin E.

    1994-01-01

    It is well known that the presence of a weak cross flow in an otherwise two-dimensional shear flow results in a spanwise variation in the mean streamwise velocity profile that can lead to an amplification of certain three-dimensional disturbances through a kind of resonant-interaction mechanism (Goldstein and Wundrow 1994). The spatial evolution of an initially linear, finite-growth-rate, instability wave in such a spanwise-varying shear flow is considered, The base flow, which is governed by the three-dimensional parabolized Navier-Stokes equations, is initiated by imposing a spanwise- periodic cross-flow velocity on an otherwise two-dimensional shear flow at some fixed streamwise location. The resulting mean-flow distortion initially grows with increasing streamwise distance, reaches a maximum and eventually decays through the action of viscosity. This decay, which coincides with the viscous spread of of the shear layer, means that the local growth rate of the instability wave will eventually decrease as the wave propagates downstream. Nonlinear effects can then become important within a thin spanwise-modulated critical layer once the local instability-wave amplitude and growth rate become sufficiently large and small, respectively. The amplitude equation that describes this stage of evolution is shown to be a generalization of the one obtained by Goldstein and Choi (1989) who considered the related problem of the interaction of two oblique modes in a two-dimensional shear layer.

  12. Effects of mean flow on transmission loss of orthogonally rib-stiffened aeroelastic plates.

    PubMed

    Xin, F X; Lu, T J

    2013-06-01

    This paper investigates the sound transmission loss (STL) of aeroelastic plates reinforced by two sets of orthogonal rib-stiffeners in the presence of external mean flow. Built upon the periodicity of the structure, a comprehensive theoretical model is developed by considering the convection effect of mean flow. The rib-stiffeners are modeled by employing the Bernoulli-Euler beam theory and the torsional wave equation. While the solution for the transmission loss of the structure based on plate displacement and acoustic pressures is given in the form of space-harmonic series, the corresponding coefficients are obtained from the solution of a system of linear equations derived from the plate-beam coupling vibration governing equation and Helmholtz equation. The model predictions are validated by comparing with existing theoretical and experimental results in the absence of mean flow. A parametric study is subsequently performed to quantify the effects of mean flow as well as structure geometrical parameters upon the transmission loss. It is demonstrated that the transmission loss of periodically rib-stiffened structure is increased significantly with increasing Mach number of mean flow over a wide frequency range. The STL value for the case of sound wave incident downstream is pronouncedly larger than that associated with sound wave incident upstream. PMID:23742345

  13. Localization of an air target by means of GNSS-based multistatic radar

    NASA Astrophysics Data System (ADS)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  14. Measurements in the turbulent boundary layer at constant pressure in subsonic and supersonic flow. Part 1: Mean flow

    NASA Technical Reports Server (NTRS)

    Collins, D. J.; Coles, D. E.; Hicks, J. W.

    1978-01-01

    Experiments were carried out to test the accuracy of laser Doppler instrumentation for measurement of Reynolds stresses in turbulent boundary layers in supersonic flow. Two facilities were used to study flow at constant pressure. In one facility, data were obtained on a flat plate at M sub e = 0.1, with Re theta up to 8,000. In the other, data were obtained on an adiabatic nozzle wall at M sub e = 0.6, 0.8, 1.0, 1.3, and 2.2, with Re theta = 23,000 and 40,000. The mean flow as observed using Pitot tube, Preston tube, and floating element instrumentation is described. Emphasis is on the use of similarity laws with Van Driest scaling and on the inference of the shearing stress profile and the normal velocity component from the equations of mean motion. The experimental data are tabulated.

  15. Quasi-Steady Limit of Flow Structure on Flapping Wing in Mean Flow

    NASA Astrophysics Data System (ADS)

    Bross, Matthew; Ozen, Cem; Rockwell, Donald

    2012-11-01

    A limiting case of flapping motion of a wing (low aspect ratio plate) in presence of incident steady flow is compared to a rotating wing in quiescent fluid, in order to clarify the effect of advance ratio J (ratio of free-stream velocity to tangential velocity of wing) on the structure of the leading-edge vortex. Stereoscopic particle image velocimetry leads to patterns of vorticity, velocity contours, and streamlines. For each value of J, the effective angle of attack is held constant at 45°, while the wing rotates from rest through 270°. While at rest, the wing at high angle of attack in the presence of a steady free-stream gives rise to fully stalled flow. After the onset of rotation, the fully stalled region very quickly transforms to a stable leading edge vortex. Despite the change in advance ratio, the development of the flow structure around the wing throughout the rotation maneuver is similar, especially in the leading edge vortex region, as evidenced by patterns of streamline topology. To further demonstrate the effect of J, three-dimensional representations of of spanwise-oriented vorticity, spanwise velocity, and Q were constructed for hovering flight and forward flight.

  16. Mean Flow and Turbulence Structure in Ice-Covered Channels: Laboratory Experiments and Preliminary Field Observations

    NASA Astrophysics Data System (ADS)

    Robert, A.; Tran, T.

    2009-12-01

    Northern rivers experience freeze-up over the winter, creating asymmetric under-ice flows. Field measurements were conducted along an ice-covered, gravel-bed river in order to investigate average downstream velocity profile characteristics and the spatial variability of under-ice average flow conditions (itself attributed to the areal distribution of sediment and the heterogeneous nature of ice cover roughness). At the reach scale, measured under-ice flows typically exhibit flow asymmetry and its characteristics depend on the presence of roughness elements on the ice cover underside. River flows were subsequently modeled in the flume laboratory based on an average Froude number derived from field data. Extensive experiments were performed for shallower and deeper flows with a simulated ice cover of varying roughness and a gravel bed. Detailed profile measurements of the root-mean square components of turbulence intensity, Reynolds stresses and turbulent kinetic energy indicate that the turbulence structure is strongly influenced by the presence of an ice cover and its roughness characteristics. A central region of faster flow can develop with the addition of a rough cover at the height where average velocity is routinely sampled. For the case of deeper flows, streamwise and vertical turbulence intensities generally increase in the near-bed and outer flow regions when a cover is added. For deeper flows, Reynolds stresses also increase with addition of a cover and its roughening. Spatially-averaged profiles also suggest that flow depth significantly affects the turbulent flow structure of covered flows with similar low Froude numbers. Bed roughness elements appear to exert the greatest influence on near-bed flow distribution. Laboratory experiments also suggest that the addition of a cover - and its roughening - does not significantly alter estimates of near-bed velocity gradients. These results are discussed in the context of the impact of a warming climate on

  17. Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa

    USGS Publications Warehouse

    Eash, David A.; Barnes, Kimberlee K.

    2012-01-01

    A statewide study was conducted to develop regression equations for estimating six selected low-flow frequency statistics and harmonic mean flows for ungaged stream sites in Iowa. The estimation equations developed for the six low-flow frequency statistics include: the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 5 years, and the seasonal (October 1 through December 31) 1- and 7-day mean low flows for a recurrence interval of 10 years. Estimation equations also were developed for the harmonic-mean-flow statistic. Estimates of these seven selected statistics are provided for 208 U.S. Geological Survey continuous-record streamgages using data through September 30, 2006. The study area comprises streamgages located within Iowa and 50 miles beyond the State's borders. Because trend analyses indicated statistically significant positive trends when considering the entire period of record for the majority of the streamgages, the longest, most recent period of record without a significant trend was determined for each streamgage for use in the study. The median number of years of record used to compute each of these seven selected statistics was 35. Geographic information system software was used to measure 54 selected basin characteristics for each streamgage. Following the removal of two streamgages from the initial data set, data collected for 206 streamgages were compiled to investigate three approaches for regionalization of the seven selected statistics. Regionalization, a process using statistical regression analysis, provides a relation for efficiently transferring information from a group of streamgages in a region to ungaged sites in the region. The three regionalization approaches tested included statewide, regional, and region-of-influence regressions. For the regional regression, the study area was divided into three low-flow regions on the basis of hydrologic

  18. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.

    PubMed

    Herrling, Maria P; Guthausen, Gisela; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2015-05-01

    Biofilms on cylindrical carrier material originating from a lab-scale moving bed biofilm reactor (MBBR) were investigated by means of Magnetic Resonance Imaging (MRI). The aim of this study was to determine the local flow velocities at the inner face of the biofilm carrier. To get an insight into the mass transport processes, flow velocity maps of blank and with biofilm cultivated carriers were measured. A single carrier was placed in a tube in three different orientations and exposed to flow velocities of 0.21, 0.42, and 0.64 mm/s. The interplay of the biofilm morphology and the local flow pattern was then analyzed including the effect of the orientation of the carrier in relation to the upstream flow angle. Within this study, the biofilm carrier can be understood as an interconnected system of four sections in which the incoming fluid volume will be distributed depending on the biomass occupation and morphology. In sections with high biofilm occupation, the flow resistance is increased. Depending on the orientation of the carrier in the flow field, this effect leads to flow evasion through less covered sections showing higher flow velocities and consequently the risk of biofilm detachment. However, there was no clear correlation between biofilm coverage and flow ratio. PMID:25425488

  19. Determining the flow regime in a biofilm carrier by means of magnetic resonance imaging.

    PubMed

    Herrling, Maria P; Guthausen, Gisela; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2015-05-01

    Biofilms on cylindrical carrier material originating from a lab-scale moving bed biofilm reactor (MBBR) were investigated by means of Magnetic Resonance Imaging (MRI). The aim of this study was to determine the local flow velocities at the inner face of the biofilm carrier. To get an insight into the mass transport processes, flow velocity maps of blank and with biofilm cultivated carriers were measured. A single carrier was placed in a tube in three different orientations and exposed to flow velocities of 0.21, 0.42, and 0.64 mm/s. The interplay of the biofilm morphology and the local flow pattern was then analyzed including the effect of the orientation of the carrier in relation to the upstream flow angle. Within this study, the biofilm carrier can be understood as an interconnected system of four sections in which the incoming fluid volume will be distributed depending on the biomass occupation and morphology. In sections with high biofilm occupation, the flow resistance is increased. Depending on the orientation of the carrier in the flow field, this effect leads to flow evasion through less covered sections showing higher flow velocities and consequently the risk of biofilm detachment. However, there was no clear correlation between biofilm coverage and flow ratio.

  20. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-09-06

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  1. Estimating selected low-flow frequency statistics and harmonic-mean flows for ungaged, unregulated streams in Indiana

    USGS Publications Warehouse

    Martin, Gary R.; Fowler, Kathleen K.; Arihood, Leslie D.

    2016-01-01

    Information on low-flow characteristics of streams is essential for the management of water resources. This report provides equations for estimating the 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years and the harmonic-mean flow at ungaged, unregulated stream sites in Indiana. These equations were developed using the low-flow statistics and basin characteristics for 108 continuous-record streamgages in Indiana with at least 10 years of daily mean streamflow data through the 2011 climate year (April 1 through March 31). The equations were developed in cooperation with the Indiana Department of Environmental Management.Regression techniques were used to develop the equations for estimating low-flow frequency statistics and the harmonic-mean flows on the basis of drainage-basin characteristics. A geographic information system was used to measure basin characteristics for selected streamgages. A final set of 25 basin characteristics measured at all the streamgages were evaluated to choose the best predictors of the low-flow statistics.Logistic-regression equations applicable statewide are presented for estimating the probability that selected low-flow frequency statistics equal zero. These equations use the explanatory variables total drainage area, average transmissivity of the full thickness of the unconsolidated deposits within 1,000 feet of the stream network, and latitude of the basin outlet. The percentage of the streamgage low-flow statistics correctly classified as zero or nonzero using the logistic-regression equations ranged from 86.1 to 88.9 percent.Generalized-least-squares regression equations applicable statewide for estimating nonzero low-flow frequency statistics use total drainage area, the average hydraulic conductivity of the top 70 feet of unconsolidated deposits, the slope of the basin, and the index of permeability and thickness of the Quaternary surficial sediments as explanatory variables. The average standard error of

  2. Acoustic Absorption Characteristics of an Orifice With a Mean Bias Flow

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data for numerical validation of impedance models that simulate bias flow through perforates. The impedance model is being developed by researchers at High Technology Corporation. This report documents normal incidence impedance measurements a singular circular orifice with mean flow passing through it. All measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube. The mean flow is introduced upstream of the orifice (with the flow and incident sound wave travelling in the same direction) with an anechoic termination downstream of the orifice. Velocity profiles are obtained upstream of the orifice to characterize the inflow boundary conditions. Velocity in the center of the orifice is also obtained. All velocity measurements are made with a hot wire anemometer and subsequent checked with mass flow measurements made concurrently. All impedance measurements are made using the Two-Microphone Method. Although we have left the analysis of the data to the developers of the impedance models that simulate bias flow through perforate, our initial examination indicates that our results follow the trends consistent with published theory on impedance of perforates with a steady bias flow.

  3. Can meridionally propagating inertial waves drive an oscillating zonal mean flow?

    NASA Astrophysics Data System (ADS)

    Seelig, Torsten; Harlander, Uwe

    2015-04-01

    Zonal mean flow excitation by inertial waves is studied in analogy to mean flow excitation by gravity waves [3]. In geophysical flows that are stratified and rotating, the two classes of waves correspond to the two limiting cases: gravity waves neglect rotation, inertial waves neglect stratification. The former are more relevant for fluids like the atmosphere, where stratification is dominant, the latter for the deep oceans or planet cores, where rotation dominates. In the present study waves are suggested to propagate in the meridional plane. A hierarchy of simple analytical and numerical models is considered and the results are compared with data from a laboratory experiment. The main findings can be summarised as follows: (i) when the waves are decoupled from the mean flow they just drive a retrograde (eastward) zonal mean flow, independent of the sign of the meridional phase speed; (ii) when coupling is present and the zonal mean flow is assumed to be steady, the waves can drive vertically alternating jets, but still, in contrast to the gravity wave case, the structure is independent of the sign of the meridional phase speed; (iii) when coupling is present and time-dependent zonal mean flows are considered the waves can drive vertically and temporarily oscillating mean flows. The comparison with laboratory data from a rotating annulus experiment shows a qualitative agreement. It appears that the experiment captures the basic elements of the inertial wave mean flow coupling. The results might be relevant to understand how the Equatorial Deep Jets can be maintained against dissipation [1, 2], a process currently discussed controversially. [1] Greatbatch, R., Brandt, P., Claus, M., Didwischus, S., Fu, Y.: On the width of the equatorial deep jets. Journal of Physical Oceanography 42, 1729-1740 (2012) [2] Muench, J.E., Kunze, E.: Internal wave interactions with equatorial deep jets. Part II: Acceleration of the jets. J. Phys. Oceanogr. 30, 2099-2110 (2000) [3] Plumb

  4. Equilibrium operating performance of axial-flow turbojet engines by means of idealized analysis

    NASA Technical Reports Server (NTRS)

    Sanders, John C; Chapin, Edward C

    1950-01-01

    A method of predicting equilibrium operating performance of turbojet engines has been developed, with the assumption of simple model processes for the components. Results of the analysis are plotted in terms of dimensionless parameters comprising critical engine dimensions and over-all operating variables. This investigation was made of an engine in which the ratio of axial inlet-air velocity to compressor-tip velocity is constant, which approximates turbojet engines with axial-flow compressors. Experimental correlation of the theory with data from several existing axial-flow-type engines was good and showed close correlation between calculated and measured performance.

  5. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  6. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  7. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  8. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  9. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow...

  10. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of air flow; qualified person. 75.152 Section 75.152 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Qualified and Certified Persons § 75.152 Tests of air flow; qualified person....

  11. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  12. Mean-field diffusivities in passive scalar and magnetic transport in irrotational flows

    SciTech Connect

    Raedler, Karl-Heinz; Brandenburg, Axel; Del Sordo, Fabio; Rheinhardt, Matthias

    2011-10-15

    Certain aspects of the mean-field theory of turbulent passive scalar transport and of mean-field electrodynamics are considered with particular emphasis on aspects of compressible fluids. It is demonstrated that the total mean-field diffusivity for passive scalar transport in a compressible flow may well be smaller than the molecular diffusivity. This is in full analogy to an old finding regarding the magnetic mean-field diffusivity in an electrically conducting turbulently moving compressible fluid. These phenomena occur if the irrotational part of the motion dominates the vortical part, the Peclet or magnetic Reynolds number is not too large, and, in addition, the variation of the flow pattern is slow. For both the passive scalar and the magnetic cases several further analytical results on mean-field diffusivities and related quantities found within the second-order correlation approximation are presented, as well as numerical results obtained by the test-field method, which applies independently of this approximation. Particular attention is paid to nonlocal and noninstantaneous connections between the turbulence-caused terms and the mean fields. Two examples of irrotational flows, in which interesting phenomena in the above sense occur, are investigated in detail. In particular, it is demonstrated that the decay of a mean scalar in a compressible fluid under the influence of these flows can be much slower than without any flow, and can be strongly influenced by the so-called memory effect, that is, the fact that the relevant mean-field coefficients depend on the decay rates themselves.

  13. Coupling between entropy and unsteady heat release in a thermoacoustic system with a mean flow

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhao, Dan

    2016-11-01

    In this work, the coupling between entropy and unsteady heat release in a one dimensional duct in the presence of a mean flow is considered. As acoustic disturbances impinge on a compact heat source enclosed in the duct, entropy disturbances are generated. The transfer function between the generated entropy waves and oncoming flow velocity fluctuations is deduced by conducting order analysis of the linearized governing equations. The effects of the mean flow are emphasized for different forms of unsteady heat release model. It is shown that there is a strong coupling between entropy, heat release, mean flow and acoustic impedance at the heat source. To validate our theoretical analysis, numerical investigation is conducted by using a low order model. Comparing the theoretical and the low order model's results reveals that a good agreement is observed. It is found that when the mean flow Mach number is not negligible, the term of O(M1) in the identified entropy transfer function is as important as that of O(M0). Neglecting the term of O(M1) may lead to wrong prediction of the entropy waves produced in the system.

  14. Transmission of sound through nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Shaker, B. S.; Kaiser, J. E.

    1977-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined, circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. Although the theory is described for circular ducts, it is applicable to other duct configurations - annular, two dimensional, and rectangular. The theory is described for the linear problem, but the technique is general and has the advantage of being applicable to the nonlinear case as well as the linear case. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave. A computer program was developed. The mean flow model consists of a one dimensional flow in the core and a quarter-sine profile in the boundary layer. Results are presented for the reflection and transmission coefficients in ducts with varying slopes and carrying different mean flows.

  15. The effects of forced air flow and oxygen concentration on flammability, smoke density, and pyrolytic toxicity

    NASA Technical Reports Server (NTRS)

    Sauers, D. G.

    1976-01-01

    The question is posed whether forced air flow should be incorporated into flammability tests as a relevant variable. A test apparatus is described which permits tests to be conducted on small test specimens in a forced flow which is (continuously) variable over flow velocities from zero to 300 feet per minute (1.52 m/s). The effects of air-flow rate and oxygen concentration on flame propagation rate, maximum smoke density, and pyrolytic product toxicity were measured for a single material and were statistically evaluated. Regression analysis was used to graph the resulting relationships. It is concluded that air velocity is an important variable for laboratory flammability testing.

  16. An ion-drag air mass-flow sensor for automotive applications

    SciTech Connect

    Malaczynski, G.W.; Schroeder, T. )

    1992-04-01

    An air-flow meter, developed primarily for the measurement of intake air flow into an internal combustion engine, is described. The well-known process of corona ion deflection in a gas flow together with proper electrode geometry and a detection scheme provides the conceptual basis for a humidity-insensitive ionic air-flow sensor. Output characteristics of the sensor, such as response time and range of operation, are discussed and compared with those of a production hot-wore meter for the type that is currently used with electronic fuel injection systems.

