Combustor air flow control method for fuel cell apparatus
Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.
2001-01-01
A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.
Streaks Of Colored Water Indicate Surface Airflows
NASA Technical Reports Server (NTRS)
Wilcox, Floyd J., Jr.
1994-01-01
Response faster and contamination less than in oil-flow technique. Flowing colored water provides accurate and clean way to reveal flows of air on surfaces of models in wind tunnels. Colored water flows from small orifices in model, forming streak lines under influence of air streaming over surface of model.
Vision and air flow combine to streamline flying honeybees
Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.
2013-01-01
Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053
Effect of pyrolysis temperature and air flow on toxicity of gases from a polycarbonate polymer
NASA Technical Reports Server (NTRS)
Hilado, C. J.; Brick, V. E.; Brauer, D. P.
1978-01-01
A polycarbonate polymer was evaluated for toxicity of pyrolysis gases generated at various temperatures without forced air flow and with 1 L/min air flow, using the toxicity screening test method developed at the University of San Francisco. Time to various animal responses decreased with increasing pyrolysis temperature over the range from 500 C to 800 C. There appeared to be no significant toxic effects at 400 C and lower temperatures.
[Rainfall effects on the sap flow of Hedysarum scoparium.
Yang, Qiang; Zha, Than Shan; Jia, Xin; Qin, Shu Gao; Qian, Duo; Guo, Xiao Nan; Chen, Guo Peng
2016-03-01
In arid and semi-arid areas, plant physiological responses to water availability depend largely on the intensity and frequency of rain events. Knowledge on the responses of xerophytic plants to rain events is important for predicting the structure and functioning of dryland ecosystems under changing climate. The sap flow of Hedysarum scoparium in the Mu Us Sand Land was continuously measured during the growing season of 2012 and 2013. The objectives were to quantify the dynamics of sap flow under different weather conditions, and to examine the responses of sap flow to rain events of different sizes. The results showed that the daily sap flow rates of H. scoparium were lower on rainy days than on clear days. On clear days, the sap flow of H. scoparium showed a midday plateau, and was positively correlated with solar radiation and relative humidity. On rainy days, the sap flow fluctuated at low levels, and was positively correlated with solar radiation and air temperature. Rain events not only affected the sap flow on rainy days through variations in climatic factors (e.g., solar radiation and air temperature), but also affected post-rainfall sap flow velocities though changes in soil moisture. Small rain events (<20 mm) did not change the sap flow, whereas large rain events (>20 mm) significantly increased the sap flow on days following rainfall. Rain-wetted soil conditions not only resulted in higher sap flow velocities, but also enhanced the sensitivity of sap flow to solar radiation, vapor pressure deficit and air temperature.
Flight control of fruit flies: dynamic response to optic flow and headwind.
Lawson, Kiaran K K; Srinivasan, Mandyam V
2017-06-01
Insects are magnificent fliers that are capable of performing many complex tasks such as speed regulation, smooth landings and collision avoidance, even though their computational abilities are limited by their small brain. To investigate how flying insects respond to changes in wind speed and surrounding optic flow, the open-loop sensorimotor response of female Queensland fruit flies ( Bactrocera tryoni ) was examined. A total of 136 flies were exposed to stimuli comprising sinusoidally varying optic flow and air flow (simulating forward movement) under tethered conditions in a virtual reality arena. Two responses were measured: the thrust and the abdomen pitch. The dynamics of the responses to optic flow and air flow were measured at various frequencies, and modelled as a multicompartment linear system, which accurately captured the behavioural responses of the fruit flies. The results indicate that these two behavioural responses are concurrently sensitive to changes of optic flow as well as wind. The abdomen pitch showed a streamlining response, where the abdomen was raised higher as the magnitude of either stimulus was increased. The thrust, in contrast, exhibited a counter-phase response where maximum thrust occurred when the optic flow or wind flow was at a minimum, indicating that the flies were attempting to maintain an ideal flight speed. When the changes in the wind and optic flow were in phase (i.e. did not contradict each other), the net responses (thrust and abdomen pitch) were well approximated by an equally weighted sum of the responses to the individual stimuli. However, when the optic flow and wind stimuli were presented in counterphase, the flies seemed to respond to only one stimulus or the other, demonstrating a form of 'selective attention'. © 2017. Published by The Company of Biologists Ltd.
Disintegration of liquid sheets
NASA Technical Reports Server (NTRS)
Mansour, Adel; Chigier, Norman
1990-01-01
The development, stability, and disintegration of liquid sheets issuing from a two-dimensional air-assisted nozzle is studied. Detailed measurements of mean drop size and velocity are made using a phase Doppler particle analyzer. Without air flow the liquid sheet converges toward the axis as a result of surface tension forces. With airflow a quasi-two-dimensional expanding spray is formed. The air flow causes small variations in sheet thickness to develop into major disturbances with the result that disruption starts before the formation of the main break-up region. In the two-dimensional variable geometry air-blast atomizer, it is shown that the air flow is responsible for the formation of large, ordered, and small chaotic 'cell' structures.
Compressed-air flow control system.
Bong, Ki Wan; Chapin, Stephen C; Pregibon, Daniel C; Baah, David; Floyd-Smith, Tamara M; Doyle, Patrick S
2011-02-21
We present the construction and operation of a compressed-air driven flow system that can be used for a variety of microfluidic applications that require rapid dynamic response and precise control of multiple inlet streams. With the use of inexpensive and readily available parts, we describe how to assemble this versatile control system and further explore its utility in continuous- and pulsed-flow microfluidic procedures for the synthesis and analysis of microparticles.
A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure
Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming
2007-01-01
This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in a small variation in the resistance of the piezoelectric layer. The air flow velocity is determined by measuring the change in resistance using an external LCR meter. The experimental results indicate that the flow sensor has a high sensitivity (0.0284 Ω/ms-1), a high velocity measurement limit (45 ms-1) and a rapid response time (0.53 s). PMID:28903233
A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure.
Wang, Yu-Hsiang; Lee, Chia-Yen; Chiang, Che-Ming
2007-10-17
This paper presents a micro-scale air flow sensor based on a free-standingcantilever structure. In the fabrication process, MEMS techniques are used to deposit asilicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitridelayer to form a piezoresistor, and the resulting structure is then etched to create afreestanding micro-cantilever. When an air flow passes over the surface of the cantileverbeam, the beam deflects in the downward direction, resulting in a small variation in theresistance of the piezoelectric layer. The air flow velocity is determined by measuring thechange in resistance using an external LCR meter. The experimental results indicate that theflow sensor has a high sensitivity (0.0284 ω/ms -1 ), a high velocity measurement limit (45ms -1 ) and a rapid response time (0.53 s).
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.
2010-09-01
22 Figure 23. Flow Type and the reference empirical model ............................................................ 24 Figure 24. Baseline...Trajectory ...................................................................................................... 25 Figure 25. Flow Features Important...94 viii GLOSSARY ACCTE Advanced Ceramic Composites for Turbine Engines AFRL Air Force Research Laboratory AoA Angle of Attack ASE
Air stepping in response to optic flows that move Toward and Away from the neonate.
Barbu-Roth, Marianne; Anderson, David I; Desprès, Adeline; Streeter, Ryan J; Cabrol, Dominique; Trujillo, Michael; Campos, Joseph J; Provasi, Joëlle
2014-07-01
To shed further light on the perceptual regulation of newborn stepping, we compared neonatal air stepping in response to optic flows simulating forward or backward displacement with stepping forward on a surface. Twenty-two 3-day-olds performed four 60 s trials in which they stepped forward on a table (Tactile) or in the air in response to a pattern that moved toward (Toward) or away (Away) from them or was static (Static). Significantly more steps were taken in the Tactile and Toward conditions than the Static condition. The Away condition was intermediate to the other conditions. The knee joint activity across the entire trial was significantly greater in the Toward than the Away condition. Within-limb kinematics and between-limb coordination were very similar for steps taken in the air and on the table, particularly in the Toward and Tactile conditions. These findings highlight that visual and tactile stimulation can equally elicit neonatal stepping. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Slinker, Keith; Maschmann, Matthew R.; Kondash, Corey; Severin, Benjamin; Phillips, David; Dickinson, Benjamin T.; Reich, Gregory; Baur, Jeff
2015-03-01
Crickets, locusts, bats, and many other animals detect changes in their environment with distributed arrays of flow-sensitive hairs. Here we discuss the fabrication and characterization of a relatively new class of pore-based, artificial hair sensors that take advantage of the mechanical properties of structural microfibers and the electromechanical properties of self-aligned carbon nanotube arrays to rapidly transduce changes in low speed air flow. The radially aligned nanotubes are able to be synthesized along the length of the fibers inside the high aspect ratio cavity between the fiber surface and the wall of a microcapillary pore. The growth self-positions the fibers within the capillary and forms a conductive path between detection electrodes. As the hair is deflected, nanotubes are compressed to produce a typical resistance change of 1-5% per m/s of air speed which we believe are the highest sensitivities reported for air velocities less than 10 m/s. The quasi-static response of the sensors to point loads is compared to that from the distributed loads of air flow. A plane wave tube is used to measure their dynamic response when perturbed at acoustic frequencies. Correlation of the nanotube height profile inside the capillary to a diffusion transport model suggests that the nanotube arrays can be controllably tapered along the fiber. Like their biological counterparts, many applications can be envisioned for artificial hair sensors by tailoring their individual response and incorporating them into arrays for detecting spatio-temporal flow patterns over rigid surfaces such as aircraft.
Niglas, Aigar; Kupper, Priit; Tullus, Arvo; Sellin, Arne
2014-01-01
An increase in average air temperature and frequency of rain events is predicted for higher latitudes by the end of the 21st century, accompanied by a probable rise in air humidity. We currently lack knowledge on how forest trees acclimate to rising air humidity in temperate climates. We analysed the leaf gas exchange, sap flow and growth characteristics of hybrid aspen (Populus tremula × P. tremuloides) trees growing at ambient and artificially elevated air humidity in an experimental forest plantation situated in the hemiboreal vegetation zone. Humidification manipulation did not affect the photosynthetic capacity of plants, but did affect stomatal responses: trees growing at elevated air humidity had higher stomatal conductance at saturating photosynthetically active radiation (gs sat) and lower intrinsic water-use efficiency (IWUE). Reduced stomatal limitation of photosynthesis in trees grown at elevated air humidity allowed slightly higher net photosynthesis and relative current-year height increments than in trees at ambient air humidity. Tree responses suggest a mitigating effect of higher air humidity on trees under mild water stress. At the same time, trees at higher air humidity demonstrated a reduced sensitivity of IWUE to factors inducing stomatal closure and a steeper decline in canopy conductance in response to water deficit, implying higher dehydration risk. Despite the mitigating impact of increased air humidity under moderate drought, a future rise in atmospheric humidity at high latitudes may be disadvantageous for trees during weather extremes and represents a potential threat in hemiboreal forest ecosystems. PMID:24887000
Transduction in Drosophila olfactory receptor neurons is invariant to air speed
Zhou, Yi
2012-01-01
In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404
Volumetric Security Alarm Based on a Spherical Ultrasonic Transducer Array
NASA Astrophysics Data System (ADS)
Sayin, Umut; Scaini, Davide; Arteaga, Daniel
Most of the existent alarm systems depend on physical or visual contact. The detection area is often limited depending on the type of the transducer, creating blind spots. Our proposition is a truly volumetric alarm system that can detect any movement in the intrusion area, based on monitoring the change over time of the impulse response of the room, which acts as an acoustic footprint. The device depends on an omnidirectional ultrasonic transducer array emitting sweep signals to calculate the impulse response in short intervals. Any change in the room conditions is monitored through a correlation function. The sensitivity of the alarm to different objects and different environments depends on the sweep duration, sweep bandwidth, and sweep interval. Successful detection of intrusions also depends on the size of the monitoring area and requires an adjustment of emitted ultrasound power. Strong air flow affects the performance of the alarm. A method for separating moving objects from strong air flow is devised using an adaptive thresholding on the correlation function involving a series of impulse response measurements. The alarm system can be also used for fire detection since air flow sourced from heating objects differ from random nature of the present air flow. Several measurements are made to test the integrity of the alarm in rooms sizing from 834-2080m3 with irregular geometries and various objects. The proposed system can efficiently detect intrusion whilst adequate emitting power is provided.
Novel Air Flow Meter for an Automobile Engine Using a Si Sensor with Porous Si Thermal Isolation
Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G.
2012-01-01
An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine. PMID:23202189
Novel air flow meter for an automobile engine using a Si sensor with porous Si thermal isolation.
Hourdakis, Emmanouel; Sarafis, Panagiotis; Nassiopoulou, Androula G
2012-11-02
An air flow meter for measuring the intake air of an automobile engine is presented. It is based on a miniaturized silicon thermal mass flow sensor using a thick porous Si (Po-Si) layer for local thermal isolation from the Si substrate, on which the sensor active elements are integrated. The sensor is mounted on one side of a printed circuit board (PCB), on the other side of which the readout and control electronics of the meter are mounted. The PCB is fixed on a housing containing a semi-cylindrical flow tube, in the middle of which the sensor is situated. An important advantage of the present air flow meter is that it detects with equal sensitivity both forward and reverse flows. Two prototypes were fabricated, a laboratory prototype for flow calibration using mass flow controllers and a final demonstrator with the housing mounted in an automobile engine inlet tube. The final demonstrator was tested in real life conditions in the engine inlet tube of a truck. It shows an almost linear response in a large flow range between –6,500 kg/h and +6,500 kg/h, which is an order of magnitude larger than the ones usually encountered in an automobile engine.
Static Flow Characteristics of a Mass Flow Injecting Valve
NASA Technical Reports Server (NTRS)
Mattern, Duane; Paxson, Dan
1995-01-01
A sleeve valve is under development for ground-based forced response testing of air compression systems. This valve will be used to inject air and to impart momentum to the flow inside the first stage of a multi-stage compressor. The valve was designed to deliver a maximum mass flow of 0.22 lbm/s (0.1 kg/s) with a maximum valve throat area of 0.12 sq. in (80 sq. mm), a 100 psid (689 KPA) pressure difference across the valve and a 68 F, (20 C) air supply. It was assumed that the valve mass flow rate would be proportional to the valve orifice area. A static flow calibration revealed a nonlinear valve orifice area to mass flow relationship which limits the maximum flow rate that the valve can deliver. This nonlinearity was found to be caused by multiple choking points in the flow path. A simple model was used to explain this nonlinearity and the model was compared to the static flow calibration data. Only steady flow data is presented here. In this report, the static flow characteristics of a proportionally controlled sleeve valve are modelled and validated against experimental data.
NASA Technical Reports Server (NTRS)
Schaefer, J. W.; Tong, H.; Clark, K. J.; Suchsland, K. E.; Neuner, G. J.
1975-01-01
A detailed experimental and analytical evaluation was performed to define the response of TD nickel chromium alloy (20 percent chromium) and coated columbium (R512E on CB-752 and VH-109 on WC129Y) to shuttle orbiter reentry heating. Flight conditions important to the response of these thermal protection system (TPS) materials were calculated, and test conditions appropriate to simulation of these flight conditions in flowing air ground test facilities were defined. The response characteristics of these metallics were then evaluated for the flight and representative ground test conditions by analytical techniques employing appropriate thermochemical and thermal response computer codes and by experimental techniques employing an arc heater flowing air test facility and flat face stagnation point and wedge test models. These results were analyzed to define the ground test requirements to obtain valid TPS response characteristics for application to flight. For both material types in the range of conditions appropriate to the shuttle application, the surface thermochemical response resulted in a small rate of change of mass and a negligible energy contribution. The thermal response in terms of surface temperature was controlled by the net heat flux to the surface; this net flux was influenced significantly by the surface catalycity and surface emissivity. The surface catalycity must be accounted for in defining simulation test conditions so that proper heat flux levels to, and therefore surface temperatures of, the test samples are achieved.
Hu, L H; Liu, S; Peng, W; Huo, R
2009-09-30
Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.
Experimental investigation of personal air supply nozzle use in aircraft cabins.
Fang, Zhaosong; Liu, Hong; Li, Baizhan; Baldwin, Andrew; Wang, Jian; Xia, Kechao
2015-03-01
To study air passengers' use of individual air supply nozzles in aircraft cabins, we constructed an experimental chamber which replicated the interior of a modern passenger aircraft. A series of experiments were conducted at different levels of cabin occupancy. Survey data were collected focused on the reasons for opening the nozzle, adjusting the level of air flow, and changing the direction of the air flow. The results showed that human thermal and draft sensations change over time in an aircraft cabin. The thermal sensation response was highest when the volunteers first entered the cabin and decreased over time until it stablized. Fifty-one percent of volunteers opened the nozzle to alleviate a feeling of stuffiness, and more than 50% adjusted the nozzle to improve upper body comfort. Over the period of the experiment the majority of volunteers chose to adjust their the air flow of their personal system. This confirms airline companies' decisions to install the individual aircraft ventilation systems in their aircraft indicates that personal air systems based on nozzle adjustment are essential for cabin comfort. These results will assist in the design of more efficient air distribution systems within passenger aircraft cabins where there is a need to optimize the air flow in order to efficiently improve aircraft passengers' thermal comfort and reduce energy use. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.
van Tilborg, Merijn; van der Pers, Jan N C; Roessingh, Peter; Sabelis, Maurice W
2003-08-01
A novel type of locomotion compensator was designed and tested for its use in orientation behavior experiments with a predatory mite. In this apparatus, displacements of the test animal in the two-dimensional plane are recorded using video equipment and a servosphere that keeps the animal in focus. The x and y displacements are registered using two rotation encoders and are compensated using a pair of servo-motors, in such a way that the animal is always positioned on top of the sphere, yet moves freely. Well-fed and starved predators were tested for their responses to (1) still air, (2) a stimulus-free air flow, (3) an air flow with odors from uninfested Lima bean leaves, and (4) an air flow with odors from Lima bean leaves infested by plant-feeding mites, the prey of the predatory mites. Anemotactic responses of adult Phytoseiulus persimilis females were feeding state dependent. Well-fed predators moved downwind under Treatments 1-3 but moved neither up- nor downwind in the presence of odors from infested plants (Treatment 4). Starved predators moved upwind under all treatments. These results are in agreement with those of earlier studies in a wind tunnel, and therefore, the new type of locomotion compensator (LC-100) offers an excellent method for studying the orientation behavior of micro-arthropods.
Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow
NASA Technical Reports Server (NTRS)
Mock, W C , Jr; Dryden, H L
1934-01-01
This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.
Wall pressure measurements of flooding in vertical countercurrent annular air–water flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choutapalli, I., Vierow, K.
2010-01-01
An experimental study of flooding in countercurrent air-water annular flow in a large diameter vertical tube using wall pressure measurements is described in this paper. Axial pressure profiles along the length of the test section were measured up to and after flooding using fast response pressure transducers for three representative liquid flow rates representing a wide range of liquid Reynolds numbers (ReL = 4Γ/μ; Γ is the liquid mass flow rate per unit perimeter; μ is the dynamic viscosity) from 3341 to 19,048. The results show that flooding in large diameter tubes cannot be initiated near the air outlet andmore » is only initiated near the air inlet. Fourier analysis of the wall pressure measurements shows that up to the point of flooding, there is no dominant wave frequency but rather a band of frequencies encompassing both the low frequency and the broad band that are responsible for flooding. The data indicates that flooding in large diameter vertical tubes may be caused by the constructive superposition of a plurality of waves rather than the action of a single large-amplitude wave.« less
2011-06-01
AFRL-RX-TY-TP-2011-0081 ENZYMATIC FUEL CELLS: INTEGRATING FLOW- THROUGH ANODE AND AIR-BREATHING CATHODE INTO A MEMBRANE-LESS BIOFUEL CELL...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01-JUN-2011 Journal Article (POSTPRINT) 01-JAN-2010 -- 31-JAN-2011 Enzymatic Fuel Cells...unlimited. Ref Public Affairs Case # 88ABW-2011-2228, 14 Apr 11. Document contains color images. One of the key goals of enzymatic biofuel cells
Karataş, Abdullah
2017-09-01
Intranasal steroid sprays (INSS) are frequently prescribed for treating inferior turbinate hypertrophy (ITH). Complications due to the long-term application of INSS such as crusting, epistaxis, nasal mucosa dryness, and septal perforation may occur. Predicting patients who would benefit from INSS early might lower treatment costs and complication rates. We examined the predictive value of nasal decongestant response rates for the outcomes of INSS in ITH. Fifty patients with bilateral ITH were included in two groups: patients benefiting from INSS and those not benefiting. Nasal airflow was assessed by peak nasal inspiratory flow (PNIF) measurement in all cases. Measurements were taken three times: before and after the application of nasal decongestant sprays and after the application of INSS. In both groups, the nasal air flow rates significantly increased after the application of nasal decongestant sprays; however, the nasal decongestant response rates were higher in the group with patients benefiting from INSS. There was a strong correlation between the nasal air flow rates measured after the application of nasal decongestant sprays and after the application of INSS. The cut-off value for the relationship between increased nasal air flow rates after the application of nasal decongestant sprays and outcomes of INSS was 23%. Measurement of nasal airflow increase rate after the application of nasal decongestant sprays is a simple and easy method for the early prediction of the outcomes of INSS in ITH. A higher than 23% increase in nasal air flow rates after the application of nasal decongestant sprays indicates much better outcomes of INSS for patients.
Karataş, Abdullah
2017-01-01
Objective Intranasal steroid sprays (INSS) are frequently prescribed for treating inferior turbinate hypertrophy (ITH). Complications due to the long-term application of INSS such as crusting, epistaxis, nasal mucosa dryness, and septal perforation may occur. Predicting patients who would benefit from INSS early might lower treatment costs and complication rates. We examined the predictive value of nasal decongestant response rates for the outcomes of INSS in ITH. Methods Fifty patients with bilateral ITH were included in two groups: patients benefiting from INSS and those not benefiting. Nasal airflow was assessed by peak nasal inspiratory flow (PNIF) measurement in all cases. Measurements were taken three times: before and after the application of nasal decongestant sprays and after the application of INSS. Results In both groups, the nasal air flow rates significantly increased after the application of nasal decongestant sprays; however, the nasal decongestant response rates were higher in the group with patients benefiting from INSS. There was a strong correlation between the nasal air flow rates measured after the application of nasal decongestant sprays and after the application of INSS. The cut-off value for the relationship between increased nasal air flow rates after the application of nasal decongestant sprays and outcomes of INSS was 23%. Conclusion Measurement of nasal airflow increase rate after the application of nasal decongestant sprays is a simple and easy method for the early prediction of the outcomes of INSS in ITH. A higher than 23% increase in nasal air flow rates after the application of nasal decongestant sprays indicates much better outcomes of INSS for patients. PMID:29392066
Air-Flow-Driven Triboelectric Nanogenerators for Self-Powered Real-Time Respiratory Monitoring.
Wang, Meng; Zhang, Jiahao; Tang, Yingjie; Li, Jun; Zhang, Baosen; Liang, Erjun; Mao, Yanchao; Wang, Xudong
2018-06-04
Respiration is one of the most important vital signs of humans, and respiratory monitoring plays an important role in physical health management. A low-cost and convenient real-time respiratory monitoring system is extremely desirable. In this work, we demonstrated an air-flow-driven triboelectric nanogenerator (TENG) for self-powered real-time respiratory monitoring by converting mechanical energy of human respiration into electric output signals. The operation of the TENG was based on the air-flow-driven vibration of a flexible nanostructured polytetrafluoroethylene (n-PTFE) thin film in an acrylic tube. This TENG can generate distinct real-time electric signals when exposed to the air flow from different breath behaviors. It was also found that the accumulative charge transferred in breath sensing corresponds well to the total volume of air exchanged during the respiration process. Based on this TENG device, an intelligent wireless respiratory monitoring and alert system was further developed, which used the TENG signal to directly trigger a wireless alarm or dial a cell phone to provide timely alerts in response to breath behavior changes. This research offers a promising solution for developing self-powered real-time respiratory monitoring devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, H.; Dean, J.; Privas, E.
2015-03-15
Nuclear plant operators (power generation, decommissioning and reprocessing operations) are required to monitor releases of tritium species for regulatory compliance and radiation protection purposes. Tritium monitoring is performed using tritium-in-air gas monitoring instrumentation based either on flow-through ion chambers or proportional counting systems. Tritium-in-air monitors are typically calibrated in dry conditions but in service may operate at elevated levels of relative humidity. The NPL (National Physical Laboratory) radioactive gas-in-air calibration system has been used to study the effect of humidity on the response to tritium of two tritium-in-air ion chamber based monitors and one proportional counting system which uses amore » P10/air gas mixture. The response of these instruments to HTO vapour has also been evaluated. In each case, instrument responses were obtained for HT in dry conditions (relative humidity (RH) about 2%), HT in 45% RH, and finally HTO at 45% RH. Instrumentation response to HT in humid conditions has been found to slightly exceed that in dry conditions. (authors)« less
40 CFR 799.9430 - TSCA combined chronic toxicity/carcinogenicity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... effects and determine dose-response relationships. The design and conduct should allow for the detection... dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hour, an... measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each...
40 CFR 799.9430 - TSCA combined chronic toxicity/carcinogenicity.
Code of Federal Regulations, 2011 CFR
2011-07-01
... effects and determine dose-response relationships. The design and conduct should allow for the detection... dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hour, an... measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each...
40 CFR 799.9430 - TSCA combined chronic toxicity/carcinogenicity.
Code of Federal Regulations, 2013 CFR
2013-07-01
... effects and determine dose-response relationships. The design and conduct should allow for the detection... dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hour, an... measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each...
40 CFR 799.9430 - TSCA combined chronic toxicity/carcinogenicity.
Code of Federal Regulations, 2012 CFR
2012-07-01
... effects and determine dose-response relationships. The design and conduct should allow for the detection... dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hour, an... measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each...
40 CFR 799.9430 - TSCA combined chronic toxicity/carcinogenicity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... effects and determine dose-response relationships. The design and conduct should allow for the detection... dynamic inhalation equipment designed to sustain a minimum air flow of 10 air changes per hour, an... measurements during the exposures should be sufficient. If pretest measurements are not within 10% of each...
Parametric Studies of Flow Separation using Air Injection
NASA Technical Reports Server (NTRS)
Zhang, Wei
2004-01-01
Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as a function of the key variables. Next, the variables such as the slot geometry can be optimized using the build-in optimizer within JMP. Finally, a wind tunnel testing will be conducted using the optimized slot geometry and other key variables to verify the empirical statistical model. The long term goal for this effort is to assess the impacts of active flow control using air injection at system level as one of the task plan included in the NASAs URETI program with Georgia Institute of Technology.
Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control
NASA Astrophysics Data System (ADS)
Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh
2017-11-01
Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.
Schubert, Michael; Paschke, Albrecht; Bednorz, Denise; Bürkin, Walter; Stieglitz, Thomas
2012-08-21
The on-site measurement of radon-in-water concentrations relies on extraction of radon from the water followed by its detection by means of a mobile radon-in-air monitor. Many applications of radon as a naturally occurring aquatic tracer require the collection of continuous radon concentration time series, thus necessitating the continuous extraction of radon either from a permanent water stream supplied by a water pump or directly from a water body or a groundwater monitoring well. Essentially, three different types of extraction units are available for this purpose: (i) a flow-through spray chamber, (ii) a flow-through membrane extraction module, and (iii) a submersible (usually coiled) membrane tube. In this paper we discuss the advantages and disadvantages of these three methodical approaches with particular focus on their individual response to instantaneously changing radon-in-water concentrations. After a concise introduction into theoretical aspects of water/air phase transition kinetics of radon, experimental results for the three types of extraction units are presented. Quantitative suggestions for optimizing the detection setup by increasing the water/air interface and by reducing the air volume circulating through the degassing unit and radon detector are made. It was shown that the flow-through spray chamber and flow-through membrane perform nearly similarly, whereas the submersible membrane tubing has a significantly larger delay in response to concentration changes. The flow-through spray chamber is most suitable in turbid waters and to applications where high flow rates of the water pump stream can be achieved (e.g., where the power supply is not constrained by field conditions). The flow-through membrane is most suited to radon extraction from clear water and in field conditions where the power supply to a water pump is limited, e.g., from batteries. Finally, the submersible membrane tube is most suitable if radon is to be extracted in situ without any water pumping, e.g., in groundwater wells with a low yield, or in long-term time series, in which short-term variations in the radon concentration are of no relevance.
Slugging Flow of Water Draining from the Bottom of a Non-Vented Container
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig
2010-06-01
Experiments were run to observe the behavior of water exiting through an orifice at the bottom of an non-vented container. Initially, the container is nearly full of water with a small air space on top. Once the orifice was uncovered, the slugging rate and the drain rate of the water leaving the container were measured. Upon initially opening the orifice, water drains out until the air pressure above the water reduces enough that the air pressure drop from inside to outside of the container supports the water column and the water stops flowing. Air then enters the container through themore » orifice forming a bubble, which grows until it detaches and bubbles through the water to reach the air space. Once the bubble enters, this added air increases the pressure in the air space enough to allow the water to start flowing out again. This cycle of flow out, flow stoppage, air inflow, and bubble breakoff continues over and over until the hole is closed or the container empties. This is referred to as the “slugging cycle.” A mechanism is proposed to describe the slugging cycle which is modeled analytically. This paper presents the description of the experiments, data obtained, the mechanistic model, and comparison of the model to the experimental data. The model predicts outflow rates close to experimental values. Flow rates from non-vented containers are more than 10 to 20 less than vented containers. The bubbles which must enter the container periodically to increase the internal air pressure stop the water flow momentarily so are responsible for this large decrease in flow rate. Swirl induced in the non-vented container causes the flow rates to increase by a factor of two. The flow rate out of a non-vented container is independent of water height which is in direct contrast to a vented container where the flow rate is proportional to the square root of the water height. The constant rate is due to the container pressure. The higher the water level, the lower the air pressure is in the container. This analytical model requires input of the bubble size. The volume recommended is the volume of a cylinder with the base of the orifice area and length of 3.3 cm. Slugging rate varies only a small amount falling in the range to 2 to 4 cycles/sec. Preliminary work with other containers indicates larger containers, larger orifices and nozzle exit shapes produce higher specific flow rates. The standard multiphase flow equations could not be used to analyze this situation because the two phases are not interpenetrating. Instead one phase must fully stop before the other can flow. Interpenetrating phases allow can pass one another each affecting the other with friction and virtual mass. An interesting observation: The negative air pressure in the container is observable. It equals the water height.« less
Influence of material anisotropy on the hydroelastic response of composite plates in water
NASA Astrophysics Data System (ADS)
Akcabay, Deniz Tolga; Young, Yin Lu
2018-03-01
Flexible lightweight plate-like lifting surfaces in external flows have a diverse range of use from propelling and controlling marine and aerospace vehicles to converting wind and ocean energy to electrical energy. Design and analysis of such structures are complex for underwater applications where the water density is much higher than air. The hydrodynamic loads, which vary with the inflow speed, can significantly alter the dynamic response and stability. This paper focuses on the hydroelastic response of composite plates in water. The results show that the dynamics and stability of the structure can be significantly modified by taking advantage of the material anisotropic; on the contrary, careless composite material designs may lead to unwanted dynamic instability failures. The resonance frequencies, divergence speeds, and fluid loss coefficients change with material anisotropy and hydrodynamic loads. The resonance frequencies are much lower in water than in air. The critical divergence speed increases, if the principal fiber direction is oriented towards the inflow. Hydrodynamic damping is shown to be much higher than the material damping, and tend to increase with flow speed and to decrease with increasing modal frequency. The paper derives Response Amplitude Operators (RAOs) for sample composite plates in water and use them to predict the motion response when subject to stochastic flow excitations. We show how material anisotropy can be used to passively tailor the plate vibration response spectrum to limit or enhance flow-induced vibrations of the plate depending on the desired applications.
Immunologic and clinical responses to "Monday morning miseries" antigens.
Cernelc, S; Stropnik, Z
1987-01-01
Authors analysed 96 workers exposed to air conditioning system (Group A), and 71 workers (Group B) breathing normal ambient air. 38 workers in group A had a positive clinical history of "Monday morning miseries". Eight cases with the diagnosis hypersensitivity pneumonitis, acute and chronic form was based on environmental history, clinical investigations, physical examination, Chest-X-ray examination, immunological test "in vivo" and "in vitro" with common allergens and antigen "Monday morning miseries", ELISA, spirometry and PEFR (Peak Expiratory Flow-Rate) measurements. Exposure to contaminated air may be responsible for morbidity and reduced performance of workers.
NASA Astrophysics Data System (ADS)
Houjoh, Haruo
1992-12-01
One specific feature of the aerodynamic sound produced at the face end region is that the radiation becomes equally weak by filling root spaces as by shortening the center distance. However, one can easily expect that such actions make the air flow faster, and consequently make the sound louder. This paper attempts to reveal the reason for such a feature. First, air flow induced by the pumping action of the gear pair was analyzed regarding a series of root spaces as volume varying cavities which have channels to adjacent cavities as well as the exit/inlet at the face ends. The numerical analysis was verified by the hot wire anemometer measurement. Next, from the obtained flow response, the sound source was estimated to be a combination of symmetrically distributed simple sources. Taking the effect of either the center distance or root filling into consideration, it is shown that the simplified model can explain such a feature rationally.
Impedance probe to measure local void fraction profiles
NASA Astrophysics Data System (ADS)
Teyssedou, A.; Tapucu, A.; Lortie, M.
1988-04-01
A conductivity-type local void measurement system has been developed. The effects of the sensor tip geometry, the unbalance of the front-end bridge, the comparator threshold level, and the mass fluxes on the response of the instrument have been studied. The system has been calibrated under air-water two-phase flow conditions using the quick-closing-valve technique. Comparison of the void profiles obtained with the conductivity probe with those obtained using an optical probe confirms the applicability of this system for two-phase (air-water) flows.
Optical fiber sensor for breathing diagnostics
NASA Astrophysics Data System (ADS)
Claus, Richard O.; Distler, T.; Mecham, J. B.; Davis, B.; Arregui, F. J.; Matias, I. R.
2004-06-01
We report improvements of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Recent work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from such a multicomponent film that occurs as a function of humidity and various chemicals. We briefly review that prior work as a way to introduce more recent developments. The paper then discusses the application of these humidity sensors to the analysis of air flow associated with breathing [1]. We have designed the sensor thin film materials to enable the detection of relative humidity over a wide range, from approximately 5 to 95%, and for response times as short as several microseconds. This fast response time allows the near real-time analysis of air flow and water vapor transport during a single breath, with the advantage of very small size. The use of multiple sensors spaced a known distance apart allows the measurement of flow velocity, and recent work indicates a variation in sensor response versus coating thickness.
NASA Astrophysics Data System (ADS)
Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad
2018-05-01
In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.
Wind-Flow Patterns in the Grand Canyon as Revealed by Doppler Lidar.
NASA Astrophysics Data System (ADS)
Banta, Robert M.; Darby, Lisa S.; Kaufmann, Pirmin; Levinson, David H.; Zhu, Cui-Juan
1999-08-01
Many interesting flow patterns were found in the Grand Canyon by a scanning Doppler lidar deployed to the south rim during the 1990 Wintertime Visibility Study. Three are analyzed in this study: 1) flow reversal in the canyon, where the flow in the canyon was in the opposite direction from the flow above the canyon rim; 2) under strong, gusty flow from the southwest, the flow inside and above the canyon was from a similar direction and coupled; and 3) under light large-scale ambient flow, the lidar found evidence of local, thermally forced up- and down-canyon winds in the bottom of the canyon.On the days with flow reversal in the canyon, the strongest in-canyon flow response was found for days with northwesterly flow and a strong inversion at the canyon rim. The aerosol backscatter profiles were well mixed within the canyon but poorly mixed across the rim because of the inversion. The gusty southwest flow days showed strong evidence of vertical mixing across the rim both in the momentum and in the aerosol backscatter profiles, as one would expect in turbulent flow. The days with light ambient flow showed poor vertical mixing even inside the canyon, where the jet of down-canyon flow in the bottom of the canyon at night was often either cleaner or dirtier than the air in the upper portions of the canyon. In a case study presented, the light ambient flow regime ended with an intrusion of polluted, gusty, southwesterly flow. The polluted, high-backscatter air took several hours to mix into the upper parts of the canyon. An example is also given of high-backscatter air in the upper portions of the canyon being mixed rapidly down into a jet of cleaner air in the bottom of the canyon in just a few minutes.
NASA Astrophysics Data System (ADS)
Barmina, I.; Valdmanis, R.; Zaķe, M.
2017-06-01
The development of the swirling flame flow field and gasification/ combustion dynamics at thermo-chemical conversion of biomass pellets has experimentally been studied using a pilot device, which combines a biomass gasifier and combustor by varying the inlet conditions of the fuel-air mixture into the combustor. Experimental modelling of the formation of the cold nonreacting swirling airflow field above the inlet nozzle of the combustor and the upstream flow formation below the inlet nozzle has been carried out to assess the influence of the inlet nozzle diameter, as well primary and secondary air supply rates on the upstream flow formation and air swirl intensity, which is highly responsible for the formation of fuel-air mixture entering the combustor and the development of combustion dynamics downstream of the combustor. The research results demonstrate that at equal primary axial and secondary swirling air supply into the device a decrease in the inlet nozzle diameter enhances the upstream air swirl formation by increasing swirl intensity below the inlet nozzle of the combustor. This leads to the enhanced mixing of the combustible volatiles with the air swirl below the inlet nozzle of the combustor providing a more complete combustion of volatiles and an increase in the heat output of the device.
NASA Astrophysics Data System (ADS)
Olson, L. E.; Wright, V. P.; Hoffman, Eric A.
1994-05-01
This report focuses on preliminary experiments designed to determine regional blood flows and air, blood, and tissue contents at end expiratory lung volume in anesthetized, paralyzed, normal, sham-operated, and pneumonectomized (left lung removed) rabbits with and without wax plombage. High temporal resolution measurements were made with an EBCT scanner during the mechanical injection of a bolus of radiopaque contrast material into the pulmonary vasculature. The time-intensity curves of selected lung regions were analyzed with VIDAR using a modification of the myocardial blood flow model proposed by Wolfkiel et al. The resulting data provided an estimate of regional blood flow and total and regional air, blood and `tissue' contents, where `tissue' represents intracellular and interstitial water, i.e., lung water exclusive of blood. The estimates of mean lung air, blood and tissue contents were similar across groups and consistent with anticipated results.
Optimal Micro-Jet Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-jet secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-jet secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low mass" micro-jet array designs. The term "low mass" micro-jet may refers to fluidic jets with total (integrated) mass flow ratios between 0.10 and 1.0 percent of the engine face mass flow. Therefore, this report examines optimal micro-jet array designs for compact inlets through a Response Surface Methodology.
Coupling modes between liquid/gas coaxial jets and transverse acoustic waves
NASA Astrophysics Data System (ADS)
Helland, Chad; Hilliker, Cullen; Forliti, David; University of St. Thomas Team
2017-11-01
The interactions between shear flows and acoustic disturbances plays a very important role in many propulsion and energy applications. Liquid jets, either independent or air assisted, respond to acoustic disturbances in a manner that alters the primary and secondary atomization processes. The current study focused on the response of an air-assisted liquid jet to disturbances associated with a transverse acoustic wave. The jet is placed in the pressure node (velocity antinode) region of the resonant mode shape. It has been shown in previous studies, under certain conditions, that the acoustic forces can cause the jet flow to distort and atomize. Both liquid and coaxial gas/ liquid jet flows have been shown to distort via acoustic forces. The purpose of the current study is to understand the predictive characteristics that cause the distortion behaviors of a liquid and coaxial jet flow, and how a how a coaxial flow affects the behavior.
An engineering analysis of a closed cycle plant growth module
NASA Technical Reports Server (NTRS)
Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.
1986-01-01
The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.
Response of hot element flush wall gauges in oscillating laminar flow
NASA Technical Reports Server (NTRS)
Giddings, T. A.; Cook, W. J.
1986-01-01
The time dependent response characteristics of flush-mounted hot element gauges used as instruments to measure wall shear stress in unsteady periodic air flows were investigated. The study was initiated because anomalous results were obtained from the gauges in oscillating turbulent flows for the phase relation of the wall shear stress variation, indicating possible gauge response problems. Flat plate laminar oscillating turbulent flows characterized by a mean free stream velocity with a superposed sinusoidal variation were performed. Laminar rather than turbulent flows were studied, because a numerical solution for the phase angle between the free stream velocity and the wall shear stress variation that is known to be correct can be obtained. The focus is on comparing the phase angle indicated by the hot element gauges with corresponding numerical prediction for the phase angle, since agreement would indicate that the hot element gauges faithfully follow the true wall shear stress variation.
Turboprop engine and method of operating the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klees, G.W.; Johnson, P.E.
1986-02-11
This patent describes a turboprop engine consisting of: 1.) A compressor; 2.) A turbine; 3.) A combustion section; 4.) A variable pitch propeller; 5.) A speed reducing transmission; 6.) An air inlet; 7.) An air inlet bypass; 8.) An air outlet bypass duct; 9.) A flow control operatively positioned to receive air flow from the air inlet bypass and air flow from the low pressure compressor component. To direct the air flow to the air outlet bypass duct, and the air flow to the high pressure compressor component, the flow control has a first position where the air flow ismore » from. The high and low pressure compressor components and is directed to the air outlet bypass duct. The flow control has a second position for the air flow from the air inlet bypass duct to the air outlet bypass duct and air from the low pressure compressor component is directed to the high pressure compressor component. A method of operating a turboprop engine.« less
NASA Astrophysics Data System (ADS)
Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph K.
2017-11-01
We investigate nocturnal flow dynamics and temperature behaviour near the surface of a 170-m long gentle slope in a mid-range mountain valley. In contrast to many existing studies focusing on locations with significant topographic variations, gentle slopes cover a greater spatial extent of the Earth's surface. Air temperatures were measured using the high-resolution distributed-temperature-sensing method within a two-dimensional fibre-optic array in the lowest metre above the surface. The main objectives are to characterize the spatio-temporal patterns in the near-surface temperature and flow dynamics, and quantify their responses to the microtopography and land cover. For the duration of the experiment, including even clear-sky nights with weak winds and strong radiative forcing, the classical cold-air drainage predicted by theory could not be detected. In contrast, we show that the airflow for the two dominant flow modes originates non-locally. The most abundant flow mode is characterized by vertically-decoupled layers featuring a near-surface flow perpendicular to the slope and strong stable stratification, which contradicts the expectation of a gravity-driven downslope flow of locally produced cold air. Differences in microtopography and land cover clearly affect spatio-temporal temperature perturbations. The second most abundant flow mode is characterized by strong mixing, leading to vertical coupling with airflow directed down the local slope. Here variations of microtopography and land cover lead to negligible near-surface temperature perturbations. We conclude that spatio-temporal temperature perturbations, but not flow dynamics, can be predicted by microtopography, which complicates the prediction of advective-heat components and the existence and dynamics of cold-air pools in gently sloped terrain in the absence of observations.
Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-01-01
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. PMID:26377556
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow
NASA Technical Reports Server (NTRS)
Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.
1993-01-01
Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.
O'Shaughnessy, P T; Hemenway, D R
2000-10-01
Trials were conducted to determine those factors that affect the accuracy of a direct-reading aerosol photometer when automatically controlling airflow rate within an exposure chamber to regulate airborne dust concentrations. Photometer response was affected by a shift in the aerosol size distribution caused by changes in chamber flow rate. In addition to a dilution effect, flow rate also determined the relative amount of aerosol lost to sedimentation within the chamber. Additional calculations were added to a computer control algorithm to compensate for these effects when attempting to automatically regulate flow based on a proportional-integral-derivative (PID) feedback control algorithm. A comparison between PID-controlled trials and those performed with a constant generator output rate and dilution-air flow rate demonstrated that there was no significant decrease in photometer accuracy despite the many changes in flow rate produced when using PID control. Likewise, the PID-controlled trials produced chamber aerosol concentrations within 1% of a desired level.
NASA Astrophysics Data System (ADS)
Oveissi, Soheil; Eftekhari, S. Ali; Toghraie, Davood
2016-09-01
In this study, the effects of small-scale of the both nanoflow and nanostructure on the vibrational response of fluid flowing single-walled carbon nanotubes are investigated. To this purpose, two various flowing fluids, the air-nano-flow and the water nano-flow using Knudsen number, and two different continuum theories, the nonlocal theory and the strain-inertia gradient theory are studied. Nano-rod model is used to model the fluid-structure interaction, and Galerkin method of weighted residual is utilizing to solve and discretize the governing obtained equations. It is found that the critical flow velocity decreases as the wave number increases, excluding the first mode divergence that it has the least value among of the other instabilities if the strain-inertia gradient theory is employed. Moreover, it is observed that Kn effect has considerable impact on the reduction of critical velocities especially for the air-flow flowing through the CNT. In addition, by increasing a nonlocal parameter and Knudsen number the critical flow velocity decreases but it increases as the characteristic length related to the strain-inertia gradient theory increases.
