Science.gov

Sample records for air flow sensing

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    NASA Astrophysics Data System (ADS)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  2. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    SciTech Connect

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  3. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    PubMed

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  4. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  5. OPTICAL REMOTE SENSING FOR AIR QUALITY MONITORING

    EPA Science Inventory

    The paper outlines recent developments in using optical remote sensing (ORS) instruments for air quality monitoring both for gaseous pollutants and airborne particulate matter (PM). The U.S. Environmental Protection Agency (EPA) has been using open-path Fourier transform infrared...

  6. An air quality sensing system for cool air storage

    NASA Astrophysics Data System (ADS)

    Ngoy, T. J.; Joubert, T.-H.

    2016-02-01

    Cooling and ventilation systems play an important role in human occupied spaces. However, cooling using reversible air conditioners systems pollutes the environment and consumes a significant amount of energy. With global warming that experiences our environment, the large consumption of electrical energy and the operating instructions for reversible air conditioners, there is a need to find alternatives to those cooling systems. Hence this research project aims to investigate an air storage system, a microsystem reversible ventilation system using natural atmospheric air (renewable energy) for cooling at low consumption of energy. For the variation of the temperature range of comfort due to thermal heat produces by occupants, equipment and environment, an optimal transient automatic regulation of air flow as to be design in order to maintain the temperature of comfort in occupied spaces during peak hours.

  7. Flow sensitive actuators for micro-air vehicles

    NASA Astrophysics Data System (ADS)

    Kumar, V.; Hays, M.; Fernandez, E.; Oates, W.; Alvi, F. S.

    2011-10-01

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow.

  8. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme.

    PubMed

    Ma, Rong-Hua; Wang, Dung-An; Hsueh, Tzu-Han; Lee, Chia-Yen

    2009-01-01

    This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD). In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5° error.

  9. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  10. Online sensing of palladium in flowing streams.

    PubMed

    Bu, Xiaodong; Williams, Michael; Jo, Junyong; Koide, Kazunori; Welch, Christopher J

    2017-01-05

    Rapid palladium (Pd) catalyzed deallylation of an uncoloured reagent within a flowing stream affords a dose dependent colour formation that can be used for convenient online analysis of trace levels of Pd contamination using a modified HPLC instrument. An application to the online sensing of Pd breakthrough from a flow through Pd adsorption cartridge is described. An alternative configuration of the instrumentation allows the rapid (<1 min) and accurate measurement of Pd levels within samples injected via a conventional HPLC autosampler.

  11. Microfluidic pressure sensing using trapped air compression.

    PubMed

    Srivastava, Nimisha; Burns, Mark A

    2007-05-01

    We have developed a microfluidic method for measuring the fluid pressure head experienced at any location inside a microchannel. The principal component is a microfabricated sealed chamber with a single inlet and no exit; the entrance to the single inlet is positioned at the location where pressure is to be measured. The pressure measurement is then based on monitoring the movement of a liquid-air interface as it compresses air trapped inside the microfabricated sealed chamber and calculating the pressure using the ideal gas law. The method has been used to measure the pressure of the air stream and continuous liquid flow inside microfluidic channels (d approximately 50 microm). Further, a pressure drop has also been measured using multiple microfabricated sealed chambers. For air pressure, a resolution of 700 Pa within a full-scale range of 700-100 kPa was obtained. For liquids, pressure drops as low as 70 Pa were obtained in an operating range from 70 Pa to 10 kPa. Since the method primarily uses a microfluidic sealed chamber, it does not require additional fabrication steps and may easily be incorporated in several lab-on-a-chip fluidic applications for laminar as well as turbulent flow conditions.

  12. The AirQuality SenseBox

    NASA Astrophysics Data System (ADS)

    Demuth, Dustin; Nuest, Daniel; Bröring, Arne; Pebesma, Edzer

    2013-04-01

    In the past year, a group of open hardware enthusiasts and citizen scientists had large success in the crowd-funding of an open hardware-based sensor platform for air quality monitoring, called the Air Quality Egg. Via the kickstarter platform, the group was able to collect triple the amount of money than needed to fulfill their goals. Data generated by the Air Quality Egg is pushed to the data logging platform cosm.com, which makes the devices a part of the Internet of Things. The project aims at increasing the participation of citizens in the collection of data, the development of sensors, the operation of sensor stations, and, as data on cosm is publicly available, the sharing, visualization and analysis of data. Air Quality Eggs can measure NO2 and CO concentrations, as well as relative humidity and temperature. The chosen sensors are low-cost and have limited precision and accurracy. The Air Quality Egg consists of a stationary outdoor and a stationary indoor unit. Each outdoor unit will wirelessly transmit air quality measurements to the indoor unit, which forwards the data to cosm. Most recent versions of the Air Quality Egg allow a rough calibration of the gas sensors and on-the-fly conversion from raw sensor readings (impedance) to meaningful air quality data expressed in units of parts per billion. Data generated by these low-cost platforms are not intended to replace well-calibrated official monitoring stations, but rather augment the density of the total monitoring network with citizen sensors. To improve the usability of the Air Quality Egg, we present a new and more advanced concept, called the AirQuality SenseBox. We made the outdoor platform more autonomous and location-aware by adding solarpanels and rechargeable batteries as a power source. The AirQuality SenseBox knows its own position from a GPS device attached to the platform. As a mobile sensor platform, it can for instance be attached to vehicles. A low-cost and low-power wireless chipset

  13. Flow sensing by pinniped whiskers

    PubMed Central

    Miersch, L.; Hanke, W.; Wieskotten, S.; Hanke, F. D.; Oeffner, J.; Leder, A.; Brede, M.; Witte, M.; Dehnhardt, G.

    2011-01-01

    Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair. PMID:21969689

  14. Artificial Hair Cells for Sensing Flows

    NASA Technical Reports Server (NTRS)

    Chen, Jack

    2007-01-01

    The purpose of this article is to present additional information about the flow-velocity sensors described briefly in the immediately preceding article. As noted therein, these sensors can be characterized as artificial hair cells that implement an approximation of the sensory principle of flow-sensing cilia of fish: A cilium is bent by an amount proportional to the flow to which it is exposed. A nerve cell at the base of the cilium senses the flow by sensing the bending of the cilium. In an artificial hair cell, the artificial cilium is a microscopic cantilever beam, and the bending of an artificial cilium is measured by means of a strain gauge at its base (see Figure 1). Figure 2 presents cross sections of a representative sensor of this type at two different stages of its fabrication process. The process consists of relatively- low-temperature metallization, polymer-deposition, microfabrication, and surface-micromachining subprocesses, including plastic-deformation magnetic assembly (PDMA), which is described below. These subprocesses are suitable for a variety of substrate materials, including silicon, some glasses, and some polymers. Moreover, because it incorporates a polymeric supporting structure, this sensor is more robust, relative to its silicon-based counterparts.

  15. Distributed flow sensing using optical hot -wire grid.

    PubMed

    Chen, Tong; Wang, Qingqing; Zhang, Botao; Chen, Rongzhang; Chen, Kevin P

    2012-04-09

    An optical hot-wire flow sensing grid is presented using a single piece of self-heated optical fiber to perform distributed flow measurement. The flow-induced temperature loss profiles along the fiber are interrogated by the in-fiber Rayleigh backscattering, and spatially resolved in millimeter resolution using optical frequency domain reflectometry (OFDR). The flow rate, position, and flow direction are retrieved simultaneously. Both electrical and optical on-fiber heating were demonstrated to suit different flow sensing applications.

  16. Flush Air Data Sensing System for Trans-Atmospheric Vehicles

    NASA Astrophysics Data System (ADS)

    Ellsworth, Joel

    2006-10-01

    With the emergence of multiple companies attempting to tap the space tourism market, as well as NASA's return to the moon initiative, an inexpensive but reliable means of determining wind relative vehicle attitude is becoming a necessity. The traditional means of obtaining air data (altitude, Mach number, angles of attack and sideslip) using fixed pitot probes and directional flow vanes is not viable for collecting data on high supersonic and hypersonic vehicles, due to the high temperatures and dynamic pressures. The solution is to use a matrix of flush mounted pressure ports on the vehicle nose or on an outboard wing leading edge. Since the ports will be located behind a detached shock wave at supersonic velocities, the temperatures will remain substantially lower. A Flush Air Data Sensing (FADS) system can also be used for subsonic conditions, although it must be calibrated for the effects of the vehicle geometry. The physics of air behavior and the mathematics of the solution algorithm will be presented. Several relevant examples of planned vehicles will be presented.

  17. A clean air continuous flow propulsion facility

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.

    1992-01-01

    Consideration is given to a contaminant-free, high enthalpy, continuous flow facility designed to obtain detailed code validation measurements of high speed combustion. The facility encompasses uncontaminated air temperature control to within 5 K, fuel temperature control to 2 K, a ceramic flow straightener, drying of inlet air, and steady state continuous operation. The air heating method provides potential for independent control of contaminant level by injection, mixing, and heating upstream. Particular attention is given to extension of current capability of 1250 K total air temperature, which simulates Scramjet enthalpy at Mach 5.

  18. A micro-scale hot wire anemometer based on low stress (Ni/W) multi-layers deposited on nano-crystalline diamond for air flow sensing

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Gimeno, L.; Gerbedoen, J.-C.; Viard, R.; Soltani, A.; Mortet, V.; Preobrazhensky, V.; Merlen, A.; Pernod, P.

    2015-12-01

    A linear array of microscale thermal anemometers has been designed, fabricated and characterized. The sensitive element consists of a self-compensated-stress multilayer (Ni/W) patterned to form a wire with length, width, and thickness close to 200 μm, 5 μm and 2 μm respectively. The wire is deposited and supported by prongs made of nano-crystalline diamond (NCD) of about 2 μm in thickness. Due to its high Young’s modulus, NCD allows a very high mechanical toughness without the need for thicker support for the hot wire. Also, depending on grain size, the NCD is able to present thermal conductivity smaller than 10 W mK-1, providing good thermal insulation from the substrate and less conductive end losses to the prongs. The sensor was characterized experimentally. Its electrical and thermal properties were obtained first in the absence of fluid flow. The results confirm the effectiveness of thermal insulation and the mechanical robustness of the structure. The fluidic characterizations were performed and analysed in the case of an airflow with velocities of up to 30 m s-1.

  19. Health woes tied to low air flow

    SciTech Connect

    Barber, J.

    1984-01-23

    Occupants in buildings with heating, ventilating, and air conditioning (HVAC) systems which limit fresh air flow may suffer a variety of illnesses because of the buildup of noxious contaminants. Building managers need to continue conservation efforts, but they should also meet the air standards set by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) which are in the process of being strengthened. Cases of building sickness caused by indoor air pollution have increased during the past decade, prompting ASHRAE to expedite the revision of its specifications.

  20. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  3. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  4. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in......

  5. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  6. Air flow in a collapsing cavity

    NASA Astrophysics Data System (ADS)

    Peters, Ivo R.; Gekle, Stephan; Lohse, Detlef; van der Meer, Devaraj

    2013-03-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disc on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  7. Air-water flow in subsurface systems

    NASA Astrophysics Data System (ADS)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  8. Characteristics of coal mine ventilation air flows.

    PubMed

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  9. Compressible Flow Tables for Air

    NASA Technical Reports Server (NTRS)

    Burcher, Marie A.

    1947-01-01

    This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.

  10. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  11. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  12. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  13. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  14. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  15. Air Quality Remote Sensing From Space

    NASA Astrophysics Data System (ADS)

    Edwards, David P.

    2006-08-01

    Recent advances in tropospheric remotesensing have opened the way for measuring,monitoring, and understanding processesthat lead to atmospheric pollution.As part of an integrated observing strategy,satellite measurements provide a contextfor localized observations and help toextend these observations to continentaland global scales. The challenge for futurespace-borne missions will be directlyaccessing the local scale and facilitatingthe use of remotely sensed information forimproving local- and regional-scale airquality (AQ) forecasts. Achieving this goalcould provide important societal dividendsfor public health, for policy applicationsrelated to managing national AQ, and forassessing the impact of daily human activityon the distributions of important tracegases and aerosols and their short-timescalevariability-known as `chemicalweather'-as well as on climate.

  16. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  17. RADIAL COMPUTED TOMOGRAPHY OF AIR CONTAMINANTS USING OPTICAL REMOTE SENSING

    EPA Science Inventory

    The paper describes the application of an optical remote-sensing (ORS) system to map air contaminants and locate fugitive emissions. Many ORD systems may utilize radial non-overlapping beam geometry and a computed tomography (CT) algorithm to map the concentrations in a plane. In...

  18. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter....

  19. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter....

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter....

  1. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter....

  2. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air flow meter. (a) Application. You may use an intake-air flow meter in combination with a chemical... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter....

  3. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  4. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  5. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  6. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  7. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  8. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  9. Air flow patterns in the operating theatre.

    PubMed

    Howorth, F H

    1980-04-01

    Bacteria-carrying particles and exhaled anaesthetic gases are the two contaminants found in the air flow patterns of operating rooms. Their origin, direction and speed were illustrated by a motion picture using Schlieren photography and smoke tracers. Compared with a conventionally well air conditioned operating theatre, it was shown that a downward flow of clean air reduced the number of bacteria-carrying particles at the wound site by sixty times. The Exflow method of achieving this without the restriction of any side panels or floor obstruction was described. The total body exhaust worn by the surgical team was shown to reduce the bacteria count by a further eleven times. Clinical results show that when both these systems are used together, patient infection was reduced from 9 per cent to between 0.3 per cent and 0.5 per cent, even when no pre-operative antibiotics were used. Anaesthetic gas pollution was measured and shown to be generally 1000 p.p.m. at the head of the patient, in induction, operating and recovery rooms, also in dental and labour rooms. A high volume low pressure active scavenging system was described together with its various attachments including one specially for paediatric scavenging. Results showed a reduction of nitrous oxide pollution to between zero and 3 p.p.m. The economy and cost effectiveness of both these pollution control systems was shown to be good due to the removal of health hazards from patients and theatre staff.

  10. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  11. Remote sensing of rainfall for debris-flow hazard assessment

    USGS Publications Warehouse

    Wieczorek, G.F.; Coe, J.A.; Godt, J.W.; ,

    2003-01-01

    Recent advances in remote sensing of rainfall provide more detailed temporal and spatial data on rainfall distribution. Four case studies of abundant debris flows over relatively small areas triggered during intense rainstorms are examined noting the potential for using remotely sensed rainfall data for landslide hazard analysis. Three examples with rainfall estimates from National Weather Service Doppler radar and one example with rainfall estimates from infrared imagery from a National Oceanic and Atmospheric Administration satellite are compared with ground-based measurements of rainfall and with landslide distribution. The advantages and limitations of using remote sensing of rainfall for landslide hazard analysis are discussed. ?? 2003 Millpress,.

  12. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Odoni, Amedeo R.; Bertsimas, Dimitris

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  13. Microfabrication of IPMC cilia for bio-inspired flow sensing

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Li, Wen; Tan, Xiaobo

    2012-04-01

    As the primary flow sensing organ for fishes, the lateral line system plays a critical role in fish behavior. Analogous to its biological counterpart, an artificial lateral line system, consisting of arrays of micro flow sensors, is expected to be instrumental in the navigation and control of underwater robots. In this paper we investigate the microfabrication of ionic polymer-metal composite (IPMC) cilia for the purpose of flow sensing. While existing macro- and microfabrication methods for IPMCs have predominantly focused on planar structures, we propose a device where micro IPMC beams stand upright on a substrate to effectively interact with the flow. Challenges in the casting of 3D Nafion structure and selective formation of electrodes are discussed, and potential solutions for addressing these challenges are presented together with preliminary microfabrication results.

  14. NASA Icing Remote Sensing System Comparisons From AIRS II

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Brinker, David J.; Ratvasky, Thomas P.

    2005-01-01

    NASA has an on-going activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. A multiple instrument approach is the current emphasis of this activity. Utilizing radar, radiometry, and lidar, a region of supercooled liquid is identified. If the liquid water content (LWC) is sufficiently high, then the region of supercooled liquid cloud is flagged as being an aviation hazard. The instruments utilized for the current effort are an X-band vertical staring radar, a radiometer that measures twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed with a LabVIEW program with a resultant supercooled LWC profile and aircraft hazard identification. Individual remotely sensed measurements gathered during the 2003-2004 Alliance Icing Research Study (AIRS II) were compared to aircraft in-situ measurements. Comparisons between the remote sensing system s fused icing product and in-situ measurements from the research aircraft are reviewed here. While there are areas where improvement can be made, the cases examined indicate that the fused sensor remote sensing technique appears to be a valid approach.

  15. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  16. Air flow exploration of abrasive feed tube

    NASA Astrophysics Data System (ADS)

    Zhang, Shijin; Li, Xiaohong; Gu, Yilei

    2009-12-01

    An abrasive water-jet cutting process is one in which water pressure is raised to a very high pressure and forced through a very small orifice to form a very thin high speed jet beam. This thin jet beam is then directed through a chamber and then fed into a secondary nozzle, or mixing tube. During this process, a vacuum is generated in the chamber, and garnet abrasives and air are pulled into the chamber, through an abrasive feed tube, and mixes with this high speed stream of water. Because of the restrictions introduced by the abrasive feed tube geometry, a vacuum gradient is generated along the tube. Although this phenomenon has been recognized and utilized as a way to monitor nozzle condition and abrasive flowing conditions, yet, until now, conditions inside the abrasive feed line have not been completely understood. A possible reason is that conditions inside the abrasive feed line are complicated. Not only compressible flow but also multi-phase, multi-component flow has been involved in inside of abrasive feed tube. This paper explored various aspects of the vacuum creation process in both the mixing chamber and the abrasive feed tube. Based on an experimental exploration, an analytical framework is presented to allow theoretical calculations of vacuum conditions in the abrasive feed tube.

  17. Fluid flow sensing with ionic polymer-metal composites

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Trabia, Sarah; Shen, Qi; Kim, Kwang J.

    2016-04-01

    Ionic polymer-metal composite (IPMC) actuators and sensors have been developed and modeled over the last two decades for use as soft-robotic deformable actuators and sensors. IPMC devices have been suggested for application as underwater actuators, energy harvesting devices, and medical devices such as in guided catheter insertion. Another interesting application of IPMCs in flow sensing is presented in this study. IPMC interaction with fluid flow is of interest to investigate the use of IPMC actuators as flow control devices and IPMC sensors as flow sensing devices. An organized array of IPMCs acting as interchanging sensors and actuators could potentially be designed for both flow measurement and control, providing an unparalleled tool in maritime operations. The underlying physics for this system include the IPMC ion transport and charge fundamental framework along with fluid dynamics to describe the flow around IPMCs. An experimental setup for an individual rectangular IPMC sensor with an externally controlled fluid flow has been developed to investigate this phenomenon and provide further insight into the design and application of this type of device. The results from this portion of the study include recommendations for IPMC device designs in flow control.

  18. Water and Air Measures That Make 'PureSense'

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Each day, we read about mounting global concerns regarding the ability to sustain supplies of clean water and to reduce air contamination. With water and air serving as life s most vital elements, it is important to know when these environmental necessities may be contaminated, in order to eliminate exposure immediately. The ability to respond requires an understanding of the conditions impacting safety and quality, from source to tap for water, and from outdoor to indoor environments for air. Unfortunately, the "time-to-know" is not immediate with many current technologies, which is a major problem, given the greater likelihood of risky situations in today s world. Accelerating alert and response times requires new tools, methods, and technologies. New solutions are needed to engage in more rapid detection, analysis, and response. This is the focus of a company called PureSense Environmental, Inc., which evolved out of a unique relationship with NASA. The need for real-time management and operations over the quality of water and air, and the urgency to provide new solutions, were reinforced by the events of September 11, 2001. This, and subsequent events, exposed many of the vulnerabilities facing the multiple agencies tasked with working in tandem to protect communities from harmful disaster. Much has been done since September 11 to accelerate responses to environmental contamination. Partnerships were forged across the public and private sectors to explore, test, and use new tools. Methods and technologies were adopted to move more astutely from proof-of-concept to working solutions.

  19. Control of a Quadcopter Aerial Robot Using Optic Flow Sensing

    NASA Astrophysics Data System (ADS)

    Hurd, Michael Brandon

    This thesis focuses on the motion control of a custom-built quadcopter aerial robot using optic flow sensing. Optic flow sensing is a vision-based approach that can provide a robot the ability to fly in global positioning system (GPS) denied environments, such as indoor environments. In this work, optic flow sensors are used to stabilize the motion of quadcopter robot, where an optic flow algorithm is applied to provide odometry measurements to the quadcopter's central processing unit to monitor the flight heading. The optic-flow sensor and algorithm are capable of gathering and processing the images at 250 frames/sec, and the sensor package weighs 2.5 g and has a footprint of 6 cm2 in area. The odometry value from the optic flow sensor is then used a feedback information in a simple proportional-integral-derivative (PID) controller on the quadcopter. Experimental results are presented to demonstrate the effectiveness of using optic flow for controlling the motion of the quadcopter aerial robot. The technique presented herein can be applied to different types of aerial robotic systems or unmanned aerial vehicles (UAVs), as well as unmanned ground vehicles (UGV).

  20. UAV remote sensing hazard assessment in Zhouqu debris flow disaster

    NASA Astrophysics Data System (ADS)

    Wen, Qi; He, Haixia; Wang, Xufeng; Wu, Wei; Wang, Lei; Xu, Feng; Wang, Ping; Tang, Tong; Lei, Yu

    2011-11-01

    On August 8, 2010 morning, a large debris flow occurred in Zhouqu County, Gannan Tibetan Autonomous Prefecture, Gansu Province, China, which has damaged Zhouqu County and its surrounding area seriously. An UAV and airplane were sent there the day after to acquire images of disaster area; UAV image of 0.2 meter resolution and aerial remote sensing image of 1 meter resolution were acquired. NDRCC compared pre-disaster and post-disaster remote sensing images of disaster area, preliminary analyzed and judged the damage condition and disaster trend. We partitioned the coverage and affected area of debris flow into 2457 girds in high resolution remote sensing images, hazard assessment expert group were sent to implement field investigation according to each grid. The disaster scope and extent of loss were defined again combined with field investigation data. Then we assessed the physical quantity of housing, infrastructure, land resource in detail and assessed the direct economic losses. It is for the first time that remote sensing images are integrated into the national catastrophe assessment flow of China as a major data source.

  1. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  2. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  3. Study of blood flow sensing with microwave radiometry

    NASA Technical Reports Server (NTRS)

    Porter, R. A.; Wentz, F. J., III

    1973-01-01

    A study and experimental investigation has been performed to determine the feasibility of measuring regional blood flow and volume in man by means of microwave radiometry. An indication was expected of regional blood flow from measurement of surface and subsurface temperatures with a sensitive radiometer. Following theoretical modeling of biological tissue, to determine the optimum operating frequency for adequate sensing depth, a sensitive microwave radiometer was designed for operation at 793 MHz. A temperature sensitivity of of 0.06 K rms was realized in this equipment. Measurements performed on phantom tissue models, consisting of beef fat and lean beefsteak showed that the radiometer was capable of sensing temperatures from a depth between 3.8 and 5.1 cm. Radiometric and thermodynamic temperature measurements were also performed on the hind thighs of large dogs. These showed that the radiometer could sense subsurface temperatures from a depth of, at least, 1.3 cm. Delays caused by externally-generated RF interference, coupled with the lack of reliable blood flow measurement equipment, prevented correlation of radiometer readings with reginal blood flow. For the same reasons, it was not possible to extend the radiometric observations to human subjects.

  4. Remotely Sensed, catchment scale, estimations of flow resistance

    NASA Astrophysics Data System (ADS)

    Carbonneau, P.; Dugdale, S. J.

    2009-12-01

    Despite a decade of progress in the field of fluvial remote sensing, there are few published works using this new technology to advance and explore fundamental ideas and theories in fluvial geomorphology. This paper will apply remote sensing methods in order to re-visit a classic concept in fluvial geomorphology: flow resistance. Classic flow resistance equations such as those of Strickler and Keulegan typically use channel slope, channel depth or hydraulic radius and some measure channel roughness usually equated to the 50th or 84th percentile of the bed material size distribution. In this classic literature, empirical equations such as power laws are usually calibrated and validated with a maximum of a few hundred data points. In contrast, fluvial remote sensing methods are now capable of delivering millions of high resolution data points in continuous, catchment scale, surveys. On the river Tromie in Scotland, a full dataset or river characteristics is now available. Based on low altitude imagery and NextMap topographic data, this dataset has a continuous sampling of channel width at a resolution of 3cm, of depth and median grain size at a resolution of 1m, and of slope at a resolution of 5m. This entire data set is systematic and continuous for the entire 20km length of the river. When combined with discharge at the time of data acquisition, this new dataset offers the opportunity to re-examine flow resistance equations with a 2-4 orders of magnitude increase in calibration data. This paper will therefore re-examine the classic approaches of Strickler and Keulagan along with other more recent flow resistance equations. Ultimately, accurate predictions of flow resistance from remotely sensed parameters could lead to acceptable predictions of velocity. Such a usage of classic equations to predict velocity could allow lotic habitat models to account for microhabitat velocity at catchment scales without the recourse to advanced and computationally intensive

  5. Triboelectric-based harvesting of gas flow energy and powerless sensing applications

    NASA Astrophysics Data System (ADS)

    Taghavi, Majid; Sadeghi, Ali; Mazzolai, Barbara; Beccai, Lucia; Mattoli, Virgilio

    2014-12-01

    In this work, we propose an approach that can convert gas flow energy to electric energy by using the triboelectric effect, in a structure integrating at least two conductive parts (i.e. electrodes) and one non-conductive sheet. The gas flow induces vibration of the cited parts. Therefore, the frequent attaching and releasing between a non-conductive layer with at least one electrode generates electrostatic charges on the surfaces, and then an electron flow between the two electrodes. The effect of blown gas on the output signals is studied to evaluate the gas flow sensing. We also illustrate that the introduced system has an ability to detect micro particles driven by air into the system. Finally we show how we can use this approach for a self sustainable system demonstrating smoke detection and LED lightening.

  6. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of...

  7. Resilience of bacterial quorum sensing against fluid flow

    NASA Astrophysics Data System (ADS)

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-09-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems.

  8. Resilience of bacterial quorum sensing against fluid flow

    PubMed Central

    Emge, Philippe; Moeller, Jens; Jang, Hongchul; Rusconi, Roberto; Yawata, Yutaka; Stocker, Roman; Vogel, Viola

    2016-01-01

    Quorum sensing (QS) is a population-density dependent chemical process that enables bacteria to communicate based on the production, secretion and sensing of small inducer molecules. While recombinant constructs have been widely used to decipher the molecular details of QS, how those findings translate to natural QS systems has remained an open question. Here, we compare the activation of natural and synthetic Pseudomonas aeruginosa LasI/R QS systems in bacteria exposed to quiescent conditions and controlled flows. Quantification of QS-dependent GFP expression in suspended cultures and in surface-attached microcolonies revealed that QS onset in both systems was similar under quiescent conditions but markedly differed under flow. Moderate flow (Pe > 25) was sufficient to suppress LasI/R QS recombinantly expressed in Escherichia coli, whereas only high flow (Pe > 102) suppressed QS in wild-type P. aeruginosa. We suggest that this difference stems from the differential production of extracellular matrix and that the matrix confers resilience against moderate flow to QS in wild-type organisms. These results suggest that the expression of a biofilm matrix extends the environmental conditions under which QS-based cell-cell communication is effective and that findings from synthetic QS circuits cannot be directly translated to natural systems. PMID:27650454

  9. Local and Global Consequences of Flow on Bacterial Quorum Sensing

    PubMed Central

    Kim, Minyoung Kevin; Ingremeau, Francois; Zhao, Aishan; Bassler, Bonnie L.; Stone, Howard A.

    2016-01-01

    Bacteria use a chemical communication process called quorum sensing (QS) to control collective behaviours, such as pathogenesis and biofilm formation1,2. QS relies on the production, release, and group-wide detection of signal molecules called autoinducers. To date, studies of bacterial pathogenesis in well-mixed cultures have revealed virulence factors and the regulatory circuits controlling them, including the overarching role of QS3. Although flow is ubiquitous to nearly all living systems4, much less explored is how QS influences pathogenic traits in scenarios that mimic host environments, for example, under fluid flow and in complex geometries. Previous studies have showed that sufficiently strong flow represses QS5–7. Nonetheless, it is not known how QS functions under constant or intermittent flow, how it varies within biofilms or as a function of position along a confined flow, or how surface topography (grooves, crevices, pores) influence QS-mediated communication. We explore these questions using two common pathogens Staphylococcus aureus and Vibrio cholerae. We identify conditions where flow represses QS and other conditions where QS is activated despite flow, including characterizing geometric and topographic features that influence the QS response. Our studies highlight that, under flow, genetically identical cells do not exhibit phenotypic uniformity with respect to QS in space and time, leading to complex patterns of pathogenesis and colonization. Understanding the ramifications of spatially and temporally non-uniform QS responses in realistic environments will be crucial for successful deployment of synthetic pro- and anti-QS strategies. PMID:27571752

  10. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-12-31

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  11. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    SciTech Connect

    Paul, J.D.

    1992-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper will present the results of air flow uniformity testing for six different filter housing/ductwork configurations and discuss if any of the variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases.

  12. Air quality remote sensing over alpine regions with METEOSAT SEVIRI

    NASA Astrophysics Data System (ADS)

    Emili, E.; Popp, C.; Petitta, M.; Riffler, M.; Wunderle, S.

    2009-04-01

    It is well demonstrated that small aerosol particles or particulate matter (PM10 and PM2.5) affect air quality and can have severe effects on human's health. Hence, it is of great interest for public institutions to have an efficient PM monitoring network. In the last decades this data has been provided from ground-based instruments. Moreover, due to the fast development of space-borne remote sensing instruments, we can now be able to take advantage of air pollution measurements from space, which bears the potential to fill up the gap of spatial coverage from ground-based networks. This also improves the capability to assess air pollutants transport properties together with a better implementation in forecasting data assimilation procedures. In this study we examine the possibility of using data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), on-board of the geostationary Meteosat Second Generation (MSG) platform, to provide PM concentrations values over Switzerland. SEVIRI's high temporal resolution (15 minutes) could be very useful in investigating the daily behaviour of air pollutants and therefore be a good complement to measurements from polar orbiting sensors (e.g. MODIS). Switzerland is of particular interest because of its mountainous orography that hampers pollutants dispersion. Further, major transalpine connection routes, often characterised by high traffic load, act as a significant air pollution source. The south of Switzerland is also occasionally influenced by pollutants transported from the highly industrialised Po Valley in northern Italy. We investigate the existence of a linear relation between the SEVIRI retrieved AOD (Aerosol Optical Depth) and the PM concentration obtained from the ground-based air quality network NABEL (Nationales Beobachtungsnetz fuer Luftfremdstoffe). The temporal trend of this two quantities shows a significant relationship over various locations. The correlation coefficient is in some cases higher than 0

  13. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  14. Improving estimates of air pollution exposure through ubiquitous sensing technologies

    PubMed Central

    de Nazelle, Audrey; Seto, Edmund; Donaire-Gonzalez, David; Mendez, Michelle; Matamala, Jaume; Nieuwenhuijsen, Mark J; Jerrett, Michael

    2013-01-01

    Traditional methods of exposure assessment in epidemiological studies often fail to integrate important information on activity patterns, which may lead to bias, loss of statistical power or both in health effects estimates. Novel sensing technologies integrated with mobile phones offer potential to reduce exposure measurement error. We sought to demonstrate the usability and relevance of the CalFit smartphone technology to track person-level time, geographic location, and physical activity patterns for improved air pollution exposure assessment. We deployed CalFit-equipped smartphones in a free living-population of 36 subjects in Barcelona, Spain. Information obtained on physical activity and geographic location was linked to space-time air pollution mapping. For instance, we found on average travel activities accounted for 6% of people’s time and 24% of their daily inhaled NO2. Due to the large number of mobile phone users, this technology potentially provides an unobtrusive means of collecting epidemiologic exposure data at low cost. PMID:23416743

  15. Analysis of Air Flow in the Ventilated Insulating Air Layer of the External Wall

    NASA Astrophysics Data System (ADS)

    Katunská, Jana; Bullová, Iveta; Špaková, Miroslava

    2016-12-01

    The paper deals with problems of impact of air flow in ventilated insulating air layer of the external wall on behaviour of thermal-technical parameters of the proposed external structure (according principles of STN 73 0549, which is not valid now), by comparing them in the calculation according to the valid STN standards, where air flow in the ventilated air layer is not taken into account, as well as by comparing them with behavior of thermal-technical parameters in the proposal of sandwich external wall with the contact heat insulation system without air cavity.

  16. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  17. Touch at a distance sensing: lateral-line inspired MEMS flow sensors.

    PubMed

    Prakash Kottapalli, Ajay Giri; Asadnia, Mohsen; Miao, Jianmin; Triantafyllou, Michael

    2014-11-07

    Evolution bestowed the blind cavefish with a resourcefully designed lateral-line of sensors that play an essential role in many important tasks including object detection and avoidance, energy-efficient maneuvering, rheotaxis etc. Biologists identified the two types of vital sensors on the fish bodies called the superficial neuromasts and the canal neuromasts that are responsible for flow sensing and pressure-gradient sensing, respectively. In this work, we present the design, fabrication and experimental characterization of biomimetic polymer artificial superficial neuromast micro-sensor arrays. These biomimetic micro-sensors demonstrated a high sensitivity of 0.9 mV/(m s(-1)) and 0.022 V/(m s(-1)) and threshold velocity detection limits of 0.1 m s(-1) and 0.015 m s(-1) in determining air and water flows respectively. Experimental results demonstrate that the biological canal inspired polymer encapsulation on the array of artificial superficial neuromast sensors is capable of filtering steady-state flows that could otherwise significantly mask the relevant oscillatory flow signals of high importance.

  18. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    NASA Astrophysics Data System (ADS)

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-11-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture--a gold-coated highly tilted Bragg grating--that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10-8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas.

  19. Ultrasensitive plasmonic sensing in air using optical fibre spectral combs

    PubMed Central

    Caucheteur, Christophe; Guo, Tuan; Liu, Fu; Guan, Bai-Ou; Albert, Jacques

    2016-01-01

    Surface plasmon polaritons (SPP) can be excited on metal-coated optical fibres, enabling the accurate monitoring of refractive index changes. Configurations reported so far mainly operate in liquids but not in air because of a mismatch between permittivities of guided light modes and the surrounding medium. Here we demonstrate a plasmonic optical fibre platform that overcomes this limitation. The underpinning of our work is a grating architecture—a gold-coated highly tilted Bragg grating—that excites a spectral comb of narrowband-cladding modes with effective indices near 1.0 and below. Using conventional spectral interrogation, we measure shifts of the SPP-matched resonances in response to static atmospheric pressure changes. A dynamic experiment conducted using a laser lined-up with an SPP-matched resonance demonstrates the ability to detect an acoustic wave with a resolution of 10−8 refractive index unit (RIU). We believe that this configuration opens research directions for highly sensitive plasmonic sensing in gas. PMID:27834366

  20. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  1. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    NASA Astrophysics Data System (ADS)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  2. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow.

    PubMed

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-12-15

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system.

  3. Air pollution: Remote sensing. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1993-09-01

    The bibliography contains citations concerning the application of remote sensing to air pollution detection. Remote sensing techniques discussed include radar scattering, aerial and spaceborne photography, microwave radiometry, and thermal imaging. Applications include the monitoring of stack gas emissions, vegetation emissions, forest fires, episodic air pollution, exhaust emissions, chlorohydrocarbons, urban smog, and general aspects of air pollution monitoring and identification. Remote sensing techniques applied to ocean pollution are discussed in a separate bibliography. (Contains 250 citations and includes a subject term index and title list.)

  4. Simulation of Peak Flows Using Remote Sensing Systems

    NASA Astrophysics Data System (ADS)

    Magaña Hernández, F.; Ba, K. M.; Guerra-Cobián, V.

    2013-05-01

    In this study we utilized remotely sensed data (radar and satellite precipitation products) to simulate the peak discharges of some storm events of the Escondido River. This is a poorly gauged watershed located in Northern Mexico, in the State of Coahuila and is a sub-basin of Rio Bravo, known also as Río Grande. The radar data are from NOAA (Radar KDFX located in Laughlin Air Force Base, Texas). We used two satellite product estimates PERSIANN and CMORPH. These three estimated precipitation products have been compared using the hydrologic model HEC-HMS to simulate the peak discharge. The results of the simulations show the importance of the use of this type of data in hydrologic modeling.

  5. A Study of Air Flow in an Engine Cylinder

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1939-01-01

    A 4-stroke-cycle test engine was equipped with a glass cylinder and the air movements within it were studied while the engine was being motored. Different types of air flow were produced by using shrouded intake valves in various arrangements and by altering the shape of the intake-air passage in the cylinder head. The air movements were made visible by mixing feathers with the entering air, and high-speed motion pictures were taken of them so that the air currents might be studied in detail and their velocities measured. Motion pictures were also taken of gasoline sprays injected into the cylinder on the intake stroke. The photographs showed that: a wide variety of induced air movements could be created in the cylinder; the movements always persisted throughout the compression stroke; and the only type of movement that persisted until the end of the cycle was rotation about the cylinder axis.