  17. Modeling of non-equilibrium phenomena in expanding flows by means of a collisional-radiative model

    SciTech Connect

    Munafò, A.; Lani, A.; Bultel, A.; Panesi, M.

    2013-07-15

    The effects of non-equilibrium in a quasi-one-dimensional nozzle flow are investigated by means of a collisional-radiative model. The gas undergoing the expansion is an air plasma and consists of atoms, molecules, and free electrons. In the present analysis, the electronic excited states of atomic and molecular species are treated as separate pseudo-species. Rotational and vibrational energy modes are assumed to be populated according to Boltzmann distributions. The coupling between radiation and gas dynamics is accounted for, in simplified manner, by using escape factors. The flow governing equations for the steady quasi-one-dimensional flow are written in conservative form and discretized in space by means of a finite volume method. Steady-state solutions are obtained by using a fully implicit time integration scheme. The analysis of the evolution of the electronic distribution functions reveals a substantial over-population of the high-lying excited levels of atoms and molecules in correspondence of the nozzle exit. The influence of optical thickness is also studied. The results clearly demonstrate that the radiative transitions, within the optically thin approximation, drastically reduce the over-population of high-lying electronic levels.

  18. Sound transmission through a double-panel construction lined with poroelastic material in the presence of mean flow

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2013-08-01

    This paper investigates the sound transmission characteristics through a system of double-panel lined with poroelastic material in the core. The panels are surrounded by external and internal fluid media where a uniform external mean flow exists on one side. Biot's theory is used to model the porous material. Three types of constructions—bonded-bonded, bonded-unbonded and unbonded-unbonded—are considered. The effect of Mach number of the external flow on the sound transmission over a wide frequency range in a diffuse sound field is examined. External mean flow is shown to give a modest increase in transmission loss at low frequency, but a significant increase at high frequency. It is brought out that calculations based on static air on the incidence side provide a conservative estimate of sound transmission through the sandwich structure. The acoustic performance of the sandwich panel for different configurations is presented. The effect of curvature of the panel is also brought out by using shallow shell theory.

  19. Turbulent Compressible Convection with Rotation. 2; Mean Flows and Differential Rotation

    NASA Technical Reports Server (NTRS)

    Brummell, Nicholas H.; Hurlburt, Neal E.; Toomre, Juri

    1998-01-01

    The effects of rotation on turbulent, compressible convection within stellar envelopes are studied through three-dimensional numerical simulations conducted within a local f-plane model. This work seeks to understand the types of differential rotation that can be established in convective envelopes of stars like the Sun, for which recent helioseismic observations suggest an angular velocity profile with depth and latitude at variance with many theoretical predictions. This paper analyzes the mechanisms that are responsible for the mean (horizontally averaged) zonal and meridional flows that are produced by convection influenced by Coriolis forces. The compressible convection is considered for a range of Rayleigh, Taylor, and Prandtl (and thus Rossby) numbers encompassing both laminar and turbulent flow conditions under weak and strong rotational constraints. When the nonlinearities are moderate, the effects of rotation on the resulting laminar cellular convection leads to distinctive tilts of the cell boundaries away from the vertical. These yield correlations between vertical and horizontal motions that generate Reynolds stresses that can drive mean flows, interpretable as differential rotation and meridional circulations. Under more vigorous forcing, the resulting turbulent convection involves complicated and contorted fluid particle trajectories, with few clear correlations between vertical and horizontal motions, punctuated by an evolving and intricate downflow network that can extend over much of the depth of the layer. Within such networks are some coherent structures of vortical downflow that tend to align with the rotation axis. These yield a novel turbulent alignment mechanism, distinct from the laminar tilting of cellular boundaries, that can provide the principal correlated motions and thus Reynolds stresses and subsequently mean flows. The emergence of such coherent structures that can persist amidst more random motions is a characteristic of turbulence

  20. Relationship between changes of chamber mechanical parameters and mean pressure-mean flow diagrams of the left ventricle.

    PubMed

    Negroni, J A; Lascano, E C; Pichel, R H

    1988-01-01

    A theoretical relationship between mean ventricular pressure (P) and mean ventricular outflow (Q) was developed based on a model of the left ventricle with elastic-resistive properties. Using a polynomial interpolation method, a fifth-order polynomial equation for the P-Q relationship was obtained. Its coefficients are functions of end-diastolic volume (VD), heart rate (HR), contractile state (CS), diastolic elastance (ED), asymmetry (S) of the elastance function E(t), and ventricular internal resistance factor (K). Effect of changes of these parameters indicated that normal and enhanced CS relations diverge toward the P axis but have a common intercept toward the Q axis. A similar effect was obtained with increased asymmetry of E(t). Changes in VD, HR and ED produced a parallel shift of the P-Q relation. The effect of K was negligible, however, which would reduce the description of the P-Q relationship to a third-order polynomial equation. A flow-dependent deactivation component was introduced, altering the asymmetry factor S, which decreases in a linear proportion to Q. This factor shifted the pump function graph downwards. We conclude that the theoretical description of the P-Q relation we present reproduces the experimental behavior of pump function diagrams reported in the literature (changes in VD, HR, and CS) and predicts the possible behavior due to other parameter changes. PMID:3400909

  1. Relationship between changes of chamber mechanical parameters and mean pressure-mean flow diagrams of the left ventricle.

    PubMed

    Negroni, J A; Lascano, E C; Pichel, R H

    1988-01-01

    A theoretical relationship between mean ventricular pressure (P) and mean ventricular outflow (Q) was developed based on a model of the left ventricle with elastic-resistive properties. Using a polynomial interpolation method, a fifth-order polynomial equation for the P-Q relationship was obtained. Its coefficients are functions of end-diastolic volume (VD), heart rate (HR), contractile state (CS), diastolic elastance (ED), asymmetry (S) of the elastance function E(t), and ventricular internal resistance factor (K). Effect of changes of these parameters indicated that normal and enhanced CS relations diverge toward the P axis but have a common intercept toward the Q axis. A similar effect was obtained with increased asymmetry of E(t). Changes in VD, HR and ED produced a parallel shift of the P-Q relation. The effect of K was negligible, however, which would reduce the description of the P-Q relationship to a third-order polynomial equation. A flow-dependent deactivation component was introduced, altering the asymmetry factor S, which decreases in a linear proportion to Q. This factor shifted the pump function graph downwards. We conclude that the theoretical description of the P-Q relation we present reproduces the experimental behavior of pump function diagrams reported in the literature (changes in VD, HR, and CS) and predicts the possible behavior due to other parameter changes.

  2. Meaning

    NASA Astrophysics Data System (ADS)

    Harteveld, Casper

    The second world to be considered concerns Meaning. In contrast to Reality and Play, this world relates to the people, disciplines, and domains that are focused on creating a certain value. For example, if this value is about providing students knowledge about physics, it involves teachers, the learning sciences, and the domains education and physics. This level goes into the aspects and criteria that designers need to take into account from this perspective. The first aspect seems obvious when we talk of “games with a serious purpose.” They have a purpose and this needs to be elaborated on, for example in terms of what “learning objectives” it attempts to achieve. The subsequent aspect is not about what is being pursued but how. To attain a value, designers have to think about a strategy that they employ. In my case this concerned looking at the learning paradigms that have come into existence in the past century and see what they have to tell us about learning. This way, their principles can be translated into a game environment. This translation involves making the strategy concrete. Or, in other words, operationalizing the plan. This is the third aspect. In this level, I will further specifically explain how I derived requirements from each of the learning paradigms, like reflection and exploration, and how they can possibly be related to games. The fourth and final aspect is the context in which the game is going to be used. It matters who uses the game and when, where, and how the game is going to be used. When designers have looked at these aspects, they have developed a “value proposal” and the worth of it may be judged by criteria, like motivation, relevance, and transfer. But before I get to this, I first go into how we human beings are meaning creators and what role assumptions, knowledge, and ambiguity have in this. I will illustrate this with some silly jokes about doctors and Mickey Mouse, and with an illusion.

  3. A finite element algorithm for sound propagation in axisymmetric ducts containing compressible mean flow

    NASA Technical Reports Server (NTRS)

    Abrahamson, A. L.

    1977-01-01

    An accurate mathematical model for sound propagation in axisymmetric aircraft engine ducts with compressible mean flow is reported. The model is based on the usual perturbation of the basic fluid mechanics equations for small motions. Mean flow parameters are derived in the absence of fluctuating quantities and are then substituted into the equations for the acoustic quantities which were linearized by eliminating higher order terms. Mean swirl is assumed to be zero from the restriction of axisymmetry. A linear rectangular serendipity element is formulated from these equations using a Galerkin procedure and assembled in a special purpose computer program in which the matrix map for a rectangular mesh was specifically coded. Representations of the fluctuating quantities, mean quantities and coordinate transformations are isoparametric. The global matrix is solved by foreward and back substitution following an L-U decomposition with pivoting restricted internally to the blocks. Results from the model were compared with results from several alternative analyses and yielded satisfactory agreement.

  4. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-10-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterizing the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time-series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal

  5. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    NASA Astrophysics Data System (ADS)

    Whaler, K. A.; Olsen, N.; Finlay, C. C.

    2016-07-01

    Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterising the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV) is calculated as the first annual differences of these monthly means, which also removes the static crustal field. SV time series based on revised monthly means are much less scattered than those calculated from ordinary monthly means, and their variances and correlations between components are smaller. On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow that is constant over three months; such models exhibit large and rapid temporal variations. For models of this type, less complex flows achieve the same fit to the SV derived from revised monthly means than those from ordinary monthly means. However, those obtained from ordinary monthly means are able to follow excursions in SV that are likely to be external field contamination rather than core signals. Having established that we can find models that fit the data adequately, we then assess how much temporal variability is required. Previous studies have suggested that the flow is consistent with torsional oscillations (TO), solid body-like oscillations of fluid on concentric cylinders with axes aligned along the Earth's rotation axis. TO have been proposed to explain decadal

  6. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  7. Generating a Pulsatile Pulmonary Flow after Fontan Operation by Means of Computational Fluid Dynamics (CFD)

    NASA Astrophysics Data System (ADS)

    Ghoreyshi, Mostafa

    2011-03-01

    This study considers blood flow in total cavopulmonary connection (TCPC) morphology, which is created in Fontan surgical procedure in patients with single ventricle heart disease. Ordinary process of TCPC operation reduces pulmonary blood flow pulsatility; because of right ventricle being bypassed. This phenomenon causes a lot of side effects for patients. A cardiac surgeon has suggested that keeping main pulmonary artery (MPA) partially open, would increase pulmonary flow pulsations. MPA gets closed in ordinary TCPC operation. The purpose of current study is to verify the effects of keeping MPA partially open on pulmonary flow pulsations, by means of computational fluid dynamics (CFD). 3D geometry is reconstructed from CT Angiography (CTA) scan of a patient who has undergone an ordinary TCPC procedure. The stenosed MPA or pulmonary stenosis (PS) is virtually added to the original geometry. Flow field is studied in six different models in which average antegrade flow (AF) -coming through PS- increases gradually. Results show that adding AF increases flow pulsations in both pulmonary arteries. Moreover, power loss increases with respect to average AF. We conclude that adding AF is an impressive way to increase pulsations of pulmonary flow, but energy losses should be considered too.

  8. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  9. Flow properties in expansion tube with helium, argon, air, and CO2

    NASA Technical Reports Server (NTRS)

    Miller, C. G.

    1974-01-01

    Test flow velocities from 5 to 7 km/sec were generated in a 6-in. expansion tube using helium, argon, air, and CO2 test gases. Pitot pressure profiles across the flow at the test section are presented for the four test gases, and measured flow quantities are compared to computer predicted values. Comparison of predicted and measured flow quantities suggests the expansion to be near thermochemical equilibrium for all test gases and implies the existence of a totally reflected shock at the secondary diaphragm. Argon, air, and CO2 flows were observed to attenuate while traversing the acceleration section, whereas no attenuation was observed for helium.

  10. Mean Flow Velocities and Mass Transport for Equatorially-Trapped Water Waves with an Underlying Current

    NASA Astrophysics Data System (ADS)

    Henry, David; Sastre-Gomez, Silvia

    2016-04-01

    In this paper we present an analysis of the mean flow velocities, and related mass transport, which are induced by certain equatorially-trapped water waves. In particular, we examine a recently-derived exact and explicit solution to the geophysical governing equations in the {β} -plane approximation at the equator which incorporates a constant underlying current.

  11. A wave-envelope of sound propagation in nonuniform circular ducts with compressible mean flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Kaiser, J. E.; Shaker, B. S.

    1979-01-01

    An acoustic theory is developed to determine the sound transmission and attenuation through an infinite, hard-walled or lined circular duct carrying compressible, sheared, mean flows and having a variable cross section. The theory is applicable to large as well as small axial variations, as long as the mean flow does not separate. The technique is based on solving for the envelopes of the quasi-parallel acoustic modes that exist in the duct instead of solving for the actual wave, thereby reducing the computation time and the round-off error encountered in purely numerical techniques. The solution recovers the solution based on the method of multiple scales for slowly varying duct geometry. A computer program was developed based on the wave-envelope analysis for general mean flows. Results are presented for the reflection and transmission coefficients as well as the acoustic pressure distributions for a number of conditions: both straight and variable area ducts with and without liners and mean flows from very low to high subsonic speeds are considered.

  12. Magnetic material in mean-field dynamos driven by small scale helical flows

    NASA Astrophysics Data System (ADS)

    Giesecke, A.; Stefani, F.; Gerbeth, G.

    2014-07-01

    We perform kinematic simulations of dynamo action driven by a helical small scale flow of a conducting fluid in order to deduce mean-field properties of the combined induction action of small scale eddies. We examine two different flow patterns in the style of the G O Roberts flow but with a mean vertical component and with internal fixtures that are modelled by regions with vanishing flow. These fixtures represent either rods that lie in the center of individual eddies, or internal dividing walls that provide a separation of the eddies from each other. The fixtures can be made of magnetic material with a relative permeability larger than one which can alter the dynamo behavior. The investigations are motivated by the widely unknown induction effects of the forced helical flow that is used in the core of liquid sodium cooled fast reactors, and from the key role of soft iron impellers in the von-Kármán-sodium dynamo. For both examined flow configurations the consideration of magnetic material within the fluid flow causes a reduction of the critical magnetic Reynolds number of up to 25%. The development of the growth-rate in the limit of the largest achievable permeabilities suggests no further significant reduction for even larger values of the permeability. In order to study the dynamo behavior of systems that consist of tens of thousands of helical cells we resort to the mean-field dynamo theory (Krause and Rädler 1980 Mean-field Magnetohydrodynamics and Dynamo Theory (Oxford: Pergamon)) in which the action of the small scale flow is parameterized in terms of an α- and β-effect. We compute the relevant elements of the α- and the β-tensor using the so called testfield method. We find a reasonable agreement between the fully resolved models and the corresponding mean-field models for wall or rod materials in the considered range 1\\leqslant {{\\mu }_{r}}\\leqslant 20. Our results may be used for the development of global large scale models with recirculation

  13. Sound amplification at a rectangular T-junction with merging mean flows

    NASA Astrophysics Data System (ADS)

    Du, Lin; Holmberg, Andreas; Karlsson, Mikael; Åbom, Mats

    2016-04-01

    This paper reports a numerical study on the aeroacoustic response of a rectangular T-junction with merging mean flows. The primary motivation of the work is to explain the high sound amplification, recently seen experimentally, when introducing a small merging bias flow. The acoustic results are found solving the compressible Linearized Navier-Stokes Equations (LNSEs) in the frequency domain, where the base flow is first obtained using RANS with a k-ε turbulence model. The model predicts the measured scattering data well, including the amplitude and Strouhal number for the peak amplification, if the effect of eddy viscosity damping is included. It is found that the base flow changes significantly with the presence of a small bias flow. Compared to pure grazing flow a strong unstable shear layer is created in the downstream main duct starting from the T-junction trailing edge. This means that the main region of vortex-sound interaction is moved away from the junction to a downstream region much larger than the junction width. To analyze the sound amplification in this region Howe's energy corollary and the growth of acoustic density are used.

  14. The spectral link in mean-velocity profile of turbulent plane-Couette flows

    NASA Astrophysics Data System (ADS)

    Zhang, Dongrong; Gioia, Gustavo; Chakraborty, Pinaki

    2015-03-01

    In turbulent pipe and plane-Couette flows, the mean-velocity profile (MVP) represents the distribution of local mean (i.e., time-averaged) velocity on the cross section of a flow. The spectral theory of MVP in pipe flows (Gioia et al., PRL, 2010) furnishes a long-surmised link between the MVP and turbulent energy spectrum. This missing spectral link enables new physical insights into an imperfectly understood phenomenon (the MVP) by building on the well-known structure of the energy spectrum. Here we extend this theory to plane-Couette flows. Similar to pipe flows, our analysis allows us to express the MVP as a functional of the spectrum, and to relate each feature of the MVP relates to a specific spectral range: the buffer layer to the dissipative range, the log layer to the inertial range, and the wake (or the lack thereof) to the energetic range. We contrast pipe and plane-Couette flows in light of the theory.

  15. A realizable explicit algebraic Reynolds stress model for compressible turbulent flow with significant mean dilatation

    NASA Astrophysics Data System (ADS)

    Grigoriev, I. A.; Wallin, S.; Brethouwer, G.; Johansson, A. V.

    2013-10-01

    The explicit algebraic Reynolds stress model of Wallin and Johansson [J. Fluid Mech. 403, 89 (2000)] is extended to compressible and variable-density turbulent flows. This is achieved by correctly taking into account the influence of the mean dilatation on the rapid pressure-strain correlation. The resulting model is formally identical to the original model in the limit of constant density. For two-dimensional mean flows the model is analyzed and the physical root of the resulting quartic equation is identified. Using a fixed-point analysis of homogeneously sheared and strained compressible flows, we show that the new model is realizable, unlike the previous model. Application of the model together with a K - ω model to quasi one-dimensional plane nozzle flow, transcending from subsonic to supersonic regime, also demonstrates realizability. Negative "dilatational" production of turbulence kinetic energy competes with positive "incompressible" production, eventually making the total production negative during the spatial evolution of the nozzle flow. Finally, an approach to include the baroclinic effect into the dissipation equation is proposed and an algebraic model for density-velocity correlations is outlined to estimate the corrections associated with density fluctuations. All in all, the new model can become a significant tool for CFD (computational fluid dynamics) of compressible flows.

  16. Mean and Instantaneous Axial Profile Measurements in Turbulent Couette-Poiseuille Flow

    NASA Astrophysics Data System (ADS)

    Thurlow, Ernest; Klewicki, Joseph

    1996-11-01

    Physical experiments of fully developed planar turbulent Poiseuille-Couette flow have been conducted in a recirculating gas flow facility. Poiseuille flow Reynolds numbers ranged from 1,000 to 10,000 based upon the maximum velocity, U and channel width while the upper wall velocity, W was varied between U\\over W=± 0.6. Owing to the negative wall velocities, intrusive probes could not be used. Instead, instantaneous axial profile data were acquired using Molecular Tagging Velocimetry (MTV). In these experiments, biacetyl was used as the photochemical and nitrogen as the carrier gas. Profiles of the mean velocity, U axial intensity, u^' and axial gradient intensity, (partial u\\over partial y)^' are presented. Special attention is paid to exploring the effect of the mean profile curvature on the shape and magnitude of the intensity profiles. This work is supported by the U.S. Army Dugway Proving Ground.

  17. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  18. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.

  19. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. PMID:26918522

  20. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  1. Wood stove with safety forced air system

    SciTech Connect

    Erickson, A.J.; Thulman, R.D.