Mixing enhancement strategies and their mechanisms in supersonic flows: A brief review
NASA Astrophysics Data System (ADS)
Huang, Wei
2018-04-01
Achieving efficient fuel-air mixing is a crucial issue in the design of the scramjet engine due to the compressibility effect on the mixing shear layer growth and the stringent flow residence time limitation induced by the high-speed crossflow, and the potential solution is to enhance mixing between air and fuel by introducing of streamwise vortices in the flow field. In this survey, some mixing enhancement strategies based on the traditional transverse injection technique proposed in recent years, as well as their mixing augmentation mechanisms, were reviewed in detail, namely the pulsed transverse injection scheme, the traditional transverse injection coupled with the vortex generator, and the dual transverse injection system with a front porthole and a rear air porthole arranged in tandem. The streamwise vortices, through the large-scale stirring motion that they introduce, are responsible for the extraction of large amounts of energy from the mean flow that can be converted into turbulence, ultimately leading to increased mixing effectiveness. The streamwise vortices may be obtained by taking advantage of the shear layer between a jet and the cross stream or by employing intrusive physical devices. Finally, a promising mixing enhancement strategy in supersonic flows was proposed, and some remarks were provided.
Response time correlations for platinum resistance thermometers in flowing fluids
NASA Technical Reports Server (NTRS)
Pandey, D. K.; Ash, R. L.
1985-01-01
The thermal response of two types of Platinum Resistance Thermometers (PRT's), which are being considered for use in the National Transonic Wind Tunnel Facility, were studied. Response time correlations for each PRT, in flowing water, oil and air, were established separately. A universal correlation, tau WOA = 2.0 + 1264, 9/h, for a Hy-Cal Sensor (with a reference resistance of 100 ohm) within an error of 20% was established while the universal correlation for the Rosemount Sensor (with a reference resistance of 1000 ohm), tau OA = 0.122 + 1105.6/h, was found with a maximum percentage error of 30%. The correlation for the Rosemount Sensor was based on air and oil data only which is certainly not sufficient to make a correlation applicable to every condition. Therefore, the correlation needs more data to be gathered in different fluids. Also, it is necessary to state that the calculation of the parameter, h, was based on the available heat transfer correlations, whose accuracies are already reported in literature uncertain within 20-30%. Therefore, the universal response constant correlations established here for the Hy-Cal and Rosemount sensors are consistent with the uncertainty in the input data and are recommended for future use in flowing liquids and gases.
Application of Multivariable Model Predictive Advanced Control for a 2×310T/H CFB Boiler Unit
NASA Astrophysics Data System (ADS)
Weijie, Zhao; Zongllao, Dai; Rong, Gou; Wengan, Gong
When a CFB boiler is in automatic control, there are strong interactions between various process variables and inverse response characteristics of bed temperature control target. Conventional Pill control strategy cannot deliver satisfactory control demand. Kalman wave filter technology is used to establish a non-linear combustion model, based on the CFB combustion characteristics of bed fuel inventory, heating values, bed lime inventory and consumption. CFB advanced combustion control utilizes multivariable model predictive control technology to optimize primary and secondary air flow, bed temperature, air flow, fuel flow and heat flux. In addition to providing advanced combustion control to 2×310t/h CFB+1×100MW extraction condensing turbine generator unit, the control also provides load allocation optimization and advanced control for main steam pressure, combustion and temperature. After the successful implementation, under 10% load change, main steam pressure varied less than ±0.07MPa, temperature less than ±1°C, bed temperature less than ±4°C, and air flow (O2) less than ±0.4%.
Fuel cell stack with passive air supply
Ren, Xiaoming; Gottesfeld, Shimshon
2006-01-17
A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.
Ebb and Flow: Maintaining the Close Air Support Relationship through History
2016-05-10
and ground forces should shape the CAS relationship for the future . Thesis Since the appearance of aircraft on the battlefield, ground forces in...campaigned for the primacy of airpower in national defense , but ultimately air and ground leaders alike share the responsibility for the failure to... for Operation Cobra involved a bold breakthrough of the German defenses , but Bradley anticipated
Bergstrand, S; Källman, U; Ek, A-C; Engström, M; Lindgren, M
2015-08-01
The aim of this study was to explore the interaction between interface pressure, pressure-induced vasodilation, and reactive hyperaemia with different pressure-redistribution mattresses. A cross-sectional study was performed with a convenience sample of healthy young individuals, and healthy older individuals and inpatients, at a university hospital in Sweden. Blood flow was measured at depths of 1mm, 2mm, and 10mm using laser Doppler flowmetry and photoplethysmography. The blood flow, interface pressure and skin temperature were measured in the sacral tissue before, during, and after load while lying on one standard hospital mattress and three different pressure-redistribution mattresses. There were significant differences between the average sacral pressure, peak sacral pressure, and local probe pressure on the three pressure-redistribution mattresses, the lowest values found were with the visco-elastic foam/air mattress (23.5 ± 2.5mmHg, 49.3 ± 11.1mmHg, 29.2 ± 14.0mmHg, respectively). Blood flow, measured as pressure-induced vasodilation, was most affected in the visco-elastic foam/air group compared to the alternating pressure mattress group at tissue depths of 2mm (39.0% and 20.0%, respectively), and 10mm (56.9 % and 35.1%, respectively). Subjects in all three groups, including healthy 18-65 year olds, were identified with no pressure-induced vasodilation or reactive hyperaemia on any mattress (n=11), which is considered a high-risk blood flow response. Interface pressure magnitudes considered not harmful during pressure-exposure on different pressure-redistribution mattresses can affect the microcirculation in different tissue structures. Despite having the lowest pressure values compared with the other mattresses, the visco-elastic foam/air mattress had the highest proportion of subjects with decreased blood flow. Healthy young individuals were identified with the high-risk blood flow response, suggesting an innate vulnerability to pressure exposure. Furthermore, the evaluation of pressure-redistribution support surfaces in terms of mean blood flow during and after tissue exposure is not feasible, but assessment of pressure-induced vasodilation and reactive hyperaemia could be a new way to assess individualised physiological measurements of mechanisms known to be related to pressure ulcer development.
NASA Astrophysics Data System (ADS)
Behrens, Alison Anne
Reacting flow studies in a novel dump combustor facility focused on increasing volumetric heat release rates, under stable burning conditions, and understanding the physical mechanisms governing flame anchoring in an effort to extend range and maneuverability of compact, low drag, air-breathing engines. Countercurrent shear flow was enhanced within the combustor as the primary control variable. Experiments were performed burning premixed JP10/air and methane/air in a dump combustor using reacting flow particle image velocimetry (PIV) and chemiluminescence as the primary diagnostics. Stable combustion studies burning lean mixtures of JP10/air aimed to increase volumetric heat release rates through the implementation of countercurrent shear control. Countercurrent shear flow was produced by creating a suction flow from a low pressure cavity connected to the dump combustor via a gap directly below the trailing edge. Chemiluminescence measurements showed that enhancing countercurrent shear within the combustor doubles volumetric heat release rates. PIV measurements indicate that counterflow acts to increase turbulent kinetic energy while maintaining constant strain rates. This acts to increase flame surface area through flame wrinkling without disrupting the integrity of the flame. Flame anchorability is one of the most important fundamental aspects to understand when trying to enhance turbulent combustion in a high-speed engine without increasing drag. Studies burning methane/air mixtures used reacting flow PIV to study flame anchoring. The operating point with the most stable flame anchor exhibited a correspondingly strong enthalpy flux of products into reactants via a single coherent structure positioned downstream of the step. However, the feature producing a strong flame anchor, i.e. a single coherent structure, also is responsible for combustion instabilities, therefore making this operating point undesirable. Counterflow control was found to create the best flow features for stable, robust, compact combustion. Enhancing countercurrent shear flow within a dump combustor enhances burning rates, provides a consistent pump of reaction-initiating combustion products required for sustained combustion, while maintaining flow three dimensionality needed to disrupt combustion instabilities. Future studies will focus on geometric and control scenarios that further reduce drag penalties while creating these same flow features found with countercurrent shear thus producing robust operating points.
ARM Airborne Continuous carbon dioxide measurements
Biraud, Sebastien
2013-03-26
The heart of the AOS CO2 Airborne Rack Mounted Analyzer System is the AOS Manifold. The AOS Manifold is a nickel coated aluminum analyzer and gas processor designed around two identical nickel-plated gas cells, one for reference gas and one for sample gas. The sample and reference cells are uniquely designed to provide optimal flushing efficiency. These cells are situated between a black-body radiation source and a photo-diode detection system. The AOS manifold also houses flow meters, pressure sensors and control valves. The exhaust from the analyzer flows into a buffer volume which allows for precise pressure control of the analyzer. The final piece of the analyzer is the demodulator board which is used to convert the DC signal generated by the analyzer into an AC response. The resulting output from the demodulator board is an averaged count of CO2 over a specified hertz cycle reported in volts and a corresponding temperature reading. The system computer is responsible for the input of commands and therefore works to control the unit functions such as flow rate, pressure, and valve control.The remainder of the system consists of compressors, reference gases, air drier, electrical cables, and the necessary connecting plumbing to provide a dry sample air stream and reference air streams to the AOS manifold.
Kurzeja, Patrick; Steeb, Holger; Strutz, Marc A; Renner, Jörg
2016-12-01
Oscillatory flow of four fluids (air, water, two aqueous sodium-tungstate solutions) was excited at frequencies up to 250 Hz in tubes of two materials (steel, silicone) covering a wide range in length, diameter, and thickness. The hydrodynamical response was characterized by phase shift and amplitude ratio between pressures in an upstream (pressure excitation) and a downstream reservoir connected by the tubes. The resulting standing flow waves reflect viscosity-controlled diffusive behavior and inertia-controlled wave behavior for oscillation frequencies relatively low and high compared to Biot's critical frequency, respectively. Rigid-tube theories correspond well with the experimental results for steel tubes filled with air or water. The wave modes observed for silicone tubes filled with the rather incompressible liquids or air, however, require accounting for the solid's shear and bulk modulus to correctly predict speed of pressure propagation and deformation mode. The shear mode may be responsible for significant macroscopic attenuation in porous materials with effective frame-shear moduli lower than the bulk modulus of the pore fluid. Despite notable effects of the ratio of densities and of acoustic and shear velocity of fluid and solid, Biot's frequency remains an approximate indicator of the transition from the viscosity to the inertia controlled regime.
An Assessment of CFD Effectiveness for Vortex Flow Simulation to Meet Preliminary Design Needs
NASA Technical Reports Server (NTRS)
Raj, P.; Ghaffari, F.; Finley, D. B.
2003-01-01
The low-speed flight and transonic maneuvering characteristics of combat air vehicles designed for efficient supersonic flight are significantly affected by the presence of free vortices. At moderate-to-high angles of attack, the flow invariably separates from the leading edges of the swept slender wings, as well as from the forebodies of the air vehicles, and rolls up to form free vortices. The design of military vehicles is heavily driven by the need to simultaneously improve performance and affordability.1 In order to meet this need, increasing emphasis is being placed on using Modeling & Simulation environments employing the Integrated Product & Process Development (IPPD) concept. The primary focus is on expeditiously providing design teams with high-fidelity data needed to make more informed decisions in the preliminary design stage. Extensive aerodynamic data are needed to support combat air vehicle design. Force and moment data are used to evaluate performance and handling qualities; surface pressures provide inputs for structural design; and flow-field data facilitate system integration. Continuing advances in computational fluid dynamics (CFD) provide an attractive means of generating the desired data in a manner that is responsive to the needs of the preliminary design efforts. The responsiveness is readily characterized as timely delivery of quality data at low cost.
Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air
NASA Astrophysics Data System (ADS)
Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier
2016-11-01
Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.
A Comparison of the Plastic Flow Response of a Powder Metallurgy Nickel Base Superalloy (Postprint)
2017-04-01
average diameter of 315 nm. The c¢-solvus tempera- ture, Tc0 , was 1430 K (1157 C). As determined by a series of long- time heat treatments followed...obtained in a mode of simple shear via the torsion of tubular samples. Similar in design to that employed by various researchers in the 1980s,[28,29] the...INTL (STINFO COPY) AIR FORCE RESEARCH LABORATORY MATERIALS AND MANUFACTURING DIRECTORATE WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7750 AIR
Optical fiber sensors for breathing diagnostics
NASA Astrophysics Data System (ADS)
Chen, Q.; Claus, Richard O.; Mecham, Jeffrey B.; Vercellino, M.; Arregui, Francisco J.; Matias, Ignacio R.
2002-03-01
We report the application of an optical fiber-based humidity sensor to the problem of breathing diagnostics. The sensor is fabricated by molecularly self-assembling selected polymers and functionalized inorganic nanoclusters into multilayered optical thin films on the cleaved and polished flat end of a singlemode optical fiber. Prior work has studied the synthesis process and the fundamental mechanisms responsible for the change in optical reflection from the film that occurs as a function of humidity. We will briefly review that prior work as a way to introduce more recent developments. This paper will then discuss the application of these sensors to the analysis of air flow. We have designed the sensor thin film materials for the detection of relative humidity over a wide range, from approximately 10 to 95%, and for response times as short as several tens of milliseconds. This very fast response time allows the near real-time analysis of air flow and humidity during a single breath, with the advantage of very small size.
Kim, Juyoung; Kim, Heonki; Annable, Michael D
2015-01-01
Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating. Copyright © 2014 Elsevier B.V. All rights reserved.
Ichinose, Masashi; Ichinose-Kuwahara, Tomoko; Kondo, Narihiko; Nishiyasu, Takeshi
2015-11-15
Reducing blood flow to working muscles during dynamic exercise causes metabolites to accumulate within the active muscles and evokes systemic pressor responses. Whether a similar cardiovascular response is elicited with normal blood flow to exercising muscles during dynamic exercise remains unknown, however. To address that issue, we tested whether cardiovascular responses are affected by increases in blood flow to active muscles. Thirteen healthy subjects performed dynamic plantarflexion exercise for 12 min at 20%, 40%, and 60% of peak workload (EX20, EX40, and EX60) with their lower thigh enclosed in a negative pressure box. Under control conditions, the box pressure was the same as the ambient air pressure. Under negative pressure conditions, beginning 3 min after the start of the exercise, the box pressure was decreased by 20, 45, and then 70 mmHg in stepwise fashion with 3-min step durations. During EX20, the negative pressure had no effect on blood flow or the cardiovascular responses measured. However, application of negative pressure increased blood flow to the exercising leg during EX40 and EX60. This increase in blood flow had no significant effect on systemic cardiovascular responses during EX40, but it markedly attenuated the pressor responses otherwise seen during EX60. These results demonstrate that during mild exercise, normal blood flow to exercising muscle is not a factor eliciting cardiovascular responses, whereas it elicits an important pressor effect during moderate exercise. This suggests blood flow to exercising muscle is a major determinant of cardiovascular responses during dynamic exercise at higher than moderate intensity. Copyright © 2015 the American Physiological Society.
Flow-induced 2D protein crystallization: characterization of the coupled interfacial and bulk flows.
Young, James E; Posada, David; Lopez, Juan M; Hirsa, Amir H
2015-05-14
Two-dimensional crystallization of the protein streptavidin, crystallizing below a biotinylated lipid film spread on a quiescent air-water interface is a well studied phenomenon. More recently, 2D crystallization induced by a shearing interfacial flow has been observed at film surface pressures significantly lower than those required in a quiescent system. Here, we quantify the interfacial and bulk flow associated with 2D protein crystallization through numerical modeling of the flow along with a Newtonian surface model. Experiments were conducted over a wide range of conditions resulting in a state diagram delineating the flow strength required to induce crystals for various surface pressures. Through measurements of the velocity profile at the air-water interface, we found that even in the cases where crystals are formed, the macroscopic flow at the interface is well described by the Newtonian model. However, the results show that even in the absence of any protein in the system, the viscous response of the biotinylated lipid film is complicated and strongly dependent on the strength of the flow. This observation suggests that the insoluble lipid film plays a key role in flow-induced 2D protein crystallization.
In-situ response time testing of thermocouples
NASA Astrophysics Data System (ADS)
Hashemian, H. M.; Petersen, K. M.; Hashemian, M.; Beverly, D. D.; Miller, L. F.
The Loop Current Step Response (LCSR) method has been developed for in situ response time testing of thermocouples and resistance thermometers. A means for measuring the sensor response for actual operating conditions and installation details is provided. This technology is ready to be assembled into an instrument for use in aerospace, nuclear, chemical and other industries where transient temperature measurements are important. The method provides time constant results within better than about 20 percent of value obtained from plunge tests. These results are based on tests performed in water at low flow rates (1M/sec) and in air flow rates ranging from a few meters per second to over a hundred kilometers per hour.
40 CFR 91.416 - Intake air flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...
NASA Technical Reports Server (NTRS)
Parmar, D. S.; Singh, J. J.
1993-01-01
Polymer dispersed liquid crystal thin films have been deposited on glass substrates by the processes of polymerization and solvent evaporation induced phase separation. The electron and the optical polarization microscopies of the films reveal that PDLC microdroplets formed during the process of phase separation near the top surface of the film remain exposed and respond to shear stress due to air or gas flow on the surface. Optical response of the film to an air flow-induced shear stress input on the free surface has been measured. Director orientation in the droplets changes with the applied shear stress leading to time varying transmitted light intensity. Director dynamics of the droplet for an applied step shear stress has been discussed from free energy considerations. Results on the measurement of light transmission as a function of the gas flow parameter unambiguously demonstrate the potential of these systems for use as boundary layer and gas flow sensors.
NASA Astrophysics Data System (ADS)
Bird, B. M.; Devitt, D.
2012-12-01
Cold air drainage flows are a naturally occurring physical process of mountain systems. Plant communities that exist in cold air drainage basins respond to these localized cold air trends, and have been shown to be decoupled from larger global climate weather systems. The assumption that air temperature decreases with altitude is violated within these systems and climate model results based on this assumption would ultimately be inaccurate. In arid regions, high radiation loads lead to significant long wave radiation being emitted from the ground later in the day. As incoming radiation ceases, the surface very quickly loses energy through radiative processes, leading to surface inversions and enhanced cold air drainage opportunities. This study is being conducted in the Mojave desert on Sheep Mountain located between sites 3 and 4 of the NSF EPSCoR network. Monitoring of cold air drainage was initiated in September of 2011within a narrow ravine located between the 2164 and 2350 meter elevation. We have installed 25 towers (5 towers per location situated at the central low point in a ravine and at equal distances up the sides of the ravine on both the N and S facing slopes) to assess air temperatures from 0.1 meters to a height of 3 meters at 25m intervals. Our goal is to better understand the connection between cold air movement and plant physiological response. The species monitored in this study include: Pinus ponderosa (common name: Ponderosa Pine), Pinus pinyon (Pinyon Pine), Juniperus osteosperma (Utah juniper), Cercocarpus intricatus (Mountain Mahogany) and Symphoricarpos (snowberry). Hourly air temperature measurements within the wash are being captured from 100 ibuttons placed within PVC solar radiation shields. We are also developing a modeling approach to assess the three dimensional movement of cold air over time by incorporating wind vectors captured from 5 2D sonic anemometers. Wind velocities will be paired with air temperatures to better understand the thermal dynamics of cold air drainage. Granier probes were installed in the five test species to monitor transpirational flow relative to cold air movement. Mid day soil - plant - water measurements are also being taken on a monthly basis during the growing season at all locations. Measurements include: leaf xylem water potential, stomata conductance, chlorophyll index readings, canopy minus ambient temperatures and surface soil moisture contents. To date the monitoring system has revealed cold air drainage occurring during periods of every month. We will report the physiological response of the five plant species, with emphasis on assessing the linkages with cold air movement.
Zuur, J. K.; Muller, S. H.; de Jongh, F. H. C.; van der Horst, M. J.; Shehata, M.; van Leeuwen, J.; Sinaasappel, M.
2007-01-01
The aim of this study is to develop a postlaryngectomy airway climate explorer (ACE) for assessment of intratracheal temperature and humidity and of influence of heat and moisture exchangers (HMEs). Engineering goals were within-device condensation prevention and fast response time characteristics. The ACE consists of a small diameter, heated air-sampling catheter connected to a heated sensor house, containing a humidity sensor. Air is sucked through the catheter by a controlled-flow pump. Validation was performed in a climate chamber using a calibrated reference sensor and in a two-flow system. Additionally, the analyser was tested in vivo. Over the clinically relevant range of humidity values (5–42 mg H2O/l air) the sensor output highly correlates with the reference sensor readings (R2 > 0.99). The 1–1/e response times are all <0.5 s. A first in vivo pilot measurement was successful. The newly developed, verified, fast-responding ACE is suitable for postlaryngectomy airway climate assessment. PMID:17629761
40 CFR 89.414 - Air flow measurement specifications.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...
40 CFR 89.414 - Air flow measurement specifications.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...
40 CFR 89.414 - Air flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...
40 CFR 89.414 - Air flow measurement specifications.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method...
Radial lean direct injection burner
Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier
2012-09-04
A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.
40 CFR 89.414 - Air flow measurement specifications.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used...
Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions
NASA Astrophysics Data System (ADS)
Groth, C. P. T.
1986-04-01
In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.
Alpha-environmental continuous air monitor inlet
Rodgers, John C.
2003-01-01
A wind deceleration and protective shroud that provides representative samples of ambient aerosols to an environmental continuous air monitor (ECAM) has a cylindrical enclosure mounted to an input on the continuous air monitor, the cylindrical enclosure having shrouded nozzles located radially about its periphery. Ambient air flows, often along with rainwater flows into the nozzles in a sampling flow generated by a pump in the continuous air monitor. The sampling flow of air creates a cyclonic flow in the enclosure that flows up through the cylindrical enclosure until the flow of air reaches the top of the cylindrical enclosure and then is directed downward to the continuous air monitor. A sloped platform located inside the cylindrical enclosure supports the nozzles and causes any moisture entering through the nozzle to drain out through the nozzles.
Effect of groundwater flow on remediation of dissolved-phase VOC contamination using air sparging.
Reddy, K R; Adams, J A
2000-02-25
This paper presents two-dimensional laboratory experiments performed to study how groundwater flow may affect the injected air zone of influence and remedial performance, and how injected air may alter subsurface groundwater flow and contaminant migration during in situ air sparging. Tests were performed by subjecting uniform sand profiles contaminated with dissolved-phase benzene to a hydraulic gradient and two different air flow rates. The results of the tests were compared to a test subjected to a similar air flow rate but a static groundwater condition. The test results revealed that the size and shape of the zone of influence were negligibly affected by groundwater flow, and as a result, similar rates of contaminant removal were realized within the zone of influence with and without groundwater flow. The air flow, however, reduced the hydraulic conductivity within the zone of influence, reducing groundwater flow and subsequent downgradient contaminant migration. The use of a higher air flow rate further reduced the hydraulic conductivity and decreased groundwater flow and contaminant migration. Overall, this study demonstrated that air sparging may be effectively implemented to intercept and treat a migrating contaminant plume.
Alper, Cuneyt M; Rath, Tanya J; Teixeira, Miriam S; Swarts, J Douglas
2018-01-01
In vivo imaging of the open cartilaginous Eustachian tube (ET) lumen by computed tomography (CT) scan during ET function (ETF) testing to establish new methodology. Five adults underwent unilateral ETF testing of an ear with a nonintact tympanic membrane using the forced response test (FRT) to measure the opening pressure (PO), steady state pressure (PS), and flow conductance (CS). Then at baseline and during the PS phase of the FRT, a temporal-bone CT scan with continuous 0.625 mm thickness was obtained. Multiplanar oblique reformats along the axis of the ET were created, and point value and region of interest (ROI) Hounsfield unit measurements were recorded from the location of the ET lumen. At the FRT flow rate of 11 ml/min, the average PO, PS, and CS were 370.5 daPa, 119.6 daPa, and 0.16 ml/min/daPa, respectively. For flow rates of 23 and 46 ml/min, these values were 236.2, 204.2, 0.12 and 385.5, 321.1, 0.18, respectively. Although areas with lower attenuation were suggestive of air density, a distinct air-filled cartilaginous ET lumen could not be confirmed. While the current imaging parameters failed to resolve the air-soft tissue interface throughout the open cartilaginous ET, further advances in imaging may obviate this limitation.
NASA Astrophysics Data System (ADS)
Azizi, Mohammad Ali; Brouwer, Jacob
2017-10-01
A better understanding of turbulent unsteady flows in gas turbine systems is necessary to design and control compressors for hybrid fuel cell-gas turbine systems. Compressor stall/surge analysis for a 4 MW hybrid solid oxide fuel cell-gas turbine system for locomotive applications is performed based upon a 1.7 MW multi-stage air compressor. Control strategies are applied to prevent operation of the hybrid SOFC-GT beyond the stall/surge lines of the compressor. Computational fluid dynamics tools are used to simulate the flow distribution and instabilities near the stall/surge line. The results show that a 1.7 MW system compressor like that of a Kawasaki gas turbine is an appropriate choice among the industrial compressors to be used in a 4 MW locomotive SOFC-GT with topping cycle design. The multi-stage radial design of the compressor enhances the ability of the compressor to maintain air flow rate during transient step-load changes. These transient step-load changes are exhibited in many potential applications for SOFC/GT systems. The compressor provides sustained air flow rate during the mild stall/surge event that occurs due to the transient step-load change that is applied, indicating that this type of compressor is well-suited for this hybrid application.
Optimal Micro-Vane Flow Control for Compact Air Vehicle Inlets
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Miller, Daniel N.; Addington, Gregory A.; Agrell, Johan
2004-01-01
The purpose of this study on micro-vane secondary flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to optimally design micro-vane secondary flow control arrays, and to establish that the aeromechanical effects of engine face distortion can also be included in the design and optimization process. These statistical design concepts were used to investigate the design characteristics of "low unit strength" micro-effector arrays. "Low unit strength" micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. Therefore, this report examines optimal micro-vane secondary flow control array designs for compact inlets through a Response Surface Methodology.
The design of an air-cooled metallic high temperature radial turbine
NASA Technical Reports Server (NTRS)
Snyder, Philip H.; Roelke, Richard J.
1988-01-01
Recent trends in small advanced gas turbine engines call for higher turbine inlet temperatures. Advances in radial turbine technology have opened the way for a cooled metallic radial turbine capable of withstanding turbine inlet temperatures of 2500 F while meeting the challenge of high efficiency in this small flow size range. In response to this need, a small air-cooled radial turbine has been designed utilizing internal blade coolant passages. The coolant flow passage design is uniquely tailored to simultaneously meet rotor cooling needs and rotor fabrication constraints. The rotor flow-path design seeks to realize improved aerodynamic blade loading characteristics and high efficiency while satisfying rotor life requirements. An up-scaled version of the final engine rotor is currently under fabrication and, after instrumentation, will be tested in the warm turbine test facility at the NASA Lewis Research Center.
The diving paradox: new insights into the role of the dive response in air-breathing vertebrates.
Davis, Randall W; Polasek, Lori; Watson, Rebecca; Fuson, Amanda; Williams, Terrie M; Kanatous, Shane B
2004-07-01
When aquatic reptiles, birds and mammals submerge, they typically exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues is reduced. The profound dive response that occurs during forced submergence sequesters blood oxygen for the brain and heart while allowing peripheral tissues to become anaerobic, thus protecting the animal from immediate asphyxiation. However, the decrease in peripheral blood flow is in direct conflict with the exercise response necessary for supporting muscle metabolism during submerged swimming. In free diving animals, a dive response still occurs, but it is less intense than during forced submergence, and whole-body metabolism remains aerobic. If blood oxygen is not sequestered for brain and heart metabolism during normal diving, then what is the purpose of the dive response? Here, we show that its primary role may be to regulate the degree of hypoxia in skeletal muscle so that blood and muscle oxygen stores can be efficiently used. Paradoxically, the muscles of diving vertebrates must become hypoxic to maximize aerobic dive duration. At the same time, morphological and enzymatic adaptations enhance intracellular oxygen diffusion at low partial pressures of oxygen. Optimizing the use of blood and muscle oxygen stores allows aquatic, air-breathing vertebrates to exercise for prolonged periods while holding their breath.
NASA Astrophysics Data System (ADS)
Tie, Qiang; Hu, Hongchang; Tian, Fuqiang; Liu, Yaping; Xu, Ran
2015-04-01
Since the headwater catchment of Miyun Reservoir is the main drinking water conservation area of Beijing, its water cycle is of importance for the regional water resource. Transpiration is an important component of water cycle, which can be estimated by sap flow. In this study, the dynamics of sap flow and its response to environmental factors and relationship with leaf area index (LAI) were analyzed. The field study was conducted in the Xitaizi Experimental Catchment, located in the headwater catchment of Miyun Reservoir in subhumid North China. The Aspen (Populus davidiana) and Epinette (Larix gmelinii) are the two dominant tree species. Sap flow in 15 Aspen (Populus davidiana) trees was monitored using thermal dissipation probes (TDP) during the growing season of 2013 and 2014, and sap flow in another 3 Epinette (Larix gmelinii) trees was also monitored during September and October in 2014 for comparative analysis. Physiological and biometric parameters of the selected trees and the environmental factors, including meteorological variables, soil moisture content and groundwater table depth were measured. Vapor pressure deficit (VPD), variable of transpiration (VT) and reference crop evapotranspiration (ET0) were calculated using the measured environmental factors. The LAI, which is used to characterize phenophase, was calculated using the Moderate Resolution Imaging Spectroradiometer (MODIS) LAI product (MCD15A3). Correlation analysis for daily sap flow and air temperature, relative humidity, precipitation, wind speed, solar radiation, VPD, VT and ET0 under different soil moisture and groundwater table depth conditions was performed. Diurnal course and hysteresis of sap flow were analyzed as a function of air temperature, solar radiation, VPD and VT on the typical sunny, cloudy and rainy days under different soil moisture conditions. Correlation analysis between daily sap flow and LAI showed that LAI and phenophase significantly influence sap flow and restrict the maximum value of sap flow. The sap flow and its response to environmental factors were compared between Aspen and Epinette. The result could make contributions to improve empirical transpiration modeling for efficient water resource management in the headwater catchment of subhumid region.
On factors influencing air-water gas exchange in emergent wetlands
Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.
2018-01-01
Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.
Bell, Geoffrey C.; Feustel, Helmut E.; Dickerhoff, Darryl J.
2002-01-01
A fume hood is provided having an adequate level of safety while reducing the amount of air exhausted from the hood. A displacement flow fume hood works on the principal of a displacement flow which displaces the volume currently present in the hood using a push-pull system. The displacement flow includes a plurality of air supplies which provide fresh air, preferably having laminar flow, to the fume hood. The displacement flow fume hood also includes an air exhaust which pulls air from the work chamber in a minimally turbulent manner. As the displacement flow produces a substantially consistent and minimally turbulent flow in the hood, inconsistent flow patterns associated with contaminant escape from the hood are minimized. The displacement flow fume hood largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 70% are possible without a decrease in the hood's containment performance. The fume hood also includes a number of structural adaptations which facilitate consistent and minimally turbulent flow within a fume hood.
Dynamic Analysis of a Rotor System Supported on Squeeze Film Damper with Air Entrainment
NASA Astrophysics Data System (ADS)
Zhang, Wei; Han, Bingbing; Zhang, Kunpeng; Ding, Qian
2017-12-01
Squeeze film dampers (SFDs) are widely used in compressors and turbines to suppress the vibration while traversing critical speeds. In practical applications, air ingestion from the outside environment and cavitation may lead to a foamy lubricant that weakens oil film damping and dynamic performance of rotor system. In this paper, a rigid rotor model is established considering both lateral and pitching vibration under different imbalance excitations to evaluate the effect of air entrainment on rotor system. Tests with three different imbalances are carried out on a rotor-SFD apparatus. Volume controlled air in mixture ranging from pure oil to all air are supplied to the SFD. The transient response of rotor is measured in the experiments. The results show that two-phase flow produces significant influence on the system stability and dynamical response. The damping properties are weakened by entrained air, such as the damping on high frequency components of rolling ball bearing. Super-harmonic resonance and bifurcation are observed, as well as the low frequency components due to air entrainment.
Catalytic combustor for integrated gasification combined cycle power plant
Bachovchin, Dennis M [Mauldin, SC; Lippert, Thomas E [Murrysville, PA
2008-12-16
A gasification power plant 10 includes a compressor 32 producing a compressed air flow 36, an air separation unit 22 producing a nitrogen flow 44, a gasifier 14 producing a primary fuel flow 28 and a secondary fuel source 60 providing a secondary fuel flow 62 The plant also includes a catalytic combustor 12 combining the nitrogen flow and a combustor portion 38 of the compressed air flow to form a diluted air flow 39 and combining at least one of the primary fuel flow and secondary fuel flow and a mixer portion 78 of the diluted air flow to produce a combustible mixture 80. A catalytic element 64 of the combustor 12 separately receives the combustible mixture and a backside cooling portion 84 of the diluted air flow and allows the mixture and the heated flow to produce a hot combustion gas 46 provided to a turbine 48. When fueled with the secondary fuel flow, nitrogen is not combined with the combustor portion.
System for controlling the operating temperature of a fuel cell
Fabis, Thomas R.; Makiel, Joseph M.; Veyo, Stephen E.
2006-06-06
A method and system are provided for improved control of the operating temperature of a fuel cell (32) utilizing an improved temperature control system (30) that varies the flow rate of inlet air entering the fuel cell (32) in response to changes in the operating temperature of the fuel cell (32). Consistent with the invention an improved temperature control system (30) is provided that includes a controller (37) that receives an indication of the temperature of the inlet air from a temperature sensor (39) and varies the heat output by at least one heat source (34, 36) to maintain the temperature of the inlet air at a set-point T.sub.inset. The controller (37) also receives an indication of the operating temperature of the fuel cell (32) and varies the flow output by an adjustable air mover (33), within a predetermined range around a set-point F.sub.set, in order to maintain the operating temperature of the fuel cell (32) at a set-point T.sub.opset.
40 CFR 1065.225 - Intake-air flow meter.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... requirements. We recommend that you use an intake-air flow meter that meets the specifications in Table 1 of...
NASA Astrophysics Data System (ADS)
Chave, Alan D.; Everett, Mark E.; Mattsson, Johan; Boon, James; Midgley, Jonathan
2017-02-01
In recent years, marine controlled source electromagnetics (CSEM) has found increasing use in hydrocarbon exploration due to its ability to detect thin resistive zones beneath the seafloor. It is the purpose of this paper to evaluate the physics of CSEM for an ocean whose electrical thickness is comparable to or much thinner than that of the overburden using the in-line configuration through examination of the elliptically polarized seafloor electric field, the time-averaged energy flow depicted by the real part of the complex Poynting vector, energy dissipation through Joule heating and the Fréchet derivatives of the seafloor field with respect to the subseafloor conductivity that is assumed to be isotropic. The deep water (ocean layer electrically much thicker than the overburden) seafloor EM response for a model containing a resistive reservoir layer has a greater amplitude and reduced phase as a function of offset compared to that for a half-space, or a stronger and faster response. For an ocean whose electrical thickness is comparable to or much smaller than that of the overburden, the electric field displays a greater amplitude and reduced phase at small offsets, shifting to a stronger amplitude and increased phase at intermediate offsets and a weaker amplitude and enhanced phase at long offsets, or a stronger and faster response that first changes to stronger and slower, and then transitions to weaker and slower. These transitions can be understood by visualizing the energy flow throughout the structure caused by the competing influences of the dipole source and guided energy flow in the reservoir layer, and the air interaction caused by coupling of the entire subseafloor resistivity structure with the sea surface. A stronger and faster response occurs when guided energy flow is dominant, while a weaker and slower response occurs when the air interaction is dominant. However, at intermediate offsets for some models, the air interaction can partially or fully reverse the direction of energy flux in the reservoir layer toward rather than away from the source, resulting in a stronger and slower response. The Fréchet derivatives are dominated by preferential sensitivity to the reservoir layer conductivity for all water depths except at high frequencies, but also display a shift with offset from the galvanic to the inductive mode in the underburden and overburden due to the interplay of guided energy flow and the air interaction. This means that the sensitivity to the horizontal conductivity is almost as strong as to the vertical component in the shallow parts of the subsurface, and in fact is stronger than the vertical sensitivity deeper down. However, the sensitivity to horizontal conductivity is still weak compared to the vertical component within thin resistive regions. The horizontal sensitivity is gradually decreased when the water becomes deep. These observations in part explain the success of shallow towed CSEM using only measurements of the in-line component of the electric field.
Integrated turbomachine oxygen plant
Anand, Ashok Kumar; DePuy, Richard Anthony; Muthaiah, Veerappan
2014-06-17
An integrated turbomachine oxygen plant includes a turbomachine and an air separation unit. One or more compressor pathways flow compressed air from a compressor through one or more of a combustor and a turbine expander to cool the combustor and/or the turbine expander. An air separation unit is operably connected to the one or more compressor pathways and is configured to separate the compressed air into oxygen and oxygen-depleted air. A method of air separation in an integrated turbomachine oxygen plant includes compressing a flow of air in a compressor of a turbomachine. The compressed flow of air is flowed through one or more of a combustor and a turbine expander of the turbomachine to cool the combustor and/or the turbine expander. The compressed flow of air is directed to an air separation unit and is separated into oxygen and oxygen-depleted air.
Simulated Altitude Investigation of Stewart-Warner Model 906-B Combustion Heater
NASA Technical Reports Server (NTRS)
Ebersbach, Frederick R.; Cervenka, Adolph J.
1947-01-01
An investigation has been conducted to determine thermal and pressure-drop performance and the operational characteristics of a Stewart-Warner model 906-B combustion heater. The performance tests covered a range of ventilating-air flows from 500 to 3185 pounds per hour, combustion-air pressure drops from 5 to 35 inches of water, and pressure altitudes from sea level to 41,000 feet. The operational characteristics investigated were the combustion-air flows for sustained combustion and for consistent ignition covering fuel-air ratios ranging from 0.033 to 0.10 and pressure altitudes from sea level to 45,000 feet. Rated heat output of 50,000 Btu per hour was obtained at pressure altitudes up to 27,000 feet for ventilating-air flows greater than 800 pounds per hour; rated output was not obtained at ventilating-air flow below 800 pounds per hour at any altitude. The maximum heater efficiency was found to be 60.7 percent at a fuel-air ratio of 0.050, a sea-level pressure altitude, a ventilating-air temperature of 0 F, combustion-air temperature of 14 F, a ventilating-air flow of 690 pounds per hour, and a combustion-air flow of 72.7 pounds per hour. The minimum combustion-air flow for sustained combustion at a pressure altitude of 25,000 feet was about 9 pounds per hour for fuel-air ratios between 0.037 and 0.099 and at a pressure altitude of 45,000 feet increased to 18 pounds per hour at a fuel-air ratio of 0.099 and 55 pounds per hour at a fuel-air ratio of 0.036. Combustion could be sustained at combustion-air flows above values of practical interest. The maximum flow was limited, however, by excessively high exhaust-gas temperature or high pressure drop. Both maximum and minimum combustion-air flows for consistent ignition decrease with increasing pressure altitude and the two curves intersect at a pressure altitude of approximately 25,000 feet and a combustion-air flow of approximately 28 pounds per hour.
Method and apparatus for duct sealing using a clog-resistant insertable injector
Wang, Duo; Modera, Mark P.
2010-12-14
A method for forming a duct access region through one side of a previously installed air duct, wherein the air duct has an air flow with an air flow direction by inserting an aerosol injector into a previously installed air duct through the access region. The aerosol injector includes a liquid tube having a liquid tube orifice for ejecting a liquid to be atomized; and a propellant cap. The method is accomplished by aligning the aerosol injector with the direction of air flow in the duct; activating an air flow within the duct; and spraying a sealant through the aerosol injector to seal the duct in the direction of the air flow.
Ecosystem warming increases sap flow rates of northern red oak trees
Juice, Stephanie M.; Templer, Pamela H.; Phillips, Nathan G.; ...
2016-03-17
Over the next century, air temperature increases up to 5°C are projected for the northeastern United States. As evapotranspiration strongly influences water loss from terrestrial ecosystems, the ecophysiological response of trees to warming will have important consequences for forest water budgets. We measured growing season sap flow rates in mature northern red oak ( Quercus rubra L.) trees in a combined air (up to 5.5°C above ambient) and soil (up to 1.85°C above ambient at 6-cm depth) warming experiment at Harvard Forest, Massachusetts, United States. Through principal components analysis, we found air and soil temperatures explained the largest amount ofmore » variance in environmental variables associated with rates of sap flow, with relative humidity, photosynthetically active radiation and vapor pressure deficit having significant, but smaller, effects. On average, each 1°C increase in temperature increased sap flow rates by approximately 1100 kg H 2O m -2 sapwood area day-1 throughout the growing season and by 1200 kg H 2O m -2 sapwood area day -1 during the early growing season. Reductions in the number of cold winter days correlated positively with increased sap flow during the early growing season (a decrease in 100 heating-degree days was associated with a sapflow increase in approximately 5 kg H 2O m -2 sapwood area day -1). Soil moisture declined with increased treatment temperatures, and each soil moisture percentage decrease resulted in a decrease in sap flow of approximately 360 kg H2O m -22 sapwood area day -1. At night, soil moisture correlated positively with sap flow. Finally, these results demonstrate that warmer air and soil temperatures in winter and throughout the growing season lead to increased sap flow rates, which could affect forest water budgets throughout the year.« less
Ecosystem warming increases sap flow rates of northern red oak trees
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juice, Stephanie M.; Templer, Pamela H.; Phillips, Nathan G.
Over the next century, air temperature increases up to 5°C are projected for the northeastern United States. As evapotranspiration strongly influences water loss from terrestrial ecosystems, the ecophysiological response of trees to warming will have important consequences for forest water budgets. We measured growing season sap flow rates in mature northern red oak ( Quercus rubra L.) trees in a combined air (up to 5.5°C above ambient) and soil (up to 1.85°C above ambient at 6-cm depth) warming experiment at Harvard Forest, Massachusetts, United States. Through principal components analysis, we found air and soil temperatures explained the largest amount ofmore » variance in environmental variables associated with rates of sap flow, with relative humidity, photosynthetically active radiation and vapor pressure deficit having significant, but smaller, effects. On average, each 1°C increase in temperature increased sap flow rates by approximately 1100 kg H 2O m -2 sapwood area day-1 throughout the growing season and by 1200 kg H 2O m -2 sapwood area day -1 during the early growing season. Reductions in the number of cold winter days correlated positively with increased sap flow during the early growing season (a decrease in 100 heating-degree days was associated with a sapflow increase in approximately 5 kg H 2O m -2 sapwood area day -1). Soil moisture declined with increased treatment temperatures, and each soil moisture percentage decrease resulted in a decrease in sap flow of approximately 360 kg H2O m -22 sapwood area day -1. At night, soil moisture correlated positively with sap flow. Finally, these results demonstrate that warmer air and soil temperatures in winter and throughout the growing season lead to increased sap flow rates, which could affect forest water budgets throughout the year.« less
Vibrational response of a rectangular duct of finite length excited by a turbulent internal flow
NASA Astrophysics Data System (ADS)
David, Antoine; Hugues, Florian; Dauchez, Nicolas; Perrey-Debain, Emmanuel
2018-05-01
Gas transport ductwork in industrial plants or air conditioning networks can be subject to vibrations induced by the internal flow. Most studies in this matter have been carried out on circular ducts. This paper focuses specifically on the vibratory response of a rectangular duct of finite length excited by an internal turbulent flow. A semi-analytical model taking into account the modal response of the structure due to both aerodynamic and acoustic contributions is derived. The aerodynamic component of the excitation is applied on the basis of Corcos model where the power spectral density of the wall pressure is determined experimentally. The acoustic component is based on the propagating modes in the duct where the acoustic modal contribution are extracted via cross-spectral densities. The vibrational response is given for a 0.2 × 0.1 × 0.5 m3 duct made of 3 mm steel plates excited by 20 m/s or 30 m/s flows. Comparisons between experimental results and numerical predictions show a good agreement. The competition between acoustic and aerodynamic components is highlighted.
NASA Technical Reports Server (NTRS)
Seasholtz, Richard G.; Buggele, Alvin E.
2002-01-01
A laser light scattering diagnostic for measurement of dynamic flow velocity at a point is described. The instrument is being developed for use in the study of propagating shock waves and detonation waves in pulse detonation engines under development at the NASA Glenn Research Center (GRC). The approach uses a Fabry-Perot interferometer to measure the Doppler shift of laser light scattered from small (submicron) particles in the flow. The high-speed detection system required to resolve the transient response as a shock wave crosses the probe volume uses fast response photodetectors, and a PC based data acquisition system. Preliminary results of measurements made in the GRC Mach 4, 10 by 25 cm supersonic wind tunnel are presented. Spontaneous condensation of water vapor in the flow is used as seed. The tunnel is supplied with continuous air flow at up to 45 psia and the flow is exhausted into the GRC laboratory-wide altitude exhaust system at pressures down to 0.3 psia.
Bulbar conjunctival microvascular responses in dry eye
Chen, Wan; Batawi, Hatim Ismail M.; Alava, Jimmy R.; Galor, Anat; Yuan, Jin; Sarantopoulos, Constantine D.; McClellan, Allison L.; Feuer, William J.; Levitt, Roy C.; Wang, Jianhua
2017-01-01
Purpose Conjunctival microvascular responses may be a surrogate metric of efferent neural pathway function innervating the ocular surface as changes in blood flow occur within seconds after a stimulus. As somatosensory dysfunction may partially underlie dry eye (DE), in this study we evaluate whether bulbar conjunctival microvascular alterations correlate with various aspects of DE. Methods Fifty-six DE patients were prospectively recruited from a Veterans Affairs ophthalmology clinic over an 11-month period. DE symptoms and ocular pain were assessed along with DE signs. A novel functional slit lamp biomicroscope (FSLB) was used to image the temporal bulbar conjunctiva from the right eye before and after central corneal stimulation with an air puff. Blood flow velocities were measured and noninvasive microvascular perfusion maps (nMPMs) were created. Results The bulbar blood flow velocity was 0.50±0.15 mm/s at baseline and increased to 0.55±0.17 mm/s after stimulation (P<0.001); the average change in velocity was 0.05±0.09. nMPMs values and venule diameter, on the other hand, did not significantly increase after stimulation (1.64±0.004 at baseline, 1.65±0.04 after stimulation, P=0.22 and 22.13±1.84 m at baseline, 22.21±2.04 μm after stimulation, P=0.73, respectively). Baseline blood flow velocity positively associated with Schirmer scores (r=0.40, P=0.002). Those with higher self-rated wind hyperalgesia demonstrated less change in blood flow velocity (r= −0.268, P=0.046) after air stimulation on the central cornea. Conclusion Conjunctival blood flow velocity, but not vessel diameter or complexity, increases after wind stimuli. Baseline flow positively correlated with Schirmer scores while change in flow negatively correlated with self-reported wind hyperalgesia. PMID:28042094
TeGrotenhuis, Ward Evan
2013-11-05
A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.