  6. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  7. The air-liquid flow in a microfluidic airway tree.

    PubMed

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  8. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  9. Flow sensing by buckling monitoring of electrothermally actuated double-clamped micro beams

    NASA Astrophysics Data System (ADS)

    Kessler, Y.; Krylov, S.; Liberzon, A.

    2016-08-01

    We report on a flow sensing approach based on deflection monitoring of a micro beam buckled by the compressive thermal stress due to electrothermal Joule's heating. The air stream, convectively cooling the device, affects both the critical buckling values of the electric current and the postbuckling deflections of the structure. After calibration, the flow velocity can be obtained from the deflection measurements. The quasi-static responses of 1000 μm and 2000 μm long, 10 μm wide, and 30 μm high single crystal silicon beams were consistent with the prediction of the model, which couples thermoelectric, thermofluidic, and structural domains. The deflection sensitivity of up to 1.5 μm/(m/s) and the critical current sensitivity of up to 0.43 mA/(m/s) were registered in the experiments. Our model and experimental results demonstrate the feasibility of the sensing approach and further suggest that simple, robust, and potentially downscalable beam-type devices may have use in flow velocity and wall shear stress sensors.

  10. Remote sensing of surface water for environmental flows

    NASA Astrophysics Data System (ADS)

    Tulbure, M. G.; Kingsford, R.; Lucas, R.; Keith, D.

    2013-12-01

    Environmental flows represent water management activities that release flushes of water stored in dams on regulated rivers during dry periods. These flows aim to mimic natural flow and inundation regimes to maintain ecological health and function of rivers and wetlands. Assessment and understanding of the effectiveness of environmental flows requires quantification of temporal and spatial pattern of surface water and inundation dynamic in a synoptic yet detailed way and understanding dynamics of vegetation response to flooding. Here we focused on the on the entire Murray-Darling Basin (MDB) of Australia as a case study. The MDB is a large semi-arid region with scarce water resources, high hydroclimatic variability and competing water demands, impacted by climate change, altered flow regimes and land use changes. The basin covers 14% of the Australian continent and contains the nation's largest river system, important groundwater systems, and represents the most important agricultural area in the country. We used Landsat TM and ETM+ data time series to synoptically map the dynamic of surface water extent with an internally consistent algorithm over decades. Within the basin-wide study area we carried out a detailed investigation of the largest river red gum forest in the world, a key site for environmental flow and conservation management. Here we tracked the response of vegetation community condition to flooding across space and time. Results show high interannual variability in number and size of flooded areas. Vegetation community response to flooding varied in space and time and with vegetation types, densities and location relative to areas frequently inundated by environmental water release. Knowledge of the spatial and temporal dynamic of flooding and the response of vegetation communities to flooding is important for management of floodplain wetlands and vegetation communities and for investigating effectiveness of environmental flows and flow regimes in the

  11. Design and Implementation of Automatic Air Flow Rate Control System

    NASA Astrophysics Data System (ADS)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  12. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  13. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  14. Deconvolution from wave front sensing using the frozen flow hypothesis.

    PubMed

    Jefferies, Stuart M; Hart, Michael

    2011-01-31

    Deconvolution from wave front sensing (DWFS) is an image-reconstruction technique for compensating the image degradation due to atmospheric turbulence. DWFS requires the simultaneous recording of high cadence short-exposure images and wave-front sensor (WFS) data. A deconvolution algorithm is then used to estimate both the target object and the wave front phases from the images, subject to constraints imposed by the WFS data and a model of the optical system. Here we show that by capturing the inherent temporal correlations present in the consecutive wave fronts, using the frozen flow hypothesis (FFH) during the modeling, high-quality object estimates may be recovered in much worse conditions than when the correlations are ignored.

  15. Improving AirNow Air Quality Products with NASA Near-Real-Time Remote Sensing Data (Invited)

    NASA Astrophysics Data System (ADS)

    Dye, T.; Pasch, A. N.; DeWinter, J. L.; Haderman, M.; Szykman, J.; White, J. E.; van Donkelaar, A.; Martin, R.

    2013-12-01

    The U.S. Environmental Protection Agency's (EPA) AirNow program provides the public with real-time and forecasted air quality conditions. Millions of people each day use it to protect their health. The AirNow program (http://www.airnow.gov), reports ground-level ozone (O3) and fine particulate matter (PM2.5) in a standardized index called the Air Quality Index (AQI). AirNow aggregates information from over 130 state, local, and federal air quality agencies and provides tools for over 2,000 agency staff responsible for monitoring, forecasting, and communicating local air quality. Each hour, AirNow systems generate thousands of maps and products. This presentation will describe how AirNow is benefiting from NASA's remote sensing data. We will describe two applications of NASA near-real-time remote sensing data within AirNow through case studies, focusing specifically on days when large spatial gradients in AQI and wildfire smoke impacts were observed. The first case study will show how AirNow is merging satellite-estimated PM2.5 concentrations into the AQI maps via the AirNow Satellite Data Processor (ASDP). AirNow derives these satellite estimates using NASA/NOAA satellite aerosol optical depth (AOD) retrievals and GEOS-Chem modeled ratios of surface PM2.5 concentrations to AOD. The second case study will show how NASA's Global Image Browse Services (GIBS) provides a near-real-time satellite product in AirNow-Tech for agency users to quickly identify smoke plumes and access air quality conditions in data-sparse areas during wildland fires.

  16. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  17. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  18. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  19. Frontiers of Remote Sensing of the Oceans and Troposphere from Air and Space Platforms

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Several areas of remote sensing are addressed including: future satellite systems; air-sea interaction/wind; ocean waves and spectra/S.A.R.; atmospheric measurements (particulates and water vapor); synoptic and weather forecasting; topography; bathymetry; sea ice; and impact of remote sensing on synoptic analysis/forecasting.

  20. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  1. Invited Article: Real-time sensing of flowing nanoparticles with electro-opto-mechanics

    NASA Astrophysics Data System (ADS)

    Suh, Jeewon; Han, Kewen; Peterson, Christopher W.; Bahl, Gaurav

    2017-01-01

    High-Q optical resonators allow label-free detection of individual nanoparticles through perturbation of optical signatures but have practical limitations due to reliance on random diffusion to deliver particles to the sensing region. We have recently developed microfluidic optomechanical resonators that allow detection of free-flowing particles in fluid media with near perfect detection efficiency, without requiring labeling, binding, or direct access to the optical mode. Rapid detection of single particles is achieved through a long-range optomechanical interaction in which modification of the resonator vibrational modes during particle transits influences the scattered light spectra from the resonator. Here, we present a hybrid electro-opto-mechanical technique for substantially increasing the bandwidth of these opto-mechano-fluidic sensors, enabling real-time operation. The demonstrated improvements are obtained through high bandwidth lock-in measurement of the optical modulation that is induced by actuating the vibrational mode electrostatically at a fixed frequency. The presented system demonstrates temporal resolution of better than 20 μs (50 000 events/s) with particle sensing resolution (i.e., the particle size noise floor) down to 490 nm, operating in the air without any stabilization or environmental control. Our technique significantly enhances the sensing capabilities of high-Q optical resonators into the mechanics domain and allows extremely high-throughput analysis of large nanoparticle populations.

  2. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  3. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  4. Effect of low Reynolds number flow on the quorum sensing behavior of sessile bacteria

    NASA Astrophysics Data System (ADS)

    Ingremeau, Francois; Minyoung, Kevin Kim; Bassler, Bonnie; Stone, Howard; Mechanical; Aerospace Engineering, Complex fluids Group Team; Molecular Biology Lab Team

    2014-11-01

    Sessile and planktonic bacteria can be sensitive to the bacteria cell density around them through a chemical mediated communication called quorum sensing. When the quorum sensing molecules reach a certain value, the metabolism of the bacteria changes. Quorum sensing is usually studied in static conditions or in well mixed environments. However, bacteria biofilms can form in porous media or in the circulatory system of an infected body: quorum sensing in such flowing environment at low Reynolds number is not well studied. Using microfluidic devices, we observe how the flow of a pure media affects quorum sensing of bacteria attached to the wall. The biofilm formation is quantified by measuring the optical density in brightfield microscopy and the quorum sensing gene expression is observed through the fluorescence of a green fluorescent protein, which is a reporter for one of the quorum sensing genes. We measured without flow the amount of Staphylococcus aureus biofilm when the quorum sensing gene expression starts. In contrast, when the media is flowing in the microchannel, the quorum sensing expression is delayed. This effect can be understood and modelled by considering the diffusion of the quorum sensing molecules in the biofilm and their convection by the flowing media.

  5. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  6. Thermohydraulic analysis of the cooling air flow in a rack

    NASA Astrophysics Data System (ADS)

    Natusch, Andreas; Huchler, Markus

    Manned space laboratories like the US Space Station Freedom or the European COLUMBUS APM are equipped with so-called racks for subsystem and payload accommodation. An important resource is air for cooling the unit internal heat sources, the avionics air. Each unit inside the rack must be supplied with sufficient amount of air to cool down the unit to the allowable maximum temperature. In the course of the COLUMBUS Environmental Control and Life Support Subsystem (ECLSS) project, a thermohydraulic mathematical model (THMM) of a representative COLUMBUS rack was developed to analyze and optimize the distribution of avionic air inside this rack. A sensitivity and accuracy study was performed to determine the accuracy range of the calculated avionics flow rate distribution to the units. These calculations were then compared to measurement results gained in a rack airflow distribution test, which was performed with an equipped COLUMBUS subsystem rack to show the pressure distribution inside the rack. In addition to that cold flow study, the influence of the avionics air heating due to the unit dissipations on the airflow distribution and the cooling tenmperature was investigated in a detailed warm flow analysis.

  7. Smart Sensing Strip Using Monolithically Integrated Flexible Flow Sensor for Noninvasively Monitoring Respiratory Flow

    PubMed Central

    Jiang, Peng; Zhao, Shuai; Zhu, Rong

    2015-01-01

    This paper presents a smart sensing strip for noninvasively monitoring respiratory flow in real time. The monitoring system comprises a monolithically-integrated flexible hot-film flow sensor adhered on a molded flexible silicone case, where a miniaturized conditioning circuit with a Bluetooth4.0 LE module are packaged, and a personal mobile device that wirelessly acquires respiratory data transmitted from the flow sensor, executes extraction of vital signs, and performs medical diagnosis. The system serves as a wearable device to monitor comprehensive respiratory flow while avoiding use of uncomfortable nasal cannula. The respiratory sensor is a flexible flow sensor monolithically integrating four elements of a Wheatstone bridge on single chip, including a hot-film resistor, a temperature-compensating resistor, and two balancing resistors. The monitor takes merits of small size, light weight, easy operation, and low power consumption. Experiments were conducted to verify the feasibility and effectiveness of monitoring and diagnosing respiratory diseases using the proposed system. PMID:26694401

  8. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  9. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  10. An Analytical Explanation for the X-43A Flush Air Data Sensing System Pressure Mismatch Between Flight and Theory

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2010-01-01

    Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.

  11. Challenges and opportunities for remote sensing of air quality: Insights from DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Crawford, J. H.; Pickering, K. E.; Anderson, B. E.; Beyersdorf, A. J.; Clark, R. D.; Cohen, R. C.; Diskin, G. S.; Ferrare, R. A.; Fried, A.; Holben, B. N.; Herman, J. R.; Hoff, R. M.; Hostetler, C. A.; Janz, S. J.; Szykman, J.; Thompson, A. M.; Weinheimer, A. J.; Wisthaler, A.; Yang, M. M.; Chen, G.; Kleb, M. M.

    2014-12-01

    Improving the remote sensing of air quality has been the primary focus of a series of four field studies conducted by a project called DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality). Operating as an integrated observing system, DISCOVER-AQ has employed multiple aircraft and ground instrumentation to conduct multi-perspective observations of the distribution of gaseous and particulate pollution in the lower atmosphere over contrasting regions of the U.S. that are currently in violation of National Ambient Air Quality Standards. The four study areas include Maryland (Baltimore-Washington corridor), California (southern San Joaquin Valley), Texas (Greater Houston area), and Colorado (Denver/Northern Front Range). The DISCOVER-AQ observations are actively being used to promote improvements in remote sensing in the following ways: Characterizing vertical structure in the atmosphere and its diurnal patterns to develop improved a priori information for satellite retrievals; Examining horizontal variability to assess the spatial scales needed to resolve emissions and photochemistry; Determining correlative relationships between remotely sensed and in situ observations; Assessing the value of ground-based remote sensing to provide information on impact of boundary layer dynamics and mixing on air pollution. Examples of the ongoing analysis of these datasets and their relevance to future geostationary satellite observations as well as augmentation of air quality monitoring networks with ground-based remote sensing will be discussed.

  12. Ongoing analysis of DISCOVER-AQ observations and their implications for remote sensing of air quality

    NASA Astrophysics Data System (ADS)

    Crawford, J. H.; Pickering, K. E.; Anderson, B. E.; Beyersdorf, A. J.; Chen, G.; Clark, R. D.; Cohen, R. C.; Diskin, G. S.; Ferrare, R. A.; Fried, A.; Herman, J. R.; Hoff, R. M.; Hostetler, C. A.; Janz, S. J.; Kleb, M. M.; Szykman, J.; Thompson, A. M.; Weinheimer, A. J.; Wisthaler, A.; Yang, M. M.; Holben, B. N.

    2015-12-01

    Improving the remote sensing of air quality has been the primary focus of a series of four field studies conducted by a project called DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to AirQuality). Operating as an integrated observing system, DISCOVER-AQ has employed multiple aircraft and ground instrumentation to conduct multi-perspective observations of the distribution of gaseous and particulate pollution in the lower atmosphere over contrasting regions of the U.S. that are currently in violation of National Ambient Air Quality Standards. The four study areas include Maryland (Baltimore-Washington corridor), California (southern San Joaquin Valley), Texas (Greater Houston area), and Colorado (Denver/Northern Front Range). The DISCOVER-AQ observations are actively being used to promote improvements in remote sensing in the following ways: Characterizing vertical structure in the atmosphere and its diurnal patterns to develop improved a priori information for satellite retrievals; Examining horizontal variability to assess the spatial scales needed to resolve emissions and photochemistry; Determining correlative relationships between remotely sensed and in situ observations; Assessing the value of ground-based remote sensing to provide information on impact of boundary layer dynamics and mixing on air pollution. Current progress on analysis of these datasets and their relevance to future geostationary satellite observations as well as augmentation of air quality monitoring networks with ground-based remote sensing will be discussed.

  13. Effect of air pollution on peak expiratory flow rate variability.

    PubMed

    Singh, Virendra; Khandelwal, Rakesh; Gupta, A B

    2003-02-01

    Exposure to air pollution affects pulmonary functions adversely. Effect of exposure to pollution on diurnal variation of peak flow was assessed in healthy students. Three hundred healthy age-matched nonsmoker students were studied. They were categorized into two groups on the basis of their residence: commuters and living on campus. Peak expiratory flow (PEF) recordings were made twice daily for 2 days with the Pink City Flow Meter. The measurement was then used to calculate for each subject the amplitude percentage mean, which is an index for expressing PEF variability for epidemiological purposes (Higgins BG, Britton JR, Chinns Jones TD, Jenkinson D, Burnery PG, Tattersfield AE. Distribution of peak expiratory flow variability in a population sample. Am Rev Respir Dis 1989; 140:1368-1372). Air pollution parameters were quantified by measurement of sulfur dioxide (SO2), oxides of nitrogen (NO2), carbon monoxide (CO), and respirable suspended particulate matter (RSPM) in the ambient air at the campus and on the roadside. The mean values of PEF variability (amplitude percent mean) in the students living on campus and in the commuters were 5.7 +/- 3.2 and 11 +/- 3.6, respectively (P < .05). Among the commuters, maximum number of subjects showed amplitude percentage mean PEFR at the higher end of variability distribution, as compared to the students living on campus, among whom the majority of subjects fell in the lower ranges of variability distribution. The ambient air quality parameters, namely SO2, NO2, CO, and RSPM were significantly lower on the campus. It can be concluded that long-term periodic exposure to air pollution can lead to increased PEF variability even in healthy subjects. Measurement of PEF variability may prove to be a simple test to measure effect of air pollution in healthy subjects.

  14. Discovery about temperature fluctuations in turbulent air flows

    NASA Astrophysics Data System (ADS)

    1985-02-01

    The law of spatial fluctuations of temperature in a turbulent flow in the atmosphere was studied. The turbulent movement of air in the atmosphere manifests itself in random changes in wind velocity and in the dispersal of smoke. If a miniature thermometer with sufficient sensitivity and speed of response were placed in a air flow, its readings would fluctuate chaotically against the background of average temperature. This is Characteristic of practically every point of the flow. The temperature field forms as a result of the mixing of the air. A method using the relation of the mean square of the difference in temperatures of two points to the distance between these points as the structural characteristic of this field was proposed. It was found that the dissipation of energy in a flow and the equalization of temperatures are connected with the breaking up of eddies in a turbulent flow into smaller ones. Their energy in turn is converted into heat due to the viscosity of the medium. The law that has been discovered makes for a much broader field of application of physical methods of analyzing atmospheric phenomena.

  15. Into Thin Air: How We Sense and Respond to Hypoxia.

    PubMed

    Thompson, Craig B

    2016-09-22

    This year's Lasker Basic Medical Research Award is shared by William Kaelin, Peter Ratcliffe, and Gregg Semenza for discovery of the pathway by which animal cells sense and adapt to changes in oxygen availability, which plays an essential role in adaptation to a wide variety of physiologic and pathologic conditions.

  16. Characteristics of inhomogeneous jets in confined swirling air flows

    NASA Astrophysics Data System (ADS)

    So, R. M. C.; Ahmed, S. A.

    1984-04-01

    An experimental program to study the characteristics of inhomogeneous jets in confined swirling flows to obtain detailed and accurate data for the evaluation and improvement of turbulent transport modeling for combustor flows is discussed. The work was also motivated by the need to investigate and quantify the influence of confinement and swirl on the characteristics of inhomogeneous jets. The flow facility was constructed in a simple way which allows easy interchange of different swirlers and the freedom to vary the jet Reynolds number. The velocity measurements were taken with a one color, one component DISA Model 55L laser-Doppler anemometer employing the forward scatter mode. Standard statistical methods are used to evaluate the various moments of the signals to give the flow characteristics. The present work was directed at the understanding of the velocity field. Therefore, only velocity and turbulence data of the axial and circumferential components are reported for inhomogeneous jets in confined swirling air flows.

  17. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  18. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  19. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  20. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  1. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  2. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    PubMed Central

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R.

    2013-01-01

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow. PMID:24021970

  3. Measurement of velocity of air flow in the sinus maxillaris.

    PubMed

    Müsebeck, K; Rosenberg, H

    1979-03-01

    Anemometry with the hot wire and hot film technique previously described, enables the rhinologist to record slow and rapidly changing air flow in the maxillary sinus. The advantages and disadvantages of this method are considered. Anemometry together with manometry may be designated sinumetry and used as a diagnostic procedure following sinuscopy in chronic maxillary sinus disease. The value of the function from velocity of time allows the estimation of flow-volume in the sinus. Furthermore, the method is useful to evaluate the optimal therapy to restore ventilation in the case of an obstructed ostium demonstrated before and after surgical opening in the inferior meatus.

  4. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  5. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  6. Vision and air flow combine to streamline flying honeybees.

    PubMed

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  7. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  8. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  9. An air quality modeling approach to satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Yang, E.; Christopher, S. A.

    2012-12-01

    We simulate visible and near-infrared reflectance of the GOES-R Advanced Baseline Imager (ABI) for cases of high aerosol loading with haze and smoke over the eastern United States. The simulations are performed using the Weather Research and Forecasting (WRF), Sparse Matrix Operator Kernel Emissions (SMOKE), and Community Multiscale Air Quality (CMAQ) models to reproduce meteorological conditions, background emissions, and chemical transport of air pollutants. Geostationary satellite-derived biomass burning emissions are also included as an input to CMAQ to fully represent aerosol loadings. Radiance is computed from the discrete ordinate atmospheric radiative transfer model. We show that the model simulations create a realistic set of reflectance in various aerosol scenarios. The simulated reflectance provides distinct spectral features of aerosols during the simulated satellite scene acquisition, which is compared to and verified with the Moderate Resolution Imaging Spectroradiometer (MODIS) true-color imagery. We also present a simple technique to synthesize green band reflectance, which will not be available on GOES-R ABI, using the model-simulated blue and red band reflectance. The model-based spectral signatures provide a simple way to select relevant and to deselect irrelevant spectral information from multispectral data. This study is an example of the use of air quality modeling in improving products and techniques for Earth observing missions.

  10. Characterization of air pollution in Mexico City by remote sensing

    NASA Astrophysics Data System (ADS)

    Grutter, Michel; Arellano, Josue; Bezanilla, Alejandro; Friedrich, Martina; Plaza, Eddy; Rivera, Claudia; Stremme, Wolfgang

    2014-05-01

    Megacities, like the Mexico City Metropolitan Area, are home to a large fraction of the population of the world and a consequence is that they are one of the biggest sources of contaminants and greenhouse gases emitted to the atmosphere. The pollution is visible form space through remote sensing instruments, however, satellite observations like those with NADIR viewing geometries have decreased sensitivity near the Earth's surface and the analytical algorithms are in generally optimized to detect pollution plumes in the free troposphere or above. Ground-based observations are thus necessary in order to reduce uncertainties from satellite products. As we will show, Mexico City and its surroundings is well characterized by ground-based remote sensing measurements like from two stations with solar-absorption FTIR spectrometers and a newly formed network of MAX-DOAS and LIDAR instruments. Examples will be provided of how the evolution of the mixing-layer height is characterized and the vertical column densities and profiles of gases in and outside the urban area are continuously monitored. The combination of ground-based and space-borne measurements are used to improve the current knowledge in the spatial and temporal distribution of key pollutants from this megacity.

  11. Air motion sensing hairs of arthropods detect high frequencies at near-maximal mechanical efficiency

    PubMed Central

    Bathellier, Brice; Steinmann, Thomas; Barth, Friedrich G.; Casas, Jérôme

    2012-01-01

    Using measurements based on particle image velocimetry in combination with a novel compact theoretical framework to describe hair mechanics, we found that spider and cricket air motion sensing hairs work close to the physical limit of sensitivity and energy transmission in a broad range of relatively high frequencies. In this range, the hairs closely follow the motion of the incoming flow because a minimum of energy is dissipated by forces acting in their basal articulation. This frequency band is located beyond the frequency at which the angular displacement of the hair is maximum which is between about 40 and 600 Hz, depending on hair length (Barth et al. [1] Phil. Trans. R. Soc. Lond. B 340, 445–461 (doi:10.1098/rstb.1993.0084)). Given that the magnitude of natural airborne signals is known to decrease with frequency, our results point towards the possible existence of spectral signatures in the higher frequency range that may be weak but of biological significance. PMID:22171067

  12. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  13. Sensing with High-Frequency Ultrasound in Air

    NASA Astrophysics Data System (ADS)

    Fox, John David

    This thesis explores the excitation and detection of extremely high-frequency (300 kHz to 10 MHz) acoustic waves in air and the use of these ultrasonic waves for measurement purposes. Focused and unfocused transducers and electronic systems are developed for the measurement of the distance from a sensor to an object. Such rangefinder systems have applications to robotics and automated manufacturing. The physics of the propagation and attenuation of ultrasonic waves in air is reviewed, and techniques for impedance matching into low-impedance materials are discussed. Theoretical models are developed to estimate the performance of piezoelectric air transducers using single or multiple quarter wavelength matching layers of lossy materials. Experimental results are presented for three pulse -echo rangefinder systems. Two of these systems operate at 780 kHz and have a distance measurement range of 2-40 cm, with a measurement accuracy of 0.5 mm. The third rangefinder operates at 8.4 MHz and utilizes a novel transducer design. Experimental results are presented which show that the distance measurement resolution of this system is 0.2 x 10('-6) m over air paths of 0-0.8 mm. The experimental work is extended with the development of a focused air acoustic imaging system that operates at 2 MHz. Experimental results are presented which show the transverse resolution of the imaging system to be 390 x 10('-6) m, and the vertical resolution (as determined with a phase-based measurement) to be 0.5 x 10('-6) m. Applications of this imaging system to noncontacting inspection, surface profiling and quantitative film thickness measurements are discussed. The final experimental section presents a transducer design and operational technique that is quite different from the techniques used in the three rangefinders and the focused system. A narrowband resonant transducer and instrument system are discussed and theoretical models are developed to describe the operation of the resonant

  14. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  15. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  16. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  17. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  18. 30 CFR 57.22211 - Air flow (I-A mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  19. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  20. An airborne remote sensing system for urban air quality

    NASA Technical Reports Server (NTRS)

    Duncan, L. J.; Friedman, E. J.; Keitz, E. L.; Ward, E. A.

    1974-01-01

    Several NASA sponsored remote sensors and possible airborne platforms were evaluated. Outputs of dispersion models for SO2 and CO pollution in the Washington, D.C. area were used with ground station data to establish the expected performance and limitations of the remote sensors. Aircraft/sensor support requirements are discussed. A method of optimum flight plan determination was made. Cost trade offs were performed. Conclusions about the implementation of various instrument packages as parts of a comprehensive air quality monitoring system in Washington are presented.

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust...

  2. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust...

  3. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust...

  4. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust...

  5. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.240 Dilution air and diluted exhaust flow meters. (a) Application. Use a diluted exhaust flow... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust...

  6. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  7. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  8. Experimental analysis of time-phase-shift flow sensing based on a piezoelectric peristaltic micropump

    NASA Astrophysics Data System (ADS)

    Huang, Pao-Cheng; Wang, Min-Haw; Chen, Ming-Kun; Jang, Ling-Sheng

    2016-05-01

    Flow rate sensing is a critical issue for piezoelectric-based micropump systems. This paper describes experimental analysis of flow rate sensing in a peristaltic micropump system. Sensing can be integrated with such a pump using piezoelectric actuators based on the time-phase-shift (TPS) method. To do this, an evaluation-window is added on the falling edge of the driving pulse to help detect the flow velocity without affecting the flow rate. We fabricate a prototype piezoelectric peristaltic micropump with three chambers and three piezoelectric actuators. The middle actuator works not only as an actuator for driving fluid but also as a transducer for sensing flow rate. An evaluation-window is performed to ascertain the relationship between the flow rate and the phase shift of output-signal responses from the transducer. The experimental results show that the evaluation-window response of flow rates in a piezoelectric peristaltic micropump has rates of from 5.56‒33.36 μl s-1. The results are extended to propose a practical flow rate sensor, the design of which can be realized easily in the piezoelectric peristaltic micropump system for sensorless responses that can detect flow rate without any sensors or circuits. The proposed TPS method is real-time, integrated, fast, efficient, and suitable for flow rate detection in piezoelectric peristaltic micropumps.

  9. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  10. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    NASA Astrophysics Data System (ADS)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  11. Cold air drainage flows subsidize montane valley ecosystem productivity.

    PubMed

    Novick, Kimberly A; Oishi, A Christopher; Miniat, Chelcy Ford

    2016-12-01

    In mountainous areas, cold air drainage from high to low elevations has pronounced effects on local temperature, which is a critical driver of many ecosystem processes, including carbon uptake and storage. Here, we leverage new approaches for interpreting ecosystem carbon flux observations in complex terrain to quantify the links between macro-climate condition, drainage flows, local microclimate, and ecosystem carbon cycling in a southern Appalachian valley. Data from multiple long-running climate stations and multiple eddy covariance flux towers are combined with simple models for ecosystem carbon fluxes. We show that cold air drainage into the valley suppresses local temperature by several degrees at night and for several hours before and after sunset, leading to reductions in growing season respiration on the order of ~8%. As a result, we estimate that drainage flows increase growing season and annual net carbon uptake in the valley by >10% and >15%, respectively, via effects on microclimate that are not be adequately represented in regional- and global-scale terrestrial ecosystem models. Analyses driven by chamber-based estimates of soil and plant respiration reveal cold air drainage effects on ecosystem respiration are dominated by reductions to the respiration of aboveground biomass. We further show that cold air drainage proceeds more readily when cloud cover and humidity are low, resulting in the greatest enhancements to net carbon uptake in the valley under clear, cloud-free (i.e., drought-like) conditions. This is a counterintuitive result that is neither observed nor predicted outside of the valley, where nocturnal temperature and respiration increase during dry periods. This result should motivate efforts to explore how topographic flows may buffer eco-physiological processes from macroscale climate change.

  12. RAQ–A Random Forest Approach for Predicting Air Quality in Urban Sensing Systems

    PubMed Central

    Yu, Ruiyun; Yang, Yu; Yang, Leyou; Han, Guangjie; Move, Oguti Ann

    2016-01-01

    Air quality information such as the concentration of PM2.5 is of great significance for human health and city management. It affects the way of traveling, urban planning, government policies and so on. However, in major cities there is typically only a limited number of air quality monitoring stations. In the meantime, air quality varies in the urban areas and there can be large differences, even between closely neighboring regions. In this paper, a random forest approach for predicting air quality (RAQ) is proposed for urban sensing systems. The data generated by urban sensing includes meteorology data, road information, real-time traffic status and point of interest (POI) distribution. The random forest algorithm is exploited for data training and prediction. The performance of RAQ is evaluated with real city data. Compared with three other algorithms, this approach achieves better prediction precision. Exciting results are observed from the experiments that the air quality can be inferred with amazingly high accuracy from the data which are obtained from urban sensing. PMID:26761008

  13. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  14. An air traffic flow management method based on mixed genetic algorithms

    NASA Astrophysics Data System (ADS)

    Fu, Ying

    2009-12-01

    With the air traffic congest problem becoming more and more severe, the study of air traffic flow management is more and more important. According to the character of air traffic flow management, the author analyzed the heuristic method and genetic algorithms, later put this two method together and give a new method of air traffic flow management-mixture genetic algorithms, It has global convergence, the simulation result demonstrates that the presented algorithm is effective.

  15. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    PubMed

    Tsai, Yih-Jin

    2007-04-02

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  16. Unsteady flow sensing and optimal sensor placement using machine learning

    NASA Astrophysics Data System (ADS)

    Semaan, Richard

    2016-11-01

    Machine learning is used to estimate the flow state and to determine the optimal sensor placement over a two-dimensional (2D) airfoil equipped with a Coanda actuator. The analysis is based on flow field data obtained from 2D unsteady Reynolds averaged Navier-Stokes (uRANS) simulations with different jet blowing intensities and actuation frequencies, characterizing different flow separation states. This study shows how the "random forests" algorithm is utilized beyond its typical usage in fluid mechanics estimating the flow state to determine the optimal sensor placement. The results are compared against the current de-facto standard of maximum modal amplitude location and against a brute force approach that scans all possible sensor combinations. The results show that it is possible to simultaneously infer the state of flow and to determine the optimal sensor location without the need to perform proper orthogonal decomposition. Collaborative Research Center (CRC) 880, DFG.

  17. A low-cost sensing system for cooperative air quality monitoring in urban areas.

    PubMed

    Brienza, Simone; Galli, Andrea; Anastasi, Giuseppe; Bruschi, Paolo

    2015-05-26

    Air quality in urban areas is a very important topic as it closely affects the health of citizens. Recent studies highlight that the exposure to polluted air can increase the incidence of diseases and deteriorate the quality of life. Hence, it is necessary to develop tools for real-time air quality monitoring, so as to allow appropriate and timely decisions. In this paper, we present uSense, a low-cost cooperative monitoring tool that allows knowing, in real-time, the concentrations of polluting gases in various areas of the city. Specifically, users monitor the areas of their interest by deploying low-cost and low-power sensor nodes. In addition, they can share the collected data following a social networking approach. uSense has been tested through an in-field experimentation performed in different areas of a city. The obtained results are in line with those provided by the local environmental control authority and show that uSense can be profitably used for air quality monitoring.

  18. On the dependence of structural and sensing properties of sputtered MoO3 thin films on argon gas flow

    NASA Astrophysics Data System (ADS)

    Khojier, K.; Savaloni, H.; Zolghadr, S.

    2014-11-01

    Nitrogen and carbon oxides (CO, NO and NO2), released from combustion facilities and automobiles, are known to be extremely harmful to the human body and also are the main cause of air pollution. Therefore, effective methods to monitor and suppress the carbon and nitrogen oxides have been highly demanded for atmospheric environmental measurements and controls. It is known that molybdenum oxide (MoO3) can be a good semiconductor material for use as a gas sensor in monitoring CO, NO and NO2. In this paper we report the structural characteristics and sensing properties of the sputtered MoO3 thin films as a function of argon gas flow. MoO3 thin films were deposited by DC reactive magnetron sputtering technique on glass substrates at different argon gas flows in the range of 5-20 sccm. X-ray diffraction (XRD) analysis was used for studying crystallographic structure. XRD results showed that all of our films were of polycrystalline structure and of α-MoO3 stable orthorhombic phase. Results also showed that crystallite size increases while compressive nano-strain in the structure of the films decreases with increasing the argon gas flow. Atomic force microscope and the field emission scanning electron microscope studies showed granular structures for all samples, which increased in size consistent with the XRD results, with argon gas flow, while the surface roughness of the films also increased with argon gas flow. Chemical composition study showed optimum reaction between oxygen and molybdenum atoms for films produced at 15 sccm flow of argon gas. The electrical response of samples was measured in the vacuum and the CO environments in the temperature range of 150-350 K. All samples showed Ohmic behavior and the electrical resistances of the films measured in the CO environment were lower than those measured in vacuum. This study showed that the sensing ability of MoO3 for CO improves with increasing the argon gas flow.

  19. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  20. Simulations of Direct Current Glow Discharges in Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Mahadevan, Shankar; Raja, Laxminarayan

    2008-10-01

    In recent years, there have been a significant number of computational and experimental studies investigating the application of plasma discharges as actuators for high speed flow control. The relative importance of the actuation mechanisms: volumetric heating and electrostatic forcing can be established by developing self-consistent models of the plasma and bulk supersonic flow. To simulate the plasma discharge in a supersonic air stream, a fluid model of the glow discharge is coupled with a compressible Navier-Stokes solver in a self-consistent manner. Source terms for the momentum and energy equations are calculated from the plasma model and input into the Navier-Stokes solver. In turn, the pressure, gas temperature and velocity fields from the Navier-Stokes solution are fed back into the plasma model. The results include plasma species number density contour maps in the absence and presence of Mach 3 supersonic flow, and the corresponding effect of the glow discharge on gas dynamic properties such as the gas pressure and temperature. We also examine the effect of increasing the discharge voltage on the structure of the discharge and its corresponding effect on the supersonic flow.

  1. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  2. Calibration and deployment of a fiber-optic sensing system for monitoring debris flows.

    PubMed

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations.

  3. Calibration and Deployment of a Fiber-Optic Sensing System for Monitoring Debris Flows

    PubMed Central

    Huang, Ching-Jer; Chu, Chung-Ray; Tien, Tsung-Mo; Yin, Hsiao-Yuen; Chen, Ping-Sen

    2012-01-01

    This work presents a novel fiber-optic sensing system, capable of monitoring debris flows or other natural hazards that produce ground vibrations. The proposed sensing system comprises a demodulator (BraggSCOPE, FS5500), which includes a broadband light source and a data logger, a four-port coupler and four Fiber Bragg Grating (FBG) accelerometers. Based on field tests, the performance of the proposed fiber-optic sensing system is compared with that of a conventional sensing system that includes a geophone or a microphone. Following confirmation of the reliability of the proposed sensing system, the fiber-optic sensing systems are deployed along the Ai-Yu-Zi and Chu-Shui Creeks in Nautou County of central Taiwan for monitoring debris flows. Sensitivity test of the deployed fiber-optic sensing system along the creek banks is also performed. Analysis results of the seismic data recorded by the systems reveal in detail the frequency characteristics of the artificially generated ground vibrations. Results of this study demonstrate that the proposed fiber-optic sensing system is highly promising for use in monitoring natural disasters that generate ground vibrations. PMID:22778616

  4. Hybrid plasmonic microcavity with an air-filled gap for sensing applications

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Liu, Binbin; Wu, Genzhu; Chen, Daru

    2016-12-01

    In this paper, a novel hybrid plasmonic microcavity with air-filled regions in the low-permittivity dielectric gap is proposed for sensing applications. Compared with the conventional structure with homogeneous gap, the introduced air-filled regions could improve the key modal characteristics of the hybrid mode. Simulation results reveal that this kind of hybrid microcavity maintains low loss with high quality factor ∼3062, and high field confinement with small mode volume 0.891 μm3. Moreover, in the sensing applications, this hybrid microcavity features simultaneously large refractive index sensitivity of 100 nm/RIU (refractive index unit) and relatively high quality factor of 3062. Hence, it shows that the hybrid plasmonic microcavity has potential applications in ultra-compact refractive index sensor.