    1982-08-03

    A high efficiency, air-tight wood stove has a firebox with front, side, rear, top and bottom walls, primary air introducing means for admitting combustion air into the firebox, air flow means adjacent the bottom of the firebox for directing a flow of air upwardly across at least one firebox wall, at least one supplemental air inlet for diverting a portion of the air from the air flow means into the firebox, fan means for forcing air through the air flow means and through the supplemental air inlet, the size of the primary air introducing means being chosen to automatically restrict the combustion in the firebox if the fan means stops to maintain the temperature of the stove and surroundings at safe levels.

  2. Alignment of two-point statistics with respect to mean deformation field in anisotropic turbulent flows

    NASA Astrophysics Data System (ADS)

    Morshed, Khandakar; Dasi, Lakshmi

    2013-11-01

    We study the variations in two-point correlation functions and second-order structure functions in the strongly anisotropic turbulent flow past a backward facing step. Time-resolved particle image velocimetry measurements were performed in a stationary turbulent flow past a backward facing step at Reynolds numbers 13,600, 9,000, and 5,500 based on the maximum velocity and step size. Measurements revealed a strongly anisotropic large-scale flow with an intense turbulent free-shear layer downstream of the step. Comparison among local two-point correlation functions and second-order structure functions at varying locations within the measurement domain reveals a mechanistic relationship between the magnitude of mean flow deformation field and the spatial organization of the two-point statistics in 360 degrees. It is shown that the local spatial variation in rms velocity significantly induces local anisotropy at arbitrarily small length scales.

  3. Buckling instability of thin films as a means to control or enhance fluid flow within microchannel

    NASA Astrophysics Data System (ADS)

    Tavakol, Behrouz; Chawan, Aschvin; Holmes, Douglas

    2014-11-01

    Here we show that the buckling of thin, flexible plates can be used for pumping fluids, controlling the flow rate, and mixing different media within a microfluidic channel. A confined, dielectric elastomeric film buckles out of the plane when exposed to an electric field. We use an electrolytic fluid solution as the electrode to enable buckling at relatively low voltages, and to enhance the rate of deformation. When embedded in a microfluidic channel, this mechanism can be used as a microvalve that controls the flow rate, or as a micropump that alters the flow rate. A similar mechanism can be used to aid diffusion between two adjacent laminar streams and improve mixing. This novel means for dielectric actuation may improve voltage application, and the buckling microstructures may be used in variety of applications to accurately control and manipulate fluid flow in a microchannel.

  4. Mean surface temperature prediction models for broiler chickens—a study of sensible heat flow

    NASA Astrophysics Data System (ADS)

    Nascimento, Sheila Tavares; da Silva, Iran José Oliveira; Maia, Alex Sandro Campos; de Castro, Ariane Cristina; Vieira, Frederico Marcio Corrêa

    2014-03-01

    Body surface temperature can be used to evaluate thermal equilibrium in animals. The bodies of broiler chickens, like those of all birds, are partially covered by feathers. Thus, the heat flow at the boundary layer between broilers' bodies and the environment differs between feathered and featherless areas. The aim of this investigation was to use linear regression models incorporating environmental parameters and age to predict the surface temperatures of the feathered and featherless areas of broiler chickens. The trial was conducted in a climate chamber, and 576 broilers were distributed in two groups. In the first trial, 288 broilers were monitored after exposure to comfortable or stressful conditions during a 6-week rearing period. Another 288 broilers were measured under the same conditions to test the predictive power of the models. Sensible heat flow was calculated, and for the regions covered by feathers, sensible heat flow was predicted based on the estimated surface temperatures. The surface temperatures of the feathered and featherless areas can be predicted based on air, black globe or operative temperatures. According to the sensible heat flow model, the broilers' ability to maintain thermal equilibrium by convection and radiation decreased during the rearing period. Sensible heat flow estimated based on estimated surface temperatures can be used to predict animal responses to comfortable and stressful conditions.

  5. New experiment in Plane Poiseuille flow with zero mean advection velocity: observation of stationary turbulent spots

    NASA Astrophysics Data System (ADS)

    Klotz, Lukasz; Lemoult, Gregoire; Wesfreid, Jose Eduardo

    2015-11-01

    We describe a new experimental set-up which allows us to study the sub-critical transition to turbulence in a two dimensional shear flow (including plane Couette, plane Couette-Poiseuille and plane Poiseuille flows). Our facility is an extension of a classical plane Couette experiment, in which one uses a single closed loop of plastic belt to generate the opposite sign velocity at each wall of the test section. However, in our case, we use two independent closed loops of plastic belt, one at each wall of the test section. The speed of these belts may be controlled separately. That enables to set two different velocities (in value and direction) as a boundary conditions at each of two test section's walls. In addition the pressure gradient in streamwise direction can be controlled. In particular, the plane Poiseuille flow with zero mean advection velocity can be created. We characterize by PIV the basic flow for different configurations. For a plane Poiseuille flows as base flow, we were able to observe for the first time the nearly stationary turbulent spots in this flow, with structures of characteristic wavelength ~ the distance between the two plates.

  6. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  7. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  8. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  9. Measurements of mean flow and turbulence characteristics in high-Reynolds number counter-rotating Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    van Hout, R.; Katz, J.

    2011-10-01

    Particle image velocimetry was used for measuring the velocity and Reynolds stress distributions in the latitudinal plane of counter-rotating Taylor-Couette flow at high Reynolds numbers (Re). The ratio of outer to inner cylinder angular velocity, μ, varied between -10.79 and -0.68, and Rei based on the inner cylinder velocity ranged between 2635 and 40 446, substantially extending previously available data. The results were used for examining scaling trends, especially the effects of Re and μ on the mean flow and turbulence statistics. We showed that using a kind of "inner wall" scaling, μ was the primary parameter controlling the normalized profiles of mean velocity, Reynolds stresses, TKE production and dissipation rates. Re effects on the scaled profiles were much smaller. Increasing μ flattened the mean azimuthal velocity profiles in the center of the annulus, increased the radial velocity gradients near the walls, and moved the radial point at which the velocity changed sign towards the outer cylinder. The flow also became more turbulent and a log layer with increasing extent developed near the inner wall. All the Reynolds stress components, along with the TKE production and dissipation rates peaked near the inner wall. Raising μ extended the high turbulence levels deeper into the annulus. At low μ, the stabilizing effect of the outer cylinder kept the flow in the outer regions laminar. Only when the magnitude of the inner cylinder angular velocity equaled or exceeded that of the outer one, the Reynolds stresses remained significant across the entire measurement range, and started increasing also near the outer cylinder. The azimuthal energy spectra confirmed these trends and showed that the changes to turbulence levels occurred at a broad range of scales. Furthermore, for low μ, the instantaneous vorticity fields were dominated by nearly parallel, elongated, counter-rotating vorticity contours, reminiscent of inclined counter-rotating vortex pairs. At

  10. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  11. Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.

    PubMed

    Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang

    2005-01-01

    Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  12. Effects of mean flow convection, quadrupole sources and vortex shedding on airfoil overall sound pressure level

    NASA Astrophysics Data System (ADS)

    Wolf, William R.; Azevedo, João L. F.; Lele, Sanjiva K.

    2013-12-01

    This paper presents a further analysis of results of airfoil self-noise prediction obtained in the previous work using large eddy simulation and acoustic analogy. The physical mechanisms responsible for airfoil noise generation in the aerodynamic flows analyzed are a combination of turbulent and laminar boundary layers, as well as vortex shedding (VS) originated due to trailing edge bluntness. The primary interest here consists of evaluating the effects of mean flow convection, quadrupole sources and vortex shedding tonal noise on the overall sound pressure level (OASPL) of a NACA0012 airfoil at low and moderate freestream Mach numbers. The overall sound pressure level is the measured quantity which eventually would be the main concern in terms of noise generation for aircraft and wind energy companies, and regulating agencies. The Reynolds number based on the airfoil chord is fixed at Rec=408,000 for all flow configurations studied. The results demonstrate that, for moderate Mach numbers, mean flow effects and quadrupole sources considerably increase OASPL and, therefore, should be taken into account in the acoustic prediction. For a low Mach number flow with vortex shedding, it is observed that OASPL is higher when laminar boundary layer separation is the VS driving mechanism compared to trailing edge bluntness.

  13. Characterization Of Flow Stress Of Different AA6082 Alloys By Means Of Hot Torsion Test

    SciTech Connect

    Donati, Lorenzo; El Mehtedi, Mohamad

    2011-05-04

    FEM simulations are become the most powerful tools in order to optimize the different aspects of the extrusion process and an accurate flow stress definition of the alloy is a prerequisite for a reliable effectiveness of the simulation. In the paper the determination of flow stress by means of hot torsion test is initially presented and discussed: the several approximations that are usually introduced in flow stress computation are described and computed for an AA6082 alloy in order to evidence the final effect on curves shapes. The procedure for regressing the parameters of the sinhyperbolic flow stress definition is described in detailed and applied to the described results. Then four different alloys, extracted by different casting batches but all namely belonging to the 6082 class, were hot torsion tested in comparable levels of temperature and strain rate up to specimen failure. The results are analyzed and discussed in order to understand if a mean flow stress behavior can be identified for the whole material class at the different tested conditions or if specific testing conditions (chemical composition of the alloy, specimen shape, etc) influence the materials properties to a higher degree.

  14. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  15. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  16. Experimental study of a cylindrical air inlet designed on the basis of plane flows

    NASA Astrophysics Data System (ADS)

    Vnuchkov, D. A.; Zvegintsev, V. I.; Nalivaichenko, D. G.

    2014-04-01

    Results of an experimental study of a cylindrical air inlet designed for high flight speeds on the basis of plane flows are reported. For an air inlet intended for Mach number M = 4, the flow-rate characteristics at M = 2.85, 3.83, and 4.95 for angles of attack ranging from 0 to 9 degrees have been measured. The results of tests have shown that at free-stream Mach number M = 3.83, close to the design Mach number, the mass rate of the air flow captured by the air inlet was 96 % of its design value, and this rate increased to 99 % as the Mach number was increased to 4.95. At a lower, in comparison with the design value, free-stream Mach number, M = 2.85, the mass rate of the air flow captured by the inlet installed under zero angle of attack has decreased to 68 %. For all the examined Mach numbers, an increase in the angle of attack from 0 to 9 degrees resulted in an 8-14 % decrease of the mass rate of inlet-captured air flow. For comparison, numerical calculation of the air-inlet flow at Mach number M = 3.83 was performed. The obtained data were found to be in a qualitative agreement with experimental data.

  17. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  18. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  19. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  20. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  1. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  2. The mean flow and long waves induced by two-dimensional internal gravity wavepackets

    NASA Astrophysics Data System (ADS)

    van den Bremer, T. S.; Sutherland, B. R.

    2014-10-01

    Through theory supported by numerical simulations, we examine the induced local and long range response flows resulting from the momentum flux divergence associated with with a two-dimensional Boussinesq internal gravity wavepacket in a uniformly stratified ambient. Our theoretical approach performs a perturbation analysis that takes advantage of the separation of scales between waves and the amplitude envelope of a quasi-monochromatic wavepacket. We first illustrate our approach by applying it to the well-studied case of deep water surface gravity waves, showing that the induced flow, UDF, resulting from the divergence of the horizontal momentum flux is equal to the Stokes drift. For a localized surface wavepacket, UDF is itself a divergent flow and so there is the well-known non-local response manifest in the form of a deep return flow beneath the wavepacket. For horizontally periodic and vertically localized internal wavepackets, the divergent-flux induced flow, uDF, is found from consideration of the vertical gradient of the vertical flux of horizontal momentum associated with the waves. Because uDF is itself a non-divergent flow field, this accounts entirely for the wave-induced flow; there is no response flow. Our focus is upon internal wavepackets that are localized in the horizontal and vertical. We derive a formula for the divergent-flux induced flow that, as in this case of surface wavepackets, is itself a divergent flow. We show that the response is a horizontally long internal wave that translates vertically with the wavepacket at its group velocity. Scaling relationships are used to estimate the wavenumber, horizontal extent, and amplitude of this induced long wave. At higher order in perturbation theory we derive an explicit integral formula for the induced long wave. Thus, we provide validation of Bretherton's analysis of flows induced by two-dimensional internal wavepackets [F. P. Bretherton, "On the mean motion induced by gravity waves," J. Fluid

  3. Estimated Performance of Radial-Flow Exit Nozzles for Air in Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Englert, Gerald W.; Kochendorfer, Fred D.

    1959-01-01

    The thrust, boundary-layer, and heat-transfer characteristics were computed for nozzles having radial flow in the divergent part. The working medium was air in chemical equilibrium, and the boundary layer was assumed to be all turbulent. Stagnation pressure was varied from 1 to 32 atmospheres, stagnation temperature from 1000 to 6000 R, and wall temperature from 1000 to 3000 R. Design pressure ratio was varied from 5 to 320, and operating pressure ratio was varied from 0.25 to 8 times the design pressure ratio. Results were generalized independent of divergence angle and were also generalized independent of stagnation pressure in the temperature range of 1000 to 3000 R. A means of determining the aerodynamically optimum wall angle is provided.

  4. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  5. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    SciTech Connect

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  6. Air flow and particle control with different ventilation systems in a classroom.

    PubMed

    Holmberg, S; Chen, Q

    2003-06-01

    Most ventilation and air conditioning systems are designed without much concern about how settling particles behave in ventilation air flows. For displacement ventilation systems, designers normally assume that all pollutants follow the buoyant air flow into an upper zone, where they are evacuated. This is, however, not always true. Previous studies show that high concentrations of settling respirable particles can be found in the breathing zone, and that the exposure rates can be a health hazard to occupants. The emphasis here is on how ventilation systems should be designed to minimize respirable airborne particles in the breathing zone. The supply and exhaust conditions of the ventilation air flow are shown to play an important role in the control of air quality. Computer simulation programs of computational fluid dynamics (CFD) type are used. Particle concentrations, thermal conditions and modified ventilation system solutions are reported.

  7. Assessing changes in stratospheric mean age of air and fractional release using historical trace gas observations

    NASA Astrophysics Data System (ADS)

    Laube, Johannes; Bönisch, Harald; Engel, Andreas; Röckmann, Thomas; Sturges, William

    2014-05-01

    Large-scale stratospheric transport is pre-dominantly governed by the Brewer-Dobson circulation. Due to climatic change a long-term acceleration of this residual stratospheric circulation has been proposed (e.g. Austin et al.,2006). Observational evidence has revealed indications for temporary changes (e.g. Bönisch et al., 2011) but a confirmation of a significant long-term trend is missing so far (e.g. Engel et al., 2009). A different aspect is a possible long-term change in the break-down of chemically important species such as chlorofluorocarbons as proposed by Butchart et al. 2001. Recent studies show significant differences adding up to more than 20 % in the chlorine released from such compounds (Newman et al., 2007; Laube et al., 2013). We here use a data set of three long-lived trace gases, namely SF6, CF2Cl2, and N2O, as measured in whole-air samples collected during balloon and aircraft flights between 1975 and 2011, to assess changes in stratospheric transport and chemistry. For this purpose we utilise the mean stratospheric transit times (or mean ages of air) in combination with a measure of the chemical decomposition (i.e. fractional release factors). We also evaluate the influence of different trend correction methods on these quantities and explore their variability with latitude, altitude, and season. References Austin, J. & Li, F.: On the relationship between the strength of the Brewer-Dobson circulation and the age of stratospheric air, Geophys. Res. Lett., 33, L17807, 2006. Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer-Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937-3948, 2011. Butchart, N. & Scaife, A. A. Removal of chlorofluorocarbons by increased mass exchange between the stratosphere and troposphere in a changing climate. Nature, 410, 799-802, 2001. Engel, A., Möbius, T., Bönisch, H., Schmidt, U., Heinz, R., Levin, I., Atlas, E., Aoki, S., Nakazawa, T

  8. Intercooler cooling-air weight flow and pressure drop for minimum drag loss

    NASA Technical Reports Server (NTRS)

    Reuter, J George; Valerino, Michael F

    1944-01-01

    An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.

  9. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    PubMed

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  10. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  11. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  12. Development of a Low Pressure, Air Atomized Oil Burner with High Atomizer Air Flow: Progress Report FY 1997

    SciTech Connect

    Butcher, T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5-8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or ''FAB'' has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a toroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the firing rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% O{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  13. The shape, propagation and mean-flow interaction of large-scale weather systems

    NASA Technical Reports Server (NTRS)

    Hoskins, B, J.; James, I. N.; White, G. H.

    1983-01-01

    In investigations concerned with obtaining an understanding of the general circulation of the atmosphere, the determination of the role of the large-scale eddies presents a special problem. In the present study,attention is given to a theory which, in some ways, provides an extension of the Eliassen-Palm flux concept so that it can be applied in particular to the time-averaged three space dimension problem. Particular emphasis is given to the understanding of the feedback of the eddies onto the mean flow. However, the behavior of the eddies themselves is also discussed. It is shown that, in simple situations, the anisotropic eddy horizontal velocity correlation tensor implies the shape and propagation of eddies and the feedback of the eddies onto the mean flow.

  14. Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: Effect of molecular rotation

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Todd, B. D.; Daivis, Peter J.

    2008-06-01

    In this paper we investigate the spatiotemporal dynamics of a diatomic fluid undergoing zero mean oscillatory flow in a slit pore. The study is based on nonequilibrium molecular dynamics simulations together with two limiting solutions to the Navier-Stokes equations which include the effect of molecular rotation. By examining the viscoelastic properties of the system we can estimate the extent of the Newtonian regime, and a direct comparison between the molecular dynamics data and the solutions to the Navier-Stokes equations is then possible. It is found that the agreement is excellent, and that the vortex viscosity can be estimated by fitting the data obtained in the molecular dynamics simulations to the solutions to the Navier-Stokes equations. The quantitative effect of the coupling between the linear momentum and the spin angular momentum on flow is also investigated. We find that the maximum flow can be reduced up to 3 4 % due to the coupling.

  15. Is it Necessary to Consider Air Flow in Land Surface Models

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Su, Z.; Wan, L.; Wen, J.

    2011-12-01

    From a subsurface physical point of view, this paper discusses the necessity and feasibility of considering two-phase heat and mass transfer process in land surface models (LSMs). The potential-based equations of coupled mass and heat transport under constant air pressure are adopted as the basis. The proposed model is developed on this basis by considering dry air as a single phase, and including mechanical dispersion in the water vapor and dry air transfer. The adsorbed liquid flux due to thermal gradient is also taken into account. The set of equations for the two-phase heat and mass transfer is formulated fully considering diffusion, advection and dispersion. The advantage of the proposed model over the traditional equation system is discussed. The accuracy of the proposed model is assessed through comparison with analytical work for coupled mass and heat transfer and experimental work for isothermal two-phase flow (moisture/air transfer). Further investigation is carried out to elucidate how the coupled moisture and heat transfer is influenced by adding the air flow, and how the isothermal two-phase flow is affected by considering the heat flow. The importance of including the air flow in the coupled mass and heat transfer is clearly identified. Concerning the two-phase flow, the influence of heat flow is only significant if the air phase plays a significant role in solving the equations of the water phase. Based on a field experiment, the proposed model is compared with the measured soil moisture, temperature and evaporation rate, the results show clearly that it is necessary to consider the air flow mechanism for soil-atmosphere interaction studies.

  16. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    PubMed

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  17. Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer

    NASA Technical Reports Server (NTRS)

    Hilado, C. J.; Brick, V. E.; Brauer, D. P.

    1978-01-01

    A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.

  18. Effects of refraction by means flow velocity gradients on the standing wave pattern in three-dimensional, rectangular waveguides

    NASA Technical Reports Server (NTRS)

    Hersh, A. S.