40 CFR 90.416 - Intake air flow measurement specifications.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...
Indrasena, W M; Ackman, R G; Gill, T A
1999-09-10
Thin-layer chromatography (TLC) on Chromarods-SIII with the Iatroscan (Mark-5) and a flame thermionic detector (FTID) was used to develop a rapid method for the detection of paralytic shellfish poisoning (PSP) toxins. The effect of variation in hydrogen (H2) flow, air flow, scan time and detector current on the FTID peak response for both phosphatidylcholine (PC) and PSP were studied in order to define optimum detection conditions. A combination of hydrogen and air flow-rates of 50 ml/min and 1.5-2.0 l/min respectively, along with a scan time of 40 s/rod and detector current of 3.0 A (ampere) or above were found to yield the best results for the detection of PSP compounds. Increasing the detector current level to as high as 3.3 A gave about 130 times more FTID response than did flame ionization detection (FID), for PSP components. Quantities of standards as small as 1 ng neosaxitoxin (NEO), 5 ng saxitoxin (STX), 5 ng B1-toxins (B1), 2 ng gonyautoxin (GTX) 2/3, 6 ng GTX 1/4 and 6 ng C-toxins (C1/C2) could be detected with the FTID. The method detection limits for toxic shellfish tissues using the FTID were 0.4, 2.1, 0.8 and 2.5 micrograms per g tissue for GTX 2/3, STX, NEO and C toxins, respectively. The FTID response increased with increasing detector current and with increasing the scan time. Increasing hydrogen and air flow-rates resulted in decreasing sensitivity within defined limits. Numerous solvent systems were tested, and, solvent consisting of chloroform: methanol-water-acetic acid (30:50:8:2) could separate C toxins from GTX, which eluted ahead of NEO and STX. Accordingly, TLC/FTID with the Iatroscan (Mark-5) seems to be a promising, relatively inexpensive and rapid method of screening plant and animal tissues for PSP toxins.
Transition Delay in a Hypervelocity Boundary Layer using Nonequilibrium CO2 Injection
2008-10-28
flows than for either air or N2 flows. The explanation for this phenomenon lies in the fact that when CO2 is in vibrational and chemical ... chemical non-equilibrium, these relax- ation processes absorb energy from acoustic disturbances whose growth is responsible for transition in high...atmosphere at hypersonic speeds, they must somehow provide for, avoid, or otherwise accommodate the enormous heat-transfer rates to the vehicle engen
Ground/Flight Correlation of Aerodynamic Loads with Structural Response
NASA Technical Reports Server (NTRS)
Mangalam, Arun S.; Davis, Mark C.
2009-01-01
Ground and flight tests provide a basis and methodology for in-flight characterization of the aerodynamic and structural performance through the monitoring of the fluid-structure interaction. The NF-15B flight tests of the Intelligent Flight Control System program provided a unique opportunity to test the correlation of aerodynamic loads with points of flow attaching and detaching from the surface, which are also known as flow bifurcation points, as observed in a previous wind tunnel test performed at the U.S. Air Force Academy (Colorado Springs, Colorado). Moreover, flight tests, along with the subsequent unsteady aerodynamic tests in the NASA Transonic Dynamics Tunnel (TDT), provide a basis using surface flow sensors as means of assessing the aeroelastic performance of flight vehicles. For the flight tests, the NF-15B tail was instrumented with hot-film sensors and strain gages for measuring root-bending strains. This data were gathered via selected sideslip maneuvers performed at level flight and subsonic speeds. The aerodynamic loads generated by the sideslip maneuver resulted in a structural response, which were then compared with the hot-film sensor signals. The hot-film sensor signals near the stagnation region were found to be highly correlated with the root-bending strains. For the TDT tests, a flexible wing section developed under the U.S. Air Force Research Lab SensorCraft program was instrumented with strain gages, accelerometers, and hot-film sensors at two span stations. The TDT tests confirmed the correlation between flow bifurcation points and the wing structural response to tunnel-generated gusts. Furthermore, as the wings structural modes were excited by the gusts, a gradual phase change between the flow bifurcation point and the structural mode occurred during a resonant condition.
Drop size distribution and air velocity measurements in air assist swirl atomizer sprays
NASA Technical Reports Server (NTRS)
Mao, C.-P.; Oechsle, V.; Chigier, N.
1987-01-01
Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.
In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...
7 CFR 28.603 - Procedures for air flow tests of micronaire reading.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination, of...
Air-flow regulation system for a coal gasifier
Fasching, George E.
1984-01-01
An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.
Energy efficient laboratory fume hood
Feustel, Helmut E.
2000-01-01
The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.
Serial cooling of a combustor for a gas turbine engine
Abreu, Mario E.; Kielczyk, Janusz J.
2001-01-01
A combustor for a gas turbine engine uses compressed air to cool a combustor liner and uses at least a portion of the same compressed air for combustion air. A flow diverting mechanism regulates compressed air flow entering a combustion air plenum feeding combustion air to a plurality of fuel nozzles. The flow diverting mechanism adjusts combustion air according to engine loading.
High efficiency stoichiometric internal combustion engine system
Winsor, Richard Edward; Chase, Scott Allen
2009-06-02
A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.
Investigation of air stream from combustor-liner air entry holes, 3
NASA Technical Reports Server (NTRS)
Aiba, T.; Nakano, T.
1979-01-01
Jets flowing from air entry holes of the combustor liner of a gas turbine were investigated. Cold air was supplied through the air entry holes into the primary hot gas flows. The mass flow of the primary hot gas and issuing jets was measured, and the behavior of the air jets was studied by the measurement of the temperature distribution of the gas mixture. The air jets flowing from three circular air entry holes, single streamwise long holes, and two opposing circular holes, parallel to the primary flow were studied along with the effects of jet and gas stream velocities, and of gas temperature. The discharge coefficient, the maximum penetration of the jets, the jet flow path, the mixing of the jets, and temperature distribution across the jets were investigated. Empirical expressions which describe the characteristics of the jets under the conditions of the experiments were formulated.
40 CFR 92.108 - Intake and cooling air measurements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake and cooling air measurements....108 Intake and cooling air measurements. (a) Intake air flow measurement. Measurement of the flow rate..., the measurement technique shall conform to the following: (1) The air flow measurement method used...
Air Monitoring Data for BP Spill/Deepwater Horizon
The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.
Air Sampling Data for BP Spill/Deepwater Horizon
The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.
Ge, Shemin; McKenzie, Jeffrey; Voss, Clifford; Wu, Qingbai
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3?C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment.
Code of Federal Regulations, 2014 CFR
2014-01-01
... serve the load. Eligible borrower means a utility system that has direct or indirect responsibility for... analysis of energy flows in a building, process, or system with the goal of identifying opportunities to... output. HVAC means heating, ventilation, and air conditioning. Load means the Power delivered to power...
Development of a Bio-inspired Microflap Array for Passive Control of Flow Separation
NASA Astrophysics Data System (ADS)
Devey, Sean; Morris, Jackson; Hubner, Paul; Lang, Amy
2017-11-01
The shortfin mako shark benefits from its flexible microscopic scales, or denticles; which can passively limit flow separation in water. These denticles can be passively actuated by incipient reversing flow in the lower 5% of the boundary layer, thereby impeding further flow reversal and promoting increased momentum exchange. In air, an array of flow actuated microflaps has the potential to provide similar benefits to man-made systems. Multiple iterations of microflap arrays have been developed and tested in the University of Alabama's Boundary Layer Tunnel. A variety of 3D-printed flaps derived from mako denticle geometries were arranged in rows with freedom to rotate, like mako denticles, to angles up to 50 degrees. Placing the microflap array in separated flow regions allowed for direct observation of the microflap response. Like mako denticles, microflaps with lengths of about 4 mm have been shown to actuate in response to reversing surface flows. This presentation will focus on the development and implementation of passive microflap arrays. This research was supported by Boeing, the US Army, and the National Science Foundation REU program.
Injectors for Multipoint Injection
NASA Technical Reports Server (NTRS)
Prociw, Lev Alexander (Inventor); Ryon, Jason (Inventor)
2015-01-01
An injector for a multipoint combustor system includes an inner air swirler which defines an interior flow passage and a plurality of swirler inlet ports in an upstream portion thereof. The inlet ports are configured and adapted to impart swirl on flow in the interior flow passage. An outer air cap is mounted outboard of the inner swirler. A fuel passage is defined between the inner air swirler and the outer air cap, and includes a discharge outlet between downstream portions of the inner air swirler and the outer air cap for issuing fuel for combustion. The outer air cap defines an outer air circuit configured for substantially unswirled injection of compressor discharge air outboard of the interior flow passage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr; Schuller, T.; Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry
2015-04-15
The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in themore » numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.« less
Effect of a surface tension gradient on the slip flow along a superhydrophobic air-water interface
NASA Astrophysics Data System (ADS)
Song, Dong; Song, Baowei; Hu, Haibao; Du, Xiaosong; Du, Peng; Choi, Chang-Hwan; Rothstein, Jonathan P.
2018-03-01
Superhydrophobic surfaces have been shown to produce significant drag reduction in both laminar and turbulent flows by introducing an apparent slip velocity along an air-water interface trapped within the surface roughness. In the experiments presented within this study, we demonstrate the existence of a surface tension gradient associated with the resultant Marangoni flow along an air-water interface that causes the slip velocity and slip length to be significantly reduced. In this study, the slip velocity along a millimeter-sized air-water interface was investigated experimentally. This large-scale air-water interface facilitated a detailed investigation of the interfacial velocity profiles as the flow rate, interfacial curvature, and interface geometry were varied. For the air-water interfaces supported above continuous grooves (concentric rings within a torsional shear flow) where no surface tension gradient exists, a slip velocity as high as 30% of the bulk velocity was observed. However, for the air-water interfaces supported above discontinuous grooves (rectangular channels in a Poiseuille flow), the presence of a surface tension gradient reduced the slip velocity and in some cases resulted in an interfacial velocity that was opposite to the main flow direction. The curvature of the air-water interface in the spanwise direction was found to dictate the details of the interfacial flow profile with reverse flow in the center of the interface for concave surfaces and along the outside of the interface for convex surfaces. The deflection of the air-water interface was also found to greatly affect the magnitude of the slip. Numerical simulations imposed with a relatively small surface tension gradient along the air-water interface were able to predict both the reduced slip velocity and back flow along the air-water interface.
[Application of laminar air flow techniques in burn treatment].
Chen, Hua-de; Lai, Wen; Zheng, Shao-yi; Gao, Hui; Xiong, Bing; Bian, Hui-ning; Liu, Zuo-An; Wei, Li-jun
2005-12-01
To evaluate the value of laminar flow in the treatment of burns. The air in the laminar flow chamber and the wound tissues of the patients were sampled for bacterial detection. The number and stains of bacterial colony from different classes of laminar air flow chambers at different time points were inspected and compared. The bacterial number was 0 in the laminar flow chamber of 1000 grade, which was obviously different from that in the public area. The mortality was obviously decreased in the laminar air flow chamber with shorter treatment time and hospitalization. No wound infection occurred and the wounds healed smoothly in all these patients. The application of laminar air flow can be helpful for the treatment of severe burns.
Penetration and blown-air effect in sand
NASA Astrophysics Data System (ADS)
Clement, R.; Courrech du Pont, S.; Douady, S.
2012-04-01
Sand is known to show a variety of uncommon physical features that do not fit the behavior of liquid or solid state. A good example of the inherent difficulties encountered when trying to describe collective grains behavior is the penetration of an intruding object into a granular medium. Such problems involve large coordination numbers, and the medium response dramatically depends on the volume fraction. On the fringe of these studies, we consider here the penetration of a cylindrical shell (typically an upside down glass) into dry sand, and report what we called the "blown-air effect". The air initially trapped escapes when the shell is pushed into sand, flowing through the granular medium. This flow dilates the sand and considerably eases the penetration of the shell. This is very different from what happens in liquids: when pushing a top-closed shell into a liquid, the trapped air increases the buoyancy and opposes the penetration. We show that the air flow does not change the general dynamics of penetration, suggesting that fluidization only involves an effective smaller volume fraction. Despite its simplicity (only a glass and some sand are needed to observe the effect), this experiment nicely illustrates the sometimes counter-intuitive behavior of granular media. Penetration in sand is also a critical issue in industry, and this work may help improving burying methods. Ref: Penetration and blown air effect in granular media R. Clément, S. Courrech du Pont, M. Ould-Hamouda, D. Duveau, and S. Douady Phys. Rev. Lett. 2011 Science News: http://news.sciencemag.org/sciencenow/2011/02/convince-your-friends-youre-a-ge.html
RESEARCH PLAN: EFFECTS OF CHEMICAL HERBICIDES AND GENE FLOW ON NON-TARGET PLANTS
This project supports EPA's mission to protect human health and to safeguard the natural environment ? air, water, and land ? upon which life depends. Specifically, we address EPA's responsibility to prevent pollution and reduce the impacts from pollution to communities and ecos...
30 CFR 57.22213 - Air flow (III mines).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...
30 CFR 57.22213 - Air flow (III mines).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be at...
40 CFR 1065.225 - Intake-air flow meter.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...
40 CFR 1065.225 - Intake-air flow meter.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...
40 CFR 1065.225 - Intake-air flow meter.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...
Viscocapillary Response of Gas Bubbles Probed by Thermal Noise Atomic Force Measurement.
Wang, Yuliang; Zeng, Binglin; Alem, Hadush Tedros; Zhang, Zaicheng; Charlaix, Elisabeth; Maali, Abdelhamid
2018-01-30
We present thermal noise measurements of a vibrating sphere close to microsized air bubbles in water with an atomic force microscope. The sphere was glued at the end of a cantilever with a resonance frequency of few kHz. The subangstrom thermal motion of the microsphere reveals an elastohydrodynamic coupling between the sphere and the air bubble. The results are in perfect agreement with a model incorporating macroscopic capillarity and fluid flow on the bubble surface with full slip boundary conditions.
CFD Modeling of Swirl and Nonswirl Gas Injections into Liquid Baths Using Top Submerged Lances
NASA Astrophysics Data System (ADS)
Huda, Nazmul; Naser, J.; Brooks, G.; Reuter, M. A.; Matusewicz, R. W.
2010-02-01
Fluid flow phenomena in a cylindrical bath stirred by a top submerged lance (TSL) gas injection was investigated by using the computational fluid dynamic (CFD) modeling technique for an isothermal air-water system. The multiphase flow simulation, based on the Euler-Euler approach, elucidated the effect of swirl and nonswirl flow inside the bath. The effects of the lance submergence level and the air flow rate also were investigated. The simulation results for the velocity fields and the generation of turbulence in the bath were validated against existing experimental data from the previous water model experimental study by Morsi et al.[1] The model was extended to measure the degree of the splash generation for different liquid densities at certain heights above the free surface. The simulation results showed that the two-thirds lance submergence level provided better mixing and high liquid velocities for the generation of turbulence inside the water bath. However, it is also responsible for generating more splashes in the bath compared with the one-third lance submergence level. An approach generally used by heating, ventilation, and air conditioning (HVAC) system simulations was applied to predict the convective mixing phenomena. The simulation results for the air-water system showed that mean convective mixing for swirl flow is more than twice than that of nonswirl in close proximity to the lance. A semiempirical equation was proposed from the results of the present simulation to measure the vertical penetration distance of the air jet injected through the annulus of the lance in the cylindrical vessel of the model, which can be expressed as L_{va} = 0.275( {do - di } )Frm^{0.4745} . More work still needs to be done to predict the detail process kinetics in a real furnace by considering nonisothermal high-temperature systems with chemical reactions.
NASA Astrophysics Data System (ADS)
Sabanskis, A.; Virbulis, J.
2016-04-01
Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.
Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion
Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi
2002-01-01
A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.
Anthropometric Source Book. Volume 3: Annotated Bibliography of Anthropometry
1978-07-01
on Isometric Strength and Endurance, Blood Flow, and the Blood Pressure and Heart Rate Response to Isometric Exercise . TR 75 0086, Air Force Office... somatotype . In this report the subgroup statistics were combined to yield summary statistics arranged into more convenient tabulations for the...devices and tech- niques developed under the auspices of NASA for use in measuring and estim- ating human responses under zero-gravity conditions
On-line fast response device and method for measuring dissolved gas in a fluid
Tutu, Narinder Kumar [Manorville, NY
2011-01-11
A method and device for the measurement of dissolved gas within a fluid. The fluid, substantially a liquid, is pumped into a pipe. The flow of the fluid is temporally restricted, creating one or more low pressure regions. A measurement indicative of trapped air is taken before and after the restriction. The amount of dissolved air is calculated from the difference between the first and second measurements. Preferably measurements indicative of trapped air is obtained from one or more pressure transducers, capacitance transducers, or combinations thereof. In the alternative, other methods such as those utilizing x-rays or gamma rays may also be used to detect trapped air. Preferably, the fluid is a hydraulic fluid, whereby dissolved air in the fluid is detected.
NASA Technical Reports Server (NTRS)
Stapleton, Thomas J. (Inventor)
2015-01-01
A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.
Increasing jet entrainment, mixing and spreading
Farrington, Robert B.
1994-01-01
A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.
Increasing jet entrainment, mixing and spreading
Farrington, R.B.
1994-08-16
A free jet of air is disturbed at a frequency that substantially matches natural turbulences in the free jet to increase the entrainment, mixing, and spreading of air by the free jet, for example in a room or other enclosure. The disturbances are created by pulsing the flow of air that creates the free jet at the desired frequency. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 11 figs.
Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers
NASA Astrophysics Data System (ADS)
Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven
2009-11-01
Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.
Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo
2016-07-01
Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.
Harbinson, J; Foyer, C H
1991-09-01
The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO(2) compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO(2) had been removed. P700 was more oxidized at any measured irradiance in CO(2)-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO(2)-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO(2)-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO(2)-free air, with an activation state 50% of maximum. We conclude that, at the CO(2) compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane.
Effect of air flow on tubular solar still efficiency
2013-01-01
Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020
Effect of air flow on tubular solar still efficiency.
Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar
2013-01-01
An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.
An experimental study of a plunging liquid jet induced air carryunder and dispersion
NASA Astrophysics Data System (ADS)
Bonetto, F.; Drew, D. A.; Lahey, R. T., Jr.
1993-03-01
A good understanding of the air carryunder and bubble dispersion process associated with a plunging liquid jet is vital if one is to be able to quantify such diverse phenomena as sea surface chemistry, the meteorological significance of breaking ocean waves (e.g., mitigation of the greenhouse effect due to the absorption of CO2 by the oceans), the performance of certain type of chemical reactors, and a number of other important maritime-related applications. The absorption of greenhouse gases into the ocean has been hypothesized to be highly dependent upon the air carryunder that occurs due to breaking waves. This process can be approximated with a plunging liquid jet. Moreover, the air entrainment process due to the breaking bow waves of surface ships may cause long (i.e., up to 5 km in length) wakes. Naturally, easily detectable wakes are undesirable for naval warships. In addition, the air carryunder that occurs at most hydraulic structures in rivers is primarily responsible for the large air/water mass transfer that is associated with these structures. Also, air entrainment plays an important role in the slug flow regime. In particular, the liquid film surrounding a Taylor bubble has a flow in the opposite direction from the Taylor bubble. This liquid film can be thought of as a plunging liquid jet that produces a surface depression in the rear part of the Taylor bubble.
Koueik, Joyce; Rocque, Brandon G; Henry, Jordan; Bragg, Taryn; Paul, Jennifer; Iskandar, Bermans J
2018-02-01
Continuous irrigation is an important adjunct for successful intraventricular endoscopy, particularly for complex cases. It allows better visualization by washing out blood and debris, improves navigation by expanding the ventricles, and assists with tissue dissection. A method of irrigation delivery using a centrifugal pump designed originally for cardiac surgery is presented. The BioMedicus centrifugal pump has the desirable ability to deliver a continuous laminar flow of fluid that excludes air from the system. A series of modifications to the pump tubing was performed to adapt it to neuroendoscopy. Equipment testing determined flow and pressure responses at various settings and simulated clinical conditions. The pump was then studied clinically in 11 endoscopy cases and eventually used in 310 surgical cases. Modifications of the pump tubing allowed for integration with different endoscopy systems. Constant flow rates were achieved with and without surgical instruments through the working ports. Optimal flow rates ranged between 30 and 100 ml/min depending on endoscope size. Intraoperative use was well tolerated with no permanent morbidity and showed consistent flow rates, minimal air accumulation, and seamless irrigation bag replacement during prolonged surgery. Although the pump is equipped with an internal safety mechanism to protect against pressure buildup when outflow obstructions occur, equipment testing revealed that flow cessation is not instantaneous enough to protect against sudden intracranial pressure elevation. A commonly available cardiac pump system was modified to provide continuous irrigation for intraventricular endoscopy. The system alleviates the problems of inconsistent flow rates, air in the irrigation lines, and delays in changing irrigation bags, thereby optimizing patient safety and surgical efficiency. Safe use of the pump requires good ventricular outflow and, clearly, sound surgical judgment.
Air conditioning system and component therefore distributing air flow from opposite directions
NASA Technical Reports Server (NTRS)
Obler, H. D.; Bauer, H. B. (Inventor)
1974-01-01
The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.
Passive containment cooling system
Conway, Lawrence E.; Stewart, William A.
1991-01-01
A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.
Flow visualization study of the horseshoe vortex in a turbine stator cascade
NASA Technical Reports Server (NTRS)
Gaugler, R. E.; Russell, L. M.
1982-01-01
Flow visualization techniques were used to show the behavior of the horseshoe vortex in a large scale turbine stator cascade. Oil drops on the end wall surface flowed in response to local shear stresses, indicating the limiting flow streamlines at the surface. Smoke injected into the flow and photographed showed time averaged flow behavior. Neutrally bouyant helium filled soap bubbles followed the flow and showed up on photographs as streaks, indicating the paths followed by individual fluid particles. Preliminary attempts to control the vortex were made by injecting air through control jets drilled in the end wall near the vane leading edge. Seventeen different hole locations were tested, one at a time, and the effect of the control jets on the path follwed by smoke in the boundary layer was recorded photographically.
Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements
NASA Technical Reports Server (NTRS)
Morelli, Eugene A.
2010-01-01
A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.
Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S
2004-03-01
HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Kim, K. M.; Sud, Y. C.; Walker, G. K.
2009-01-01
The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher.
Method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors
NASA Technical Reports Server (NTRS)
Nalim, M. Razi (Inventor); Paxson, Daniel E. (Inventor)
1999-01-01
A method and apparatus for cold gas reinjection in through-flow and reverse-flow wave rotors having a plurality of channels formed around a periphery thereof. A first port injects a supply of cool air into the channels. A second port allows the supply of cool air to exit the channels and flow to a combustor. A third port injects a supply of hot gas from the combustor into the channels. A fourth port allows the supply of hot gas to exit the channels and flow to a turbine. A diverting port and a reinjection port are connected to the second and third ports, respectively. The diverting port diverts a portion of the cool air exiting through the second port as reinjection air. The diverting port is fluidly connected to the reinjection port which reinjects the reinjection air back into the channels. The reinjection air evacuates the channels of the hot gas resident therein and cools the channel walls, a pair of end walls of the rotor, ducts communicating with the rotor and subsequent downstream components. In a second embodiment, the second port receives all of the cool air exiting the channels and the diverting port diverts a portion of the cool air just prior to the cool air flowing to the combustor.
Airborne Management of Traffic Conflicts in Descent With Arrival Constraints
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Krishnamurthy, Karthik
2005-01-01
NASA is studying far-term air traffic management concepts that may increase operational efficiency through a redistribution of decisionmaking authority among airborne and ground-based elements of the air transportation system. One component of this research, En Route Free Maneuvering, allows trained pilots of equipped autonomous aircraft to assume responsibility for traffic separation. Ground-based air traffic controllers would continue to separate traffic unequipped for autonomous operations and would issue flow management constraints to all aircraft. To evaluate En Route Free Maneuvering operations, a human-in-the-loop experiment was jointly conducted by the NASA Ames and Langley Research Centers. In this experiment, test subject pilots used desktop flight simulators to resolve conflicts in cruise and descent, and to adhere to air traffic flow constraints issued by test subject controllers. Simulators at NASA Langley were equipped with a prototype Autonomous Operations Planner (AOP) flight deck toolset to assist pilots with conflict management and constraint compliance tasks. Results from the experiment are presented, focusing specifically on operations during the initial descent into the terminal area. Airborne conflict resolution performance in descent, conformance to traffic flow management constraints, and the effects of conflicting traffic on constraint conformance are all presented. Subjective data from subject pilots are also presented, showing perceived levels of workload, safety, and acceptability of autonomous arrival operations. Finally, potential AOP functionality enhancements are discussed along with suggestions to improve arrival procedures.
Variable volume combustor with an air bypass system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael
The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.
Convective response of a wall-mounted hot-film sensor in a shock tube
NASA Technical Reports Server (NTRS)
Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.
1991-01-01
Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.
Design and analysis of Air flow duct for improving the thermal performance of disc brake rotor
NASA Astrophysics Data System (ADS)
Raja, T.; Mathiselvan, G.; Sreenivasulureddy, M.; Goldwin Xavier, X.
2017-05-01
safety in automotive engineering has been considered as a number one priority in development of new vehicle. A brake system is one of the most critical systems in the vehicle, without which the vehicle will put a passenger in an unsafe position. Temperature distribution on disc rotor brake and the performance brake of disc rotor is influenced by the air flow around the disc rotor. In this paper, the effect of air flow over the disc rotor is analyzed using the CFD software. The air flow over the disc rotor is increased by using a duct to supply more air flow over the disc rotor. The duct is designed to supply more air to the rotor surface and it can be placed in front of the vehicle for better performance. Increasing the air flow around the rotor will maximize the heat convection from the rotor surface. The rotor life and the performance can be improved.
Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control
NASA Technical Reports Server (NTRS)
Xu, Tian-Bing; Su, Ji; Zhang, Qiming
2004-01-01
An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.
30 CFR 57.22213 - Air flow (III mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air coursed through the last open crosscut in pairs or sets of entries, or through other ventilation openings...
NASA Technical Reports Server (NTRS)
Ferkul, Paul V.; Olson, Sandra L.; Takahashi, Fumiaki; Endo, Makoto; Johnson, Michael C.; T'ien, James S.
2013-01-01
The Burning and Suppression of Solids (BASS) experiment was performed on the International Space Station. Microgravity combustion tests burning thin and thick flat samples, acrylic spheres, and candles were conducted. The samples were mounted inside a small wind tunnel which could impose air flow speeds up to 40 cms. The wind tunnel was installed in the Microgravity Science Glovebox which supplied power, imaging, and a level of containment. The effects of air flow speed, fuel thickness, fuel preheating, and nitrogen dilution on flame appearance, flame growth, and spread rates were determined in both the opposed and concurrent flow configuration. In some cases, a jet of nitrogen was introduced to attempt to extinguish the flame. Microgravity flames were found to be especially sensitive to air flow speed in the range 0 to 5 cms. The gas phase response is much faster compared to the solid and so as the flow speed is changed, the flame responds with almost no delay. At the lowest speeds examined (less than 1 cms) all the flames tended to become dim blue and very stable. However, heat loss at these very low convective rates is small so the flames can burn for a long time. At moderate flow speeds (between about 1 and 5 cms) the flame continually heats the solid fuel resulting in an increasing fuel temperature, higher rate of fuel vaporization, and a stronger, more luminous flame as time progresses. Only the smallest flames burning acrylic slabs appeared to be adversely influenced by solid conductive heat loss, but even these burned for over 5 minutes before self-extinguishing. This has implications for spacecraft fire safety since a tiny flame might be undetected for a long time. While the small flame is not particularly hazardous if it remains small, the danger is that it might flare up if the air convection is suddenly increased or if the flame spreads into another fuel source.
Cooling Characteristics of an Experimental Tail-pipe Burner with an Annular Cooling-air Passage
NASA Technical Reports Server (NTRS)
Kaufman, Harold R; Koffel, William K
1952-01-01
The effects of tail-pipe fuel-air ratio (exhaust-gas temperatures from approximately 3060 degrees to 3825 degrees R), radial distributiion of tail-pipe fuel flow, and mass flow of combustion gas and the inside wall were determined for an experimental tail-pipe burner cooled by air flowing through and insulated cooling-air to combustion gas mass flow from 0.066 to 0.192 were also determined.
Vertical flow chemical detection portal
Linker, K.L.; Hannum, D.W.; Conrad, F.J.
1999-06-22
A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.
Vertical flow chemical detection portal
Linker, Kevin L.; Hannum, David W.; Conrad, Frank James
1999-01-01
A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.
Protective environment for marrow transplant recipients. A prospective study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckner, C.D.; Clift, R.A.; Sanders, J.E.
1978-12-01
Laminar air flow isolation and decontamination procedures were evaluated in a prospective randomized study in patients with aplastic anemia or acute leukemia undergoing marrow transplantation from HLA-matched siblings. Patients transplanted in the laminar air flow group had significantly less septicemia and major local infections than did patients in the control group. Nineteen of 46 laminar air flow patients and six of 44 control patients are alive at present. In patients with aplastic anemia the survival was 13 of 17 in the laminar air flow group compared with four of 17 in the control group. In patients with acute leukemia themore » survival was six of 29 in the laminar air flow group versus two of 27 in the control group. These differences were not statistically significant. Death in both the laminar air flow and control groups was predominantly due to interstitial pneumonitis or recurrent leukemia, which were unaffected by isolation and decontamination.« less
Ge, S.; McKenzie, J.; Voss, C.; Wu, Q.
2011-01-01
Permafrost dynamics impact hydrologic cycle processes by promoting or impeding groundwater and surface water exchange. Under seasonal and decadal air temperature variations, permafrost temperature changes control the exchanges between groundwater and surface water. A coupled heat transport and groundwater flow model, SUTRA, was modified to simulate groundwater flow and heat transport in the subsurface containing permafrost. The northern central Tibet Plateau was used as an example of model application. Modeling results show that in a yearly cycle, groundwater flow occurs in the active layer from May to October. Maximum groundwater discharge to the surface lags the maximum subsurface temperature by two months. Under an increasing air temperature scenario of 3C per 100 years, over the initial 40-year period, the active layer thickness can increase by three-fold. Annual groundwater discharge to the surface can experience a similar three-fold increase in the same period. An implication of these modeling results is that with increased warming there will be more groundwater flow in the active layer and therefore increased groundwater discharge to rivers. However, this finding only holds if sufficient upgradient water is available to replenish the increased discharge. Otherwise, there will be an overall lowering of the water table in the recharge portion of the catchment. Copyright 2011 by the American Geophysical Union.
Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters
NASA Technical Reports Server (NTRS)
Jentink, Henk W.; Bogue, Rodney K.
2005-01-01
Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.
Energy efficient window and skylight assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howe, W.C. Jr.
1986-03-25
A totally self-contained apparatus is described for use as a window or skylight assembly, and adapted for simultaneously controlling the amount of both sunlight and air admitted into a building. The apparatus consists of: a head member and a sill member; a first sheet of material through which sunlight can pass, the first sheet of material forming a major portion of the exterior surface of the apparatus and being mounted between the head and sill members; a second sheet of material through which sunlight can pass, the second sheet of material being spaced from the first sheet of material themore » second sheet of material forming a major portion of the interior surface of the window apparatus and being mounted between the head and sill members; first and second window jams positioned between the first and second sheets of material and extending from the head member to the sill member so as to form an essentially enclosed air flow channel; means, positioned in the air flow channel, for regulating the amount of sunlight passing through the apparatus; and ventilation means for directing air through the air flow channel, and comprising a motor-driven fan mounted within the air flow channel at one end thereof so as to circulate air through the air flow channel together with a plurality of apertures disposed in the head and sill members for placing the air flow channel in communication with the interior and exterior of the building and means for selectively opening and closing the apertures whereby air may selectively flow from one of (a) the outside to the inside of the building, (b) from the inside to the outside of the building, (c) from the inside of the building through the air flow channel and back to the inside of the building and (d) from the outside of the building through the air flow channel and back to the outside of the building.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarker, M. R. I., E-mail: islamrabiul@yahoo.com; Saha, Manabendra, E-mail: manabendra.saha@adelaide.edu.au, E-mail: manab04me@gmail.com; Beg, R. A.
A recirculating flow solar particle cavity absorber (receiver) is modeled to investigate the flow behavior and heat transfer characteristics of a novel developing concept. It features a continuous recirculating flow of non-reacting metallic particles (black silicon carbide) with air which are used as a thermal enhancement medium. The aim of the present study is to numerically investigate the thermal behavior and flow characteristics of the proposed concept. The proposed solar particle receiver is modeled using two phase discrete particle model (DPM), RNG k-flow model and discrete ordinate (DO) radiation model. Numerical analysis is carried out considering a solar receiver withmore » only air and the mixture of non-reacting particles and air as a heat transfer as well as heat carrying medium. The parametric investigation is conducted considering the incident solar flux on the receiver aperture and changing air flow rate and recirculation rate inside the receiver. A stand-alone feature of the recirculating flow solar particle receiver concept is that the particles are directly exposed to concentrated solar radiation monotonously through recirculating flow inside the receiver and results in efficient irradiation absorption and convective heat transfer to air that help to achieve high temperature air and consequently increase in thermal efficiency. This paper presents, results from the developed concept and highlights its flow behavior and potential to enhance the heat transfer from metallic particles to air by maximizing heat carrying capacity of the heat transfer medium. The imposed milestones for the present system will be helpful to understand the radiation absorption mechanism of the particles in a recirculating flow based receiver, the thermal transport between the particles, the air and the cavity, and the fluid dynamics of the air and particle in the cavity.« less
Kim, Yong Joon; Jo, Sungkil; Moon, Daruchi; Joo, Youngcheol; Choi, Kyung Seek
2014-05-01
To comprehend the mechanism of focal chorioretinal damage by analysis of the pressure distribution and dynamic pressure induced by infused air during fluid-air exchange. A precise simulation featuring a model eye and a fluid circuit was designed to analyze fluid-air exchange. The pressure distribution, flow velocity, and dynamic pressure induced by infusion of air into an air-filled eye were analyzed using an approach based on fluid dynamics. The size of the port and the infusion pressure were varied during simulated iterations. We simulated infusion of an air-filled eye with balanced salt solution (BSS) to better understand the mechanism of chorioretinal damage induced by infused air. Infused air was projected straight toward a point on the retina contralateral to the infusion port (the "vulnerable point"). The highest pressure was evident at the vulnerable point, and the lowest pressure was recorded on most retinal areas. Simulations using greater infusion pressure and a port of larger size were associated with elevations in dynamic pressure and the pressure gradient. The pressure gradients were 2.8 and 5.1 mm Hg, respectively, when infusion pressures of 30 and 50 mm Hg were delivered through a 20-gauge port. The pressure gradient associated with BSS infusion was greater than that created by air, but lasted for only a moment. Our simulation explains the mechanism of focal chorioretinal damage in numerical terms. Infused air induces a prolonged increase in focal pressure on the vulnerable point, and this may be responsible for visual field defects arising after fluid-air exchange. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.
NASA Astrophysics Data System (ADS)
Dong, Dai; Li, Xiaoning
2015-03-01
High-pressure solenoid valve with high flow rate and high speed is a key component in an underwater driving system. However, traditional single spool pilot operated valve cannot meet the demands of both high flow rate and high speed simultaneously. A new structure for a high pressure solenoid valve is needed to meet the demand of the underwater driving system. A novel parallel-spool pilot operated high-pressure solenoid valve is proposed to overcome the drawback of the current single spool design. Mathematical models of the opening process and flow rate of the valve are established. Opening response time of the valve is subdivided into 4 parts to analyze the properties of the opening response. Corresponding formulas to solve 4 parts of the response time are derived. Key factors that influence the opening response time are analyzed. According to the mathematical model of the valve, a simulation of the opening process is carried out by MATLAB. Parameters are chosen based on theoretical analysis to design the test prototype of the new type of valve. Opening response time of the designed valve is tested by verifying response of the current in the coil and displacement of the main valve spool. The experimental results are in agreement with the simulated results, therefore the validity of the theoretical analysis is verified. Experimental opening response time of the valve is 48.3 ms at working pressure of 10 MPa. The flow capacity test shows that the largest effective area is 126 mm2 and the largest air flow rate is 2320 L/s. According to the result of the load driving test, the valve can meet the demands of the driving system. The proposed valve with parallel spools provides a new method for the design of a high-pressure valve with fast response and large flow rate.
Farrokhzadeh, Hasti; Hettiaratchi, J Patrick A; Jayasinghe, Poornima; Kumar, Sunil
2017-09-01
Aiming to improve conventional methane biofilter performance, a multiple-level aeration biofilter design is proposed. Laboratory flow-through column experiments were conducted to evaluate three actively-aerated methane biofilter configurations. Columns were aerated at one, two, and three levels of the bed depth, with air introduced at flow rates calculated from methane oxidation reaction stoichiometry. Inlet methane loading rates were increased in five stages between 6 and 18mL/min. The effects of methane feeding rate, levels of aeration, and residence time on methane oxidation rates were determined. Samples collected after completion of flow-through experiments were used to determine methane oxidation kinetic parameters, V max , K m , and methanotrophic community distribution across biofilter columns. Results obtained from mixed variances analysis and response surfaces, as well as methanotrophic activity data, suggested that, biofilter column with two aeration levels has the most even performance over time, maintaining 85.1% average oxidation efficiency over 95days of experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Centrifugal fans: Similarity, scaling laws, and fan performance
NASA Astrophysics Data System (ADS)
Sardar, Asad Mohammad
Centrifugal fans are rotodynamic machines used for moving air continuously against moderate pressures through ventilation and air conditioning systems. There are five major topics presented in this thesis: (1) analysis of the fan scaling laws and consequences of dynamic similarity on modelling; (2) detailed flow visualization studies (in water) covering the flow path starting at the fan blade exit to the evaporator core of an actual HVAC fan scroll-diffuser module; (3) mean velocity and turbulence intensity measurements (flow field studies) at the inlet and outlet of large scale blower; (4) fan installation effects on overall fan performance and evaluation of fan testing methods; (5) two point coherence and spectral measurements conducted on an actual HVAC fan module for flow structure identification of possible aeroacoustic noise sources. A major objective of the study was to identity flow structures within the HVAC module that are responsible for noise and in particular "rumble noise" generation. Possible mechanisms for the generation of flow induced noise in the automotive HVAC fan module are also investigated. It is demonstrated that different modes of HVAC operation represent very different internal flow characteristics. This has implications on both fan HVAC airflow performance and noise characteristics. It is demonstrated from principles of complete dynamic similarity that fan scaling laws require that Reynolds, number matching is a necessary condition for developing scale model fans or fan test facilities. The physical basis for the fan scaling laws derived was established from both pure dimensional analysis and also from the fundamental equations of fluid motion. Fan performance was measured in a three times scale model (large scale blower) in air of an actual forward curved automotive HVAC blower. Different fan testing methods (based on AMCA fan test codes) were compared on the basis of static pressure measurements. Also, the flow through an actual HVAC fan-impeller/diffuser section in water was observed with a flow visualization technique using a shear-thickening dye (in addition to a conventional dye). Full dynamic similarity was maintained between RVAC operation in water as when operated in air. Recommendations are provided both for further investigation of critical flow regions with more sophisticated measurement methods and for improved fan-scroll design to reduce possible aeroacoustic noise with improved aerodynamic performance.
Computational And Experimental Studies Of Three-Dimensional Flame Spread Over Liquid Fuel Pools
NASA Technical Reports Server (NTRS)
Ross, Howard D. (Technical Monitor); Cai, Jinsheng; Liu, Feng; Sirignano, William A.; Miller, Fletcher J.
2003-01-01
Schiller, Ross, and Sirignano (1996) studied ignition and flame spread above liquid fuels initially below the flashpoint temperature by using a two-dimensional computational fluid dynamics code that solves the coupled equations of both the gas and the liquid phases. Pulsating flame spread was attributed to the establishment of a gas-phase recirculation cell that forms just ahead of the flame leading edge because of the opposing effect of buoyancy-driven flow in the gas phase and the thermocapillary-driven flow in the liquid phase. Schiller and Sirignano (1996) extended the same study to include flame spread with forced opposed flow in the gas phase. A transitional flow velocity was found above which an originally uniform spreading flame pulsates. The same type of gas-phase recirculation cell caused by the combination of forced opposed flow, buoyancy-driven flow, and thermocapillary-driven concurrent flow was responsible for the pulsating flame spread. Ross and Miller (1998) and Miller and Ross (1998) performed experimental work that corroborates the computational findings of Schiller, Ross, and Sirignano (1996) and Schiller and Sirignano (1996). Cai, Liu, and Sirignano (2002) developed a more comprehensive three-dimensional model and computer code for the flame spread problem. Many improvements in modeling and numerical algorithms were incorporated in the three-dimensional model. Pools of finite width and length were studied in air channels of prescribed height and width. Significant three-dimensional effects around and along the pool edge were observed. The same three-dimensional code is used to study the detailed effects of pool depth, pool width, opposed air flow velocity, and different levels of air oxygen concentration (Cai, Liu, and Sirignano, 2003). Significant three-dimensional effects showing an unsteady wavy flame front for cases of wide pool width are found for the first time in computation, after being noted previously by experimental observers (Ross and Miller, 1999). Regions of uniform and pulsating flame spread are mapped for the flow conditions of pool depth, opposed flow velocity, initial pool temperature, and air oxygen concentration under both normal and microgravity conditions. Details can be found in Cai et al. (2002, 2003). Experimental results recently performed at NASA Glenn of flame spread across a wide, shallow pool as a function of liquid temperature are also presented here.
Beer, Janos; Dowdy, Thomas E.; Bachovchin, Dennis M.
1997-01-01
A combustor for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone.
30 CFR 57.22211 - Air flow (I-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity in the last open crosscut in pairs or sets of developing entries, or through other ventilation...
Flow Disturbance Characterization Measurements in the National Transonic Facility
NASA Technical Reports Server (NTRS)
King, Rudolph A.; Andino, Marlyn Y.; Melton, Latunia; Eppink, Jenna; Kegerise, Michael A.; Tsoi, Andrew
2012-01-01
Recent flow measurements have been acquired in the National Transonic Facility (NTF) to assess the unsteady flow environment in the test section. The primary purpose of the test is to determine the feasibility of the NTF to conduct laminar-flow-control testing and boundary-layer transition sensitive testing. The NTF can operate in two modes, warm (air) and cold/cryogenic (nitrogen) test conditions for testing full and semispan scaled models. The warm-air mode enables low to moderately high Reynolds numbers through the use of high tunnel pressure, and the nitrogen mode enables high Reynolds numbers up to flight conditions, depending on aircraft type and size, utilizing high tunnel pressure and cryogenic temperatures. NASA's Environmentally Responsible Aviation (ERA) project is interested in demonstrating different laminar-flow technologies at flight-relevant operating conditions throughout the transonic Mach number range and the NTF is well suited for the initial ground-based demonstrations. Roll polar data at selected test conditions were obtained to look at the uniformity of the flow disturbance field in the test section. Data acquired from the rake probes included mean total temperatures, mean and fluctuating static/total pressures, and mean and fluctuating hot-wire measurements. . Based on the current measurements and previous data, an assessment was made that the NTF is a suitable facility for ground-based demonstrations of laminar-flow technologies at flight-relevant conditions in the cryogenic mode.
Lubricant dynamics under sliding condition in disk drives
NASA Astrophysics Data System (ADS)
Wu, Lin
2006-07-01
In this paper, we develop a two-dimensional flow model for the lubricant flow dynamics under a sliding head in disk drives. Our two-dimensional model includes important physics such as viscous force, external air shearing stress, air bearing pressure, centrifugal force, disjoining pressure, and surface tension. Our analysis shows that the lubricant flow dynamics under the sliding condition is a fully two-dimensional phenomenon and the circumferential lubricant flow is strongly coupled to the radial flow. It is necessary to have a two-dimensional flow model that couples the circumferential and radial flows together and includes all important physics to achieve realistic predictions. Our results show that the external air shearing stress has a dominant effect on the lubricant flow dynamics. Both velocity slippage at wall and Poiseuille flow effects have to be considered in the evaluation of the air shearing stress under the head. The nonuniform air bearing pressure has a non-negligible effect on the lubricant film dynamics mostly through the Poiseuille flow effect on the air shearing stress but not from its direct pushing or sucking effect on the lubricant surface. Prediction of the formation of lubricant depletion tracks under a sliding head using the two-dimensional model agrees reasonably well with the existing experimental measurements.