  5. Phonatory air flow characteristics of adductor spasmodic dysphonia and muscle tension dysphonia.

    PubMed

    Higgins, M B; Chait, D H; Schulte, L

    1999-02-01

    The purpose of this study was to determine if phonatory air flow characteristics differed among women with adductor spasmodic dysphonia (AdSD), muscle tension dysphonia (MTD), and normal phonation. Phonatory air flow signals were gathered during [pa] syllable repetitions. Mean phonatory air flow, coefficients of variation, and the presence of large air flow perturbations (75 ml/s or more) were examined for the three groups of speakers. There was no significant difference in mean phonatory air flow across groups, and very large intersubject variation in mean phonatory air flow occurred for both the AdSD and MTD groups. Coefficients of variation were similar for the groups of women with MTD and normal phonation but were significantly larger for the group with AdSD. Air flow perturbations were common with AdSD and rare with MTD. Relatively large coefficients of variation and air flow perturbations of at least 75 ml/s did occur for some women with normal voices who were 70 years of age or older. It appears that intrasubject variability in phonatory air flow may aid in the differentiation of AdSD and MTD when used in conjunction with other elements of a thorough voice evaluation. However, the potential contribution of aging to increased intrasubject variability in phonatory air flow must be considered when interpreting findings.

  6. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  7. An evolutionary outlook of air traffic flow management techniques

    NASA Astrophysics Data System (ADS)

    Kistan, Trevor; Gardi, Alessandro; Sabatini, Roberto; Ramasamy, Subramanian; Batuwangala, Eranga

    2017-01-01

    In recent years Air Traffic Flow Management (ATFM) has become pertinent even in regions without sustained overload conditions caused by dense traffic operations. Increasing traffic volumes in the face of constrained resources has created peak congestion at specific locations and times in many areas of the world. Increased environmental awareness and economic drivers have combined to create a resurgent interest in ATFM as evidenced by a spate of recent ATFM conferences and workshops mediated by official bodies such as ICAO, IATA, CANSO the FAA and Eurocontrol. Significant ATFM acquisitions in the last 5 years include South Africa, Australia and India. Singapore, Thailand and Korea are all expected to procure ATFM systems within a year while China is expected to develop a bespoke system. Asia-Pacific nations are particularly pro-active given the traffic growth projections for the region (by 2050 half of all air traffic will be to, from or within the Asia-Pacific region). National authorities now have access to recently published international standards to guide the development of national and regional operational concepts for ATFM, geared to Communications, Navigation, Surveillance/Air Traffic Management and Avionics (CNS+A) evolutions. This paper critically reviews the field to determine which ATFM research and development efforts hold the best promise for practical technological implementations, offering clear benefits both in terms of enhanced safety and efficiency in times of growing air traffic. An evolutionary approach is adopted starting from an ontology of current ATFM techniques and proceeding to identify the technological and regulatory evolutions required in the future CNS+A context, as the aviation industry moves forward with a clearer understanding of emerging operational needs, the geo-political realities of regional collaboration and the impending needs of global harmonisation.

  8. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  9. Modelling low-Reynolds-number effects in the turbulent air flow over water waves

    NASA Astrophysics Data System (ADS)

    Meirink, Jan F.; Makin, Vladimir K.

    2000-07-01

    In studies of the turbulent air flow over water waves it is usually assumed that the effect of viscosity near the water surface is negligible, i.e. the Reynolds number, Re = u[low asterisk][lambda]/v, is considered to be high. However, for short waves or low wind speeds this assumption is not valid. Therefore, a second-order turbulence closure that takes into account viscous effects is used to simulate the air flow. The model shows reasonable agreement with laboratory measurements of wave-induced velocity profiles. Next, the dependence of the dimensionless energy flux from wind to waves, or growth rate, on Re is investigated. The growth rate of waves that are slow compared to the wind is found to increase strongly when Re decreases below 104, with a maximum around Re = 800. The numerical model predictions are in good agreement with analytical theories and laboratory observations. Results of the study are useful in field conditions for the short waves in the spectrum, which are particularly important for remote sensing applications.

  10. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  11. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Department of Agriculture, or its equivalent. (2) A suitable supply of compressed air filtered to remove... specimen. The weight of the test specimen shall be that weight prescribed for the air flow instrument...

  12. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  13. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  14. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    PubMed

    Song, Wuzhou; Psaltis, Demetri

    2010-08-02

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  15. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  16. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    NASA Astrophysics Data System (ADS)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  17. Ignition of hydrogen/air mixing layer in turbulent flows

    SciTech Connect

    Im, H.G.; Chen, J.H.; Law, C.K.

    1998-03-01

    Autoignition of a scalar hydrogen/air mixing layer in homogeneous turbulence is studied using direct numerical simulation. An initial counterflow of unmixed nitrogen-diluted hydrogen and heated air is perturbed by two-dimensional homogeneous turbulence. The temperature of the heated air stream is chosen to be 1,100 K which is substantially higher than the crossover temperature at which the rates of the chain branching and termination reactions become equal. Three different turbulence intensities are tested in order to assess the effect of the characteristic flow time on the ignition delay. For each condition, a simulation without heat release is also performed. The ignition delay determined with and without heat release is shown to be almost identical up to the point of ignition for all of the turbulence intensities tested, and the predicted ignition delays agree well within a consistent error band. It is also observed that the ignition kernel always occurs where hydrogen is focused, and the peak concentration of HO{sub 2} is aligned well with the scalar dissipation rate. The dependence of the ignition delay on turbulence intensity is found to be nonmonotonic. For weak to moderate turbulence the ignition is facilitated by turbulence via enhanced mixing, while for stronger turbulence, whose timescale is substantially smaller than the ignition delay, the ignition is retarded due to excessive scalar dissipation, and hence diffusive loss, at the ignition location. However, for the wide range of initial turbulence fields studied, the variation in ignition delay due to the corresponding variation in turbulence intensity appears to be quite small.

  18. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  19. The existence of longitudinal vortices in the flow of air above an air/water interface

    NASA Astrophysics Data System (ADS)

    Kou, J.; Saylor, J. R.

    2009-11-01

    Many researchers have observed the formation of longitudinal vortices in boundary layers developing over heated solid surfaces. In the present work, such vortices were observed in an air boundary layer developing over a heated water surface. The existence of these vortices was documented via infrared imaging of the water surface, which showed a consistent pattern of hot and cold streaks, coinciding with the vortex position. These vortices were also visualized through smoke injected into the air-side flow. The onset position Xc and lateral vortex spacing λ were investigated for a range of wind speeds (0.1 - 1 m/s) and air/water temperature differences (26 - 42 ^oC). Plots of Xc/λ versus the Reynolds number exhibit power-law behavior similar to that of prior work on boundary layers over heated solid surfaces. However, plots of Xc/λ versus the Grashof number show significant differences from the power-law behavior observed for heated solid plates. A theory explaining the similarity and difference between the present results and those for heated solid plates is discussed which is based on differences in the thermal boundary conditions.

  20. The Role of Design-of-Experiments in Managing Flow in Compact Air Vehicle Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Miller, Daniel N.; Gridley, Marvin C.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design-of-Experiments methodologies to arrive at microscale secondary flow control array designs that maintain optimal inlet performance over a wide range of the mission variables and to explore how these statistical methods provide a better understanding of the management of flow in compact air vehicle inlets. These statistical design concepts were used to investigate the robustness properties of low unit strength micro-effector arrays. Low unit strength micro-effectors are micro-vanes set at very low angles-of-incidence with very long chord lengths. They were designed to influence the near wall inlet flow over an extended streamwise distance, and their advantage lies in low total pressure loss and high effectiveness in managing engine face distortion. The term robustness is used in this paper in the same sense as it is used in the industrial problem solving community. It refers to minimizing the effects of the hard-to-control factors that influence the development of a product or process. In Robustness Engineering, the effects of the hard-to-control factors are often called noise , and the hard-to-control factors themselves are referred to as the environmental variables or sometimes as the Taguchi noise variables. Hence Robust Optimization refers to minimizing the effects of the environmental or noise variables on the development (design) of a product or process. In the management of flow in compact inlets, the environmental or noise variables can be identified with the mission variables. Therefore this paper formulates a statistical design methodology that minimizes the impact of variations in the mission variables on inlet performance and demonstrates that these statistical design concepts can lead to simpler inlet flow management systems.

  1. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-10-23

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.

  2. River flow forecasting in mountainous areas using remote sensing techniques

    NASA Astrophysics Data System (ADS)

    Ikweiri, Fathi Saleh

    The objective of this research is to develop a simple semi-distributed, physically based hydrologic model (SDPB_HM) for mountainous watershed areas. Most of the required watershed parameters in this developed model were acquired using remotely sensed imagery and digital terrain data. A modified technique to involve the use of the land cover properties in the Morton (1983) evapotranspiration model was proposed in this research. This new modified technique was proposed to overcome one of the major disadvantages of the Morton's evapotranspiration model for not having any allowances for the properties of different land cover types (Kite, 1997). The suitability of estimation the evapotranspiration using this modified technique was judged in this research by comparing its results with other average daily evapotranspiration data for an adjacent basin; Cross River Basin in the Rocky Mountain in British Columbia, Canada during year 1987. A new modified procedure for estimating maximum storage capacity in a basin that could estimate the retained rain or snowmelt water within the watershed area related to sink pixels on DTED was presented in this research. A simplified procedure for performing the geometric correction to satellite images based on the Oguro et al. (2001) technique that is used to register these images by utilizing a simulated shaded DTED overlaid with simulated streamlines network image was proposed in this work. A complete three-stage computer classifier (EBPANN) was built in this research that was aimed at minimizing the negative affect of overlapping spectral signatures. This developed computer classifier model was written in C computer program language and utilized in its procedures the error back-propagation neural network this proposed classifier technique was applied to classify a large part from Kananaskis Country area in the Rocky Mountains, Alberta, Canada. An enhanced method was employed in this work for dividing the watershed areas. This new

  3. Remote Sensing Characterization of the Urban Landscape for Improvement of Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Khan, Maudood

    2005-01-01

    The urban landscape is inherently complex and this complexity is not adequately captured in air quality models, particularly the Community Multiscale Air Quality (CMAQ) model that is used to assess whether urban areas are in attainment of EPA air quality standards, primarily for ground level ozone. This inadequacy of the CMAQ model to sufficiently respond to the heterogeneous nature of the urban landscape can impact how well the model predicts ozone pollutant levels over metropolitan areas and ultimately, whether cities exceed EPA ozone air quality standards. We are exploring the utility of high-resolution remote sensing data and urban growth projections as improved inputs to the meteorology component of the CMAQ model focusing on the Atlanta, Georgia metropolitan area as a case study. These growth projections include "business as usual" and "smart growth" scenarios out to 2030. The growth projections illustrate the effects of employing urban heat island mitigation strategies, such as increasing tree canopy and albedo across the Atlanta metro area, in moderating ground-level ozone and air temperature, compared to "business as usual" simulations in which heat island mitigation strategies are not applied. The National Land Cover Dataset at 30m resolution is being used as the land use/land cover input and aggregated to the 4km scale for the MM5 mesoscale meteorological model and the (CMAQ) modeling schemes. Use of these data has been found to better characterize low densityhburban development as compared with USGS 1 km land use/land cover data that have traditionally been used in modeling. Air quality prediction for fiture scenarios to 2030 is being facilitated by land use projections using a spatial growth model. Land use projections were developed using the 2030 Regional Transportation Plan developed by the Atlanta Regional Commission, the regional planning agency for the area. This allows the state Environmental Protection agency to evaluate how these

  4. Airborne Remote Sensing of River Flow and Morphology

    NASA Astrophysics Data System (ADS)

    Zuckerman, S.; Anderson, S. P.; McLean, J.; Redford, R.

    2014-12-01

    River morphology, surface slope and flow are some of the fundamental measurements required for surface water monitoring and hydrodynamic research. This paper describes a method of combining bathymetric lidar with space-time processing of mid-wave infrared (MWIR) imagery to simultaneously measure bathymetry, currents and surface slope from an airborne platform. In May 2014, Areté installed a Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) and a FLIR SC8000 MWIR imaging system sampling at 2 Hz in a small twin-engine aircraft. Data was collected over the lower Colorado River between Picacho Park and Parker. PILLS is a compact bathymetric lidar based on streak-tube sensor technology. It provides channel and bank topography and water surface elevation at 1 meter horizontal scales and 25 cm vertical accuracy. Surface currents are derived from the MWIR imagery by tracking surface features using a cross correlation algorithm. This approach enables the retrieval of currents along extended reaches at the forward speed of the aircraft with spatial resolutions down to 5 m with accuracy better than 10 cm/s. The fused airborne data captures current and depth variability on scales of meters over 10's of kilometers collected in just a few minutes. The airborne MWIR current retrievals are combined with the bathymetric lidar data to calculate river discharge which is then compared with real-time streamflow stations. The results highlight the potential for improving our understanding of complex river environments with simultaneous collections from multiple airborne sensors.

  5. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  6. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  7. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  8. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  9. An effort for developing a seamless transport modeling and remote sensing system for air pollutants

    NASA Astrophysics Data System (ADS)

    Nakajima, T.; Goto, D.; Dai, T.; Misawa, S.; Uchida, J.; Schutgens, N.; Hashimoto, M.; Oikawa, E.; Takenaka, H.; Tsuruta, H.; Inoue, T.; Higurashi, A.

    2015-12-01

    Wide area of the globe, like Asian region, still suffers from a large emission of air pollutants and cause serious impacts on the earth's climate and the public health of the area. Launch of an international initiative, Climate and Clean Air Coalition (CCAC), is an example of efforts to ease the difficulties by reducing Short-Lived Climate Pollutants (SLCPs), i.e., black carbon aerosol, methane and other short-lived atmospheric materials that heat the earth's system, along with long-lived greenhouse gas mitigation. Impact evaluation of the air pollutants, however, has large uncertainties. We like to introduce a recent effort of projects MEXT/SALSA and MOEJ/S-12 to develop a seamless transport model for atmospheric constituents, NICAM-Chem, that is flexible enough to cover global scale to regional scale by the NICAM nonhydrostatic dynamic core (NICAM), coupled with SPRINTARS aerosol model, CHASER atmospheric chemistry model and with their three computational grid systems, i.e. quasi homogeneous grids, stretched grids and diamond grids. A local ensemble transform Kalman filter/smoother with this modeling system was successfully applied to data from MODIS, AERONET, and CALIPSO for global assimilation/inversion and surface SPM and SO2 air pollution monitoring networks for Japanese area assimilation. My talk will be extended to discuss an effective utility of satellite remote sensing of aerosols using Cloud and Aerosol Imager (CAI) on board the GOSAT satellite and Advanced Himawari Imager (AHI) on board the new third generation geostationary satellite, Himawari-8. The CAI has a near-ultraviolet channel of 380nm with 500m spatial resolution and the AHI has high frequency measurement capability of every 10 minutes. These functions are very effective for accurate land aerosol remote sensing, so that a combination with the developed aerosol assimilation system is promising.

  10. The rise of low-cost sensing for managing air pollution in cities.

    PubMed

    Kumar, Prashant; Morawska, Lidia; Martani, Claudio; Biskos, George; Neophytou, Marina; Di Sabatino, Silvana; Bell, Margaret; Norford, Leslie; Britter, Rex

    2015-02-01

    Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, while addressing the major challenges for their effective implementation.

  11. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  12. Egomotion estimation with optic flow and air velocity sensors.

    PubMed

    Rutkowski, Adam J; Miller, Mikel M; Quinn, Roger D; Willis, Mark A

    2011-06-01

    We develop a method that allows a flyer to estimate its own motion (egomotion), the wind velocity, ground slope, and flight height using only inputs from onboard optic flow and air velocity sensors. Our artificial algorithm demonstrates how it could be possible for flying insects to determine their absolute egomotion using their available sensors, namely their eyes and wind sensitive hairs and antennae. Although many behaviors can be performed by only knowing the direction of travel, behavioral experiments indicate that odor tracking insects are able to estimate the wind direction and control their absolute egomotion (i.e., groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm, is tested in a variety of wind and ground slope conditions using a video recorded flight of a moth tracking a pheromone plume. Over all test cases that we examined, the algorithm achieved a mean absolute error in height of 7% or less. Furthermore, our algorithm is suitable for the navigation of aerial vehicles in environments where signals from the Global Positioning System are unavailable.

  13. Hot-wire sandwiched Fabry-Perot interferometer for microfluidic flow rate sensing

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-08-01

    We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a "hot-wire" sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.

  14. Flow sensing in developing Xenopus laevis is disrupted by visual cues and ototoxin exposure.

    PubMed

    Simmons, Andrea Megela; Warnecke, Michaela; Vu, Thanh Thao; Smith, Andrew T Stevens

    2015-02-01

    We explored how lateral line cues interact with visual cues to mediate flow sensing behaviors in the nocturnal developing frog, Xenopus laevis, by exposing animals to current flows under different lighting conditions and after exposure to the ototoxin gentamicin. Under dark conditions, Xenopus tadpoles move downstream at the onset of current flow, then turn, and orient toward the direction of the flow with high accuracy. Postmetamorphic froglets also exhibit positive rheotaxis but with less accuracy and longer latency. The addition of discrete light cues to an otherwise dark environment disrupts rheotaxis and positioning. Orientation is less accurate, latency to orient is longer, and animals do not move as far downstream in the presence of light. Compared with untreated tadpoles tested in the dark, tadpoles exposed to gentamicin show less accurate rheotaxis with longer latency and do not move as far downstream in response to flow. These effects are compounded by the presence of light cues. The disruptive effects of light on flow sensing in Xenopus emphasize the disturbances to natural behaviors that may be produced by anthropogenic illumination in nocturnal habitats.

  15. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    SciTech Connect

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  16. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    SciTech Connect

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  17. Two-phase air-water stratified flow measurement using ultrasonic techniques

    SciTech Connect

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-11

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  18. Satellite remote sensing of particulate matter and air quality assessment over global cities

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Christopher, Sundar A.; Wang, Jun; Gehrig, Robert; Lee, Yc; Kumar, Naresh

    Using 1 year of aerosol optical thickness (AOT) retrievals from the MODerate resolution Imaging Spectro-radiometer (MODIS) on board NASA's Terra and Aqua satellite along with ground measurements of PM 2.5 mass concentration, we assess particulate matter air quality over different locations across the global urban areas spread over 26 locations in Sydney, Delhi, Hong Kong, New York City and Switzerland. An empirical relationship between AOT and PM 2.5 mass is obtained and results show that there is an excellent correlation between the bin-averaged daily mean satellite and ground-based values with a linear correlation coefficient of 0.96. Using meteorological and other ancillary datasets, we assess the effects of wind speed, cloud cover, and mixing height (MH) on particulate matter (PM) air quality and conclude that these data are necessary to further apply satellite data for air quality research. Our study clearly demonstrates that satellite-derived AOT is a good surrogate for monitoring PM air quality over the earth. However, our analysis shows that the PM 2.5-AOT relationship strongly depends on aerosol concentrations, ambient relative humidity (RH), fractional cloud cover and height of the mixing layer. Highest correlation between MODIS AOT and PM 2.5 mass is found under clear sky conditions with less than 40-50% RH and when atmospheric MH ranges from 100 to 200 m. Future remote sensing sensors such as Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) that have the capability to provide vertical distribution of aerosols will further enhance our ability to monitor and forecast air pollution. This study is among the first to examine the relationship between satellite and ground measurements over several global locations.

  19. [Invention of an air forced ventilated micro-isolation cage and rack system--environment within the cages: ventilation, air flow].

    PubMed

    Kurosawa, T; Yoshida, K; Okamoto, M; Tajima, M

    1993-10-01

    A forced air ventilation system for small laboratory animals was developed. The system consists of an air handling unit with air supply and exhaust fans, a rack, hard cage covers with a large diameter air inlet and an outlet, and shoe box cages. Air flow from the supply duct, to the exhaust duct and within the cage were observed. Variations in air flow among cages was minimal. The optimal air exchange rate of the cages in this system was determined to be 60 times per hour based on the results obtained in the present study. At this air exchange rate, air flow at the base of the cages had a velocity of less than 0.09m/sec, which was within the range of recommended values for humans. The observed results show that the system developed is capable of sustaining a laboratory animal microenvironment well in terms of air flow, without too much energy cost.

  20. Experimental analysis of the velocity field of the air flowing through the swirl diffusers

    NASA Astrophysics Data System (ADS)

    Jaszczur, M.; Branny, M.; Karch, M.; Borowski, M.

    2016-09-01

    The article presents the results of experimental studies of flow of air through diffusers. Presented laboratory model is a simplification of the real system and was made in a geometric scale 1:10. Simplifying refer both to the geometry of the object and conditions of air flow. The aim of the study is to determine the actual velocity fields of air flowing out of the swirl diffuser. The results obtained for the diffuser various settings are presented. We have tested various flow rates of air. Stereo Particle Image Velocimetry (SPIV) method was used to measure all velocity vector components. The experimental results allow to determine the actual penetration depth of the supply air into the room. This will allow for better definition of the conditions of ventilation in buildings.

  1. An experimental setup for the study of the steady air flow in a diesel engine chamber

    NASA Astrophysics Data System (ADS)

    Fernández, Joaquín; José Vega, Emilio; Castilla, Alejandro; Marcos, Alberto; María Montanero, José; Barrio, Raúl

    2012-04-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in the course of the experiments, and processed to measure the velocity field. The pressure drop driven the air current and the mass flow rate were also measured.

  2. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  3. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    PubMed

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.

  4. Indoor air flow and pollutant removal in a room with desk-top ventilation

    SciTech Connect

    Faulkner, D.; Fisk, W.J.; Sullivan, D.P.

    1993-04-01

    In a furnished experimental facility with three workstations separated by partitions, we studied indoor air flow patterns and tobacco smoke removal efficiency of a desk-top task ventilation system. The task ventilation system permits occupant control of the temperature, flow rate and direction of air supplied through two desk-mounted supply nozzles. In the configuration evaluated, air exited the ventilated space through a ceiling-mounted return grill. To study indoor air flow patterns, we measured the age of air at multiple indoor locations using the tracer gas step-up procedure. To study the intra-room transport of tobacco smoke particles and the efficiency of panicle removal by ventilation, a cigarette was smoked mechanically in one workstation and particle concentrations were measured at multiple indoor locations including the exhaust airstream. Test variables included the direction of air supply from the nozzles, supply nozzle area, supply flow rate and temperature, percent recirculation of chamber air, and internal heatloads. With nozzles pointed toward the occupants, 100% outside air supplied at the desk-top, and air supply rates of approximately 40 L/s per workstation, the age of air at the breathing level of ventilated workstations was approximately 30% less than the age of air that would occur throughout the test space with perfectly mixed indoor air. With smaller air supply rates and/or air supplied parallel to the edges of the desk, ages of air at breathing locations were not significantly lower than the age with perfect mixing. Indoor tobacco smoke particle concentrations at specific locations were generally within 12% of the average measured indoor concentration and concentrations of particles in the exhaust airstream were not significantly different from concentration of particles at breathing locations.

  5. Cold air performance of a 12.766-centimeter-tip-diameter axial-flow cooled turbine. 2: Effect of air ejection on turbine performance

    NASA Technical Reports Server (NTRS)

    Haas, J. E.; Kofskey, M. G.

    1977-01-01

    An air cooled version of a single-stage, axial-flow turbine was investigated to determine aerodynamic performance with and without air ejection from the stator and rotor blades surfaces to simulate the effect of cooling air discharge. Air ejection rate was varied from 0 to 10 percent of turbine mass flow for both the stator and the rotor. A primary-to-air ejection temperature ratio of about 1 was maintained.

  6. Comparative study on a solving model and algorithm for a flush air data sensing system.

    PubMed

    Liu, Yanbin; Xiao, Dibo; Lu, Yuping

    2014-05-23

    With the development of high-performance aircraft, precise air data are necessary to complete challenging tasks such as flight maneuvering with large angles of attack and high speed. As a result, the flush air data sensing system (FADS) was developed to satisfy the stricter control demands. In this paper, comparative stuides on the solving model and algorithm for FADS are conducted. First, the basic principles of FADS are given to elucidate the nonlinear relations between the inputs and the outputs. Then, several different solving models and algorithms of FADS are provided to compute the air data, including the angle of attck, sideslip angle, dynamic pressure and static pressure. Afterwards, the evaluation criteria of the resulting models and algorithms are discussed to satisfy the real design demands. Futhermore, a simulation using these algorithms is performed to identify the properites of the distinct models and algorithms such as the measuring precision and real-time features. The advantages of these models and algorithms corresponding to the different flight conditions are also analyzed, furthermore, some suggestions on their engineering applications are proposed to help future research.

  7. Radar Remote Sensing of Ice and Sea State and Air-Sea Interaction in the Marginal Ice Zone

    DTIC Science & Technology

    2014-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Radar Remote Sensing of Ice and Sea State and Air-Sea...Interaction in the Marginal Ice Zone Hans C. Graber RSMAS – Department of Ocean Sciences Center for Southeastern Tropical Advanced Remote Sensing...scattering and attenuation process of ocean waves interacting with ice . A nautical X-band radar on a vessel dedicated to science would be used to follow the

  8. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  9. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  10. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  11. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  12. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Airflow resistance test; Type C supplied-air... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. The resistance to air flowing from the...

  13. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  14. Forced convective flow and heat transfer of upward cocurrent air-water slug flow in vertical plain and swirl tubes

    SciTech Connect

    Chang, Shyy Woei; Yang, Tsun Lirng

    2009-10-15

    This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air-water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (Re{sub L}) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000-10000 and 0.003-0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air-water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent Re{sub L} and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived. (author)

  15. Swash zone boundary conditions derived from optical remote sensing of swash zone flow patterns

    NASA Astrophysics Data System (ADS)

    Power, H. E.; Holman, R. A.; Baldock, T. E.

    2011-06-01

    Optical remote sensing is used to measure flow patterns in the swash zone. Timestack images are analyzed to measure the asymmetry and the relative duration of the inflow into the swash zone. This varies significantly between individual swashes, contrary to the classical analytical swash model for runup induced by bores, which predicts a similar flow pattern for all events. For swash forced by breaking bores, the gradient of the x-t locus of flow reversal varies over a wide range and flow reversal can occur simultaneously across the whole swash zone. This variation of the gradient of the locus of flow reversal in x-t space can be parameterized in terms of a single free variable in recent solutions to the nonlinear shallow water equations, which fully defines the swash boundary inflow condition. Consistent with the theory, the horizontal runup, the swash period, and the swash similarity parameter were observed to be independent of the swash inflow conditions but the flow asymmetry is not. Only a weak correlation was observed between the swash boundary condition and the Iribarren number and beach slope. Conversely, the analysis suggests that the degree of swash-swash interaction does influence the swash boundary condition and the resulting internal flow kinematics. The variation in inflow conditions is expected to influence the magnitudes of the velocity moments within the swash zone and therefore sediment transport rates.

  16. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    PubMed

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  17. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  18. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  19. Optical Remote Sensing Measurements of Air Pollution in Mexico City During MCMA- 2006

    NASA Astrophysics Data System (ADS)

    Galle, B.; Mellqvist, J.; Johansson, M.; Rivera, C.; Samuelsson, J.; Zhang, Y.

    2007-05-01

    During March 2006 the Optical Remote sensing group at Chalmers University of Technology participated in the MCMA-2006 field campaign in Mexico City, performing measurements of air pollution using a set of different optical remote sensing instruments. This poster gives an overview of the techniques applied and results obtained. The techniques applied were: Solar Occultation FTIR and UV spectroscopy from fixed locations throughout the MCMA area, yielding total columns of CO, CH2O, SO2 and NO2. Long Path FTIR measurements from site T0 located in the north part of central Mexico City. With this instrument line-averaged concentration measurements of CO and CO2 was obtained in parallel with DOAS measurements performed by other partners. MAX-DOAS measurements from site T0, yielding total column and spatial distributions of SO2 and NO2. Mobile DOAS scattered Sunlight measurements of total columns of SO2 and NO2 in and around the MCMA area. Mobile and stationary DOAS measurements in the vicinity of Tula and Popocatépetl in order to quantify emissions from industry and volcano.

  20. A quad-pol radar scattering model for use in remote sensing of lava flow morphology

    NASA Technical Reports Server (NTRS)

    Campbell, Bruce A.; Zisk, Stanley H.; Mouginis-Mark, Peter J.

    1989-01-01

    Mapping of spatial variations in surface roughness over large regions is required to understand the nature of volcanic terrains. An invertible scattering model for quad-polarization radar data is presented to assist in the remote-sensing analysis of lava flow surface morphology. This model permits separation of the polarized part of the radar echo into quasispecular, dihedral, and small-perturbation scatterin components, based on an assumed surface dielectric constant. Tests are presented for a quad-pol scene of Craters of the Moon National Monument in Idaho, where there are a number of basaltic lava flows of differing surface morphology. Comparison of calculated model components with the observed morphology of the lava flows suggests that this technique may be useful for the remote description of changes in surface roughness. The scattering mechanisms chosen to represent the polarizing behavior of the real surface display correlations which indicate that they are sensitive to the expected scales of roughness.

  1. Hydraulic Resistance and Liberation of Air in Aviation Kerosene Flow Through Diaphragms at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kitanin, É. L.; Kitanina, E. É.; Zherebtsov, V. A.; Peganova, M. M.; Stepanov, S. G.; Bondarenko, D. A.; Morisson, D.

    2016-09-01

    This paper presents the results of experimental investigations of the liberation of air in gravity flow of aviation fuel through a pipeline with diaphragms. Experiments were carried out in the pressure range 0.2-1.0 bar and temperature range -20 to +20°C. The TC-1 kerosene was preliminarily saturated with air at atmospheric pressure. The liberation of air after the diaphragms with three ratios of the flow area to the cross-sectional area of the pipeline has been investigated. The results of investigations of the two-phase flow in several experimental pipelines containing one or two diaphragms and other local hydraulic resistances have been generalized. The obtained approximation equations permit calculating the hydraulic resistance of the diaphragm in the two-phase flow and the mass gas content of air after the diaphragm in pipelines of complex geometry.

  2. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  3. Air Vehicles Technology Integration Program (AVTIP). Delivery Order 0020: Prediction of Manufacturing Tolerances for Laminar Flow

    DTIC Science & Technology

    2005-06-01

    AFRL-VA-WP-TR-2005-3060 AIR VEHICLES TECHNOLOGY INTEGRATION PROGRAM (AVTIP) Delivery Order 0020 : Prediction Of... Technology Integration Program (AVTIP) 5b. GRANT NUMBER Delivery Order 0020 : Prediction Of Manufacturing Tolerances For Laminar Flow 5c. PROGRAM

  4. Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs)

    NASA Astrophysics Data System (ADS)

    Hatfield, M. C.; Webley, P.; Saiet, E., II

    2014-12-01

    Remote Sensing of Arctic Environmental Conditions and Critical Infrastructure using Infra-Red (IR) Cameras and Unmanned Air Vehicles (UAVs) Numerous scientific and logistical applications exist in Alaska and other arctic regions requiring analysis of expansive, remote areas in the near infrared (NIR) and thermal infrared (TIR) bands. These include characterization of wild land fire plumes and volcanic ejecta, detailed mapping of lava flows, and inspection of lengthy segments of critical infrastructure, such as the Alaska pipeline and railroad system. Obtaining timely, repeatable, calibrated measurements of these extensive features and infrastructure networks requires localized, taskable assets such as UAVs. The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) provides practical solutions to these problem sets by pairing various IR sensors with a combination of fixed-wing and multi-rotor air vehicles. Fixed-wing assets, such as the Insitu ScanEagle, offer long reach and extended duration capabilities to quickly access remote locations and provide enduring surveillance of the target of interest. Rotary-wing assets, such as the Aeryon Scout or the ACUASI-built Ptarmigan hexcopter, provide a precision capability for detailed horizontal mapping or vertical stratification of atmospheric phenomena. When included with other ground capabilities, we will show how they can assist in decision support and hazard assessment as well as giving those in emergency management a new ability to increase knowledge of the event at hand while reducing the risk to all involved. Here, in this presentation, we illustrate how UAV's can provide the ideal tool to map and analyze the hazardous events and critical infrastructure under extreme environmental conditions.

  5. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  6. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    PubMed

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  7. An airborne C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, D. J.; Pazmany, A. L.; Boltniew, E.; Hevizi, L. G.; Mcintosh, R. E.

    1989-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed for remote sensing of the air-sea interface. The sensor has been designed to fly on a number of research aircraft, beginning with the NASA Ames Research Center's C-130B, on which test flights were conducted in August of 1988. The scatterometer utilizes a 10-W solid-state power amplifier and a frequency-steered microstrip array antenna which is installed beneath the fuselage of the airplane. The antenna is electrically scanned in elevation from 20 to 50 deg off nadir, and it is mechanically rotated 360 deg in azimuth. The system is fully computer controlled and is capable of accurately measuring ocean-surface normalized radar cross section (NRCS) from altitudes as high as 25,000 feet. It has been developed to study the relationship between NRCS and ocean-surface roughness influences such as wind speed and direction, wave height and slope, and air-sea temperature difference.

  8. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  9. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    NASA Astrophysics Data System (ADS)

    Weinstein, L. A.; Cacan, M. R.; So, P. M.; Wright, P. K.

    2012-04-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s-1, which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s-1 and power generation of 3 mW for a flow speed of 5 m s-1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology.

  10. COMIS -- an international multizone air-flow and contaminant transport model

    SciTech Connect

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings and Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.

  11. Measurement of the resistivity of porous materials with an alternating air-flow method.

    PubMed

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  12. Thermal performance evaluation of MSFC hot air collectors with various flow channel depth

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The test procedures used and the results obtained during the evaluation test program on the MSFC air collector with flow channel depth of 3 in., 2 in., and 1 in., under simulated conditions are presented. The MSFC hot air collector consists of a single glass cover with a nonselective coating absorber plate and uses air as the heat transfer medium. The absorber panel consists of a thin flat sheet of aluminum.

  13. Lighter-Than-Air Blimps As a Testbed For River Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Fonstad, M. A.

    2010-12-01

    River science has seen a methodological revolution during the past decade as new platforms, sensors, and processing algorithms have allowed the remote collection of river data with ever-increasing ease, accuracy, precision, and extent. Recently, hand-held, low cost lighter-than-air blimps have been suggested as an important platform for river remote sensing, particularly when high-resolution and low-cost imaging is required. Because blimps are small, inexpensive, and relatively simple to operate in the field, they allow rapid river remote sensing trials, particularly over shorter river reaches. Unlike most airborne or satellite approaches, hand-held blimps can also be used to do very rapid repeat imaging. Field experiments show that such hand-held platforms are not as stable as most airborne and satellite platforms, and they have far reduced lift, allowing only very small and simple camera systems. They are also susceptible to become entangled in near-channel trees, and almost always have the problem of inclusion of the operator somewhere in resulting image. These issues notwithstanding, the simple adjustment of blimp tether length can easily allow adjustment of ground resolution to extremely high levels, and programmable cameras can allow versatility in automatic camera shutter intervals, shutter speeds, and other image constraints. We utilize low-altitude helikite platforms to test the potential for remote sensing (a) well geometrically-controlled measurements of water surface configuration, (b) submerged and near-channel sediment sizes, (c) water depth, and (d) surface velocity. The velocity imaging techniques include the use of natural and artificial particle image velocimetry (PIV) features, with velocity extracted using either the principles of motion blur or from sequential images. In addition, we use these low-cost, mobile platforms to test the brightness and color effects of shadows cast upon the water surface, and use these results to suggest potential

  14. Larval zebrafish rapidly sense the water flow of a predator's strike.

    PubMed

    McHenry, M J; Feitl, K E; Strother, J A; Van Trump, W J

    2009-08-23

    Larval fishes have a remarkable ability to sense and evade the feeding strike of a predator fish with a rapid escape manoeuvre. Although the neuromuscular control of this behaviour is well studied, it is not clear what stimulus allows a larva to sense a predator. Here we show that this escape response is triggered by the water flow created during a predator's strike. Using a novel device, the impulse chamber, zebrafish (Danio rerio) larvae were exposed to this accelerating flow with high repeatability. Larvae responded to this stimulus with an escape response having a latency (mode=13-15 ms) that was fast enough to respond to predators. This flow was detected by the lateral line system, which includes mechanosensory hair cells within the skin. Pharmacologically ablating these cells caused the escape response to diminish, but then recover as the hair cells regenerated. These findings demonstrate that the lateral line system plays a role in predator evasion at this vulnerable stage of growth in fishes.

  15. Pressure-loss and flow coefficients inside a chordwise-finned, impingement, convection, and film air-cooled turbine vane

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.

    1974-01-01

    Total-pressure-loss coefficients, flow discharge coefficients, and friction factors were determined experimentally for the various area and geometry changes and flow passages within an air-cooled turbine vane. The results are compared with those of others obtained on similar configurations, both actual and large models, of vane passages. The supply and exit air pressures were controlled and varied. The investigation was conducted with essentially ambient-temperature air and without external flow of air over the vane.