    1979-01-01

    The influence of a mean vortical flow on the connection between the standing wave pattern in a rectangular three dimensional waveguide and the corresponding duct axial impedance was determined analytically. The solution was derived using a perturbation scheme valid for low mean flow Mach numbers and plane wave sound frequencies. The results show that deviations of the standing wave pattern due to refraction by the mean flow gradients are small.

  19. Student Flow and Curriculum Matrix. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Young, Michael E.; And Others

    An analytic system for determining student flow in different subject fields in order to produce departmental workload forecasts is examined. The system consists of three steps. The first step, student flow calculation, computes the relationship of enrollments by major and student level from one year to another. This calculation utilizes historical…

  20. Mean and turbulent flow development through an array of rotating elements

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2014-11-01

    The adjustment of an incoming boundary layer profile as it impacts and interacts with an array of elements has received significant attention in the context of terrestrial and aquatic canopies and more recently in the context of horizontal axis wind farms. The distance required for the mean flow profile to stabilize, the energy transport through the array, and the structure of the turbulence within the array are directly dependent upon such factors as the element height, density, rigidity/flexibility, frontal area distribution, element homogeneity, and underlying topography. In the present study, the mean and turbulent development of the flow through an array of rotating elements was examined experimentally. Element rotation has been shown to drastically alter wake dynamics of single and paired elements, but the possible extension of such rotation-driven dynamics had not previously been examined on larger groups of elements. Practically, such an array of rotating elements may provide insight into the flow dynamics of an array of vertical axis wind turbines. 2D particle image velocimetry was used along the length of the array in order to examine the effects of an increasing ratio of cylinder rotation speed to streamwise freestream velocity on flow development and structure. Work supported by a NSF Graduate Research Fellowship & Stanford Graduate Fellowship to A.E.C, by funding to J.O.D. from ONR N000141211047 and the Gordon and Betty Moore Foundation through Grant GBMF2645, and by funding from the EFML.

  1. Low-Flow Characteristics and Mean Annual Discharge of North Branch Manitowoc River at Potter, Wisconsin

    USGS Publications Warehouse

    Holmstrom, B.K.

    1976-01-01

    The low-flow characteristics presented in this report are the annual minimum 7-day mean flows at the 2-year recurrence interval and 10-year recurrence interval. They were determined just downstream from the confluence of the three streams forming the North Branch Manitowoc River and, based on natural-flow conditions, are 0.0 cubic foot per second (0.0 cubic metre per second). Observations made in October 1974 showed that the natural discharge of the three streams forming the North Branch Manitowoc River was 0.0 cubic foot per second (0.0 cubic metre per second). A discharge of 0.30 cubic foot per second (0.008 cubic metre per second) was measured in the tributary from Hilbert but this was predominantly effluent from the sewage-treatment plant and a cheese factory in Hilbert. The mean annual discharge for the North Branch Manitowoc River at Potter is 27 cubic feet per second (0.76 cubic metre per second). This was based on the estimated and recorded discharge for June 1, 1974, to May 31, 1975, for the North Branch Manitowoc River at Potter site and an adjustment based on the long-term mean annual discharge at gaging station 04086000, Sheboygan River at Sheboygan.

  2. Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe.

    PubMed

    Kirby, Ray; Denia, Francisco D

    2007-12-01

    An analytic mode matching scheme that includes higher order modes is developed for a straight-through circular dissipative silencer. Uniform mean flow is added to the central airway and a concentric perforated screen separates the mean flow from a bulk reacting porous material. Transmission loss predictions are compared with experimental measurements and good agreement is demonstrated for three different silencers. Furthermore, it is demonstrated that, when mean flow is present, the axial kinematic matching condition should equate to that chosen for the radial kinematic boundary condition over the interface between the airway and the material. Accordingly, if the radial matching conditions are continuity of pressure and displacement, then the axial matching conditions should also be continuity of pressure and displacement, rather than pressure and velocity as previously thought. When a perforated screen is present the radial pressure condition changes, but the radial kinematic condition should always remain equivalent to that chosen for the axial kinematic matching condition; here, results indicate that continuity of displacement should be retained when a perforated screen is present.

  3. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-07-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  4. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    SciTech Connect

    X. Sun; S. Kim; L. Cheng; M. Ishii; S.G. Beus

    2001-10-31

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions.

  5. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  6. Improving flow and spillage characteristics of range hoods by using an inclined air-curtain technique.

    PubMed

    Huang, Rong Fung; Nian, You-Cyun; Chen, Jia-Kun; Peng, Kuan-Lin

    2011-03-01

    The current study developed a new type of range hood, which was termed an 'inclined air-curtain range hood', in order to improve the flow and performance of the conventionally used wall-mounted range hood. The flow characteristics and oil mist spillages of air-curtain and conventional range hoods under the influences of both a mannequin presence and a simulated walk-by motion were experimentally examined. The study examined flow patterns by using a laser-light-sheet-assisted smoke-flow visualization technique and diagnosed spillages by using the tracer gas concentration test method. A mannequin presented in front of the conventional hood induced turbulent dispersion of oil mists toward the chest and nose of the mannequin owing to the complex interaction among the suction, wake, and wall effect, while the inclined air-curtain hood presented excellent hood performance by isolating the oil mists from the mannequin with an air curtain and therefore could reduce spillages out into the atmosphere and the mannequin's breathing zone. Both flow visualization and the tracer gas test indicated that the air-curtain hood had excellent 'robustness' over the conventional hood in resisting the influence of walk-by motion. The air-curtain technique could drastically improve the flow characteristics and performance of the range hood by consuming less energy.

  7. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  8. Active flow control integrated diffuser (afcid) for increased energy efficiency in variable air volume systems

    NASA Astrophysics Data System (ADS)

    Van Der Schijff, Hermanus P.

    Variable air volume (VAV) air terminals are designed to save energy by reducing airflow into a given space based on occupancy and required load. Systems are typically designed to operate at peak load, however as load is reduced, performance is compromised due to inadequate throw. As a result, fans are installed to adjust for the losses, negating many of the energy savings. Additionally flow is vectored by the use of vanes, a basic passive type of flow control. An experimental investigation was performed to study the application of flow control on that of a HVAC diffuser using synthetic jets distributed evenly along the diffuser edge parallel to the flow field. The study was conducted on a 1:3 scale typical office space (150 ft2), which included a simulated scale HVAC system supplied by compressed air. Two different jet blowing ratios were investigated for system loads of 60% and 90%. The flow field was established using hot wire anemometry and Particle Image Velocimetry (PIV). This study demonstrates the effectiveness of synthetic jet based active flow control at controlling airflow, showing ability to affect throw parameters for changing flow rates within the test chamber. Vectoring of up to 20% and improvement in jet spread of 200% was demonstrated. The use of such devices has the potential to improve air quality and air distribution in building while simultaneously lowering energy demands of HVAC systems.

  9. Wave propagation in a viscous fluid with a pipeline shear mean flow and application for ultrasonic flow meter

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-11-01

    This paper deals with the problem of wave propagation in a compressible viscous fluid confined by a rigid-walled circular pipeline in the presence of a shear mean flow. On the assumption of isentropic and axisymmetric wave propagation, the convected acoustic equations are mathematically deduced from the conservations of continuity and momentum, leading to a set of coupled second-order differential equations with respect of the acoustic pressure and velocity components in radial and axial directions. A solution based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to transform the differential equations to an infinite set of homogeneous algebraic equations, thus the wave number can be calculated due to the existence condition of a non-trivial solution. After the discussion of the method's convergence, the cut-off frequency of the wave mode is theoretically analyzed. Furthermore, wave attenuation of the first four wave modes due to fluid viscosity is numerically studied in the presence of the laminar and turbulent flow profiles. Meanwhile, the measurement performance of an ultrasonic flow meter based on the difference of downstream and upstream wave propagations is parametrically addressed.

  10. Laminar Flow Supersonic Wind Tunnel primary air injector

    NASA Technical Reports Server (NTRS)

    Smith, Brooke Edward

    1993-01-01

    This paper describes the requirements, design, and prototype testing of the flex-section and hinge seals for the Laminar Flow Supersonic Wind Tunnel Primary Injector. The supersonic atmospheric primary injector operates between Mach 1.8 and Mach 2.2 with mass-flow rates of 62 to 128 lbm/s providing the necessary pressure reduction to operate the tunnel in the desired Reynolds number (Re) range.

  11. ECS with advanced air cycle machine

    SciTech Connect

    Thomson, M.W.; Matulich, D.S.; Emerson, T.P.

    1990-11-06

    This patent describes an environmental control system for conditioning air delivered to an enclosed space operated in conjunction with a multistage turbine engine providing power for the enclosed space. It comprises: bleed air means for extracting an air flow of pressurized high temperature bleed air from the high pressure stage of the multistage turbine engine; first turbine means for directly receiving and converting latent thermal energy of the bleed air flow into rotational power; compressor means for receiving the bleed air flow from the first turbine means and for repressurizing the bleed air. The compressor means rotationally driven by the first turbine means; primary heat exchange means downstream of the compressor means for cooling the pressurized bleed air flow in heat exchange relationship with a flow of ram air; second turbine means for converting energy of the bleed air flow to rotational power and for further conditioning the bleed air flow, the second turbine means located downstream of the heat exchange means and integrally mounted to drive the compressor means; and duct means communicating with the second turbine means and the enclosed space for carrying the air flow to the enclosed space.

  12. A study on the characteristics of upward air-water two-phase flow in a large diameter pipe

    SciTech Connect

    Shen, Xiuzhong; Saito, Yasushi; Mishima, Kaichiro; Nakamura, Hideo

    2006-10-15

    An adiabatic upward co-current air-water two-phase flow in a vertical large diameter pipe (inner diameter, D: 0.2m, ratio of pipe length to diameter, L/D: 60.5) was experimentally investigated under various inlet conditions. Flow regimes were visually observed, carefully analyzed and classified into five, i.e. undisturbed bubbly, agitated bubbly, churn bubbly, churn slug and churn froth. Void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with four-sensor optical probes. Both the measured void fraction and the measured IAC demonstrated radial core-peak distributions in most of the flow regimes and radial wall peak in the undisturbed bubbly flow only. The bubble frequency also showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the radial direction in undisturbed bubbly, agitated bubbly and churn bubbly flows and showed a core-peak radial distribution in the churn slug flow due to the existence of certain amount of large and deformed bubbles in this flow regime. The measurements of interfacial direction showed that the main and the secondary bubbly flow could be displayed by the main flow peak and the secondary flow peak, respectively, in the probability density function (PDF) of the interfacial directional angle between the interfacial direction and the z-axis, {eta}{sub zi}. The local average {eta}{sub zi }at the bubble front or rear hemisphere ({eta}{sub zi}{sup F} and {eta}{sub zi}{sup R}) reflected the local bubble movement and was in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large diameter pipe quantitatively by the cross-sectional area-averaged {eta}{sub zi }at bubbly front hemisphere ({eta}{sub zi}{sup F}-bar). Bubbles in the undisturbed bubbly flow moved in a

  13. Technique for measuring air flow and carbon dioxide flux in large, open-top chambers

    SciTech Connect

    Ham, J.M.; Owensby, C.E.; Coyne, P.I.

    1993-10-01

    Open-Top Chambers (OTCs) are commonly used to evaluate the effect of CO{sub 2},O{sub 3}, and other trace gases on vegetation. This study developed and tested a new technique for measuring forced air flow and net CO{sub 2} flux from OTCs. Experiments were performed with a 4.5-m diam. OTC with a sealed floor and a specialized air delivery system. Air flow through the chamber was computed with the Bernoulli equation using measurements of the pressure differential between the air delivery ducts and the chamber interior. An independent measurement of air flow was made simultaneously to calibrate and verify the accuracy of the Bernoulli relationship. The CO{sub 2} flux density was calculated as the product of chamber air flow and the difference in CO{sub 2} concentration between the air entering and exhausting from the OTC (C{sub in}-C{sub out}). Accuracy was evaluated by releasing CO{sub 2} within the OTC at known rates. Data were collected with OTCs at ambient and elevated CO{sub 2} ({approx}700 {mu}mol{sup -1}). Results showed the Bernoulli equation, with a flow coefficient of 0.7, accurately measured air flow in the OTC within {+-}5% regardless of flow rate and air duct geometry. Experiments in ambient OTCs showed CO{sub 2} flux density ({mu}mol m{sup -2} s{sup -1}), computed from 2-min averages of air flow and C{sub in} - C{sub out,} was typically within {+-} 10% of actual flux, provided that the exit air velocity at the top of the OTC was greater than 0.6 m s{sup -1}. Obtaining the same accuracy in CO{sub 2}-enriched OTCs required a critical exit velocity near 1.2 m s{sup -1} to minimize the incursion of ambient air and prevent contamination of exit gas sample. When flux data were integrated over time to estimate daily CO{sub 2} flux ({mu}mol m{sup -2} d{sup -1}), actual and measured values agreed to within {+-}2% for both ambient and CO{sub 2}-enriched chambers, suggesting that accurate measurements of daily net C exchange are possible with this technique.

  14. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use...

  15. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use...

  16. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use...

  17. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to.... We recommend that you use a diluted exhaust flow meter that meets the specifications in Table 1 of... verification in § 1065.307 and the calibration and verifications in § 1065.340 and § 1065.341. You may use...

  18. Effects of Aspect Ratio on Air Flow at High Subsonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Lindsey, W F; Humphreys, Milton D

    1952-01-01

    Schlieren photographs were used in an investigation to determine the effects of changing the aspect ratio from infinity to 2 on the air flow past a wing at high subsonic Mach numbers. The results indicated that the decreased effects of compressibility on drag coefficients for the finite wing are produced by a reduction in the compression shock and flow separation.

  19. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  20. Measurement of interfacial structures in horizontal air-water bubbly flows

    SciTech Connect

    Talley, J. D.; Worosz, T.; Dodds, M. R.; Kim, S.

    2012-07-01

    In order to predict multi-dimensional phenomena in nuclear reactor systems, methods relying on computational fluid dynamics (CFD) codes are essential. However, to be applicable in assessing thermal-hydraulic safety, these codes must be able to accurately predict the development of two-phase flows. Therefore, before practical application these codes must be assessed using experimental databases that capture multi-dimensional phenomena. While a large database exists that can be employed to assess predictions in vertical flows, the available database for horizontal flows is significantly lacking. Therefore, the current work seeks to develop an additional database in air-water horizontal bubbly flow through a 38.1 mm ID test section with a total development length of approximately 250 diameters. The experimental conditions are chosen to cover a wide range of the bubbly flow regime based upon flow visualization using a high-speed video camera. A database of local time-averaged void fraction, bubble velocity, interfacial area concentration, and bubble Sauter mean diameter are acquired throughout the pipe cross-section using a four-sensor conductivity probe. To investigate the evolution of the flow, measurements are made at axial locations of 44, 116, and 244 diameters downstream of the inlet. In the current work, only measurements obtained at L/D = 244 are presented. It is found that increasing the liquid superficial velocity tends to reduce both the bubble size and the degree of bubble packing near the upper wall. However, it is observed that the position of the maximum void fraction value remains nearly constant and is located approximately one bubble diameter away from the upper wall. It is also found that the bubble velocity exhibits a power law behavior resembling a single phase liquid turbulent velocity profile. Moreover, the local bubble velocity tends to decrease as the local void fraction increases. Conversely, increasing the gas superficial velocity is found to

  1. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  2. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  3. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  4. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested. PMID:22293724

  5. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  6. Active Flow Control Integrated Diffuser for increased Energy Efficiency in Variable Air Volume Systems

    NASA Astrophysics Data System (ADS)

    van der Schijff, Hermanus; Menicovich, David; Vollen, Jason; Amitay, Michael

    2013-11-01

    An experimental investigation was performed to study the application of flow control on an HVAC diffuser using synthetic jets distributed evenly along the diffuser edges. The study was conducted on 1:3 scale typical office space (150 ft2) , which included a simulated scale HVAC system supplied by compressed air. Two different jet momentum coefficients were investigated for two inlet flow rates of 40 and 60 CFM. The flow field was measured using hot wire anemometry and Particle Image Velocimetry. Current Variable Air Volume HVAC systems vary the incoming airflow to adjust to changing temperature conditions in the conditioned space. However, when the air flow rate drops below ideal, air distribution becomes inefficient. This study demonstrates the effectiveness of synthetic jets at controlling the incoming airflow and the distribution in the room, showing ability to affect throw coefficient parameters for different flow rates within the test chamber. The use of such devices has the potential to improve air quality and air distribution in building while simultaneously lowering energy demands of HVAC systems.

  7. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    PubMed

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  8. On the effective hydraulic conductivity in mean vertical unsaturated steady flows

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; Santini, Alessandro

    2005-09-01

    Water flow in partially saturated heterogeneous porous formations is modelled by regarding the hydraulic parameters as stationary random space functions (RSFs). As a consequence, the flow variables are also RSFs, and we aim to develop a procedure to derive the effective hydraulic conductivity (EHC). The methodology relies on a perturbation approach which regards the variances of the hydraulic parameters as small quantities. By using the Gardner's [Gardner WR. Some steady state solutions of unsaturated moisture flow equations with application to evaporation from a water table. Soil Sci 1958;85:228-32] two-parameters ( Ks, α) model for the local unsaturated conductivity, we obtain the EHC for any dimensionality d of the flow domain, and arbitrary correlation functions of the input RSFs. Unlike previous studies [e.g. Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 1. Statistically isotropic media. Water Resour Res 1985;21;447-56, Yeh T-CJ, Gelhar J, Gutjahr A. Stochastic analysis of unsaturated flow in heterogenous soils. 2. Statistically anisotropic media with variable α. Water Resour Res 1985:21:457-64], the EHC is represented here as product between the local scale conductivity valid for a domain of mean parameters, and a correction function κ∗ which depends on the medium heterogeneity structure and the mean pressure head. Generally, the correction function κ∗ is expressed by d-fold quadrature. These quadratures are further reduced after adopting specific (i.e. exponential and Gaussian) structure for the (cross) correlation functions involved in the computation of κ∗. We have also focused on some particular formation structures which are relevant for the applications, and permit simplification of the computational aspect, as well. We investigate effects of the heterogeneity formation properties as well as the mean head on the structure of κ∗. Overall, results suggest that, given the formation statistics

  9. The Mean-Velocity Profile of Turbulent Wall-Bounded Flows:The Debate Continues

    NASA Astrophysics Data System (ADS)

    Buschmann, M.; Gad-El-Hak, M.

    2006-11-01

    The recent debate concerning the mean-velocity profile of turbulent wall-bounded flows has ruled out neither a log nor power law behavior. Furthermore, a Reynolds number dependence of the mean-velocity profile has not been excluded either. Clearly, a more complex functional form is needed to describe the profile. The generalized log law introduced by Buschmann & Gad-el-Hak in 2002 is re-examined using more recent pipe flow data from McKeon et al. (2004). The zeroth-order solution shows good agreement with the data. However, analyzing the fractional difference of that solution reveals that a previously not considered dependence on both the Reynolds number and wall-normal coordinate still persists. Progressing to the second-order solution resolves both deficits fairly well. The generalized log law is then valid throughout the profile above y^+ 100--150, in perfect agreement with the data. The Reynolds number dependence of the two main parameters, the K'arm'an constant and the outer additive constant, are predicted up to fifth order. For moderate Reynolds numbers the parameters calculated with the zeroth-order solution are very close to the values proposed by Zanoun (2003) for channel flows. However, the K'arm'an constant shows slight Reynolds number dependence, which is in excellent agreement with a function for κ proposed by Tennekes (1968).

  10. Contouring tunnel walls to achieve free-air flow over a transonic swept wing

    NASA Technical Reports Server (NTRS)

    Mateer, G. G.; Bertelrud, A.