Simulation of air-droplet mixed phase flow in icing wind-tunnel
NASA Astrophysics Data System (ADS)
Mengyao, Leng; Shinan, Chang; Menglong, Wu; Yunhang, Li
2013-07-01
Icing wind-tunnel is the main ground facility for the research of aircraft icing, which is different from normal wind-tunnel for its refrigeration system and spraying system. In stable section of icing wind-tunnel, the original parameters of droplets and air are different, for example, to keep the nozzles from freezing, the droplets are heated while the temperature of air is low. It means that complex mass and heat transfer as well as dynamic interactive force would happen between droplets and air, and the parameters of droplet will acutely change along the passageway. Therefore, the prediction of droplet-air mixed phase flow is necessary in the evaluation of icing researching wind-tunnel. In this paper, a simplified droplet-air mixed phase flow model based on Lagrangian method was built. The variation of temperature, diameter and velocity of droplet, as well as the air flow field, during the flow process were obtained under different condition. With calculating three-dimensional air flow field by FLUENT, the droplet could be traced and the droplet distribution could also be achieved. Furthermore, the patterns about how initial parameters affect the parameters in test section were achieved. The numerical simulation solving the flow and heat and mass transfer characteristics in the mixing process is valuable for the optimization of experimental parameters design and equipment adjustment.
Computation of two-dimensional flows past ram-air parachutes
NASA Astrophysics Data System (ADS)
Mittal, S.; Saxena, P.; Singh, A.
2001-03-01
Computational results for flow past a two-dimensional model of a ram-air parachute with leading edge cut are presented. Both laminar (Re=104) and turbulent (Re=106) flows are computed. A well-proven stabilized finite element method (FEM), which has been applied to various flow problems earlier, is utilized to solve the incompressible Navier-Stokes equations in the primitive variables formulation. The Baldwin-Lomax model is employed for turbulence closure. Turbulent flow computations past a Clarck-Y airfoil without a leading edge cut, for =7.5°, result in an attached flow. The leading edge cut causes the flow to become unsteady and leads to a significant loss in lift and an increase in drag. The flow inside the parafoil cell remains almost stagnant, resulting in a high value of pressure, which is responsible for giving the parafoil its shape. The value of the lift-to-drag ratio obtained with the present computations is in good agreement with those reported in the literature. The effect of the size and location of the leading edge cut is studied. It is found that the flow on the upper surface of the parafoil is fairly insensitive to the configuration of the cut. However, the flow quality on the lower surface improves as the leading edge cut becomes smaller. The lift-to-drag ratio for various configurations of the leading edge cut varies between 3.4 and 5.8. It is observed that even though the time histories of the aerodynamic coefficients from the laminar and turbulent flow computations are quite different, their time-averaged values are quite similar. Copyright
Rotor and stator assembly configured as an aspirating face seal
NASA Technical Reports Server (NTRS)
Turnquist, Norman Arnold (Inventor); Bagepalli, Bharat Sampathkumaran (Inventor); Reluzco, George (Inventor); Tseng, Wu-Yang (Inventor)
1999-01-01
A rotor and stator assembly having a rotor and a stator with opposing surfaces defining an air bearing and an air dam of an aspirating face seal. In a first embodiment, the air bearing and the air dam are axially offset. In a second embodiment, the rotor has an axially extending protuberance located radially between the air bearing and the air dam. The axial offset and the protuberance each act to divert the air flow (e.g., compressed gas or combustion gases in a gas turbine or steam in a steam turbine) in a direction transverse to the air flow direction through the air bearing and the air dam, thus isolating the air flows from the air bearing and the air dam which improves seal performance.
NASA Astrophysics Data System (ADS)
Kiyanitsa, LA
2018-03-01
Metro is not only the most promising kind of public transport but also an important part of infrastructure in a modern city. As a place where large groups of people gather, subway is to ensure the required air exchange at the passenger platforms of the stations. The air flow rate for airing the stations is also determined based on the required temperature, humidity and MAC of gases. The present study estimates the required air flow rate at the passenger platform of the closed-type subway station with the double-track tunnel given the standard air temperature, humidity and gas concentration, as well as based on the condition of the specified air flow feed and air changes per hour. The article proposes the scheme of air recirculation from the double-track tunnel to the station.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph
2016-12-13
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Indirect evaporative cooler using membrane-contained, liquid desiccant for dehumidification
Kozubal, Eric Joseph; Slayzak, Steven Joseph
2014-07-08
An indirect evaporative cooler for cooling inlet supply air from a first temperature to a second, lower temperature using a stream of liquid coolant and a stream of exhaust or purge air. The cooler includes a first flow channel for inlet supply air and a second flow channel adjacent the first for exhaust air. The first and second flow channels are defined in part by sheets of a membrane permeable to water vapor such that mass is transferred as a vapor through the membrane from the inlet supply air to a contained liquid desiccant for dehumidification and also to the exhaust air as heat is transferred from the inlet supply air to the liquid coolant. A separation wall divides the liquid desiccant and the coolant but allows heat to be transferred from the supply air to the coolant which releases water vapor to the counter or cross flowing exhaust air.
Visualization of flows in a motored rotary combustion engine using holographic interferometry
NASA Technical Reports Server (NTRS)
Hicks, Y. R.; Schock, H. J.; Craig, J. E.; Umstatter, H. L.; Lee, D. Y.
1986-01-01
The use of holographic interferometry to view the small- and large-scale flow field structures in the combustion chamber of a motored Wankel engine assembly is described. In order that the flow patterns of interest could be observed, small quantities of helium were injected with the intake air. Variation of the air flow patterns with engine speed, helium flow rate, and rotor position are described. The air flow at two locations within the combustion chamber was examined using this technique.
30 CFR 75.1103-5 - Automatic fire warning devices; actions and response.
Code of Federal Regulations, 2010 CFR
2010-07-01
... level reaches 10 parts per million above the established ambient level at any sensor location, automatic fire sensor and warning device systems shall provide an effective warning signal at the following... endangered and (ii) A map or schematic that shows the locations of sensors, and the intended air flow...
40 CFR 92.119 - Hydrocarbon analyzer calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... plot of the difference between the span and zero response versus fuel flow will be similar to the one... basic operating adjustment using the appropriate fuel (see § 92.112) and zero-grade air. (2) Optimize on.... Allow at least one-half hour after the oven has reached temperature for the system to equilibrate. (C...
Method and apparatus for reducing cold-phase emissions by utilizing oxygen-enriched intake air
Poola, Ramesh B.; Sekar, Ramanujam R.; Stork, Kevin C.
1997-01-01
An oxygen-enriched air intake control system for an internal combustion engine includes air directing apparatus to control the air flow into the intake of the engine. During normal operation of the engine, ambient air flowing from an air filter of the engine flows through the air directing apparatus into the intake of the engine. In order to decrease the amount of carbon monoxide (CO) and hydrocarbon (HC) emissions that tend to be produced by the engine during a short period of time after the engine is started, the air directing apparatus diverts for a short period of time following the start up of the engine at least a portion of the ambient air from the air filter through a secondary path. The secondary path includes a selectively permeable membrane through which the diverted portion of the ambient air flows. The selectively permeable membrane separates nitrogen and oxygen from the diverted air so that oxygen enriched air containing from about 23% to 25% oxygen by volume is supplied to the intake of the engine.
NASA Astrophysics Data System (ADS)
Wang, H.; Guan, H.; Deng, R.; Simmons, C. T.
2013-12-01
Canopy conductance response to environmental conditions is a critical component in land surface hydrological modeling. This response is often formulated as a combination of response functions of each influencing factor (solar radiation, air temperature, vapor pressure deficit, and soil water availability). These functions are climate and vegetation specific. Thus, it is important to determine the most appropriate combination of response functions and their parameter values for a specific environment. We will present a method for this purpose based on field measurements and an optimization scheme. The study was performed on Drooping Sheoak (Allocasuarina verticillata) in Adelaide South Australia. Sap flow and stem water potential were measured in a year together with microclimate variables. Canopy conductance was calculated from the inversed Penman-Monteith (PM) equation, which was then used to examine the performance of 36 combinations of various response functions. Parameters in the models were optimized using a DiffeRential Evolution Adaptive Metropolis (DREAM) model based on a training dataset. The testing results show that the best combination gave a correlation coefficient of 0.97, and root mean square error of 0.0006 m/s in comparison to the PM-calculated values. The maximum stomatal conductance given by this combination is 0.0075 m/s, equivalent to a minimum stomatal resistance of 133 s/m. This is close to the number (150 s/m) used in Noah land surface model for evergreen needle-leaf trees. It is surprising that for all combinations, the optimized parameter of the temperature response function is against its physical meaning. This is likely related to the inter-dependence between air temperature and vapor pressure deficit. Supported by the results, we suggest that the effects of vapor pressure deficit and air temperature should be represented together, so as to be consistent with the physics.
30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane, smoke...
Bernstein, Jonathan A; Hastings, Lloyd; Boespflug, Erin L; Allendorfer, Jane B; Lamy, Martine; Eliassen, James C
2011-06-01
Although nonallergic rhinitis (NAR) patients tend to be more sensitive to chemical/olfactory stimuli, a suprathreshold olfactory response or the presence of specific olfactory receptor genes do not explain why their symptoms are triggered by such exposures. To investigate differential neurogenic responses to azelastine in NAR patients, using functional magnetic resonance imaging (fMRI) in response to specific olfactory triggers. A longitudinal study design on 12 subjects with a physician diagnosis of NAR previously demonstrated to be clinically responsive to intranasal azelastine (Astelin) was performed. Subjects underwent fMRI during exposure to unpleasant (hickory smoke) and pleasant (vanilla) odorants while off and then on azelastine for 2 weeks. The olfactory fMRI paradigm consisted of a visually triggered sniff every 21 seconds with synchronized delivery of a 4 second pulse of odorant. Each odorant was presented 18 times over 4-6-minute fMRI runs. Continuous fresh air was presented to wash out each odorant after presentation. Nonallergic rhinitis patients exhibited increased blood flow to several regions of the brain in response to both pleasant and unpleasant odorants, specifically in odor-sensitive regions, while off intranasal azelastine. Treatment with intranasal azelastine significantly attenuated blood flow to regions of the brain relevant to either olfactory sensation or sensory processing in response to these odorants compared with fresh air. The general reduction compared with increase in brain activation in NAR patients on versus off azelastine suggests that a possible effect of this medication may be reduction of brain responses to odorants. Copyright © 2011. Published by Elsevier Inc.
Björnsson, Eythór; Lúdvíksdóttir, Dóra; Hedenström, Hans; Eriksson, Britt-Marie; Högman, Marieann; Venge, Per; Janson, Christer
2007-07-01
The aim of this study was to characterise non-asthmatic subjects with asthma-like symptoms during a common cold, particularly in relation to airway hyperresponsiveness (AHR). Subjects with acute respiratory infections and a group of controls (n = 20 + 20), age 20-65 years, underwent bronchial provocations with methacholine, adenosine and cold air. All were non-smokers and had no history of asthma or heart disease. Those with infection had asthma-like symptoms (>2). Measurements of exhaled nitric oxide (eNO), serum levels of eosinophil cationic protein (ECP), eosinophil peroxidase, myeloperoxidase and human neutrophil lipocalin were made at each provocation. A 17-day symptom and peak flow diary was calculated. No differences between the two groups were found, regarding responsiveness to methacholine, adenosine or cold air challenge, as well as the inflammatory markers measured. In the infected group, the mean (standard deviation) ECP was higher in those with AHR to methacholine or cold air [15.7 (6.5) and 11.4 (4.2) microg/L, respectively; P < 0.05]; furthermore, eNO was higher in the infected group [116 (54) and 88 (52) nL/min, respectively; P = 0.055]. The infected group had, at all times, more symptoms and higher peak flow, with a decrease in the symptoms (P = 0.02) and a tendency to change in peak flow variation (P = 0.06). AHR does not seem to be the main cause of asthma-like symptoms in adults with infectious wheezing. Peak flow variation and symptom prevalence during the post-infection period may imply airway pathology different from AHR.
de M Correia-Deur, Joya Emilie; Claudio, Luz; Imazawa, Alice Takimoto; Eluf-Neto, Jose
2012-01-01
Background In the last 20 years, there has been an increase in the incidence of allergic respiratory diseases worldwide and exposure to air pollution has been discussed as one of the factors associated with this increase. The objective of this study was to investigate the effects of air pollution on peak expiratory flow (PEF) and FEV1 in children with and without allergic sensitization. Methods Ninety-six children were followed from April to July, 2004 with spirometry measurements. They were tested for allergic sensitization (IgE, skin prick test, eosinophilia) and asked about allergic symptoms. Air pollution, temperature and relative humidity data were available. Results Decrements in PEF were observed with previous 24-h average exposure to air pollution, as well as with 3 to 10 day average exposure and were associated mainly with PM10, NO2 and O3. in all three categories of allergic sensitization. Even though allergic sensitized children tended to present larger decrements in the PEF measurements they were not statistically different from the non-allergic sensitized. Decrements in FEV1 were observed mainly with previous 24-h average exposure and 3-day moving average. Conclusions Decrements in PEF associated with air pollution were observed in children independent from their allergic sensitization status. Their daily exposure to air pollution can be responsible for a chronic inflammatory process that might impair their lung growth and later their lung function in adulthood. PMID:22544523
Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing
2010-11-01
By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.
Zhou, Nana; Yang, Chen; Tucker, David
2015-02-01
Thermal management in the fuel cell component of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid power system can be improved by effective management and control of the cathode airflow. The disturbances of the cathode airflow were accomplished by diverting air around the fuel cell system through the manipulation of a hot-air bypass valve in open loop experiments, using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). The dynamic responses of the fuel cell component and hardware component of the hybrid system were studied in this paper.
Groundwater remediation engineering sparging using acetylene--study on the flow distribution of air.
Zheng, Yan-Mei; Zhang, Ying; Huang, Guo-Qiang; Jiang, Bin; Li, Xin-Gang
2005-01-01
Air sparging (AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.
Centrifugal study of zone of influence during air-sparging.
Hu, Liming; Meegoda, Jay N; Du, Jianting; Gao, Shengyan; Wu, Xiaofeng
2011-09-01
Air sparging (AS) is one of the groundwater remediation techniques for remediating volatile organic compounds (VOCs) in saturated soil. However, in spite of the success of air sparging as a remediation technique for the cleanup of contaminated soils, to date, the fundamental mechanisms or the physics of air flow through porous media is not well understood. In this study, centrifugal modeling tests were performed to investigate air flow rates and the evolution of the zone of influence during the air sparging under various g-levels. The test results show that with the increase in sparging pressure the mass flow rate of the air sparging volume increases. The air mass flow rate increases linearly with the effective sparging pressure ratio, which is the difference between sparging pressure and hydrostatic pressure normalized with respect to the effective overburden pressure at the sparging point. Also the slope of mass flow rate with effective sparging pressure ratio increases with higher g-levels. This variation of the slope of mass flow rate of air sparging volume versus effective sparging pressure ratio, M, is linear with g-level confirming that the air flow through soil for a given effective sparging pressure ratio only depends on the g-level. The test results also show that with increasing sparging pressure, the zone of influence (ZOI), which consists of the width at the tip of the cone or lateral intrusion and the cone angle, will lead to an increase in both lateral intrusion and the cone angle. With a further increase in air injection pressure, the cone angle reaches a constant value while the lateral intrusion becomes the main contributor to the enlargement of the ZOI. However, beyond a certain value of effective sparging pressure ratio, there is no further enlargement of the ZOI.
Ying Ouyang; Prem B. Parajuli; Yide Li; Theodor D. Leininger; Gary Feng
2017-01-01
Characterization of stream flow is essential to water resource management, water supply planning, environmental protection, and ecological restoration; while air temperature variation due to climate change can exacerbate stream flow and add instability to the flow. In this study, the wavelet analysis technique was employed to identify temporal trend of air temperature...
1981-04-01
made of the fuei and air stagnation points along the centerline, in bc-, isothermal and cotnbusting flows. STPi SECURITY CLA~S:FICATIOWII QF T•, PAGE...Flow Rates. 22 The Variation of the Centerline Location (Z.) of the Fuel 33 (f.) and Air (a.) Stuignation Points with the Mean Annulus Air Velocity (WA...Tunnel with No 41 Annular Flow. 31 Flowfield for Annula , Flow in the Combustion Tunnel with 42 No Fuel Flow. S2 Flowfield in the Combustion Tunnel when
Membrane wing aerodynamics for micro air vehicles
NASA Astrophysics Data System (ADS)
Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning
2003-10-01
The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.
1981-09-01
organized the paperwork system , including finances, travel, k, , f iling, and programs in a highly independent and responsible fashion. Thanks are also due...three-dimensional transformation procedure for arbitrary non-orthogonal coordinate systems , for the purpose of the three-dimensional turbulent...transformation procedure for arbitrary non-orthogonal coordinate systems so as to acquire the generality in the application for elliptic flows (for the square
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2010 CFR
2010-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2011 CFR
2011-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, two-stroke spark-ignition engines, or four-stroke spark-ignition engines at or...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2011 CFR
2011-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... interval. You may use the difference between a diluted exhaust flow meter and a dilution air meter to... compression-ignition engines, 2-stroke spark-ignition engines, and 4-stroke spark-ignition engines below 19 kW...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2012 CFR
2012-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.
Code of Federal Regulations, 2013 CFR
2013-07-01
...; diesel engines. 86.313-79 Section 86.313-79 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement...
MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH
The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...
The fabrication of plastic cages for suspension in mass air flow racks.
Nielsen, F H; Bailey, B
1979-08-01
A cage for suspension in mass air flow racks was constructed of plastic and used to house rats. Little or no difficulty was encountered with the mass air flow rack-suspended cage system during the 4 years it was used for the study of trace elements.
Enhancement of wall jet transport properties
Claunch, Scott D.; Farrington, Robert B.
1997-01-01
By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct.
Experimental study of cassava sun drying
DOE Office of Scientific and Technical Information (OSTI.GOV)
Njie, D.N.; Rumsey, T.R.
1997-03-01
Sun drying experiments were performed to compare drying of cassava chips in sheet-metal trays with drying on mesh wire trays. In the sheet-metal trays, there was air flow across the top of the bed chips, while the mesh wire trays permitted air to flow through the bed. Drying rate was faster and more uniform in the trays with through-flow air circulation. Higher temperatures were reached by chips in the sheet-metal trays than those in the mesh trays because of contact heating, but the drying rate was lower because of the reduced air flow.
Enhancement of wall jet transport properties
Claunch, S.D.; Farrington, R.B.
1997-02-04
By enhancing the natural instabilities in the boundary layer and in the free shear layer of a wall jet, the boundary is minimized thereby increasing the transport of heat and mass. Enhancing the natural instabilities is accomplished by pulsing the flow of air that creates the wall jet. Such pulsing of the flow of air can be accomplished by sequentially occluding and opening a duct that confines and directs the flow of air, such as by rotating a disk on an axis transverse to the flow of air in the duct. 17 figs.
Self-regulating fuel staging port for turbine combustor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Nieuwenhuizen, William F.; Fox, Timothy A.; Williams, Steven
2014-07-08
A port (60) for axially staging fuel and air into a combustion gas flow path 28 of a turbine combustor (10A). A port enclosure (63) forms an air path through a combustor wall (30). Fuel injectors (64) in the enclosure provide convergent fuel streams (72) that oppose each other, thus converting velocity pressure to static pressure. This forms a flow stagnation zone (74) that acts as a valve on airflow (40, 41) through the port, in which the air outflow (41) is inversely proportion to the fuel flow (25). The fuel flow rate is controlled (65) in proportion to enginemore » load. At high loads, more fuel and less air flow through the port, making more air available to the premixing assemblies (36).« less
COMIS -- an international multizone air-flow and contaminant transport model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feustel, H.E.
1998-08-01
A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less
Measurement of the resistivity of porous materials with an alternating air-flow method.
Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A
2011-02-01
Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wears.more » In at least one embodiment, the metering device may include a valve formed from one or more pins movable between open and closed positions in which the one pin at least partially bisects the bypass channel to regulate flow.« less
Flow visualization methods for field test verification of CFD analysis of an open gloveport
Strons, Philip; Bailey, James L.
2017-01-01
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
NASA Technical Reports Server (NTRS)
Huebner, Lawrence D.; Kniskern, Marc W.; Monta, William J.
1993-01-01
The purpose of this investigation were twofold: first, to determine whether accurate force and moment data could be obtained during hypersonic wind tunnel tests of a model with a scramjet exhaust flow simulation that uses a representative nonwatercooled, flow-through balance; second, to analyze temperature time histories on various parts of the balance to address thermal effects on force and moment data. The tests were conducted in the NASA Langley Research Center 20-Inch Mach 6 Wind Tunnel at free-stream Reynolds numbers ranging from 0.5 to 7.4 x 10(exp 6)/ft and nominal angles of attack of -3.5 deg, 0 deg, and 5 deg. The simulant exhaust gases were cold air, hot air, and a mixture of 50 percent Argon and 50 percent Freon by volume, which reached stagnation temperatures within the balance of 111, 214, and 283 F, respectively. All force and moment values were unaffected by the balance thermal response from exhaust gas simulation and external aerodynamic heating except for axial-force measurements, which were significantly affected by balance heating. This investigation showed that for this model at the conditions tested, a nonwatercooled, flow-through balance is not suitable for axial-force measurements during scramjet exhaust flow simulation tests at hypersonic speeds. In general, heated exhaust gas may produce unacceptable force and moment uncertainties when used with thermally sensitive balances.
Mustonen, Kaisa-Riikka; Mykrä, Heikki; Marttila, Hannu; Sarremejane, Romain; Veijalainen, Noora; Sippel, Kalle; Muotka, Timo; Hawkins, Charles P
2018-06-01
Air temperature at the northernmost latitudes is predicted to increase steeply and precipitation to become more variable by the end of the 21st century, resulting in altered thermal and hydrological regimes. We applied five climate scenarios to predict the future (2070-2100) benthic macroinvertebrate assemblages at 239 near-pristine sites across Finland (ca. 1200 km latitudinal span). We used a multitaxon distribution model with air temperature and modeled daily flow as predictors. As expected, projected air temperature increased the most in northernmost Finland. Predicted taxonomic richness also increased the most in northern Finland, congruent with the predicted northwards shift of many species' distributions. Compositional changes were predicted to be high even without changes in richness, suggesting that species replacement may be the main mechanism causing climate-induced changes in macroinvertebrate assemblages. Northern streams were predicted to lose much of the seasonality of their flow regimes, causing potentially marked changes in stream benthic assemblages. Sites with the highest loss of seasonality were predicted to support future assemblages that deviate most in compositional similarity from the present-day assemblages. Macroinvertebrate assemblages were also predicted to change more in headwaters than in larger streams, as headwaters were particularly sensitive to changes in flow patterns. Our results emphasize the importance of focusing protection and mitigation on headwater streams with high-flow seasonality because of their vulnerability to climate change. © 2018 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Boiko, A. V.
2016-10-01
Modern achievements, status, and prospects of studies on reducing the turbulent friction and aerodynamic drag with the help of the blowing through a permeable wall are discussed. The main focus is placed upon a physical modeling of the process of boundary layer blowing in the framework of the dimensional theory, a critical analysis of experimental and numerical results for different conditions of air blowing through a high-tech finely perforated wall including the case of external-pressure-flow air supply in wind tunnel, and elicitation of the physical mechanisms responsible for the reduction of turbulent friction at flow-exposed surfaces. It is shown that the use of air supply through the micro-perforated wall with low effective roughness, which is manufactured in compliance with the highest necessary requirements to quality and geometry of orifices, is quite a justified means for easy, affordable, and reliable control of near-wall turbulent flows in laboratory experiment and numerical simulation. This approach can provide a sustained reduction of local skin friction coefficient along flat plate, which in some cases reaches 90%. At the request of all authors of the paper and with the agreement of the Proceedings Editor, an updated version of this article was published on 26 October 2016. The original version supplied to AIP Publishing contained a misrepresentation in Figure 1. This has been corrected in the updated and republished article.
Program and charts for determining shock tube, and expansion tunnel flow quantities for real air
NASA Technical Reports Server (NTRS)
Miller, C. G., III; Wilder, S. E.
1975-01-01
A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Strons, Philip; Bailey, James L.
Anemometer readings alone cannot provide a complete picture of air flow patterns at an open gloveport. Having a means to visualize air flow for field tests in general provides greater insight by indicating direction in addition to the magnitude of the air flow velocities in the region of interest. Furthermore, flow visualization is essential for Computational Fluid Dynamics (CFD) verification, where important modeling assumptions play a significant role in analyzing the chaotic nature of low-velocity air flow. A good example is shown Figure 1, where an unexpected vortex pattern occurred during a field test that could not have been measuredmore » relying only on anemometer readings. Here by, observing and measuring the patterns of the smoke flowing into the gloveport allowed the CFD model to be appropriately updated to match the actual flow velocities in both magnitude and direction.« less
An Ejector Air Intake Design Method for a Novel Rocket-Based Combined-Cycle Rocket Nozzle
NASA Astrophysics Data System (ADS)
Waung, Timothy S.
Rocket-based combined-cycle (RBCC) vehicles have the potential to reduce launch costs through the use of several different air breathing engine cycles, which reduce fuel consumption. The rocket-ejector cycle, in which air is entrained into an ejector section by the rocket exhaust, is used at flight speeds below Mach 2. This thesis develops a design method for an air intake geometry around a novel RBCC rocket nozzle design for the rocket-ejector engine cycle. This design method consists of a geometry creation step in which a three-dimensional intake geometry is generated, and a simple flow analysis step which predicts the air intake mass flow rate. The air intake geometry is created using the rocket nozzle geometry and eight primary input parameters. The input parameters are selected to give the user significant control over the air intake shape. The flow analysis step uses an inviscid panel method and an integral boundary layer method to estimate the air mass flow rate through the intake geometry. Intake mass flow rate is used as a performance metric since it directly affects the amount of thrust a rocket-ejector can produce. The design method results for the air intake operating at several different points along the subsonic portion of the Ariane 4 flight profile are found to under predict mass flow rate by up to 8.6% when compared to three-dimensional computational fluid dynamics simulations for the same air intake.
1981-01-01
Scotia and the Northern Atlantic is evidence of winter monsoonal flow with polar air imoving equatorward and zonally from continental regions to the...inviscid motion must be tangent to both the entropy and energy surfaces and 2) the condition emphasized earlier in the discussion that, in the time
40 CFR 1065.325 - Intake-flow calibration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 1065.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calibrations and Verifications Flow-Related Measurements § 1065.325 Intake-flow calibration. (a) Calibrate intake-air flow meters upon initial installation. Follow the...
NASA Astrophysics Data System (ADS)
Gori, G.; Molesini, P.; Persico, G.; Guardone, A.
2017-03-01
The dynamic response of pressure probes for unsteady flow measurements in turbomachinery is investigated numerically for fluids operating in non-ideal thermodynamic conditions, which are relevant for e.g. Organic Rankine Cycles (ORC) and super-critical CO2 applications. The step response of a fast-response pressure probe is investigated numerically in order to assess the expected time response when operating in the non-ideal fluid regime. Numerical simulations are carried out exploiting the Non-Ideal Compressible Fluid-Dynamics (NICFD) solver embedded in the open-source fluid dynamics code SU2. The computational framework is assessed against available experimental data for air in dilute conditions. Then, polytropic ideal gas (PIG), i.e. constant specific heats, and Peng-Robinson Stryjek-Vera (PRSV) models are applied to simulate the flow field within the probe operating with siloxane fluid octamethyltrisiloxane (MDM). The step responses are found to depend mainly on the speed of sound of the working fluid, indicating that molecular complexity plays a major role in determining the promptness of the measurement devices. According to the PRSV model, non-ideal effects can increase the step response time with respect to the acoustic theory predictions. The fundamental derivative of gas-dynamic is confirmed to be the driving parameter for evaluating non-ideal thermodynamic effects related to the dynamic calibration of fast-response aerodynamic pressure probes.
A Low-Power Thermal-Based Sensor System for Low Air Flow Detection
Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.
2016-01-01
Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186
Tewa-Tagne, Patrice; Degobert, Ghania; Briançon, Stéphanie; Bordes, Claire; Gauvrit, Jean-Yves; Lanteri, Pierre; Fessi, Hatem
2007-04-01
Spray-drying process was used for the development of dried polymeric nanocapsules. The purpose of this research was to investigate the effects of formulation and process variables on the resulting powder characteristics in order to optimize them. Experimental designs were used in order to estimate the influence of formulation parameters (nanocapsules and silica concentrations) and process variables (inlet temperature, spray-flow air, feed flow rate and drying air flow rate) on spray-dried nanocapsules when using silica as drying auxiliary agent. The interactions among the formulation parameters and process variables were also studied. Responses analyzed for computing these effects and interactions were outlet temperature, moisture content, operation yield, particles size, and particulate density. Additional qualitative responses (particles morphology, powder behavior) were also considered. Nanocapsules and silica concentrations were the main factors influencing the yield, particulate density and particle size. In addition, they were concerned for the only significant interactions occurring among two different variables. None of the studied variables had major effect on the moisture content while the interaction between nanocapsules and silica in the feed was of first interest and determinant for both the qualitative and quantitative responses. The particles morphology depended on the feed formulation but was unaffected by the process conditions. This study demonstrated that drying nanocapsules using silica as auxiliary agent by spray drying process enables the obtaining of dried micronic particle size. The optimization of the process and the formulation variables resulted in a considerable improvement of product yield while minimizing the moisture content.
Air change rates (ACRs) and interzonal flows are key determinants of indoor air quality (IAQ) and building energy use. This paper characterizes ACRs and interzonal flows in 126 houses, and evaluates effects of these parameters on IAQ. ACRs measured using weeklong tracer measureme...
Richards, Jennifer H; Kuhn, David N; Bishop, Kristin
2012-12-01
Nymphaea odorata grows in water up to 2 m deep, producing fewer larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiolar air canals are the convective flow pathways. This study describes the structure of these canals, how this structure varies with water depth, and models how convective flow varies with depth. • Nymphaea odorata plants were grown at water depths from 30 to 90 cm. Lamina area, petiolar cross-sectional area, and number and area of air canals were measured. Field-collected leaves and leaves from juvenile plants were analyzed similarly. Using these data and data from the literature, we modeled how convective flow changes with water depth. • Petioles of N. odorata produce two central pairs of air canals; additional pairs are added peripherally, and succeeding pairs are smaller. The first three pairs account for 96% of air canal area. Air canals form 24% of petiolar cross-sectional area. Petiolar and air canal cross-sectional areas increase with water depth. Petiolar area scales with lamina area, but the slope of this relationship is lower in 90 cm water than at shallower depths. In our model, the rate of convective flow varied with depth and with the balance of influx to efflux leaves. • Air canals in N. odorata petioles increase in size and number in deeper water but at a decreasing amount in relation to lamina area. Convective flow also depends on the number of influx to efflux laminae.
Air-cooled, hydrogen-air fuel cell
NASA Technical Reports Server (NTRS)
Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)
1999-01-01
An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gagnon, J.A.; Schaefer, D.D.; Shaw, D.N.
1980-09-02
A compact, helical screw compressor/expander unit is described that is mounted in a vehicle and connected to the vehicle engine driven drive shaft has inlet and outlet ports and a capacity control slide valve and a pressure matching or volume ratio slide valve, respectively, for said ports. A refrigerant loop includes the compressor, a condenser mounted in the path of air flow over the engine and an evaporator mounted in a fresh air/cab return air flow duct for the occupant. Heat pipes thermally connect the cab air flow duct to the engine exhaust system which also bears the vapor boiler.more » Selectively operated damper valves control the fresh air/cab return air for passage selectively over the evaporator coil and the heat pipes as well as the exhaust gas flow over opposite ends of the heat pipes and the vapor boiler.« less
The Influence of Shaping Air Pressure of Pneumatic Spray Gun
NASA Astrophysics Data System (ADS)
Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo
2018-02-01
The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.
Harbinson, Jeremy; Foyer, Christine H.
1991-01-01
The responses of the efficiencies of photosystems I and II, stromal redox state (as indicated by NADP-malate dehydrogenase activation state), and activation of the Benson-Calvin cycle enzymes ribulose 1,5-bisphosphate carboxylase and fructose 1,6-bisphosphatase to varying irradiance were measured in pea (Pisum sativum L.) leaves operating close to the CO2 compensation point. A comparison of the relationships among these parameters obtained from leaves in air was made with those obtained when the leaves were maintained in air from which the CO2 had been removed. P700 was more oxidized at any measured irradiance in CO2-free air than in air. The relationship between the quantum efficiencies of the photosystems in CO2-free air was distinctly curvilinear in contrast to the predominantly linear relationship obtained with leaves in air. This nonlinearity may be consistent with the operation of cyclic electron flow around photosystem I because the quantum efficiency of photosystem II was much more restricted than the quantum efficiency of photosystem I. In CO2-free air, measured NADP-malate dehydrogenase activities varied considerably at low irradiances. However, at high irradiance the activity of the enzyme was low, implying that the stroma was oxidized. In contrast, fructose-1,6-bisphosphatase activities tended to increase with increasing electron flux through the photosystems. Ribulose-1,5-bisphosphate carboxylase activity remained relatively constant with respect to irradiance in CO2-free air, with an activation state 50% of maximum. We conclude that, at the CO2 compensation point and high irradiance, low redox states are favored and that cyclic electron flow may be substantial. These two features may be the requirements necessary to trigger and maintain the dissipative processes in the thylakoid membrane. PMID:16668401
Cheng, R.K.
1998-04-07
A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame. 11 figs.
Cheng, Robert K.
1998-01-01
A novel burner and burner method has been invented which burns an ultra lean premixed fuel-air mixture with a stable flame. The inventive burning method results in efficient burning and much lower emissions of pollutants such as oxides of nitrogen than previous burners and burning methods. The inventive method imparts weak swirl (swirl numbers of between about 0.01 to 3.0) on a fuel-air flow stream. The swirl, too small to cause recirculation, causes an annulus region immediately inside the perimeter of the fuel-air flow to rotate in a plane normal to the axial flow. The rotation in turn causes the diameter of the fuel-air flow to increase with concomitant decrease in axial flow velocity. The flame stabilizes where the fuel-air mixture velocity equals the rate of burning resulting in a stable, turbulent flame.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G
A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air ismore » directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.« less
Numerical study of effect of compressor swirling flow on combustor design in a MTE
NASA Astrophysics Data System (ADS)
Mu, Yong; Wang, Chengdong; Liu, Cunxi; Liu, Fuqiang; Hu, Chunyan; Xu, Gang; Zhu, Junqiang
2017-08-01
An effect of the swirling flow on the combustion performance is studied by the computational fluid dynamics (CFD) in a micro-gas turbine with a centrifugal compressor, dump diffuser and forward-flow combustor. The distributions of air mass and the Temperature Pattern Factor (as: Overall Temperature Distribution Factor -OTDF) in outlet are investigated with two different swirling angles of compressed air as 0° and 15° in three combustors. The results show that the influences of swirling flow on the air distribution and OTDF cannot be neglected. Compared with no-swirling flow, the air through outer liner is more, and the air through the inner liner is less, and the pressure loss is bigger under the swirling condition in the same combustor. The Temperature Pattern Factor changes under the different swirling conditions.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Wei; Gu, Zhao-Lin; Cheng, Yan; Lee, Shun-Cheng
2011-07-01
Air flow and pollutant dispersion characteristics in an urban street canyon are studied under the real-time boundary conditions. A new scheme for realizing real-time boundary conditions in simulations is proposed, to keep the upper boundary wind conditions consistent with the measured time series of wind data. The air flow structure and its evolution under real-time boundary wind conditions are simulated by using this new scheme. The induced effect of time series of ambient wind conditions on the flow structures inside and above the street canyon is investigated. The flow shows an obvious intermittent feature in the street canyon and the flapping of the shear layer forms near the roof layer under real-time wind conditions, resulting in the expansion or compression of the air mass in the canyon. The simulations of pollutant dispersion show that the pollutants inside and above the street canyon are transported by different dispersion mechanisms, relying on the time series of air flow structures. Large scale air movements in the processes of the air mass expansion or compression in the canyon exhibit obvious effects on pollutant dispersion. The simulations of pollutant dispersion also show that the transport of pollutants from the canyon to the upper air flow is dominated by the shear layer turbulence near the roof level and the expansion or compression of the air mass in street canyon under real-time boundary wind conditions. Especially, the expansion of the air mass, which features the large scale air movement of the air mass, makes more contribution to the pollutant dispersion in this study. Comparisons of simulated results under different boundary wind conditions indicate that real-time boundary wind conditions produces better condition for pollutant dispersion than the artificially-designed steady boundary wind conditions.
Device for improved air and fuel distribution to a combustor
Laster, Walter R.; Schilp, Reinhard
2016-05-31
A flow conditioning device (30, 50, 70, 100, 150) for a can annular gas turbine engine, including a plurality of flow elements (32, 34, 52, 54, 72, 74, 102) disposed in a compressed air flow path (42, 60, 80, 114, 122) leading to a combustor (12), configured such that relative adjustment of at least one flow directing element (32, 52, 72, 110) with respect to an adjacent flow directing element (34, 54, 74, 112, 120) during operation of the gas turbine engine is effective to adjust a level of choking of the compressed air flow path (42, 60, 80, 114, 122).
NASA Technical Reports Server (NTRS)
Vu, Kim-Phuong L.; Strybel, Thomas Z.; Battiste, Vernol; Johnson, Walter
2011-01-01
In the current air traffic management (ATM) system, pilots and air traffic controllers have well-established roles and responsibilities: pilots fly aircraft and are concerned with energy management, fuel efficiency, and passenger comfort; controllers separate aircraft and are concerned with safety and management of traffic flows. Despite having different goals and obligations, both groups must be able to effectively communicate and interact with each other for the ATM system to work. This interaction will become even more challenging as traffic volume increases dramatically in the near future. To accommodate this increase, by 2025 the national air transportation system in the U.S. will go through a transformation that will modernize the ATM system and make it safer, more effective, and more efficient. This new system, NextGen, will change how pilots and controllers perform their tasks by incorporating advanced technologies and employing new procedures. It will also distribute responsibility between pilots, controllers and automation over such tasks as maintaining aircraft separation. The present chapter describes three plausible concepts of operations that allocate different ATM responsibilities to these groups. We describe how each concept changes the role of each operator and the types of decisions and actions performed by them.
Island Topographic Flow Interaction with the Sea in the Maritime Continent
NASA Astrophysics Data System (ADS)
Pullen, J. D.
2016-12-01
New and emerging modeling systems yield an unprecedented perspective on air-sea interaction generated by atmospheric topographic flows around volcanic islands. This study highlights recent results from high-resolution (1-5km) coupled air/sea modeling of the Philippines. The processes represented by the model include orographic lifting; tip jets and lee vortices; and highly textured wind stress curl patterns. The latter produce oceanic eddies of significance to biological productivity. Also impacting biology in the region are episodic upwelling-favorable winds in local areas, such as the Verde Island Passage, that enhance the ecosystem response. Model fields are compared with in situ sea, land, and air measurements from the ONR Philippines Straits Dynamics Experiment (PhilEx) and with satellite-derived fields. The rainfall generated by the combined effects of terrain and atmospheric processes operating across interannual to synoptic timescales point to the importance of including hydrology in coupled models. This affords more realistic representation of the impact of river discharge on the coastal ocean, and the subsequent feedback of oceanic barrier layers to the propagation and characteristics of weather features.
Recent developments of axial flow compressors under transonic flow conditions
NASA Astrophysics Data System (ADS)
Srinivas, G.; Raghunandana, K.; Satish Shenoy, B.
2017-05-01
The objective of this paper is to give a holistic view of the most advanced technology and procedures that are practiced in the field of turbomachinery design. Compressor flow solver is the turbulence model used in the CFD to solve viscous problems. The popular techniques like Jameson’s rotated difference scheme was used to solve potential flow equation in transonic condition for two dimensional aero foils and later three dimensional wings. The gradient base method is also a popular method especially for compressor blade shape optimization. Various other types of optimization techniques available are Evolutionary algorithms (EAs) and Response surface methodology (RSM). It is observed that in order to improve compressor flow solver and to get agreeable results careful attention need to be paid towards viscous relations, grid resolution, turbulent modeling and artificial viscosity, in CFD. The advanced techniques like Jameson’s rotated difference had most substantial impact on wing design and aero foil. For compressor blade shape optimization, Evolutionary algorithm is quite simple than gradient based technique because it can solve the parameters simultaneously by searching from multiple points in the given design space. Response surface methodology (RSM) is a method basically used to design empirical models of the response that were observed and to study systematically the experimental data. This methodology analyses the correct relationship between expected responses (output) and design variables (input). RSM solves the function systematically in a series of mathematical and statistical processes. For turbomachinery blade optimization recently RSM has been implemented successfully. The well-designed high performance axial flow compressors finds its application in any air-breathing jet engines.
High Accuracy Acoustic Relative Humidity Measurement in Duct Flow with Air
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temperature 0–100 °C with an error of ±0.07 °C and relative humidity 0–100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments. PMID:22163610
High accuracy acoustic relative humidity measurement in duct flow with air.
van Schaik, Wilhelm; Grooten, Mart; Wernaart, Twan; van der Geld, Cees
2010-01-01
An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0-12 m/s with an error of ± 0.13 m/s, temperature 0-100 °C with an error of ± 0.07 °C and relative humidity 0-100% with accuracy better than 2 % RH above 50 °C. Main advantage over conventional humidity sensors is the high sensitivity at high RH at temperatures exceeding 50 °C, with accuracy increasing with increasing temperature. The sensors are non-intrusive and resist highly humid environments.
Environmental continuous air monitor inlet with combined preseparator and virtual impactor
Rodgers, John C [Santa Fe, NM
2007-06-19
An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.
Advanced Flow Control as a Management Tool in the National Airspace System
NASA Technical Reports Server (NTRS)
Wugalter, S.
1974-01-01
Advanced Flow Control is closely related to Air Traffic Control. Air Traffic Control is the business of the Federal Aviation Administration. To formulate an understanding of advanced flow control and its use as a management tool in the National Airspace System, it becomes necessary to speak somewhat of air traffic control, the role of FAA, and their relationship to advanced flow control. Also, this should dispell forever, any notion that advanced flow control is the inspirational master valve scheme to be used on the Alaskan Oil Pipeline.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; Schilp, Reinhard; Ross, Christopher W.
A midframe portion (313) of a gas turbine engine (310) is presented and includes a compressor section with a last stage blade to orient an air flow (311) at a first angle (372). The midframe portion (313) further includes a turbine section with a first stage blade to receive the air flow (311) oriented at a second angle (374). The midframe portion (313) further includes a manifold (314) to directly couple the air flow (311) from the compressor section to a combustor head (318) upstream of the turbine section. The combustor head (318) introduces an offset angle in the airmore » flow (311) from the first angle (372) to the second angle (374) to discharge the air flow (311) from the combustor head (318) at the second angle (374). While introducing the offset angle, the combustor head (318) at least maintains or augments the first angle (372).« less
Analysis of the operation of the SCD Response intermittent compression system.
Morris, Rh J; Griffiths, H; Woodcock, J P
2002-01-01
The work assessed the performance of the Kendall SCD Response intermittent pneumatic compression system for deep vein thrombosis prophylaxis, which claimed to set its cycle according to the blood flow characteristics of individual patient limbs. A series of tests measured the system response in various situations, including application to the limbs of healthy volunteers, and to false limbs. Practical experimentation and theoretical analysis were used to investigate influences on the system functioning other than blood flow. The system tested did not seem to perform as claimed, being unable to distinguish between real and fake limbs. The intervals between compressions were set to times unrealistic for venous refill, with temperature changes in the cuff the greatest influence on performance. Combining the functions of compression and the measurement of the effects of compression in the same air bladder makes temperature artefacts unavoidable and can cause significant errors in the inter-compression interval.
78 FR 1934 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... brake pipe air flow from the present rule of 60 cubic feet per minute (CFM) to 90 CFM for distributed... higher air flow of 90 CFM on distributed power trains for the past 2 years. Recently, BNSF conducted demonstration testing in Great Falls, MT, for air flows between 60 and 90 CFM; a summary of which has been...
Upper air teleconnections to Ob River flows and tree rings
NASA Astrophysics Data System (ADS)
Meko, David; Panyushkina, Irina; Agafonov, Leonid
2015-04-01
The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air temperature. Future work aims at combining the tree-ring samples from living trees and remnant wood to reconstruction to quantitiative reconstruction of annual flow over the past millennium.
Entrainment of Air into Vertical Jets in a Crosswind
NASA Astrophysics Data System (ADS)
Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.
2015-12-01
During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.
Conflict Resolution Performance in an Experimental Study of En Route Free Maneuvering Operations
NASA Technical Reports Server (NTRS)
Doble, Nathan A.; Barhydt, Richard; Hitt, James M., II
2005-01-01
NASA has developed a far-term air traffic management concept, termed Distributed Air/Ground Traffic Management (DAG-TM). One component of DAG-TM, En Route Free Maneuvering, allows properly trained flight crews of equipped autonomous aircraft to assume responsibility for separation from other autonomous aircraft and from Instrument Flight Rules (IFR) aircraft. Ground-based air traffic controllers continue to separate IFR traffic and issue flow management constraints to all aircraft. To examine En Route Free Maneuvering operations, a joint human-in-the-loop experiment was conducted in summer 2004 at the NASA Ames and Langley Research Centers. Test subject pilots used desktop flight simulators to resolve traffic conflicts and adhere to air traffic flow constraints issued by subject controllers. The experimental airspace integrated both autonomous and IFR aircraft at varying traffic densities. This paper presents a subset of the En Route Free Maneuvering experimental results, focusing on airborne and ground-based conflict resolution, and the effects of increased traffic levels on the ability of pilots and air traffic controllers to perform this task. The results show that, in general, increases in autonomous traffic do not significantly impact conflict resolution performance. In addition, pilot acceptability of autonomous operations remains high throughout the range of traffic densities studied. Together with previously reported findings, these results continue to support the feasibility of the En Route Free Maneuvering component of DAG-TM.