  16. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow class; minimum requirements. 84.148 Section 84.148 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF... flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  17. Origin and Control of the Flow Structure on Unmanned Combat Air Vehicle

    DTIC Science & Technology

    2007-12-01

    Prescrtbed by ANSI Ski Z3S.18 AFOSR Final Repot 013108 ORIGIN AND CONTROL OF THE FLOW STRUCTURE ON UNMANNED COMBAT AIR VEHICLES AFOSR GRANT #FA9550-05...1991) described low-dimensional models for flows past a grooved channel and circular cylinders. By employing a Galerkin method, a governing partial

  18. Magneto-hydrodynamic detection of vortex shedding for molten salt flow sensing.

    SciTech Connect

    Kruizenga, Alan Michael; Crocker, Robert W.

    2012-09-01

    High temperature flow sensors must be developed for use with molten salts systems at temperatures in excess of 600ÀC. A novel magneto-hydrodynamic sensing approach was investigated. A prototype sensor was developed and tested in an aqueous sodium chloride solution as a surrogate for molten salt. Despite that the electrical conductivity was a factor of three less than molten salts, it was found that the electrical conductivity of an electrolyte was too low to adequately resolve the signal amidst surrounding noise. This sensor concept is expected to work well with any liquid metal application, as the generated magnetic field scales proportionately with electrical conductivity.

  19. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    SciTech Connect

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  20. An experimental study of geyser-like flows induced by a pressurized air pocket

    NASA Astrophysics Data System (ADS)

    Elayeb, I. S.; Leon, A.; Choi, Y.; Alnahit, A. O.

    2015-12-01

    Previous studies argues that the entrapment of pressurized air pockets within combined sewer systems can produce geyser flows, which is an oscillating jetting of a mixture of gas-liquid flows. To verify that pressurized air pockets can effectively produce geysers, laboratory experiments were conducted. However, past experiments were conducted in relatively small-scale apparatus (i.e. maximum φ2" vertical shaft). This study conducted a set of experiments in a larger apparatus. The experimental setup consists of an upstream head tank, a downstream head tank, a horizontal pipe (46.5ft long, φ6") and a vertical pipe (10ft long, φ6"). The initial condition for the experiments is constant flow discharge through the horizontal pipe. The experiments are initiated by injecting an air pocket with pre-determined volume and pressure at the upstream end of the horizontal pipe. The air pocket propagates through the horizontal pipe until it arrives to the vertical shaft, where it is released producing a geyser-like flow. Three flow rates in the horizontal pipe and three injected air pressures were tested. The variables measured were pressure at two locations in the horizontal pipe and two locations in the vertical pipe. High resolution videos at two regions in the vertical shaft were also recorded. To gain further insights in the physics of air-water interaction, the laboratory experiments were complemented with numerical simulations conducted using a commercial 3D CFD model, previously validated with experiments.

  1. Egomotion Estimation with Optic Flow and Air Velocity Sensors

    DTIC Science & Technology

    2012-01-22

    any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN... control their absolute ego- motion (i.e. groundspeed). The egomotion estimation method that we have developed, which we call the opto-aeronautic algorithm...that some insects can control their groundspeed in an absolute sense, particularly in insects that use pheromones to attract and find mates. In several

  2. Control of turbulent boundary layer through air blowing due to external-flow resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-07-01

    The possibility to control turbulent incompressible boundary layer using air blowing through a finely perforated wall presenting part of the streamlined flat-plate surface was examined. The control was exercised via an action on the state and characteristics of the near-wall flow exerted by controlled (through variation of external-pressure-flow velocity) blowing of air through an air intake installed on the idle side of the plate. A stable reduction of the local values of skin friction coefficient along the model, reaching 50 % at the end of the perforated area, has been demonstrated. The obtained experimental and calculated data are indicative of a possibility to model the process of turbulentboundary-layer control by air blowing due to external-flow resources.

  3. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  4. A two-dimensional flow sensor with integrated micro thermal sensing elements and a back propagation neural network.

    PubMed

    Que, Ruiyi; Zhu, Rong

    2013-12-31

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s-30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°.

  5. A Two-Dimensional Flow Sensor with Integrated Micro Thermal Sensing Elements and a Back Propagation Neural Network

    PubMed Central

    Que, Ruiyi; Zhu, Rong

    2014-01-01

    This paper demonstrates a novel flow sensor with two-dimensional 360° direction sensitivity achieved with a simple structure and a novel data fusion algorithm. Four sensing elements with roundabout wires distributed in four quadrants of a circle compose the sensor probe, and work in constant temperature difference (CTD) mode as both Joule heaters and temperature detectors. The magnitude and direction of a fluid flow are measured by detecting flow-induced temperature differences among the four elements. The probe is made of Ti/Au thin-film with a diameter of 2 mm, and is fabricated using micromachining techniques. When a flow goes through the sensor, the flow-induced temperature differences are detected by the sensing elements that also serve as the heaters of the sensor. By measuring the temperature differences among the four sensing elements symmetrically distributed in the sensing area, a full 360° direction sensitivity can be obtained. By using a BP neural network to model the relationship between the readouts of the four sensor elements and flow parameters and execute data fusion, the magnitude and direction of the flow can be deduced. Validity of the sensor design was proven through both simulations and experiments. Wind tunnel experimental results show that the measurement accuracy of the airflow speed reaches 0.72 m/s in the range of 3 m/s–30 m/s and the measurement accuracy of flow direction angle reaches 1.9° in the range of 360°. PMID:24385032

  6. Bifurcations of a creeping air-water flow in a conical container

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  7. Air Ejector Pumping Enhancement Through Pulsing Primary Flow

    DTIC Science & Technology

    2005-12-01

    CFD ) analysis show that pulsing the primary jet flow, an active metho of flow control, improved ejector performance. The physics of this improvement...without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis show that pulsing the...other shapes. A tube without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis

  8. REMOTE SENSING IN NORTHERN ARIZONA: S. P. CINDER CONE AND LAVA FLOW.

    USGS Publications Warehouse

    Schaber, Gerald C.; Kozak, R.C.; Burns, Barbara A.; Bartels, K.I.

    1984-01-01

    The objective of this poster paper is to present a site-specific atlas showing a wide variety of remote sensing data sets collected for the area of S. P. Mountain and lava flow (basaltic-andesite) in north-central Arizona. The data set to be displayed includes a number of radar images, representing three wavelength regions (1-, 3- and 25-cm), multiple incidence angles, look directions, and polarization combinations, in addition to thermal infrared scanner imagery, multispectral scanner imagery, aerial and ground photography, micro- and macro topography, and four-frequency, multipolarization radar scatterometer spectra. The expression of different surface units on the S. P. lava flow are effectively displayed on the ERIM four-channel images by the registration and combination of the four bands. Multi-color imagery of band combinations demonstrate the information content of multi-channel SAR imagery as well as the suitability of extending data manipulation methods developed for Landsat data to SAR data.

  9. Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing

    SciTech Connect

    Freifeld, B.; Finsterle, S.

    2010-12-10

    The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

  10. Direct demonstration of tubular fluid flow sensing by macula densa cells

    PubMed Central

    Sipos, Arnold; Vargas, Sarah

    2010-01-01

    Macula densa (MD) cells in the cortical thick ascending limb (cTAL) detect variations in tubular fluid composition and transmit signals to the afferent arteriole (AA) that control glomerular filtration rate [tubuloglomerular feedback (TGF)]. Increases in tubular salt at the MD that normally parallel elevations in tubular fluid flow rate are well accepted as the trigger of TGF. The present study aimed to test whether MD cells can detect variations in tubular fluid flow rate per se. Calcium imaging of the in vitro microperfused isolated JGA-glomerulus complex dissected from mice was performed using fluo-4 and fluorescence microscopy. Increasing cTAL flow from 2 to 20 nl/min (80 mM [NaCl]) rapidly produced significant elevations in cytosolic Ca2+ concentration ([Ca2+]i) in AA smooth muscle cells [evidenced by changes in fluo-4 intensity (F); F/F0 = 1.45 ± 0.11] and AA vasoconstriction. Complete removal of the cTAL around the MD plaque and application of laminar flow through a perfusion pipette directly to the MD apical surface essentially produced the same results even when low (10 mM) or zero NaCl solutions were used. Acetylated α-tubulin immunohistochemistry identified the presence of primary cilia in mouse MD cells. Under no flow conditions, bending MD cilia directly with a micropipette rapidly caused significant [Ca2+]i elevations in AA smooth muscle cells (fluo-4 F/F0: 1.60 ± 0.12) and vasoconstriction. P2 receptor blockade with suramin significantly reduced the flow-induced TGF, whereas scavenging superoxide with tempol did not. In conclusion, MD cells are equipped with a tubular flow-sensing mechanism that may contribute to MD cell function and TGF. PMID:20719981

  11. Direct demonstration of tubular fluid flow sensing by macula densa cells.

    PubMed

    Sipos, Arnold; Vargas, Sarah; Peti-Peterdi, János

    2010-11-01

    Macula densa (MD) cells in the cortical thick ascending limb (cTAL) detect variations in tubular fluid composition and transmit signals to the afferent arteriole (AA) that control glomerular filtration rate [tubuloglomerular feedback (TGF)]. Increases in tubular salt at the MD that normally parallel elevations in tubular fluid flow rate are well accepted as the trigger of TGF. The present study aimed to test whether MD cells can detect variations in tubular fluid flow rate per se. Calcium imaging of the in vitro microperfused isolated JGA-glomerulus complex dissected from mice was performed using fluo-4 and fluorescence microscopy. Increasing cTAL flow from 2 to 20 nl/min (80 mM [NaCl]) rapidly produced significant elevations in cytosolic Ca(2+) concentration ([Ca(2+)](i)) in AA smooth muscle cells [evidenced by changes in fluo-4 intensity (F); F/F(0) = 1.45 ± 0.11] and AA vasoconstriction. Complete removal of the cTAL around the MD plaque and application of laminar flow through a perfusion pipette directly to the MD apical surface essentially produced the same results even when low (10 mM) or zero NaCl solutions were used. Acetylated α-tubulin immunohistochemistry identified the presence of primary cilia in mouse MD cells. Under no flow conditions, bending MD cilia directly with a micropipette rapidly caused significant [Ca(2+)](i) elevations in AA smooth muscle cells (fluo-4 F/F(0): 1.60 ± 0.12) and vasoconstriction. P2 receptor blockade with suramin significantly reduced the flow-induced TGF, whereas scavenging superoxide with tempol did not. In conclusion, MD cells are equipped with a tubular flow-sensing mechanism that may contribute to MD cell function and TGF.

  12. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  13. The Nature of Air Flow About the Tail of an Airplane in a Spin

    NASA Technical Reports Server (NTRS)

    Scudder, N F; Miller, M P

    1932-01-01

    Air flow about the fuselage and empennage during a high-angle-of-attack spin was made visible in flight by means of titanium-tetrachloride smoke and was photographed with a motion-picture camera. The angular relation of the direction of the smoke streamer to the airplane axes was computed and compared with the angular direction of the motion in space derived from instrument measurement of the spin of the airplane for a nearly identical mass distribution. The results showed that the fin and upper part of the rudder were almost completely surrounded by dead air, which would render them inoperative; that the flow around the lower portion of the rudder and the fuselage was nonturbulent; and that air flowing past the cockpit in a high-angle-of-attack spin could not subsequently flow around control surfaces.

  14. Propagation of density disturbances in air-water flow

    NASA Technical Reports Server (NTRS)

    Nassos, G. P.

    1969-01-01

    Study investigated the behavior of density waves propagating vertically in an atmospheric pressure air-water system using a technique based on the correlation between density change and electric resistivity. This information is of interest to industries working with heat transfer systems and fluid power and control systems.

  15. Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls (Invited)

    NASA Astrophysics Data System (ADS)

    Christopher, S. A.

    2009-12-01

    Satellite Remote Sensing of Particulate Matter Air Quality: Progress, Potential and Pitfalls Abstract. Fine or respirable particles with particle aerodynamic diameters less than 2.5 µm (PM2.5) affect visibility, change cloud properties, reflect and absorb incoming solar radiation, affect human health and are ubiquitous in the atmosphere. These particles are injected into the atmosphere either as primary emissions or form into the atmosphere by gas to particle conversion. There are various sources of PM2.5 including emissions from automobiles, industrial exhaust, and agricultural fires. In 2006, the United States Environmental Protection Agency (EPA) made the standards stringent by changing the 24-hr averaged PM2.5 mass values from 65µgm-3 to 35µgm-3. This was primarily based on epidemiological studies that showed the long term health benefits of making the PM2.5 standards stringent. Typically PM2.5 mass concentration is measured from surface monitors and in the United States there are nearly 1000 such filter based daily and 600 contiguous stations managed by federal, state, local, and tribal agencies. Worldwide, there are few PM2.5 ground monitors since they are expensive to purchase, maintain and operate. Satellite remote sensing therefore provides a viable method for monitoring PM2.5 from space. Although, there are several hundred satellites currently in orbit and not all of them are suited for PM2.5 air quality assessments. Typically multi-spectral reflected solar radiation measurements from space-borne sensors are converted to aerosol optical depth (AOD) which is a measure of the column (surface to top of atmosphere) integrated extinction (absorption plus scattering). This column AOD (usually at 550 nm) is often converted to PM2.5 mass near the ground using various techniques. In this presentation we discuss the progress over the last decade on assessing PM2.5 from satellites; outline the potential and discuss the various pitfalls that one encounters. We

  16. A Review and Analysis of Remote Sensing Capability for Air Quality Measurements as a Potential Decision Support Tool Conducted by the NASA DEVELOP Program

    NASA Technical Reports Server (NTRS)

    Ross, A.; Richards, A.; Keith, K.; Frew, C.; Boseck, J.; Sutton, S.; Watts, C.; Rickman, D.

    2007-01-01

    This project focused on a comprehensive utilization of air quality model products as decision support tools (DST) needed for public health applications. A review of past and future air quality measurement methods and their uncertainty, along with the relationship of air quality to national and global public health, is vital. This project described current and future NASA satellite remote sensing and ground sensing capabilities and the potential for using these sensors to enhance the prediction, prevention, and control of public health effects that result from poor air quality. The qualitative uncertainty of current satellite remotely sensed air quality, the ground-based remotely sensed air quality, the air quality/public health model, and the decision making process is evaluated in this study. Current peer-reviewed literature suggests that remotely sensed air quality parameters correlate well with ground-based sensor data. A satellite remote-sensed and ground-sensed data complement is needed to enhance the models/tools used by policy makers for the protection of national and global public health communities

  17. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  18. Temperature distribution of air source heat pump barn with different air flow

    NASA Astrophysics Data System (ADS)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  19. An open-access modeled passenger flow matrix for the global air network in 2010.

    PubMed

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data.

  20. An Open-Access Modeled Passenger Flow Matrix for the Global Air Network in 2010

    PubMed Central

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J.; Fik, Timothy J.; Tatem, Andrew J.

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  1. On the stability of an accelerated coupled air-water flow.

    NASA Astrophysics Data System (ADS)

    Veron, Fabrice; Ierley, Glenn; Melville, W. Kendall

    2000-11-01

    We present the results of a study of the stability of the interface of an accelerated coupled air-water flow. We develop a general solution of the two-layer, laminar parallel flow driven by a pressure gradient in the air. The velocity profiles in both fluids are given by analytical functions for pressure gradients that can be represented as power series in time. The stability of the coupled flow is then examined by solving the two layer Orr-Sommerfeld equations allowing for linear displacements of the interface. In the simple case of the linearly accelerating flow, we find that the flow is always stable for an air velocity below 0.6 m s-1. Instabilities first appear in the form of surface waves with a phase speed of approximately 30 cm s-1 and a wavenumber of O(1) cm-1. In cases when the flow in the air is turbulent, and represented by a continuously differentiable analytical approximation of the log-linear mean velocity profile, we find that the flow is rapidly unstable to surface waves. Comparisons are made with the previous computations of Kawai (1979) and Wheless and Csanady (1993), and with the measurements of Veron and Melville (2000).

  2. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2015-01-01

    This paper describes an algorithm for atmospheric state estimation that is based on a coupling between inertial navigation and flush air data sensing pressure measurements. In this approach, the full navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to directly estimate atmospheric winds and density using a nonlinear weighted least-squares algorithm. The approach uses a high fidelity model of atmosphere stored in table-look-up form, along with simplified models of that are propagated along the trajectory within the algorithm to provide prior estimates and covariances to aid the air data state solution. Thus, the method is essentially a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere and winds are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the discrete-time observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content to the system. The algorithm is then applied to the design of the pressure measurement system for the Mars 2020 mission. The pressure port layout is optimized to maximize the observability of atmospheric states along the trajectory. Linear covariance analysis is performed to assess estimator performance for a given pressure measurement uncertainty. The results indicate that the new tightly-coupled estimator can produce enhanced estimates of atmospheric states when compared with existing algorithms.

  3. What information do Kármán streets offer to flow sensing?

    PubMed

    Akanyeti, Otar; Venturelli, Roberto; Visentin, Francesco; Chambers, Lily; Megill, William M; Fiorini, Paolo

    2011-09-01

    In this work, we focus on biomimetic lateral line sensing in Kármán vortex streets. After generating a Kármán street in a controlled environment, we examine the hydrodynamic images obtained with digital particle image velocimetry (DPIV). On the grounds that positioning in the flow and interaction with the vortices govern bio-inspired underwater locomotion, we inspect the fluid in the swimming robot frame of reference. We spatially subsample the flow field obtained using DPIV to emulate the local flow around the body. In particular, we look at various sensor configurations in order to reliably identify the vortex shedding frequency, wake wavelength and downstream flow speed. Moreover, we propose methods that differentiate between being in and out of the Kármán street with >70% accuracy, distinguish right from left with respect to Kármán vortex street centreline (>80%) and highlight when the sensor system enters the vortex formation zone (>75%). Finally, we present a method that estimates the relative position of a sensor array with respect to the vortex formation point within 15% error margin.

  4. Egomotion Estimation with Optic Flow and Air Velocity Sensors

    DTIC Science & Technology

    2012-09-17

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED...insects are able to estimate the wind direction and control their absolute ego- motion (i.e. groundspeed). The egomotion estimation method that we have...equation (1). w(t) = vg(t)− va(t) (1) There is evidence that some insects can control their groundspeed in an absolute sense, particularly in insects that

  5. Effect of air on water capillary flow in silica nanochannels

    NASA Astrophysics Data System (ADS)

    Zambrano, Harvey; Walther, Jens; Oyarzua, Elton

    2013-11-01

    Capillarity is a classical topic in fluid dynamics. The fundamental relationship between capillarity and surface tension is solidly established. Nevertheless, capillarity is an active research area especially as the miniaturization of devices is reaching the molecular scale. Currently, with the fabrication of microsystems integrated by nanochannels, a thorough understanding of the transport of fluids in nanoconfinement is required for a successful operation of the functional parts of such devices. In this work, Molecular Dynamics simulations are conducted to study the spontaneous imbibition of water in sub 10 nm silica channels. The capillary filling speed is computed in channels subjected to different air pressures. In order to describe the interactions between the species, an effective force field is developed, which is calibrated by reproducing the water contact angle. The results show that the capillary filling speed qualitatively follows the classical Washburn model, however, quantitatively it is lower than expected. Furthermore, it is observed that the deviations increase as air pressure is higher. We attribute the deviations to amounts of air trapped at the silica-water interface which leads to changes in the dynamics contact angle of the water meniscus.

  6. Coupled Inertial Navigation and Flush Air Data Sensing Algorithm for Atmosphere Estimation

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Kutty, Prasad; Schoenenberger, Mark

    2016-01-01

    This paper describes an algorithm for atmospheric state estimation based on a coupling between inertial navigation and flush air data-sensing pressure measurements. The navigation state is used in the atmospheric estimation algorithm along with the pressure measurements and a model of the surface pressure distribution to estimate the atmosphere using a nonlinear weighted least-squares algorithm. The approach uses a high-fidelity model of atmosphere stored in table-lookup form, along with simplified models propagated along the trajectory within the algorithm to aid the solution. Thus, the method is a reduced-order Kalman filter in which the inertial states are taken from the navigation solution and atmospheric states are estimated in the filter. The algorithm is applied to data from the Mars Science Laboratory entry, descent, and landing from August 2012. Reasonable estimates of the atmosphere are produced by the algorithm. The observability of winds along the trajectory are examined using an index based on the observability Gramian and the pressure measurement sensitivity matrix. The results indicate that bank reversals are responsible for adding information content. The algorithm is applied to the design of the pressure measurement system for the Mars 2020 mission. A linear covariance analysis is performed to assess estimator performance. The results indicate that the new estimator produces more precise estimates of atmospheric states than existing algorithms.

  7. A C-band scatterometer for remote sensing the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mclaughlin, David J.; Mcintosh, Robert E.; Pazmany, Andrew; Hevizi, Laszlo; Boltniew, Eugene

    1991-01-01

    An airborne C-band scatterometer system (C-Scat) has been developed to remotely sense ocean surface winds and improve upon the present understanding of the relationship between normalized radar cross section (NRCS) and ocean surface roughness influences such as wind speed and direction, wave height and slope, and the air-sea temperature difference. The scatterometer utilizes a unique frequency-steered microstrip array antenna that is installed beneath the fuselage of an airplane. The antenna is electronically scanned in elevation, from 20 deg to 50 deg off-nadir, and mechanically spins in azimuth. The system is capable of measuring ocean surface NRCS from altitudes as high as 25,000 ft. The transmitter and receiver operate from 4.98 to 5.7 GHz. System parameters such as transmitter pulse width, pulse repetition frequency, output power level, and receiver bandwidth are programmable. Received signals can be averaged and displayed in real time and are stored on a Winchester disk drive for post-flight analysis. Preliminary flight data that demonstrates the instrument's performance is presented.

  8. Application of a 2D air flow model to soil vapor extraction and bioventing case studies

    SciTech Connect

    Mohr, D.H.; Merz, P.H.

    1995-05-01

    Soil vapor extraction (SVE) is frequently the technology of choice to clean up hydrocarbon contamination in unsaturated soil. A two-dimensional air flow model provides a practical tool to evaluate pilot test data and estimate remediation rates for soil vapor extraction systems. The model predictions of soil vacuum versus distance are statistically compared to pilot test data for 65 SVE wells at 44 sites. For 17 of 21 sites where there was asphalt paving, the best agreement was obtained for boundary conditions with no barrier to air flow at the surface. The model predictions of air flow rates and stream lines around the well allow an estimate of the gasoline removal rates by both evaporation and bioremediation. The model can be used to quickly estimate the effective radius of influence, defined here as the maximum distance from the well where there is enough air flow to remove the contaminant present within the allowable time. The effective radius of influence is smaller than a radius of influence defined by soil vacuum only. For a case study, in situ bioremediation rates were estimated using the air flow model and compared to independent estimates based on changes in soil temperature. These estimate bioremediation rates for heavy fuel oil ranged from 2.5 to 11 mg oil degraded per kg soil per day, in agreement with values in the literature.

  9. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    local sources, which in the troposphere, where there are aerosols transported over long distances by the phenomena of atmospheric circulation. The purpose of the LOCAL AIR project is the development of a methodology for using synergistic data at different resolutions (ground measurements, remote sensing from ground and satellite) as an effective tool for the characterization of tropospheric aerosols on a local scale. The backbone of the project is the long-term ground-based measurements collected at CIAO (CNR-IMAA Atmospheric Observatory) plus the CALIPSO observations.. The location of the plethora of instruments and measurements of atmospheric interest available at CNR-IMAA makes it a sample site not only for the realization of the methodology, but also allows a feasibility study of this method in the absence of some by analysis of the measures considered in the scaling down of the algorithm developed. It will be evaluated the applicability and reliability of the algorithm implemented for the characterization of the aerosol content to the ground in other places of special interest. Acknowledgments: LOCAL AIR is supported by PO FSE Basilicata 2007-2013 Azione n. 45/AP/05/2013/REG - CUP: G53G13000300009.

  10. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    PubMed

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  11. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    NASA Astrophysics Data System (ADS)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  12. Novel insights into the dynamics of cold-air drainage and pooling on a gentle slope from fiber-optic distributed temperature sensing

    NASA Astrophysics Data System (ADS)

    Pfister, Lena; Sigmund, Armin; Olesch, Johannes; Thomas, Christoph

    2016-04-01

    Urban climate can benefit from cold-air drainage as it may help alleviate the urban heat island. In contrast, stable cold-air pools can damage plants especially in rural areas. In this study, we examined the dynamics of cold-air drainage and pooling in a peri-urban setting over a period of 47 days along a 170 m long slope with an inclination of 1.3° located in the Ecological Botany Gardens of the University of Bayreuth. Air and soil temperatures were measured using distributed temperature sensing of an 2-dimensional fiber-optic array at six heights (-2 cm to 100 cm) along the slope sampling every 1 min and every 1 m. Ancillary measurements of winds, turbulence intensity and momentum exchange were collected using two ultrasonic anemometers installed at 0.1 m and 17 m height at the center of the transect. We hypothesized that cold-air drainage, here defined as a gravity-driven density flow near the bottom originating from local radiative cooling of the surface, is decoupled from non-local flows and can thus be predicted from the local topography. The nocturnal data were stratified by classes of longwave radiation balance, wind speed, and wind direction at 0.1 m agl. The four most abundant classes were tested further for decoupling of wind velocities and directions between 17 and 0.1 m. We further computed the vertical and horizontal temperature perturbations of the fiber-optic array as evaluated for these cases, as well as subject the temperature data to a multiresolution decomposition to investigate the spatial two-point correlation coefficient along the transect. Finally, the cold pool intensity was calculated. The results revealed none of the four most abundant classes followed classical textbook knowledge of locally produced cold-air drainage. Instead, we found that the near-surface flow was strongly forced by two possibly competing non-local flow modes. The first mode caused weak (< 0.4 ms-1) near-surface winds directed perpendicular to the local slope and

  13. Flow characteristics of an inclined air-curtain range hood in a draft

    PubMed Central

    CHEN, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m3/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s. PMID:25810445

  14. Applications of the three-dimensional air quality system to western U.S. air quality: IDEA, smog blog, smog stories, airquest, and the remote sensing information gateway.

    PubMed

    Hoff, Raymond; Zhang, Hai; Jordan, Nikisa; Prados, Ana; Engel-Cox, Jill; Huff, Amy; Weber, Stephanie; Zell, Erica; Kondragunta, Shobha; Szykman, James; Johns, Brad; Dimmick, Fred; Wimmers, Anthony; Al-Saadi, Jay; Kittaka, Chieko

    2009-08-01

    A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near real time and archive the results for retrospective analyses. The main components of the system (Infusing satellite Data into Environmental Applications [IDEA], the U.S. Air Quality Weblog [Smog Blog], Smog Stories, U.S. Environmental Protection Agency's AIRQuest decision support system, and the Remote Sensing Information Gateway [RSIG]) are described, and the relationship of how data move from one system to another is outlined. To provide examples of how the results can be used to analyze specific pollution episodes, three events (two fires and one wintertime low planetary boundary layer haze) are discussed. Not all tools are useful at all times, and the limitations, including the sparsity of some data, the interference caused by overlying clouds, etc., are shown. Nevertheless, multiple sources of data help a state, local, or regional air quality analyst construct a more thorough picture of a daily air pollution situation than what one would obtain with only surface-based sensors.

  15. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  16. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    NASA Astrophysics Data System (ADS)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  17. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    SciTech Connect

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  18. Experimental study on heat transfer performance of aluminium foam parallel-flow condenser in air conditioner

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Wan, Z. M.; Chang, H. W.; Wang, Y. D.

    2017-01-01

    Open cell aluminium foam was used in parallel-flow condenser in air conditioner, and two condensers with different pore density were fabricated. The experimental study was conducted on the heat transfer performance and temperature distribution. The experimental results show that both of the heat transfer load and air pressure drop increase with the increase of pore density, air velocity is 2.5m/s, the heat transfer capacities of the condenser with 10PPI and 8PPI are 4.786kw and 3.344kW respectively. Along the flow direction of refrigerant, the outlet temperatures of refrigerant drop with the rise of air velocity when the inlet temperature is constant. The outlet temperature of the refrigerant decreases with the increase of pore density.

  19. Fluid flow and heat transfer in an air-to-water double-pipe heat exchanger

    NASA Astrophysics Data System (ADS)

    Sheikholeslami, M.; Gorji-Bandpy, M.; Ganji, D. D.

    2015-11-01

    This paper reports experimental and numerical investigations on flow and heat transfer in an air-to-water double-pipe heat exchanger. The working fluids are air and water. To achieve fully developed conditions, the heat exchanger was built with additional lengths before and after the test section. The inner and outer tube was made from copper and Plexiglas, respectively. The experiments are conducted in the range of air flow Reynolds number for various cases with different water flow rate and water inlet temperature. Correlations for the Nusselt number and friction factor are presented according to experimental data. Also the commercial code ANSYS 15 is used for numerical simulation. Results show that the Nusselt number is an increasing function of Reynolds number and Prandtl number which are calculated at bulk temperature.

  20. Experimental study on corrugated cross-flow air-cooled plate heat exchangers

    SciTech Connect

    Kim, Minsung; Baik, Young-Jin; Park, Seong-Ryong; Ra, Ho-Sang; Lim, Hyug

    2010-11-15

    Experimental study on cross-flow air-cooled plate heat exchangers (PHEs) was performed. The two prototype PHEs were manufactured in a stack of single-wave plates and double-wave plates in parallel. Cooling air flows through the PHEs in a crosswise direction against internal cooling water. The heat exchanger aims to substitute open-loop cooling towers with closed-loop water circulation, which guarantees cleanliness and compactness. In this study, the prototype PHEs were tested in a laboratory scale experiments. From the tests, double-wave PHE shows approximately 50% enhanced heat transfer performance compared to single-wave PHE. However, double-wave PHE costs 30% additional pressure drop. For commercialization, a wide channel design for air flow would be essential for reliable performance. (author)

  1. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  2. Computed tomography and optical remote sensing: Development for the study of indoor air pollutant transport and dispersion

    SciTech Connect

    Drescher, Anushka Christina

    1995-06-01

    This thesis investigates the mixing and dispersion of indoor air pollutants under a variety of conditions using standard experimental methods. It also extensively tests and improves a novel technique for measuring contaminant concentrations that has the potential for more rapid, non-intrusive measurements with higher spatial resolution than previously possible. Experiments conducted in a sealed room support the hypothesis that the mixing time of an instantaneously released tracer gas is inversely proportional to the cube root of the mechanical power transferred to the room air. One table-top and several room-scale experiments are performed to test the concept of employing optical remote sensing (ORS) and computed tomography (CT) to measure steady-state gas concentrations in a horizontal plane. Various remote sensing instruments, scanning geometries and reconstruction algorithms are employed. Reconstructed concentration distributions based on existing iterative CT techniques contain a high degree of unrealistic spatial variability and do not agree well with simultaneously gathered point-sample data.

  3. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing

    PubMed Central

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S.; Triantafyllou, Michael

    2016-01-01

    We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young’s modulus of the artificial cupula closely matches the biological cupula (10–100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5–5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices. PMID:26763299

  4. Nanofibril scaffold assisted MEMS artificial hydrogel neuromasts for enhanced sensitivity flow sensing

    NASA Astrophysics Data System (ADS)

    Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S.; Triantafyllou, Michael

    2016-01-01

    We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young’s modulus of the artificial cupula closely matches the biological cupula (10–100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5–5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices.

  5. Propulsive jet simulation with air and helium in launcher wake flows

    NASA Astrophysics Data System (ADS)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  6. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air.

    PubMed

    Chava, Raghuram; Zviman, Menekhem; Raghavan, Madhavan Srinivas; Halperin, Henry; Maqbool, Farhan; Geocadin, Romergryko; Quinones-Hinojosa, Alfredo; Kolandaivelu, Aravindan; Rosen, Benjamin A; Tandri, Harikrishna

    2017-03-01

    Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.

  7. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  8. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  9. Responses of the Rat Olfactory Epithelium to Retronasal Air Flow

    PubMed Central

    Scott, John W.; Acevedo, Humberto P.; Sherrill, Lisa; Phan, Maggie

    2008-01-01

    Responses of the rat olfactory epithelium were assessed with the electroolfactogram while odorants were presented to the external nares with an artificial sniff or to the internal nares by positive pressure. A series of seven odorants that varied from very polar, hydrophilic odorants to very non-polar, hydrophobic odorants were used. While the polar odorants activated the dorsal olfactory epithelium when presented by the external nares (orthonasal presentation), they were not effective when forced through the nasal cavity from the internal nares (retronasal presentation). However, the non-polar odorants were effective in both stimulus modes. These results were independent of stimulus concentration or of humidity of the carrier air. Similar results were obtained with multiunit recording from olfactory bulb. These results help to explain why human investigations often report differences in the sensation or ability to discriminate odorants presented orthonasally vs. retronasally. The results also strongly support the importance of odorant sorption in normal olfactory processes. PMID:17215498

  10. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  11. An experimental investigation of gas jets in confined swirling air flow

    NASA Technical Reports Server (NTRS)

    Mongia, H.; Ahmed, S. A.; Mongia, H. C.

    1984-01-01

    The fluid dynamics of jets in confined swirling flows which is of importance to designers of turbine combustors and solid fuel ramjets used to power missiles fired from cannons were examined. The fluid dynamics of gas jets of different densities in confined swirling flows were investigated. Mean velocity and turbulence measurements are made with a one color, one component laser velocimeter operating in the forward scatter mode. It is shown that jets in confined flow with large area ratio are highly dissipative which results in both air and helium/air jet centerline velocity decays. For air jets, the jet like behavior in the tube center disappears at about 20 diameters downstream of the jet exit. This phenomenon is independent of the initial jet velocity. The turbulence field at this point also decays to that of the background swirling flow. A jet like behavior in the tube center is noticed even at 40 diameters for the helium/air jets. The subsequent flow and turbulence field depend highly on the initial jet velocity. The jets are fully turbulent, and the cause of this difference in behavior is attributed to the combined action swirl and density difference. This observation can have significant impact on the design of turbine combustors and solid fuel ramjets subject to spin.

  12. Experimental Studies of Active and Passive Flow Control Techniques Applied in a Twin Air-Intake

    PubMed Central

    Joshi, Shrey; Jindal, Aman; Maurya, Shivam P.; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG. PMID:23935422

  13. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields

    NASA Astrophysics Data System (ADS)

    Comer, J. K.; Kleinstreuer, C.; Zhang, Z.

    2001-05-01

    The understanding and quantitative assessment of air flow fields and local micron-particle wall concentrations in tracheobronchial airways are very important for estimating the health risks of inhaled particulate pollutants, developing algebraic transfer functions of global lung deposition models used in dose-response analyses, and/or determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part 1) the theory, model geometries, and air flow results are provided. In a companion paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and comparisons with measured data sets are reported. Decoupling of the naturally dilute particle suspension makes it feasible to present the results in two parts.

  14. Tomographic optical emission spectroscopy of a high enthalpy air plasma flow.

    PubMed

    Hermann, Tobias; Löhle, Stefan; Fasoulas, Stefanos; Andrianatos, Andreas

    2016-12-20

    A method is presented allowing for locally resolved emission spectroscopy using a tomographic setup. The approach presented in this work is applied to a high enthalpy air plasma flow. The resulting data sets allow for a three-dimensional (3D) representation of the non-symmetric flow field using photographs of the test section and 2D representation of the spectrally resolved radiance of the flow field. An analysis of different exposure times shows that transient fluctuations of the plasma can result in substantial asymmetry that approaches symmetry only for longer exposure times when the temporal averaging of the emission is significant. The spectral data allows the analysis of species selective excitation and emission. A non-equilibrium between atomic and molecular excitation temperatures is concluded for the investigated air plasma flow field. The spatial distribution of atomic electronic excitation temperatures are close to rotational symmetry while molecular rotational and vibrational temperatures exhibit asymmetric behavior.

  15. Slip-length measurement of confined air flow using dynamic atomic force microscopy.

    PubMed

    Maali, Abdelhamid; Bhushan, Bharat

    2008-08-01

    We present an experimental measurement of the slip length of air flow close to solid surfaces using an atomic force microscope (AFM) in dynamic mode. The air was confined between a glass surface and a spherical glass particle glued to an AFM cantilever. The Knudsen number was varied continuously over three decades by varying the distance between the two surfaces. Our results show that the effect of confining the air is purely dissipative. The data are described by an isothermal Maxwell slip-boundary condition, and the measured slip-length value was 118 nm .

  16. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  17. Unique, clean-air, continuous-flow, high-stagnation-temperature facility for supersonic combustion research

    NASA Technical Reports Server (NTRS)

    Krauss, R. H.; Mcdaniel, J. C., Jr.; Scott, J. E., Jr.; Whitehurst, R. B., III; Segal, C.

    1988-01-01

    Accurate, spatially-resolved measurements can be conducted of a model supersonic combustor in a clean air/continuous flow supersonic combustion facility whose long run times will allow not only the point-by-point mapping of flow field variables with laser diagnostics but facilitate the simulation of steady-state combustor conditions. The facility will provide a Mach 2 freestream with static pressures in the 1 to 1/6 atm range, and stagnation temperatures of up to 2000 K.