    1983-01-01

    The effects of wind-tunnel walls on the flow over a swept wing were greatly reduced by wall contouring. Significant reductions in spanwise pressure gradients were achieved by shaping all of the walls to conform to the streamlines over the model in free air. Surface pressure and oil-flow data were used to evaluate the effects of Mach and Reynolds numbers on the design. Comparisons of these data with inviscid calculations indicate that free-air flow is established at a Mach number of 0.74 and at Reynolds numbers above 4.7 million.

  11. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  12. Phase 2: HGM air flow tests in support of HEX vane investigation

    NASA Technical Reports Server (NTRS)

    Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.

    1993-01-01

    Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4

  13. Effect of volumetric electromagnetic forces on shock wave structure of hypersonic air flow near plate

    NASA Astrophysics Data System (ADS)

    Fomichev, Vladislav; Yadrenkin, Mikhail; Shipko, Evgeny

    2016-10-01

    Summarizing of experimental studies results of the local MHD-interaction at hypersonic air flow near the plate is presented. Pulsed and radiofrequency discharge have been used for the flow ionization. It is shown that MHD-effect on the shock-wave structure of the flow is significant at test conditions. Using of MHD-interaction parameter enabled to defining characteristic modes of MHD-interaction by the force effect: weak, moderate and strong.

  14. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-04-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw , the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  15. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  16. Determination of parotid sulfate secretion in sheep by means of ultrasonic flow probes.

    PubMed

    Méot, F; Bonnet, J-M; Boivin, R; Cirio, A

    2006-05-01

    The bilateral output of sulfate in parotid saliva, the relationship with its plasma level and with parotid flow, and its variation according to feeding behavior were determined in ad libitum, normal-sulfate (0.28% DM)-fed sheep (n = 6) using a transit time ultrasonic flow meter system to measure salivary flow. Ultrasonic flow meter probes were bilaterally implanted, under general anesthesia, around parotid ducts previously fitted through their oral ends with nonobstructive sampling catheters. Salivary flows were continuously recorded during 24 h, and saliva and blood samples for sulfate determinations were obtained hourly. Jaw movements were monitored with the submandibular balloon technique. The sulfate concentration in parotid saliva (mean of the group = 4.9 +/- 3.7 microg/mL) showed high variability between sheep (individual means from 0.4 +/- 0.3 to 9.3 +/- 5.9 microg/mL) and averaged 12.3% of the more stable plasma level (41.2 +/- 8.1 microg/mL). Pronounced intraindividual variations were also evident (0.1 to 26.3 microg of sulphate/mL of parotid saliva), in strong association with the fluctuations of salivary output. In 4 sheep, a decreasing exponential relationship was observed between parotid sulfate concentration and salivary secretion rate (r2 = 0.36, P < 0.01). This fact and the absence of a relationship between sulfate levels in plasma and in saliva suggest a sulfate secretory process during the passage of primary saliva through the ductal tree of the gland. The greatest rates of bilateral salivary sulfate output were observed during feeding (14.1 +/- 14.0 microg/min) and rumination (12.7 +/- 11.0 microg/min). Nevertheless, 49% of the sulfate output in parotid saliva was present during rest, as a result of the length of the resting times. The contribution of parotid sulfate to the ruminal S pool was highly variable and averaged 13.2 mg/d, representing less than 1% of the S intake. In conclusion, the accurate, reliable, nonobstructive, and bilateral

  17. Analysis of parameters of air passing through the rain zone in a cross-flow

    NASA Astrophysics Data System (ADS)

    Dvořák, Lukáš; Čížek, Jan; Nožička, Jiří

    2015-05-01

    The research in the field of cooling towers shows that a rigorous determination of each parameter of air passing through areas with water drops is increasingly important. The transfer of heat, mass and momentum is represented, on the side of the air, as temperature and humidity increase and static pressure decrease due to the interaction between the flowing air and falling drops. The present article focuses on the description of the experimental setup allowing the measurement of these parameters on both the air and the water side, and possible ways to analyze measured values.

  18. Countercurrent Flow of Molten Glass and Air during Siphon Tests

    SciTech Connect

    Guerrero, H.N.

    2001-01-16

    Siphon tests of molten glass were performed to simulate potential drainage of a radioactive waste melter, the Defense Waste Processing Facility (DWPF) at the Savannah River Site. Glass is poured from the melter through a vertical downspout that is connected to the bottom of the melter through a riser. Large flow surges have the potential of completely filling the downspout and creating a siphon effect that has the potential for complete draining of the melter. Visual observations show the exiting glass stream starts as a single-phase pipe flow, constricting into a narrow glass stream. Then a half-spherical bubble forms at the exit of the downspout. The bubble grows, extending upwards into the downspout, while the liquid flows counter-currently to one side of the spout. Tests were performed to determine what are the spout geometry and glass properties that would be conducive to siphoning, conditions for terminating the siphon, and the total amount of glass drained.

  19. Pressure probe and hot-film probe rsponses to acoustic excitation in mean flow

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Jones, M. G.

    1986-01-01

    An experiment was conducted to compare the relative responses of a hot-film probe and a pressure probe positioned in a flow duct carrying mean flow and progressive acoustic waves. The response of each probe was compared with that of a condenser-type microphone flush mounted in the duct wall for flow Mach numbers up to about 0.5. The response of the pressure probe was less than that of the flush-mounted microphone by not more than about 2.1 dB at the highest centerline Mach number. This decreased response of the probe can likely be attributed to flow-induced impedance changes at the probe sensor orifices. The response of the hot-film probe, expressed in terms of fluctuating pressure, was greater than that of the flush-mounted microphone by as much as 6.0 dB at the two higher centerline Mach numbers. Removal of the contribution from fluctuating temperature in the hot-film analytical model greatly improved the agreement between the two transducer responses.

  20. Modeling of stagnation-line nonequilibrium flows by means of quantum based collisional models

    SciTech Connect

    Munafò, A. Magin, T. E.

    2014-09-15

    The stagnation-line flow over re-entry bodies is analyzed by means of a quantum based collisional model which accounts for dissociation and energy transfer in N{sub 2}-N interactions. The physical model is based on a kinetic database developed at NASA Ames Research Center. The reduction of the kinetic mechanism is achieved by lumping the rovibrational energy levels of the N{sub 2} molecule in energy bins. The energy bins are treated as separate species, thus allowing for non-Boltzmann distributions of their populations. The governing equations are discretized in space by means of the Finite Volume method. A fully implicit time-integration is used to obtain steady-state solutions. The results show that the population of the energy bins strongly deviate from a Boltzmann distribution close to the shock wave and across the boundary layer. The sensitivity analysis to the number of energy bins reveals that accurate estimation of flow quantities (such as chemical composition and wall heat flux) can be obtained by using only 10 energy bins. A comparison with the predictions obtained by means of conventional multi-temperature models indicates that the former can lead to an overestimation of the wall heat flux, due to an inaccurate modeling of recombination in the boundary layer.

  1. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.

    PubMed

    Geoghegan, Trudyanne S; Hageman, Kimberly J; Hewitt, Andrew J

    2014-03-01

    Pesticide volatilisation and subsequent vapour drift reduce a pesticide's efficiency and contribute to environmental contamination. High-volume air samplers (HVSs) are often used to measure pesticide concentrations in air but these samplers are expensive to purchase and require network electricity, limiting the number and type of sites where they can be deployed. The flow-through sampler (FTS) presents an opportunity to overcome these limitations. The FTS is a wind-driven passive sampler that has been developed to quantify organic contaminants in remote ecosystems. FTSs differ from other passive samplers in that they turn into the wind and use the wind to draw air through the sampling media. The main objective of this work was to evaluate the FTS in a near-field pesticide vapour drift study by comparing the concentrations of pyrimethanil in air measured using one HVS and three FTSs placed in the same location. Pyrimethanil was sprayed onto a vineyard as part of normal pest management procedures. Air samples were collected every eight hours for 48 h. The volume of air sampled by the FTSs was calculated using the measured relationship between ambient wind speed and the wind speed inside the sampler as determined with a separate wind tunnel study. The FTSs sampled 1.7 to 40.6 m(3) of air during each 8 h sampling period, depending on wind speed, whereas the mean volume sampled by the HVS was 128.7 m(3). Mean pyrimethanil concentrations ranged from 0.4 to 3.2 μg m(-3) of air. Inter-sampler reproducibility, as represented by percent relative standard deviation, for the three FTSs was ∼20%. The largest difference in FTS-derived versus HVS-derived pyrimethanil concentrations occurred during the lowest wind-speed period. During this period, it is likely that the FTS predominately acted like a traditional diffusion-based passive sampler. As indicated by both types of sampler, pyrimethanil concentrations in air changed by a factor of ∼2 during the two days after spaying

  2. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-10-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  3. Mean flow field and surface heating produced by unequal shock interactions at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Birch, S. F.; Rudy, D. H.

    1975-01-01

    Mean velocity profiles were measured in a free shear layer produced by the interaction of two unequal strength shock waves at hypersonic free-stream Mach numbers. Measurements were made over a unit Reynolds number range of 3,770,000 per meter to 17,400,000 per meter based on the flow on the high velocity side of the shear layer. The variation in measured spreading parameters with Mach number for the fully developed flows is consistent with the trend of the available zero velocity ratio data when the Mach numbers for the data given in this study are taken to be characteristic Mach numbers based on the velocity difference across the mixing layer. Surface measurements in the shear-layer attachment region of the blunt-body model indicate peak local heating and static pressure consistent with other published data. Transition Reynolds numbers were found to be significantly lower than those found in previous data.

  4. On the Mean Flow Behaviour in the Presence of Regional-Scale Surface Roughness Heterogeneity

    NASA Astrophysics Data System (ADS)

    Yang, Xiang I. A.

    2016-05-01

    A suite of large-eddy simulations of the neutral atmospheric boundary layer is conducted to study the mean flow response to the presence of surface roughness heterogeneity at regional scales (surface roughness heterogeneity on the scale of several boundary-layer heights). The roughness heterogeneity is imposed using alternating rough wall patches with numerically resolved rectangular roughness elements of different packing densities. The flow near the surface is found to adjust rapidly, reaching equilibrium conditions at distances on the order of a single inter-roughness element spacing. Despite the regional heterogeneity in surface roughness, it is often desirable to parametrize the entire rough wall using one single effective roughness height. To develop such a parametrization the model of Bou-Zeid et al. [Water Resources Research 40(2):1, 2004] is extended to incorporate the displacement height, d. Predictions from this parametrization are compared with the simulations, with reasonably good agreement.

  5. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  6. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity. PMID:20681430

  7. Gas dispersion and immobile gas volume in solid and porous particle biofilter materials at low air flow velocities.

    PubMed

    Sharma, Prabhakar; Poulsen, Tjalfe G

    2010-07-01

    Gas-phase dispersion in granular biofilter materials with a wide range of particle sizes was investigated using atmospheric air and nitrogen as tracer gases. Two types of materials were used: (1) light extended clay aggregates (LECA), consisting of highly porous particles, and (2) gravel, consisting of solid particles. LECA is a commercial material that is used for insulation, as a soil conditioner, and as a carrier material in biofilters for air cleaning. These two materials were selected to have approximately the same particle shape. Column gas transport experiments were conducted for both materials using different mean particle diameters, different particle size ranges, and different gas flow velocities. Measured breakthrough curves were modeled using the advection-dispersion equation modified for mass transfer between mobile and immobile gas phases. The results showed that gas dispersivity increased with increasing mean particle diameter for LECA but was independent of mean particle diameter for gravel. Gas dispersivity also increased with increasing particle size range for both media. Dispersivities in LECA were generally higher than for gravel. The mobile gas content in both materials increased with increasing gas flow velocity but it did not show any strong dependency on mean particle diameter or particle size range. The relative fraction of mobile gas compared with total porosity was highest for gravel and lowest for LECA likely because of its high internal porosity.

  8. Mean and turbulence structures of Couette-Poiseuille flows at different mean shear rates in a square duct

    NASA Astrophysics Data System (ADS)

    Lo, Wei; Lin, Chao-An

    2006-06-01

    Turbulent Couette-Poiseuille flows inside a square duct at bulk Reynolds number 9700 are investigated using the large eddy simulation technique. Suppression of turbulence intensities and a tendency towards rod-like axisymmetric turbulence state at the wall bisector near the moving wall are identified. The turbulence generated secondary flow is modified by the presence of the top moving wall, where the symmetric vortex pattern vanishes. The angle between the two top vortices is found to correlate with the ratio of moving wall velocity to duct bulk velocity.

  9. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  10. Gravitational tides on Jupiter. 3: Atmospheric response and mean flow acceleration

    NASA Astrophysics Data System (ADS)

    Ioannou, P. J.; Lindzen, R. S.

    1994-04-01

    The gravitational tidal response at the visible cloud level of Jupiter is obtained as a function of static stability in the planetary interior. It is suggested that confirmation of the presence of static stability in the planetary interior could be achieved by observing tidal fields at cloud level. We also calculate the mean flow acceleration induced by tidal fields and suggest that, if the interior is even marginally statically stable, the tides may provide the momentum source maintaining the alternating zonal jets observed at the cloud level of the planet.

  11. Determining the physical vulnerability of roads to debris flow by means of an expert judgement approach

    NASA Astrophysics Data System (ADS)

    Winter, M. G.; Smith, J. T.; Fotopoulou, S.; Pitlakis, K.; Mavrouli, O.-C.; Corominas, J.; Argyroudis, S.

    2012-04-01

    The physical vulnerability of roads to debris flow is expressed through fragility functions that relate flow volume to damage probabilities. Fragility relationships are essential components of quantitative risk assessments (QRA) as they allow for the estimation of risk within a consequence-based framework. To the best of the Authors' knowledge this is the first time that fragility curves have been produced in order to provide the conditional probability for a road to be in, or to exceed, a certain damage state for a given debris flow volume. Preliminary assessments were undertaken by means of a detailed questionnaire. A total of 47 returns were received from experts in 17 countries: 32% academia, 51% the commercial sector and 17% governments. Fragility curves have been defined for three damage states (limited damage, serious damage and destroyed) for each of low speed and high speed roads in order to cover the typical characteristics of roads vulnerable to debris flow. The probability of any given damage state being met or exceeded by a debris flow of a given volume (10 to 100,000m3) was derived from the mean of the responses received. Inevitably there was a degree of scatter in the results and the treatment of such variation, or 'experimental errors', was crucial to understanding the data and to developing the fragility curves. Both qualitative and quantitative methods of arriving at these preliminary fragility curves were utilised. The nature of the data is such that unless all respondents return that value the average probability at the largest flow volume cannot reach unity; as a result the upper ends of each curve were forced to unity and in order to account for larger potential volumes manual extrapolation was undertaken to 1,000,000m3. In addition to an assessment of the probabilities of given damage states being exceeded respondents to the questionnaire were polled as to their level of experience and confidence in their ability to provide a valid and

  12. Optimization of air-ejected rocket/missile geometries under validated supersonic flow field simulations

    NASA Astrophysics Data System (ADS)

    López, D.; Domínguez, D.; Gonzalo, J.

    2014-12-01

    This paper defines a methodology to carry out optimizations of rocket/missile geometries by means of krigingbased algorithms applied to simulations made with computational fluid dynamic (CFD) codes. The first part of the paper is focused on the validation of the open source CFD code against a well-studied 3-dimmensional test case in supersonic conditions. The impact of several turbulence models, different numerical schemes to discretize the equations and different mesh resolution levels have been analyzed demonstrating the performance of using wall functions for supersonic flow. Good agreements between numerical, theoretical and experimental results are obtained and some general guidelines are extracted. The best accuracy is obtained with SST k-omega turbulence model with meshes suitable for the use of wall functions in the boundary cells. Then, with this configuration for the simulations, an air-ejected rocket fairing is selected to apply a geometrical optimization. The selected method is kriging-based, where a statistical model is generated by means of several numerical experiments dependent on a certain number of design parameters; the final objective is to find the minimum drag coefficient for the model, keeping enough room inside the fairing to install the requested payload. This kriging-based method allows obtaining the samples in a parallel manner, looking for the optimum design at the generated metamodel and hence improving its accuracy adding new samples if needed.

  13. An experimental study of USB flap noise reduction through mean flow modification. [Upper Surface Blown

    NASA Technical Reports Server (NTRS)

    Joshi, M. C.; Yu, J. C.

    1979-01-01

    The effect of mean flow modification on the noise production of upper surface blown flaps has been studied experimentally. Mean velocity profile at the nozzle exit was modified from the usual 'top-hat' shape to 'Gamma' and 'L'-shaped profiles. The 'L'-modification caused noise reduction around and above the peak frequency of the 'top-hat' spectrum when compared on an equal thrust per exit area basis. Modification to 'Gamma'-shaped profile resulted in a shift of the spectrum to lower frequencies and a lower overall noise reduction. These modifications alter the development of the large scale disturbances in the upper shear layer and trailing edge wake of the wall jet geometry.

  14. The Eulerian- and Lagrangian-mean flows induced by stationary, dissipating planetary waves

    NASA Technical Reports Server (NTRS)

    Takahashi, M.; Uryu, M.

    1981-01-01

    The Eulerian- and the Lagrangian-mean flows induced by stationary, dissipating planetary waves are discussed by employing a simple channel model on a beta-plane. It is assumed that the wave is excited by the bottom undulation and dissipated by Newtonian cooling with relaxation time alpha and by Rayleigh friction with (lambda)(alpha), lambda being constant. Three cases where lambda is equal to one are discussed: (1) the basic zonal wind U sub 0 and the dissipation rate alpha are both constant; (2) U sub 0 varies with height while alpha is constant; and (3) U sub 0 and alpha both vary with height. In case (1), the Eulerian- and the Lagrangian-mean fields are shown to depend on the difference between the dissipation scale-height and the density scale-height. In case (2) and case (3), it is shown that the results for case (1) are modified under slightly more realistic situations.

  15. Minimization of temperature ranges between the top and bottom of an air flow controlling device through hybrid control in a plant factory.

    PubMed

    Moon, Seung-Mi; Kwon, Sook-Youn; Lim, Jae-Hyun

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.

  16. A miniature electro-optical air flow sensor

    NASA Technical Reports Server (NTRS)

    Kershner, D. D.

    1982-01-01

    Miniature sensors are needed for rapid and uncomplicated installation on light aircraft engaged in stability research programs. One particularly difficult sensor to miniaturize to the required degree has been a flow angle and velocity sensor for measuring the local flow ahead of a wing. However, by using an electrooptical technique it was possible to overcome the encountered difficulties and to design a sensor satisfying the requirements. The developed sensor for measuring angle-of-attack, yaw, and airspeed was shown to be suitable for rapid instrumentation of research aircraft because of its small size. The size reduction was accomplished by a design feature which eliminates the need for slip rings and wiring within the movable components of the sensor.

  17. Migration of Air Flow in Non-Fixed Saturated Porous Medium

    NASA Astrophysics Data System (ADS)

    Kong, X.; Fritz, S.; Kinzelbach, W.

    2008-12-01

    Two phase flow in porous media is of importance in a number of processes relevant in environmental engineering. The study of gas movement following injection into liquid saturated porous media is an active area of exploration for theoretical and practical reasons, e.g., in air-sparging, oil recovery, and bio-filter. A set of two-dimensional laboratory visualization experiments reveals a previously unrecognized gas-flow instability in a liquid-saturated porous medium packed by its own weight. The medium is made of crushed fused silica glass and saturated with a glycerine-water solution for refractive-index-matching. The interaction of the air flow injected at the bottom and the matrix (porous medium) structure leads to mobilization of the matrix and an instability, which causes the air channel to migrate. The instability of air-channel migration differs significantly from the gas-flow instability in a fixed matrix described in previous research. The migration of the air channel appears as a sequence of former channels collapsing and new channels opening. This process is characterized by the reorganization of the matrix, and the switching between channelized flow and pulsating slug flow. The channel migration comes to a stop after some time, leaving one thin and stable channel. The process is studied by calculating the cumulated lateral movement distance of channel and the lateral width of the area affected by the migration. A dimensionless number is defined to describe the migration. It is observed to be a function of grain size, height of bed, and air flow rate.