Beer, J.; Dowdy, T.E.; Bachovchin, D.M.
1997-06-10
A combustor is described for burning a mixture of fuel and air in a rich combustion zone, in which the fuel bound nitrogen in converted to molecular nitrogen. The fuel rich combustion is followed by lean combustion. The products of combustion from the lean combustion are rapidly quenched so as to convert the fuel bound nitrogen to molecular nitrogen without forming NOx. The combustor has an air radial swirler that directs the air radially inward while swirling it in the circumferential direction and a radial fuel swirler that directs the fuel radially outward while swirling it in the same circumferential direction, thereby promoting vigorous mixing of the fuel and air. The air inlet has a variable flow area that is responsive to variations in the heating value of the fuel, which may be a coal-derived fuel gas. A diverging passage in the combustor in front of a bluff body causes the fuel/air mixture to recirculate with the rich combustion zone. 14 figs.
Wilker, Elissa H.; Ljungman, Petter L.; Rice, Mary B.; Kloog, Itai; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.; Benjamin, Emelia J.; Hamburg, Naomi M.; Mittleman, Murray A.
2014-01-01
Long-term exposure to ambient air pollution has been associated with cardiovascular morbidity and mortality. Impaired vascular responses may in part explain these findings, but the association of such long-term exposure with measures of both conduit artery and microvascular function have not been widely reported. We evaluated the association between residential proximity to a major roadway (primary or secondary highway) and spatially resolved average fine particulate matter (PM2.5) and baseline brachial artery diameter and mean flow velocity, flow mediated dilation % and hyperemic flow velocity, in the Framingham Offspring and Third Generation Cohorts. We examined 5,112 participants (2,731 (53%) women, mean age 49±14 years). Spatially resolved average PM2.5 was associated with lower flow mediated dilation% and hyperemic flow velocity. An interquartile range difference in PM2.5 (1.99 μg/m3) was associated with −0.16% (95%CI: −0.27%, −0.05%) lower FMD% and −0.72 (95%CI: −1.38, −0.06) cm/s lower hyperemic flow velocity %. Residential proximity to a major roadway was negatively associated with flow mediated dilation %. Compared to living ≥400 m away, living <50 m from a major roadway was associated with 0.32% lower flow mediated dilation (95% confidence interval (CI): −0.58%, −0.06%), but results for hyperemic flow velocity had wide confidence intervals −0.68 cm/s (95%CI: −2.29, 0.93). In conclusion, residential proximity to a major roadway and higher levels of spatially resolved estimates of PM2.5 at participant residences are associated with impaired conduit artery and microvascular function in this large community-based cohort of middle-aged and elderly adults. PMID:24793676
Portable instrument and method for detecting reduced sulfur compounds in a gas
Gaffney, J.S.; Kelly, T.J.; Tanner, R.L.
1983-06-01
A portable real time instrument for detecting concentrations in the part per billion range of reduced sulfur compounds in a sample gas. Ozonized air or oxygen and reduced sulfur compounds in a sample gas stream react to produce chemiluminescence in a reaction chamber and the emitted light is filtered and observed by a photomultiplier to detect reduced sulfur compounds. Selective response to individual sulfur compounds is achieved by varying reaction chamber temperature and ozone and sample gas flows, and by the use of either air or oxygen as the ozone source gas.
Characteristics of coal mine ventilation air flows.
Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng
2008-01-01
Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.
A method of calibrating wind velocity sensors with a modified gas flow calibrator
NASA Technical Reports Server (NTRS)
Stump, H. P.
1978-01-01
A procedure was described for calibrating air velocity sensors in the exhaust flow of a gas flow calibrator. The average velocity in the test section located at the calibrator exhaust was verified from the mass flow rate accurately measured by the calibrator's precision sonic nozzles. Air at elevated pressures flowed through a series of screens, diameter changes, and flow straighteners, resulting in a smooth flow through the open test section. The modified system generated air velocities of 2 to 90 meters per second with an uncertainty of about two percent for speeds below 15 meters per second and four percent for the higher speeds. Wind tunnel data correlated well with that taken in the flow calibrator.
Fluidic Active Transducer for Electricity Generation
Yang, YoungJun; Park, Junwoo; Kwon, Soon-Hyung; Kim, Youn Sang
2015-01-01
Flows in small size channels have been studied for a long time over multidisciplinary field such as chemistry, biology and medical through the various topics. Recently, the attempts of electricity generation from the small flows as a new area for energy harvesting in microfluidics have been reported. Here, we propose for the first time a new fluidic electricity generator (FEG) by modulating the electric double layer (EDL) with two phase flows of water and air without external power sources. We find that an electric current flowed by the forming/deforming of the EDL with a simple separated phase flow of water and air at the surface of the FEG. Electric signals between two electrodes of the FEG are checked from various water/air passing conditions. Moreover, we verify the possibility of a self-powered air slug sensor by applying the FEG in the detection of an air slug. PMID:26511626
Intercooler cooling-air weight flow and pressure drop for minimum drag loss
NASA Technical Reports Server (NTRS)
Reuter, J George; Valerino, Michael F
1944-01-01
An analysis has been made of the drag losses in airplane flight of cross-flow plate and tubular intercoolers to determine the cooling-air weight flow and pressure drop that give a minimum drag loss for any given cooling effectiveness and, thus, a maximum power-plant net gain due to charge-air cooling. The drag losses considered in this analysis are those due to (1) the extra drag imposed on the airplane by the weight of the intercooler, its duct, and its supports and (2) the drag sustained by the cooling air in flowing through the intercooler and its duct. The investigation covers a range of conditions of altitude, airspeed, lift-drag ratio, supercharger-pressure ratio, and supercharger adiabatic efficiency. The optimum values of cooling air pressure drop and weight flow ratio are tabulated. Curves are presented to illustrate the results of the analysis.
Analysis of the Hydrodynamics and Heat Transfer Aspects of Microgravity Two-Phase Flows
NASA Technical Reports Server (NTRS)
Rezkallah, Kamiel S.
1996-01-01
Experimental results for void fractions, flow regimes, and heat transfer rates in two-phase, liquid-gas flows are summarized in this paper. The data was collected on-board NASA's KC-135 reduced gravity aircraft in a 9.525 mm circular tube (i.d.), uniformly heated at the outer surface. Water and air flows were examined as well as three glycerol/water solutions and air. Results are reported for the water-air data.
NASA Astrophysics Data System (ADS)
Cao, M.-H.; Jiang, H.-K.; Chin, J.-S.
1982-04-01
An improved flat-fan spray model is used for the semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow. The model assumes that, due to the aerodynamic force of the high-velocity cross air flow, the injected fuel immediately forms a flat-fan liquid sheet perpendicular to the cross flow. Once the droplets have been formed, the trajectories of individual droplets determine fuel distribution downstream. Comparison with test data shows that the proposed model accurately predicts liquid fuel distribution at any point downstream of a plain orifice injector under high-velocity, low-temperature uniform cross-stream air flow over a wide range of conditions.
Method and apparatus for in-cell vacuuming of radiologically contaminated materials
Spadaro, Peter R.; Smith, Jay E.; Speer, Elmer L.; Cecconi, Arnold L.
1987-01-01
A vacuum air flow operated cyclone separator arrangement for collecting, handling and packaging loose contaminated material in accordance with acceptable radiological and criticality control requirements. The vacuum air flow system includes a specially designed fail-safe prefilter installed upstream of the vacuum air flow power supply. The fail-safe prefilter provides in-cell vacuum system flow visualization and automatically reduces or shuts off the vacuum air flow in the event of an upstream prefilter failure. The system is effective for collecting and handling highly contaminated radiological waste in the form of dust, dirt, fuel element fines, metal chips and similar loose material in accordance with radiological and criticality control requirements for disposal by means of shipment and burial.
A computational investigation of fuel mixing in a hypersonic scramjet
NASA Technical Reports Server (NTRS)
Fathauer, Brett W.; Rogers, R. C.
1993-01-01
A parabolized, Navier-Stokes code, SHIP3D, is used to numerically investigate the mixing between air injection and hydrogen injection from a swept ramp injector configuration into either a mainstream low-enthalpy flow or a hypervelocity test flow. The mixing comparisons between air and hydrogen injection reveal the importance of matching injectant-to-mainstream mass flow ratios. In flows with the same injectant-to-mainstream dynamic pressure ratio, the mixing definition was altered for the air injection cases. Comparisons of the computed results indicate that the air injection cases overestimate the mixing performance associated with hydrogen injection simulation. A lifting length parameter, to account for the time a fluid particle transverses through the mixing region, is defined and used to establish a connection of injectant mixing in hypervelocity flows, based on nonreactive, low-enthalpy flows.
Flow and performance of an air-curtain biological safety cabinet.
Huang, Rong Fung; Chou, Chun I
2009-06-01
Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.
Bischoff, W E; Kindermann, A; Sander, U; Sander, J
1995-10-01
In eleven centrally ventilated operating theatres the concentration of particles and airborne germs in wound vicinity was measured on three workdays. Five theatres were equipped with air supply ceilings with supporting flow outlets (supporting flow ceilings), five with laminar air flow ceilings and one with an air supply ceiling, a body exhaust system and a partition wall between the anesthetic and operating areas. Under routine conditions the air supply of the laminar air flow ceiling with its lower turbulence shielded the operating field from the largely staff-related air contamination in the rest of the theatre better than in the case of the supporting flow ceilings. Particles and airborne germs were removed from the endangered wound area faster. A spatial separation between the anesthetic and the operating areas as well as a body exhaust system lead to a considerable reduction of the contamination. Two theatres were conspicuous by reason of their considerably raised values due to defective control engineering and the wrongly positioning of the operating table. From the point of view of ventilation technique the laminar air flow ceilings with lower turbulence are superior to air supply ceilings with supporting flow outlets in the working day of an operating theatre. In order to minimize the influence of the staff, which up till now has been neglected in testing specifications, constructional possibilities such as the size of ceiling, the partitioning off of operating and anaesthetic areas and the positioning of the operating table in relation to the incoming air should be coordinated rationally. Taking measurements regularly during operations can provide the impulse for considerable improvements in both operational and planning phases.
Flow visualization of a non-contact transport device by Coanda effect
NASA Astrophysics Data System (ADS)
Iki, Norihiko; Abe, Hiroyuki; Okada, Takashi
2014-08-01
AIST proposes new technology of non-contact transport device utilizing Coanda effect. A proposed non-contact transport device has a cylindrical body and circular slit for air. The air flow around non-contact device is turbulent and its flow pattern depends on the injection condition. Therefore we tried visualization of the air flow around non -contact device as the first step of PIV measurement. Several tracer particles were tried such as TiO2 particles, water droplets, potatoes starch, rice starch, corn starch. Hot-wire anemometer is employed to velocity measurement. TiO2 particles deposit inside of a slit and clogging of a slit occurs frequently. Potato starch particles do not clog a slit but they are too heavy to trace slow flow area. Water droplets by ultrasonic atomization also deposit inside of slit but they are useful to visualize flow pattern around a non-contact transport device by being supplied from circumference. Coanda effect of proposed non-contact transport device was confirmed and injected air flow pattern switches by a work. Air flow around non-contact trance port device is turbulent and its velocity range is wide. Therefore flow measurement by tracer part icle has traceability issue. Suitable tracer and exposure condition depends on target area.
NASA Technical Reports Server (NTRS)
Kinney, George R; Abramson, Andrew E; Sloop, John L
1952-01-01
Report presents the results of an investigation conducted to determine the effectiveness of liquid-cooling films on the inner surfaces of tubes containing flowing hot air. Experiments were made in 2- and 4-inch-diameter straight metal tubes with air flows at temperatures from 600 degrees to 2000 degrees F. and diameter Reynolds numbers from 2.2 to 14 x 10(5). The film coolant, water, was injected around the circumference at a single axial position on the tubes at flow rates from 0.02 to .24 pound per second per foot of tube circumference (0.8 to 12 percent of the air flow). Liquid-coolant films were established and maintained around and along the tube wall in concurrent flow with the hot air. The results indicated that, in order to film cool a given surface area with as little coolant flow as possible, it may be necessary to limit the flow of coolant introduced at a single axial position and to introduce it at several axial positions. The flow rate of inert coolant required to maintain liquid-film cooling over a given area of tube surface can be estimated when the gas-flow conditions are known by means of a generalized plot of the film-cooling data.
Numerical investigation of the air injection effect on the cavitating flow in Francis hydro turbine
NASA Astrophysics Data System (ADS)
Chirkov, D. V.; Shcherbakov, P. K.; Cherny, S. G.; Skorospelov, V. A.; Turuk, P. A.
2017-09-01
At full and over load operating points, some Francis turbines experience strong self-excited pressure and power oscillations. These oscillations are occuring due to the hydrodynamic instability of the cavitating fluid flow. In many cases, the amplitude of such pulsations may be reduced substantially during the turbine operation by the air injection/ admission below the runner. Such an effect is investigated numerically in the present work. To this end, the hybrid one-three-dimensional model of the flow of the mixture "liquid-vapor" in the duct of a hydroelectric power station, which was proposed previously by the present authors, is augmented by the second gaseous component — the noncondensable air. The boundary conditions and the numerical method for solving the equations of the model are described. To check the accuracy of computing the interface "liquid-gas", the numerical method was applied at first for solving the dam break problem. The algorithm was then used for modeling the flow in a hydraulic turbine with air injection below the runner. It is shown that with increasing flow rate of the injected air, the amplitude of pressure pulsations decreases. The mechanism of the flow structure alteration in the draft tube cone has been elucidated, which leads to flow stabilization at air injection.
Evaluation of centrifugal compressor performance with water injection
NASA Technical Reports Server (NTRS)
Beede, William L; Hamrick, Joseph T; Withee, Joseph R , Jr
1951-01-01
The effects of water injection on a compressor are presented. To determine the effects of varying water-air ratio, the compressor was operated at a constant equivalent impeller speed over a range of water-air ratios and weight flows. Operation over a range of weight flows at one water-air ratio and two inlet air temperatures was carried out to obtain an indication of the effects of varying inlet air temperature. Beyond a water-air ratio of 0.03 there was no increase in maximum air-weight flow, a negligible rise in peak total-pressure ratio, and a decrease in peak adiabatic efficiency. An increase in inlet air temperature resulted in an increase in the magnitude of evaporation. An analysis of data indicated that the magnitude of evaporation within the compressor impeller was small.
NASA Astrophysics Data System (ADS)
Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying
2017-09-01
Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio can lead to a stronger channel flow in street canyons and improve the air quality. The octagon intersections are favorable for air flowing through the lateral openings and improve the channel flows. The oblique intersections can also greatly improve the street ventilations, mainly due to the enhanced air flows through the lateral openings and the increased turbulent diffusion through the street roofs.
An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194
An open-access modeled passenger flow matrix for the global air network in 2010.
Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J
2013-01-01
The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.
Measurement of unsteady airflow velocity at nozzle outlet
NASA Astrophysics Data System (ADS)
Pyszko, René; Machů, Mário
2017-09-01
The paper deals with a method of measuring and evaluating the cooling air flow velocity at the outlet of the flat nozzle for cooling a rolled steel product. The selected properties of the Prandtl and Pitot sensing tubes were measured and compared. A Pitot tube was used for operational measurements of unsteady dynamic pressure of the air flowing from nozzles to abtain the flow velocity. The article also discusses the effects of air temperature, pressure and relative air humidity on air density, as well as the influence of dynamic pressure filtering on the error of averaged velocity.
Use of exhaust gas as sweep flow to enhance air separation membrane performance
Dutart, Charles H.; Choi, Cathy Y.
2003-01-01
An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.
Pore level visualization of foam flow in a silicon micromodel. SUPRI TR 100
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woody, F.; Blunt, M.; Castanier, L.
This paper is concerned with the behavior of foam in porous media at the pore level. Identical, heterogeneous silicon micromodels, two dimensionally etched to replicate flow in Berea Sandstone, were used. The models, already saturated with varying concentrations of surfactant and, at times, oil were invaded with air. Visual observations were made of these air displacement events in an effort to determine foam flow characteristics with varying surfactant concentrations, and differing surfactants in the presence of oil. These displacement events were recorded on video tape. These tapes are available at the Stanford University Petroleum Research Institute, Stanford, California. The observedmore » air flow characteristics can be broadly classified into two: continuous and discontinuous. Continuous air flow was observed in two phase runs when the micromodel contained no aqueous surfactant solution. Air followed a tortuous path to the outlet, splitting and reconnecting around grains, isolating water located in dead-end or circumvented pores, all without breaking and forming bubbles. No foam was created. Discontinuous air flow occurred in runs containing surfactant - with smaller bubble sizes appearing with higher surfactant concentrations. Air moved through the medium by way of modified bubble train flow where bubbles travel through pore throats and tend to reside more statically in larger pore bodies until enough force is applied to move them along. The lamellae were stable, and breaking and reforming events by liquid drainage and corner flow were observed in higher surfactant concentrations. However, the classic snap-off process, as described by Roof (1973) was not seen at all.« less
Antarctic climate cooling and response of diatoms in glacial meltwater streams
Esposito, R.M.M.; Horn, S.L.; McKnight, Diane M.; Cox, M.J.; Grant, M.C.; Spaulding, S.A.; Doran, P.T.; Cozzetto, K.D.
2006-01-01
To understand biotic responses to an Antarctic cooling trend diatom samples from glacial meltwater streams in the McMurdo Dry Valleys, the largest ice-free area in Antarctica. Diatoms are abundant in these streams, and 24 of 40 species have only been found in the Antarctic. The percentage of these Antarctic diatom species increased with decreasing annual stream flow and increasing harshness of the stream habitat. The species diversity of assemblages reached a maximum when the Antarctic species accounted for 40-60% of relative diatom abundance. Decreased solar radiation and air-temperatures reduce annual stream flow, raising the dominance of these Antarctic species to levels above 60%. Thus, cooling favors the Antarctic species, and lowers diatom species diversity in this region. Copyright 2006 by the American Geophysical Union.
En route air traffic flow simulation.
DOT National Transportation Integrated Search
1971-01-01
The report covers the conception, design, development, and initial implementation of an advanced simulation technique applied to a study of national air traffic flow and its control by En Route Air Route Traffic Control Centers (ARTCC). It is intende...
Large volume flow-through scintillating detector
Gritzo, Russ E.; Fowler, Malcolm M.
1995-01-01
A large volume flow through radiation detector for use in large air flow situations such as incinerator stacks or building air systems comprises a plurality of flat plates made of a scintillating material arranged parallel to the air flow. Each scintillating plate has a light guide attached which transfers light generated inside the scintillating plate to an associated photomultiplier tube. The output of the photomultiplier tubes are connected to electronics which can record any radiation and provide an alarm if appropriate for the application.
CPAP Devices for Emergency Prehospital Use: A Bench Study.
Brusasco, Claudia; Corradi, Francesco; De Ferrari, Alessandra; Ball, Lorenzo; Kacmarek, Robert M; Pelosi, Paolo
2015-12-01
CPAP is frequently used in prehospital and emergency settings. An air-flow output minimum of 60 L/min and a constant positive pressure are 2 important features for a successful CPAP device. Unlike hospital CPAP devices, which require electricity, CPAP devices for ambulance use need only an oxygen source to function. The aim of the study was to evaluate and compare on a bench model the performance of 3 orofacial mask devices (Ventumask, EasyVent, and Boussignac CPAP system) and 2 helmets (Ventukit and EVE Coulisse) used to apply CPAP in the prehospital setting. A static test evaluated air-flow output, positive pressure applied, and FIO2 delivered by each device. A dynamic test assessed airway pressure stability during simulated ventilation. Efficiency of devices was compared based on oxygen flow needed to generate a minimum air flow of 60 L/min at each CPAP setting. The EasyVent and EVE Coulisse devices delivered significantly higher mean air-flow outputs compared with the Ventumask and Ventukit under all CPAP conditions tested. The Boussignac CPAP system never reached an air-flow output of 60 L/min. The EasyVent had significantly lower pressure excursion than the Ventumask at all CPAP levels, and the EVE Coulisse had lower pressure excursion than the Ventukit at 5, 15, and 20 cm H2O, whereas at 10 cm H2O, no significant difference was observed between the 2 devices. Estimated oxygen consumption was lower for the EasyVent and EVE Coulisse compared with the Ventumask and Ventukit. Air-flow output, pressure applied, FIO2 delivered, device oxygen consumption, and ability to maintain air flow at 60 L/min differed significantly among the CPAP devices tested. Only the EasyVent and EVE Coulisse achieved the required minimum level of air-flow output needed to ensure an effective therapy under all CPAP conditions. Copyright © 2015 by Daedalus Enterprises.
Thermal imaging for cold air flow visualisation and analysis
NASA Astrophysics Data System (ADS)
Grudzielanek, M.; Pflitsch, A.; Cermak, J.
2012-04-01
In this work we present first applications of a thermal imaging system for animated visualization and analysis of cold air flow in field studies. The development of mobile thermal imaging systems advanced very fast in the last decades. The surface temperature of objects, which is detected with long-wave infrared radiation, affords conclusions in different problems of research. Modern thermal imaging systems allow infrared picture-sequences and a following data analysis; the systems are not exclusive imaging methods like in the past. Thus, the monitoring and analysing of dynamic processes became possible. We measured the cold air flow on a sloping grassland area with standard methods (sonic anemometers and temperature loggers) plus a thermal imaging system measuring in the range from 7.5 to 14µm. To analyse the cold air with the thermal measurements, we collected the surface infrared temperatures at a projection screen, which was located in cold air flow direction, opposite the infrared (IR) camera. The intention of using a thermal imaging system for our work was: 1. to get a general idea of practicability in our problem, 2. to assess the value of the extensive and more detailed data sets and 3. to optimise visualisation. The results were very promising. Through the possibility of generating time-lapse movies of the image sequences in time scaling, processes of cold air flow, like flow waves, turbulence and general flow speed, can be directly identified. Vertical temperature gradients and near-ground inversions can be visualised very well. Time-lapse movies will be presented. The extensive data collection permits a higher spatial resolution of the data than standard methods, so that cold air flow attributes can be explored in much more detail. Time series are extracted from the IR data series, analysed statistically, and compared to data obtained using traditional systems. Finally, we assess the usefulness of the additional measurement of cold air flow with thermal imaging systems.
Carson, Christine F; Inglis, Timothy JJ
2018-01-01
This study investigated aerosolized viable bacteria in a university research laboratory during operation of an acoustic-assisted flow cytometer for antimicrobial susceptibility testing by sampling room air before, during and after flow cytometer use. The aim was to assess the risk associated with use of an acoustic-assisted flow cytometer analyzing unfixed bacterial suspensions. Air sampling in a nearby clinical laboratory was conducted during the same period to provide context for the existing background of microorganisms that would be detected in the air. The three species of bacteria undergoing analysis by flow cytometer in the research laboratory were Klebsiella pneumoniae, Burkholderia thailandensis and Streptococcus pneumoniae. None of these was detected from multiple 1000 L air samples acquired in the research laboratory environment. The main cultured bacteria in both locations were skin commensal and environmental bacteria, presumed to have been disturbed or dispersed in laboratory air by personnel movements during routine laboratory activities. The concentrations of bacteria detected in research laboratory air samples were reduced after interventional cleaning measures were introduced and were lower than those in the diagnostic clinical microbiology laboratory. We conclude that our flow cytometric analyses of unfixed suspensions of K. pneumoniae, B. thailandensis and S. pneumoniae do not pose a risk to cytometer operators or other personnel in the laboratory but caution against extrapolation of our results to other bacteria and/or different flow cytometric experimental procedures. PMID:29608197
NASA Astrophysics Data System (ADS)
Ma, Chao; Ji, Yongbin; Ge, Bing; Zang, Shusheng; Chen, Hua
2018-04-01
A comparative experimental study of heat transfer characteristics of steam and air flow in rectangular channels roughened with parallel ribs was conducted by using an infrared camera. Effects of Reynolds numbers and rib angles on the steam and air convective heat transfer have been obtained and compared with each other for the Reynolds number from about 4,000 to 15,000. For all the ribbed channels the rib pitch to height ratio (p/e) is 10, and the rib height to the channel hydraulic diameter ratio is 0.078, while the rib angles are varied from 90° to 45°. Based on experimental results, it can be found that, even though the heat transfer distributions of steam and air flow in the ribbed channels are similar to each other, the steam flow can obtain higher convective heat transfer enhancement capability, and the heat transfer enhancement of both the steam and air becomes greater with the rib angle deceasing from 90° to 45°. At Reynolds number of about 12,000, the area-averaged Nusselt numbers of the steam flow is about 13.9%, 14.2%, 19.9% and 23.9% higher than those of the air flow for the rib angles of 90°, 75°, 60° and 45° respectively. With the experimental results the correlations for Nusselt number in terms of Reynolds number and rib angle for the steam and air flow in the ribbed channels were developed respectively.
Aljuboury, Dheeaa Al Deen Atallah; Palaniandy, Puganeshwary; Abdul Aziz, Hamidi Bin; Feroz, Shaik; Abu Amr, Salem S
2016-09-01
The aim of this study is to investigate the performance of combined solar photo-catalyst of titanium oxide/zinc oxide (TiO 2 /ZnO) with aeration processes to treat petroleum wastewater. Central composite design with response surface methodology was used to evaluate the relationships between operating variables for TiO 2 dosage, ZnO dosage, air flow, pH, and reaction time to identify the optimum operating conditions. Quadratic models for chemical oxygen demand (COD) and total organic carbon (TOC) removals prove to be significant with low probabilities (<0.0001). The obtained optimum conditions included a reaction time of 170 min, TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), and pH 6.8 COD and TOC removal rates of 99% and 74%, respectively. The TOC and COD removal rates correspond well with the predicted models. The maximum removal rate for TOC and COD was 99.3% and 76%, respectively at optimum operational conditions of TiO 2 dosage (0.5 g/L), ZnO dosage (0.54 g/L), air flow (4.3 L/min), reaction time (170 min) and pH (6.8). The new treatment process achieved higher degradation efficiencies for TOC and COD and reduced the treatment time comparing with other related processes.
Heat Transfer of Confined Impinging Air-water Mist Jet
NASA Astrophysics Data System (ADS)
Chang, Shyy Woei; Su, Lo May
This paper describes the detailed heat transfer distributions of an atomized air-water mist jet impinging orthogonally onto a confined target plate with various water-to-air mass-flow ratios. A transient technique was used to measure the full field heat transfer coefficients of the impinging surface. Results showed that the high momentum mist-jet interacting with the water-film and wall-jet flows created a variety of heat transfer contours on the impinging surface. The trade-off between the competing influences of the different heat transfer mechanisms involving in an impinging mist jet made the nonlinear variation tendency of overall heat transfer against the increase of water-to-air mass-flow ratio and extended the effective cooling region. With separation distances of 10, 8, 6 and 4 jet-diameters, the spatially averaged heat transfer values on the target plate could respectively reach about 2.01, 1.83, 2.43 and 2.12 times of the equivalent air-jet values, which confirmed the applicability of impinging mist-jet for heat transfer enhancement. The optimal choices of water-to-air mass-flow ratio for the atomized mist jet required the considerations of interactive and combined effects of separation distance, air-jet Reynolds number and the water-to-air mass-flow ratio into the atomized nozzle.
Spool Valve for Switching Air Flows Between Two Beds
NASA Technical Reports Server (NTRS)
Dean, W. Clark
2005-01-01
U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.
Low coke fuel injector for a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.R.
This patent describes a gas turbine carbureting device for disposal in a down-stream flowing compressor discharge air flow. It comprises: a spin chamber defined by a generally annular housing including a closed forward end having a continuous unobstructed inner surface and an open aft end wherein the forward end is upstream of the aft end with respect tot he compressor discharge airflow; at least one exhaust tube having an inlet disposed within the spin chamber wherein the exhaust tube is radially spaced apart from the annular housing and which together with the annular housing forms at least in part amore » first annular air passage leading to the forward end; the housing having a fuel entrance and a swirling air entrance to the first annular air passage and spaced axially apart from each other, and wherein the swirling air entrance and fuel entrance are downstream of the closer forward end with respect to the compressor discharge flow; and wherein the first air passage is formed for flowing swirling air from the swirling air passage to the aft end in an upstream direction with respect to the compressor discharge flow and the exhaust tube inlet is disposed within the swirl chamber so as to reverse the axial direction of the swirling air off the forward end from an upstream direction to a downstream direction through the exhaust tube.« less
Performance of PEM Liquid-Feed Direct Methanol-Air Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, S. R.
1995-01-01
A direct methanol-air fuel cell operating at near atmospheric pressure, low-flow rate air, and at temperatures close to 60oC would tremendously enlarge the scope of potential applications. While earlier studies have reported performance with oxygen, the present study focuses on characterizing the performance of a PEM liquid feed direct methanol-air cell consisting of components developed in house. These cells employ Pt-Ru catalyst in the anode, Pt at the cathode and Nafion 117 as the PEM. The effect of pressure, flow rate of air and temperature on cell performance has been studied. With air, the performance level is as high as 0.437 V at 300 mA/cm2 (90oC, 20 psig, and excess air flow) has been attained. Even more significant is the performance level at 60oC, 1 atm and low flow rates of air (3-5 times stoichiometric), which is 0.4 V at 150 mA/cm2. Individual electrode potentials for the methanol and air electrode have been separated and analyzed. Fuel crossover rates and the impact of fuel crossover on the performance of the air electrode have also been measured. The study identifies issues specific to the methanol-air fuel cell and provides a basis for improvement strategies.
Development of the Dual Aerodynamic Nozzle Model for the NTF Semi-Span Model Support System
NASA Technical Reports Server (NTRS)
Jones, Greg S.; Milholen, William E., II; Goodliff, Scott L.
2011-01-01
The recent addition of a dual flow air delivery system to the NASA Langley National Transonic Facility was experimentally validated with a Dual Aerodynamic Nozzle semi-span model. This model utilized two Stratford calibration nozzles to characterize the weight flow system of the air delivery system. The weight flow boundaries for the air delivery system were identified at mildly cryogenic conditions to be 0.1 to 23 lbm/sec for the high flow leg and 0.1 to 9 lbm/sec for the low flow leg. Results from this test verified system performance and identified problems with the weight-flow metering system that required the vortex flow meters to be replaced at the end of the test.
Seals/Secondary Fluid Flows Workshop 1997; Volume I
NASA Technical Reports Server (NTRS)
Hendricks, Robert C. (Editor)
2006-01-01
The 1997 Conference provided discussions and data on (a) program overviews, (b) developments in seals and secondary air management systems, (c) interactive seals flows with secondary air or fluid flows and powerstream flows, (d) views of engine externals and limitations, (e) high speed engine research sealing needs and demands, and (f) a short course on engine design development margins. Sealing concepts discussed include, mechanical rim and cavity seals, leaf, finger, air/oil, rope, floating-brush, floating-T-buffer, and brush seals. Engine externals include all components of engine fluid systems, sensors and their support structures that lie within or project through the nacelle. The clean features of the nacelle belie the minefield of challenges and opportunities that lie within. Seals; Secondary air flows; Rotordynamics; Gas turbine; Aircraft; CFD; Testing; Turbomachinery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Sun Lee; Yu Ryang Pyun
A food drying process in a tunnel dryer was modeled from Keey's drying model and experimental drying curve, and optimized in operating conditions consisting of inlet air temperature, air recycle ratio and air flow rate. Radish was chosen as a typical food material to be dried, because it has the typical drying characteristics of food and quality indexes of ascorbic acid destruction and browning during drying. Optimization results of cocurrent and counter current tunnel drying showed higher inlet air temperature, lower recycle ratio and higher air flow rate with shorter total drying time. Compared with cocurrent operation counter current dryingmore » used lower air temperature, lower recycle ratio and lower air flow rate, and appeared to be more efficient in energy usage. Most of consumed energy was shown to be used for sir heating and then escaped from the dryer in the form of exhaust air.« less
Hare, Hannah V; Germuska, Michael; Kelly, Michael E; Bulte, Daniel P
2013-11-01
Measurement of cerebrovascular reactivity (CVR) can give valuable information about existing pathology and the risk of adverse events, such as stroke. A common method of obtaining regional CVR values is by measuring the blood flow response to carbon dioxide (CO2)-enriched air using arterial spin labeling (ASL) or blood oxygen level-dependent (BOLD) imaging. Recently, several studies have used carbogen gas (containing only CO2 and oxygen) as an alternative stimulus. A direct comparison was performed between CVR values acquired by ASL and BOLD imaging using stimuli of (1) 5% CO2 in air and (2) 5% CO2 in oxygen (carbogen-5). Although BOLD and ASL CVR values are shown to be correlated for CO2 in air (mean response 0.11±0.03% BOLD, 4.46±1.80% ASL, n=16 hemispheres), this correlation disappears during a carbogen stimulus (0.36±0.06% BOLD, 4.97±1.30% ASL). It is concluded that BOLD imaging should generally not be used in conjunction with a carbogen stimulus when measuring CVR, and that care must be taken when interpreting CVR as measured by ASL, as values obtained from different stimuli (CO2 in air versus carbogen) are not directly comparable.
Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades
NASA Technical Reports Server (NTRS)
Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)
2014-01-01
Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.
NASA Technical Reports Server (NTRS)
Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.
1977-01-01
An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.
CFD study on the effects of boundary conditions on air flow through an air-cooled condenser
NASA Astrophysics Data System (ADS)
Sumara, Zdeněk; Šochman, Michal
2018-06-01
This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.
Effectiveness of in-room air filtration and dilution ventilation for tuberculosis infection control.
Miller-Leiden, S; Lobascio, C; Nazaroff, W W; Macher, J M
1996-09-01
Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.
Effectiveness of In-Room Air Filtration and Dilution Ventilation for Tuberculosis Infection Control.
Miller-Leiden, S; Lohascio, C; Nazaroff, W W; Macher, J M
1996-09-01
Tuberculosis (TB) is a public health problem that may pose substantial risks to health care workers and others. TB infection occurs by inhalation of airborne bacteria emitted by persons with active disease. We experimentally evaluated the effectiveness of in-room air filtration systems, specifically portable air filters (PAFs) and ceiling-mounted air filters (CMAFs), in conjunction with dilution ventilation, for controlling TB exposure in high-risk settings. For each experiment, a test aerosol was continuously generated and released into a full-sized room. With the in-room air filter and room ventilation system operating, time-averaged airborne particle concentrations were measured at several points. The effectiveness of in-room air filtration plus ventilation was determined by comparing particle concentrations with and without device operation. The four PAFs and three CMAFs we evaluated reduced room-average particle concentrations, typically by 30% to 90%, relative to a baseline scenario with two air-changes per hour of ventilation (outside air) only. Increasing the rate of air flow recirculating through the filter and/or air flow from the ventilation did not always increase effectiveness. Concentrations were generally higher near the emission source than elsewhere in the room. Both the air flow configuration of the filter and its placement within the room were important, influencing room air flow patterns and the spatial distribution of concentrations. Air filters containing efficient, but non-high efficiency particulate air (HEPA) filter media were as effective as air filters containing HEPA filter media.
Enhancement of Condensation Heat Transfer by Counter-Corrent Wavy Flow in a Vertical Tube
NASA Astrophysics Data System (ADS)
Teranishi, Tsunenobu; Ozawa, Takanori; Takimoto, Akira
As a basic research for the development of a high-performance and environment-friendly thermal energy recovery system, detailed experiments have been conducted to investigate the mechanism of the enhancement of condensation heat transfer by the counter-current moist air flow in a vertical tube. From the results of visual observation of the phenomena by using a high-speed video recorder and the measurement of condensate rate respectively from an upper and a bottom end of a cooled tube, in which various humidity vapor of air and water flowed upward or downward, the dynamic behavior of liquid film condensed on cooled surface and moist air flow was classified into four distinctive patterns in quality and quantity. Further, the effect of the scale and the operating condition such as the diameter and the length of tube, the vapor concentration and the moist air temperature, on the condensation rate of counter-current wavy flow was clarified in relation to the pattern and condition of occurrence of the wavy flow of liquid film and flooding due to the shear forces between the interface of liquid and moist air flow.
Evaluation of Environmental Profiles for Reliability Demonstration
1975-09-01
the increase in the ram air flow rate. As a result, one cannot generalize in advance about the effect of velocity increase on air-conditioner turbine ...152 6.2.6.3 Forced Cooling Air Temperature/ Flow Schedule. 152 Sample Test Provile ....... .............. 154 6.2.8 Profiles for Multi...Profiles for Reliability Demonstration Study Flow ....... . ....... 7 2 Typical MIL-STD-781 Profile ................ 23 3 Test Cycle A - Ambient Cooled
30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212 Section 57.22212 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines...
NASA Astrophysics Data System (ADS)
Artemov, V. I.; Minko, K. B.; Yan'kov, G. G.; Kiryukhin, A. V.
2016-05-01
A mathematical model was developed to be used for numerical analysis of heat and mass transfer processes in the experimental section of the air condenser (ESAC) created in the Scientific Production Company (SPC) "Turbocon" and mounted on the territory of the All-Russia Thermal Engineering Institute. The simulations were performed using the author's CFD code ANES. The verification of the models was carried out involving the experimental data obtained in the tests of ESAC. The operational capability of the proposed models to calculate the processes in steam-air mixture and cooling air and algorithms to take into account the maldistribution in the various rows of tube bundle was shown. Data on the influence of temperature and flow rate of the cooling air on the pressure in the upper header of ESAC, effective heat transfer coefficient, steam flow distribution by tube rows, and the dimensions of the ineffectively operating zones of tube bundle for two schemes of steam-air mixture flow (one-pass and two-pass ones) were presented. It was shown that the pressure behind the turbine (in the upper header) increases significantly at increase of the steam flow rate and reduction of the flow rate of cooling air and its temperature rise, and the maximum value of heat transfer coefficient is fully determined by the flow rate of cooling air. Furthermore, the steam flow rate corresponding to the maximum value of heat transfer coefficient substantially depends on the ambient temperature. The analysis of the effectiveness of the considered schemes of internal coolant flow was carried out, which showed that the two-pass scheme is more effective because it provides lower pressure in the upper header, despite the fact that its hydraulic resistance at fixed flow rate of steam-air mixture is considerably higher than at using the one-pass schema. This result is a consequence of the fact that, in the two-pass scheme, the condensation process involves the larger internal surface of tubes, results in lower values of Δ t (the temperature difference between internal and external coolant) for a given heat load.
Active bypass flow control for a seal in a gas turbine engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebert, Todd A.; Kimmel, Keith D.
An active bypass flow control system for controlling bypass compressed air based upon leakage flow of compressed air flowing past an outer balance seal between a stator and rotor of a first stage of a gas turbine in a gas turbine engine is disclosed. The active bypass flow control system is an adjustable system in which one or more metering devices may be used to control the flow of bypass compressed air as the flow of compressed air past the outer balance seal changes over time as the outer balance seal between the rim cavity and the cooling cavity wearsmore » In at least one embodiment, the metering device may include an annular ring having at least one metering orifice extending therethrough, whereby alignment of the metering orifice with the outlet may be adjustable to change a cross-sectional area of an opening of aligned portions of the outlet and the metering orifice.« less
Effect of flow velocity on the process of air-steam condensation in a vertical tube condenser
NASA Astrophysics Data System (ADS)
Havlík, Jan; Dlouhý, Tomáš
2018-06-01
This article describes the influence of flow velocity on the condensation process in a vertical tube. For the case of condensation in a vertical tube condenser, both the pure steam condensation process and the air-steam mixture condensation process were theoretically and experimentally analyzed. The influence of steam flow velocity on the value of the heat transfer coefficient during the condensation process was evaluated. For the condensation of pure steam, the influence of flow velocity on the value of the heat transfer coefficient begins to be seen at higher speeds, conversely, this effect is negligible at low values of steam velocity. On the other hand, for the air-steam mixture condensation, the influence of flow velocity must always be taken into account. The flow velocity affects the water vapor diffusion process through non-condensing air. The presence of air significantly reduces the value of the heat transfer coefficient. This drop in the heat transfer coefficient is significant at low velocities; on the contrary, the decrease is relatively small at high values of the velocity.
Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air
Chava, Raghuram; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A.
2017-01-01
Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA. PMID:27635468
Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.
Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna
2017-03-01
Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.
A practical model for pressure probe system response estimation (with review of existing models)
NASA Astrophysics Data System (ADS)
Hall, B. F.; Povey, T.
2018-04-01
The accurate estimation of the unsteady response (bandwidth) of pneumatic pressure probe systems (probe, line and transducer volume) is a common practical problem encountered in the design of aerodynamic experiments. Understanding the bandwidth of the probe system is necessary to capture unsteady flow features accurately. Where traversing probes are used, the desired traverse speed and spatial gradients in the flow dictate the minimum probe system bandwidth required to resolve the flow. Existing approaches for bandwidth estimation are either complex or inaccurate in implementation, so probes are often designed based on experience. Where probe system bandwidth is characterized, it is often done experimentally, requiring careful experimental set-up and analysis. There is a need for a relatively simple but accurate model for estimation of probe system bandwidth. A new model is presented for the accurate estimation of pressure probe bandwidth for simple probes commonly used in wind tunnel environments; experimental validation is provided. An additional, simple graphical method for air is included for convenience.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, Murray E.
Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to massmore » flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is expected to require six months of time, after receipt of funding. Benefits: US DOE facilities that use HEPA filters will benefit from access to the new operational measurement methods. Uncertainty and guesswork will be removed from HEPA filter operations.« less
Study of dynamics of two-phase flow through a minichannel by means of recurrences
NASA Astrophysics Data System (ADS)
Litak, Grzegorz; Górski, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej
2017-05-01
By changing air and water flow rates in the two-phase (air-water) flow through a minichannel, we observed the evolution of air bubbles and slugs patterns. This spatiotemporal behaviour was identified qualitatively by using a digital camera. Simultaneously, we provided a detailed analysis of these phenomena by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish particular patterns, we used recurrence plots and recurrence quantification analysis. Finally, we showed that the maxima of various recurrence quantificators obtained from the laser time series could follow the bubble and slugs patterns in studied ranges of air and water flows.
Spot Radiative Ignition and Subsequent Three Dimensional Flame Spread Over Thin Cellulose Fuels
NASA Technical Reports Server (NTRS)
Olson, Sandra L.; Kashiwagi, T.; Kikuchi, M.; Fujita, O.; Ito, K.
1999-01-01
Spontaneous radiative ignition and transition to flame spread over thin cellulose fuel samples was studied aboard the USMP-3 STS-75 Space Shuttle mission, and in three test series in the 10 second Japan Microgravity Center (JAMIC). A focused beam from a tungsten/halogen lamp was used to ignite the center of the fuel sample while an external air flow was varied from 0 to 10 cm/s. Non-piloted radiative ignition of the paper was found to occur more easily in microgravity than in normal gravity. Ignition of the sample was achieved under all conditions studied (shuttle cabin air, 21%-50% O2 in JAMIC), with transition to flame spread occurring for all but the lowest oxygen and flow conditions. While radiative ignition in a quiescent atmosphere was achieved, the flame quickly extinguished in air. The ignition delay time was proportional to the gas-phase mixing time, which is estimated using the inverse flow rate. The ignition delay was a much stronger function of flow at lower oxygen concentrations. After ignition, the flame initially spread only upstream, in a fan-shaped pattern. The fan angle increased with increasing external flow and oxygen concentration from zero angle (tunneling flame spread) at the limiting 0.5 cm/s external air flow, to 90 degrees (semicircular flame spread) for external flows at and above 5 cm/s, and higher oxygen concentrations. The fan angle was shown to be directly related to the limiting air flow velocity. Despite the convective heating from the upstream flame, the downstream flame was inhibited due to the 'oxygen shadow' of the upstream flame for the air flow conditions studied. Downstream flame spread rates in air, measured after upstream flame spread was complete and extinguished, were slower than upstream flame spread rates at the same flow. The quench regime for the transition to flame spread was skewed toward the downstream, due to the augmenting role of diffusion for opposed flow flame spread, versus the canceling effect of diffusion at very low cocurrent flows.
NASA Astrophysics Data System (ADS)
Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.
2010-01-01
The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.
Air elimination capability in rapid infusion systems.
Zoremba, N; Gruenewald, C; Zoremba, M; Rossaint, R; Schaelte, G
2011-11-01
Pressure infusion devices are used in clinical practice to apply large volumes of fluid over a short period of time. Although air infusion is a major complication, they have limited capability to detect and remove air during pressure infusion. In this investigation, we tested the air elimination capabilities of the Fluido(®) (The Surgical Company), Level 1(®) (Level 1 Technologies Inc.) and Ranger(®) (Augustine Medical GmbH) pressure infusion devices. Measurements were undertaken with a crystalloid solution during an infusion flow of 100, 200, 400 and 800 ml.min(-1). Four different volumes of air (25, 50, 100 and 200 ml) were injected as boluses in one experimental setting, or infused continuously over the time needed to perfuse 2 l saline in the other setting. The perfusion fluid was collected in an airtight infusion bag and the amount of air obtained in the bag was measured. The delivered air volume was negligible and would not cause any significant air embolism in all experiments. In our experimental setting, we found, during high flow, an increased amount of uneliminated air in all used devices compared with lower perfusion flows. All tested devices had a good air elimination capability. The use of ultrasonic air detection coupled with an automatic shutoff is a significant safety improvement and can reliably prevent accidental air embolism at rapid flows. © 2011 The Authors. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.