  18. Air-side flow and heat transfer in compact heat exchangers: A discussion of enhancement mechanisms

    SciTech Connect

    Jacobi, A.M.; Shah, R.K.

    1998-10-01

    The behavior of air flows in complex heat exchanger passages is reviewed with a focus on the heat transfer effects of boundary-layer development, turbulence, spanwise and streamwise vortices, and wake management. Each of these flow features is discussed for the plain, wavy, and interrupted passages found in contemporary compact heat exchanger designs. Results from the literature are used to help explain the role of these mechanisms in heat transfer enhancement strategies.

  19. Compressed air energy storage system two-phase flow experiment

    SciTech Connect

    Kumamaru, Hiroshige; Ohtsu, Iwao; Murata, Hideo

    1996-08-01

    A water/CO{sub 2}-combination test facility, having a vertical shaft height of {approximately} 25 m and a shaft inner diameter of 0.2 m, has been constructed in simulating a water/air full-size CAES system, having a shaft height of {approximately} 1,000 m and an inner diameter of {approximately} 3 m. Totally fifteen experiments have been performed in this test facility. In an experiment of CO{sub 2} high-concentration ({approximately} 0.4 MPa) and medium water injection velocity ({approximately} 0.5 m/s), the shaft void fraction during gas charging to a lower reservoir (i.e. during water injection to the shaft) became highest in all the experiment. This experiment may correspond to the severest situation in a full-size CAES system; however, the blowout did not occur in this experiment. In an experiment of CO{sub 2} high-concentration({approximately} 0.4 MPa) and very-high injection velocity ({approximately} 2.5 m/s), after gas charging stopped, CO{sub 2}-supersaturated water, remained in the shaft, formed bubbles vigorously, and thereafter the blowout occurred. However, the injection velocity of {approximately} 2.5 m/s corresponds to a velocity of {approximately} 100 m/s in a full-size CAES system and may be unreal.

  20. Applications of Satellite Remote Sensing Products to Enhance and Evaluate the AIRPACT Regional Air Quality Modeling System

    NASA Astrophysics Data System (ADS)

    Herron-Thorpe, F. L.; Mount, G. H.; Emmons, L. K.; Lamb, B. K.; Jaffe, D. A.; Wigder, N. L.; Chung, S. H.; Zhang, R.; Woelfle, M.; Vaughan, J. K.; Leung, F. T.

    2013-12-01

    The WSU AIRPACT air quality modeling system for the Pacific Northwest forecasts hourly levels of aerosols and atmospheric trace gases for use in determining potential health and ecosystem impacts by air quality managers. AIRPACT uses the WRF/SMOKE/CMAQ modeling framework, derives dynamic boundary conditions from MOZART-4 forecast simulations with assimilated MOPITT CO, and uses the BlueSky framework to derive fire emissions. A suite of surface measurements and satellite-based remote sensing data products across the AIRPACT domain are used to evaluate and improve model performance. Specific investigations include anthropogenic emissions, wildfire simulations, and the effects of long-range transport on surface ozone. In this work we synthesize results for multiple comparisons of AIRPACT with satellite products such as IASI ammonia, AIRS carbon monoxide, MODIS AOD, OMI tropospheric ozone and nitrogen dioxide, and MISR plume height. Features and benefits of the newest version of AIRPACT's web-interface are also presented.

  1. Viscous computations of cold air/air flow around scramjet nozzle afterbody

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay; Engelund, Walter C.

    1991-01-01

    The flow field in and around the nozzle afterbody section of a hypersonic vehicle was computationally simulated. The compressible, Reynolds averaged, Navier Stokes equations were solved by an implicit, finite volume, characteristic based method. The computational grids were adapted to the flow as the solutions were developing in order to improve the accuracy. The exhaust gases were assumed to be cold. The computational results were obtained for the two dimensional longitudinal plane located at the half span of the internal portion of the nozzle for over expanded and under expanded conditions. Another set of results were obtained, where the three dimensional simulations were performed for a half span nozzle. The surface pressures were successfully compared with the data obtained from the wind tunnel tests. The results help in understanding this complex flow field and, in turn, should help the design of the nozzle afterbody section.

  2. System and method for evaluating wind flow fields using remote sensing devices

    DOEpatents

    Schroeder, John; Hirth, Brian; Guynes, Jerry

    2016-12-13

    The present invention provides a system and method for obtaining data to determine one or more characteristics of a wind field using a first remote sensing device and a second remote sensing device. Coordinated data is collected from the first and second remote sensing devices and analyzed to determine the one or more characteristics of the wind field. The first remote sensing device is positioned to have a portion of the wind field within a first scanning sector of the first remote sensing device. The second remote sensing device is positioned to have the portion of the wind field disposed within a second scanning sector of the second remote sensing device.

  3. Cloud-based large-scale air traffic flow optimization

    NASA Astrophysics Data System (ADS)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  4. Six years of surface remote sensing of stratiform warm clouds in marine and continental air over Mace Head, Ireland

    NASA Astrophysics Data System (ADS)

    Preißler, Jana; Martucci, Giovanni; Saponaro, Giulia; Ovadnevaite, Jurgita; Vaishya, Aditya; Kolmonen, Pekka; Ceburnis, Darius; Sogacheva, Larisa; Leeuw, Gerrit; O'Dowd, Colin

    2016-12-01

    A total of 118 stratiform water clouds were observed by ground-based remote sensing instruments at the Mace Head Atmospheric Research Station on the west coast of Ireland from 2009 to 2015. Microphysical and optical characteristics of these clouds were studied as well as the impact of aerosols on these properties. Microphysical and optical cloud properties were derived using the algorithm SYRSOC (SYnergistic Remote Sensing Of Clouds). Ground-based in situ measurements of aerosol concentrations and the transport path of air masses at cloud level were investigated as well. The cloud properties were studied in dependence of the prevailing air mass at cloud level and season. We found higher cloud droplet number concentrations (CDNC) and smaller effective radii (reff) with greater pollution. Median CDNC ranged from 60 cm-3 in marine air masses to 160 cm-3 in continental air. Median reff ranged from 8 μm in polluted conditions to 10 μm in marine air. Effective droplet size distributions were broader in marine than in continental cases. Cloud optical thickness (COT) and albedo were lower in cleaner air masses and higher in more polluted conditions, with medians ranging from 2.1 to 4.9 and 0.22 to 0.39, respectively. However, calculation of COT and albedo was strongly affected by liquid water path (LWP) and departure from adiabatic conditions. A comparison of SYRSOC results with MODIS (Moderate-Resolution Imaging Spectroradiometer) observations showed large differences for LWP and COT but good agreement for reff with a linear fit with slope near 1 and offset of -1 μm.

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    NASA Technical Reports Server (NTRS)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  7. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  8. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  9. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Procedures for air flow tests of micronaire reading... micronaire reading. In determining in terms of micronaire readings, the fiber fineness and maturity, in... cotton in terms of micronaire reading on the curvilinear scale adopted in September 1950 by...

  10. Effect of laminar air flow and clean-room dress on contamination rates of intravenous admixtures.

    PubMed

    Brier, K L; Latiolais, C J; Schneider, P J; Moore, T D; Buesching, W J; Wentworth, B C

    1981-08-01

    The effect of laminar air flow conditions and clean-room dress on the microbial contamination rates of intravenous admixtures was investigated. Intravenous admixtures were prepared by one investigator using aseptic technique under four environmental conditions: laminar air flow conditions with clean-room dress; laminar air flow without clean-room dress; clean table top with clean-room dress; and clean table top without clean-room dress. In each environmental condition, 350 admixtures were compounded. Negative-control samples (n = 150) were also tested, as were 10 positive-control samples. Samples were tested in each of two growth media and incubated at 35 degrees C for 14 days or until growth occurred. The incidence of contamination of admixtures compounded in laminar air flow conditions was significantly less than the contamination of those compounded on a clean table top (p less than 0.05) regardless of the operator's dress. The incidence of contamination of admixtures compounded while wearing clean-room dress was not significantly different from those prepared while not wearing clean-room dress regardless of the environment in which the admixture was prepared. The overall low level of contamination [0.79% (11/1400)] was inconclusive regarding the effect of dress on the incidence of contamination when admixtures were prepared under LAF conditions. It is concluded that, when one adheres to aseptic technique, the environment in which admixtures are compounded is the most important variable affecting the microbial contamination rate.

  11. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  12. Turbine Air-Flow Test Rig CFD Results for Test Matrix

    NASA Technical Reports Server (NTRS)

    Wilson, Josh

    2003-01-01

    This paper presents the Turbine Air-Flow Test (TAFT) rig computational fluid dynamics (CFD) results for test matrix. The topics include: 1) TAFT Background; 2) Design Point CFD; 3) TAFT Test Plan and Test Matrix; and 4) CFD of Test Points. This paper is in viewgraph form.

  13. Effects of flow on insulin fibril formation at an air/water interface

    NASA Astrophysics Data System (ADS)

    Posada, David; Heldt, Caryn; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2009-11-01

    The amyloid fibril formation process, which is implicated in several diseases such as Alzheimer's and Huntington's, is characterized by the conversion of monomers to oligomers and then to fibrils. Besides well-studied factors such as pH, temperature and concentration, the kinetics of this process are significantly influenced by the presence of solid or fluid interfaces and by flow. By studying the nucleation and growth of a model system (insulin fibrils) in a well-defined flow field with an air/water interface, we can identify the flow conditions that impact protein aggregation kinetics both in the bulk solution and at the air/water interface. The present flow system (deep-channel surface viscometer) consists of an annular region bounded by stationary inner and outer cylinders, an air/water interface, and a floor driven at constant rotation. We show the effects of Reynolds number on the kinetics of the fibrillation process both in the bulk solution and at the air/water interface, as well as on the structure of the resultant amyloid aggregates.

  14. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    NASA Technical Reports Server (NTRS)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  15. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem

    PubMed Central

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity. PMID:26180842

  16. Measured pressure distributions of large-angle cones in hypersonic flows of tetrafluoromethane, air, and helium

    NASA Technical Reports Server (NTRS)

    Jones, R. A.; Hunt, J. L.

    1973-01-01

    An experimental study of surface pressure distributions on a family of blunt and sharp large angle cones was made in hypersonic flows of helium, air, and tetrafluoromethane. The effective isentropic exponents of these flows were 1.67, 1.40, and 1.12. Thus, the effect of large shock density ratios such as might be encountered during planetary entry because of real-gas effects could be studied by comparing results in tetrafluoromethane with those in air and helium. It was found that shock density ratio had a large effect on both shock shape and pressure distribution. The differences in pressure distribution indicate that for atmospheric flight at high speed where real-gas effects produce large shock density ratios, large-angle cone vehicles can be expected to experience different trim angles of attack, drag coefficient, and lift-drag ratios than those for ground tests in air wind tunnels.

  17. A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.

    PubMed

    Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming

    2015-01-01

    Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.

  18. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  19. Calibration of a system for measuring low air flow velocity in a wind tunnel

    NASA Astrophysics Data System (ADS)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s-1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  20. Air-water two-phase flow in a 3-mm horizontal tube

    NASA Astrophysics Data System (ADS)

    Chen, Ing Youn; Chang, Yu-Juei; Wang, Chi-Chung

    2000-01-01

    Two-phase flow pattern and friction characteristics for air-water flow in a 3.17 mm smooth tube are reported in this study. The range of air-water mass flux is between 50 to 700 kg/m2.s and gas quality is between 0.0001 to 0.9. The pressure drop data are analyzed using the concept of the two-phase frictional multipliers and the Martinelli parameter. Experimental data show that the two-phase friction multipliers are strongly related to the flow pattern. Taitel & Dukler flow regime map fails to predict the stratified flow pattern data. Their transition lines between annular-wavy and annular-intermittent give fair agreement with data. A modified correlation from Klimenko and Fyodoros criterion is able to distinguish the annular and stratified data. For two-phase flow in small tubes, the effect of surface tension force should be significantly present as compared to gravitational force. The tested empirical frictional correlations couldn't predict the pressure drop in small tubes for various working fluids. It is suggested to correlate a reliable frictional multiplier for small horizontal tubes from a large database of various working fluids, and to develop the flow pattern dependent models for the prediction of two-phase pressure drop in small tubes. .

  1. The measurement error analysis when a pitot probe is used in supersonic air flow

    NASA Astrophysics Data System (ADS)

    Zhang, XiWen; Hao, PengFei; Yao, ZhaoHui

    2011-04-01

    Pitot probes enable a simple and convenient way of measuring mean velocity in air flow. The contrastive numerical simulation between free supersonic airflow and pitot tube at different positions in supersonic air flow was performed using Navier-Stokes equations, the ENN scheme with time-dependent boundary conditions (TDBC) and the Spalart-Allmaras turbulence model. The physical experimental results including pitot pressure and shadowgraph are also presented. Numerical results coincide with the experimental data. The flow characteristics of the pitot probe on the supersonic flow structure show that the measurement gives actually the total pressure behind the detached shock wave by using the pitot probe to measure the total pressure. The measurement result of the distribution of the total pressure can still represent the real free jet flow. The similar features of the intersection and reflection of shock waves can be identified. The difference between the measurement results and the actual ones is smaller than 10%. When the pitot probe is used to measure the region of L=0-4 D, the measurement is smaller than the real one due to the increase of the shock wave strength. The difference becomes larger where the waves intersect. If the pitot probe is put at L=8 D-10 D, where the flow changes from supersonic to subsonic, the addition of the pitot probe turns the original supersonic flow region subsonic and causes bigger measurement errors.

  2. Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel

    NASA Technical Reports Server (NTRS)

    Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.

    2004-01-01

    The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.

  3. Measurement of temperature and velocity fields in a convective fluid flow in air using schlieren images.

    PubMed

    Martínez-González, A; Moreno-Hernández, D; Guerrero-Viramontes, J A

    2013-08-01

    A convective fluid flow in air could be regulated if the physical process were better understood. Temperature and velocity measurements are required in order to obtain a proper characterization of a convective fluid flow. In this study, we show that a classical schlieren system can be used for simultaneous measurements of temperature and velocity in a convective fluid flow in air. The schlieren technique allows measurement of the average fluid temperature and velocity integrated in the direction of the test beam. Therefore, in our experiments we considered surfaces with isothermal conditions. Temperature measurements are made by relating the intensity level of each pixel in a schlieren image to the corresponding knife-edge position measured at the exit focal plane of the schlieren system. The same schlieren images were also used to measure the velocity of the fluid flow by using optical flow techniques. The algorithm implemented analyzes motion between consecutive schlieren frames to obtain a tracked sequence and finally velocity fields. The proposed technique was applied to measure the temperature and velocity fields in natural convection of air due to unconfined and confined heated rectangular plates.

  4. Laser filamentation induced air-flow motion in a diffusion cloud chamber.

    PubMed

    Sun, Haiyi; Liu, Jiansheng; Wang, Cheng; Ju, Jingjing; Wang, Zhanxin; Wang, Wentao; Ge, Xiaochun; Li, Chuang; Chin, See Leang; Li, Ruxin; Xu, Zhizhan

    2013-04-22

    We numerically simulated the air-flow motion in a diffusion cloud chamber induced by femtosecond laser filaments for different chopping rates. A two dimensional model was employed, where the laser filaments were treated as a heat flux source. The simulated patterns of flow fields and maximum velocity of updraft compare well with the experimental results for the chopping rates of 1, 5, 15 and 150 Hz. A quantitative inconsistency appears between simulated and experimental maximum velocity of updraft for 1 kHz repetition rate although a similar pattern of flow field is obtained, and the possible reasons were analyzed. Based on the present simulated results, the experimental observation of more water condensation/snow at higher chopping rate can be explained. These results indicate that the specific way of laser filament heating plays a significant role in the laser-induced motion of air flow, and at the same time, our previous conclusion of air flow having an important effect on water condensation/snow is confirmed.

  5. Formation of thermal flow fields and chemical transport in air and water by atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Shimizu, Tetsuji; Iwafuchi, Yutaka; Morfill, Gregor E.; Sato, Takehiko

    2011-05-01

    Cold atmospheric plasma is a potential tool for medical purposes, e.g. disinfection/sterilization. In order for it to be effective and functional, it is crucial to understand the transport mechanism of chemically reactive species in air as well as in liquid. An atmospheric plasma discharge was produced between a platinum pin electrode and the surface of water. The thermal flow field of a cold atmospheric plasma as well as its chemical components was measured. A gas flow with a velocity of around 15 m s-1 to the water's surface was shown to be induced by the discharge. This air flow induced a circulating flow in the water from the discharge point at the water's surface because of friction. It was also demonstrated that the chemical components generated in air dissolved in water and the properties of the water changed. The reactive species were believed to be distributed mainly by convective transport in water, because the variation in the pH profile indicated by a methyl red solution resembled the induced flow pattern.

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  7. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  8. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  9. Flow visualization study of grooved surface/surfactant/air sheet interaction

    NASA Technical Reports Server (NTRS)

    Reed, Jason C.; Weinstein, Leonard M.

    1989-01-01

    The effects of groove geometry, surfactants, and airflow rate have been ascertained by a flow-visualization study of grooved-surface models which addresses the possible conditions for skin friction-reduction in marine vehicles. It is found that the grooved surface geometry holds the injected bubble stream near the wall and, in some cases, results in a 'tube' of air which remains attached to the wall. It is noted that groove dimension and the use of surfactants can substantially affect the stability of this air tube; deeper grooves, surfactants with high contact angles, and angled air injection, are all found to increase the stability of the attached air tube, while convected disturbances and high shear increase interfacial instability.

  10. Volcanic lava flow hot-spots monitoring from remote sensing data using neural networks

    NASA Astrophysics Data System (ADS)

    Piscini, Alessandro; Lombardo, Valerio

    2014-05-01

    Neural networks are an effective and well-established technique for the classification of satellite images. In addition, once well trained, they prove to be very fast in the application stage. Furthermore satellite remote sensing is a very effective and safe way to monitor volcanic eruptions in order to safeguard the environment and the people affected by such natural hazards. In our study a Back Propagation Neural Network was used for the recognition of thermal anomalies affecting hot lava pixels in multispectral remote sensed images. The network was trained using the three thermal channels of the Advanced Very High Resolution Radiometer (AVHHR) sensor as inputs and the corresponding values of heat flux, estimated using a two thermal component model, as reference outputs. As a case study the volcano Etna (Eastern Sicily, Italy) was chosen and the neural network was trained with a time series of AVHRR images belonging to an effusive eruption which took place during the month of July 2006, and validated on three independent data sets of images of the same eruption and on two relative to an eruption occurred the following month. Whilst for both night-time and day-time validation images the neural network identified the image pixels affected by hot lava with a 100% success rate, for the daytime images also adjacent pixels were included, apparently not interested by lava flow. Despite these performance differences under different illumination conditions, the proposed method can be considered effective both in terms of classification accuracy and generalization capability. In particular our approach proved to be robust in the rejection of false positives, often corresponding to noisy or cloudy pixels, whose presence in multispectral images can often undermine the performance of traditional classification algorithms. Future work shall address application of the proposed method to data from different eruptions provided by the MODIS sensor aboard the Terra and Aqua

  11. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-01-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  12. Downward flow of water with entrained air in a nonuniformaly heated subdivided annulus

    SciTech Connect

    Johnston, B.S.; May, C.P.

    1992-10-01

    This paper describes an experimental study in which water was fed to a vertical annulus, entraining air in downward flow. The annulus was subdivided by longitudinal fins into four subchannels and was heated with an azimuthally varying heat flux. A bypass was provided to simulate flow in parallel channels. For steady liquid flow, inlet temperature, and pressure boundary conditions, the power was increased until critical heat flux was reached. Overheating characteristics were grouped according to the prevailing flow pattern. In annular flows (j{sub L} < 0.3 m/s) overheating of the whole test section occurs when steam production causes countercurrent flooding. In intermittent flows (0.3 < j{sub L} < 0.9 m/s) the overheating is confined to a portion of the hot subchannel. The mechanism is postulated to be stagnation of a large bubble. In bubble flows (0.9 m/s < j{sub L}) overheating occurs by diverting inlet flow to the bypass and again involves the whole test section. Except at the very lowest flow rates, critical heat flux occurs when the effluent liquid temperature is below saturation.

  13. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    NASA Astrophysics Data System (ADS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  14. Effect of air-pressure on room temperature hydrogen sensing characteristics of nanocrystalline doped tin oxide MEMS-based sensor.

    PubMed

    Shukla, Satyajit; Ludwig, Lawrence; Cho, Hyoung J; Duarte, Julian; Seal, Sudipta

    2005-11-01

    Nanocrystalline indium oxide (In2O3)-doped tin oxide (SnO2) thin film sensor has been sol-gel dip-coated on a microelectrochemical system (MEMS) device using a sol-gel dip-coating technique. Hydrogen (H2) at ppm-level has been successfully detected at room temperature using the present MEMS-based sensor. The room temperature H2 sensing characteristics (sensitivity, response and recovery time, and recovery rate) of the present MEMS-based sensor has been investigated as a function of air-pressure (50-600 Torr) with and without the ultraviolet (UV) radiation exposure. It has been demonstrated that, the concentration of the surface-adsorbed oxygen-ions (which is related to the sensor-resistance in air), the ppm-level H2, and the oxygen (O2) partial pressure are the three major factors, which determine the variation in the room temperature H2 sensing characteristics of the present MEMS-based sensor as a function of air-pressure.

  15. Use of acoustic velocity methodology and remote sensing techniques to measure unsteady flow on the lower Yazoo River in Mississippi

    USGS Publications Warehouse

    Turnipseed, D. Phil; Cooper, Lance M.; Davis, Angela A.

    1998-01-01

    Methodologies have been developed for computing continuous discharge during varied, non-uniform low and medium flows on the Yazoo River at the U.S. Geological Survey streamgage below Steele Bayou near Long Lake, Mississippi, using acoustic signal processing and conventional streamgaging techniques. Procedures were also developed to compute locations of discharges during future high flow events when the stream reach is subject to hi-directional and reverse flow caused by rising stages on the Mississippi River using a combination of acoustic equipment and remote sensing technology. A description of the study area is presented. Selected results of these methods are presented for the period from March through September 1997.

  16. Effect of air pressure differential on vapor flow through sample building walls

    SciTech Connect

    Stewart, W.E. Jr.

    1998-12-31

    Laboratory scale experiments were performed on two small sample composite walls of typical building construction to determine the approximate opposing air pressure difference required to stop or significantly reduce the transmission of water vapor due to a water vapor pressure difference. The experiments used wall section samples between two controlled atmosphere chambers. One chamber was held at a temperature and humidity condition approximating that of a typical summer day, while the other chamber was controlled at a condition typical of indoor conditioned space. Vapor transmission data through the wall samples were obtained over a range of vapor pressure differentials and opposing air pressure differentials. The results show that increasing opposing air pressure differences decrease water vapor transmission, as expected, and relatively small opposing air pressure differentials are required for wall materials of small vapor permeability and large air permeability. The opposing air pressure that stopped or significantly reduced the flow of water vapor through the wall sample was determined experimentally and also compared to air pressures as predicted by an analytical model.

  17. Base-flow data in the Arnold Air Force Base area, Tennessee, June and October 2002

    USGS Publications Warehouse

    Robinson, John A.; Haugh, Connor J.

    2004-01-01

    Arnold Air Force Base (AAFB) occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of AAFB is to support the development of aerospace systems. This mission is accomplished through test facilities at Arnold Engineering Development Center (AEDC), which occupies about 4,000 acres in the center of AAFB. Base-flow data including discharge, temperature, and specific conductance were collected for basins in and near AAFB during high base-flow and low base-flow conditions. Data representing high base-flow conditions from 109 sites were collected on June 3 through 5, 2002, when discharge measurements at sites with flow ranged from 0.005 to 46.4 ft3/s. Data representing low base-flow conditions from 109 sites were collected on October 22 and 23, 2002, when discharge measurements at sites with flow ranged from 0.02 to 44.6 ft3/s. Discharge from the basin was greater during high base-flow conditions than during low base-flow conditions. In general, major tributaries on the north side and southeastern side of the study area (Duck River and Bradley Creek, respectively) had the highest flows during the study. Discharge data were used to categorize stream reaches and sub-basins. Stream reaches were categorized as gaining, losing, wet, dry, or unobserved for each base-flow measurement period. Gaining stream reaches were more common during the high base-flow period than during the low base-flow period. Dry stream reaches were more common during the low base-flow period than during the high base-flow period. Losing reaches were more predominant in Bradley Creek and Crumpton Creek. Values of flow per square mile for the study area of 0.55 and 0.37 (ft3/s)/mi2 were calculated using discharge data collected on June 3 through 5, 2002, and October 22 and 23, 2002, respectively. Sub-basin areas with surplus or deficient flow were defined within the basin. Drainage areas for each stream measurement site were delineated and measured from topographic maps

  18. Air release measurements of V-oil 1404 downstream of a micro orifice at choked flow conditions

    NASA Astrophysics Data System (ADS)

    Freudigmann, H.-A.; Iben, U.; Pelz, P. F.

    2015-12-01

    This study presents measurements on air release of V-oil 1404 in the back flow of a micro orifice at choked flow conditions using a shadowgraph imaging method. The released air was determined at three positions downstream of the orifice for different pressure conditions. It was found that more than 23% of the initially dissolved air is released and appears downstream of the orifice in the form of bubbles.

  19. Low-power, open-path mobile sensing platform for high-resolution measurements of greenhouse gases and air pollutants

    NASA Astrophysics Data System (ADS)

    Tao, Lei; Sun, Kang; Miller, David J.; Pan, Dan; Golston, Levi M.; Zondlo, Mark A.

    2015-04-01

    A low-power mobile sensing platform has been developed with multiple open-path gas sensors to measure the ambient concentrations of greenhouse gases and air pollutants with high temporal and spatial resolutions over extensive spatial domains. The sensing system consists of four trace gas sensors including two custom quantum cascade laser-based open-path sensors and two LICOR open-path sensors to measure CO2, CO, CH4, N2O, NH3, and H2O mixing ratios simultaneously at 10 Hz. In addition, sensors for meteorological and geolocation data are incorporated into the system. The system is powered by car batteries with a low total power consumption (~200 W) and is easily transportable due to its low total mass (35 kg). Multiple measures have been taken to ensure robust performance of the custom, open-path sensors located on top of the vehicle where the optics are exposed to the harsh on-road environment. The mobile sensing system has been integrated and installed on top of common passenger vehicles and participated in extensive field campaigns (>400 h on-road time with >18,000 km total distance) in both the USA and China. The simultaneous detection of multiple trace gas species makes the mobile sensing platform a unique and powerful tool to identify and quantify different emission sources through mobile mapping.

  20. Simulation study of the lethality effect of high-power laser with supersonic air flow

    NASA Astrophysics Data System (ADS)

    Peng, Xin; Zhao, Guomin; Chen, Minsun

    2016-10-01

    The lethality effect of high power laser on target is simulated with CFD method under different conditions of supersonic air flow on the surface of the target. Materials used in the experiments are 2cm aluminum plate. With the Mach number changing from 1 to 5, the lethality effects of the high power laser can be obtained from the simulations under these conditions of supersonic air flow. The flow-structure-laser coupling impact on the failure time of the target is discussed based on the simulation. Results show that with the increase of mach number, the effect on the aluminum plate is increase first and then decrease by the pressure. Because that it is obvious that the maximum area of pressure is away from the center of deformation region when the mach number is bigger than 5 . At the same time, when mach number is increase, the aerodynamic heating play more important role than the convective heat transfer on the temperature field of aluminum plate. there are two impacts from the supersonic flow. Firstly , the flow can produce the pressure on the surface of the aluminum plate. Secondly, the flow can produce aerodynamic heat on the aluminum plate.

  1. Piloted Ignition of Polypropylene/Glass Composites in a Forced Air Flow

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Rich, D.; Lautenberger, C.; Stefanovich, A.; Metha, S.; Torero, J.; Yuan, Z.; Ross, H.

    2003-01-01

    The Forced Ignition and Spread Test (FIST) is being used to study the flammability characteristics of combustible materials in forced convective flows. The FIST methodology is based on the ASTM E-1321, Lateral Ignition and Flame Spread Test (LIFT) which is used to determine the ignition and flame spread characteristics of materials, and to produce 'Flammability Diagrams' of materials. The LIFT apparatus, however, relies on natural convection to bring air to the combustion zone and the fuel vapor to the pilot flame, and thus cannot describe conditions where the oxidizer flow velocity may change. The FIST on the other hand, by relying on a forced flow as the dominant transport mechanism, can be used to examine variable oxidizer flow characteristics, such as velocity, oxygen concentration, and turbulence intensity, and consequently has a wider applicability. Particularly important is its ability to determine the flammability characteristics of materials used in spacecraft since in the absence of gravity the only flow present is that forced by the HVAC of the space facility. In this paper, we report work on the use of the FIST approach on the piloted ignition of a blended polypropylene fiberglass (PP/GL) composite material exposed to an external radiant flux in a forced convective flow of air. The effect of glass concentration under varying external radiant fluxes is examined and compared qualitatively with theoretical predictions of the ignition process. The results are used to infer the effect of glass content on the fire safety characteristics of composites.

  2. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    PubMed Central

    Vogiatzis, I. I.; Denizopoulou, A. C.; Ntinas, G. K.; Fragos, V. P.

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations. PMID:25057511

  3. CFD analyses of flow structures in air-ingress and rod bundle problems

    NASA Astrophysics Data System (ADS)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  4. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    PubMed

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  5. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    NASA Astrophysics Data System (ADS)

    Othman, M. N. K.; Zuradzman, M. Razlan; Hazry, D.; Khairunizam, Wan; Shahriman, A. B.; Yaacob, S.; Ahmed, S. Faiz; Hussain, Abadalsalam T.

    2014-12-01

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  6. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  7. Evolution of the air cavity during a depressurized wave impact. I. The kinematic flow field

    NASA Astrophysics Data System (ADS)

    Lugni, C.; Miozzi, M.; Brocchini, M.; Faltinsen, O. M.

    2010-05-01

    This paper describes a systematic experimental study of the role of the ambient pressure on wave impact events in depressurized environments. A wave impact event of "mode (b)" [see Lugni et al., "Wave impact loads: The role of the flip-through," Phys. Fluids 18, 122101 (2006)] causes entrapment of an air cavity. Here the topological and kinematic aspects of its oscillation and evolution toward collapse into a mixture of water and air bubbles are studied, while Part II [Lugni et al., "Evolution of the air cavity during a depressurized wave impact. II. The dynamic field," Phys. Fluids 22, 056102 (2010)] focuses on the dynamic features of the flow. Four distinct stages characterize the flow evolution: (1) the closure of the cavity onto the wall, (2) the isotropic compression/expansion of the cavity, (3) its anisotropic compression/expansion, and (4) the rise of the cavity up the wall. The first two stages are mainly governed by the air leakage, the last two by the surrounding hydrodynamic flow, which contributes to compressing the bubble horizontally and to convecting it up the wall. Ullage pressure affects the ratio between the minimum and maximum cavity areas. An ullage pressure of 2.5% of the atmospheric pressure leads to an area ratio of about 360% of the equivalent ratio at atmospheric conditions.

  8. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  9. Assessing uncertainties in remotely sensed lava flow emplacement - results from an indoor analog experiment

    NASA Astrophysics Data System (ADS)

    Pick, Leonie; Zakšek, Klemen; Lombardo, Valerio; Hort, Matthias

    2016-04-01

    Infrared satellite images are an easily accessible data source for monitoring the radiant power (RP) emitted from lava flows during effusive eruptions in close to real time. Although not necessary for RP estimations, lava temperature is a crucial parameter in the determination of the flow's convected heat. In conjunction with the flow's spatial extent it assists the identification of potentially threatened areas and thereby the overall lava inundation hazard assessment. The accurate determination of the flow's size and temperature is however afflicted with uncertainty as the lava occupies only a small fraction (< 1 %) of a typically resolved target pixel (e.g. from Landsat 7, MODIS). Conventionally this is overcome by comparing observations in at least two separate infrared spectral wavebands (Dual-Band method). We investigate the resolution limits of this thermal un-mixing technique by means of an uniquely designed indoor analog experiment. Therein the volcanic feature is simulated by an electrical heating alloy of 0.5 mm diameter installed on a plywood panel of high emissivity. Two thermographic cameras record images of the artificial heat source in wavebands comparable to those available from satellite data. These range from the short-wave infrared (1.4--3 μm) over the mid-wave infrared (3--8 μm) to the thermal infrared (8--15 μm). In the conducted experiment the pixel fraction of the hotspot was successively reduced by increasing the camera-to-target distance from 2 m to 38 m. On the basis of an individual target pixel the expected decrease of the hotspot pixel area with distance at relatively constant wire temperatures corresponding to barely glowing (experiment 1), glowing (experiment 2) and strongly glowing (experiment 3) was confirmed. The deviation of the hotspot's pixel fraction yielded by the Dual-Band method from the theoretically calculated one was found to be within the expected limits given that the hotspot is larger than about 3 % of the pixel

  10. Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing.

    PubMed

    Zhu, Yinian; Du, Henry; Bise, Ryan

    2006-04-17

    We present the design of a solid-core microstructured optical fiber with steering-wheel pattern of large holes in cladding as platform for evanescent-field sensing. Both geometry and optical properties of the fiber are numerical computed and analyzed in consideration of manufacturability using sol-gel casting technique as well as by evaluating a triangular lattice of holes with three rings in the design structure so that effective parameters can be established using effective step-index model. We predict less than 0.7 dB/m confinement loss at 850 nm, 29%, 13.7%, and 7.2% of light intensity overlap in air holes at 1500 nm, 1000 nm, and 850 nm wavelength, respectively, in such fiber. With the low loss and high mode-field overlap, the steering-wheel structured fiber is well suited for evanescent-field sensing and detection of chemical and biological species.

  11. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  12. Interactions between gravity waves and cold air outflows in a stably stratified uniform flow

    NASA Technical Reports Server (NTRS)

    Lin, Yuh-Lang; Wang, Ting-An; Weglarz, Ronald P.

    1993-01-01

    Interactions between gravity waves and cold air outflows in a stably stratified uniform flow forced by various combinations of prescribed heat sinks and sources are studied using a hydrostatic two-dimensional nonlinear numerical model. The formation time for the development of a stagnation point or reversed flow at the surface is not always directly proportional to the Froude number when wave reflections exist from upper levels. A density current is able to form by the wave-otuflow interaction, even though the Froude number is greater than a critical value. This is the result of the wave-outflow interaction shifting the flow response to a different location in the characteristic parameter space. A density current is able to form or be destroyed due to the wave-outflow interaction between a traveling gravity wave and cold air outflow. This is proved by performing experiments with a steady-state heat sink and an additional transient heat source. In a quiescent fluid, a region of cold air, convergence, and upward motion is formed after the collision between two outflows produced by two prescribed heat sinks. After the collision, the individual cold air outflows lose their own identity and merge into a single, stationary, cold air outflow region. Gravity waves tend to suppress this new stationary cold air outflow after the collision. The region of upward motion associated with the collision is confined to a very shallow layer. In a moving airstream, a density current produced by a heat sink may be suppressed or enhanced nonlinearly by an adjacent heat sink due to the wave-outflow interaction.

  13. Steady film flow over 2D topography with air inclusion formed inside the trench

    NASA Astrophysics Data System (ADS)

    Tsamopoulos, John; Varchanis, Stylianos; Dimakopoulos, Yannis

    2016-11-01

    Liquid film flow along an inclined, solid substrate featuring periodic rectangular trenches may either completely wet the trench floor (Wenzel state) or pin on the entrance and exit corners of the trench (Cassie state) or assume any other configuration in between these two extremes. In the intermediate cases a second gas-liquid interface inside the trench is formed, which adheres to the walls of the trench forming two three-phase contact lines, and encloses a different amount of air under different physical conditions. The Galerkin finite element method is used to solve the Navier-Stokes equations in a physical domain, which is adaptively re-meshed. Multiple steady solutions, connected by turning points and transcritical bifurcations as well as isolated solution branches, are revealed by pseudo arc-length continuation. Two possible cases of a single air inclusion inside the trench are examined. The penetration of the liquid inside the trench is enhanced primarily by increasing either the wettability of the substrate or the capillarity or by decreasing the flow rate. Flow hysteresis may occur when the liquid does not penetrate deep enough inside the trench leading to different flow patterns. The interplay of inertia, viscous, gravity and capillary forces along with substrate wettability determines the volume of the air encapsulated in the trench and the extent of free surface deformation. GSRT of Greece via the program "Excellence" and the LIMMAT foundation.

  14. Do terrestrial hermit crabs sniff? Air flow and odorant capture by flicking antennules

    PubMed Central

    Koehl, M. A. R.

    2016-01-01

    Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus, uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use. PMID:26763332

  15. Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber

    SciTech Connect

    Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

    2012-07-08

    A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

  16. Steady-state response of a charcoal bed to radon in flowing air with water vapor

    SciTech Connect

    Blue, T.E.; Jarzemba, M.S.; Fentiman, A.W.