  18. On the compressible Hart-McClure and Sellars mean flow motions

    NASA Astrophysics Data System (ADS)

    Maicke, Brian A.; Saad, Tony; Majdalani, Joseph

    2012-09-01

    We consider the compressible flow analogue of the solution known colloquially as the Hart-McClure profile. This potential motion is used to describe the mean flow in the original energy-based combustion instability framework. In this study, we employ the axisymmetric compressible form of the potential equation for steady, inviscid, irrotational flow assuming uniform injection of a calorically perfect gas in a porous, right-cylindrical chamber. This equation is expanded to order {M}_w^4 using a Rayleigh-Janzen sequence in powers of {M}_w^2 , where Mw is the wall Mach number. At leading order, we readily recover the original Hart-McClure profile and, at {M}_w^2 , a closed-form representation of the compressible correction. By way of confirmation, the same solution is re-constructed using a novel application of the vorticity-streamfunction technique. In view of the favorable convergence properties of the Rayleigh-Janzen expansion, the resulting approximation can be relied upon from the headwall down to the sonic point and slightly beyond in a long porous tube or nozzleless chamber. As a windfall, the compressible Sellars motion that arises in the reverse flow problem driven by wall suction is deduced. Based on the simple closed-form expressions that prescribe this motion, the principal flow attributes are quantified parametrically and compared to existing incompressible and one-dimensional theories. In this effort, the local Mach number and pressure are calculated and shown to provide an improved formulation when gauged against one-dimensional theory. Our results are also compared to the two-dimensional axisymmetric solution obtained by Majdalani ["On steady rotational high speed flows: The compressible Taylor-Culick profile," Proc. R. Soc. London, Ser. A 463, 131-162 (2007), 10.1098/rspa.2006.1755]. After rescaling the axial coordinate by the critical length Ls, a parametrically-free form is obtained that is essentially independent of the Mach number. This behavior

  19. Control of low Reynolds number flows by means of fluid-structure interactions

    NASA Astrophysics Data System (ADS)

    Gursul, I.; Cleaver, D. J.; Wang, Z.

    2014-01-01

    There is great interest in small aircraft known as Micro Air Vehicles and mini Unmanned Air Vehicles due to the wide range of possible applications. This article reviews recent work that aims to exploit the flexibility of the wing structure in order to increase lift and thrust, and delay stall. Wing flexibility has often been considered to be unwanted for large conventional aircraft and measures are taken to limit the deformation. In contrast, very small aircraft flying at low speeds are not necessarily subject to the same limitation. This approach is only applicable to small aircraft because the frequencies of the wing structure and fluid flow instabilities are close to each other. Consequently, small amplitude and high-frequency motions will be considered. We first start with rigid airfoils and wings in forced plunging motion, which mimics the bending oscillations. The main advantage of this approach is the freedom to vary the frequency within a wide range. Two mechanisms of high-lift production on the oscillating rigid airfoils are discussed. In the first one, leading-edge vortex dynamics and different modes of vortex topology play an important role on the time-averaged lift and thrust at post-stall angles of attack. Existence of optimal frequencies and amplitudes are demonstrated, and their relation to other phenomena is discussed. In the second mechanism of high-lift, trailing-edge vortex dynamics leads to bifurcated/asymmetric flows at pre-stall angles of attack. Deflected wakes can lead to time-averaged lift coefficients higher than those for the first mechanism. Some aspects of lift enhancement can be sensitive to the airfoil shape. For three-dimensional finite wings, lift enhancement due to the leading-edge vortices and existence of optimal frequencies are similar to the two-dimensional case. Vortex dynamics of the leading-edge vortex and tip vortex is discussed in detail. Leading-edge sweep is shown to be beneficial in the reattachment of the separated

  20. High-precision measurements of mercury vapor in air: Design of a six-port-manifold mass flow controller system and evaluation of mass flow errors at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Hyun; Lindberg, Steven E.

    1994-03-01

    We constructed an atmospheric sampling system for Hg vapor that utilizes a single vacuum pump connected via a manifold to six separate mass flow controllers (MFC). The manifold system reduces the size and power requirements for collection of replicate samples, is ideally suited for use on meteorological towers, and achieves the precise control of air-sampling volumes required for computing air/surface exchange rates from concentration gradients of Hg vapor. In testing our air sampling systems, we found consistent calibration errors between the manufacturer's calibrations and a standard bubble flow meter. Errors as high as 30% decreased systematically with increasing flow rate to values of 3-5% at near-maximum flow. The relative error patterns established between adjacent MFC units in each system were found to be relatively stable over time. Using gold-coated sand amalgamation traps for Hg vapor and the flow correction factors computed from our calibrations, we routinely achieve precision for replicate measurements of Hg vapor in background air of 0.5-2% (expressed as relative standard errors of mean concentrations of 1.5-3.5 ng/m3). Application of the flow correction factors measurably decreases the level of bias between mean concentrations of Hg vapor measured with adjacent sampling systems and is necessary to reduce uncertainty associated with quantifying gradients in atmospheric concentrations.

  1. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  2. Mean arterial pressure change associated with cerebral blood flow in healthy older adults.

    PubMed

    Deverdun, Jeremy; Akbaraly, Tasnime N; Charroud, Celine; Abdennour, Meriem; Brickman, Adam M; Chemouny, Stephane; Steffener, Jason; Portet, Florence; Bonafe, Alain; Stern, Yaakov; Ritchie, Karen; Molino, François; Le Bars, Emmanuelle; Menjot de Champfleur, Nicolas

    2016-10-01

    We investigate over a 12-year period the association between regional cerebral blood flow (CBF) and cardiovascular risk factors in a prospective cohort of healthy older adults (81.96 ± 3.82 year-old) from the Cognitive REServe and Clinical ENDOphenotype (CRESCENDO) study. Cardiovascular risk factors were measured over 12 years, and gray matter CBF was measured at the end of the study from high-resolution magnetic resonance imaging using arterial spin labeling. The association between cardiovascular risk factors, their long-term change, and CBF was assessed using multivariate linear regression models. Women were observed to have higher CBF than men (p < 0.05). Increased mean arterial pressure (MAP) over the 12-year period was correlated with a low cerebral blood flow (p < 0.05, R(2) = 0.21), whereas no association was detected between CBF and MAP at the time of imaging. High levels of glycemia tended to be associated with low cerebral blood flow values (p < 0.05). Age, alcohol consumption, smoking status, body mass index, history of cardiovascular disease, and hypertension were not associated with CBF. Our main result suggests that change in MAP is the most significant predictor of future CBF in older adults.

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. Flow characteristics of an inclined air-curtain range hood in a draft.

    PubMed

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  5. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  6. Regional analysis of the mean annual maximum peak flow in South West Europe

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Thomas; Cooper, David

    2010-05-01

    The work reported here is a pilot study carried out as part of the EU FP7 project Mirage, and aims to derive flood frequency relationships for temporary rivers in the Mediterranean region. Regional studies of flood characteristics are often limited to national, or even sub-national, regions. Reasons for these spatially limited studies are manifold, but include: lack of international co-operation, difficulties in getting access to hydrometric data from other countries, and inconsistencies in national datasets for deriving catchment characteristics. As part of this study, preliminary regional datasets from south-west Europe of flood statistics and relevant catchment descriptors have been derived. The annual maximum peak flow data have been obtained from the UNESCO/FRIEND project and includes 381 time series of daily river flow from Portugal, Spain and southern France. Note that a majority of these data comes from perennial rivers. The catchment descriptors including catchment area, mean annual rainfall, soil properties and land-use characteristics. These characteristics have been derived from pan-European dataset including the SRTM (90m) dtm, gridded precipitation data from CRU (18km), the JRC soil database (1km) and CORINE land-cover data (250m). The logarithm of the mean annual maximum peak flow (QBAR) has been linked to a subset of log-transformed catchment descriptors using a linear regression-type model, including correlation in both observations and regression model errors. The existence of model error correlation suggests that the data contains more between-catchment variation in QBAR than can be explained by the catchment descriptors alone. Thus, further research is needed to identify additional explanatory variables with the potential to be made available on a pan-European scale.

  7. Mean Ages of Stratospheric Air Derived From in Situ Observations of CO2, CH4, and N2O

    NASA Technical Reports Server (NTRS)

    Andrews, A. E.; Boering, K. A.; Daube, B. C.; Wofsy, S. C.; Loewenstein, M.; Jost, H.; Podolske, J. R.; Webster, C. R.; Herman, R. L.; Scott, D. C.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Accurate mean ages for stratospheric air have been derived from a spatially and temporally comprehensive set of in situ observations of CO2, CH4, and N2O obtained from 1992 to 1998 from the NASA ER-2 aircraft and balloon flights. Errors associated with the tropospheric CO2 seasonal cycle and interannual variations in the CO2 growth rate are less than 0.5 year throughout the stratosphere and less than 0.3 year for air older than 2 years (N2O less than 275 ppbv), indicating that the age spectra are broad enough to attenuate these influences over the time period covered by these observations. The distribution of mean age with latitude and altitude provides detailed, quantitative information about the general circulation of the stratosphere. At 20 km, sharp meridional gradients in the mean age are observed across the subtropics. Between 20 and 30 km, the average difference in mean age between the tropics and midlatitudes is approximately 2 years, with slightly smaller differences at higher and lower altitudes. The mean age in the midlatitude middle stratosphere (approx. 25-32 km) is relatively constant with respect to altitude at 5 plus or minus 0.5 years. Comparison with earlier balloon observations of CO2 dating back to the 1970s indicates that the mean age of air in this region has remained within 11 year of its current value over the last 25 years. A climatology of mean age is derived from the observed compact relationship between mean age and N2O. These characteristics of the distribution of mean age in the stratosphere will serve as critically needed diagnostics for models of stratospheric transport.

  8. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  9. Effects of external and gap mean flows on sound transmission through a double-wall sandwich panel

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Sebastian, Alexis

    2015-05-01

    This paper studies analytically the effects of an external mean flow and an internal gap mean flow on sound transmission through a double-wall sandwich panel lined with poroelastic materials. Biot's theory is employed to describe wave propagation in poroelastic materials, and the transfer matrix method with three types of boundary conditions is applied to solve the system simultaneously. The random incidence transmission loss in a diffuse field is calculated numerically, and the limiting angle of incidence due to total internal reflection is discussed in detail. The numerical predictions suggest that the sound insulation performance of such a double-wall panel is enhanced considerably by both external and gap mean flows particularly in the high-frequency range. Similar effects on transmission loss are observed for the two mean flows. It is shown that the effect of the gap mean flow depends on flow velocity, flow direction, gap depth and fluid properties and also that the fluid properties within the gap appear to influence the transmission loss more effectively than the gap flow. Despite the implementation difficulty in practice, an internal gap flow provides more design space for tuning the sound insulation performance of a double-wall sandwich panel and has great potential for active/passive noise control.

  10. Unsteady Analysis of Turbine Main Flow Coupled with Secondary Air Flow

    NASA Technical Reports Server (NTRS)

    Hah, Chunill

    2006-01-01

    Two numerical approaches are used to model the interaction between the turbine main gas flow and the wheelspace cavity seal flow. The 3-D, unsteady Reynolds-averaged Navier-Stokes equations are solved with a CFD code based on a structured grid to study the interaction between the turbine main gas flow and the wheelspace cavity seal flow. A CFD code based on an unstructured grid is used to solve detailed flow feature in the cavity seal which has a complex geometry. The numerical results confirm various observations from earlier experimental studies under similar flow conditions. When the flow rate through the rim cavity seal is increased, the ingestion of the main turbine flow into the rim seal area decreases drastically. However, a small amount of main gas flow is ingested to the rim seal area even with very high level of seal flow rate. This is due to the complex nature of 3-D, unsteady flow interaction near the hub of the turbine stage.

  11. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  12. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  13. The study of droplet-laden turbulent air-flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg A.; Troitskaya, Yuliya I.; Zilitinkevich, Sergej S.

    2016-04-01

    their inertia are important and influence droplets dynamics and spatial distribution and their impact on the carrier air-flow. The results show that droplets, whose settling velocity is of the order of the air friction velocity, accumulate preferentially in the vicinity of the water surface, in the viscous sublayer and buffer regions of the boundary layer. Under the influence of droplets turbulent wind stress is reduced and mean wind velocity is increased as compared to the droplet-free case. These effects become more pronounced for larger droplet mass fractions and smaller surface-wave slopes. This work is supported by RFBR (Nos. 14-05-00367, 14-05-91767, 15-35-20953, 16-55-52025, 16-05-00839) and by the Russian Science Foundation (Nos. 14-17-00667, 15-17-20009).

  14. Numerical analysis of air-flow and temperature field in a passenger car compartment

    NASA Astrophysics Data System (ADS)

    Kamar, Haslinda Mohamed; Kamsah, Nazri; Mohammad Nor, Ahmad Miski

    2012-06-01

    This paper presents a numerical study on the temperature field inside a passenger's compartment of a Proton Wira saloon car using computational fluid dynamics (CFD) method. The main goal is to investigate the effects of different glazing types applied onto the front and rear windscreens of the car on the distribution of air-temperature inside the passenger compartment in the steady-state conditions. The air-flow condition in the passenger's compartment is also investigated. Fluent CFD software was used to develop a three-dimensional symmetrical model of the passenger's compartment. Simplified representations of the driver and one rear passenger were incorporated into the CFD model of the passenger's compartment. Two types of glazing were considered namely clear insulated laminated tint (CIL) with a shading coefficient of 0.78 and green insulated laminate tint (GIL) with a shading coefficient of 0.5. Results of the CFD analysis were compared with those obtained when the windscreens are made up of clear glass having a shading coefficient of 0.86. Results of the CFD analysis show that for a given glazing material, the temperature of the air around the driver is slightly lower than the air around the rear passenger. Also, the use of GIL glazing material on both the front and rear windscreens significantly reduces the air temperature inside the passenger's compartment of the car. This contributes to a better thermal comfort condition to the occupants. Swirling air flow condition occurs in the passenger compartment. The air-flow intensity and velocity are higher along the side wall of the passenger's compartment compared to that along the middle section of the compartment. It was also found that the use of glazing materials on both the front and rear windscreen has no significant effects on the air-flow condition inside the passenger's compartment of the car.

  15. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  16. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  17. Flow over a backward-facing step: Mean separation bubble and evolution of coherent structures

    NASA Astrophysics Data System (ADS)

    Nadge, Pankaj; Govardhan, Raghuraman

    2013-11-01

    We present PIV measurements downstream of a backward-facing step at large step based Reynolds numbers. The structure of the mean separation bubble is mapped in detail, and the effect of Reynolds number and expansion ratio (ER) on it is studied; the ER being the primary geometrical parameter for this configuration. These measurements show that there exists a mean separation bubble structure that is nearly independent of ER at large Re. Further, these measurements permit evaluation of the forces acting on the mean separation bubble in the streamwise direction due to the Reynolds stresses. Towards understanding the coherent structures in the flow downstream of the step, time-resolved PIV measurements have been performed in a plane parallel to the lower wall. These show the presence of counter-rotating vortical structures, which may be thought of as signatures of three-dimensional hairpin-like structures. These counter-rotating pairs are observed to evolve as they convect downstream. Conditional averaging of these counter-rotating structures show that their length-scale increases with streamwise distance. Details about these structures and their evolution will be presented at the conference.

  18. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  19. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  20. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  1. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  2. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  3. Experimental studies of active and passive flow control techniques applied in a twin air-intake.

    PubMed

    Paul, Akshoy Ranjan; Joshi, Shrey; Jindal, Aman; Maurya, Shivam P; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.

  4. Hydrogeology and simulation of ground-water flow at Dover Air Force Base, Delaware

    USGS Publications Warehouse

    Hinaman, Kurt C.; Tenbus, Frederick J.

    2000-01-01

    , water drains off these highs and the vertical gradients decrease. At the south end of Dover Air Force Base, hydrographs of water levels in the Frederica aquifer show that off-Base pumping can cause the water levels to decline below sea level during part of the year.A 4-layer, steady-state numerical model of ground-water flow was developed for Dover Air Force Base and the surrounding area. The upper two layers represent the upper and lower surficial aquifers, which are in the Columbia Formation. In some areas of the model, a semi-confining unit is used to represent an intermittent clay layer between the upper and lower surficial aquifer. This semi-confining unit causes the local groundwater highs in the surficial aquifer. The third model layer represents the upper part of the Calvert Formation, a confining unit. The fourth model layer represents the Frederica aquifer. The model was calibrated to hydraulic heads and to ground-water discharge in Pipe Elm Branch, both of which were measured in September 1997. For the calibrated model, the root-mean-squared errors for the hydraulic heads and the ground-water discharge in the Pipe Elm Branch were 9 percent of the range of head and 3 percent of discharge, respectively. Heads simulated by use of the model were consistent with a map showing average water levels in the region. The U.S. Geological Survey?s MODPATH program was used to simulate ground-water-flow directions for several areas on the Base. This analysis showed the effects of the local groundwater highs. In these areas, ground water can flow from the highs and then dramatically change flow direction as it enters the lower surficial aquifer. The steady-state model has several limitations. The entire ground-water system is under transient hydraulic conditions, due mainly to seasonal and yearly changes in recharge and to withdrawal from irrigation wells. Yet this steady-state model is still considered to be an effective tool for understanding the ground-water-flow system u

  5. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  6. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  7. Experimental investigation of the magnetohydrodynamic parachute effect in a hypersonic air flow

    NASA Astrophysics Data System (ADS)

    Fomichev, V. P.; Yadrenkin, M. A.

    2013-01-01

    New data on experimental implementation of the magnetohydrodynamic (MHD) parachute configuration in an air flow with Mach number M = 6 about a flat plate are considered. It is shown that MHD interaction near a flat plate may transform an attached oblique shock wave into a normal detached one, which considerably extends the area of body-incoming flow interaction. This effect can be employed in optimizing return space vehicle deceleration conditions in the upper atmosphere.

  8. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  9. Analysis of the Interactions of Planetary Waves with the Mean Flow of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Newman, Paul A.

    2007-01-01

    During the winter period, large scale waves (planetary waves) are observed to propagate from the troposphere into the stratosphere. Such wave events have been recognized since the 1 950s. The very largest wave events result in major stratospheric warmings. These large scale wave events have typical durations of a few days to 2 weeks. The wave events deposit easterly momentum in the stratosphere, decelerating the polar night jet and warming the polar region. In this presentation we show the typical characteristics of these events via a compositing analysis. We will show the typical periods and scales of motion and the associated decelerations and warmings. We will illustrate some of the differences between major and minor warming wave events. We will further illustrate the feedback by the mean flow on subsequent wave events.

  10. A mode matching method for modeling dissipative silencers lined with poroelastic materials and containing mean flow.

    PubMed

    Nennig, Benoit; Perrey-Debain, Emmanuel; Ben Tahar, Mabrouk

    2010-12-01

    A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.

  11. Annual variation of deseasonalized mean flow acceleration in the equatorial lower stratosphere

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.