Effects of flow on insulin fibril formation at an air/water interface
NASA Astrophysics Data System (ADS)
Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir
2009-11-01
The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.
Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows
NASA Astrophysics Data System (ADS)
Kim, Hyunseok; Park, Hyungmin
2017-11-01
In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.
Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica
2009-01-01
The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.
Hsu, Cheng-Ting
1984-01-01
A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.
Air Traffic Control Response to Delays: A System Study of Newark International Airport
NASA Technical Reports Server (NTRS)
Evans, Antony D.; Clarke, John-Paul
2002-01-01
Airport delays are a significant problem in the United States air transportation system. Between 1999 and 2000 the number of flights delayed increased by 20 percent despite only a 0.4% increase in total operations. Newark International Airport (EWR), one of New York City's primary airports, is one of the airports in the United States most impacted by delays. Newark had the highest percentage of operations delayed in 1999, and was second only to LaGuardia Airport in 2000. Nearly 85% of delays at Newark are caused by adverse weather impacting an airport that may be characterized as having limited capacity and a very full schedule. Although Newark is heavily impacted by weather, delays have not increased significantly since 1998. This indicates that the airlines, air traffic control (ATC), and the Port Authority of New York and New Jersey have successfully adapted. On June 29, 2000, a research team from MIT visited Newark airport to assess the effectiveness of any adaptations made, and to collect data on airline and ATC departure operations, and of the national and local weather affecting the airport. Airline and ATC personnel were also interviewed. Results of this study indicate that airspace capacity limitations downstream of the airport are a primary flow constraint at the airport, and that these constraints are the source of most surface delays. A number of tactical ATC responses to delays were examined, including the application of restrictions, re-routing with the help of the National Playbook, and the use of decision-aiding tools such as the Dynamic Spacing Program (DSP) and the Integrated Terminal Weather System (ITWS). Improved interfacility communications and further utilization of runway 11-29 were identified as other tactical responses to delays, whilst the formation of the Air Traffic Control System Command Center and the New York Airspace redesign were identified as thekey strategic ATC responses to delays. Particularly the New York airspace redesign has great potential to reduce delays at the airport. Because delays at Newark are caused by downstream flow constraints, the responses at the airport can be applied to other airports as delays from downstream constraints increase. Such an increase in delays system wide from downstream constraints is inevitable as the system becomes more congested.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Payne, F.C.
1996-08-01
The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability canmore » be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.« less
NASA Astrophysics Data System (ADS)
Korbut, Vadim; Voznyak, Orest; Sukholova, Iryna; Myroniuk, Khrystyna
2017-12-01
The abstract is to The article is devoted to the decision of actual task of air distribution efficiency increasing with the help of swirl and spread air jets to provide normative parameters of air in the production apartments. The mathematical model of air supply with swirl and spread air jets in that type of apartments is improved. It is shown that for reachin of air distribution maximal efficiency it is necessary to supply air by air jets, that intensively extinct before entering into a working area. Simulation of air flow performed with the help of CFD FLUENT (Ansys FLUENT). Calculations of the equation by using one-parameter model of turbulence Spalart-Allmaras are presented. The graphical and the analytical dependences on the basis of the conducted experimental researches, which can be used in subsequent engineering calculations, are shown out. Dynamic parameters of air flow that is created due to swirl and spread air jets at their leakage at variable regime and creation of dynamic microclimate in a room has been determined. Results of experimental investigations of air supply into the room by air distribution device which creates swirl air jets for creation more intensive turbulization air flow in the room are presented. Obtained results of these investigations give possibility to realize engineer calculations of air distribution with swirl air jets. The results of theoretical researches of favourable influence of dynamic microclimate to the man are presented. When using dynamic microclimate, it's possible to decrease conditioning and ventilation system expenses. Human organism reacts favourably on short lasting deviations from the rationed parameters of air environment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 1 2011-10-01 2011-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 1 2014-10-01 2014-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 1 2013-10-01 2013-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 1 2012-10-01 2012-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...
Torczynski, John R.
2000-01-01
A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.
Water facilities in retrospect and prospect: An illuminating tool for vehicle design
NASA Technical Reports Server (NTRS)
Erickson, G. E.; Peak, D. J.; Delfrate, J.; Skow, A. M.; Malcolm, G. N.
1986-01-01
Water facilities play a fundamental role in the design of air, ground, and marine vehicles by providing a qualitative, and sometimes quantitative, description of complex flow phenomena. Water tunnels, channels, and tow tanks used as flow-diagnostic tools have experienced a renaissance in recent years in response to the increased complexity of designs suitable for advanced technology vehicles. These vehicles are frequently characterized by large regions of steady and unsteady three-dimensional flow separation and ensuing vortical flows. The visualization and interpretation of the complicated fluid motions about isolated vehicle components and complete configurations in a time and cost effective manner in hydrodynamic test facilities is a key element in the development of flow control concepts, and, hence, improved vehicle designs. A historical perspective of the role of water facilities in the vehicle design process is presented. The application of water facilities to specific aerodynamic and hydrodynamic flow problems is discussed, and the strengths and limitations of these important experimental tools are emphasized.
Characterization of urban air quality using GIS as a management system.
Puliafito, E; Guevara, M; Puliafito, C
2003-01-01
Keeping the air quality acceptable has become an important task for decision makers as well as for non-governmental organizations. Particulate and gaseous emissions of pollutant from industries and auto-exhausts are responsible for rising discomfort, increasing airway diseases, decreasing productivity and the deterioration of artistic and cultural patrimony in urban centers. A model to determine the air quality in urban areas using a geographical information system will be presented here. This system permits the integration, handling, analysis and simulation of spatial and temporal data of the ambient concentration of the main pollutant. It allows the users to characterize and recognize areas with a potential increase or improvement in its air pollution situation. It is also possible to compute past or present conditions by changing basic input information as traffic flow, or stack emission rates. Additionally the model may be used to test the compliance of local standard air quality, to study the environmental impact of new industries or to determine the changes in the conditions when the vehicle circulation is increased.
Saito, Kazuo; Lin, Yao
2015-02-17
The multi-section cathode air heat exchanger (102) includes at least a first heat exchanger section (104), and a fixed contact oxidation catalyzed section (126) secured adjacent each other in a stack association. Cool cathode inlet air flows through cool air channels (110) of the at least first (104) and oxidation catalyzed sections (126). Hot anode exhaust flows through hot air channels (124) of the oxidation catalyzed section (126) and is combusted therein. The combusted anode exhaust then flows through hot air channels (112) of the first section (104) of the cathode air heat exchanger (102). The cool and hot air channels (110, 112) are secured in direct heat exchange relationship with each other so that temperatures of the heat exchanger (102) do not exceed 800.degree. C. to minimize requirements for using expensive, high-temperature alloys.
Adaptive computations of multispecies mixing between scramjet nozzle flows and hypersonic freestream
NASA Technical Reports Server (NTRS)
Baysa, Oktay; Engelund, Walter C.; Eleshaky, Mohamed E.; Pittman, James L.
1989-01-01
The objective of this paper is to compute the expansion of a supersonic flow through an internal-external nozzle and its viscous mixing with the hypersonic flow of air. The supersonic jet may be that of a multispecies gas other than air. Calculations are performed for one case where both flows are those of air, and another case where a mixture of freon-12 and argon is discharged supersonically to mix with the hypersonic airflow. Comparisons are made between these two cases with respect to gas compositions, and fixed versus flow-adaptive grids. All the computational results are compared successfully with the wind-tunnel tests results.
Zetsche, Eva-Maria; Baussant, Thierry; Meysman, Filip J. R.; van Oevelen, Dick
2016-01-01
Lophelia pertusa is the dominant reef-building organism of cold-water coral reefs, and is known to produce significant amounts of mucus, which could involve an important metabolic cost. Mucus is involved in particle removal and feeding processes, yet the triggers and dynamics of mucus production are currently still poorly described because the existing tools to study these processes are not appropriate. Using a novel microscopic technique—digital holographic microscopy (DHM)–we studied the mucus release of L. pertusa under various experimental conditions. DHM technology permits μm-scale observations and allows the visualization of transparent mucoid substances in real time without staining. Fragments of L. pertusa were first maintained in flow-through chambers without stressors and imaged with DHM, then exposed to various stressors (suspended particles, particulate food and air exposure) and re-imaged. Under non-stressed conditions no release of mucus was observed, whilst mucus strings and sheaths were produced in response to suspended particles (activated charcoal and drill cuttings sediment) i.e. in a stressed condition. Mucus strings and so-called ‘string balls’ were also observed in response to exposure to particulate food (brine shrimp Artemia salina). Upon air-exposure, mucus production was clearly visible once the fragments were returned to the flow chamber. Distinct optical properties such as optical path length difference (OPD) were measured with DHM in response to the various stimuli suggesting that different mucus types are produced by L. pertusa. Mucus produced to reject particles is similar in refractive index to the surrounding seawater, suggesting that the energy content of this mucus is low. In contrast, mucus produced in response to either food particle addition or air exposure had a higher refractive index, suggesting a higher metabolic investment in the production of these mucoid substances. This paper shows for the first time the potential of DHM technology for the detection, characterization and quantification of mucus production through OPD measurements in L. pertusa. PMID:26840074
NASA Technical Reports Server (NTRS)
Gaffin, W. O.
1979-01-01
The JT9D-70/59 high pressure turbine active clearance control system was modified to provide reduction of blade tip clearance when the system is activated during cruise operation. The modification increased the flow capacity and air impingement effectiveness of the cooling air manifold to augment turbine case shrinkage capability, and increased responsiveness of the airseal clearance to case shrinkage. The simulated altitude engine testing indicated a significant improvement in specific fuel consumption with the modified system. A 1000 cycle engine endurance test showed no unusual wear or performance deterioration effects on the engine or the clearance control system. Rig tests indicated that the air impingement and seal support configurations used in the engine tests are near optimum.
Advanced nozzle and engine components test facility
NASA Technical Reports Server (NTRS)
Beltran, Luis R.; Delroso, Richard L.; Delrosario, Ruben
1992-01-01
A test facility for conducting scaled advanced nozzle and engine component research is described. The CE-22 test facility, located in the Engine Research Building of the NASA Lewis Research Center, contains many systems for the economical testing of advanced scale-model nozzles and engine components. The combustion air and altitude exhaust systems are described. Combustion air can be supplied to a model up to 40 psig for primary air flow, and 40, 125, and 450 psig for secondary air flow. Altitude exhaust can be simulated up to 48,000 ft, or the exhaust can be atmospheric. Descriptions of the multiaxis thrust stand, a color schlieren flow visualization system used for qualitative flow analysis, a labyrinth flow measurement system, a data acquisition system, and auxiliary systems are discussed. Model recommended design information and temperature and pressure instrumentation recommendations are included.
PAN AIR modeling studies. [higher order panel method for aircraft design
NASA Technical Reports Server (NTRS)
Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.
1983-01-01
PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.
Theory, Computation and Experiment on Criticality and Stability of Vortices Separating from Edges
2016-08-15
aerospace engineering research. These include dynamic stall in wind turbines and helicopter rotors, and flapping-wing vehicle (micro-air vehicle) design...and Robinson, M., “Blade Three-Dimensional Dynamic Stall Response to Wind Turbine Operating Condition,” Journal of Solar Energy Engineering , Vol...Snapshots of TEV shedding in vortex ring representation. . . . . . . . . . . . . . . . 57 7.3 Schematic description of separated tip flow model
Modelling of Heat and Moisture Loss Through NBC Ensembles
1991-11-01
the heat and moisture transport through various NBC clothing ensembles. The analysis involves simplifying the three dimensional physical problem of... clothing on a person to that of a one dimensional problem of flow through parallel layers of clothing and air. Body temperatures are calculated based on...prescribed work rates, ambient conditions and clothing properties. Sweat response and respiration rates are estimated based on empirical data to
Electron-Impact Excitation and Ionization in Air
2009-09-01
average collision frequency, is more than 100 times larger. Even in the slightly ionized regime with only 1% electrons, the frequency of electron...information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and...physics-based model of nonequilibrium chemistry and radiation in hypersonic flow, it is timely to investigate and update the electron collision cross
Air ejector augmented compressed air energy storage system
Ahrens, F.W.; Kartsounes, G.T.
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
Air ejector augmented compressed air energy storage system
Ahrens, Frederick W.; Kartsounes, George T.
1980-01-01
Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.
How is the River Water Quality Response to Climate Change Impacts?
NASA Astrophysics Data System (ADS)
Nguyen, T. T.; Willems, P.
2015-12-01
Water quality and its response to climate change have been become one of the most important issues of our society, which catches the attention of many scientists, environmental activists and policy makers. Climate change influences the river water quality directly and indirectly via rainfall and air temperature. For example, low flow decreases the volume of water for dilution and increases the residence time of the pollutants. By contrast, high flow leads to increases in the amount of pollutants and sediment loads from catchments to rivers. The changes in hydraulic characteristics, i.e. water depth and velocity, affect the transportation and biochemical transformation of pollutants in the river water body. The high air temperature leads to increasing water temperature, shorter growing periods of different crops and water demands from domestic households and industries, which eventually effects the level of river pollution. This study demonstrates the quantification of the variation of the water temperature and pollutant concentrations along the Molse Neet river in the North East of Belgium as a result of the changes in the catchment rainfall-runoff, air temperature and nutrient loads. Firstly, four climate change scenarios were generated based on a large ensemble of available global and regional climate models and statistical downscaling based on a quantile perturbation method. Secondly, the climatic changes to rainfall and temperature were transformed to changes in the evapotranspiration and runoff flow through the conceptual hydrological model PDM. Thirdly, the adjustment in nutrient loads from agriculture due to rainfall and growing periods of crops were calculated by means of the semi-empirical SENTWA model. Water temperature was estimated from air temperature by a stochastic model separating the temperature into long-term annual and short-term residual components. Next, hydrodynamic and water quality models of the river, implemented in InfoWorks RS, were simulated for both historical (2000-2010) and projected future periods (2050-2060). The advection movement and physico-biochemical processes were considered for simulation of the following water quality variables: water temperature, dissolved oxygen, biological oxygen demand, ammonium, nitrate, nitrite and organic nitrogen.
Hickman, Debra L; Fitz, Stephanie D; Bernabe, Cristian S; Caliman, Izabela F; Haulcomb, Melissa M; Federici, Lauren M; Shekhar, Anantha; Johnson, Philip L
2016-08-02
Current recommendations for the use of CO ₂ as a euthanasia agent for rats require the use of gradual fill protocols (such as 10% to 30% volume displacement per minute) in order to render the animal insensible prior to exposure to levels of CO ₂ that are associated with pain. However, exposing rats to CO ₂ , concentrations as low as 7% CO ₂ are reported to cause distress and 10%-20% CO ₂ induces panic-associated behavior and physiology, but loss of consciousness does not occur until CO ₂ concentrations are at least 40%. This suggests that the use of the currently recommended low flow volume per minute displacement rates create a situation where rats are exposed to concentrations of CO ₂ that induce anxiety, panic, and distress for prolonged periods of time. This study first characterized the response of male rats exposed to normoxic 20% CO ₂ for a prolonged period of time as compared to room air controls. It demonstrated that rats exposed to this experimental condition displayed clinical signs consistent with significantly increased panic-associated behavior and physiology during CO ₂ exposure. When atmospheric air was then again delivered, there was a robust increase in respiration rate that coincided with rats moving to the air intake. The rats exposed to CO ₂ also displayed behaviors consistent with increased anxiety in the behavioral testing that followed the exposure. Next, this study assessed the behavioral and physiologic responses of rats that were euthanized with 100% CO ₂ infused at 10%, 30%, or 100% volume per minute displacement rates. Analysis of the concentrations of CO ₂ and oxygen in the euthanasia chamber and the behavioral responses of the rats suggest that the use of the very low flow volume per minute displacement rate (10%) may prolong the duration of panicogenic ranges of ambient CO ₂ , while the use of the higher flow volume per minute displacement rate (100%) increases agitation. Therefore, of the volume displacement per minute rates evaluated, this study suggests that 30% minimizes the potential pain and distress experienced by the animal.
NASA Technical Reports Server (NTRS)
Mixson, J. S.
1973-01-01
The response of a thin, elastic plate to a harmonic force which drives the plate from below and a compressible air stream with a viscous boundary layer flowing parallel to the upper surface along the length was investigated. Equations governing the forced response of the coupled plate-aerodynamic system are derived along with appropriate boundary conditions. Calculations of basic solution parameters for a linear velocity profile and for a Blasius profile showed that the same system response could be obtained from each profile if appropriate values of boundary layer thickness were chosen for each profile.
Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study
Adams, Jeffrey A.; Reddy, Krishna R.; Tekola, Lue
2011-01-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs. PMID:21776228
Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.
Adams, Jeffrey A; Reddy, Krishna R; Tekola, Lue
2011-06-01
In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs), including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL) or dissolved in groundwater. This study assessed: (1) how air injection rate affects the mass removal of dissolved phase contamination, (2) the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3) the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.
NASA Astrophysics Data System (ADS)
Kornilov, V. I.; Boiko, A. V.
2017-10-01
Problems of experimental modeling of the process of air blowing into turbulent boundary layer of incompressible fluid through finely perforated wall are discussed. Particular attention is paid to the analysis of both the main factors responsible for the effectiveness of blowing and the possibility of studying the factors in artificially generated turbulent boundary layer. It was shown that uniformity of the injected gas is one of the main requirements to enhance the effectiveness of this method of flow control. An example of the successful application of this technology exhibiting a significant reduction of the turbulent skin friction is provided.
NASA Astrophysics Data System (ADS)
Guo, Yonghong; Du, Xiaoze; Yang, Lijun
2018-02-01
Air-cooled condenser is the main equipment of the direct dry cooling system in a power plant, which rejects heat of the exhaust steam with the finned tube bundles. Therefore, the thermo-flow performances of the finned tubes have an important effect on the optimal operation of the direct dry cooling system. In this paper, the flow and heat transfer characteristics of the single row finned tubes with the conventional flat fins and novel jagged fins are investigated by numerical method. The flow and temperature fields of cooling air for the finned tubes are obtained. Moreover, the variations of the flow resistance and average convection heat transfer coefficient under different frontal velocity of air and jag number are presented. Finally, the correlating equations of the friction factor and Nusselt number versus the Reynolds number are fitted. The results show that with increasing the frontal velocity of air, the heat transfer performances of the finned tubes are enhanced but the pressure drop will increase accordingly, resulting in the average convection heat transfer coefficient and friction factor increasing. Meanwhile, with increasing the number of fin jag, the heat transfer performance is intensified. The present studies provide a reference in optimal designing for the air-cooled condenser of direct air cooling system.
Aircraft Engine Sump Fire Mitigation, Phase 2
NASA Technical Reports Server (NTRS)
Rosenlieb, J. W.
1978-01-01
The effect of changes in the input parameters (air leakage flow rate and temperature and lubricating oil inlet flow rate and temperature) over a specified range on the flammability conditions within an aircraft engine bearing sump was investigated. An analytical study was performed to determine the effect of various parameters on the generation rate of oil vapor from oil droplets in a hot air stream flowing in a cylindrical tube. The ignition of the vapor-air mixture by an ignition source was considered. The experimental investigation demonstrated that fires would be ignited by a spark ignitor over the full range of air and oil flow rates and air temperatures evaluated. However, no fires could be ignited when the oil inlet temperature was maintained below 41.7 K (290 F). The severity of the fires ignited were found to be directly proportional to the hot air flow rate. Reasonably good correlation was found between the mixture temperature in the sump at the ignitor location and the flammability limits as defined by flammability theory; thus a fairly reliable experimental method of determining flammable conditions within a sump was demonstrated. The computerized mathematical model shows that oil droplet size and air temperature have the greatest influence on the generation rate of oil vapor.
Investigation of Various Novel Air-Breathing Propulsion Systems
NASA Astrophysics Data System (ADS)
Wilhite, Jarred M.
The current research investigates the operation and performance of various air-breathing propulsion systems, which are capable of utilizing different types of fuel. This study first focuses on a modular RDE configuration, which was mainly studied to determine which conditions yield stable, continuous rotating detonation for an ethylene-air mixture. The performance of this RDE was analyzed by studying various parameters such as mass flow rate, equivalence ratios, wave speed and cell size. For relatively low mass flow rates near stoichiometric conditions, a rotating detonation wave is observed for an ethylene-RDE, but at speeds less than an ideal detonation wave. The current research also involves investigating the newly designed, Twin Oxidizer Injection Capable (TOXIC) RDE. Mixtures of hydrogen and air were utilized for this configuration, resulting in sustained rotating detonation for various mass flow rates and equivalence ratios. A thrust stand was also developed to observe and further measure the performance of the TOXIC RDE. Further analysis was conducted to accurately model and simulate the response of thrust stand during operation of the RDE. Also included in this research are findings and analysis of a propulsion system capable of operating on the Inverse Brayton Cycle. The feasibility of this novel concept was validated in a previous study to be sufficient for small-scale propulsion systems, namely UAV applications. This type of propulsion system consists of a reorganization of traditional gas turbine engine components, which incorporates expansion before compression. This cycle also requires a heat exchanger to reduce the temperature of the flow entering the compressor downstream. While adding a heat exchanger improves the efficiency of the cycle, it also increases the engine weight, resulting in less endurance for the aircraft. Therefore, this study focuses on the selection and development of a new heat exchanger design that is lightweight, and is capable of transferring significant amounts of heat and improving the efficiency and performance of the propulsion system.
Effect of wood smoke exposure on vascular function and thrombus formation in healthy fire fighters.
Hunter, Amanda L; Unosson, Jon; Bosson, Jenny A; Langrish, Jeremy P; Pourazar, Jamshid; Raftis, Jennifer B; Miller, Mark R; Lucking, Andrew J; Boman, Christoffer; Nyström, Robin; Donaldson, Kenneth; Flapan, Andrew D; Shah, Anoop S V; Pung, Louis; Sadiktsis, Ioannis; Masala, Silvia; Westerholm, Roger; Sandström, Thomas; Blomberg, Anders; Newby, David E; Mills, Nicholas L
2014-12-09
Myocardial infarction is the leading cause of death in fire fighters and has been linked with exposure to air pollution and fire suppression duties. We therefore investigated the effects of wood smoke exposure on vascular vasomotor and fibrinolytic function, and thrombus formation in healthy fire fighters. In a double-blind randomized cross-over study, 16 healthy male fire fighters were exposed to wood smoke (~1 mg/m³ particulate matter concentration) or filtered air for one hour during intermittent exercise. Arterial pressure and stiffness were measured before and immediately after exposure, and forearm blood flow was measured during intra-brachial infusion of endothelium-dependent and -independent vasodilators 4-6 hours after exposure. Thrombus formation was assessed using the ex vivo Badimon chamber at 2 hours, and platelet activation was measured using flow cytometry for up to 24 hours after the exposure. Compared to filtered air, exposure to wood smoke increased blood carboxyhaemoglobin concentrations (1.3% versus 0.8%; P < 0.001), but had no effect on arterial pressure, augmentation index or pulse wave velocity (P > 0.05 for all). Whilst there was a dose-dependent increase in forearm blood flow with each vasodilator (P < 0.01 for all), there were no differences in blood flow responses to acetylcholine, sodium nitroprusside or verapamil between exposures (P > 0.05 for all). Following exposure to wood smoke, vasodilatation to bradykinin increased (P = 0.003), but there was no effect on bradykinin-induced tissue-plasminogen activator release, thrombus area or markers of platelet activation (P > 0.05 for all). Wood smoke exposure does not impair vascular vasomotor or fibrinolytic function, or increase thrombus formation in fire fighters. Acute cardiovascular events following fire suppression may be precipitated by exposure to other air pollutants or through other mechanisms, such as strenuous physical exertion and dehydration.
Effect of Surface Nonequilibrium Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kang; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using finite-rate gas/surface interaction model provides time-accurate solutions for multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal Response and Ablation Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas momentum conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of gas/surface interaction chemistry between air and carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was a Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
Effect of Non-Equilibrium Surface Thermochemistry in Simulation of Carbon Based Ablators
NASA Technical Reports Server (NTRS)
Chen, Yih-Kanq; Gokcen, Tahir
2012-01-01
This study demonstrates that coupling of a material thermal response code and a flow solver using non-equilibrium gas/surface interaction model provides time-accurate solutions for the multidimensional ablation of carbon based charring ablators. The material thermal response code used in this study is the Two-dimensional Implicit Thermal-response and AblatioN Program (TITAN), which predicts charring material thermal response and shape change on hypersonic space vehicles. Its governing equations include total energy balance, pyrolysis gas mass conservation, and a three-component decomposition model. The flow code solves the reacting Navier-Stokes equations using Data Parallel Line Relaxation (DPLR) method. Loose coupling between the material response and flow codes is performed by solving the surface mass balance in DPLR and the surface energy balance in TITAN. Thus, the material surface recession is predicted by finite-rate gas/surface interaction boundary conditions implemented in DPLR, and the surface temperature and pyrolysis gas injection rate are computed in TITAN. Two sets of nonequilibrium gas/surface interaction chemistry between air and the carbon surface developed by Park and Zhluktov, respectively, are studied. Coupled fluid-material response analyses of stagnation tests conducted in NASA Ames Research Center arc-jet facilities are considered. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator (PICA). Computational predictions of in-depth material thermal response and surface recession are compared with the experimental measurements for stagnation cold wall heat flux ranging from 107 to 1100 Watts per square centimeter.
NASA Astrophysics Data System (ADS)
Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.
2017-10-01
Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.
Ethylene Trace-gas Techniques for High-speed Flows
NASA Technical Reports Server (NTRS)
Davis, David O.; Reichert, Bruce A.
1994-01-01
Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.
Experimental and numerical investigation of hydro power generator ventilation
NASA Astrophysics Data System (ADS)
Jamshidi, H.; Nilsson, H.; Chernoray, V.
2014-03-01
Improvements in ventilation and cooling offer means to run hydro power generators at higher power output and at varying operating conditions. The electromagnetic, frictional and windage losses generate heat. The heat is removed by an air flow that is driven by fans and/or the rotor itself. The air flow goes through ventilation channels in the stator, to limit the electrical insulation temperatures. The temperature should be kept limited and uniform in both time and space, avoiding thermal stresses and hot-spots. For that purpose it is important that the flow of cooling air is distributed uniformly, and that flow separation and recirculation are minimized. Improvements of the air flow properties also lead to an improvement of the overall efficiency of the machine. A significant part of the windage losses occurs at the entrance of the stator ventilation channels, where the air flow turns abruptly from tangential to radial. The present work focuses exclusively on the air flow inside a generator model, and in particular on the flow inside the stator channels. The generator model design of the present work is based on a real generator that was previously studied. The model is manufactured taking into consideration the needs of both the experimental and numerical methodologies. Computational Fluid Dynamics (CFD) results have been used in the process of designing the experimental setup. The rotor and stator are manufactured using rapid-prototyping and plexi-glass, yielding a high geometrical accuracy, and optical experimental access. A special inlet section is designed for accurate air flow rate and inlet velocity profile measurements. The experimental measurements include Particle Image Velocimetry (PIV) and total pressure measurements inside the generator. The CFD simulations are performed based on the OpenFOAM CFD toolbox, and the steady-state frozen rotor approach. Specific studies are performed, on the effect of adding "pick-up" to spacers, and the effects of the inlet fan blades on the flow rate through the model. The CFD results capture the experimental flow details to a reasonable level of accuracy.
On the sources of drift in a turbine-based spirometer.
Ha, Jonathan K; Perlow, Daniel B; Yi, Byong Yong; Yu, Cedric X
2008-08-21
A systematic study on the sources of drift in a turbine-based spirometer (VMM-400) is presented. The study utilized an air-tight cylinder to pump air through the spirometer in a precise and programmable manner. Factors contributing to the drift were isolated and quantified. The drift due to imbalance in the electronics and the mechanical blade increased from 1% per breathing cycle to as much as 10% when the flow rate decreased from 0.24 to 0.08 l s(-1). A temperature difference of 16 degrees between the ambient and the air in the cylinder contributed about 3.5%. Most significantly, a difference in the breathing between inhalation and exhalation could produce a drift of 40% per breathing cycle, or even higher, depending on the extent of the breathing asymmetry. The origin of this drift was found to be rooted in the differential response of the spirometer to the different flow rate. Some ideas and suggestions for a correction strategy are provided for future work. The present work provides an important first step for eventual utilization of a spirometer as a stand-alone breathing surrogate for gating or tracking radiation therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit, E-mail: satyajit@me.buet.ac.bd; Saha, Sumon, E-mail: sumonsaha@me.buet.ac.bd
P (proportional), PI (proportional-integral), and PID (proportional-integral-derivative) controllers are popular means of controlling industrial processes. Due to superior response, accuracy, and stable performance, PID controllers are mostly used in control systems. This paper presents a mathematical model and subsequent response analysis regarding regulation of flow in mixed convection through a T-shaped open cavity by temperature dependent controllers. The T-shaped cavity has cold top and hot bottom walls, while air is flowing through the inlet at surrounding temperature. The inflow is regulated by a controlled gate which operates according to the signal received from the controller. Values of proportional gain (k{submore » p}), integral gain (k{sub i}), and derivative gain (k{sub d}) are varied to obtain the desired system response and to ensure a stable system with fastest response. At first, only P controller is used and eventually PI and finally PID control scheme is applied for controller tuning. Tuning of different controllers (P, PI, and PID) are carried out systematically based on the reference temperature which is continuously monitored at a certain location inside the cavity. It is found that PID controller performs better than P or PI controller.« less
Battista, L; Sciuto, S A; Scorza, A
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r(2) is equal to 0.997; for the bi-directional configuration, the coefficient of determination r(2) is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l∕min to a maximum of about 9% at -12.0 l∕min.
NASA Astrophysics Data System (ADS)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-01
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r2 is equal to 0.997; for the bi-directional configuration, the coefficient of determination r2 is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty δQ of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.
NASA Technical Reports Server (NTRS)
Ellerbrock, Herman H , Jr
1950-01-01
In the determination of the performance of an air-cooled turbine, the cooling-air-flow characteristics between the root and the tip of the blades must be evaluated. The methods, which must be verified and the unknown functions evaluated, that are expected to permit the determination of pressure, temperature, and velocity through the blade cooling-air passages from specific investigation are presented.
Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang
2015-06-15
Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading. Copyright © 2015 Elsevier Ltd. All rights reserved.
F-16XL Ship #1 in flight - used for laminar airflow studies
NASA Technical Reports Server (NTRS)
1992-01-01
One of two F-16XL prototype aircraft, on loan from the Air Force, was used by NASA's Dryden Flight Research Center, Edwards, California, in a program to investigate laminar flow technology and help improve the flow of air over an aircraft's wing at sustained supersonic speeds. A small, perforated titanium wing glove with a turbo compressor was tested on the F-16XL to determine if air suction can remove a small part of the boundary-layer air flowing over the wing and thereby achieve laminar (smooth) flow over a portion of the wing. The flight research program on ship #1 ended in 1996. It was then conducted with NASA's two-seat F-16XL, ship #2 employing a larger glove.
An experimental study of geyser-like flows induced by a pressurized air pocket
NASA Astrophysics Data System (ADS)
Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.
2015-12-01
Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.
Experimental study and empirical prediction of fuel flow parameters under air evolution conditions
NASA Astrophysics Data System (ADS)
Kitanina, E. E.; Kitanin, E. L.; Bondarenko, D. A.; Kravtsov, P. A.; Peganova, M. M.; Stepanov, S. G.; Zherebzov, V. L.
2017-11-01
Air evolution in kerosene under the effect of gravity flow with various hydraulic resistances in the pipeline was studied experimentally. The study was conducted at pressure ranging from 0.2 to 1.0 bar and temperature varying between -20°C and +20°C. Through these experiments, the oversaturation limit beyond which dissolved air starts evolving intensively from the fuel was established and the correlations for the calculation of pressure losses and air evolution on local loss elements were obtained. A method of calculating two-phase flow behaviour in a titled pipeline segment with very low mass flow quality and fairly high volume flow quality was developed. The complete set of empirical correlations obtained by experimental analysis was implemented in the engineering code. The software simulation results were repeatedly verified against our experimental findings and Airbus test data to show that the two-phase flow simulation agrees quite well with the experimental results obtained in the complex branched pipelines.
Numerical Simulations of Laminar Air-Water Flow of a Non-linear Progressive Wave at Low Wind Speed
NASA Astrophysics Data System (ADS)
Wen, X.; Mobbs, S.
2014-03-01
A numerical simulation for two-dimensional laminar air-water flow of a non-linear progressive water wave with large steepness is performed when the background wind speed varies from zero to the wave phase speed. It is revealed that in the water the difference between the analytical solution of potential flow and numerical solution of viscous flow is very small, indicating that both solutions of the potential flow and viscous flow describe the water wave very accurately. In the air the solutions of potential and viscous flows are very different due to the effects of viscosity. The velocity distribution in the airflow is strongly influenced by the background wind speed and it is found that three wind speeds, , (the maximum orbital velocity of a water wave), and (the wave phase speed), are important in distinguishing different features of the flow patterns.
NASA Technical Reports Server (NTRS)
Tornabene, Robert
2005-01-01
In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.
NASA Astrophysics Data System (ADS)
van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo
2016-11-01
The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.
NASA Astrophysics Data System (ADS)
Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo
2018-03-01
Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.
Design and Implementation of Automatic Air Flow Rate Control System
NASA Astrophysics Data System (ADS)
Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal
2016-08-01
Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.
Staged fuel and air injection in combustion systems of gas turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Michael John; Berry, Jonathan Dwight
A gas turbine including a working fluid flowpath extending aftward from a forward injector in a combustor. The combustor may include an inner radial wall, an outer radial wall, and, therebetween, a flow annulus, and a third radial wall formed about the outer radial wall that forms an outer flow annulus. A staged injector may intersect the flow annulus so to attain an injection point within the working fluid flowpath by which aftward and forward annulus sections are defined. Air directing structure may include an aftward intake section corresponding to the aftward annulus section and a forward intake section correspondingmore » to the forward annulus section. The air directing structure may include a switchback coolant flowpath to direct air from the compressor discharge cavity to the staged injector. The switchback coolant flowpath may include an upstream section through the flow annulus, and a downstream section through the outer flow annulus.« less
NASA Astrophysics Data System (ADS)
Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei
2017-08-01
Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.
Flame Structure and Emissions of Strongly-Pulsed Turbulent Diffusion Flames with Swirl
NASA Astrophysics Data System (ADS)
Liao, Ying-Hao
This work studies the turbulent flame structure, the reaction-zone structure and the exhaust emissions of strongly-pulsed, non-premixed flames with co-flow swirl. The fuel injection is controlled by strongly-pulsing the fuel flow by a fast-response solenoid valve such that the fuel flow is completely shut off between pulses. This control strategy allows the fuel injection to be controlled over a wide range of operating conditions, allowing the flame structure to range from isolated fully-modulated puffs to interacting puffs to steady flames. The swirl level is controlled by varying the ratio of the volumetric flow rate of the tangential air to that of the axial air. For strongly-pulsed flames, both with and without swirl, the flame geometry is strongly impacted by the injection time. Flames appear to exhibit compact, puff-like structures for short injection times, while elongated flames, similar in behaviors to steady flames, occur for long injection times. The flames with swirl are found to be shorter for the same fuel injection conditions. The separation/interaction level between flame puffs in these flames is essentially governed by the jet-off time. The separation between flame puffs decreases as swirl is imposed, consistent with the decrease in flame puff celerity due to swirl. The decreased flame length and flame puff celerity are consistent with an increased rate of air entrainment due to swirl. The highest levels of CO emissions are generally found for compact, isolated flame puffs, consistent with the rapid quenching due to rapid dilution with excess air. The imposition of swirl generally results in a decrease in CO levels, suggesting more rapid and complete fuel/air mixing by imposing swirl in the co-flow stream. The levels of NO emissions for most cases are generally below the steady-flame value. The NO levels become comparable to the steady-flame value for sufficiently short jet-off time. The swirled co-flow air can, in some cases, increase the NO emissions. The elevated NO emissions are due to a longer combustion residence time due to the flow recirculation within the swirl-induced recirculation zone. The reaction zone structure, based on OH planar laser-induced fluorescence (PLIF) is broadly consistent with the observation of luminous flame structure for these types of flames. In many cases, the reaction zone exhibits discontinuities at the instantaneous flame tip in the early period of fuel injection. These discontinuities in the reaction zone likely result from the non-ignition of injected fuel, due to a relatively slower reaction rate in comparison with the mixing rate. The discontinuity in the OH zone is generally seen to diminish with increased swirl level. Statistics generated from the OH PLIF signals show that the reaction zone area generally increases with increased swirl level, consistent with a broader and more convoluted OH-zone structure for flames with swirl. The reaction zone area for swirled flames generally exhibits a higher degree of fluctuation, suggesting a relatively stronger impact of flow turbulence on the flame structure for flames with swirl.
NASA Astrophysics Data System (ADS)
Hasan, S.; Stokes, J.
2011-01-01
High Velocity Oxy-Fuel (HVOF) has the potential to produce hydroxyapatite (HA; Bio-ceramic) coatings based on its experience with other sprayed ceramic materials. This technique should offer mechanical and biological results comparable to other thermal spraying processes, such as atmospheric plasma thermal spray, currently FDA approved for HA deposition. Deposition of HA via HVOF is a new venture especially using the Sulzer Metco Diamond Jet (DJ) process, and the aim of this article was to establish this technique's potential in providing superior HA coating results compared to the FDA-approved plasma spray technique. In this research, a Design of Experiment (DOE) model was developed to optimize the Sulzer Metco DJ HVOF process for the deposition of HA. In order to select suitable ranges for the production of HA coatings, the parameters were first investigated. Five parameters (factors) were researched over two levels namely: oxygen flow rate, propylene flow rate, air flow rate, spray distance, and powder flow rate. Coating crystallinity and purity were measured at the surface of each sample as the responses to the factors used. The research showed that propylene, air flow rate, spray distance, and powder feed rate had the largest effect on the responses, and the study aimed to find the preferred optimized settings to achieve high crystallinity and purity of percentages of up to 95%. This research found crystallinity and purity values of 93.8 and 99.8%, respectively, for a set of HVOF parameters which showed improvement compared to the crystallinity and purity values of 87.6 and 99.4%, respectively, found using the FDA-approved Sulzer Metco Atmospheric Plasma thermal spray process. Hence, a new technique for HA deposition now exists using the DJ HVOF facility; however, other mechanical and biorelated properties must also be assessed.
Ground water occurrence and contributions to streamflow in an alpine catchment, Colorado Front Range
Clow, D.W.; Schrott, L.; Webb, R.; Campbell, D.H.; Torizzo, A.O.; Dornblaser, M.
2003-01-01
Ground water occurrence, movement, and its contribution to streamflow were investigated in Loch Vale, an alpine catchment in the Front Range of the Colorado Rocky Mountains. Hydrogeomorphologic mapping, seismic refraction measurements, and porosity and permeability estimates indicate that talus slopes are the primary ground water reservoir, with a maximum storage capacity that is equal to, or greater than, total annual discharge from the basin (5.4 ± 0.8 × 106 m3). Although snowmelt and glacial melt provide the majority of annual water flux to the basin, tracer tests and gauging along a stream transect indicate that ground water flowing from talus can account for ≥75% of streamflow during storms and the winter base flow period. The discharge response of talus springs to storms and snowmelt reflects rapid transmittal of water through coarse debris at the talus surface and slower release of water from finer-grained sediments at depth.Ice stored in permafrost (including rock glaciers) is the second largest ground water reservoir in Loch Vale; it represents a significant, but seldom recognized, ground water reservoir in alpine terrain. Mean annual air temperatures are sufficiently cold to support permafrost above 3460 m; however, air temperatures have increased 1.1° to 1.4°C since the early 1990s, consistent with long-term (1976–2000) increases in air temperature measured at other high-elevation sites in the Front Range, European Alps, and Peruvian Andes. If other climatic factors remain constant, the increase in air temperatures at Loch Vale is sufficient to increase the lower elevational limit of permafrost by 150 to 190 m. Although this could cause a short-term increase in streamflow, it may ultimately result in decreased flow in the future.
Hydrogen leak detection in the Space Shuttle
NASA Technical Reports Server (NTRS)
Barile, Ronald G
1992-01-01
This study focuses on a helium gas jet flowing into room air. Measurements of helium concentration and velocity in the jet-air mixture are reported. The objective is to learn about jet characteristics so that dynamically similar hydrogen leaks may be located in the Space Shuttle. The hazardous gas detection system (HGDS) in the mobile launch pad uses mass spectrometers to monitor the shuttle environment for leaks. The mass spectrometers are fed by long sample tubes which draw gas from the payload bay, mid body, aft engine compartment and external tank. The overall purpose of this study is to improve the HGDS especially in its potential for locating hydrogen leaks. A rapid-response leak detection experiment was designed, built, and tested, following on the work done in this program last summer. The apparatus included a Perkin Elmer MGA-1200 mass spectrometer and air velocity transducer, both monitored by a Macintosh IIFX computer using LabVIEW software. A jet of helium flowing into the lab air simulated a gas leak. Steady helium or hydrogen-nitrogen jets were logged for concentration and velocity, and the power spectral density of each was computed. Last year, large eddies and vortices were visually seen with Schlieren imaging, and they were detected in the time plots of the various instruments. The response time of the MGA-1200 was found in the range of 0.05 to 0.1 sec. Pulsed concentration waves were clearly detected at 25 cycles per sec by spectral analysis of MGA data. No peaks were detected in the power spectrum, so in the present study, 10 Hz bandwidth-averaged power levels were examined at regular frequency intervals. The practical consequences of last year's study are as follows: sampling frequency should be increased above the present rate of 1 sample per second so that transients could be observed and analyzed with frequency response methods. Many more experiments and conditions were observed in this second summer, including the effects of orifice diameter, jet velocity, sample tube design, radial effects, vertical flow, and low hydrogen concentrations (1 percent). A frequent observation was that the power spectrum, calculated from the Fourier transform of concentration fluctuations, gives a separate piece of information from concentration. Many of the tests suggest that power is high where mixing occurs at the helium-air interface. This fact is apparently independent of the concentration level, which could be high or low, but depends on the sample location relative to the jet (leak) origin, whereas high concentration may be due to a strong leak far away or a small leak close to the sample tube. If the power is low for any concentration level, this would signify helium is arriving at the sample tube by diffusion, not chaotic mixing caused by the jet interaction with air. The practical result is to propose a modification of the HGDL mass spectrometer data sampling and software so that sampling rates could be capable of observing at least 25 Hz fluctuations.
Visualization of the air flow behind the automotive benchmark vent
NASA Astrophysics Data System (ADS)
Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav
2015-05-01
Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.
Hypervelocity Air Flows With Finite Rate Chemistry
1994-07-01
run over a range of freestream con- ditions in both air and nitrogen to obtain conditions to examine flows from frozen to fully equilibrium gas flow ... chemistry . Currently, electron-beam equipment and instrumentation are being prepared at USC, Imperial College, and CUBRC for these studies. Also, instru
NASA Astrophysics Data System (ADS)
Delay, Jacques; Distinguin, Marc
ANDRA (Agence Nationale pour la Gestion de Déchets Radioactifs) has developed an integrated approach to characterizing the hydrogeology of the carbonate strata that encase the Callovo-Oxfordian argillite at the Meuse/Haute-Marne Laboratory site. The argillites are difficult to characterize due to their low permeability. The barrier properties of the argillites can be inferred from the flow and chemistry properties of the encasing Oxfordian and Dogger carbonates. Andras deep hole approach uses reverse air circulation drilling, geophysical logging, flow meter logging, geochemical sampling, and analyses of the pumping responses during sampling. The data support numerical simulations that evaluate the argillites hydraulic behaviour.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-09-02
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Jet-controlled freeze valve for use in a glass melter
Routt, Kenneth R.
1986-01-01
A drain valve for use in a furnace for the melting of thermoplastic material. The furnace includes a drain cavity formed in its bottom for withdrawing a flow of thermoplastic material. The drain valve includes a flow member which include a flow tube having an inlet and outlet for the material, and coaxially disposed concentric tubular members defining annuli surrounding the flow tube. The tubular members include heating and cooling means for the flow tube. The flow member is adapted to fit in mating relationship in the drain cavity. A freeze valve member is disposed adjacent the outlet of the flow member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct streams of pressurized air at the outlet to control the flow of thermoplastic material through the flow members. The drain valve can also be used in a furnace of glass melting that includes a drain cavity for withdrawing molten glass from the furnace. The drain valve includes a flow tube member having an inlet and outlet, and having heating and cooling means. The tube member is adapted to fit in mating relationship with the drain cavity. A freeze valve member is disposed at the outlet of the flow tube member. The freeze valve member includes heating means and has a plurality of air jets adapted to direct a stream of pressurized air at the outlet to control the flow of glass through the flow tube member.
Evaluation of four fast-response flow measurement devices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gero, A.J.; Suppers, K.L.; Tomb, T.F.