    1995-06-01

    Previously we have developed a mathematical model of radon adsorption in active air with water vapor on small U.S. Environmental Protection Agency charcoal canisters that are used for environmental measurements of radon. The purpose of this paper is to extend this mathematical model to describe the adsorption of radon by large charcoal beds with radon-laden air flowing through them. The resulting model equations are solved analytically to predict the steady-state adsorption of radon by such beds. 14 refs., 3 figs.

  17. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  18. Evapotranspiration in a cottonwood (Populus fremontii) restoration plantation estimated by sap flow and remote sensing methods

    USGS Publications Warehouse

    Nagler, P.; Jetton, A.; Fleming, J.; Didan, K.; Glenn, E.; Erker, J.; Morino, K.; Milliken, J.; Gloss, S.

    2007-01-01

    Native tree plantations have been proposed for the restoration of wildlife habitat in human-altered riparian corridors of western U.S. rivers. Evapotranspiration (ET) by riparian vegetation is an important, but poorly quantified, term in river water budgets. Native tree restoration plots will potentially increase ET. We used sap flow sensors and satellite imagery to estimate ET in a 8 ha, cottonwood (Populus fremontii) restoration plot on the Lower Colorado River. Biometric methods were used to scale leaf area to whole trees and stands of trees. This technique was used to validate our estimates of ET obtained by scaling from branch level to stand (or plot) level measurements of ET. Cottonwood trees used 6-10 mm day-1 of water during the peak of the growing season as determined by sap flow sensors, and annual rates scaled by time-series MODIS satellite imagery were approximately 1.2 m year-1. Although irrigation was not quantified, the field had been flood irrigated at 2 week intervals during the 3 years prior to the study, receiving approximately 2 m year-1 of water. A frequency-domain electromagnetic induction survey of soil moisture content showed that the field was saturated (26-28% gravimetric water content) at the 90-150 cm soil depth under the field. Trees were apparently rooted into the saturated soil, and considerable saving of water could potentially be achieved by modifying the irrigation regime to take into account that cottonwoods are phreatophytes. The study showed that cottonwood ET can be monitored by remote sensing methods calibrated with ground measurements with an accuracy or uncertainty of 20-30% in western riparian corridors. ?? 2007 Elsevier B.V. All rights reserved.

  19. Three-Dimensional Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell.

    PubMed

    Zhao, Jia; Wang, Qi

    2017-03-13

    We develop a multiphasic hydrodynamic theory for biofilms taking into account interactions among various bacterial phenotypes, extracellular polymeric substance (EPS), quorum sensing (QS) molecules, solvent, and antibiotics. In the model, bacteria are classified into down-regulated QS, up-regulated QS, and non-QS cells based on their QS ability. The model is first benchmarked against an experiment yielding an excellent fit to experimental measurements on the concentration of QS molecules and the cell density during biofilm development. It is then applied to study development of heterogeneous structures in biofilms due to interactions of QS regulation, hydrodynamics, and antimicrobial treatment. Our 3D numerical simulations have confirmed that (i). QS is beneficial for biofilm development in a long run by building a robust EPS population to protect the biofilm; (ii). biofilms located upstream can induce QS downstream when the colonies are close enough spatially; (iii). QS induction may not be fully operational and can even be compromised in strong laminar flows; (v). the hydrodynamic stress alters the biofilm morphology. Through further numerical investigations, our model suggests that (i). QS-regulated EPS production contributes to the structural formation of heterogeneous biofilms; (ii) QS down-regulated cells tend to grow at the surface of the biofilm while QS up-regulated ones tend to grow in the bulk; (iii) when nutrient supply is sufficient, QS induction might be more effective upstream than downstream; (iv) QS may be of little benefit in a short timescale in term of fighting against invading strain/species; (v) the material properties of biomass (bacteria and EPS) have strong impact on the dilution of QS molecules under strong shear flow. In addition, with this modeling framework, hydrodynamic details and rheological quantities associated with biofilm formation under QS regulation can be resolved.

  20. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  1. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1990-02-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  2. Air/water two-phase flow test tunnel for airfoil studies

    NASA Astrophysics Data System (ADS)

    Ohashi, H.; Matsumoto, Y.; Ichikawa, Y.; Tsukiyama, T.

    1994-01-01

    A test tunnel for the study of airfoil performances under air/water two-phase flow condition has been designed and constructed. This facility will serve for a better understanding of the flow phenomena and characteristics of hydraulic machinery under gas/ liquid two-phase flow operating conditions. At the test section of the tunnel, a two-dimensional isolated airfoil or a cascade of airfoils is installed in a two-phase inlet flow with a uniform velocity (up to 10 m/s) and void fraction (up to 12%) distribution. The details of the tunnel structure and the measuring systems are described and the basic characteristics of the constructed tunnel are also given. As an example of the test results, void fraction distribution around a test airfoil is shown.

  3. Optical Flow and Driver's Kinematics Analysis for State of Alert Sensing

    PubMed Central

    Jiménez-Pinto, Javier; Torres-Torriti, Miguel

    2013-01-01

    Road accident statistics from different countries show that a significant number of accidents occur due to driver's fatigue and lack of awareness to traffic conditions. In particular, about 60% of the accidents in which long haul truck and bus drivers are involved are attributed to drowsiness and fatigue. It is thus fundamental to improve non-invasive systems for sensing a driver's state of alert. One of the main challenges to correctly resolve the state of alert is measuring the percentage of eyelid closure over time (PERCLOS), despite the driver's head and body movements. In this paper, we propose a technique that involves optical flow and driver's kinematics analysis to improve the robustness of the driver's alert state measurement under pose changes using a single camera with near-infrared illumination. The proposed approach infers and keeps track of the driver's pose in 3D space in order to ensure that eyes can be located correctly, even after periods of partial occlusion, for example, when the driver stares away from the camera. Our experiments show the effectiveness of the approach with a correct eyes detection rate of 99.41%, on average. The results obtained with the proposed approach in an experiment involving fifteen persons under different levels of sleep deprivation also confirm the discriminability of the fatigue levels. In addition to the measurement of fatigue and drowsiness, the pose tracking capability of the proposed approach has potential applications in distraction assessment and alerting of machine operators. PMID:23539029

  4. Optical flow and driver's kinematics analysis for state of alert sensing.

    PubMed

    Jiménez-Pinto, Javier; Torres-Torriti, Miguel

    2013-03-28

    Road accident statistics from different countries show that a significant number of accidents occur due to driver's fatigue and lack of awareness to traffic conditions. In particular, about 60% of the accidents in which long haul truck and bus drivers are involved are attributed to drowsiness and fatigue. It is thus fundamental to improve non-invasive systems for sensing a driver's state of alert. One of the main challenges to correctly resolve the state of alert is measuring the percentage of eyelid closure over time (PERCLOS), despite the driver's head and body movements. In this paper, we propose a technique that involves optical flow and driver's kinematics analysis to improve the robustness of the driver's alert state measurement under pose changes using a single camera with near-infrared illumination. The proposed approach infers and keeps track of the driver's pose in 3D space in order to ensure that eyes can be located correctly, even after periods of partial occlusion, for example, when the driver stares away from the camera. Our experiments show the effectiveness of the approach with a correct eyes detection rate of 99.41%, on average. The results obtained with the proposed approach in an experiment involving fifteen persons under different levels of sleep deprivation also confirm the discriminability of the fatigue levels. In addition to the measurement of fatigue and drowsiness, the pose tracking capability of the proposed approach has potential applications in distraction assessment and alerting of machine operators.

  5. Use of UAS Remote Sensing Data (AggieAir) to Estimate Crop ET at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    ELarab, M.; Torres, A.; Nieto Solana, H.; Kustas, W. P.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Jensen, A.; McKee, M.; Alsina, M. M.

    2015-12-01

    Estimation of the spatial distribution of evapotranspiration (ET) based on remotely sensed imagery has become useful for managing water in irrigated agricultural at various spatial scales. Currently, data acquired by conventional satellites (Landsat, ASTER, etc.) lack the needed spatial resolution to capture variability of interest to support evapotranspiration estimates. In this study, an unmanned aerial system (UAS), called AggieAirTM, was used to acquire high-resolution imagery in the visual, near infrared (0.15m resolution) and thermal infrared spectra (0.6m resolution). AggieAir flew over two study sites in Utah and Central Valley of California. The imagery was used as input to a surface energy balance model based on the Mapping Evapotranspiration with Internalized Calibration (METRIC) modeling approach. The discussion will highlight the ET estimation methodologies and the implications of having high resolution ET maps.

  6. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    NASA Astrophysics Data System (ADS)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  7. Flow control of a centrifugal fan in a commercial air conditioner

    NASA Astrophysics Data System (ADS)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  8. Simulation of pulmonary air flow with a subject-specific boundary condition.

    PubMed

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A; Tawhai, Merryn H; Lin, Ching-Long

    2010-08-10

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology.

  9. Simulation of pulmonary air flow with a subject-specific boundary condition

    PubMed Central

    Yin, Youbing; Choi, Jiwoong; Hoffman, Eric A.; Tawhai, Merryn H.; Lin, Ching-Long

    2011-01-01

    We present a novel image-based technique to estimate a subject-specific boundary condition (BC) for computational fluid dynamics (CFD) simulation of pulmonary air flow. The information of regional ventilation for an individual is derived by registering two computed tomography (CT) lung datasets and then passed to the CT-resolved airways as the flow BC. The CFD simulations show that the proposed method predicts lobar volume changes consistent with direct image-measured metrics, whereas the other two traditional BCs (uniform velocity or uniform pressure) yield lobar volume changes and regional pressure differences inconsistent with observed physiology. PMID:20483412

  10. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  11. Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing

    NASA Astrophysics Data System (ADS)

    Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary

    2015-11-01

    Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.

  12. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  13. Effect of Marangoni Flows on the Shape of Thin Sessile Droplets Evaporating into Air.

    PubMed

    Tsoumpas, Yannis; Dehaeck, Sam; Rednikov, Alexey; Colinet, Pierre

    2015-12-15

    Freely receding evaporating sessile droplets of perfectly wetting liquids, for which the observed finite contact angles are attributed to evaporation, are studied with a Mach-Zehnder interferometer. The experimentally obtained droplet shapes are found to depart, under some conditions, from the classical macroscopic static profile of a sessile droplet. The observed deviations (or the absence thereof) are explained in terms of a Marangoni flow due to evaporation-induced thermal gradients along the liquid-air interface. When such a Marangoni effect is strong, the experimental profiles exhibit a maximum of the slope at a certain distance from the contact line. In this case, the axisymmetric flow is directed from the contact line to the apex (along the liquid-air interface), hence delivering more liquid to the center of the droplet and making it appear inflated. These findings are quantitatively confirmed by predictions of a lubrication model accounting for the impact of the Marangoni effect on the droplet shape.

  14. Numerical simulation in finite elements of turbulent flows of viscous incompressible fluids in air intakes

    NASA Astrophysics Data System (ADS)

    Begue, C.; Periaux, J.; Perrier, P.; Pouletty, C.

    1985-11-01

    A self-adaptive finite-element method, coupled to a homogenization model of turbulence, is presented for the numerical simulation of unsteady turbulent flow of viscous fluids in air intakes. The nonlinear subproblem due to the convection is solved by an iterative algorithm, and the linear Stokes subproblem due to the diffusion is solved by a Hood-Taylor type iterative algorithm. An efficient and precise minielement approximation is used, and the adaptive mesh procedure is automatic in the calculation, using the physical criteria of rotation and divergence to determine the submeshing zones. The numerical method is demonstrated for the example of three-dimensional laminar flow around and in air intake at a Reynolds number of 200.

  15. A multi-channel, low velocity, hot film anemometry system for measuring air flows in buildings

    SciTech Connect

    Guire, J.L.

    1987-01-01

    A complete analytical and experimental development of a multichannel anemometry system is presented. The system consists of an array of low velocity sensors (0.0 m/s to 1.0 m/s), a constant current power supply, and the required data acquisition equipment. The velocity sensors can be scanned simultaneously yielding absolute air velocities and absolute ambient air temperatures at each of the probe positions in the array. One of the key results that this system can produce is the relationship between boundary layer flow and pressure driven flow through a large irregular aperture, such as a doorway, which up until now has been difficult to accomplish with regard to cost and experimental error incurred. 7 refs., 57 figs.

  16. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  17. A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components

    DTIC Science & Technology

    2016-01-01

    C O R P O R A T I O N Research Report A Methodology for Modeling the Flow of Military Personnel Across Air Force Active and Reserve Components...Lisa M. Harrington, James H . Bigelow, Alexander Rothenberg, James Pita, Paul D. Emslie Limited Print and Electronic Distribution Rights This document...of a particular component—whether active , guard, or reserve. As a result, when personnel policies are implemented in one component, little is known

  18. Oxidation resistance of selected mechanical carbons at 650 deg C in dry flowing air

    NASA Technical Reports Server (NTRS)

    Allen, G. P.; Wisander, D. W.

    1973-01-01

    Oxidation experiments were conducted with several experimental mechanical carbons at 650 C in air flowing at 28 cu cm/sec (STP). Experiments indicate that boron carbide addition and zinc phosphate treatment definitely improved oxidation resistance. Impregnation with coal tar pitch before final graphitization had some beneficial effect on oxidation resistance and it markedly improved flexure strength and hardness. Graphitization temperature alone did not affect oxidation resistance, but with enough added boron carbide the oxidation resistance was increased although the hardness greatly decreased.

  19. Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame

    DTIC Science & Technology

    2012-01-01

    Temperature Measurements in an Ethylene-Air-Opposed Flow Diffusion Flame by Matthew S. Kurman, John M. Densmore, Chol -Bum M. Kweon, and...Oak Ridge Associated Universities John M. Densmore Lawrence Livermore National Laboratory Chol -Bum M. Kweon Vehicle Technology Directorate... Chol -Bum M. Kweon, and Kevin L. McNesby 5d. PROJECT NUMBER 1VP2J1 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND

  20. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    SciTech Connect

    Cummings, James; Withers, Charles; Martin, Eric; Moyer, Neil

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  1. Flow on Magnetizable Particles in Turbulent Air Streams. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Davey, K. R.

    1979-01-01

    The flow of magnetizable particles in a turbulent air stream in the presence of an imposed magnetic field and the phenomenon of drag reduction produced by the introduction of particles in turbulent boundary layer are investigated. The nature of the particle magnetic force is discussed and the inherent difference between electric and magnetic precipitation is considered. The incorporation of turbulent diffusion theory with an imposed magnetic migration process both with and without inertia effects is examined.

  2. An Air-flow-direction Pickup Suitable for Telemetering Use on Pilotless Aircraft

    NASA Technical Reports Server (NTRS)

    Ikard, Wallace L

    1956-01-01

    A vane-type air-flow-direction pickup is described which is suitable for telemetering angle-of-attack and angle-of-sideslip data from rocket-propelled pilotless aircraft models. Test results which are presented show that the device performs well under high accelerations and is stable throughout a Mach number rage from subsonic to above a Mach number of 2.5.

  3. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  4. Venous and Arterial Flow Quantification, are Equally Accurate and Precise with Parallel Imaging Compressed Sensing 4D Phase Contrast MRI

    PubMed Central

    Tariq, Umar; Hsiao, Albert; Alley, Marcus; Zhang, Tao; Lustig, Michael; Vasanawala, Shreyas S.

    2012-01-01

    Purpose To evaluate precision and accuracy of parallel-imaging compressed-sensing 4D phase contrast (PICS-4DPC) MRI venous flow quantification in children with patients referred for cardiac MRI at our children’s hospital. Materials and Methods With IRB approval and HIPAA compliance, 22 consecutive patients without shunts underwent 4DPC as part of clinical cardiac MRI examinations. Flow measurements were obtained in the superior and inferior vena cava, ascending and descending aorta and the pulmonary trunk. Conservation of flow to the upper, lower and whole body was used as an internal physiologic control. The arterial and venous flow rates at each location were compared with paired t-tests and F-tests to assess relative accuracy and precision. RESULTS Arterial and venous flow measurements were strongly correlated for the upper (ρ=0.89), lower (ρ=0.96) and whole body (ρ=0.97); net aortic and pulmonary trunk flow rates were also tightly correlated (ρ=0.97). There was no significant difference in the value or precision of arterial and venous flow measurements in upper, lower or whole body, though there was a trend toward improved precision with lower velocity-encoding settings. Conclusion With PICS-4DPC MRI, the accuracy and precision of venous flow quantification are comparable to that of arterial flow quantification at velocity-encodings appropriate for arterial vessels. PMID:23172846

  5. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    PubMed

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  6. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    NASA Technical Reports Server (NTRS)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  7. Low Dimensional Tools for Flow-Structure Interaction Problems: Application to Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Schmit, Ryan F.; Glauser, Mark N.; Gorton, Susan A.

    2003-01-01

    A low dimensional tool for flow-structure interaction problems based on Proper Orthogonal Decomposition (POD) and modified Linear Stochastic Estimation (mLSE) has been proposed and was applied to a Micro Air Vehicle (MAV) wing. The method utilizes the dynamic strain measurements from the wing to estimate the POD expansion coefficients from which an estimation of the velocity in the wake can be obtained. For this experiment the MAV wing was set at five different angles of attack, from 0 deg to 20 deg. The tunnel velocities varied from 44 to 58 ft/sec with corresponding Reynolds numbers of 46,000 to 70,000. A stereo Particle Image Velocimetry (PIV) system was used to measure the wake of the MAV wing simultaneously with the signals from the twelve dynamic strain gauges mounted on the wing. With 20 out of 2400 POD modes, a reasonable estimation of the flow flow was observed. By increasing the number of POD modes, a better estimation of the flow field will occur. Utilizing the simultaneously sampled strain gauges and flow field measurements in conjunction with mLSE, an estimation of the flow field with lower energy modes is reasonable. With these results, the methodology for estimating the wake flow field from just dynamic strain gauges is validated.

  8. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  9. Parametric study of fluid flow and heat transfer over louvered fins of air heat pump evaporator

    NASA Astrophysics Data System (ADS)

    Muszyński, Tomasz; Kozieł, Sławomir Marcin

    2016-09-01

    Two-dimensional numerical investigations of the fluid flow and heat transfer have been carried out for the laminar flow of the louvered fin-plate heat exchanger, designed to work as an air-source heat pump evaporator. The transferred heat and the pressure drop predicted by simulation have been compared with the corresponding experimental data taken from the literature. Two dimensional analyses of the louvered fins with varying geometry have been conducted. Simulations have been performed for different geometries with varying louver pitch, louver angle and different louver blade number. Constant inlet air temperature and varying velocity ranging from 2 to 8 m/s was assumed in the numerical experiments. The air-side performance is evaluated by calculating the temperature and the pressure drop ratio. Efficiency curves are obtained that can be used to select optimum louver geometry for the selected inlet parameters. A total of 363 different cases of various fin geometry for 7 different air velocities were investigated. The maximum heat transfer improvement interpreted in terms of the maximum efficiency has been obtained for the louver angle of 16 ° and the louver pitch of 1.35 mm. The presented results indicate that varying louver geometry might be a convenient way of enhancing performance of heat exchangers.

  10. Experimental study of convective heat transfer of compressed air flow in radially rotating ducts

    SciTech Connect

    Hwang, G.J,; Tzeng, S.C.; Mao, C.P.

    1999-07-01

    The convective heat transfer of pressurized air flow in radially rotating serpentine channel is investigated experimentally in the present study. The main governing parameters are the Prandtl number, the Reynolds number for forced convection, the rotation number for the Coriolis force induced cross stream secondary flow and the Grashof number for natural convection. To simulate the operation conditions of a real gas turbine, the present study kept the parameters in the test rig approximately the same as those in a real engine. The air in the present serpentine channel was pressurized to increase the air density for making up the low rotational speed in the experiment. Before entering the rotating ducts, the air was also cooled to gain a high density ratio of approximately 1/3 in the ducts. This high density ratio will give a similar order of magnitude of Grashof number in a real operation condition. The local heat transfer rate on the four channel walls are present and compared with that in existing literature.

  11. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  12. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  13. Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow.

    PubMed

    Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei

    2016-11-01

    Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.

  14. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  15. Simultaneous measurement of temperature and velocity fields in convective air flows

    NASA Astrophysics Data System (ADS)

    Schmeling, Daniel; Bosbach, Johannes; Wagner, Claus

    2014-03-01

    Thermal convective air flows are of great relevance in fundamental studies and technical applications such as heat exchangers or indoor ventilation. Since these kinds of flow are driven by temperature gradients, simultaneous measurements of instantaneous velocity and temperature fields are highly desirable. A possible solution is the combination of particle image velocimetry (PIV) and particle image thermography (PIT) using thermochromic liquid crystals (TLCs) as tracer particles. While combined PIV and PIT is already state of the art for measurements in liquids, this is not yet the case for gas flows. In this study we address the adaptation of the measuring technique to gaseous fluids with respect to the generation of the tracer particles, the particle illumination and the image filtering process. Results of the simultaneous PIV/PIT stemming from application to a fluid system with continuous air exchange are presented. The measurements were conducted in a cuboidal convection sample with air in- and outlet at a Rayleigh number Ra ≈ 9.0 × 107. They prove the feasibility of the method by providing absolute and relative temperature accuracies of σT = 0.19 K and σΔT = 0.06 K, respectively. Further open issues that have to be addressed in order to mature the technique are identified.

  16. Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy.

    PubMed

    Wang, Shuhua; Mu, Xiaojing; Wang, Xue; Gu, Alex Yuandong; Wang, Zhong Lin; Yang, Ya

    2015-10-27

    Efficient scavenging the kinetic energy from air-flow represents a promising approach for obtaining clean, sustainable electricity. Here, we report an elasto-aerodynamics-driven triboelectric nanogenerator (TENG) based on contact electrification. The reported TENG consists of a Kapton film with two Cu electrodes at each side, fixed on two ends in an acrylic fluid channel. The relationship between the TENG output power density and its fluid channel dimensions is systematically studied. TENG with a fluid channel size of 125 × 10 × 1.6 mm(3) delivers the maximum output power density of about 9 kW/m(3) under a loading resistance of 2.3 MΩ. Aero-elastic flutter effect explains the air-flow induced vibration of Kapton film well. The output power scales nearly linearly with parallel wiring of multiple TENGs. Connecting 10 TENGs in parallel gives an output power of 25 mW, which allows direct powering of a globe light. The TENG is also utilized to scavenge human breath induced air-flow energy to sustainably power a human body temperature sensor.

  17. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  18. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  19. Embedded MicroHeating Elements in Polymeric MicroChannels for Temperature Control and Fluid Flow Sensing.

    PubMed

    Gaitan, Michael; Locascio, Laurie E

    2004-01-01

    This paper describes the first demonstration of temperature control and flow sensing of fluids using integrated circuit (IC)-based microheating elements embedded in microchannels molded in polydimethylsiloxane (PDMS). Fluid channels and connections to capillary tubing are molded in PDMS using a silicon wafer template. The PDMS film is then bonded to an IC that contains the micromachined microheating elements. Capillary tubes are inserted and fluids are externally pumped through the channels. Heating of the fluid is observed by the formation of bubbles on the microheating element. Sensing of fluid flow is demonstrated by measuring a change in the large signal resistance of the microheater analogous to a hot wire anemometer with a detection limit of ± 320 pL/s.

  20. The Use of Field Trips in Air-Photo Interpretation and Remote-Sensing Classes.

    ERIC Educational Resources Information Center

    Giardino, John Richard; Fish, Ernest Bertley

    1986-01-01

    Advocates the use of field trips for improving students' image-interpretation abilities. Presents guidelines for developing a field trip for an aerial-photo interpretation class or a remote-sensing class. Reviews methodology employed, content emphasis, and includes an exercise that was used on a trip. (ML)

  1. Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements

    SciTech Connect

    Bright, Ido; Lin, Guang; Kutz, Nathan

    2013-12-05

    Compressive sensing is used to determine the flow characteristics around a cylinder (Reynolds number and pressure/flow field) from a sparse number of pressure measurements on the cylinder. Using a supervised machine learning strategy, library elements encoding the dimensionally reduced dynamics are computed for various Reynolds numbers. Convex L1 optimization is then used with a limited number of pressure measurements on the cylinder to reconstruct, or decode, the full pressure field and the resulting flow field around the cylinder. Aside from the highly turbulent regime (large Reynolds number) where only the Reynolds number can be identified, accurate reconstruction of the pressure field and Reynolds number is achieved. The proposed data-driven strategy thus achieves encoding of the fluid dynamics using the L2 norm, and robust decoding (flow field reconstruction) using the sparsity promoting L1 norm.

  2. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    PubMed

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  3. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  4. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    PubMed

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  5. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    NASA Astrophysics Data System (ADS)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  6. Effects of cold dry air nasal stimulation on airway mucosal blood flow in humans.

    PubMed

    Le Merre, C; Isber, J; Chediak, A D; Wanner, A

    2003-10-01

    Several studies have demonstrated that nasal challenges can induce reflex responses in the respiratory system. Some authors have described bronchoconstriction and modification of the pattern of breathing following nasal challenges by irritants and cold air. We propose to determine the effect of nasal stimulation with cold dry air on airway mucosal blood flow (Qaw) in the proximal tracheal bronchial tree of healthy humans. Nine healthy subjects participated in the study. Baseline measurement Qaw, nasal airway resistance (NAR) and airway caliber by specific airways conductance (SGaw) were followed by nasal challenge with cold dry air. Qaw, NAR and Sgaw were determined after the challenge. In those subjects in which a significant decline in Qaw was recorded the protocol was repeated after pretreatment with nasal anesthesia using topical lidocaine. Cold dry air challenge produced a significant decrease in mean Qaw for the nine subjects and this response was abolished by pretreatment with nasal anesthesia using topical lidocaine. There was no significant change in Sgaw and NAR after the challenge and topical lidocaine anesthesia. Our data indicates that nasal stimulation with cold dry air leads to a reduction in Qaw and that this effect may be mediated by a nasal reflex.

  7. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    PubMed

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions.

  8. Nocturnal Katabatic Air Flow in a Forested Watershed: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Unsworth, M. H.; Pypker, T.; Ocheltree, T.; Mahrt, L.; Skyllingstad, E. D.; Bond, B. J.

    2003-12-01

    Many productive forest ecosystems are in mountainous regions where their carbon and energy exchange with the atmosphere cannot be readily studied using micrometeorological methods. At night, katabatic air drainage flow commonly develops in sloping forested watersheds. Such flow is maintained by a three-way balance between gravitational forcing, turbulent mixing and non-linear advection. The carbon dioxide concentration and carbon isotope composition in nocturnal drainage flows may provide information about recent ecosystem productivity, but to interpret these data it is necessary to understand how the properties of the flow are influenced by forest structure and turbulence. We report measurements from a tower erected near the base of an incised watershed in the H.J. Andrews Experimental Forest in the Oregon Cascade Range, and include early results from a numerical modeling program. The watershed is forested with Douglas-fir about 45 years old and 25m high. The tower, 28m high, carries sonic and cup anemometers and thermistor temperature sensors at eight levels. Katabatic drainage flow occurs almost every night and persists for up to 18 hours. The depth of the flow is at least 28m on occasions, and the windspeed often peaks in mid-canopy. The in-canopy flow is well-mixed, with very small vertical gradients of carbon dioxide concentration and temperature. There are some indications that radiative cooling at the canopy top may encourage additional uncoupled drainage flow above the canopy. A numerical model of katabatic flow on slopes is being modified to include roughness elements to simulate a forest canopy. Comparisons between observations and the model will be reported.

  9. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  10. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  11. Flow patterns of natural convection in an air-filled vertical cavity

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  12. Ground-to-air flow visualization using Solar Calcium-K line Background-Oriented Schlieren

    NASA Astrophysics Data System (ADS)

    Hill, Michael A.; Haering, Edward A.

    2017-01-01

    The Calcium-K Eclipse Background-Oriented Schlieren experiment was performed as a proof of concept test to evaluate the effectiveness of using the solar disk as a background to perform the Background-Oriented Schlieren (BOS) method of flow visualization. A ground-based imaging system was equipped with a Calcium-K line optical etalon filter to enable the use of the chromosphere of the sun as the irregular background to be used for BOS. A US Air Force T-38 aircraft performed three supersonic runs which eclipsed the sun as viewed from the imaging system. The images were successfully post-processed using optical flow methods to qualitatively reveal the density gradients in the flow around the aircraft.

  13. Experimental modeling of air blowing into a turbulent boundary layer using an external pressure flow

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.

    2016-10-01

    We have experimentally investigated the characteristics of an incompressible turbulent boundary layer on a plane plate upon the passive blowing of air through a fine-perforated surface and flushing it by supplying an external pressure flow through a wind tunnel using an intake device equipped with an attachment for draining the boundary layer on the inactive side of the plate. A stable decrease in the local values of the surface coefficient of friction, which reaches 80% at the end of the perforated region, has been detected over the length of the plate. The possibility of controlling surface friction by changing the velocity of the external flow and selecting the meshes and filters at the inlet to the flow passage has been demonstrated.

  14. Numerical study of atmospheric air flow in the vicinity of urban environment

    NASA Astrophysics Data System (ADS)

    Valger, S. A.; Fedorova, N. N.; Fedorov, A. V.

    2016-10-01

    The article is devoted to the numerical simulation of turbulent air flows in the vicinity of building complexes. The simulation was performed under isothermal assumption on the basis of 3D URANS equations supplemented with the k-ω SST turbulence model. The ANSYS Fluent Software was used as the main modeling tool. The atmospheric flow in the neighborhood of a building of a complex shape was carried out taking into account the surrounding objects. The numerical simulation was performed under the conditions of the experiments. The 3D structure of the flow in the vicinity of the building was obtained and the comparison of the calculation results with the experimental data on the pressure coefficient distribution on the walls of the building was performed.

  15. Water impact studies. [impact of remote sensing techniques on management storage, flow, and delivery of California water

    NASA Technical Reports Server (NTRS)

    Colwell, R. N.

    1973-01-01

    An investigation has begun into the potential impact of using modern remote sensing techniques as an aid in managing, even on a day-to-day basis, the storage, flow, and delivery of water made available through the California Water Project. It is obvious that the amount of this impact depends upon the extent to which remote sensing is proven to be useful in improving predictions of both the amount of water that will be available and the amount that will be needed. It is also proposed to investigate the potential impact of remote sensing techniques as an aid in monitoring, and perhaps even in directing, changes in land use and life style being brought about through the increased availability of water in central and southern California as a result of the California Water Project. The impact of remote sensing can be of appreciable significance only if: (1) the induced changes are very substantial ones; (2) remote sensing is found, in this context, to be very useful and potentially very cost effective; and (3) resource managers adopt this new technology. Analyses will be conducted of the changing economic bases and the new land use demands resulting from increased water availability in central and southern California.

  16. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  17. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  18. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    NASA Astrophysics Data System (ADS)

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-02-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW.

  19. Unencapsulated Air-stable Organic Field Effect Transistor by All Solution Processes for Low Power Vapor Sensing

    PubMed Central

    Feng, Linrun; Tang, Wei; Zhao, Jiaqing; Yang, Ruozhang; Hu, Wei; Li, Qiaofeng; Wang, Ruolin; Guo, Xiaojun

    2016-01-01

    With its excellent mechanical flexibility, low-cost and low-temperature processing, the solution processed organic field-effect transistor (OFET) is a promising platform technology for developing ubiquitous sensor applications in digital health, environment monitoring and Internet of Things. However, a contradiction between achieving low voltage operation and having stable performance severely hinder the technology to become commercially viable. This work shows that, by reducing the sub-gap density of states (DOS) at the channel for low operation voltage and using a proper low-k non-polar polymer dielectric layer, such an issue can be addressed. Stable electrical properties after either being placed for weeks or continuously prolonged bias stressing for hours in ambient air are achieved for all solution processed unencapsulated OFETs with the channel being exposed to the ambient air for analyte detection. The fabricated device presents a steep subthreshold swing less than 100 mV/decade, and an ON/OFF ratio of 106 at a voltage swing of 3 V. The low voltage and stable operation allows the sensor made of the OFET to be incorporated into a battery-powered electronic system for continuously reliable sensing of ammonia vapor in ambient air with very small power consumption of about 50 nW. PMID:26861412

  20. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping.

    PubMed

    Zheng, Yelong; Song, Le; Hu, Gang; Zhao, Meirong; Tian, Yanling; Zhang, Zihui; Fang, Fengzhou

    2014-05-01

    A micro/nano force can be traced to the International System of Units by means of an electrostatic force balance weight system. However, the micro/nano force measurement system is susceptible to environmental disturbances. Various methods have been proposed to reduce the effect of environmental disturbances and obtain high resolution and fast response. In this paper, we introduce a combination of air damping and inherent damping from the internal molecular friction of spring suspension. This will optimize system stability and improve environmental noise suppression. Results from the air damping model show that the damping ratio increases from 0.0005 to 0.1, which improves the vibration resistance. We found that the system with air damping has the advantages of fast response and low scatter.

  1. Flow mechanism for the long-range transport of air pollutants by the sea breeze causing inland nighttime high oxidants

    SciTech Connect

    Ueda, H.; Mitsumoto, S.; Kurita, H.

    1988-02-01

    Flow mechanism causing nightttime smog was investigated by analyzing 1) continuous records of meteorological data and concentration of oxidants (Ox) for 15 days and 2) aircraft data along the transportation route of a polluted air mass.

  2. Laboratory Investigation of Air-Sea Interfacial Properties in Relation to Gas Exchange and Remote Sensing

    DTIC Science & Technology

    2016-06-13

    Atmospheric Science ,4600 Rickenbacker Causeway,Miami,FL,33149 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...Exchange and Remote Sensing Eric S. Saltzman Rosenstiel School of Marine and Atmospheric Science 4600 Rickenbacker Cswy. Miami, FL 33149 phone (703) 306...1522 fax (703) 306-0377 email esaltzman@rsmas.miami.edu Mark Donelan Rosenstiel School of Marine and Atmospheric Science 4600 Rickenbacker Cswy

  3. An experimental validation of a turbulence model for air flow in a mining chamber

    NASA Astrophysics Data System (ADS)

    Branny, M.; Karch, M.; Wodziak, W.; Jaszczur, M.; Nowak, R.; Szmyd, J. S.

    2014-08-01

    In copper mines, excavation chambers are ventilated by jet fans. A fan is installed at the inlet of the dead-end chamber, which is usually 20-30m long. The effectiveness of ventilation depends on the stream range generated by the fan. The velocity field generated by the supply air stream is fully three-dimensional and the flow is turbulent. Currently, the parameters of 3D air flows are determined using the CFD approach. This paper presents the results of experimental testing and numerical simulations of airflow in a laboratory model of a blind channel, aired by a forced ventilation system. The aim of the investigation is qualitative and quantitative verification of computer modelling data. The analysed layout is a geometrically re-scaled and simplified model of a real object. The geometrical scale of the physical model is 1:10. The model walls are smooth, the channel cross-section is rectangular. Measurements were performed for the average airflow velocity in the inlet duct equal 35.4m/s, which gives a Reynolds number of about 180 000. The components of the velocity vector were measured using the Particle Image Velocimetry approach. The numerical procedures presented in this paper use two turbulence models: the standard k-ɛ model and the Reynolds Stress model. The experimental results have been compared against the results of numerical simulations. In the investigated domain of flow - extending from the air inlet to the blind wall of the chamber - we can distinguish two zones with recirculating flows. The first, reaching a distance of about lm from the inlet is characterized by intense mixing of air. A second vortex is formed into a distance greater than lm from the inlet. Such an image of the velocity field results from both the measurements and calculations. Based on this study, we can conclude that the RSM model provides better predictions than the standard k-ɛ model. Good qualitative agreement is achieved between Reynolds Stress model predictions and measured

  4. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  5. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  6. Experimental Validation of Stratified Flow Phenomena, Graphite Oxidation, and Mitigation Strategies of Air Ingress Accidents

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hee Cheon No; Nam Zin Cho

    2008-12-01

    The US Department of Energy is performing research and development (R&D) that focuses on key phenomena that are important during challenging scenarios that may occur in the Next Generation Nuclear Plant (NGNP) Program / GEN-IV Very High Temperature Reactor (VHTR). Phenomena identification and ranking studies (PIRT) to date have identified the air ingress event, following on the heels of a VHTR depressurization, as very important (Schultz et al., 2006). Consequently, the development of advanced air ingress-related models and verification and validation (V&V) are very high priority for the NGNP program. Following a loss of coolant and system depressurization, air will enter the core through the break. Air ingress leads to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heat-up of the bottom reflector and the reactor core and will cause the release of fission products eventually. The potential collapse of the bottom reflector because of burn-off and the release of CO lead to serious safety problems. For estimation of the proper safety margin we need experimental data and tools, including accurate multi-dimensional thermal-hydraulic and reactor physics models, a burn-off model, and a fracture model. We also need to develop effective strategies to mitigate the effects of oxidation. The results from this research will provide crucial inputs to the INL NGNP/VHTR Methods R&D project. This project is focused on (a) analytical and experimental study of air ingress caused by density-driven, stratified, countercurrent flow, (b) advanced graphite oxidation experiments, (c) experimental study of burn-off in the bottom reflector, (d) structural tests of the burnt-off bottom reflector, (e) implementation of advanced models developed during the previous tasks into the GAMMA code, (f) full air ingress and oxidation mitigation analyses, (g) development of core neutronic models, (h) coupling of the core neutronic and thermal hydraulic models, and (i

  7. Simplified configuration for the combustor of an oil burner using a low pressure, high flow air-atomizing nozzle

    DOEpatents

    Butcher, Thomas A.; Celebi, Yusuf; Fisher, Leonard

    2000-09-15

    The invention relates to clean burning of fuel oil with air. More specifically, to a fuel burning combustion head using a low-pressure, high air flow atomizing nozzle so that there will be a complete combustion of oil resulting in a minimum emission of pollutants. The improved fuel burner uses a low pressure air atomizing nozzle that does not result in the use of additional compressors or the introduction of pressurized gases downstream, nor does it require a complex design. Inventors:

  8. Extinction Dynamics of a Co-flow Diffusion Flame by Very Small Water Droplets Injected into the Air Stream

    DTIC Science & Technology

    2008-07-28

    flame extinction with UFM are available in the literature. Ndubizu et al. [18-20] conducted experiments on the effects of UFM on a forced convection ...injected air Reynolds number of 4 x 105 (Re=650). This suggests that the bulk of the air is affected by the natural convection and deviates...significantly from the streamlines of the injected air at the bottom of the burner. Therefore, the fluid flow set up by the natural convection is

  9. Air and groundwater flow at the interface between fractured host rock and a bentonite buffer

    NASA Astrophysics Data System (ADS)

    Dessirier, B.; Jarsjo, J.; Frampton, A.