    1990-01-01

    The quasi-biennial oscillation (QBO) in the equatorial lower stratosphere appears to be influenced by the seasonal cycle, as phase transitions at 50 mb occur primarily in the northern spring/summer season (April-August). Descent of east wind regimes varies widely from one QBO cycle to another. Most of this variation occurs because easterly shears slow down or 'stall' in their descent sometime between July and February. Minimum mean flow accelerations at 50 mb occur in the northern winter season, slightly before the annual minimum in equatorial tropopause temperature. Although a weak effect of the semiannual oscillation can be detected near 10 mb, the seasonal effect over most of the QBO region is annual. The seasonal cycle apparently modulates the onset of QBO phases, and slightly enhances the ability to predict the QBO, but is of insufficient strength or consistency to exactly synchronize the quasi-biennial oscillation with the seasonal cycle.

  12. Primary ciliary dyskinesia assessment by means of optical flow analysis of phase-contrast microscopy images.

    PubMed

    Parrilla, Eduardo; Armengot, Miguel; Mata, Manuel; Sánchez-Vílchez, José Manuel; Cortijo, Julio; Hueso, José L; Riera, Jaime; Moratal, David

    2014-04-01

    Primary ciliary dyskinesia implies cilia with defective or total absence of motility, which may result in sinusitis, chronic bronchitis, bronchiectasis and male infertility. Diagnosis can be difficult and is based on an abnormal ciliary beat frequency (CBF) and beat pattern. In this paper, we present a method to determine CBF of isolated cells through the analysis of phase-contrast microscopy images, estimating cilia motion by means of an optical flow algorithm. After having analyzed 28 image sequences (14 with a normal beat pattern and 14 with a dyskinetic pattern), the normal group presented a CBF of 5.2 ± 1.6 Hz, while the dyskinetic patients presented a 1.9 ± 0.9 Hz CBF. The cutoff value to classify a dyskinetic specimen was set to 3.45 Hz (sensitivity 0.86, specificity 0.93). The presented methodology has provided excellent results to objectively diagnose PCD. PMID:24438822

  13. Self-Consistent Multiscale Theory of Internal Wave, Mean-Flow Interactions

    SciTech Connect

    Holm, D.D.; Aceves, A.; Allen, J.S.; Alber, M.; Camassa, R.; Cendra, H.; Chen, S.; Duan, J.; Fabijonas, B.; Foias, C.; Fringer, O.; Gent, P.R.; Jordan, R.; Kouranbaeva, S.; Kovacic, G.; Levermore, C.D.; Lythe, G.; Lifschitz, A.; Marsden, J.E.; Margolin, L.; Newberger, P.; Olson, E.; Ratiu, T.; Shkoller, S.; Timofeyev, I.; Titi, E.S.; Wynn, S.

    1999-06-03

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The research reported here produced new effective ways to solve multiscale problems in nonlinear fluid dynamics, such as turbulent flow and global ocean circulation. This was accomplished by first developing new methods for averaging over random or rapidly varying phases in nonlinear systems at multiple scales. We then used these methods to derive new equations for analyzing the mean behavior of fluctuation processes coupled self consistently to nonlinear fluid dynamics. This project extends a technology base relevant to a variety of multiscale problems in fluid dynamics of interest to the Laboratory and applies this technology to those problems. The project's theoretical and mathematical developments also help advance our understanding of the scientific principles underlying the control of complex behavior in fluid dynamical systems with strong spatial and temporal internal variability.

  14. Eliminating primary air axial flow fan stall at the D. B. Wilson station

    SciTech Connect

    Studley, B.C. ); Schmidt, E. ); Foreman, J.D. )

    1990-01-01

    Having originally chosen two axial flow primary air fans operating in parallel to deliver pulverized coal to this 440 Mw facility because of their high efficiencies and precise flow control, a program for first controlling and then eliminating fan stall was undertaken. An axial flow fan stalls when air flow separation occurs around the blades. This results in heavy turbulence with the fan no longer operating on its normal performance curve and consequently a rapid decrease in both pressure and flow is experienced. In addition, this condition results in high vibration which over time can be destructive to the fan. The immediate effect is obviously a sudden decrease in fuel flow followed b y both steam flow and electrical output. Although fan stall is a potential drawback of axial flow fans, the program implemented, which is described in this paper, has been successful at first controlling and recently eliminating fan stall all together. This was possible through an extensive test program and finally the installation of anti-stall rings on both fans. The net result of this operating improvement has been improved availability, reliability and capacity, in addition to higher fan discharge pressures as the anti-stall rings have modified the pressure-versus-volume curves of the fan similar to the characteristics of a cof a centrifugal fan.

  15. Evolution of a dynamic suspension created by the invasion of an air flow in a granular bed

    NASA Astrophysics Data System (ADS)

    Homan, Tess; Vidal, Valerie; Joubaud, Sylvain

    2014-11-01

    We experimentally investigate the behavior of an immersed granular bed when perturbed by an air inflow from a single inlet at the bottom of a 2D cell. In particular, we focus on quasi-suspensions, meaning that the grains are slightly heavier than the fluid. We observe the creation of a dynamic suspension. We characterize the evolution of the local packing fraction, the percentage of particles mixed in the dynamic suspension and the shape of the ``dead zone,'' i.e. a region where the grains remain motionless. In particular, we study the influence of the air flow-rate or injection pressure. We complement the study by considering the effect of the density difference between the grains and the fluid, the initial height of the fluid or the height of the bed.

  16. Metal-air cells comprising collapsible foam members and means for minimizing internal pressure buildup

    NASA Technical Reports Server (NTRS)

    Woodruff, Glenn (Inventor); Putt, Ronald A. (Inventor)

    1994-01-01

    This invention provides a prismatic zinc-air cell including, in general, a prismatic container having therein an air cathode, a separator and a zinc anode. The container has one or more oxygen access openings, and the air cathode is disposed in the container in gaseous communication with the oxygen access openings so as to allow access of oxygen to the cathode. The separator has a first side in electrolytic communication with the air cathode and a second side in electrolytic communication with the zinc anode. The separator isolates the cathode and the zinc anode from direct electrical contact and allows passage of electrolyte therebetween. An expansion chamber adjacent to the zinc anode is provided which accommodates expansion of the zinc anode during discharge of the cell. A suitable collapsible foam member generally occupies the expansion space, providing sufficient resistance tending to oppose movement of the zinc anode away from the separator while collapsing upon expansion of the zinc anode during discharge of the cell. One or more vent openings disposed in the container are in gaseous communication with the expansion space, functioning to satisfactorily minimize the pressure buildup within the container by venting gasses expelled as the foam collapses during cell discharge.

  17. Emission of Sound from Turbulence Convected by a Parallel Mean Flow in the Presence of a Confining Duct

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Leib, Stewart J.

    1999-01-01

    An approximate method for calculating the noise generated by a turbulent flow within a semi-infinite duct of arbitrary cross section is developed. It is based on a previously derived high-frequency solution to Lilley's equation, which describes the sound propagation in a transversely-sheared mean flow. The source term is simplified by assuming the turbulence to be axisymmetric about the mean flow direction. Numerical results are presented for the special case of a ring source in a circular duct with an axisymmetric mean flow. They show that the internally generated noise is suppressed at sufficiently large upstream angles in a hard walled duct, and that acoustic liners can significantly reduce the sound radiated in both the upstream and downstream regions, depending upon the source location and Mach number of the flow.

  18. Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.

    PubMed

    Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad

    2015-08-01

    An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments. PMID:26241787

  19. Method and apparatus for simultaneous determination of fluid mass flow rate, mean velocity and density

    DOEpatents

    Hamel, William R.

    1984-01-01

    This invention relates to a new method and new apparatus for determining fluid mass flowrate and density. In one aspect of the invention, the fluid is passed through a straight cantilevered tube in which transient oscillation has been induced, thus generating Coriolis damping forces on the tube. The decay rate and frequency of the resulting damped oscillation are measured, and the fluid mass flowrate and density are determined therefrom. In another aspect of the invention, the fluid is passed through the cantilevered tube while an electrically powered device imparts steady-state harmonic excitation to the tube. This generates Coriolis tube-damping forces which are dependent on the mass flowrate of the fluid. Means are provided to respond to incipient flow-induced changes in the amplitude of vibration by changing the power input to the excitation device as required to sustain the original amplitude of vibration. The fluid mass flowrate and density are determined from the required change in power input. The invention provides stable, rapid, and accurate measurements. It does not require bending of the fluid flow.

  20. Tactile soft-sparse mean fluid-flow imaging with a robotic whisker array.

    PubMed

    Tuna, Cagdas; Jones, Douglas L; Kamalabadi, Farzad

    2015-08-04

    An array of whiskers is critical to many mammals to survive in their environment. However, current engineered systems generally employ vision, radar or sonar to explore the surroundings, not having sufficiently benefited from tactile perception. Inspired by the whisking animals, we present here a novel tomography-based tactile fluid-flow imaging technique for the reconstruction of surroundings with an artificial whisker array. The moment sensed at the whisker base is the weighted integral of the drag force per length, which is proportional to the relative velocity squared on a whisker segment. We demonstrate that the 2D cross-sectional mean fluid-flow velocity-field can be successfully mapped out by collecting moment measurements at different angular positions with the whisker array. We use a regularized version of the FOCal underdetermined system solver algorithm with a smoothness constraint to obtain soft-sparse static estimates of the 2D cross-sectional velocity-squared distribution. This new proposed approach has the strong potential to be an alternative environmental sensing technology, particularly in dark or murky environments.

  1. Mean circulation and high-frequency flow amplification in the Sable Gully

    NASA Astrophysics Data System (ADS)

    Greenan, Blair J. W.; Petrie, Brian D.; Cardoso, Diana A.

    2014-06-01

    The Sable Gully, a broad, shelf break submarine canyon approximately 40 km east of Sable Island on the eastern Scotian Shelf, separates Banquereau and Sable Island Banks. Unique among canyons on the eastern Canadian continental shelf because of its depth, steep slopes and extension far onto the shelf, its ecological significance and increasing human pressures led to its designation in 2004 under Canada's Oceans Act as the first Marine Protected Area (MPA) in the Atlantic Region. To improve the state of knowledge of the Gully MPA, a multi-disciplinary field program was carried out in 2006-07; the physical oceanographic component consisted of the deployment (April 2006) and recovery (August 2007) of four current meter moorings and CTD surveys. Analysis of this 16-month mooring deployment demonstrates that the mean circulation above the canyon rim (~200 m) is characterized by a southwestward flow that appears unaffected by the canyon topography. There is also some indication of the existence of an eddy at rim depth. Below 500 m, the circulation is dominated by an upcanyon flow (of order 0.02 m s-1) at the mooring array (halfway between the canyon head and mouth). The mean, 200 m-bottom transport towards the head of the Gully was estimated as 35,500 m3 s-1, implying an upwelling velocity of 1.7×10-4 m s-1 (14 m d-1) over the area. Results also show bottom-intensified tidal flows and non-linear constituents due to the interaction of K1, O1, M2 and S2 components along the thalweg of the canyon; the strong overtides and compound tides observed in the Gully make it unique among canyons. Further analyses provide evidence of enhanced mixing in the Gully (Kv~180×10-4 m2 s-1), which is approximately 20 times that observed on the adjoining Scotian Shelf. Total variance of the currents in the Gully is about 2.5 times greater than that observed on the nearby continental slope with an equivalent water depth.

  2. Improved global prediction of 300 nautical mile mean free air anomalies

    NASA Technical Reports Server (NTRS)

    Cruz, J. Y.

    1982-01-01

    Current procedures used for the global prediction of 300nm mean anomalies starting from known values of 1 deg by 1 deg mean anomalies yield unreasonable prediction results when applied to 300nm blocks which have a rapidly varying gravity anomaly field and which contain relatively few observed 60nm blocks. Improvement of overall 300nm anomaly prediction is first achieved by using area-weighted as opposed to unweighted averaging of the 25 generated 60nm mean anomalies inside the 300nm block. Then, improvement of prediction over rough 300nm blocks is realized through the use of fully known 1 deg by 1 deg mean elevations, taking advantage of the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations inside the 300nm block. An improved prediction model which adapts itself to the roughness of the local anomaly field is found to be the model of Least Squares Collocation with systematic parameters, the systematic parameter being the slope b which is a type of Bouguer slope expressing the correlation that locally exists between 60nm mean anomalies and 60nm mean elevations.

  3. Photosensitizer fluorescence dynamics at its diffusion in blood flow for different means of cells concentrations

    NASA Astrophysics Data System (ADS)

    Maryakhina, V. S.; Gun'kov, V. V.

    2016-04-01

    In the paper the mathematical model of kinetics of interaction of the injected compound with biological liquid flow has been described for different means of cells concentrations connected on packed cell volume. It is considered that biological liquid contains a three phases such as water, peptides and cells. At the time, the injected compound can interact with peptides and cells which are "trap" for him. The obtained distribution of the compound connects on changes of its fluorescence spectra. It is shown that fluorescence intensivity change is different at 560, 580 and 590 nm. The curves do not have monotonic nature. There is a sharp curves decline in the first few seconds, next, it are increasing. Curves inflection time slightly depends on the cells concentration and is 7-9 seconds. At the time stationary concentration significantly depends on this parameter in contrast to blood viscosity. As long s cells concentration is primarily mean of the packed cell volume, the model can be important for pharmacokinetics and preparations delivery. It can be also used for fluorescent biomedical diagnostics of cancer tumour.

  4. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  5. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  6. Investigation of Flow in an Axially Symmetrical Heated Jet of Air

    NASA Technical Reports Server (NTRS)

    Corrsin, Stanley

    1943-01-01

    The work done under this contract falls essentially into two parts: the first part was the design and construction of the equipment and the running of preliminary tests on the 3-inch jet, carried out by Mr. Carl Thiele in 1940; the second part consisting in the measurement in the 1-inch jet flow in an axially symmetrical heated jet of air. (author)

  7. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  8. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  9. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  10. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  11. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  12. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  13. Two-dimensional calculations of a continuous optical discharge in atmospheric air flow (optical plasma generator)

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.; Silant'ev, A. Iu.; Surzhikov, S. T.

    1987-06-01

    Two-dimensional gasdynamic processes in a continuous optical discharge in subsonic flow of atmospheric air are simulated numerically with allowance for distortions of the light channel due to laser beam refraction in the generated plasma, radiative energy losses, and radiant heat transfer. It is found that instabilities and vortex structures are formed in the hot jet behind the energy release region; flow in this region is nonstationary but periodic. These effects are not observed in the main part of the discharge, which is quite stable. Depending on flow velocity, diffraction in the plasma may lead to both defocusing and focusing of the beam.

  14. Navier-Stokes simulation of 3-D hypersonic equilibrium air flow

    NASA Technical Reports Server (NTRS)

    Nagaraj, N.; Lombard, C. K.; Bardina, J.

    1988-01-01

    A computationally efficient three-dimensional conservative supracharacteristic Navier-Stokes method has been extended to simulate complex external chemically reacting flows of hypersonic reentry vehicles at angle-of-attack. Numerical simulation results of the flow around a sphere-cone-cone-flare reentry vehicle at 10 deg angle-of-attack are presented, in addition to the results of a well-validated two-dimensional code with which the 0-deg axisymmetric flow has been computed. A method for obtaining compositions of species in equilibrium ionized air is proposed.

  15. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  16. The structure and stability of the laminar counter-flow partially premixed methane/air triple flame

    SciTech Connect

    Lockett, R.D.; Boulanger, B.; Harding, S.C.; Greenhalgh, D.A.

    1999-10-01

    The flame stability map defining the regime of existence of a counter-flowing laminar partially premixed methane-air triple flame has been determined using OH planar laser-induced fluorescence (PLIF). The stability limits were determined through the observation of flame merging and flame extinction, a function of rich and lean equivalence ratios, and mean axial strain rate. Relatively quantitative OH species profiles and Rayleigh scattering profiles have been measured for three flame conditions. Axial flow velocity profiles, and nozzle exit velocity profiles have been determined for two of the three conditions using 1-D laser Doppler velocimetry (LDV). The diffusion flame extinction axial velocity profile has been measured, and the local extinction axial strain rate has been determined to be 710 s{sup {minus}1}.

  17. Experimental assessment of spanwise-oscillating dielectric electroactive surfaces for turbulent drag reduction in an air channel flow

    NASA Astrophysics Data System (ADS)

    Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron

    2015-05-01

    In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.

  18. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  19. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  20. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  1. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  2. Experimental investigation on the interfacial characteristics of stratified air-water two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Hudaya, Akhmad Zidni; Kuntoro, Hadiyan Yusuf; Dinaryanto, Okto; Deendarlianto, Indarto

    2016-06-01

    The interfacial wave characteristics of stratified air-water two-phase flow in a horizontal pipe were experimentally investigated by using the flush-mounted constant electric current method (CECM) sensors. The experiments were conducted in a horizontal two-phase flow loop 9.5 m long (L) consisting of transparent acrylic pipe of 26 mm i.d. (D). To obtain the stratified flow pattern, the superficial gas and liquid velocities were set to 1.02 - 3.77 m/s and 0.016 - 0.92 m/s, respectively. Several interfacial wave patterns as described by several investigators were identified. The common parameters such as liquid hold-up, probability distribution function, wave velocity and wave frequency were investigated as the function of the liquid and gas flow rates. The interfacial curvature was calculated on the basis of the liquid hold-up data from the CECM sensors and the liquid film thickness data from the image processing technique in the previous work. As a result, it was found that the mean liquid hold-up decreases with the increase of the superficial gas velocity. In the same sub flow pattern, the wave velocity increases as the superficial gas velocity increases. On the other hand, in the two-dimensional wave region, the dominant frequency decreases with the increase of the superficial liquid velocity.

  3. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  4. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed. PMID:23609636

  5. Exercise performance while wearing a tight-fitting powered air purifying respirator with limited flow.

    PubMed

    Johnson, Arthur T; Mackey, Kathryn R; Scott, William H; Koh, Frank C; Chiou, Ken Y H; Phelps, Stephanie J

    2005-07-01

    Sixteen subjects exercised at 80-85% of maximal aerobic capacity on a treadmill while wearing a tight-fitting, FRM40-Turbo Powered Air Purifying Respirator (PAPR). The PAPR was powered by a DC power supply to give flow rates of 0%, 30%, 66%, 94%, and 100% of rated maximum blower capacity of 110 L/min. As flow rate was reduced, so was performance time. There was a 20% reduction in performance time as blower flow changed from 100% to 0% of maximum. Significant differences in breathing apparatus comfort and facial thermal comfort were found as flow rate varied. It was concluded that inadequate blower flow rate decreases performance time, facial cooling, and respirator comfort. PMID:16020100

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  7. Influence of exhaled air on inhalation exposure delivered through a directed-flow nose-only exposure system.

    PubMed

    Moss, O R; James, R A; Asgharian, B

    2006-01-01

    In order to conserve material that is available in limited quantities, "directed-flow" nose-only exposure systems have at times been run at flow rates close to the minute ventilation of the animal. Such low-flow-rate conditions can contribute to a decrease of test substance concentration in inhaled air; near the animal nose, exhaled air and the directed flow of exposure air move in opposite directions. With a Cannon "directed-flow" nose-only exposure system (Lab Products, Maywood, NJ), we investigated the extent to which exposure air plus exhaled air can be inhaled by an animal. A mathematical model and a mechanical simulation of respiration were adopted to predict for a male Fischer 344 rat the concentration of test substance in inhaled air. The mathematical model was based on the assumption of instantaneous mixing. The mechanical simulation of respiration used a Harvard respirator. When the system was operated at an exposure air flow rate greater than 2.5 times the minute ventilation of the animal, the concentration of test substance in the inhaled air was reduced by less than 10%. Under these conditions, the circular jet of air exiting the exposure air delivery tube tended to reach the animal's nose with little dispersion. For exposure air flow rates less than 2 times the minute ventilation, we predict that the interaction of exhaled air and exposure air can be minimized by proportionally reducing the delivery tube diameter. These findings should be applicable to similar "directed-flow" nose-only exposure systems.