1988-01-01
The Federal Mine Safety and Health Act of 1977 requires that sampling of dust in coal mine environments be conducted with an approved sampler operating at a flow rate of 2.0 liters of air per minute or at such other flow rate as prescribed by the Secretaries of Labor and of Health and Human Services. Standard procedures for calibration of these samplers within the Mine Safety and Health Administration utilize either a 3.0 liter capacity wet test meter or a 1.0 liter soap film calibrator. Several new flow calibrating devices have become commercially available. This paper describes an evaluation conductedmore » on four such devices: the Mast Model 823-2 bubble flowmeter, the Buck Calibrator, the Kurz Model 541S mass flowmeter and the Kurz Pocket Calibrator. The precision of a series of measurements made with each instrument was compared to the precision of a series of measurements made with the wet test meter. The comparison showed that the variability of calibration measurements obtained with the fast response flow calibrators was between 1.5 and 4.5 times larger than that obtained with the WTM; however, with all of the calibration devices evaluated, three repetitive measurements were sufficient to obtain a precision of {plus minus}0.1 liters per minute. 4 refs., 2 figs., 1 tab.« less
40 CFR 1065.202 - Data updating, recording, and control.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 1065.202 Section 1065.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments § 1065.202 Data updating, recording...; § 1065.545 Intake-air or raw-exhaust flow rate 1 Hz means. § 1065.530; § 1065.545 Dilution air flow if...
Prenatal nicotine exposure increases hyperventilation in α4-knock-out mice during mild asphyxia.
Avraam, Joanne; Cohen, Gary; Drago, John; Frappell, Peter B
2015-03-01
Prenatal nicotine exposure alters breathing and ventilatory responses to stress through stimulation of nicotine acetylcholine receptors (nAChRs). We tested the hypothesis that α4-containing nAChRs are involved in mediating the effects of prenatal nicotine exposure on ventilatory and metabolic responses to intermittent mild asphyxia (MA). Using open-flow plethysmography, we measured ventilation (V̇(E)) and rate of O2 consumption ( V̇(O2)) of wild-type (WT) and α4-knock-out (KO) mice, at postnatal (P) days 1-2 and 7-8, with and without prenatal nicotine exposure (6 mg kg(-1) day(-1) beginning on embryonic day 14). Mice were exposed to seven 2 min cycles of mild asphyxia (10% O2 and 5% CO2), each interspersed with 2 min of air. Compared to WT, α4 KO mice had increased air V̇(E) and V̇(O2) at P7-8, but not P1-2. Irrespective of age, genotype had no effect on the hyperventilatory response (increase in V̇(E)/V̇(O2)) to MA. At P1-2, nicotine suppressed air V̇(E) and V̇(O2) in both genotypes but did not affect the hyperventilatory response to MA. At P7-8 nicotine suppressed air V̇(E) and V̇(O2) of only α4 KO's but also significantly enhanced V̇(E) during MA (nearly double that of WT; p<0.001). This study has revealed complex effects of α4 nAChR deficiency and prenatal nicotine exposure on ventilatory and metabolic interactions and responses to stress. Copyright © 2015 Elsevier B.V. All rights reserved.
In Situ Measurement of Ground-Surface Flow Resistivity
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.
1984-01-01
New instrument allows in situ measurement of flow resistivity on Earth's ground surface. Nonintrusive instrument includes specimen holder inserted into ground. Flow resistivity measured by monitoring compressed air passing through flow-meters; pressure gages record pressure at ground surface. Specimen holder with knife-edged inner and outer cylinders easily driven into ground. Air-stream used in measuring flow resistivity of ground enters through quick-connect fitting and exits through screen and venthole.
Mixing and unmixedness in plasma jets 1: Near-field analysis
NASA Technical Reports Server (NTRS)
Ilegbusi, Olusegun J.
1993-01-01
The flow characteristics in the near-field of a plasma jet are simulated with a two-fluid model. This model accounts for both gradient-diffusion mixing and uni-directional sifting motion resulting from pressure-gradient-body-force imbalance. This latter mechanism is believed to be responsible for the umixedness observed in plasma jets. The unmixedness is considered to be essentially a Rayleigh-Taylor kind instability. Transport equations are solved for the individual plasma and ambient gas velocities, temperatures and volume fractions. Empirical relations are employed for the interface transfers of mass, momentum and heat. The empirical coefficients are first established by comparison of predictions with available experimental data for shear flows. The model is then applied to an Argon plasma jet ejecting into stagnant air. The predicted results show the significant build-up of unmixed air within the plasma gas, even relatively far downstream of the torch. By adjusting the inlet condition, the model adequately reproduces the experimental data.
An investigation of the internal and external aerodynamics of cattle trucks
NASA Technical Reports Server (NTRS)
Muirhead, V. U.
1983-01-01
Wind tunnel tests were conducted on a one-tenth scale model of a conventional tractor trailer livestock hauler to determine the air flow through the trailer and the drag of the vehicle. These tests were conducted with the trailer empty and with a full load of simulated cattle. Additionally, the drag was determined for six configurations, of which details for three are documented herein. These are: (1) conventional livestock trailer empty, (2) conventional trailer with smooth sides (i.e., without ventilation openings), and (3) a stream line tractor with modified livestock trailer (cab streamlining and gap fairing). The internal flow of the streamlined modification with simulated cattle was determined with two different ducting systems: a ram air inlet over the cab and NACA submerged inlets between the cab and trailer. The air flow within the conventional trailer was random and variable. The streamline vehicle with ram air inlet provided a nearly uniform air flow which could be controlled. The streamline vehicle with NACA submerged inlets provided better flow conditions than the conventional livestock trailer but not as uniform or controllable as the ram inlet configuration.
NASA Technical Reports Server (NTRS)
Schultz, D. F.
1986-01-01
This effort summarizes the work performed on a steam cooled, rich-burn primary zone, variable geometry combustor designed for combustion of nitrogeneous fuels such as heavy oils or synthetic crude oils. The steam cooling was employed to determine its feasibility and assess its usefulness as part of a ground based gas turbine bottoming cycle. Variable combustor geometry was employed to demonstrate its ability to control primary and secondary zone equivalence ratios and overall pressure drop. Both concepts proved to be highly successful in achieving their desired objectives. The steam cooling reduced peak liner temperatures to less than 800 K. This low temperature offers the potential of both long life and reduced use of strategic materials for liner fabrication. These degrees of variable geometry were successfully employed to control air flow distribution within the combustor. A variable blade angle axial flow air swirler was used to control primary zone air flow, while the secondary and tertiary zone air flows were controlled by rotating bands which regulated air flow to the secondary zone quench holes and the dilutions holes respectively.
Generating and controlling homogeneous air turbulence using random jet arrays
NASA Astrophysics Data System (ADS)
Carter, Douglas; Petersen, Alec; Amili, Omid; Coletti, Filippo
2016-12-01
The use of random jet arrays, already employed in water tank facilities to generate zero-mean-flow homogeneous turbulence, is extended to air as a working fluid. A novel facility is introduced that uses two facing arrays of individually controlled jets (256 in total) to force steady homogeneous turbulence with negligible mean flow, shear, and strain. Quasi-synthetic jet pumps are created by expanding pressurized air through small straight nozzles and are actuated by fast-response low-voltage solenoid valves. Velocity fields, two-point correlations, energy spectra, and second-order structure functions are obtained from 2D PIV and are used to characterize the turbulence from the integral-to-the Kolmogorov scales. Several metrics are defined to quantify how well zero-mean-flow homogeneous turbulence is approximated for a wide range of forcing and geometric parameters. With increasing jet firing time duration, both the velocity fluctuations and the integral length scales are augmented and therefore the Reynolds number is increased. We reach a Taylor-microscale Reynolds number of 470, a large-scale Reynolds number of 74,000, and an integral-to-Kolmogorov length scale ratio of 680. The volume of the present homogeneous turbulence, the largest reported to date in a zero-mean-flow facility, is much larger than the integral length scale, allowing for the natural development of the energy cascade. The turbulence is found to be anisotropic irrespective of the distance between the jet arrays. Fine grids placed in front of the jets are effective at modulating the turbulence, reducing both velocity fluctuations and integral scales. Varying the jet-to-jet spacing within each array has no effect on the integral length scale, suggesting that this is dictated by the length scale of the jets.
Hydraulophones: Acoustic musical instruments and expressive user interfaces
NASA Astrophysics Data System (ADS)
Janzen, Ryan E.
Fluid flow creates an expansive range of acoustic possibilities, particularly in the case of water, which has unique turbulence and vortex shedding properties as compared with the air of ordinary wind instruments. Sound from water flow is explained with reference to a new class of musical instruments, hydraulophones, in which oscillation originates directly from matter in its liquid state. Several hydraulophones which were realized in practical form are described. A unique user-interface consisting of a row of water jets is presented, in terms of its expressiveness, tactility, responsiveness to derivatives and integrals of displacement, and in terms of the direct physical interaction between a user and the physical process of sound production. Signal processing algorithms are introduced, which extract further information from turbulent water flow, for industrial applications as well as musical applications.
Gabbay, I E; Bahar, I; Nahum, Y; Livny, E
2017-08-01
Descemet's membrane endothelial keratoplasty (DMEK) involves removal of the recipient's Descemet membrane (DM) prior to transplanting the donor's DM. When using balanced salt solution (BSS) or ophthalmic viscosurgical devices (OVDs), visualization of the host's DM during its stripping may be inadequate and may result in Descemet remnants and could lead to sub-optimal surgical results. Previous articles described excellent visualization when utilizing air injection but this requires repeated air injection into the anterior chamber (AC). We present a pilot study that compares different techniques under which DM stripping can be performed: with continuous automated air infusion, with manual air infusion, and with BSS. We retrospectively compared video footage of DM stripping with BSS, with continuous air and with manual injection of air into the AC to determine DM stripping duration and the number of times the surgeon had to insert and retrieve a surgical instrument from the AC. Thirty videos of 10 consecutive cases of the three DM stripping techniques were evaluated. DM stripping duration was 3.26 (±1.32), 3.92 (±1.2) and 12.9 (±3.98) minutes for BSS, continuous air flow, and manual air injection, respectively. Frequency of instrument retrieval (FIR) was 3.6 (±1.71), 1.5 (±0.71) and 15.1 (±3.28) for BSS, continuous air flow, and manual air injection, respectively. Continuous air flow and BSS were both statistically different than manual air injection into the AC (p < 0.05), but did not differ from one another statistically. DM stripping during posterior lamellar surgery is imperative for favorable post-operative results and prevention of complications. Performing this step under air in the AC contributes to better visualization and an efficient surgery.
Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.
2013-12-01
The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.
Continuous spin detonation of poorly detonable fuel-air mixtures in annular combustors
NASA Astrophysics Data System (ADS)
Bykovskii, F. A.; Zhdan, S. A.
2017-09-01
This paper reports on the results of experimental investigations of continuous spin detonation of three fuel-air mixtures (syngas-air, CH4/H2-air, and kerosene/H2-air in a flow-type annular cylindrical combustor 503 mm in diameter. The limits of existence of continuous detonation in terms of the specific flow rates of the mixtures (minimum values) are determined. It is found that all gas mixtures, including the least detonable methane-air mixture, with addition of hydrogen can be burned in the continuous spin detonation regime.
Wood, W.T.; Hart, P.E.; Hutchinson, D.R.; Dutta, N.; Snyder, F.; Coffin, R.B.; Gettrust, J.F.
2008-01-01
To determine the impact of seeps and focused flow on the occurrence of shallow gas hydrates, several seafloor mounds in the Atwater Valley lease area of the Gulf of Mexico were surveyed with a wide range of seismic frequencies. Seismic data were acquired with a deep-towed, Helmholz resonator source (220-820 Hz); a high-resolution, Generator-Injector air-gun (30-300 Hz); and an industrial air-gun array (10-130 Hz). Each showed a significantly different response in this weakly reflective, highly faulted area. Seismic modeling and observations of reversed-polarity reflections and small scale diffractions are consistent with a model of methane transport dominated regionally by diffusion but punctuated by intense upward advection responsible for the bathymetric mounds, as well as likely advection along pervasive filamentous fractures away from the mounds.
A comparative analysis of arranging in-flight oxygen aboard commercial air carriers.
Stoller, J K; Hoisington, E; Auger, G
1999-04-01
As air travel has become more commonplace in today's society, so too has air travel by oxygen-using individuals. Because there is little oversight or standardization of in-flight oxygen by the Federal Aviation Administration, individual airlines' policies and practices may vary greatly. On the premise that such variation may cause confusion by prospective air travelers, we undertook the current study to describe individual air carriers' policies and practices and to provide guidance to future air travelers. Data were collected by a series of telephone calls placed by the study investigators to all commercial air carriers listed in the 1997 Cleveland Metropolitan Yellow Pages. The callers were registered respiratory therapists who identified themselves as inexperienced oxygen-requiring travelers wishing to arrange in-flight oxygen for an upcoming trip. Standard questions were asked of each carrier that included the following: Did the carrier have a special "help desk" to assist with oxygen arrangements? What oxygen systems, liter flow options, and interface devices were available? What was the charge for oxygen? How was the charged determined? What documentation from the physician was required? How much notification was required by the airline before the actual flight? In addition to recording these responses, the total amount of time spent on the telephone by the caller was logged along with the number of telephone calls and number of people spoken to in arranging in-flight oxygen. To compare oxygen charges between airlines, we calculated charges based on a "standard trip," which was defined as a nonstop, round-trip lasting 6 h in which the traveler used a flow rate of 2 L/min. Of the 33 commercial air carriers listed in the directory, 11 were US-based carriers and 22 were international-based carriers. Seventy-six percent of the airlines offered in-flight oxygen. For the 25 carriers offering in-flight oxygen, mean phone time required to make the arrangements was 9.96+/-4.8 min (range, 3 to 20 min). No more than two telephone calls were required to make oxygen arrangements. Most carriers required 48- to 72-h advance notice, with a single carrier requiring 1-month advance notice. Most carriers required some notification of oxygen needs by the traveler's physician. There was a great variation in oxygen device and liter flow availability. Liter flow options ranged from only two flow rates (36% of carriers) to a range of 1 to 15 L/min (one carrier). All carriers offered nasal cannula, which was the only device available for 21 carriers (84%). Actual charges for in-flight oxygen also varied greatly. Six carriers supplied oxygen free and 18 carriers charged a fee (range, $64 to $1,500). One airline allowed the traveler to bring one "E" cylinder with no fee assessed. For 14 of the 18 carriers that charged, the charge for the standard trip ranged from $100 to $250. (1) As expected from the lack of standard regulations, the availability, costs, and ease of implementing in-flight oxygen vary greatly among commercial air carriers. (2) Because the expense of in-flight oxygen is usually borne by the traveler (rather than by insurers), prospective travelers should consider charges for oxygen use when choosing an airline. (3) In the context that the current study shows substantial variation in oxygen policies, costs, and services among commercial air carriers and that such policies may change over time, our findings encourage the prospective air traveler needing in-flight oxygen to "shop around."
Operational experience of continuous air monitoring of smoke for ²³⁹Pu during a wildfire.
Whicker, Jeffrey J; Baltz, David; Eisele, William F; Hart, Orval F; McNaughton, Michael W; Green, Andrew A
2012-08-01
Smoke from a wildfire in northern New Mexico that moved along the border of the Los Alamos National Laboratory (LANL) was monitored for ²³⁹Pu in the event that the fire might cross into LANL property containing locations with low, but greater than background, levels of ²³⁹Pu and other alpha-emitting radionuclides. Three Environmental Continuous Air Monitors (ECAMs) in operation at LANL at the time of the fire provided near real-time measurements of the ²³⁹Pu in the smoke. Sampling data from routine measurements of PM-10 and PM-2.5 concentrations in the city of Los Alamos showed that smoke in the air rose during the fire to several hundred μg m⁻³, which produced limited visibility (several hundred meters) and resulted in poor air quality alerts for about a week-long period. Previous studies have shown that airborne dust can significantly impair continuous air monitors, so the purpose of this study was to assess the performance of the ECAMs under smoky conditions, which is important for many emergency response scenarios. Additionally, ECAMs are not required to be tested in smoke by ANSI standards, so there is little to no published data on performance of any ECAM while sampling smoke. Results show that the deployed ECAMs had reduced flow as the filter clogged with fine particles, but the goodness-of-fit parameter of the peak shape fitting algorithms and the minimum detectable concentration and dose were not impacted until the flow was reduced by more than about 20%, and even then they were within tolerable limits. Overall, ECAM performance was not impacted during the fire even under heavy smoke conditions and fluctuating radon levels, though changing the filters to limit any reductions in flow to less than 20% would maintain optimal ECAM performance.
A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity
NASA Technical Reports Server (NTRS)
Idris, Husni; Wing, David J.; Vivona, Robert; Garcia-Chico, Jose-Luis
2007-01-01
In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and minimize its constraints. In this framework flexibility is defined in terms of robustness and adaptability to disturbances and the impact of constraints is illustrated through analysis of a trajectory solution space with limited degrees of freedom and in simple constraint situations involving meeting multiple times of arrival and resolving a conflict.
Numerical Investigation of Flow in a Centrifugal Compressor
NASA Astrophysics Data System (ADS)
Grishin, Yu. A.; Bakulin, V. N.
2015-09-01
With the use of the domestic software suite of computational hydrodynamics Flow Vision based on application of the method of control volumes, numerical simulation of air composition and delivery by a centrifugal compressor employed for supercharging a piston engine has been carried out. The head-flow characteristics of the compressor, as well as the 3D fields of flow velocity and pressure distributions in the elements of the compressor flow passage, including the interblade channels of the impeller, have been obtained for various regimes. In the regimes of diminished air flow rate, surging phenomena are identified, characterized by a return flow. The application of the technique of numerical experiment will make it possible from here on to carry out design optimization of the compressor flow passage profile and thus to improve its basic characteristics — the degree of pressure increase, compressed air flow rate, and the efficiency — as well as to reduce the costs of the development and production of compressors.
Measurement of Cyclic Flows in Trachea Using PIV and Numerical simulation
NASA Astrophysics Data System (ADS)
Bělka, Miloslav; Elcner, Jakub; Jedelský, Jan; Boiron, Olivier; Knapp, Yannick; Bailly, Lucie
2015-05-01
Inhalation of pharmaceutical aerosols is a convenient way to treat lung or even systemic diseases. For effective treatment it is very important to understand air flow characteristics within respiratory airways and determine deposition hot spots. In this paper the air flow in trachea was investigated by numerical simulations. To validate these results we carried out particle image velocimetry experiments and compared resulting velocity fields. Simplified geometry of respiratory airways from oral cavity to 4th generation of branching was employed. Air flow characteristics were analysed during sinusoidal breathing pattern for light activity conditions (period 4 s and tidal volume 1 l). The observed flow fields indicated that the flow in trachea is turbulent during the sinusoidal flow except phases of flow turnarounds. The flow was skewed to front side of the trachea during inspiration and had twin-peak profile during expiration because of the mixing from daughter branches. The methods were compared and good agreement was found. This validation of CFD simulation can result into its further usage in respiratory airflow studies.
Rapid granular flows on a rough incline: phase diagram, gas transition, and effects of air drag.
Börzsönyi, Tamás; Ecke, Robert E
2006-12-01
We report experiments on the overall phase diagram of granular flows on an incline with emphasis on high inclination angles where the mean layer velocity approaches the terminal velocity of a single particle free falling in air. The granular flow was characterized by measurements of the surface velocity, the average layer height, and the mean density of the layer as functions of the hopper opening, the plane inclination angle, and the downstream distance x of the flow. At high inclination angles the flow does not reach an x -invariant steady state over the length of the inclined plane. For low volume flow rates, a transition was detected between dense and very dilute (gas) flow regimes. We show using a vacuum flow channel that air did not qualitatively change the phase diagram and did not quantitatively modify mean flow velocities of the granular layer except for small changes in the very dilute gaslike phase.
Optimal orientation in flows: providing a benchmark for animal movement strategies.
McLaren, James D; Shamoun-Baranes, Judy; Dokter, Adriaan M; Klaassen, Raymond H G; Bouten, Willem
2014-10-06
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity.
Optimal orientation in flows: providing a benchmark for animal movement strategies
McLaren, James D.; Shamoun-Baranes, Judy; Dokter, Adriaan M.; Klaassen, Raymond H. G.; Bouten, Willem
2014-01-01
Animal movements in air and water can be strongly affected by experienced flow. While various flow-orientation strategies have been proposed and observed, their performance in variable flow conditions remains unclear. We apply control theory to establish a benchmark for time-minimizing (optimal) orientation. We then define optimal orientation for movement in steady flow patterns and, using dynamic wind data, for short-distance mass movements of thrushes (Turdus sp.) and 6000 km non-stop migratory flights by great snipes, Gallinago media. Relative to the optimal benchmark, we assess the efficiency (travel speed) and reliability (success rate) of three generic orientation strategies: full compensation for lateral drift, vector orientation (single-heading movement) and goal orientation (continually heading towards the goal). Optimal orientation is characterized by detours to regions of high flow support, especially when flow speeds approach and exceed the animal's self-propelled speed. In strong predictable flow (short distance thrush flights), vector orientation adjusted to flow on departure is nearly optimal, whereas for unpredictable flow (inter-continental snipe flights), only goal orientation was near-optimally reliable and efficient. Optimal orientation provides a benchmark for assessing efficiency of responses to complex flow conditions, thereby offering insight into adaptive flow-orientation across taxa in the light of flow strength, predictability and navigation capacity. PMID:25056213
Spectral Analysis of Pressure, Noise and Vibration Velocity Measurement in Cavitation
NASA Astrophysics Data System (ADS)
Jablonská, Jana; Mahdal, Miroslav; Kozubková, Milada
2017-12-01
The article deals with experimental investigation of water cavitation in the convergent-divergent nozzle of rectangular cross-section. In practice, a quick and simple determination of cavitation is essential, especially if it is basic cavitation or cavitation generated additionally by the air being sucked. Air influences the formation, development and size of the cavity area in hydraulic elements. Removal or reduction of the cavity area is possible by structural changes of the element. In case of the cavitation with the suction air, it is necessary to find the source of the air and seal it. The pressure gradient, the flow, the oxygen content in the tank, and hence the air dissolved in the water, the air flow rate, the noise intensity and the vibration velocity on the nozzle wall were measured on laboratory equipment. From the selected measurements the frequency spectrum of the variation of the water flow of the cavity with cavitation without air saturation and with air saturation was compared and evaluated.
Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets
NASA Technical Reports Server (NTRS)
Miller, Steven A. E.; Veltin, Jeremy
2010-01-01
Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.
Ignition of an organic water-coal fuel droplet floating in a heated-air flow
NASA Astrophysics Data System (ADS)
Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.
2017-01-01
Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.
Particle Streak Anemometry: A New Method for Proximal Flow Sensing from Aircraft
NASA Astrophysics Data System (ADS)
Nichols, T. W.
Accurate sensing of relative air flow direction from fixed-wing small unmanned aircraft (sUAS) is challenging with existing multi-hole pitot-static and vane systems. Sub-degree direction accuracy is generally not available on such systems and disturbances to the local flow field, induced by the airframe, introduce an additional error source. An optical imaging approach to make a relative air velocity measurement with high-directional accuracy is presented. Optical methods offer the capability to make a proximal measurement in undisturbed air outside of the local flow field without the need to place sensors on vulnerable probes extended ahead of the aircraft. Current imaging flow analysis techniques for laboratory use rely on relatively thin imaged volumes and sophisticated hardware and intensity thresholding in low-background conditions. A new method is derived and assessed using a particle streak imaging technique that can be implemented with low-cost commercial cameras and illumination systems, and can function in imaged volumes of arbitrary depth with complex background signal. The new technique, referred to as particle streak anemometry (PSA) (to differentiate from particle streak velocimetry which makes a field measurement rather than a single bulk flow measurement) utilizes a modified Canny Edge detection algorithm with a connected component analysis and principle component analysis to detect streak ends in complex imaging conditions. A linear solution for the air velocity direction is then implemented with a random sample consensus (RANSAC) solution approach. A single DOF non-linear, non-convex optimization problem is then solved for the air speed through an iterative approach. The technique was tested through simulation and wind tunnel tests yielding angular accuracies under 0.2 degrees, superior to the performance of existing commercial systems. Air speed error standard deviations varied from 1.6 to 2.2 m/s depending on the techniques of implementation. While air speed sensing is secondary to accurate flow direction measurement, the air speed results were in line with commercial pitot static systems at low speeds.
The mean and turbulent flow structure of a weak hydraulic jump
NASA Astrophysics Data System (ADS)
Misra, S. K.; Kirby, J. T.; Brocchini, M.; Veron, F.; Thomas, M.; Kambhamettu, C.
2008-03-01
The turbulent air-water interface and flow structure of a weak, turbulent hydraulic jump are analyzed in detail using particle image velocimetry measurements. The study is motivated by the need to understand the detailed dynamics of turbulence generated in steady spilling breakers and the relative importance of the reverse-flow and breaker shear layer regions with attention to their topology, mean flow, and turbulence structure. The intermittency factor derived from turbulent fluctuations of the air-water interface in the breaker region is found to fit theoretical distributions of turbulent interfaces well. A conditional averaging technique is used to calculate ensemble-averaged properties of the flow. The computed mean velocity field accurately satisfies mass conservation. A thin, curved shear layer oriented parallel to the surface is responsible for most of the turbulence production with the turbulence intensity decaying rapidly away from the toe of the breaker (location of largest surface curvature) with both increasing depth and downstream distance. The reverse-flow region, localized about the ensemble-averaged free surface, is characterized by a weak downslope mean flow and entrainment of water from below. The Reynolds shear stress is negative in the breaker shear layer, which shows that momentum diffuses upward into the shear layer from the flow underneath, and it is positive just below the mean surface indicating a downward flux of momentum from the reverse-flow region into the shear layer. The turbulence structure of the breaker shear layer resembles that of a mixing layer originating from the toe of the breaker, and the streamwise variations of the length scale and growth rate are found to be in good agreement with observed values in typical mixing layers. All evidence suggests that breaking is driven by a surface-parallel adverse pressure gradient and a streamwise flow deceleration at the toe of the breaker. Both effects force the shear layer to thicken rapidly, thereby inducing a sharp free surface curvature change at the toe.
A coupled implicit method for chemical non-equilibrium flows at all speeds
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho
1993-01-01
The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.
Measurement of liner slips, milking time, and milk yield.
O'Callaghan, E J
1996-03-01
Liner slip or rapid air leakage past the mouthpiece of the milking machine liner is related to high rates of new cases of mastitis. A real time technique was developed to monitor the air flow into the milking machine cluster during liner slips as well as to monitor milking time and milk yield using a commercial type pipeline milking system. The air flow into the cluster was measured by recording the pressure differences across an orifice plate placed in the air bypass of an air-milk separator using a differential pressure transducer. Milk yield was recorded by counting the number of milk releases from an electronic milk meter. The release solenoids of the milk meter were linked to a computer. The start and end of milking were manually recorded by switching a two-pole switch connected to a digital input card on the computer, which was programmed to record air flow, milk yield, and milking time. Milk yield, milking time, and air flows during liner slips were recorded simultaneously at each milking unit in an 11-unit herringbone parlor. The system was tested with an experiment with a 4 x 4 Latin square design using four treatments (clusters) and four treatment groups (22 cows per group).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Little, David A.; McQuiggan, Gerard; Wasdell, David L.
A midframe portion (213) of a gas turbine engine (210) is presented, and includes a compressor section (212) configured to discharge an air flow (211) directed in a radial direction from an outlet of the compressor section (212). Additionally, the midframe portion (213) includes a manifold (214) to directly couple the air flow (211) from the compressor section (212) outlet to an inlet of a respective combustor head (218) of the midframe portion (213).
Liquid metal reactor air cooling baffle
Hunsbedt, Anstein
1994-01-01
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat.
Liquid metal reactor air cooling baffle
Hunsbedt, A.
1994-08-16
A baffle is provided between a relatively hot containment vessel and a relatively cold silo for enhancing air cooling performance. The baffle includes a perforate inner wall positionable outside the containment vessel to define an inner flow riser therebetween, and an imperforate outer wall positionable outside the inner wall to define an outer flow riser therebetween. Apertures in the inner wall allow thermal radiation to pass laterally therethrough to the outer wall, with cooling air flowing upwardly through the inner and outer risers for removing heat. 3 figs.
Air cycle machine for an aircraft environmental control system
NASA Technical Reports Server (NTRS)
Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)
2010-01-01
An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.
40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... each point of a 0.5 meter grid over the entire footprint of the test vehicle at the elevation of one... impractical, air flow of 2 mph or less will be allowed at 0 mph vehicle speed. (3) The fan air flow velocity..., within the test cell, during all phases of the air conditioning test sequence to 95 ±2 °F on average and...
2002-08-12
treatment zone increases with increasing separation. It is important to ensure a good annular air flow seal between the top of the screened interval and... seals are critical to successful air sparging operation. In their absence, the injected air will flow up along the well bore and the well will be...glass beads and model homogenous and heterogeneous subsurface hydrogeologic settings were simulated . The goal of the study was to observe how the
Chen, Jia-Kun
2016-08-01
An inclined plate for flow control was installed at the lower edge of the sash of an inclined air-curtain fume hood to reduce the effects of the wake around a worker standing in front of the fume hood. Flow inside the fume hood is controlled by the inclined air-curtain and deflection plates, thereby forming a quad-vortex flow structure. Controlling the face velocity of the fume hood resulted in convex, straight, concave, and attachment flow profiles in the inclined air-curtain. We used the flow visualization and conducted a tracer gas test with a mannequin to determine the performance of two sash geometries, namely, the half-cylinder and inclined plate designs. When the half-cylinder design was used, the tracer gas test registered a high leakage concentration at Vf ≦ 57.1 fpm or less. This concentration occurred at the top of the sash opening, which was close to the breathing zone of the mannequin placed in front of the fume hood. When the inclined plate design was used, the containment was good, with concentrations of 0.002-0.004 ppm, at Vf ≦ 63.0 fpm. Results indicate that an inclined plate effectively reduces the leakage concentration induced by recirculation flow structures that form in the wake of a worker standing in front of an inclined air-curtain fume hood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malov, Aleksei N; Orishich, Anatolii M
Results of optimisation of repetitively pulsed CO{sub 2}-laser generation are presented for finding physical conditions of forming stable burning of an optical pulsed discharge (OPD) in a supersonic air flow and for studying the influence of pulse parameters on the energy absorption efficiency of laser radiation in plasma. The optical discharge in a supersonic air flow was formed by radiation of a repetitively pulsed CO{sub 2} laser with mechanical Q-switching excited by a discharge with a convective cooling of the working gas. For the first time the influence of radiation pulse parameters on the ignition conditions and stable burning ofmore » the OPD in a supersonic air flow was investigated and the efficiency of laser radiation absorption in plasma was studied. The influence of the air flow velocity on stability of plasma production was investigated. It was shown that stable burning of the OPD in a supersonic flow is realised at a high pulse repetition rate where the interval between radiation pulses is shorter than the time of plasma blowing-off. Study of the instantaneous value of the absorption coefficient shows that after a breakdown in a time lapse of 100 - 150 ns, a quasi-stationary 'absorption phase' is formed with the duration of {approx}1.5 ms, which exists independently of air flow and radiation pulse repetition rate. This phase of strong absorption is, seemingly, related to evolution of the ionisation wave. (laser applications and other topics in quantum electronics)« less
Phase 2: HGM air flow tests in support of HEX vane investigation
NASA Technical Reports Server (NTRS)
Cox, G. B., Jr.; Steele, L. L.; Eisenhart, D. W.
1993-01-01
Following the start of SSME certification testing for the Pratt and Whitney Alternate Turbopump Development (ATD) High Pressure Oxidizer Turbopump (HPOTP), cracking of the leading edge of the inner HEX vane was experienced. The HEX vane, at the inlet of the oxidizer bowl in the Hot Gas Manifold (HGM), accepts the HPOTP turbine discharge flow and turns it toward the Gaseous Oxidizer Heat Exchanger (GOX HEX) coil. The cracking consistently initiated over a specific circumferential region of the hex vane, with other circumferential locations appearing with increased run time. Since cracking had not to date been seen with the baseline HPOTP, a fluid-structural interaction involving the ATD HPOTP turbine exit flowfield and the HEX inner vane was suspected. As part of NASA contract NAS8-36801, Pratt and Whitney conducted air flow tests of the ATD HPOTP turbine turnaround duct flowpath in the MSFC Phase 2 HGM air flow model. These tests included HEX vane strain gages and additional fluctuating pressure gages in the turnaround duct and HEX vane flowpath area. Three-dimensional flow probe measurements at two stations downstream of the turbine simulator exit plane were also made. Modifications to the HPOTP turbine simulator investigated the effects on turbine exit flow profile and velocity components, with the objective of reproducing flow conditions calculated for the actual ATD HPOTP hardware. Testing was done at the MSFC SSME Dynamic Fluid Air Flow (Dual-Leg) Facility, at air supply pressures between 50 and 250 psia. Combinations of turbine exit Mach number and pressure level were run to investigate the effect of flow regime. Information presented includes: (1) Descriptions of turbine simulator modifications to produce the desired flow environment; (2) Types and locations for instrumentation added to the flow model for improved diagnostic capability; (3) Evaluation of the effect of changes to the turbine simulator flowpath on the turbine exit flow environment; and (4) Comparison of the experimental turbine exit flow environment to the environment calculated for the ATD HPOTP.
Solid metabolic waste transport and stowage investigation
NASA Technical Reports Server (NTRS)
Burt, R. A.; Koesterer, M. G.; Hunt, S. R., Jr.
1974-01-01
The basic Waste Collection System (WCS) design under consideration utilized air flow to separate the stool from the WCS user and to transport the fecal material to a slinger device for subsequent deposition on a storage bowel. The major parameters governing stool separation and transport were found to be the area of the air inlet orifices, the configuration of the air inlet orifice and the transport air flow. Separation force and transport velocity of the stool were studied. The developed inlet orifice configuration was found to be an effective design for providing fecal separation and transport. Simulated urine tests and female user tests in zero gravity established air flow rates between 0.08 and 0.25 cu sm/min (3 and 9 scfm) as satisfactory for entrapment, containment and transport of urine using an urinal. The investigation of air drying of fecal material as a substitute for vacuum drying in a WCS breadboard system showed that using baseline conditions anticipated for the shuttle cabin ambient atmosphere, flow rates of 0.14 cu sm/min (5 cfm) were adequate for drying and maintaining biological stability of the fecal material.
NASA Technical Reports Server (NTRS)
Spanogle, J A; Moore, C S
1931-01-01
Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battista, L.; Sciuto, S. A.; Scorza, A.
2013-03-15
In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it;more » the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the coefficient of determination r{sup 2} is equal to 0.997; for the bi-directional configuration, the coefficient of determination r{sup 2} is equal to 0.990 for positive flows (inspiration) and 0.988 for negative flows (expiration). Measurement uncertainty {delta}Q of air flow rate has been evaluated by means of the propagation of distributions and the percentage error in the arrangement of bi-directional sensor ranges from a minimum of about 0.5% at -18.0 l/min to a maximum of about 9% at -12.0 l/min.« less
Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.
Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G
2013-07-01
Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively controlled with even smaller superficial air velocity than the optimal value provided by a single air stone. Finally, the testing results with both inorganic and organic feeds showed that the solid particle composition and particle size distribution all contribute to the cake formation in a membrane filtration system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Traffic Flow Management Wrap-Up
NASA Technical Reports Server (NTRS)
Grabbe, Shon
2011-01-01
Traffic Flow Management involves the scheduling and routing of air traffic subject to airport and airspace capacity constraints, and the efficient use of available airspace. Significant challenges in this area include: (1) weather integration and forecasting, (2) accounting for user preferences in the Traffic Flow Management decision making process, and (3) understanding and mitigating the environmental impacts of air traffic on the environment. To address these challenges, researchers in the Traffic Flow Management area are developing modeling, simulation and optimization techniques to route and schedule air traffic flights and flows while accommodating user preferences, accounting for system uncertainties and considering the environmental impacts of aviation. This presentation will highlight some of the major challenges facing researchers in this domain, while also showcasing recent innovations designed to address these challenges.
Two-phase gas-liquid flow characteristics inside a plate heat exchanger
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nilpueng, Kitti; Wongwises, Somchai
In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-watermore » mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)« less
Moss, Owen R.
1980-01-01
A chamber for exposing animals, plants, or materials to air containing gases or aerosols is so constructed that catch pans for animal excrement, for example, serve to aid the uniform distribution of air throughout the chamber instead of constituting obstacles as has been the case in prior animal exposure chambers. The chamber comprises the usual imperforate top, bottom and side walls. Within the chamber, cages and their associated pans are arranged in two columns. The pans are spaced horizontally from the walls of the chamber in all directions. Corresponding pans of the two columns are also spaced horizontally from each other. Preferably the pans of one column are also spaced vertically from corresponding pans of the other column. Air is introduced into the top of the chamber and withdrawn from the bottom. The general flow of air is therefore vertical. The effect of the horizontal pans is based on the fact that a gas flowing past the edge of a flat plate that is perpendicular to the flow forms a wave on the upstream side of the plate. Air flows downwardly between the chamber walls and the outer edges of the pan. It also flows downwardly between the inner edges of the pans of the two columns. It has been found that when the air carries aerosol particles, these particles are substantially uniformly distributed throughout the chamber.
NASA Technical Reports Server (NTRS)
Alexander, Michael G.; Harris, F. Keith; Spoor, Marc A.; Boyland, Susannah R.; Farrell, Thomas E.; Raines, David M.
2016-01-01
This paper presents a systems overview of how the Boeing and NASA team designed, analyzed, fabricated, and integrated the Active Flow Control (AFC) technology and Insect Accretion Mitigation (IAM) systems on the Boeing 757 ecoDemonstrator. The NASA Environmentally Responsible Aviation (ERA) project partnered with Boeing to demonstrate these two technology systems on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The AFC system demonstrated attenuation of flow separation on a highly deflected rudder and increased the side force generated. This AFC system may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff while still operating in a conventional manner over the rest of the flight envelope. The AFC system consisted of ducting to obtain air from the Auxiliary Power Unit (APU), a control valve to modulate the system mass flow, a heat exchanger to lower the APU air temperature, and additional ducting to deliver the air to the AFC actuators located on the vertical tail. The IAM system demonstrated how to mitigate insect residue adhesion on a wing's leading edge. Something as small as insect residue on a leading edge can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. The IAM system consisted of NASA developed Engineered Surfaces (ES) which were thin aluminum sheet substrate panels with coatings applied to the exterior. These ES were installed on slats 8 and 9 on the right wing of the 757 ecoDemonstrator. They were designed to support panel removal and installation in one crew shift. Each slat accommodated 4 panels. Both the AFC and IAM flight test were the culmination of several years of development and produced valuable data for the advancement of modern aircraft designs.
Murdoch, Peter S; Shanley, James B
2006-09-01
Two new methods for assessing temporal trends in stream-solute concentrations at specific streamflow ranges were applied to long (40 to 50-year) but sparse (bi-weekly to quarterly sampling) stream-water quality data collected at three forested mesoscale basins along an atmospheric deposition gradient in the northeastern United States (one in north-central Pennsylvania, one in southeastern New York, and one in eastern Maine). The three data sets span the period since the implementation of the Clean Air Act in 1970 and its subsequent amendments. Declining sulfate (O4(2-)) trends since the mid 1960s were identified for all 3 rivers by one or more of the 4 methods of trend detection used. Flow-specific trends were assessed by segmenting the data sets into 3-year and 6-year blocks, then determining concentration-discharge relationships for each block. Declining sulfate (O4(2-)) trends at median flow were similar to trends determined using a Seasonal Kendall Tau test and Sen slope estimator. The trend of declining O4(2-) concentrations differed at high, median and low flow since the mid 1980s at YWC and NR, and at high and low flow at WR, but the trends leveled or reversed at high flow from 1999 through 2002. Trends for the period of record at high flows were similar to medium- and low-flow trends for Ca2++ Mg2+ concentrations at WR, non-significant at YWC, and were more negative at low flow than at high flow at NR; trends in nitrate (NO3-), and alkalinity (ALK) concentrations were different at different flow conditions, and in ways that are consistent with the hydrology and deposition history at each watershed. Quarterly sampling is adequate for assessing average-flow trends in the chemical parameters assessed over long time periods (approximately decades). However, with even a modest effort at sampling a range of flow conditions within each year, trends at specified flows for constituents with strong concentration-discharge relationships can be evaluated and may allow early detection of ecosystem response to climate change and pollution management strategies.
NASA Technical Reports Server (NTRS)
Lamar, John E.; Landman, Drew; Swift, Russell S.; Parikh, Paresh C.
2007-01-01
Ships produce vortices and air-wakes while either underway or stationary in a wind. These flow fields can be detrimental to the conduction of air operations in that they can adversely impact the air vehicles and flight crews. There are potential solutions to these problems for both frigates/destroyers and carriers through the use of novel vortex flow or flow control devices. This appendix highlights several devices which may have application and points out that traditional wind-tunnel testing using smoke, laser-vapor screen, and Particle Image Velocimetry can be useful in sorting out the effectiveness of different devices.
Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques
NASA Astrophysics Data System (ADS)
Roshni, T.; Pagliara, S.
2018-05-01
Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.
An experimental investigation of gas jets in confined swirling air flow
NASA Technical Reports Server (NTRS)
Mongia, H.; Ahmed, S. A.; Mongia, H. C.
1984-01-01
The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.
Hydrodynamic Suppression of Soot Formation in Laminar Coflowing Jet Diffusion Flames. Appendix C
NASA Technical Reports Server (NTRS)
Dai, Z.; Faeth, G. M.; Yuan, Z.-G. (Technical Monitor); Urban, D. L. (Technical Monitor); Yuan, Z.-G. (Technical Monitor)
2000-01-01
Effects of flow (hydrodynamic) properties on limiting conditions for soot-free laminar non-premixed hydrocarbon/air flames (called laminar soot-point conditions) were studied, emphasizing non-buoyant laminar coflowing jet diffusion flames. Effects of air/fuel-stream velocity ratios were of particular interest; therefore, the experiments were carried out at reduced pressures to minimize effects of flow acceleration due to the intrusion of buoyancy. Test conditions included reactant temperatures of 300 K; ambient pressures of 3.7-49 8 kPa; methane-, acetylene-, ethylene-, propane-, and methane-fueled flames burning in coflowing air with fuel-port diameters of 1.7, 3.2, and 6.4 mm, fuel jet Reynolds numbers of 18-121; air coflow velocities of 0-6 m/s; and air/fuel-stream velocity ratios of 0.003-70. Measurements included laminar soot-point flame lengths, laminar soot-point fuel flow rates, and laminar liftoff conditions. The measurements show that laminar soot-point flame lengths and fuel flow rates can be increased, broadening the range of fuel flow rates where the flames remain soot free, by increasing air/fuel-stream velocity ratios. The mechanism of this effect involves the magnitude and direction of flow velocities relative to the flame sheet where increased air/fuel-stream velocity ratios cause progressive reduction of flame residence times in the fuel-rich soot-formation region. The range of soot-free conditions is limited by both liftoff, particularly at low pressures, and the intrusion of effects of buoyancy on effective air/fuel-stream velocity ratios, particularly at high pressures. Effective correlations of laminar soot- and smoke-point flame lengths were also found in terms of a corrected fuel flow rate parameter, based on simplified analysis of laminar jet diffusion flame structure. The results show that laminar smoke-point flame lengths in coflowing air environments are roughly twice as long as soot-free (blue) flames under comparable conditions due to the presence of luminous soot particles under fuel-lean conditions when smoke-point conditions are approached. This is very similar to earlier findings concerning differences between laminar smoke- and sootpoint flame lengths in still environments.
NASA Technical Reports Server (NTRS)
Hunt, J. L.; Souders, S. W.
1975-01-01
Normal- and oblique-shock flow parameters for air in thermochemical equilibrium are tabulated as a function of shock angle for altitudes ranging from 15.24 km to 91.44 km in increments of 7.62 km at selected hypersonic speeds. Post-shock parameters tabulated include flow-deflection angle, velocity, Mach number, compressibility factor, isentropic exponent, viscosity, Reynolds number, entropy difference, and static pressure, temperature, density, and enthalpy ratios across the shock. A procedure is presented for obtaining oblique-shock flow properties in equilibrium air on surfaces at various angles of attack, sweep, and dihedral by use of the two-dimensional tabulations. Plots of the flow parameters against flow-deflection angle are presented at altitudes of 30.48, 60.96, and 91.44 km for various stream velocities.
Multidisciplinary Modeling Software for Analysis, Design, and Optimization of HRRLS Vehicles
NASA Technical Reports Server (NTRS)
Spradley, Lawrence W.; Lohner, Rainald; Hunt, James L.