    2014-12-01

    Designs of deep geological repositories for spent nuclear fuel include several levels of confinement. The Swedish and Finnish concept KBS-3 targets for example sparsely fractured crystalline bedrock as host formation and would have the waste canisters embedded in an engineered buffer of compacted MX-80 bentonite. The host rock is a highly heterogeneous dual porosity material containing fractures and a rock matrix. Bentonite is a complex expansive porous material. Its water content and mechanical properties are interdependent. Beyond the specific physics of unsaturated flow and transport in each medium, the interface between them is critical. Detailed knowledge of the transitory two-phase flow regime, induced by the insertion of the unsaturated buffer in a saturated rock environment, is necessary to assess the performance of planned KBS-3 deposition holes. A set of numerical simulations based on the equations of two-phase flow for water and air in porous media were conducted to investigate the dynamics of air and groundwater flow near the rock/bentonite interface in the period following installation of the unsaturated bentonite buffer. We assume state of the two-phase flow parameter values for bentonite from laboratory water uptake tests and typical fracture and rock properties from the Äspö Hard rock laboratory (Sweden) gathered under several field characterization campaigns. The results point to desaturation of the rock domain as far as 10 cm away from the interface into matrix-dominated regions for up to 160 days. Similar observations were made during the Bentonite Rock Interaction Experiment (BRIE) at the Äspö HRL, with a desaturation sustained for even longer times. More than the mere time to mechanical and hydraulic equilibrium, the occurrence of sustained unsaturated conditions opens the possibility for biogeochemical processes that could be critical in the safety assessment of the planned repository.

  10. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  11. Test Data of Flow Field of Shuttle SRM Nozzle Joint with Bond Defects, Using Unheated Air

    NASA Technical Reports Server (NTRS)

    Hair, Leroy M.; McAnally, James V.; Hengel, John E.

    1989-01-01

    The nozzle-to-case joint on the Shuttle SRM (as redesigned after the Challenger accident) features an adhesive sealant filling and bonding the joint, with a wiper O-ring to prevent the adhesive from reaching and disabling the closure O-ring. Flawless implementation of that joint design would ensure that hot, corrosive propellant combustion gases never reach the closure O-ring. However, understanding the flow field related to bonding defects is prudent. A comprehensive test program was conducted to quantify such flow fields and associated heating environments. A two-dimensional, full-scale model represented 65 inches of the nozzle joint, using unheated air as the test medium, in a blowdown mode. Geometry variations modeled RSRM assembly tolerances, and two types of bonding defects: pullaways and blowholes. A range of the magnitude of each type defect was tested. Also a range of operational parameters was tested, representative of the RSRM flow environment, including duplication of RSRM Mach and Reynolds numbers. Extensive instrumentation was provided to quantify pressures, heat rates, and velocities. The resulting data established that larger geometric defects cause larger pressure and larger heating, at the closure O-ring region. Velocity trends were not so straight-forward. Variations in assembly tolerances did not generally affect flow fields or heating. Operational parameters affected flow fields and heating as might be expected, increasing density or velocity increased heating. Complete details of this test effort are presented.

  12. Additional research on instabilities in atmospheric flow systems associated with clear air turbulence

    NASA Technical Reports Server (NTRS)

    Stoeffler, R. C.

    1972-01-01

    Analytical and experimental fluid mechanics studies were conducted to investigate instabilities in atmospheric flow systems associated with clear air turbulence. The experimental portion of the program was conducted using an open water channel which allows investigation of flows having wide ranges of shear and density stratification. The program was primarily directed toward studies of the stability of straight, stratified shear flows with particular emphasis on the effects of velocity profile on stability; on studies of three-dimensional effects on the breakdown region in shear layers; on the the interaction of shear flows with long-wave length internal waves; and on the stability of shear flows consisting of adjacent stable layers. The results of these studies were used to evaluate methods used in analyses of CAT encounters in the atmosphere involving wave-induced shear layer instabilities of the Kelvin-Helmholta type. A computer program was developed for predicting shear-layer instability and CAT induced by mountain waves. This technique predicts specific altitudes and locations where CAT would be expected.

  13. Three-dimensional flow observation on the air entrainment into a vertical-wet-pit pump

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Maeda, T.; Nagura, T.; Inoue, T.

    2016-11-01

    The authors consider the air entrainment into a suction pipe which is vertically inserted down into a suction sump across a mean free-water surface. This configuration is often referred to as the “vertical wet-pit pump,” and has many practical advantages in construction, maintenance and operation. Most of the flows appearing in various industrial and environmental problems like the present suction- sump flow become often complicated owing to both of their unsteadiness with poor periodicity and their fully-three-dimensionality. In order to understand the complicated flow inside a suction sump in the vertical-wet-pit-pump configuration, the authors experimentally observe the flow using the three-dimensional particle tracking velocimetry (3D-PTV) technique, which includes more unknown factors in accuracy and reliability than other established measuring techniques. So, the authors examine the simultaneous measurement by the 3D-PTV with another velocimetry the ultrasonic velocity profiler. As a result, under the suitable condition with high accuracy, the authors have revealed the complicated flow.

  14. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef

    2003-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.

  15. Air flow analysis in the upper Río Negro Valley (Argentina)

    NASA Astrophysics Data System (ADS)

    Cogliati, M. G.; Mazzeo, N. A.

    2006-06-01

    The so called Upper Río Negro Valley in Argentina is one of the most important fruit and vegetable production regions of the country. It comprises the lower valleys of the Limay and Neuquén rivers and the upper Negro river valley. Out of the 41,671 cultivated hectares, 84.6% are cultivated with fruit trees, especially apple, pear and stone fruit trees. Late frosts occurring when trees are sensitive to low temperatures have a significant impact on the regional production. This study presents an analysis of air flow characteristics in the Upper Río Negro Valley and its relationship with ambient air flow. To such effect, observations made when synoptic-scale weather patterns were favorable for radiative frosts (light wind and clear sky) or nocturnal temperature inversion in the lower layer were used. In the Negro river valley, both wind channeling and downward horizontal momentum transport from ambient wind were observed; in nighttime, very light wind events occurred, possibly associated with drainage winds from the nearby higher levels of the barda. In the Neuquén river valley, the prevailing effect appeared to be forced channeling, consistent with the results obtained in valleys where the synoptic scale wind crossed the axis of the valley. In the Limay river valley, the flow was observed to blow parallel to the longitudinal valley axis, possibly influenced by pressure gradient and forced channeling.

  16. An investigation of channel flow with a smooth air-water interface

    NASA Astrophysics Data System (ADS)

    Madad, Reza; Elsnab, John; Chin, Cheng; Klewicki, Joseph; Marusic, Ivan

    2015-06-01

    Experiments and numerical simulation are used to investigate fully developed laminar and turbulent channel flow with an air-water interface as the lower boundary condition. Laser Doppler velocimetry measurements of streamwise and wall-normal velocity components are made over a range of Reynolds number based upon channel height and bulk velocity from 1100 to 4300, which encompasses the laminar, transitional and low Reynolds numbers turbulent regimes. The results show that the airflow statistics near the stationary wall are not significantly altered by the air-water moving interface and reflect those found in channel flows. The mean statistics on the water interface side largely exhibit results similar to simulated Poiseuille-Couette flow (PCF) with a solid moving wall. For second-order statistics, however, the simulation and experimental results show some discrepancies near the moving water surface, suggesting that a full two-phase simulation is required. A momentum and energy transport tubes analysis is investigated for laminar and turbulent PCFs. This analysis builds upon the classical notion of a streamtube and indicates that part of the energy from the pressure gradient is transported towards the stationary wall and is dissipated as heat inside the energy tubes, while the remainder is transmitted to the moving wall. For the experiments, the airflow energy is transmitted towards the water to overcome the drag force and drive the water forward; therefore, the amount of energy transferred to the water is higher than the energy transferred to a solid moving wall.

  17. Nonuniform air flow in inlets: the effect on filter deposits in the fiber sampling cassette.

    PubMed

    Baron, P A; Chen, C C; Hemenway, D R; O'Shaughnessy, P

    1994-08-01

    Smoke stream studies were combined with a new technique for visualizing a filter deposit from samples used to monitor asbestos or other fibers. Results clearly show the effect of secondary flow vortices within the sampler under anisoaxial sampling conditions. The vortices observed at low wind velocities occur when the inlet axis is situated at angles between 45 degrees and 180 degrees to the motion of the surrounding air. It is demonstrated that the vortices can create a complex nonuniform pattern in the filter deposit, especially when combined with particle settling or electrostatic interactions between the particles and the sampler. Inertial effects also may play a role in the deposit nonuniformity, as well as causing deposition on the cowl surfaces. Changes in the sampler, such as its placement, may reduce these biases. The effects noted are not likely to occur in all sampling situations, but may explain some reports of high variability on asbestos fiber filter samples. The flow patterns observed in this study are applicable to straight, thin-walled inlets. Although only compact particles were used, the air flow patterns and forces involved will have similar effects on fibers of the same aerodynamic diameter.

  18. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  19. Stabilizing MoS2 Nanosheets through SnO2 Nanocrystal Decoration for High-Performance Gas Sensing in Air.

    PubMed

    Cui, Shumao; Wen, Zhenhai; Huang, Xingkang; Chang, Jingbo; Chen, Junhong

    2015-05-20

    The unique properties of MoS(2) nanosheets make them a promising candidate for high-performance room temperature sensing. However, the properties of pristine MoS(2) nanosheets are strongly influenced by the significant adsorption of oxygen in an air environment, which leads to instability of the MoS(2) sensing device, and all sensing results on MoS(2) reported to date were exclusively obtained in an inert atmosphere. This significantly limits the practical sensor application of MoS(2) in an air environment. Herein, a novel nanohybrid of SnO(2) nanocrystal (NC)-decorated crumpled MoS(2) nanosheet (MoS(2)/SnO(2)) and its exciting air-stable property for room temperature sensing of NO(2) are reported. Interestingly, the SnO(2) NCs serve as strong p-type dopants for MoS(2), leading to p-type channels in the MoS(2) nanosheets. The SnO(2) NCs also significantly enhance the stability of MoS(2) nanosheets in dry air. As a result, unlike other MoS(2) sensors operated in an inert gas (e.g. N(2)), the nanohybrids exhibit high sensitivity, excellent selectivity, and repeatability to NO(2) under a practical dry air environment. This work suggests that NC decoration significantly tunes the properties of MoS(2) nanosheets for various applications.

  20. Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Wang, Z. H.; Wang, C. Y.; Chen, K. S.

    Two-phase flow and transport of reactants and products in the air cathode of proton exchange membrane (PEM) fuel cells is studied analytically and numerically. Single- and two-phase regimes of water distribution and transport are classified by a threshold current density corresponding to first appearance of liquid water at the membrane/cathode interface. When the cell operates above the threshold current density, liquid water appears and a two-phase zone forms within the porous cathode. A two-phase, multicomponent mixture model in conjunction with a finite-volume-based computational fluid dynamics (CFD) technique is applied to simulate the cathode operation in this regime. The model is able to handle the situation where a single-phase region co-exists with a two-phase zone in the air cathode. For the first time, the polarization curve as well as water and oxygen concentration distributions encompassing both single- and two-phase regimes of the air cathode are presented. Capillary action is found to be the dominant mechanism for water transport inside the two-phase zone of the hydrophilic structure. The liquid water saturation within the cathode is predicted to reach 6.3% at 1.4 A cm -2 for dry inlet air.

  1. Investigation of Air Flow in Right-Angle Elbows in a Rectangular Duct

    DTIC Science & Technology

    1941-10-01

    1941 as Advance Restricted Report VESTIG.TI1I! OF AIR FLOW IN RIGHT-AJGLE ELBOWS IN A RECTANGUIAR DUCT By Charles H. McLellan and Walter A. Bartlett...lrotheo t-ibc boforc theo aizr was ccr-lotoly turned. Tho two ch-r:ra-.tcris;tics of the elbows which were con- sidc-red to bn i-n oi-tant vcoe the nu~r...euct (l’epth at rah:o section p rmau;s density of air andI the following ainensl.onal unito: Po 1 ottic-prescure r.rop in both entrance duct ana. elbow

  2. Dynamics of autoignitive DME/air coflow flames in oscillating flows

    NASA Astrophysics Data System (ADS)

    Deng, Sili; Zhao, Peng; Mueller, Michael; Law, Chung

    2016-11-01

    The structure and dynamics of laminar nonpremixed dimethyl ether (DME)/air coflow flames were investigated at elevated temperatures and pressures, conditions at which autoignition times become competitive with flame times. Computations with detailed chemistry were performed for DME and heated coflow air at 30 atm with uniform but sinusoidally oscillating inlet velocities. These unsteady cases were compared with steady flames to elucidate the effect of oscillation frequency on the flame dynamics. In the oscillating reacting flow, periodic but hysteretic transition occurs between a multibrachial autoignition front that locates downstream at high inlet velocity and a tribrachial flame that locates upstream at low inlet velocity. The finite induction time for autoignition results in this hysteretic behavior, which diminishes at lower oscillation frequency as there is more time for chemistry to respond to the hydrodynamic changes and consequently approach steady state.

  3. Remote sensing observations for monitoring and mathematical simulations of transboundary air pollutants migration from Siberian mass wildfires to Kazakhstan

    NASA Astrophysics Data System (ADS)

    Kaipov, I. V.

    2017-03-01

    Anthropogenic and natural factors have increased the power of wildfires in massive Siberian woodlands. As a consequence, the expansion of burned areas and increase in the duration of the forest fire season have led to the release of significant amounts of gases and aerosols. Therefore, it is important to understand the impact of wildland fires on air quality, atmospheric composition, climate and accurately describe the distribution of combustion products in time and space. The most effective research tool is the regional hydrodynamic model of the atmosphere, coupled with the model of pollutants transport and chemical interaction. Taking into account the meteorological parameters and processes of chemical interaction of impurities, complex use of remote sensing techniques for monitoring massive forest fires and mathematical modeling of long-range transport of pollutants in the atmosphere, allow to evaluate spatial and temporal scale of the phenomenon and calculate the quantitative characteristics of pollutants depending on the height and distance of migration.

  4. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing

    PubMed Central

    Li, Helong; Chu, Wei; Xu, Huailiang; Cheng, Ya; Chin, See-Leang; Yamanouchi, Kaoru; Sun, Hong-Bo

    2016-01-01

    Laser filamentation produced by the propagation of intense laser pulses in flames is opening up new possibility in application to combustion diagnostics that can provide useful information on understanding combustion processes, enhancing combustion efficiency and reducing pollutant products. Here we present simultaneous identification of multiple combustion intermediates by femtosecond filament excitation for five alkanol-air flames fueled by methanol, ethanol, n-propanol, n-butanol, and n-pentanol. We experimentally demonstrate that the intensities of filament-induced photoemission signals from the combustion intermediates C, C2, CH, CN increase with the increasing number of carbons in the fuel molecules, and the signal ratios between the intermediates (CH/C, CH/C2, CN/C, CH/C2, CN/CH) are different for different alkanol combustion flames. Our observation provides a way for sensing multiple combustion components by femtosecond filament excitation in various combustion conditions that strongly depend on the fuel species. PMID:27250021

  5. Gold-on-Polymer-Based Sensing Films for Detection of Organic and Inorganic Analytes in the Air

    NASA Technical Reports Server (NTRS)

    Manatt, Kenneth; Homer, Margie; Ryan, Margaret; Kisor, Adam; Shevade, Abhijit; Jewell, April; Zhou, Hanying

    2008-01-01

    A document discusses gold-on-polymer as one of the novel sensor types developed for part of the sensor development task. Standard polymer-carbon composite sensors used in the JPL Electronic Nose (ENose) have been modified by evaporating 15 nm of metallic gold on the surface. These sensors have been shown to respond to alcohols, aromatics, ammonia, sulfur dioxide, and elemental mercury in the parts-per-million and parts-per-billion concentration ranges in humidified air. The results have shown good sensitivity of these films operating under mild conditions (operating temperatures 23-28 C and regeneration temperature up to 40 C). This unique sensor combines the diversity of polymer sensors for chemical sensing with their response to a wide variety of analytes with the specificity of a gold sensor that shows strong reaction/binding with selected analyte types, such as mercury or sulfur.

  6. Method to estimate drag coefficient at the air/ice interface over drifting open pack ice from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Feldman, U.

    1984-01-01

    A knowledge in near real time, of the surface drag coefficient for drifting pack ice is vital for predicting its motions. And since this is not routinely available from measurements it must be replaced by estimates. Hence, a method for estimating this variable, as well as the drag coefficient at the water/ice interface and the ice thickness, for drifting open pack ice was developed. These estimates were derived from three-day sequences of LANDSAT-1 MSS images and surface weather charts and from the observed minima and maxima of these variables. The method was tested with four data sets in the southeastern Beaufort sea. Acceptable results were obtained for three data sets. Routine application of the method depends on the availability of data from an all-weather air or spaceborne remote sensing system, producing images with high geometric fidelity and high resolution.

  7. A transistor based air flow transducer for thermohygrometric control of neonatal ventilatory applications.

    PubMed

    Schena, Emiliano; Silvestri, Sergio

    2008-10-01

    An air flow transducer for controlling heated humidifiers used in neonatal artificial ventilation, suitable for in-line application in monopatient breathing circuits, is described here. The sensor is built with two nominally identical bipolar junction transistors, with different packages, as hot elements operated at a regulated constant voltage. The operation principle is based on the differential convective heat power exchanged with the fluid stream due to the different thermal conductivities of the transistors' packages. The underlying theory is described in mathematical terms and the theoretical model is validated with experimental data in the mass flow rate range from 4 to 215 mg s(-1). The nonlinear behavior allows sensitivities from -5 mV/(mg s(-1)) at flow rates in the range of 4-130 mg s(-1) to -2 mV/(mg s(-1)) at higher flow rates up to 215 mg s(-1). The linear range extends from 40 to 130 mg s(-1), with constant sensitivity equal to -5 mV/(mg s(-1)). The differential nature of the output allows to obtain repeatabilities in the order of 2% for fluid temperatures between 20 and 25 degrees C and of about 6% if the fluid temperature lies in the range of 15-35 degrees C. The relatively long time constant, in the order of 20+/-5 s, makes the sensor suitable for average flow rate measurements. Using the sensor's output as a control variable of a heated humidifier for artificial ventilation, the relative humidity of gases varies by only 20% in the flow rate range of the sensor (from 95% to 75%), whereas the same parameter shows a variation of about 40% (from 100% to 60%) with the same humidifier without flow control.

  8. Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica†

    PubMed Central

    Kong, Xianming; Xi, Yuting; LeDuff, Paul; Li, Erwen; Liu, Ye; Cheng, Li-Jing; Rorrer, Gregory L.; Tan, Hua; Wang, Alan X.

    2016-01-01

    Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (106–107) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10−17 g trinitrotoluene from only 200 nanoliter solution. PMID:27714122

  9. Optofluidic sensing from inkjet-printed droplets: the enormous enhancement by evaporation-induced spontaneous flow on photonic crystal biosilica.

    PubMed

    Kong, Xianming; Xi, Yuting; LeDuff, Paul; Li, Erwen; Liu, Ye; Cheng, Li-Jing; Rorrer, Gregory L; Tan, Hua; Wang, Alan X

    2016-10-06

    Novel transducers for detecting an ultra-small volume of an analyte solution play pivotal roles in many applications such as chemical analysis, environmental protection and biomedical diagnosis. Recent advances in optofluidics offer tremendous opportunities for analyzing miniature amounts of samples with high detection sensitivity. In this work, we demonstrate enormous enhancement factors (10(6)-10(7)) of the detection limit for optofluidic analysis from inkjet-printed droplets by evaporation-induced spontaneous flow on photonic crystal biosilica when compared with conventional surface-enhanced Raman scattering (SERS) sensing using the pipette dispensing technology. Our computational fluid dynamics simulation has shown a strong recirculation flow inside the 100 picoliter droplet during the evaporation process due to the thermal Marangoni effect. The combination of the evaporation-induced spontaneous flow in micron-sized droplets and the highly hydrophilic photonic crystal biosilica is capable of providing a strong convection flow to combat the reverse diffusion force, resulting in a higher concentration of the analyte molecules at the diatom surface. In the meanwhile, high density hot-spots provided by the strongly coupled plasmonic nanoparticles with photonic crystal biosilica under a 1.5 μm laser spot are verified by finite-difference time domain simulation, which is crucial for SERS sensing. Using a drop-on-demand inkjet device to dispense multiple 100 picoliter analyte droplets with pinpoint accuracy, we achieved the single molecule detection of Rhodamine 6G and label-free sensing of 4.5 × 10(-17) g trinitrotoluene from only 200 nanoliter solution.

  10. 3-D Numerical Simulations of Biofilm Dynamics with Quorum Sensing in a Flow Cell

    DTIC Science & Technology

    2014-01-01

    Especially, the phenomenon of quorum sensing regulating expopolysacharride production during biofilm formation has been reported widely in the...of, even if it is produced by other bacteria. However, how quorum sensing regulation affect the EPS production is not clearly resolved. Besides, in...some bacterial systems, like Vibrio cholerae, the EPS production is suppressed when the density of autoinducer reaches its threshold value [?]; whereas

  11. An effective electrical sensing scheme using AC electrothermal flow on a biosensor platform based on a carbon nanotube network

    NASA Astrophysics Data System (ADS)

    Lee, Won Cheol; Lee, Hoseok; Lim, Jaeheung; Park, Young June

    2016-11-01

    We report a simple and efficient electrical sensing scheme that can be used to overcome the "diffusion limit" of affinity-based biosensors by incorporating the structural advantage of a concentric electrode biosensor platform and the microstirring effect of AC electrothermal flow (ACEF). To prove the effect of ACEF on the biosensor performance, we performed both simulations and experiments for the detection of cardiac troponin-I, which is a biomarker for acute myocardial infarction. The finite element simulation results indicate that AC bias to the electrode (which has a concentric structure in our device) can induce fast convection flow, which facilitates the transport of the target molecules to the binding region located between the two electrodes. In our device, the channel region made of a carbon nanotube network decorated with gold nanoparticles, which act as the attaching sites of the probe molecules, is used as a highly sensitive electrical channel. We find that the electrical sensing method exhibited extremely fast sensing speeds compared with those under no bias (diffusion-limited) conditions.

  12. Synergy use of satellite remote sensing and in-situ monitoring data for air pollution impacts on urban climate

    NASA Astrophysics Data System (ADS)

    Savastru, Dan M.; Zoran, Maria A.; Savastru, Roxana S.

    2016-10-01

    The increase of urban atmospheric pollution due to particulate matters (PM) in different fraction sizes affects seriously not only human health and environment, but also city climate directly and indirectly. In the last decades, with the economic development and the increased emissions from industrial, traffic and domestic pollutants, the urban atmospheric pollution with remarkable high PM2.5 (particulate matters with aerodynamic diameter less than 2.5 μm) and PM10 (particulate matters with aerodynamic diameter less than 10 μm) concentration levels became serious in the metropolitan area of Bucharest in Romania. Both active as well as satellite remote sensing are key applications in global change science and urban climatology. The aerosol parameters can be measured directly in situ or derived from satellite remote sensing observations. All these methods are important and complementary. The current study presents a spatiotemporal analysis of the aerosol concentrations in relation with climate parameters in two size fractions (PM10 and PM2.5) in Bucharest metropolitan area. Daily average particle matters concentrations PM10 and PM2.5 for Bucharest metropolitan area have been provided by 8 monitoring stations belonging to air pollution network of Environmental Protection Agency. The C005 (version 5.1) Level 2 and Level 3 Terra and Aqua MODIS AOD550 time-series satellite data for period 01/01/2011- 31/12/2012 have been also used. Meteorological variables (air temperature, relative humidity, sea level atmospheric pressure) have been provided by in-situ measurements. Both in-situ monitoring data as well as MODIS Terra/Aqua time-series satellite data for 2011-2012 period provided useful tools for particle matter PM2.5 and PM10 monitoring.

  13. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  14. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing.

    PubMed

    Peng, Di; Yang, Lixia; Cai, Tao; Liu, Yingzheng; Zhao, Xiaofeng; Yao, Zhiqi

    2016-09-28

    Yttria-stabilized zirconia (YSZ)-based thermal barrier coating (TBC) has been integrated with thermographic phosphors through air plasma spray (APS) for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm) on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm); a photo-multiplier tube (PMT) and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor's performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  15. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    PubMed Central

    Peng, Di; Yang, Lixia; Cai, Tao; Liu, Yingzheng; Zhao, Xiaofeng; Yao, Zhiqi

    2016-01-01

    Yttria-stabilized zirconia (YSZ)-based thermal barrier coating (TBC) has been integrated with thermographic phosphors through air plasma spray (APS) for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm) on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm); a photo-multiplier tube (PMT) and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature. PMID:27690037

  16. Thermal anemometric assessment of coronary flow reserve with a pressure-sensing guide wire: an in vitro evaluation.

    PubMed

    van der Horst, Arjen; Geven, Maartje C F; Rutten, Marcel C M; Pijls, Nico H J; van de Vosse, Frans N

    2011-07-01

    Assessment of coronary flow reserve (CFR) with a commercially available pressure-sensor-tipped guide wire using the principle of thermal anemometry could provide major clinical benefits both in determining and in distinguishing between epicardial and microvascular coronary artery disease. In constant-temperature thermal anemometry, the electrical power required to maintain an element at a constant temperature is a measure for the local shear rate. Here, the feasibility of applying this thermoconvection method to a pressure-sensing guide wire is investigated using an in vitro model. A theoretical relation between electrical power and steady shear rate based on boundary layer theory was tested in an experimental set-up. In steady flow, a reproducible relation between electrical power and shear rate was obtained with an overheat temperature of 20K, which was in good agreement with theory. The relation between shear rate and flow, however, depends on geometry of the artery and position of the guide wire inside the vessel. Although this means that this thermoconvection method is less useful for absolute flow measurements, CFR could be assessed even for unsteady flow using the steady calibration curve with a mean relative difference of (3±5)% compared to CFR derived from the golden standard using an ultrasonic flow measurement device.

  17. Integrated LTCC Pressure/Flow/Temperature Multisensor for Compressed Air Diagnostics†

    PubMed Central

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues. PMID:22163518

  18. Assessment of Human Ambulatory Speed by Measuring Near-Body Air Flow

    PubMed Central

    Bonomi, Alberto G.; Salati, Stefano

    2010-01-01

    Accurate measurements of physical activity are important for the diagnosis of the exacerbation of chronic diseases. Accelerometers have been widely employed in clinical research for measuring activity intensity and investigating the association between physical activity and adverse health conditions. However, the ability of accelerometers in assessing physical activity intensity such as walking speed has been constrained by the inter-individual variability in sensor output and by the necessity of developing unobtrusive low-power monitoring systems. This paper will present a study aimed at investigating the accuracy of a wearable measuring system of near-body air flow to determine ambulatory speed in the field. PMID:22163681

  19. Integrated LTCC pressure/flow/temperature multisensor for compressed air diagnostics.

    PubMed

    Fournier, Yannick; Maeder, Thomas; Boutinard-Rouelle, Grégoire; Barras, Aurélie; Craquelin, Nicolas; Ryser, Peter

    2010-01-01

    We present a multisensor designed for industrial compressed air diagnostics and combining the measurement of pressure, flow, and temperature, integrated with the corresponding signal conditioning electronics in a single low-temperature co-fired ceramic (LTCC) package. The developed sensor may be soldered onto an integrated electro-fluidic platform by using standard surface mount device (SMD) technology, e.g., as a standard electronic component would be on a printed circuit board, obviating the need for both wires and tubes and thus paving the road towards low-cost integrated electro-fluidic systems. Several performance aspects of this device are presented and discussed, together with electronics design issues.

  20. Temperature measurements in hypersonic air flows using laser-induced O2 fluorescence

    NASA Technical Reports Server (NTRS)

    Laufer, Gabriel; Mckenzie, Robert L.

    1988-01-01

    An investigation is reported of the use of laser-induced fluorescence on oxygen for the measurement of air temperature and its fluctuations owing to turbulence in hypersonic wind tunnel flows. The results show that for temperatures higher than 60 K and densities higher than 0.01 amagat, the uncertainty in the temperature measurement can be less than 2 percent if it is limited by photon-statistical noise. The measurement is unaffected by collisional quenching and, if the laser fluence is kept below 1.5 J/sq cm, it is also unaffected by nonlinear effects which are associated with depletion of the absorbing states.

  1. The potential for air flow reduction in fume hoods at Hanford

    SciTech Connect

    Enderlin, W.I.

    1988-12-01

    The objective of this task is to investigate the feasibility of reducing air flow at the face of laboratory hoods at Hanford during off shift hours for the purpose of energy conservation. Identifying strategies and systems currently available on the market that would facilitate such a reduction, should it be deemed feasible, is also an objective. This report discusses the methodology employed in performing this investigation and the findings resulting therefrom and sets forth conclusions and recommendations derived from these findings. A bibliography and list of references are included. 9 refs.

  2. Holocene flows of the Cima volcanic field, Mojave Desert (California), Part 1: Remote sensing and multi-scale morphometry

    NASA Astrophysics Data System (ADS)

    Beem, J. R.; Luecke, A.; Polun, S. G.; Robertson, T.; Savage, A.; Soldati, A.; Whittington, A. G.; Gomez, F. G.

    2014-12-01

    Lava flow morphology and texture can provide insight into rheological and other physical properties of the flow. Studies of terrestrial and extra-terrestrial lava flows rely heavily on remotely sensed observations. This research aims to quantify micromorphology and texture of a Holocene lava flow in the Cima volcanic field (eastern California) using digital elevation models and radar backscatter imagery. We are testing the hypothesis that spatial patterns in morphometry and backscatter roughness correspond with varying rheological conditions during emplacement. The site is ideally suited for morphological study owing to the youthfulness of the flow, as well as the lack of vegetation and minimal surface erosion resulting from the high desert climate. The studied lava flow spans approximately 2.5 km and exhibits well defined lobate forms and lava ropes with clear A'a' to Pahoehoe transitions. This study assesses lava flow micromorphology using a very high resolution (5 cm pixel) digital elevation model (DEM). The DEM was constructed from low-altitude aerial photos acquired using a remotely-controlled model aircraft. In addition to the DEM, the resulting orthoimagery provided a basis for distinguishing pristine lava flow surfaces from areas covered by vegetation and/or eolian deposits. Longer-wavelength morphology (spatial scales greater than 1 meter) is analyzed using a 50 cm pixel DEM produced using stereoscopic NAPP aerial photographs. Roughness estimates are compared with radar backscatter images including steeply incident C-band (5.6 cm wavelength) and L-band (24 cm wavelength) satellite data, as well as shallow incidence Ku-band data (1.7 cm wavelength) acquired using a ground-based imaging radar from an adjacent cinder cone. Photogrammetry and radar provide complementary information on lava flow morphology and micromorphological roughness, which are assessed at different spatial scales using general statistics, as well as the local hypsometric integral.

  3. Heat transfer and pressure drop for air flow through enhanced passages. Final report

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  4. Heat transfer and pressure drop for air flow through enhanced passages

    SciTech Connect

    Obot, N.T.; Esen, E.B.

    1992-06-01

    An extensive experimental investigation was carried out to determine the pressure drop and heat transfer characteristics for laminar, transitional and turbulent flow of air through a smooth passage and twenty-three enhanced passages. The internal surfaces of all enhanced passages had spirally shaped geometries; these included fluted, finned/ribbed and indented surfaces. The Reynolds number (Re) was varied between 400 and 50000. The effect of heat transfer (wall cooling or fluid heating) on pressure drop is most significant within the transition region; the recorded pressure drop with heat transfer is much higher than that without heat transfer. The magnitude of this effect depends markedly on the average surface temperature and, to a lesser extent, on the geometric characteristics of the enhanced surfaces. When the pressure drop data are reduced as values of the Fanning friction factor(f), the results are about the same with and without heat transfer for turbulent flow, with moderate differences in the laminar and transition regions.

  5. Control of airborne nickel welding fumes by means of a vertical laminar air flow system

    SciTech Connect

    Helms, T.C.

    1980-12-08

    The purpose of this study was to evaluate the effeciveness of a clean room facility with laminar air flow in the control of nickel fumes released from metal inert gas (MIG) and shielded metal arc (SMA) welding operations performed on mild steel using nickel filler materials. From data observed in these experiments, it appears that the laminar flow clean room approach to controlling welding fumes can be successful in certain small table top welding operations. However, almost any interferences that obstruct the downward airflow can result in eddy currents and subsequent build-up of fumes by entrapment. Airflow patterns differ significantly when comparing table top operations to welding on large cylindrical and/or doughnut shaped items. (JGB)

  6. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    PubMed

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  7. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    NASA Astrophysics Data System (ADS)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  8. Characterization of multiphase fluid flow during air-sparged hydrocyclone flotation by x-ray CT

    SciTech Connect

    Miller, J.D.

    1993-03-01

    During this quarter a new set of experiments was carried out with and without collector in order to understand the flow patterns inside the ASH unit for both hydrophilic and hydrophobic particles. These tests were designed to study the effects of percent solids in the feed, A* - the nondimensional ratio of overflow opening area to underflow opening area, and the effect of collector addition on the flow characteristics. These experiments were done with 0%, 5% and 15% solids in the feed. The latter two cases were studied for three different A* values and also with and without the addition of collector. The value of Q*, the dimensionless ratio of air f low rate and slurry flow rate was maintained at the same level (Q* 4.55). Quartz particles of size [minus]100 +200 mesh were used for this study rather than coal particles because they did not abrade and were of a higher density. The reagents and their dosages used were 40 ppm (water basis) of frother (MIBC) and 800 g of collector (dodecyl amine) per ton of solids in the suspension. At room temperature, quartz is intrinsically hydrophilic while addition of the amine collector renders the quartz particles hydrophobic. The absence of collector will be referred to as the hydrophilic case and the presence of collector will be referred to as the hydrophobic case.A total of 11 scans was taken over the entire length of the ASH unit. Software has now been developed to analyze the CT images obtained from these tests and is able to account for any offset of the air core from the axis of the ASH. In this way, the image is reconstructed and a radial density profile of the time averaged flow is generated. Some experimental results are presented graphically in Figures 1 through 4 at 0% and 5% solids in the suspension for both hydrophilic and hydrophobic cases.

  9. Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade

    NASA Astrophysics Data System (ADS)

    Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.

    2013-12-01

    The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.

  10. Axial flow reversal and its significance in air-sparged hydrocyclone (ASH) flotation

    SciTech Connect

    Miller, J.D.; Das, A.; Yin, D.

    1995-12-31

    In recent years the potential of air-sparged hydrocyclone (ASH) flotation for fine coal cleaning has been demonstrated both in pilot plant testing and in a plant-site demonstration program. Further improvements in the ASH technology will depend, to some extent, on improved understanding of the complex multiphase fluid flow. Froth transport plays a very important role in determining the efficiency of fine coal cleaning by ASH flotation. It should be noted that the surface of zero axial velocity is of particular significance in froth transport because the location of this surface actually accounts for the amount of froth being transported to the overflow. In this regard, the axial flow reversal has been examined based on specially designed tracer experiments. On the basis of these experimental results, modeling efforts were made to characterize the flow pattern in the ASH. The theoretical predictions based on turbulent fluid dynamic considerations were found to describe experimental observations regarding the surface of zero axial velocity. These results that define the surface of zero axial velocity together with froth phase features established from X-ray CT measurements provide an excellent description of the flow characteristics in ASH flotation and explain the effect of various process variables, such as dimensionless area (A*), dimensionless flowrate (Q*), inlet pressure, percent solids, etc., on flotation recovery. On this basis it is expected that further advances in the design and operation of the ASH system can be made, leading to more efficient use of the ASH technology for fine coal cleaning.