  8. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  9. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  10. Combined experimental and computational investigation of sterile air flows in surgical environments

    NASA Astrophysics Data System (ADS)

    McNeill, James; Hertzberg, Jean; Zhai, Zhiqiang

    2010-11-01

    Surgical environments in hospitals utilize downward, low-turbulence, sterile air flow across the patient to inhibit transmission of infectious diseases to the surgical site. Full-scale laboratory experiments using particle image velocimetry were conducted to investigate the air distribution above the patient area. Computational fluid dynamics models were developed to further investigate the air distribution within the operating room in order to determine the impact of ventilation design of airborne infectious disease pathways. Both Reynolds-averaged Navier-Stokes equations and large eddy simulation techniques are currently being used in the computational modeling to study the effect of turbulence modeling on the indoor air distribution. CFD models are being calibrated based on the experimental data and will be used to study the probability of infectious particles entering the sterile region of the room.

  11. Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; El-Habachi, Ahmed; Schoenbach, Karl H.

    2000-09-01

    An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 1011 cm-3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 1013 cm-3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.

  12. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  13. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  14. An Experimental Investigation of the Flow of Air in a Flat Broadening Channel

    NASA Technical Reports Server (NTRS)

    Vedernikoff, A. N.

    1944-01-01

    The wide use of diffusers, in various fields of technology, has resulted in several experimental projects to study the action and design of diffusers. Most of the projects dealt with steam (steam turbine nozzles). But diffusers have other applications - that is, ventilators, smoke ducts, air coolers, refrigeration, drying, and so forth. At present there is another application for diffusers in wind-tunnel design. Because of higher requirements and increased power of such installations more attention must be paid to the correctness of work and the decrease in losses due to every section of the tunnel. A diffuser, being one of the component parts of a tunnel , can in the event of faulty construction introduce considerable losses. Therefore, in the design of the new CAHI wind tunnel, it was suggested that an experimental study of diffusers be made, with a view to applying the results to wind tunnels. The experiments conducted by K. K. Baulin in the laboratories of CAHI upon models of diffusers of different cross sections, lengths, and angles of divergence, were a valuable source of experimental data. They were of no help, however, in reaching any conclusion regarding the optimum shape because of the complexity and diversity of the factors which all appeared simultaneously, thereby precluding the.study of the effects of any one factor separately. On the suggestion of the director of the CAHI,Prof. B. N. Ureff, it was decided to experiment on a two-dimensional diffuser model and determine the effect, of the angle of divergence. The author is acquainted with two experimental projects of like nature: the first was conducted with water, the other with air. The first of these works, although containing a wealth of experimental data, does not indicate the nature of flow or its relation to the angle of divergence. The second work is limited to four angles - that is, 12 deg, 24 deg, 45 deg, 90 deg. The study of this diffuser did not supply any information about the effect of

  15. Controlling the sonic boom from a thin body by means of local heating of the incoming flow

    NASA Astrophysics Data System (ADS)

    Potapkin, A. V.; Moskvichev, D. Yu.

    2013-11-01

    The problem of reduction of the sonic boom level by heating the flow in front of the body is solved numerically. A combined method of “phantom bodies” is used for calculations. The sonic boom generated by an axisymmetric thin body for the flight Mach number of 2 with different levels of energy supply to the incoming flow is calculated. The calculation results show that the sonic boom can be reduced by means of local heat supply to a supersonic gas flow. Reduction of the sonic boom level is provided by specific gas-dynamic features of the flow behind the heat supply zone.

  16. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  17. Meteorological adjustment of yearly mean values for air pollutant concentration comparison

    NASA Technical Reports Server (NTRS)

    Sidik, S. M.; Neustadter, H. E.

    1976-01-01

    Using multiple linear regression analysis, models which estimate mean concentrations of Total Suspended Particulate (TSP), sulfur dioxide, and nitrogen dioxide as a function of several meteorologic variables, two rough economic indicators, and a simple trend in time are studied. Meteorologic data were obtained and do not include inversion heights. The goodness of fit of the estimated models is partially reflected by the squared coefficient of multiple correlation which indicates that, at the various sampling stations, the models accounted for about 23 to 47 percent of the total variance of the observed TSP concentrations. If the resulting model equations are used in place of simple overall means of the observed concentrations, there is about a 20 percent improvement in either: (1) predicting mean concentrations for specified meteorological conditions; or (2) adjusting successive yearly averages to allow for comparisons devoid of meteorological effects. An application to source identification is presented using regression coefficients of wind velocity predictor variables.

  18. Trichloroethylene and tetrachloroethylene elimination from the air by means of a hybrid bioreactor with immobilized biomass.

    PubMed

    Tabernacka, Agnieszka; Zborowska, Ewa

    2012-09-01

    Two-phase bioreactors consisting of bacterial consortium in suspension and sorbents with immobilized biomass were used to treat waste air containing chlorinated ethenes, trichloroethylene (TCE) and tetrachloroethylene (PCE). Synthetic municipal sewage was used as the medium for bacterial growth. The system was operated with loadings in the range 1.48-4.76 gm(-3)h(-1) for TCE and 1.49-5.96 gm(-3)h(-1) for PCE. The efficiency of contaminant elimination was 55-86% in the bioreactor with wood chips and 33-89% in the bioreactor filled with zeolite. The best results were observed 1 week after the pollutant loading was increased. However, in these conditions, the stability of the process was not achieved. In the next 7 days the effectiveness of the system decreased. Contaminant removal efficiency, enzymatic activity and the biomass content were all diminished. The system was working without being supplied with additional hydrocarbons as the growth-supporting substrates. It is assumed that ammonia produced during the transformation of wastewater components induced enzymes for the cometabolic degradation of TCE and PCE. However, the evaluation of nitrogen compound transformations in the system is difficult due to the sorption on carriers and the combined processes of nitrification and the aerobic denitrification. An applied method of air treatment is advantageous from both economic and environmental point of views.

  19. Directed air flow to reduce airborne particulate and bacterial contamination in the surgical field during total hip arthroplasty.

    PubMed

    Stocks, Gregory W; O'Connor, Daniel P; Self, Sean D; Marcek, Geoff A; Thompson, Brandon L

    2011-08-01

    This study evaluated the use of a system that delivers a small field of local, directed air from a high-efficiency particulate air (HEPA) filter to reduce airborne particulate and airborne bacteria in the surgical field during total hip arthroplasty. Thirty-six patients were randomized into 3 groups: with directed air flow, with the directed air flow system present but turned off, and control. Airborne particulate and bacteria were collected from within 5 cm of the surgical wound. All particulate and bacterial counts at the surgical site were significantly lower in the directed air flow group (P < .001). The directed air flow system was effective in reducing airborne particulate and colony-forming units in the surgical field during total hip arthroplasty. PMID:20851565

  20. The mean velocity and the Reynolds shear stress in turbulent channel and pipe flow

    NASA Astrophysics Data System (ADS)

    Sahay, Anupam

    This thesis deals with the structure of the mean velocity (U) and the Reynolds shear stress (τ) in turbulent channel and pipe flows. Using empirical features of τ, and ideas from singular perturbation theory, we attempt to deduce the asymptotic approximation of U(y, R), where y is the wall-normal distance and R is a Reynolds number, as R/to/infty. We show that, in all likelihood, the classical 'inner' and 'outer' expansions to leading order do not overlap because of the intrusion of an intermediate layer straddling the peak position of /tau. We also present evidence suggesting that the classical semi-logarithmic law is incorrect. Even so, it is shown that the semi-logarithmic variation of U can be a useful approximation. The importance of the intermediate layer is that it provides a mechanism by which viscous effects play an important role in regions traditionally thought to be inviscid. It is argued that recently advanced power-law profiles could be good approximations to the data over an extended region, but they too are unlikely to be exact. We attempt to identify spatial modes having significant contribution to /tau, with a view to modeling turbulent momentum transport. Eigenfunctions of the Navier-Stokes operator linearized about the mean velocity, are chosen as the spatial basis. The eigenfunction expansion of τ requires the knowledge of the complete two-point correlation tensor. We have constructed an empirical model for the tensor. Using this model and a heuristic criterion for ordering the terms in the expansion, we have been able to reconstruct τ from spanwise modes and certain subsets of streamwise-dependent modes. The primary contribution of the spanwise modes is in the central part of the channel, whereas the streamwise- dependent modes are significant near the peak location of /tau. The unresolved issues regarding the significance of the reconstruction are pointed out.

  1. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  2. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  3. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  4. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  5. Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany

    NASA Astrophysics Data System (ADS)

    Maak, K.; von Storch, Hans

    We have examined the relationship between phenological data and concurrent large-scale meterological data. As phenological data we have chosen the beginning of the flowering of Galanthus nivalis L. (flowering date) in Northern Germany, and as large-scale meteorological data we use monthly mean near-surface air temperatures for January, February and March. By means of canonical correlation analysis (CCA), a strong linear correlation between both sets of variables is identified. Twenty years of observed data are used to build the statistical model. To validate the derived relationship, the flowering date is downscaled from air temperature observations of an independent period. The statistical model is found to reproduce the observed flowering dates well, both in terms of variability as well as amplitude. Air temperature data from a general circulation model of climate change are used to estimate the flowering date in the case of increasing atmospheric carbon dioxide concentration. We found that at a time of doubled CO2 concentration (expected by about 2035) G. nivalis L. in Northern Germany will flower 2 weeks and at the time of tripled CO2 concentration (expected by about 2085) 4 weeks earlier than presently.

  6. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    PubMed

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  7. The use of autonomous unmanned vehicles for measuring the mean flow field in riverine environments

    NASA Astrophysics Data System (ADS)

    Tuggle, C.; Macmahan, J. H.; Brown, J.; Reniers, A. J.

    2010-12-01

    Autonomous unmanned vehicles (AUVs) are commonly used in oceanic, estuarine and, more recently, riverine environments because they are small, versatile, moving platforms equipped with a suite of instruments for measuring environmental conditions. However, moving vessel observations, particularly those associated acoustic Doppler current profiler (ADCP) observations, can be problematic owing to instrument noise, flow fluctuations, and spatial variability. As part of a riverine field experiment conducted in the Kootenai River, ID in August 2010, a spatial map of the mean horizontal and vertical velocity fields in a 200m wide, 8 m deep, and 0.5m/s meandering reach was obtained using two different AUV platforms: SeaRobotics unmanned surface vehicle (USV) and YSI/OceanServer Technology IVER-II unmanned underwater vehicle (UUV). The USV has dual-propellers navigating with GPS and was able to station-keep to within 1 m for 10 minutes at various locations within the reach in order to obtain the 3-D velocity field. Obtaining a statistically confident estimate of the mean velocity profile requires an appropriate time-interval to average instrument noise and environmental fluctuations. It has been previously proposed that 10 minutes is an adequate time interval when using an ADCP in a river. Preliminary results show that a shorter time interval is adequate, which would allow for increased spatial coverage. The UUV has a station-keeping capability when at the surface, but owing to its single propeller, it operates best by performing slow (0.2-0.35m/s) moving transects. Since the UUV is moving in a system that is spatially non-homogenous, additional errors in the mean velocity profile can be introduced due to spatial variability. An evaluation of the velocity profile quality, current measuring performance and minimum averaging time interval requirements are discussed for each platform, including the appropriate mission planning considerations for riverine observations. In

  8. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  9. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    SciTech Connect

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V.

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  10. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  11. Two-dimensional calculations of a continuous optical discharge in atmospheric-air flow (optical plasmatron)

    SciTech Connect

    Raizer, Yu.P.; Silant'ev, A.Yu.; Surzhikov, S.T.

    1987-11-01

    A two-dimensional gas-dynamic process in a continuous optical discharge, burning in subsonic atmospheric-air flow, is modeled numerically. The distortion of the light channel owing to refraction of the laser beam in the plasma created by it, the radiative energy losses, and radiant heat transfer were taken into account. It was found that in a hot jet instabilities and eddy structures appear behind the region of energy liberation. These effects do not affect the main part of the discharge, where the state is completely stable. The calculations showed that for an optical plasmatron in the free atmosphere the incoming flow primarily flows around the highly heated region, and penetrates into it only slightly. Depending on the velocity of the flow the refraction in the plasma can lead to both defocusing and additional focusing of the beam. The results agree qualitatively with available experimental data.

  12. The Lagrangian coordinate system and what it means for two-dimensional crowd flow models

    NASA Astrophysics Data System (ADS)

    van Wageningen-Kessels, Femke; Leclercq, Ludovic; Daamen, Winnie; Hoogendoorn, Serge P.

    2016-02-01

    A continuum crowd flow model is solved using the Lagrangian coordinate system. The system has proven to give computational advantages over the traditional Eulerian coordinate system for (one-dimensional) road traffic flow. Our extension of the model and simulation method to (two-dimensional) crowd flow paves the way to explore the advantages for crowd flow simulation. Detailed analysis of the advantages is left for future research. However, this paper provides a first exploration and shows that a model and simulation method for two-dimensional crowd flow can be developed using Lagrangian numerical techniques and that it leads to accurate simulation results.

  13. Lysozyme fractionation from egg white at pilot scale by means of tangential flow membrane adsorbers: Investigation of the flow conditions.

    PubMed

    Brand, Janina; Voigt, Katharina; Zochowski, Bianca; Kulozik, Ulrich

    2016-03-18

    The application of membrane adsorbers instead of classical packed bed columns for protein fractionation is still a growing field. In the case of egg white protein fractionation, the application of classical chromatography is additionally limited due to its high viscosity that impairs filtration. By using tangential flow membrane adsorbers as stationary phase this limiting factor can be left out, as they can be loaded with particle containing substrates. The flow conditions existing in tangential flow membrane adsorbers are not fully understood yet. Thus, the aim of the present study was to gain a deeper understanding of the transport mechanisms in tangential flow membrane adsorbers. It was found that loading in recirculation mode instead of single pass mode increased the binding capacity (0.39 vs. 0.52 mg cm(-2)). Further, it was shown that either higher flow rates (0.39 mg cm(-2) vs. 0.57 mg cm(-2) at 1 CV min(-1) or 20 CV min(-1), respectively) or higher amounts of the target protein in the feed (0.24 mg cm(-2) vs. 0.85 mg cm(-2) for 2.5 or 39.0 g lysozyme, respectively) led to more protein binding. These results show that, in contrast to radial flow or flat sheet membrane adsorbers, the transport in tangential flow membrane adsorbers is not purely based on convection, but on a mix of convection and diffusion. Additionally, investigations concerning the influence of fouling formation were performed that can lead to transport limitations. It was found that this impact is neglectable. It can be concluded that the usage of tangential flow membrane adsorbers is very recommendable for egg white protein fractionations, although the transport is partly diffusion-limited. PMID:26898148

  14. Amelioration of the reactive nitrogen flux calculation by a day/night separation in weekly mean air concentration measurements

    NASA Astrophysics Data System (ADS)

    Hayashi, Kentaro; Matsuda, Kazuhide; Ono, Keisuke; Tokida, Takeshi; Hasegawa, Toshihiro

    2013-11-01

    The low time resolution of air concentration data of atmospheric deposition in regional monitoring networks makes it difficult to estimate fluxes between the land and the atmosphere. The present study was an evaluation of the effects of day/night separation for a low time resolution of air concentration measurements (i.e., weekly mean) for the estimation of reactive nitrogen fluxes. The target chemical species included reactive nitrogen primarily ammonia (NH3) and nitric acid gas (HNO3) and secondarily nitrous acid gas, particulate ammonium, and particulate nitrate in addition to sulfur dioxide (SO2) as a reference. Monitoring was conducted for one year at a single-crop rice paddy field in central Japan. The study period was divided into the cropping and fallow seasons, which were characterized by rice plants or a drained bare soil surface, respectively. The filter-pack method was applied to measure the weekly mean air concentrations with day/night separation for the target species at two heights (6 and 2 m above the ground surface). Both an inferential and a gradient method were applied to calculate the deposition and exchange fluxes, respectively. The day/night separation in a weekly sampling protocol, on average, reduced the underestimation of HNO3 fluxes for the inferential method by 15.2% ± 6.8% and 8.2% ± 6.1% in the cropping and fallow seasons, respectively, and reduced the overestimation of NH3 fluxes for the gradient method by 121% ± 128% in the cropping season. The fluxes calculated using the inferential method agreed relatively well with those calculated using the gradient method for HNO3 and SO2. The use of single-height measurements for air concentrations with day/night separation and flux calculations using the inferential method are recommended as an appropriate way to enhance the quality in calculated fluxes while simultaneously suppress the increase in labor cost.

  15. Non-darcy flow behavior mean high-flux injection wells in porous and fractured formations

    SciTech Connect

    Wu, Yu-Shu

    2003-04-25

    This paper presents a study of non-Darcy fluid flow through porous and fractured rock, which may occur near wells during high-flux injection of waste fluids into underground formations. Both numerical and analytical models are used in this study. General non-Darcy flow is described using the Forchheimer equation, implemented in a three-dimensional, multiphase flow reservoir simulator. The non-Darcy flow through a fractured reservoir is handled using a general dual continuum approach, covering commonly used conceptual models, such as double porosity, dual permeability, explicit fracture, etc. Under single-phase flow conditions, an approximate analytical solution, as an extension of the Warren-Root solution, is discussed. The objectives of this study are (1) to obtain insights into the effect of non-Darcy flow on transient pressure behavior through porous and fractured reservoirs and (2) to provide type curves for well test analyses of non-Darcy flow wells. The type curves generated include various types of drawdown, injection, and buildup tests with non-Darcy flow occurring in porous and fractured reservoirs. In addition, non-Darcy flow into partially penetrating wells is also considered. The transient-pressure type curves for flow in fractured reservoirs are based on the double-porosity model. Type curves provided in this work for non-Darcy flow in porous and fractured reservoirs will find their applications in well test interpretation using a type-curve matching technique.

  16. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  17. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  18. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  19. Noise produced by turbulent flow into a rotor: Theory manual for atmospheric turbulence prediction and mean flow and turbulence contraction prediction

    NASA Technical Reports Server (NTRS)

    Simonich, J. C.

    1989-01-01

    Prediction of helicopter main rotor noise due to ingestion of atmospheric turbulence was analyzed. The analysis combines several different models that describe the fluid mechanics of the turbulence and the ingestion process. Two models, atmospheric turbulence, and mean flow and turbulence contraction were covered. The third model, covered in a separate report, describes the rotor acoustic mode. The method incorporates the atmospheric turbulence model and a rapid distortion turbulence contraction description to determine the statistics of the anisotropic turbulence at the rotor plane. The analytical basis for a module was provided which was incorporated in NASA's ROTONET helicopter noise prediction program. The mean flow and turbulence statistics associated with the atmospheric boundary layer were modeled including effects of atmospheric stability length, wind speed, and altitude. The turbulence distortion process is modeled as a deformation of vortex filaments (which represent the turbulence field) by a mean flow field due to the rotor inflow.

  20. Determination of cooling air mass flow for a horizontally-opposed aircraft engine installation

    NASA Technical Reports Server (NTRS)

    Miley, S. J.; Cross, E. J., Jr.; Ghomi, N. A.; Bridges, P. D.

    1979-01-01

    The relationship between the amount of cooling air flow and the corresponding flow pressure difference across an aircraft engine was investigated in flight and on the ground. The flight test results were consistent with theory, but indicated a significant installation leakage problem. A ground test blower system was used to identify and reduce the leakage. The correlation between ground test cell determined engine orifice characteristics and flight measurements showed good agreement if the engine pressure difference was based on total pressure rather than static pressure.