2011-01-01
The concept for Highly Reliable Reusable Launch Systems (HRRLS) under the NASA Hypersonics project is a two-stage-to-orbit, horizontal-take-off / horizontal-landing, (HTHL) architecture with an air-breathing first stage. The first stage vehicle is a slender body with an air-breathing propulsion system that is highly integrated with the airframe. The light weight slender body will deflect significantly during flight. This global deflection affects the flow over the vehicle and into the engine and thus the loads and moments on the vehicle. High-fidelity multi-disciplinary analyses that accounts for these fluid-structures-thermal interactions are required to accurately predict the vehicle loads and resultant response. These predictions of vehicle response to multi physics loads, calculated with fluid-structural-thermal interaction, are required in order to optimize the vehicle design over its full operating range. This contract with ResearchSouth addresses one of the primary objectives of the Vehicle Technology Integration (VTI) discipline: the development of high-fidelity multi-disciplinary analysis and optimization methods and tools for HRRLS vehicles. The primary goal of this effort is the development of an integrated software system that can be used for full-vehicle optimization. This goal was accomplished by: 1) integrating the master code, FEMAP, into the multidiscipline software network to direct the coupling to assure accurate fluid-structure-thermal interaction solutions; 2) loosely-coupling the Euler flow solver FEFLO to the available and proven aeroelasticity and large deformation (FEAP) code; 3) providing a coupled Euler-boundary layer capability for rapid viscous flow simulation; 4) developing and implementing improved Euler/RANS algorithms into the FEFLO CFD code to provide accurate shock capturing, skin friction, and heat-transfer predictions for HRRLS vehicles in hypersonic flow, 5) performing a Reynolds-averaged Navier-Stokes computation on an HRRLS configuration; 6) integrating the RANS solver with the FEAP code for coupled fluid-structure-thermal capability; and 7) integrating the existing NASA SRGULL propulsion flow path prediction software with the FEFLO software for quasi-3D propulsion flow path predictions, 8) improving and integrating into the network, an existing adjoint-based design optimization code.
Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI
NASA Technical Reports Server (NTRS)
Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.
2004-01-01
We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.
Fluid structure interaction dynamic analysis of a mixed-flow waterjet pump
NASA Astrophysics Data System (ADS)
Pan, X. W.; Y Pan, Z.; Huang, D.; Shen, Z. H.
2013-12-01
In order to avoid resonance of a mixed-flow waterjet pump at run time and calculate the stress and deformation of the pump rotor in the flow field, a one-way fluid structure interaction method was applied to simulate the pump rotor using ANSYS CFX and ANSYS Workbench software. The natural frequencies and mode shapes of the pump rotor in the air and in the flow field were analyzed, and the stress and deformation of the impeller were obtained at different flow rates. The obtained numerical results indicated that the mode shapes were similar both in the air and in the flow field, but the pump rotor's natural frequency in the flow field was slightly smaller than that in the air; the difference of the pump rotor's natural frequency varied lightly at different flow rates, and all frequencies at different flow rates were higher than the safe frequency, the pump rotor under the effect of prestress rate did not occur resonance; The maximum stress was on the blade near the hub and the maximum deformation on the blade tip at different flow rates.
NASA Technical Reports Server (NTRS)
Tacina, R. R.
1984-01-01
Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.
Combustion response to acoustic perturbation in liquid rocket engines
NASA Astrophysics Data System (ADS)
Ghafourian, Akbar
An experimental study of the effect of acoustic perturbations on combustion behavior of a model liquid propellant rocket engine has been carried out. A pair of compression drivers were used to excite transverse and longitudinal acoustic fields at strengths of up to 156.6 dB and 159.5 dB respectively in the combustion chamber of the experimental rocket engine. Propellant simulants were injected into the combustion chamber through a single element shear coaxial injector. Water and air were used in cold flow studies and ethanol and oxygen-enriched air were used as fuel and oxidizer in reacting hot flow studies. In cold flow studies an imposed transverse acoustic field had a more pronounced effect on the spray pattern than a longitudinal acoustic fields. A transverse acoustic field widened the spray by as much as 33 percent and the plane of impingement of the spray with chamber walls moved up closer to the injection plane. The behavior was strongly influenced by the gas phase velocity but was less sensitive to changes in the liquid phase velocity. In reacting hot flow studies the effects of changes in equivalence ratio, excitation amplitude, excitation frequency, liquid and gas phase velocity and chamber pressure on the response of the injector to imposed high frequency transverse acoustic excitation were measured. Reducing the equivalence ratio from 7.4 to 3.8 increased the chamber pressure response to the imposed excitation at 3000 Hz. Increasing the excitation amplitude from 147 dB to 155.6 dB at 3000 Hz increased the chamber pressure response to the excitation. In the frequency range of 1240 Hz to 3220 Hz, an excitation frequency of 3000 Hz resulted in the largest response of the chamber pressure indicating the importance of fluid dynamic coupling. Increasing the liquid phase velocity from 9.2 m/sec to 22.7 m/sec, did not change the amplitude of the chamber pressure response to excitation. This implied the importance of local equivalence ratio and not the overall equivalence ratio on chamber pressure response to excitation. Increasing the chamber pressure from 1.5 atm to 3.1 atm and gas phase velocity from 93.2 m/sec to 105.1 m/sec significantly increased the chamber pressure response to acoustic excitation. This emphasized the significance of the gas phase density and velocity. Measurements of the free radical C2 emission zone and Schlieren images indicated that transverse acoustic excitation moved the combustion zone closer to the injection plane and longitudinal acoustic excitation widened the combustion zone. The histogram of these images indicates that the area over which combustion takes place in the chamber increases under imposed acoustic excitation. This implied that more propellants combust prior to exiting from the exhaust nozzle under unsteady conditions.
Spirometry, Static Lung Volumes, and Diffusing Capacity.
Vaz Fragoso, Carlos A; Cain, Hilary C; Casaburi, Richard; Lee, Patty J; Iannone, Lynne; Leo-Summers, Linda S; Van Ness, Peter H
2017-09-01
Spirometric Z-scores from the Global Lung Initiative (GLI) rigorously account for age-related changes in lung function and are thus age-appropriate when establishing spirometric impairments, including a restrictive pattern and air-flow obstruction. However, GLI-defined spirometric impairments have not yet been evaluated regarding associations with static lung volumes (total lung capacity [TLC], functional residual capacity [FRC], and residual volume [RV]) and gas exchange (diffusing capacity). We performed a retrospective review of pulmonary function tests in subjects ≥40 y old (mean age 64.6 y), including pre-bronchodilator measures for: spirometry ( n = 2,586), static lung volumes by helium dilution with inspiratory capacity maneuver ( n = 2,586), and hemoglobin-adjusted single-breath diffusing capacity ( n = 2,508). Using multivariable linear regression, adjusted least-squares means (adj LS Means) were calculated for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity. The adj LS Means were expressed with and without height-cubed standardization and stratified by GLI-defined spirometry, including normal ( n = 1,251), restrictive pattern ( n = 663), and air-flow obstruction (mild, [ n = 128]; moderate, [ n = 150]; and severe, [ n = 394]). Relative to normal spirometry, restrictive-pattern had lower adj LS Means for TLC, FRC, RV, and hemoglobin-adjusted single-breath diffusing capacity ( P ≤ .001). Conversely, relative to normal spirometry, mild, moderate, and severe air-flow obstruction had higher adj LS Means for FRC and RV ( P < .001). However, only mild and moderate air-flow obstruction had higher adj LS Means for TLC ( P < .001), while only moderate and severe air-flow obstruction had higher adj LS Means for RV/TLC ( P < .001) and lower adj LS Means for hemoglobin-adjusted single-breath diffusing capacity ( P < .001). Notably, TLC (calculated as FRC + inspiratory capacity) was not increased in severe air-flow obstruction ( P ≥ .11) because inspiratory capacity decreased with increasing air-flow obstruction ( P < .001), thus opposing the increased FRC ( P < .001). Finally, P values were similar whether adj LS Means were height-cubed standardized. A GLI-defined spirometric restrictive pattern is strongly associated with a restrictive ventilatory defect (decreased TLC, FRC, and RV), while GLI-defined spirometric air-flow obstruction is strongly associated with hyperinflation (increased FRC) and air trapping (increased RV and RV/TLC). Both spirometric impairments were strongly associated with impaired gas exchange (decreased hemoglobin-adjusted single-breath diffusing capacity). Copyright © 2017 by Daedalus Enterprises.
A Dual-Plane PIV Study of Turbulent Heat Transfer Flows
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Wroblewski, Adam C.; Locke, Randy J.
2016-01-01
Thin film cooling is a widely used technique in turbomachinery and rocket propulsion applications, where cool injection air protects a surface from hot combustion gases. The injected air typically has a different velocity and temperature from the free stream combustion flow, yielding a flow field with high turbulence and large temperature differences. These thin film cooling flows provide a good test case for evaluating computational model prediction capabilities. The goal of this work is to provide a database of flow field measurements for validating computational flow prediction models applied to turbulent heat transfer flows. In this work we describe the application of a Dual-Plane Particle Image Velocimetry (PIV) technique in a thin film cooling wind tunnel facility where the injection air stream velocity and temperatures are varied in order to provide benchmark turbulent heat transfer flow field measurements. The Dual-Plane PIV data collected include all three components of velocity and all three components of vorticity, spanning the width of the tunnel at multiple axial measurement planes.
MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew
The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performancemore » of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The empirical model was also implemented in the computational models of the NSTF using both RELAP5-3D and STARCCM+ codes. Accounting for the effects of ambient conditions, simulations from both codes predicted the natural circulation flow rates very well.« less
Multiphase Flow Modeling of Slag Entrainment During Ladle Change-Over Operation
NASA Astrophysics Data System (ADS)
Morales, Rodolfo D.; Garcia-Hernandez, Saul; Barreto, Jose de Jesus; Ceballos-Huerta, Ariana; Calderon-Ramos, Ismael; Gutierrez, Enif
2016-08-01
Steel transfer from the ladle to a single-strand tundish using a conventional ladle shroud (CLS), and a dissipative ladle shroud (DLS) is studied during the transient period of ladle change-over operation. Fluid velocities and fluid flow turbulence statistics during this unsteady operation were recorded by an ultrasound velocimetry probe in a 1/3 scale water-oil-air analog model (to emulate steel-slag-air system). Reynolds stress model and volume of fluid model allow the tracking of water-oil, water-air, and oil-air interfaces during this operation. Velocity measurements indicate a very high turbulence with the formation of a water-air bubbles-oil emulsion. Flow turbulence and the intensity of the emulsification decrease considerably due to an efficient dissipation of the turbulent kinetic energy employing the DLS instead of the CLS. The modeling results indicate that DLS is widely recommended to substitute flow control devices to improve the fluid dynamics of liquid steel during this transient operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
Natural Flow Air Cooled Photovoltaics
NASA Astrophysics Data System (ADS)
Tanagnostopoulos, Y.; Themelis, P.
2010-01-01
Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.
NASA Technical Reports Server (NTRS)
Kuchemann, Dietrich; Weber, Johanna
1952-01-01
The dependence of the maximum incremental velocities and air forces on a circular cowling on the mass flow and the angle of attack of the oblique flow is determined with the aid of pressure-distribution measurements. The particular cowling tested had been partially investigated in NACA TM 1327.
ERIC Educational Resources Information Center
Cadwell, Louis H.
1994-01-01
This article describes different techniques used to measure air flow velocity. The two methods used were Crawford's Wastebasket and a video camera. The results were analyzed and compared to the air flow velocity predicted by Bernoulli's principle. (ZWH)
Pressurized solid oxide fuel cell integral air accumular containment
Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.
2004-02-10
A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.
Project SQUID. Annual Program Report
1950-01-01
helical flow around the combustion chamber walls and approximately longitudinal flow over the nozzle walls. All injectors are of the 2 to 1 symnetrical...near the rotating valve were recorded by means of a condenser -type pressure gauge and the mean pressure was read on a manometer. Numerous static...between p = speciflc heat of air bulk of air and plane To = temperature of bulk of air k = thermal conductivity of air Nusselt and Jurges2 in 1928
Portable liquid collection electrostatic precipitator
Carlson, Duane C.; DeGange, John J.; Halverson, Justin E.
2005-10-18
A portable liquid collection electrostatic collection precipitator for analyzing air is provided which is a relatively small, self-contained device. The device has a tubular collection electrode, a reservoir for a liquid, and a pump. The pump pumps the liquid into the collection electrode such that the liquid flows down the exterior of the collection electrode and is recirculated to the reservoir. An air intake is provided such that air to be analyzed flows through an ionization section to ionize analytes in the air, and then flows near the collection electrode where ionized analytes are collected. A portable power source is connected to the air intake and the collection electrode. Ionizable constituents in the air are ionized, attracted to the collection electrode, and precipitated in the liquid. The precipitator may also have an analyzer for the liquid and may have a transceiver allowing remote operation and data collection.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
Numerical simulation for the air entrainment of aerated flow with an improved multiphase SPH model
NASA Astrophysics Data System (ADS)
Wan, Hang; Li, Ran; Pu, Xunchi; Zhang, Hongwei; Feng, Jingjie
2017-11-01
Aerated flow is a complex hydraulic phenomenon that exists widely in the field of environmental hydraulics. It is generally characterised by large deformation and violent fragmentation of the free surface. Compared to Euler methods (volume of fluid (VOF) method or rigid-lid hypothesis method), the existing single-phase Smooth Particle Hydrodynamics (SPH) method has performed well for solving particle motion. A lack of research on interphase interaction and air concentration, however, has affected the application of SPH model. In our study, an improved multiphase SPH model is presented to simulate aeration flows. A drag force was included in the momentum equation to ensure accuracy of the air particle slip velocity. Furthermore, a calculation method for air concentration is developed to analyse the air entrainment characteristics. Two studies were used to simulate the hydraulic and air entrainment characteristics. And, compared with the experimental results, the simulation results agree with the experimental results well.
Regenerator cross arm seal assembly
Jackman, Anthony V.
1988-01-01
A seal assembly for disposition between a cross arm on a gas turbine engine block and a regenerator disc, the seal assembly including a platform coextensive with the cross arm, a seal and wear layer sealingly and slidingly engaging the regenerator disc, a porous and compliant support layer between the platform and the seal and wear layer porous enough to permit flow of cooling air therethrough and compliant to accommodate relative thermal growth and distortion, a dike between the seal and wear layer and the platform for preventing cross flow through the support layer between engine exhaust and pressurized air passages, and air diversion passages for directing unregenerated pressurized air through the support layer to cool the seal and wear layer and then back into the flow of regenerated pressurized air.
Rotor bore and turbine rotor wheel/spacer heat exchange flow circuit
Caruso, Philip M.; Eldrid, Sacheverel Quentin; Ladhani, Azad A.; DeMania, Alan Richard; Palmer, Gene David; Wilson, Ian David; Rathbun, Lisa Shirley; Akin, Robert Craig
2002-01-01
In a turbine having closed-circuit steam-cooling passages about the rim of the rotor during steady-state operation, compressor discharge air is supplied to the rotor bore for passage radially outwardly into the wheel space cavities between the wheels and spacers. Communicating slots and channels in the spacers and wheels at circumferentially spaced positions enable egress of the compressor discharge air into the hot gas flow path. At turbine startup, cooling air flows through the closed-circuit steam passages to cool the outer rim of the rotor while compressor discharge air pre-warms the wheels and spacers. At steady-state, cooling steam is supplied in the closed-circuit steam-cooling passages and compressor discharge air is supplied through the bore and into the wheel space cavities to cool the rotor.
Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica.
Gooseff, Michael N; Barrett, John E; Adams, Byron J; Doran, Peter T; Fountain, Andrew G; Lyons, W Berry; McKnight, Diane M; Priscu, John C; Sokol, Eric R; Takacs-Vesbach, Cristina; Vandegehuchte, Martijn L; Virginia, Ross A; Wall, Diana H
2017-09-01
Amplified climate change in polar regions is significantly altering regional ecosystems, yet there are few long-term records documenting these responses. The McMurdo Dry Valleys (MDV) cold desert ecosystem is the largest ice-free area of Antarctica, comprising soils, glaciers, meltwater streams and permanently ice-covered lakes. Multi-decadal records indicate that the MDV exhibited a distinct ecosystem response to an uncharacteristic austral summer and ensuing climatic shift. A decadal summer cooling phase ended in 2002 with intense glacial melt ('flood year')-a step-change in water availability triggering distinct changes in the ecosystem. Before 2002, the ecosystem exhibited synchronous behaviour: declining stream flow, decreasing lake levels, thickening lake ice cover, decreasing primary production in lakes and streams, and diminishing soil secondary production. Since 2002, summer air temperatures and solar flux have been relatively consistent, leading to lake level rise, lake ice thinning and elevated stream flow. Biological responses varied; one stream cyanobacterial mat type immediately increased production, but another stream mat type, soil invertebrates and lake primary productivity responded asynchronously a few years after 2002. This ecosystem response to a climatic anomaly demonstrates differential biological community responses to substantial perturbations, and the mediation of biological responses to climate change by changes in physical ecosystem properties.
NASA Technical Reports Server (NTRS)
Creagh, John W. R.; Ginsburg, Ambrose
1948-01-01
An investigation of the XJ-41-V turbojet-engine compressor was conducted to determine the performance of the compressor and to obtain fundamental information on the aerodynamic problems associated with large centrifugal-type compressors. The results of the research conducted on the original compressor indicated the compressor would not meet the desired engine-design air-flow requirements because of an air-flow restriction in the vaned collector. The compressor air-flow choking point occurred near the entrance to the vaned-collector passage and was instigated by a poor mass-flow distribution at the vane entrance and from relatively large negative angles of attack of the air stream along the entrance edges of the vanes at the outer passage wall and large positive angles of attack at the inner passage wall. As a result of the analysis, a design change of the vaned collector entrance is recommended for improving the maximum flow capacity of the compressor.
NASA Astrophysics Data System (ADS)
Mohammadian, Shahabeddin Keshavarz; Layeghi, Mohammad; Hemmati, Mansor
2013-03-01
Forced convective heat transfer from a vertical circular tube conveying deionized (DI) water or very dilute Ag-DI water nanofluids (less than 0.02% volume fraction) in a cross flow of air has been investigated experimentally. Some experiments have been performed in a wind tunnel and heat transfer characteristics such as thermal conductance, effectiveness, and external Nusselt number has been measured at different air speeds, liquid flow rates, and nanoparticle concentrations. The cross flow of air over the tube and the liquid flow in the tube were turbulent in all cases. The experimental results have been compared and it has been found that suspending Ag nanoparticles in the base fluid increases thermal conductance, external Nusselt number, and effectiveness. Furthermore, by increasing the external Reynolds number, the external Nusselt number, effectiveness, and thermal conductance increase. Also, by increasing internal Reynolds number, the thermal conductance and external Nusselt number enhance while the effectiveness decreases.
Flow Meter Based on Freely Suspended Smectic Liquid Crystal Films
NASA Astrophysics Data System (ADS)
Green, Adam; Qi, Zhiyuan; Park, Cheol; Glaser, Matthew; Maclennan, Joseph; Clark, Noel
We present the realization of a idealized 2D hydrodynamic system coupled to air-flow, and show that freely suspended films (FSF) of smectic liquid crystals can be used as a novel flow-meter. Freely-suspended films of liquid crystals are one of the closest physical realizations of an idealized 2D fluid. The velocity of air-flow above a film suspended above a channel can be inferred by studying the velocity profile of the smectic film. This velocity profile can be measured using digital video microscopy to track the inclusions present in the moving film. The velocity profile is then fitted to the coupled 2D solutions of an embedded fluid in air, and the velocity of the air can then be extracted. This flow meter serves as a demonstration of a robust test-bed for further exploration of 2D hydrodynamics. This work was supported by NASA Grant No. NNX-13AQ81G, NSF MRSEC Grant No. DMR-0820579, and DMR-1420736.
Air Flow and Pressure Drop Measurements Across Porous Oxides
NASA Technical Reports Server (NTRS)
Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.
2008-01-01
This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.
High Response Dew Point Measurement System for a Supersonic Wind Tunnel
NASA Technical Reports Server (NTRS)
Blumenthal, Philip Z.
1996-01-01
A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.
Particle response to shock waves in solids: dynamic witness plate/PIV method for detonations
NASA Astrophysics Data System (ADS)
Murphy, Michael J.; Adrian, Ronald J.
2007-08-01
Studies using transparent, polymeric witness plates consisting of polydimethlysiloxane (PDMS) have been conducted to measure the output of exploding bridge wire (EBW) detonators and exploding foil initiators (EFI). Polymeric witness plates are utilized to alleviate particle response issues that arise in gaseous flow fields containing shock waves and to allow measurements of shock-induced material velocities to be made using particle image velocimetry (PIV). Quantitative comparisons of velocity profiles across the shock waves in air and in PDMS demonstrate the improved response achieved by the dynamic witness plate method. Schlieren photographs complement the analysis through direct visualization of detonator-induced shock waves in the witness plates.
USDA-ARS?s Scientific Manuscript database
Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...
Heat of transport of air in clay.
Minkin, Leonid; Shapovalov, Alexander S
2007-01-01
By measuring the thermomolecular pressure difference and using principles of irreversible thermodynamics, heat of transport of air in clay and its coefficient of diffusion are found. A comparison of thermotranspiration and pressure driven gas fluxes through concrete slab in homes is examined. It is shown that thermotranspiration air/radon flow may greatly exceed diffusion (pressure driven) flow in homes.
DOT National Transportation Integrated Search
1974-02-01
The volume presents a description of the services a generic Advanced Air Traffic Management System (AATMS) should provide to the useres of the system to facilitate the safe, efficient flow of traffic. It provides a definition of the functions which t...
NASA Astrophysics Data System (ADS)
Kowalczk, A. J.; Froelich, P. N.; Gaffka, C.; Tremaine, D.
2008-12-01
Continuous high resolution (sub-hourly), long-term (Nov 2007-present) monitoring of cave air chemistry (Temperature, Relative Humidity, Barometric Pressure, Radon-222, CO2, Air flow, Wind speed and direction) in a shallow subtropical cave (Hollow Ridge) in N Florida reveals two major ventilation mechanisms: 1) ventilation driven by winds across the cave entrances, and 2) ventilation driven by density differences between atmospheric and cave air. The degree and type of ventilation strongly influence the 222Rn and CO2 of cave air, which in turn affects the timing and extent of calcite deposition in speleothems. The degree of ventilation is estimated using a cave air CO2-δ13CO2 Keeling Plot, or a simple radon deficiency model. Results show cave air has an atmospheric component ranging from 10-90%. During fall and winter, average CO2 (700 ppmv) and 222Rn (50-100 dpm/L) are lower than in spring and summer (CO2 = 1200 ppmv; 222Rn = 1000 dpm/L) due to increased winter ventilation. Decreased ventilation during the summer allows CO2 and 222Rn levels to rise. Winter daily ventilation is primarily a function of density gradients between cave air and atmospheric air, while summer daily ventilation is primarily a function of late morning NW-NE winds above the cave. Stable isotope analyses of drip water (fracture drip and pore flow drip) and aquifer water from Hollow Ridge agree with previous isotope studies of drip water at Florida Caverns State Park, 2 km to the NE. During summer, isotopic composition of pore flow drip water (δ18O -3.8 to -4.0 per mil; δD -17.3 to -20.2 per mil VSMOW) and aquifer water (δ18O -4.0 per mil; δD -18.0 to -21.1 per mil) are similar to average annual weighted isotopic composition of precipitation (δ18O -3.6 per mil) while fracture drip waters (δ18O -3 to -3.4 per mil; δD -11.9 to -14.3 per mil) likely reflect the isotopic composition of individual precipitation events. Pore flow drip waters δ18O are weakly correlated with drip rates (enriched δ18O during periods of higher drip rates) but show no correlation to precipitation amount. Knowledge of the type of drip flow is important when considering stalagmites for paleoclimate studies. A significant decrease in drip rate was observed from June (1034 drips/hour) through August 2008 (34 drips/hour). Higher water demands during summer months with increased evapotranspiration may be responsible for this decrease. A semi-diurnal drip rate cycle, negatively correlated with barometric pressure, is also observed throughout the period. This strong negative correlation is hypothesized to be controlled by atmospheric tidal oscillations. Observations into the fall and winter seasons should reveal seasonality, if any, and if there is an evapotranspiration effect present in the water cycle. High resolution studies of cave air chemistry and ventilation processes will enhance knowledge of the timing, extent, and isotopic and chemical composition of calcite deposition. When combined with drip water and precipitation isotope analyses, these studies will improve the understanding and interpretation of high- resolution (sub-annual) speleothem paleoclimate records.
NASA Astrophysics Data System (ADS)
Tăcutu, Laurenţiu; Nastase, Ilinca; Iordache, Vlad; Catalina, Tiberiu; Croitoru, Cristiana Verona
2018-02-01
Nowadays, there is an increasing emphasis on indoor air quality due to technological evolution and the fact that people spend most of the time in enclosed spaces. Also, energy efficiency is another related factor that gains more and more attention. Improving air distribution in an enclosure can lead to achieve these goals. This improvement can be done by adjustingthe air terminals position, theredimensions or the air diffuser perforations. The paper presents the study of 8 types of panels with different perforations shapes. The systems were characterized by flow, pressure loss and noise. Usualand special geometries were chosen, all having the same flowsurface. The perforated panels were mounted in a unidirectional air flow (UAF)diffuser, also called a laminar air flow (LAF)diffuser, that is placed in a real scale operating room (OR) in our laboratory.The purpose of this study is to determine whether changing the shape in the perforated panels can improve the technical parameters of the diffuser.
NASA Astrophysics Data System (ADS)
Roswintiarti, O.; Raman, S.
- This paper describes the meteorological processes responsible for the mean transport of air pollutants during the ENSO-related forest fires in Kalimantan, Indonesia from 00 UTC 21 September to 00 UTC 25 September, 1997. The Fifth Generation of the Pennsylvania State University-National Center for Atmospheric Research (PSU-NCAR) Mesoscale Model (MM5) is used to simulate three-dimensional winds at 6-hourly intervals. A nonhydrostatic version of the model is run using two nested grids with horizontal resolutions of 45 km and 15 km. From the simulated wind fields, the backward and forward trajectories of the air parcel are investigated using the Vis5D model.The results indicate that the large-scale subsidence over Indonesia, the southwest monsoon low-level flows (2-8 m s-1), and the shallow planetary boundary layer height (400-800 m) play a key role in the transport of air pollutants from Kalimantan to Malaysia, Singapore and Brunei.
Annular fuel and air co-flow premixer
Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David
2013-10-15
Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.
Solutal Marangoni flow as the cause of ring stains from drying salty colloidal drops
NASA Astrophysics Data System (ADS)
Marin, Alvaro; Karpitschka, Stefan; Rossi, Massimiliano; Kaehler, Christian J.; Noguera-Marin, Diego; Rodriguez-Valverde, Miguel A.
2017-11-01
Salts can be found in different forms in almost any evaporating droplet in nature, our homes and in laboratories. The transport processes in such apparently simple systems differ strongly from `sweet' evaporating droplets since the liquid flows in the inverse direction due to Marangoni stresses at the surface. Such an effect has crucial consequences to salt crystallization processes and to the evaporation itself. In this work we show measurements that not only confirm clearly the details of the inverted flow patterns, but also permit us to calculate the surface tension gradients responsible for the reversal. Such a reversal does not prevent the coffee-stain effect; on the contrary, particles accumulate and get trapped at the liquid-air interface driven by the surface flow. In order to prove this, we show measurements of the full three-dimensional flow inside the evaporating salty droplet, confocal imaging is used to quantify the growth of the particle deposits for different salt concentrations, and we compare the experimental results with numerical simulations that capture the solvent evaporation, the evaporation-induced liquid flow and the quasi-equilibrium liquid-gas interface.
Performance tests of a single-cylinder compression-ignition engine with a displacer piston
NASA Technical Reports Server (NTRS)
Moore, C S; Foster, H H
1935-01-01
Engine performance was investigated using a rectangular displacer on the piston crown to cause a forced air flow in a vertical-disk combustion chamber of a single-cylinder, 4-stroke-cycle compression-ignition engine. The optimum air-flow area was determined first with the area concentrated at one end of the displacer and then with the area equally divided between two passages, one at each end of the displacer. Best performance was obtained with the two-passage air flow arranged to give a calculated maximum air-flow speed of 8 times the linear crank-pin speed. With the same fuel-spray formation as used without the air flow, the maximum clear exhaust brake mean effective pressure at 1,500 r.p.m. was increased from 90 to 115 pounds per square inch and the corresponding fuel consumption reduced from 0.46 to 0.43 pound per brake horsepower-hour. At 1,200 r.p.m., a maximum clear exhaust brake mean effective pressure of 120 pounds per square inch was obtained at a fuel consumption of 0.42 pound per brake horsepower-hour. At higher specific fuel consumption the brake mean effective pressure was still increasing rapidly.
Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645
Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A
2014-01-01
An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.
1980-04-15
schedule their air transportation networks, and learn the performance and financial results through simulation of the resulting traffic flows, costs...players in the role of airline management responsible for airline scheduling and market, fleet and financial planning. The Game Administrator created a...revenues and consequently the financial results for each airline. During this exercise the objective of each airline team was to schedule its flights so
Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.
Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G
2015-12-01
During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Numerical Analysis of Infiltration Into a Sand Profile Bounded by a Capillary Fringe
NASA Astrophysics Data System (ADS)
Curtis, Alan A.; Watson, Keith K.
1980-04-01
The rapid response sometimes observed in a tile drain system following surface ponding of water is discussed in terms of the air compressibility effect. An earlier numerical study describing water movement into a bounded profile with a lower boundary impermeable to the passage of both air and water is reviewed with particular reference to the validity of the time-dependent boundary condition transformation used in simulating the inhibiting effects of the air pressure increase on infiltration. The extension of the transformation approach to a profile bounded by a capillary fringe is then considered in detail, and the results of numerical analyses are presented for infiltration into two columns of a fine sand initially in hydraulic equilibrium from a prior gravity drainage regime. The shorter column develops a steady state flow condition at short times which is consistent with earlier experimental findings. In contrast, the pressure of the entrapped air in the longer column gradually increases as infiltration proceeds until the analysis is terminated when air escape through the lower boundary is imminent.
40 CFR 1065.225 - Intake-air flow meter.
Code of Federal Regulations, 2012 CFR
2012-07-01
... concentrations, if the same signal is used in a chemical-balance calculation to determine work from brake... tube, or a hot-wire anemometer. Note that your overall system for measuring intake-air flow must meet...
Sensing of minute airflow motions near walls using pappus-type nature-inspired sensors
Mikulich, Vladimir
2017-01-01
This work describes the development and use of pappus-like structures as sensitive sensors to detect minute air-flow motions. We made such sensors from pappi taken from nature-grown seed, whose filiform hairs’ length-scale is suitable for the study of large-scale turbulent convection flows. The stem with the pappus on top is fixated on an elastic membrane on the wall and tilts under wind-load proportional to the velocity magnitude in direction of the wind, similar as the biological sensory hairs found in spiders, however herein the sensory hair has multiple filiform protrusions at the tip. As the sensor response is proportional to the drag on the tip and a low mass ensures a larger bandwidth, lightweight pappus structures similar as those found in nature with documented large drag are useful to improve the response of artificial sensors. The pappus of a Dandelion represents such a structure which has evolved to maximize wind-driven dispersion, therefore it is used herein as the head of our sensor. Because of its multiple hairs arranged radially around the stem it generates uniform drag for all wind directions. While still being permeable to the flow, the hundreds of individual hairs on the tip of the sensor head maximize the drag and minimize influence of pressure gradients or shear-induced lift forces on the sensor response as they occur in non-permeable protrusions. In addition, the flow disturbance by the sensor itself is limited. The optical recording of the head-motion allows continuously remote-distance monitoring of the flow fluctuations in direction and magnitude. Application is shown for the measurement of a reference flow under isothermal conditions to detect the early occurrence of instabilities. PMID:28658272
NASA Astrophysics Data System (ADS)
Zha, Tianshan; Qian, Duo; Jia, Xin; Bai, Yujie; Tian, Yun; Bourque, Charles P.-A.; Ma, Jingyong; Feng, Wei; Wu, Bin; Peltola, Heli
2017-10-01
The current understanding of acclimation processes in desert-shrub species to drought stress in dryland ecosystems is still incomplete. In this study, we measured sap flow in Artemisia ordosica and associated environmental variables throughout the growing seasons of 2013 and 2014 (May-September period of each year) to better understand the environmental controls on the temporal dynamics of sap flow. We found that the occurrence of drought in the dry year of 2013 during the leaf-expansion and leaf-expanded periods caused sap flow per leaf area (Js) to decline significantly, resulting in transpiration being 34 % lower in 2013 than in 2014. Sap flow per leaf area correlated positively with radiation (Rs), air temperature (T), and water vapor pressure deficit (VPD) when volumetric soil water content (VWC) was greater than 0.10 m3 m-3. Diurnal Js was generally ahead of Rs by as much as 6 hours. This time lag, however, decreased with increasing VWC. The relative response of Js to the environmental variables (i.e., Rs, T, and VPD) varied with VWC, Js being more strongly controlled by plant-physiological processes during periods of dryness indicated by a low decoupling coefficient and low sensitivity to the environmental variables. According to this study, soil moisture is shown to control sap-flow (and, therefore, plant-transpiration) response in Artemisia ordosica to diurnal variations in biophysical factors. This species escaped (acclimated to) water limitations by invoking a water-conservation strategy with the regulation of stomatal conductance and advancement of Js peaking time, manifesting in a hysteresis effect. The findings of this study add to the knowledge of acclimation processes in desert-shrub species under drought-associated stress. This knowledge is essential in modeling desert-shrub-ecosystem functioning under changing climatic conditions.
Some current research in rotating-disc systems.
Owen, J M; Wilson, M
2001-05-01
Rotating-disc systems are used to model the flow and heat transfer that occurs inside the cooling-air systems of gas-turbine engines. In this paper, recent computational and experimental research in three systems is discussed: rotor-stator systems, rotating cavities with superposed flow and buoyancy-induced flow in a rotating cavity. Discussion of the first two systems concentrates respectively on pre-swirl systems and rotating cavities with a peripheral inflow and outflow of cooling air. Buoyancy-induced flow in a rotating cavity is one of the most difficult problems facing computationalists and experimentalists, and there are similarities between the circulation in the Earth's atmosphere and the flow inside gas-turbine rotors. For this case, results are presented for heat transfer in sealed annuli and in rotating cavities with an axial throughflow of cooling air.
Herbal dryer: drying of ginger (zingiber officinale) using tray dryer
NASA Astrophysics Data System (ADS)
Haryanto, B.; Hasibuan, R.; Alexander; Ashari, M.; Ridha, M.
2018-02-01
Drying is widely used as a method to preserve food because of its convenience and affordability. Drying of ginger using tray dryer were carried out at various drying conditions, such as air-drying flow, air-drying temperature, and sample dimensions, to achieve the highest drying rate. Samples with various dimensions were placed in the tray dryer and dried using various air-drying flow and temperatures. The weights of samples were observed every 3 minutes interval. Drying was stopped after three times of constant weighing. Data of drying was collected to make the drying curves. Drying curves show that the highest drying rate is achieved using highest air flow and temperature.
In-cylinder air-flow characteristics of different intake port geometries using tomographic PIV
NASA Astrophysics Data System (ADS)
Agarwal, Avinash Kumar; Gadekar, Suresh; Singh, Akhilendra Pratap
2017-09-01
For improving the in-cylinder flow characteristics of intake air/charge and for strengthening the turbulence intensity, specific intake port geometries have shown significant potential in compression ignition engines. In this experimental study, effects of intake port geometries on air-flow characteristics were investigated using tomographic particle imaging velocimetry (TPIV). Experiments were performed using three experimental conditions, namely, swirl port open (SPO), tangential port open (TPO), and both port open (BPO) configurations in a single cylinder optical research engine. Flow investigations were carried out in a volumetric section located in the middle of the intake and exhaust valves. Particle imaging velocimetry (PIV) images were captured using two high speed cameras at a crank angle resolution of 2° in the intake and compression strokes. The captured PIV images were then pre-processed and post-processed to obtain the final air-flow-field. Effects of these two intake ports on flow-field are presented for air velocity, vorticity, average absolute velocity, and turbulent kinetic energy. Analysis of these flow-fields suggests the dominating nature of the swirl port over the tangential port for the BPO configuration and higher rate of flow energy dissipation for the TPO configuration compared to the SPO and BPO configurations. These findings of TPIV investigations were experimentally verified by combustion and particulate characteristics of the test engine in thermal cylinder head configuration. Combustion results showed that the SPO configuration resulted in superior combustion amongst all three port configurations. Particulate characteristics showed that the TPO configuration resulted in higher particulate compared to other port configurations.
Tracheostomy Tube Type and Inner Cannula Selection Impact Pressure and Resistance to Air Flow.
Pryor, Lee N; Baldwin, Claire E; Ward, Elizabeth C; Cornwell, Petrea L; O'Connor, Stephanie N; Chapman, Marianne J; Bersten, Andrew D
2016-05-01
Advancements in tracheostomy tube design now provide clinicians with a range of options to facilitate communication for individuals receiving ventilator assistance through a cuffed tube. Little is known about the impact of these modern design features on resistance to air flow. We undertook a bench model test to measure pressure-flow characteristics and resistance of a range of tubes of similar outer diameter, including those enabling subglottic suction and speech. A constant inspiratory ± expiratory air flow was generated at increasing flows up to 150 L/min through each tube (with or without optional, mandatory, or interchangeable inner cannula). Driving pressures were measured, and resistance was calculated (cm H2O/L/s). Pressures changed with increasing flow (P < .001) and tube type (P < .001), with differing patterns of pressure change according to the type of tube (P < .001) and direction of air flow. The single-lumen reference tube encountered the lowest inspiratory and expiratory pressures compared with all double-lumen tubes (P < .001); placement of an optional inner cannula increased bidirectional tube resistance by a factor of 3. For a tube with interchangeable inner cannulas, the type of cannula altered pressure and resistance differently (P < .001); the speech cannula in particular amplified pressure-flow changes and increased tube resistance by more than a factor of 4. Tracheostomy tube type and inner cannula selection imposed differing pressures and resistance to air flow during inspiration and expiration. These differences may be important when selecting airway equipment or when setting parameters for monitoring, particularly for patients receiving supported ventilation or during the weaning process. Copyright © 2016 by Daedalus Enterprises.
40 CFR 1065.640 - Flow meter calibration calculations.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...
40 CFR 1065.640 - Flow meter calibration calculations.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV b g exh =1.385 g dexh = g air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...
40 CFR 1065.640 - Flow meter calibration calculations.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter...: Table 2 of § 1065.640—C fCFV versus β and γ for CFV Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1...
40 CFR 1065.640 - Flow meter calibration calculations.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... 1065.640 Section 1065.640 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.640 Flow meter... Flow Meters C fCFV β γ exh =1.385 γ dexh = γ air = 1.399 0.000 0.6822 0.6846 0.400 0.6857 0.6881 0.500...
Effect of periodic changes of angle of attack on behavior of airfoils
NASA Technical Reports Server (NTRS)
Katzmayr, R
1922-01-01
This report presents the results of a series of experiments, which gave some quantitative results on the effect of periodic changes in the direction of the relative air flow against airfoils. The first series of experiments concerned how the angle of attack of the wing model was changed by causing the latter to oscillate about an axis parallel to the span and at right angles to the air flow. The second series embraced all the experiments in which the direction of the air flow itself was periodically changed.
2016-12-22
investigated air-sea fluxes characterized by strong air flow separation over a very steep wave field. We first investigated propagating steep wave...mechanisms for flow separation over rigid surfaces compared with unsteady surfaces with a boundary slip velocity. We investigated passive scalar fluxes. In...turbulent flow over steep stationary roughness, the primary mechanism for momentum flux is via pressure drag resulting from flow separation. However
NASA Technical Reports Server (NTRS)
Arne, Vernon L; Nachtigall, Alfred J
1951-01-01
Effects of air-cooling turbine rotor blades on performance of a turbojet engine were calculated for a range of altitudes from sea level to 40,000 feet and a range of coolant flows up to 3 percent of compressor air flow, for two conditions of coolant bleed from the compressor. Bleeding at required coolant pressure resulted in a sea-level thrust reduction approximately twice the percentage coolant flow and in an increase in specific fuel consumption approximately equal to percentage coolant flow. For any fixed value of coolant flow ratio the percentage thrust reduction and percentage increase in specific fuel consumption decreased with altitude. Bleeding coolant at the compressor discharge resulted in an additional 1 percent loss in performance at sea level and in smaller increase in loss of performance at higher altitudes.
Eddy Viscosity for Variable Density Coflowing Streams,
EDDY CURRENTS, *JET MIXING FLOW, *VISCOSITY, *AIR FLOW, MATHEMATICAL MODELS, INCOMPRESSIBLE FLOW, AXISYMMETRIC FLOW, MATHEMATICAL PREDICTION, THRUST AUGMENTATION , EJECTORS , COMPUTER PROGRAMMING, SECONDARY FLOW, DENSITY, MODIFICATION.
Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis.
Quintero, David George; Taylor, Robert Bonnie; Miller, Matthew Braden; Merchant, Keith Roshanali; Pasieta, Scott Anthony
2017-06-01
This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.
NASA Astrophysics Data System (ADS)
Jha, Sourabh; Crittenden, Thomas; Glezer, Ari
2016-11-01
Heat transport within high aspect ratio, rectangular mm-scale channels that model segments of a high-performance, air-cooled heat sink is enhanced by the formation of unsteady small-scale vortical motions induced by autonomous, aeroelastic fluttering of cantilevered planar thin-film reeds. The flow mechanisms and scaling of the interactions between the reed and the channel flow are explored to overcome the limits of forced convection heat transport from air-side heat exchangers. High-resolution PIV measurements in a testbed model show that undulations of the reed's surface lead to formation and advection of vorticity concentrations, and to alternate shedding of spanwise CW and CCW vortices. These vortices scale with the reed motion amplitude, and ultimately result in motions of decreasing scales and enhanced dissipation that are reminiscent of a turbulent flow. The vorticity shedding lead to strong enhancement in heat transfer that increases with the Reynolds number of the base flow (e.g., the channel's thermal coefficient of performance is enhanced by 2.4-fold and 9-fold for base flow Re = 4,000 and 17,400, respectively, with corresponding decreases of 50 and 77% in the required channel flow rates). This is demonstrated in heat sinks for improving the thermal performance of low-Re thermoelectric power plant air-cooled condensers, where the global air-side pressure losses can be significantly reduced by lowering the required air volume flow rate at a given heat flux and surface temperature. AFOSR and NSF-EPRI.
Roman, Sophie; Abu-Al-Saud, Moataz O; Tokunaga, Tetsu; Wan, Jiamin; Kovscek, Anthony R; Tchelepi, Hamdi A
2017-12-01
When a wetting liquid is displaced by air in a capillary tube, a wetting film develops between the tube wall and the air that is responsible for the snap-off mechanism of the gas phase. By dissolving a dye in the wetting phase it is possible to relate a measure of the absorbance in the capillary to the thickness of liquid films. These data could be used to compare with cutting edge numerical simulations of the dynamics of snap-off for which experimental and numerical data are lacking. Drainage experiments in constricted capillary tubes were performed where a dyed wetting liquid is displaced by air for varying flow rates. We developed an optical method to measure liquid film thicknesses that range from 3 to 1000μm. The optical measures are validated by comparison with both theory and direct numerical simulations. In a constricted capillary tube we observed, both experimentally and numerically, a phenomenon of snap-off coalescence events in the vicinity of the constriction that bring new insights into our understanding and modeling of two-phase flows. In addition, the good agreement between experiments and numerical simulations gives confidence to use the numerical method for more complex geometries in the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow
NASA Technical Reports Server (NTRS)
Rothrock, A M; Waldron, C D
1937-01-01
The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.
An Advanced Trajectory-Based Operations Prototype Tool and Focus Group Evaluation
NASA Technical Reports Server (NTRS)
Guerreiro, Nelson M.; Jones, Denise R.; Barmore, Bryan E.; Butler, Ricky W.; Hagen, George E.; Maddalon, Jeffrey M.; Ahmad, Nash'at N.; Rogers, Laura J.; Underwood, Matthew C.; Johnson, Sally C.
2017-01-01
Trajectory-based operations (TBO) is a key concept in the Next Generation Air Transportation System transformation of the National Airspace System (NAS) that will increase the predictability and stability of traffic flows, support a common operational picture through the use of digital data sharing, facilitate more effective collaborative decision making between airspace users and air navigation service providers, and enable increased levels of integrated automation across the NAS. The National Aeronautics and Space Administration (NASA) has been developing trajectory-based systems to improve the efficiency of the NAS during specific phases of flight and is now also exploring Advanced 4-Dimensional Trajectory (4DT) operational concepts that will integrate these technologies and incorporate new technology where needed to create both automation and procedures to support gate-to-gate TBO. A TBO Prototype simulation toolkit has been developed that demonstrates initial functionality that may reside in an Advanced 4DT TBO concept. Pilot and controller subject matter experts (SMEs) were brought to the Air Traffic Operations Laboratory at NASA Langley Research Center for discussions on an Advanced 4DT operational concept and were provided an interactive demonstration of the TBO Prototype using four example scenarios. The SMEs provided feedback on potential operational, technological, and procedural opportunities and concerns. After viewing the interactive demonstration scenarios, the SMEs felt the operational capabilities demonstrated would be useful for performing TBO while maintaining situation awareness and low mental workload. The TBO concept demonstrated produced defined routings around weather which resulted in a more organized, consistent flow of traffic where it was clear to both the controller and pilot what route the aircraft was to follow. In general, the controller SMEs felt that traffic flow management should be responsible for generating and negotiating the operational constraints demonstrated, in cooperation with the Air Traffic Control System Command Center, while air traffic control should be responsible for the implementation of those constraints. The SMEs also indicated that digital data communications would be very beneficial for TBO operations and would result in less workload due to reduced communications, would eliminate issues due to language barriers and frequency problems, and would make receiving, loading, accepting, and executing clearances easier, less ambiguous, and more expeditious. This paper describes an Advanced 4DT operational concept, the TBO Prototype, the demonstration scenarios and methods used, and the feedback obtained from the pilot and controller SMEs in this focus group evaluation.
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716