  11. Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad

    2011-04-01

    Traffic during operation at a junction undergoes different flow conditions and modal events which result into dynamic fleet characteristics generating more emissions and stronger vehicle-induced heat and wakes generating obscure dispersion. Traffic in a manner operated at junctions often creates pockets of higher concentrations the locations of which shift as a result of the combine effects of traffic dynamics and random airflow. This research examined the impacts of traffic dynamics and meteorology on the levels and locations of higher concentrations of pollutant CO, NO 2 and PM within the influence of signalized traffic intersection and a conventional two-lane roundabout in a response to varying flow conditions and emissions resulted from the traffic operations. Three line source dispersion models have been used to determine the impact on air quality. Emissions have been calculated for different scenarios developed from different combinations of semi-empirical and field based time and space-mean speeds and lane-width based density when traffic undergoes free, interrupted and congested-flow conditions during operation. It has been found that the locations of highest concentrations within the domain change as traffic with different modal share encounters different flow conditions at different times of a day.

  12. Computer Programs for Calculating the Isentropic Flow Properties for Mixtures of R-134a and Air

    NASA Technical Reports Server (NTRS)

    Kvaternik, Raymond G.

    2000-01-01

    Three computer programs for calculating the isentropic flow properties of R-134a/air mixtures which were developed in support of the heavy gas conversion of the Langley Transonic Dynamics Tunnel (TDT) from dichlorodifluoromethane (R-12) to 1,1,1,2 tetrafluoroethane (R-134a) are described. The first program calculates the Mach number and the corresponding flow properties when the total temperature, total pressure, static pressure, and mole fraction of R-134a in the mixture are given. The second program calculates tables of isentropic flow properties for a specified set of free-stream Mach numbers given the total pressure, total temperature, and mole fraction of R-134a. Real-gas effects are accounted for in these programs by treating the gases comprising the mixture as both thermally and calorically imperfect. The third program is a specialized version of the first program in which the gases are thermally perfect. It was written to provide a simpler computational alternative to the first program in those cases where real-gas effects are not important. The theory and computational procedures underlying the programs are summarized, the equations used to compute the flow quantities of interest are given, and sample calculated results that encompass the operating conditions of the TDT are shown.

  13. Real time measurement of transient event emissions of air toxics by tomographic remote sensing in tandem with mobile monitoring

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.; Stutz, Jochen; Erickson, Matthew H.; Hurlock, Stephen C.; Cheung, Ross; Tsai, Catalina; Colosimo, Santo F.; Festa, James; Wijesinghe, Asanga; Neish, Bradley S.

    2017-02-01

    During the Benzene and other Toxics Exposure (BEE-TEX) study, a remote sensing network based on long path Differential Optical Absorption Spectroscopy (DOAS) was set up in the Manchester neighborhood beside the Ship Channel of Houston, Texas in order to perform Computer Aided Tomography (CAT) scans of hazardous air pollutants. On 18-19 February 2015, the CAT scan network detected large nocturnal plumes of toluene and xylenes most likely associated with railcar loading and unloading operations at Ship Channel petrochemical facilities. The presence of such plumes during railcar operations was confirmed by a mobile laboratory equipped with a Proton Transfer Reaction-Mass Spectrometer (PTR-MS), which measured transient peaks of toluene and C2-benzenes of 50 ppb and 57 ppb respectively around 4 a.m. LST on 19 February 2015. Plume reconstruction and source attribution were performed using the 4D variational data assimilation technique and a 3D micro-scale forward and adjoint air quality model based on both tomographic and PTR-MS data. Inverse model estimates of fugitive emissions associated with railcar transfer emissions ranged from 2.0 to 8.2 kg/hr for toluene and from 2.2 to 3.5 kg/hr for xylenes in the early morning of 19 February 2015.

  14. Using Satellite Remote Sensing and Modelling for Insights into N02 Air Pollution and NO2 Emissions

    NASA Technical Reports Server (NTRS)

    Lamsal, L. N.; Martin, R. V.; Krotkov, N. A.; Bucsela, E. J.; Celarier, E. A.; vanDonkelaar, A.; Parrish, D.

    2012-01-01

    Nitrogen oxides (NO(x)) are key actors in air quality and climate change. Satellite remote sensing of tropospheric NO2 has developed rapidly with enhanced spatial and temporal resolution since initial observations in 1995. We have developed an improved algorithm and retrieved tropospheric NO2 columns from Ozone Monitoring Instrument. Column observations of tropospheric NO2 from the nadir-viewing satellite sensors contain large contributions from the boundary layer due to strong enhancement of NO2 in the boundary layer. We infer ground-level NO2 concentrations from the OMI satellite instrument which demonstrate significant agreement with in-situ surface measurements. We examine how NO2 columns measured by satellite, ground-level NO2 derived from satellite, and NO(x) emissions obtained from bottom-up inventories relate to world's urban population. We perform inverse modeling analysis of NO2 measurements from OMI to estimate "top-down" surface NO(x) emissions, which are used to evaluate and improve "bottom-up" emission inventories. We use NO2 column observations from OMI and the relationship between NO2 columns and NO(x) emissions from a GEOS-Chem model simulation to estimate the annual change in bottom-up NO(x) emissions. The emission updates offer an improved estimate of NO(x) that are critical to our understanding of air quality, acid deposition, and climate change.

  15. Ignition of an organic water-coal fuel droplet floating in a heated-air flow

    NASA Astrophysics Data System (ADS)

    Valiullin, T. R.; Strizhak, P. A.; Shevyrev, S. A.; Bogomolov, A. R.

    2017-01-01

    Ignition of an organic water-coal fuel (CWSP) droplet floating in a heated-air flow has been studied experimentally. Rank B2 brown-coal particles with a size of 100 μm, used crankcase Total oil, water, and a plasticizer were used as the main CWSP components. A dedicated quartz-glass chamber has been designed with inlet and outlet elements made as truncated cones connected via a cylindrical ring. The cones were used to shape an oxidizer flow with a temperature of 500-830 K and a flow velocity of 0.5-5.0 m/s. A technique that uses a coordinate-positioning gear, a nichrome thread, and a cutter element has been developed for discharging CWSP droplets into the working zone of the chamber. Droplets with an initial size of 0.4 to 2.0 mm were used. Conditions have been determined for a droplet to float in the oxidizer flow long enough for the sustainable droplet burning to be initiated. Typical stages and integral ignition characteristics have been established. The integral parameters (ignition-delay times) of the examined processes have been compared to the results of experiments with CWSP droplets suspended on the junction of a quick-response thermocouple. It has been shown that floating fuel droplets ignite much quicker than the ones that sit still on the thermocouple due to rotation of an CWSP droplet in the oxidizer flow, more uniform heating of the droplet, and lack of heat drainage towards the droplet center. High-speed video recording of the peculiarities of floatation of a burning fuel droplet makes it possible to complement the existing models of water-coal fuel burning. The results can be used for a more substantiated modeling of furnace CWSP burning with the ANSYS, Fluent, and Sigma-Flow software packages.

  16. Utilizing Remote Sensing Data to Ascertain Soil Moisture Applications and Air Quality Conditions

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Kempler, Steve; Teng, William; Friedl, Lawrence; Lynnes, Chris

    2009-01-01

    Recognizing the significance of NASA remote sensing Earth science data in monitoring and better understanding our planet's natural environment, NASA Earth Applied Sciences has implemented the 'Decision Support Through Earth Science Research Results' program. Several applications support systems through collaborations with benefiting organizations have been implemented. The Goddard Earth Sciences Data and Information Services Center (GES DISC) has participated in this program on two projects (one complete, one ongoing), and has had opportune ad hoc collaborations utilizing NASA Earth science data. GES DISC's understanding of Earth science missions and resulting data and information enables the GES DISC to identify challenges that come with bringing science data to research applications. In this presentation we describe applications research projects utilizing NASA Earth science data and a variety of resulting GES DISC applications support system project experiences. In addition, defining metrics that really evaluate success will be exemplified.

  17. Design optimization of piezoresistive cantilevers for force sensing in air and water

    PubMed Central

    Doll, Joseph C.; Park, Sung-Jin; Pruitt, Beth L.

    2009-01-01

    Piezoresistive cantilevers fabricated from doped silicon or metal films are commonly used for force, topography, and chemical sensing at the micro- and macroscales. Proper design is required to optimize the achievable resolution by maximizing sensitivity while simultaneously minimizing the integrated noise over the bandwidth of interest. Existing analytical design methods are insufficient for modeling complex dopant profiles, design constraints, and nonlinear phenomena such as damping in fluid. Here we present an optimization method based on an analytical piezoresistive cantilever model. We use an existing iterative optimizer to minimimize a performance goal, such as minimum detectable force. The design tool is available as open source software. Optimal cantilever design and performance are found to strongly depend on the measurement bandwidth and the constraints applied. We discuss results for silicon piezoresistors fabricated by epitaxy and diffusion, but the method can be applied to any dopant profile or material which can be modeled in a similar fashion or extended to other microelectromechanical systems. PMID:19865512

  18. Large-scale flow phenomena in axial compressors: Modeling, analysis, and control with air injectors

    NASA Astrophysics Data System (ADS)

    Hagen, Gregory Scott

    This thesis presents a large scale model of axial compressor flows that is detailed enough to describe the modal and spike stall inception processes, and is also amenable to dynamical systems analysis and control design. The research presented here is based on the model derived by Mezic, which shows that the flows are dominated by the competition between the blade forcing of the compressor and the overall pressure differential created by the compressor. This model describes the modal stall inception process in a similar manner as the Moore-Greitzer model, but also describes the cross sectional flow velocities, and exhibits full span and part span stall. All of these flow patterns described by the model agree with experimental data. Furthermore, the initial model is altered in order to describe the effects of three dimensional spike disturbances, which can destabilize the compressor at otherwise stable operating points. The three dimensional model exhibits flow patterns during spike stall inception that also appear in experiments. The second part of this research focuses on the dynamical systems analysis of, and control design with, the PDE model of the axial flow in the compressor. We show that the axial flow model can be written as a gradient system and illustrate some stability properties of the stalled flow. This also reveals that flows with multiple stall cells correspond to higher energy states in the compressor. The model is derived with air injection actuation, and globally stabilizing distributed controls are designed. We first present a locally optimal controller for the linearized system, and then use Lyapunov analysis to show sufficient conditions for global stability. The concept of sector nonlinearities is applied to the problem of distributed parameter systems, and by analyzing the sector property of the compressor characteristic function, completely decentralized controllers are derived. Finally, the modal decomposition and Lyapunov analysis used in

  19. A stratospheric intrusion at the subtropical jet over the Mediterranean Sea: air-borne remote sensing observations and model results

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Hoffmann, L.; Günther, G.; Khosrawi, F.; Olschewski, F.; Preusse, P.; Spang, R.; Stroh, F.; Riese, M.

    2012-09-01

    Remote sensing measurements from the Cryogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers (CRISTA-NF) during a flight on 29 July 2006 are presented. This flight is part of the AMMA-SCOUT-O3 measurement campaign, where CRISTA-NF was deployed on the high-flying research aircraft M55-Geophysica. The flight path was located over Italy and the Mediterranean Sea and crossed over the subtropical jet twice. Measurements of temperature, and the volume mixing ratios of water vapor (H2O), ozone (O3), nitric acid (HNO3) and peroxyacetyl nitrate (PAN) are available with a vertical resolution of up to 500 m between about 6 to 21 km altitude. CRISTA-NF observes these trace gases simultaneously and provides a quasi-2-D view of the transition region between the troposphere and the stratosphere. The observation of these different trace gases allows to determine tropospheric and stratospheric air masses. As expected, higher abundances are found where the main source of the trace gases is located: in the stratosphere for O3 and in the troposphere for H2O and PAN. Tracer-tracer correlations between O3 and PAN are used to identify the mixed tropospheric and lowermost stratospheric air at the subtropical jet and around the thermal tropopause north of the jet. An intrusion of stratospheric air into the troposphere associated with the subtropical jet is found in the CRISTA-NF observations. The observations indicate that the intrusion is connected to a tropopause fold which is not resolved in the ECMWF analysis data. The intrusion was reproduced in a simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS). The CLaMS simulation shows, that the lowermost stratospheric air masses in the intrusion where transported along the the subtropical jet. The tropospheric air masses around the intrusion originate from the vicinity of the Asian monsoon anticyclone. This work discusses the nature of the observed processes at the subtropical jet based on the

  20. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  1. On the opposing roles of air temperature and wind speed variability in flux estimation from remotely sensed land surface states

    NASA Astrophysics Data System (ADS)

    Bertoldi, G.; Albertson, J. D.; Kustas, W. P.; Li, F.; Anderson, M. C.

    2007-10-01

    In semi-arid regions the evapotranspiration rates depend on both the spatial distribution of the vegetation and the soil moisture, for a given radiation regime. Remote sensing can provide high resolution spatially distributed estimation (o ˜ 10-100 m) of land surface states. However, data on the near surface air properties are not readily available at the same resolution and are often taken as spatially uniform over a greater region. Concern for how this scale mismatch might lead to erroneous flux estimations motivates this effort. This paper examines the relative roles of variability in the two dominant atmospheric states, wind speed and air temperature, on the variability of the surface fluxes. The study is conducted with a Large Eddy Simulation (LES) model of the Atmospheric Boundary Layer (ABL), where the boundary conditions are given by a surface energy balance model based on remotely sensed land surface data. Simulations have been performed for the late morning hours of two clear-sky summer days during the SGP97 experiment with different wetness conditions over an area characterized by a high contrast in surface temperature, canopy cover, and roughness between vegetated and dry bare soil areas. Spatial variability in canopy density effects both the air temperature Ta, through the energy partitioning, and the wind speed U, via the roughness, leading to local variations at 5 m above the ground of the order of 1 K and 1 m/s, respectively. Simulations show that the Ta variability tends to decrease the sensible heat flux H (- 30 W/m2) over bare soil areas and to increase it (+30 W/m2) over dense vegetation, thus reducing the total variability of the surface fluxes relative to those that would be estimated for spatially constant Ta, as observed in previous studies. The variability in U tends to increase H over bare soil (+50 W/m2), while having negligible effects over the vegetation, thus increasing the spatial variance of surface fluxes. However, when considered

  2. A stratospheric intrusion at the subtropical jet over the Mediterranean Sea: air-borne remote sensing observations and model results

    NASA Astrophysics Data System (ADS)

    Weigel, K.; Hoffmann, L.; Günther, G.; Khosrawi, F.; Olschewski, F.; Preusse, P.; Spang, R.; Stroh, F.; Riese, M.

    2012-03-01

    Remote sensing measurements from the Cryogenic Infrared Spectrometers and Telescope for the Atmosphere - New Frontiers (CRISTA-NF) during a flight on 29 July 2006 are presented. This flight is part of the AMMA-SCOUT-O3 measurement campaign, where CRISTA-NF was deployed on the high-flying research aircraft M55-Geophysica. The flight path was located over Italy and the Mediterranean Sea and crossed over the subtropical jet twice. Measurements of temperature, and the volume mixing ratios of water vapor (H2O), ozone (O3), nitric acid (HNO3) and peroxyacetyl nitrate (PAN) are available with a vertical resolution of up to 500 m between about 6 to 21 km altitude. CRISTA-NF observes these trace gases simultaneously and provides a quasi-2D view of the transition region between the troposphere and the stratosphere. The observation of these different trace gases allows to determine the origin of air masses in the stratosphere or troposphere. As expected, higher abundances are found where the main source of the trace gases is located: in the stratosphere for O3 and in the troposphere for H2O and PAN. Tracer-tracer correlations between O3 and PAN are used to identify mixed tropospheric and lowermost stratospheric air at the subtropical jet and around the thermal tropopause north of the jet. An intrusion of stratospheric air into the troposphere associated with the subtropical jet is found in the CRISTA-NF observations. The observations indicate that the intrusion is connected to a tropopause fold which is not resolved in the ECMWF analysis data. The intrusion was reproduced in a simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS). This work discusses the nature of the observed processes at the subtropical jet based on the CRISTA-NF observations and the CLaMS simulation.

  3. Assessment of flow and cure monitoring using direct current and alternating current sensing in vacuum-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Vaidya, Uday K.; Jadhav, Nitesh C.; Hosur, Mahesh V.; Gillespie, John W., Jr.; Fink, Bruce K.

    2000-12-01

    Vacuum-assisted resin transfer molding (VARTM) is an emerging manufacturing technique that holds promise as an affordable alternative to traditional autoclave molding and automated fiber placement for producing large-scale structural parts. In VARTM, the fibrous preform is laid on a single-sided tool, which is then bagged along with the infusion and vacuum lines. The resin is then infused through the preform, which causes simultaneous wetting in its in-plane and transverse directions. An effective sensing technique is essential so that comprehensive information pertaining to the wetting of the preform, arrival of resin at various locations, cure gradients associated with thickness and presence of dry spots may be monitored. In the current work, direct current (dc) and alternating current sensing/monitoring techniques were adopted for developing a systematic understanding of the resin position and cure on plain weave S2-glass preforms with Dow Derakane vinyl ester VE 411-350, Shell EPON RSL 2704/2705 and Si-AN epoxy as the matrix systems. A SMARTweave dc sensing system was utilized to conduct parametric studies: (a) to compare the flow and cure of resin through the stitched and non-stitched preforms; (b) to investigate the influence of sensor positioning, i.e. top, middle and bottom layers; and (c) to investigate the influence of positioning of the process accessories, i.e. resin infusion point and vacuum point on the composite panel. The SMARTweave system was found to be sensitive to all the parametric variations introduced in the study. Furthermore, the results obtained from the SMARTweave system were compared to the cure monitoring studies conducted by using embedded interdigitated (IDEX) dielectric sensors. The results indicate that SMARTweave sensing was a viable alternative to obtaining resin position and cure, and was more superior in terms of obtaining global information, in contrast to the localized dielectric sensing approach.

  4. Flow visualization and acoustic consequences of the air moving through a static model of the human larynx.

    PubMed

    Kucinschi, Bogdan R; Scherer, Ronald C; DeWitt, Kenneth J; Ng, Terry T M

    2006-06-01

    Flow visualization with smoke particles illuminated by a laser sheet was used to obtain a qualitative description of the air flow structures through a dynamically similar 7.5x symmetric static scale model of the human larynx (divergence angle of 10 deg, minimal diameter of 0.04 cm real life). The acoustic level downstream of the vocal folds was measured by using a condenser microphone. False vocal folds (FVFs) were included. In general, the glottal flow was laminar and bistable. The glottal jet curvature increased with flow rate and decreased with the presence of the FVFs. The glottal exit flow for the lowest flow rate showed a curved jet which remained laminar for all geometries. For the higher flow rates, the jet flow patterns exiting the glottis showed a laminar jet core, transitioning to vortical structures, and leading spatially to turbulent dissipation. This structure was shortened and tightened with an increase in flow rate. The narrow FVF gap lengthened the flow structure and reduced jet curvature via acceleration of the flow. These results suggest that laryngeal flow resistance and the complex jet flow structure exiting the glottis are highly affected by flow rate and the presence of the false vocal folds. Acoustic consequences are discussed in terms of the quadrupole- and dipole-type sound sources due to ordered flow structures.

  5. Air quality management using modern remote sensing and spatial technologies and associated societal costs.

    PubMed

    Uddin, Waheed

    2006-09-01

    This paper presents a study of societal costs related to public health due to the degradation of air quality and the lack of physical activity, both affected by our built environment. The paper further shows road safety as another public health concern. Traffic fatalities are the number one cause of death in the world. Traffic accidents result in huge financial loss to the people involved and the related public health cost is a significant part of the total societal cost. Motor vehicle exhausts and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit nitrogen oxides and volatile organic compounds, which are precursors to the formation of ground-level Ozone. High concentration values of ground-level Ozone in hot summer days produce smog and lead to respiratory problems and loss in worker's productivity. These factors and associated economic costs to society are important in establishing public policy and decision-making for sustainable transportation and development of communities in both industrialized and developing countries. This paper presents new science models for predicting ground-level Ozone and related air quality degradation. The models include predictor variables of daily climatological data, traffic volume and mix, speed, aviation data, and emission inventory of point sources. These models have been implemented in the user friendly AQMAN computer program and used for a case study in Northern Mississippi. Lifecycle benefits from reduced societal costs can be used to implement sustainable transportation policies, enhance investment decision-making, and protect public health and the environment.

  6. FT-IR remote sensing of atmospheric species: Application to global change and air pollution

    SciTech Connect

    Vazquez, G.J.

    1995-12-31

    In this contribution, the author describes two applications of Fourier Transform Infrared Spectroscopy to the monitoring of atmospheric compounds. Firstly, the author reports FTIR solar spectroscopy measurements carried out at ground level at NCAR and on airplanes employing a spectrometer of 0.06 cm{sup -1} resolution. Sample atmospheric spectra and fitting examples are presented for key species relevant to stratospheric chemistry and global change: ozone (O{sub 3}), a chlorofluorocarbon (CF{sub 2}Cl{sub 2}), a greenhouse gas (N{sub 2}O), HCl, NO and HNO{sub 3}. Secondly, the author briefly describes urban air pollution measurements at an intersection with heavy traffic in Tucson, AZ. Two FTIR spectrometers of 1 cm{sup -1} resolution were employed to carry out long-path open-path measurements of the CO/CO{sub 2} ratio and SF{sub 6}. Two FEAT and two LPUV instruments were employed for ancillary measurements of CO, CO{sub 2}, NO, and aromatic hydrocarbons. Measurements of CO at two heights and a comparison of CO/CO{sub 2} ratios obtained by FEAT exhaust emission and FTIR ambient air measurements are reported.

  7. Ocean Winds and Turbulent Air-Sea Fluxes Inferred From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Bourassa, Mark A.; Gille, Sarah T.; Jackson, Daren L.; Roberts, J. Brent; Wick, Gary A.

    2010-01-01

    Air-sea turbulent fluxes determine the exchange of momentum, heat, freshwater, and gas between the atmosphere and ocean. These exchange processes are critical to a broad range of research questions spanning length scales from meters to thousands of kilometers and time scales from hours to decades. Examples are discussed (section 2). The estimation of surface turbulent fluxes from satellite is challenging and fraught with considerable errors (section 3); however, recent developments in retrievals (section 3) will greatly reduce these errors. Goals for the future observing system are summarized in section 4. Surface fluxes are defined as the rate per unit area at which something (e.g., momentum, energy, moisture, or CO Z ) is transferred across the air/sea interface. Wind- and buoyancy-driven surface fluxes are called surface turbulent fluxes because the mixing and transport are due to turbulence. Examples of nonturbulent processes are radiative fluxes (e.g., solar radiation) and precipitation (Schmitt et al., 2010). Turbulent fluxes are strongly dependent on wind speed; therefore, observations of wind speed are critical for the calculation of all turbulent surface fluxes. Wind stress, the vertical transport of horizontal momentum, also depends on wind direction. Stress is very important for many ocean processes, including upper ocean currents (Dohan and Maximenko, 2010) and deep ocean currents (Lee et al., 2010). On short time scales, this horizontal transport is usually small compared to surface fluxes. For long-term processes, transport can be very important but again is usually small compared to surface fluxes.

  8. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  9. Time-dependent response of a charcoal bed to radon and water vapor in flowing air

    SciTech Connect

    Henkel, J.A.; Fentiman, A.W.; Blue, T.E.

    1995-12-31

    Extremely high airborne concentrations of radon gas may be encountered during the remediation of uranium mill tailings storage facilities. Radon is also a constituent of the off-gas of mill-tailing vitrification. An effective way to remove radon from either gas is to pass the gas through a packed bed containing activated charcoal. Measurements of radon concentrations in the environment using charcoal canisters were first described by George. Canisters similar to those used by George in his first experiments have become the U.S. Environmental Protection Agency`s (EPA`s) standard for measuring environmental radon and were described in the EPA protocol for environmental radon measurement. The dynamic behavior of EPA charcoal canisters has been previously described with a mathematical model for the kinetics of radon gas adsorption in air in the presence of water vapor. This model for charcoal canisters has been extended to large charcoal beds with flowing air containing radon and water vapor. The mathematical model for large charcoal beds can be used to evaluate proposed bed designs or to model existing beds. Parameters that affect the radon distribution within a charcoal bed that can be studied using the mathematical model include carrier gas relative humidity and flow velocity, and input radon concentration. In addition, the relative performances of several different charcoals can be studied, provided sufficient information about their adsorption, desorption, and diffusion constants is known.

  10. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  11. Air-Flow Navigated Crystal Growth for TIPS Pentacene-Based Organic Thin-Film Transistors

    SciTech Connect

    He, Zhengran; Chen, Jihua; Sun, Zhenzhong; Szulczewski, Greg; Li, Dawen

    2012-01-01

    6,13-bis(triisopropylsilylethynyl)pentacene (TIPS pentacene) is a promising active channel material of organic thin-film transistors (OTFTs) due to its solubility, stability, and high mobility. However, the growth of TIPS pentacene crystals is intrinsically anisotropic and thus leads to significant variation in the performance of OTFTs. In this paper, air flow is utilized to effectively reduce the TIPS pentacene crystal anisotropy and enhance performance consistency in OTFTs, and the resulted films are examined with optical microscopy, grazing-incidence X-ray diffraction, and thin-film transistor measurements. Under air-flow navigation (AFN), TIPS pentacene drop-cast from toluene solution has been observed to form thin films with improved crystal orientation and increased areal coverage on substrates, which subsequently lead to a four-fold increase of average hole mobility and one order of magnitude enhancement in performance consistency defined by the ratio of average mobility to the standard deviation of the field-effect mobilities.

  12. Measuring centimeter-resolution air temperature profiles above land and water using fiber-optic Distributed Temperature Sensing

    NASA Astrophysics Data System (ADS)

    Sigmund, Armin; Pfister, Lena; Olesch, Johannes; Thomas, Christoph K.

    2016-04-01

    The precise determination of near-surface air temperature profiles is of special importance for the characterization of airflows (e.g. cold air) and the quantification of sensible heat fluxes according to the flux-gradient similarity approach. In contrast to conventional multi-sensor techniques, measuring temperature profiles using fiber-optic Distributed Temperature Sensing (DTS) provides thousands of measurements referenced to a single calibration standard at much reduced costs. The aim of this work was to enhance the vertical resolution of Raman scatter DTS measurements up to the centimeter-scale using a novel approach for atmospheric applications: the optical fiber was helically coiled around a meshed fabric. In addition to testing the new fiber geometry, we quantified the measurement uncertainty and demonstrated the benefits of the enhanced-resolution profiles. The fiber-optic cable was coiled around a hollow column consisting of white reinforcing fabric supported by plexiglass rings every meter. Data from two columns of this type were collected for 47 days to measure air temperature vertically over 3.0 and 5.1 m over a gently inclined meadow and over and in a small lake, respectively. Both profiles had a vertical resolution of 1 cm in the lower section near the surface and 5 cm in the upper section with an along-fiber instrument-specific averaging of 1.0 m and a temporal resolution of 30 s. Measurement uncertainties, especially from conduction between reinforcing fabric and fiber-optic cable, were estimated by modeling the fiber temperature via a detailed energy balance approach. Air temperature, wind velocity and radiation components were needed as input data and measured separately. The temperature profiles revealed valuable details, especially in the lowest 1 m above surface. This was best demonstrated for nighttime observations when artefacts due to solar heating did not occur. For example, the dynamics of a cold air layer was detected in a clear night

  13. Numerical Predictions and Experimental Results of Air Flow in a Smooth Quarter-Scale Nacelle

    SciTech Connect

    BLACK, AMALIA R.; SUO-ANTTILA, JILL M.; GRITZO, LOUIS A.; DISIMILE, PETER J.; TUCKER, JAMES R.

    2002-06-01

    Fires in aircraft engine nacelles must be rapidly suppressed to avoid loss of life and property. The design of new and retrofit suppression systems has become significantly more challenging due to the ban on production of Halon 1301 for environmental concerns. Since fire dynamics and the transport of suppressants within the nacelle are both largely determined by the available air flow, efforts to define systems using less effective suppressants greatly benefit from characterization of nacelle air flow fields. A combined experimental and computational study of nacelle air flow therefore has been initiated. Calculations have been performed using both CFD-ACE (a Computational Fluid Dynamics (CFD) model with a body-fitted coordinate grid) and WLCAN (a CFD-based fire field model with a Cartesian ''brick'' shaped grid). The flow conditions examined in this study correspond to the same Reynolds number as test data from the full-scale nacelle simulator at the 46 Test Wing. Pre-test simulations of a quarter-scale test fixture were performed using CFD-ACE and WLCAN prior to fabrication. Based on these pre-test simulations, a quarter-scale test fixture was designed and fabricated for the purpose of obtaining spatially-resolved measurements of velocity and turbulence intensity in a smooth nacelle. Post-test calculations have been performed for the conditions of the experiment and compared with experimental results obtained from the quarter-scale test fixture. In addition, several different simulations were performed to assess the sensitivity of the predictions to the grid size, to the turbulence models, and to the use of wall functions. In general, the velocity predictions show very good agreement with the data in the center of the channel but deviate near the walls. The turbulence intensity results tend to amplify the differences in velocity, although most of the trends are in agreement. In addition, there were some differences between WLCAN and CFD-ACE results in the angled

  14. Sensing and Active Flow Control for Advanced BWB Propulsion-Airframe Integration Concepts

    NASA Technical Reports Server (NTRS)

    Fleming, John; Anderson, Jason; Ng, Wing; Harrison, Neal

    2005-01-01

    In order to realize the substantial performance benefits of serpentine boundary layer ingesting diffusers, this study investigated the use of enabling flow control methods to reduce engine-face flow distortion. Computational methods and novel flow control modeling techniques were utilized that allowed for rapid, accurate analysis of flow control geometries. Results were validated experimentally using the Techsburg Ejector-based wind tunnel facility; this facility is capable of simulating the high-altitude, high subsonic Mach number conditions representative of BWB cruise conditions.

  15. Study of air pollutant signatures for remote sensing. [of the spectral reflectivity of leaves

    NASA Technical Reports Server (NTRS)

    Nowak, W. B.

    1974-01-01

    Experimental results are presented for a possible new, indirect signature for air pollutants: the spectral reflectivity of plant leaves. Sub-visual changes (up to 160%) in the spectral reflectivity of bean and tobacco leaves were observed over the range 475nm to 750nm in response to SO2 exposures such as 2ppm/4hrs or 4ppm/16hrs, or to O3 exposures such as 90pphm/21hrs or 7.5pphm/292hrs. Such changes might be observed from a satellite using either laser or sunlight as the illumination source. Inasmuch as the plants appear to become acclimated to some of these exposure doses, environmental changes may be most important for this type of plant-response.

  16. Air Quality Management Using Modern Remote Sensing and Spatial Technologies and Associated Societal Costs

    PubMed Central

    Uddin, Waheed

    2006-01-01

    This paper presents a study of societal costs related to public health due to the degradation of air quality and the lack of physical activity, both affected by our built environment. The paper further shows road safety as another public health concern. Traffic fatalities are the number one cause of death in the world. Traffic accidents result in huge financial loss to the people involved and the related public health cost is a significant part of the total societal cost. Motor vehicle exhausts and industrial emissions, gasoline vapors, and chemical solvents as well as natural sources emit nitrogen oxides and volatile organic compounds, which are precursors to the formation of ground-level Ozone. High concentration values of ground-level Ozone in hot summer days produce smog and lead to respiratory problems and loss in worker’s productivity. These factors and associated economic costs to society are important in establishing public policy and decision-making for sustainable transportation and development of communities in both industrialized and developing countries. This paper presents new science models for predicting ground-level Ozone and related air quality degradation. The models include predictor variables of daily climatological data, traffic volume and mix, speed, aviation data, and emission inventory of point sources. These models have been implemented in the user friendly AQMAN computer program and used for a case study in Northern Mississippi. Life-cycle benefits from reduced societal costs can be used to implement sustainable transportation policies, enhance investment decision-making, and protect public health and the environment. PMID:16968969

  17. Remote Sensing Global Surface Air Pressure Using Differential Absorption BArometric Radar (DiBAR)

    NASA Technical Reports Server (NTRS)

    Lin, Bing; Harrah, Steven; Lawrence, Wes; Hu, Yongxiang; Min, Qilong

    2016-01-01

    Tropical storms and severe weathers are listed as one of core events that need improved observations and predictions in World Meteorological Organization and NASA Decadal Survey (DS) documents and have major impacts on public safety and national security. This effort tries to observe surface air pressure, especially over open seas, from space using a Differential-absorption BArometric Radar (DiBAR) operating at the 50-55 gigahertz O2 absorption band. Air pressure is among the most important variables that affect atmospheric dynamics, and currently can only be measured by limited in-situ observations over oceans. Analyses show that with the proposed space radar the errors in instantaneous (averaged) pressure estimates can be as low as approximately 4 millibars (approximately 1 millibar under all weather conditions). With these sea level pressure measurements, the forecasts of severe weathers such as hurricanes will be significantly improved. Since the development of the DiBAR concept about a decade ago, NASA Langley DiBAR research team has made substantial progress in advancing the concept. The feasibility assessment clearly shows the potential of sea surface barometry using existing radar technologies. The team has developed a DiBAR system design, fabricated a Prototype-DiBAR (P-DiBAR) for proof-of-concept, conducted lab, ground and airborne P-DiBAR tests. The flight test results are consistent with the instrumentation goals. Observational system simulation experiments for space DiBAR performance based on the existing DiBAR technology and capability show substantial improvements in tropical storm predictions, not only for the hurricane track and position but also for the hurricane intensity. DiBAR measurements will lead us to an unprecedented level of the prediction and knowledge on global extreme weather and climate conditions.

  18. The application of remote sensing techniques for air pollution analysis and climate change on Indian subcontinent

    NASA Astrophysics Data System (ADS)

    Palve, S. N.; Nemade, P. D., Dr.; Ghude, S. D., Dr.

    2016-06-01

    India is home to an extraordinary variety of climatic regions, ranging from tropical in the south to temperate and alpine in the Himalayan north, where elevated regions receive sustained winter snowfall. The subcontinent is characterized by high levels of air pollution due to intensively developing industries and mass fuel consumption for domestic purposes. The main tropospheric pollutants (O3, NO2, CO, formaldehyde (HCHO) and SO2) and two major greenhouse gases (tropospheric O3 and methane (CH4)) and important parameters of aerosols, which play a key role in climate change and affecting on the overall well-being of subcontinent residents. In light of considering these facts this paper aims to investigate possible impact of air pollutants over the climate change on Indian subcontinent. Satellite derived column aerosol optical depth (AOD) is a cost effective way to monitor and study aerosols distribution and effects over a long time period. AOD is found to be increasing rapidly since 2000 in summer season that may cause adverse effect to the agricultural crops and also to the human health. Increased aerosol loading may likely affect the rainfall which is responsible for the observed drought conditions over the Indian subcontinent. Carbon monoxide is emitted into the atmosphere by biomass burning activities and India is the second largest contributor of CO emissions in Asia. The MOPITT CO retrievals at 850 hPa show large CO emission from the IG region. The development of convective activity associated with the ASM leads to large scale vertical transport of the boundary layer CO from the Indian region into the upper troposphere. TCO over the Indian subcontinent during 2007 has a systematic and gradual variation, spatial as well as temporal. Higher amount of TCO in the northern latitudes and simultaneous lower TCO at near equatorial latitudes indicates depletion of ozone near the equator and accumulation at higher latitudes within the subcontinent. In addition, changes

  19. Guard Flow-enhanced Organic Vapor Jet Printing of Molecular Materials in Air

    NASA Astrophysics Data System (ADS)

    Biswas, Shaurjo

    Rapid advances in the research and development of organic electronics have re-sulted in many exciting discoveries and applications, including OLEDs, OPVs and OTFTs. Devices based on small molecular organic materials often call for sharp interfaces and highly pure materials for improved device performance. Solvent-free deposition and additive patterning of the active layers without the use of vacuum is preferred, calling for specialized processing approaches. Guard flow-enhanced organic vapor jet printing (GF-OVJP), enables addi-tive, rapid, mask-free, solvent-free printing of molecular organic semiconductors in ambient atmosphere by evaporating organic source material into an inert carrier gas jet and collimating and impinging it onto a substrate where the organic molecules condense. A surrounding annular "guard flow" hydrodynamically focuses the primary jet carrying the hot organic vapor and shields it from contact with the ambient oxygen and moisture, enabling device-quality deposits. Deposition in air entails non-trivial effects at the boundary between ambient surroundings and the gas jet carrying the semiconductor vapor that influence the morphology and properties of the resulting electronic devices. This thesis demonstrates the deposition of active layers of OLEDs, OPVs and OTFTs by GF-OVJP in air. Process-structure-property relationships are elucidated, using a combination of film deposition and structural characterization (e.g. AFM, XRD, SEM, spectroscopies), device fabrication and testing, as well as compressible fluid flow, heat and mass transport modeling, thus laying the groundwork for rigorous, quantitative design of film deposition apparatus and small molecular organic semiconductor processing.

  20. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645