Science.gov

Sample records for air flow speeds

  1. Improved Apparatus for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr; Dryden, H L

    1934-01-01

    This report describes recent improvements in the design of the equipment associated with the hot-wire anemometer for the measurement of fluctuating air speeds in turbulent air flow, and presents the results of some experimental investigations dealing with the response of the hot wire to speed fluctuations of various frequencies. Attempts at measuring the frequency of the fluctuations encountered in the Bureau of Standards' 54-inch wind tunnel are also reported. In addition, the difficulties encountered in the use of such apparatus and the precautions found helpful in avoiding them are discussed.

  2. Effects of saline-water flow rate and air speed on leakage current in RTV coatings

    SciTech Connect

    Kim, S.H.; Hackam, R.

    1995-10-01

    Room temperature vulcanizing (RTV) silicone rubber is increasingly being used to coat porcelain and glass insulators in order to improve their electrical performance in the presence of pollution and moisture. A study of the dependence of leakage current, pulse current count and total charge flowing across the surface of RTV on the flow rate of the saline water and on the compressed air pressure used to create the salt-fog is reported. The fog was directed at the insulating rods either from one or two sides. The RTV was fabricated from polydimethylsiloxane polymer, a filler of alumina trihydrate (ATH), a polymerization catalyst and fumed silica reinforcer, all dispersed in 1,1,1-trichloroethane solvent. The saline water flow rate was varied in the range 0.4 to 2.0 l/min. The compressed air pressure at the input of the fog nozzles was varied from 0.20 to 0.63 MPa. The air speed at the surface of the insulating rods was found to depend linearly on the air pressure measured at the inlet to the nozzles and varied in the range 3 to 14 km/hr. The leakage current increased with increasing flow rate and increasing air speed. This is attributed to the increased loss of hydrophobicity with a larger quantity of saline fog and a larger impact velocities of fog droplets interacting with the surface of the RTV coating.

  3. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  4. Visualization of Rotor Tip Secondary Flows with Blade Tip Air Discharge and Suction in a Low-speed Turbine

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W

    1956-01-01

    Smoke was used to visualize outer-wall secondary flows in a low-speed turbine utilizing rotor tip air discharge and suction. Photographs as well as visual observations of the effect of tip air discharge and suction were made by independently varying the direction and quantity of the tip air discharge and suction, and varying tip clearance, and main-stream air speed. In addition, the cross-sectional area of the hollow blade discharge opening was varied for the case of tip air discharge.

  5. High-Speed Rainbow Schlieren Deflectometry Analysis of Helium Jets Flowing into Air for Microgravity Applications

    NASA Technical Reports Server (NTRS)

    Leptuch, Peter A.

    2002-01-01

    The flow phenomena of buoyant jets have been analyzed by many researchers in recent years. Few, however have studied jets in microgravity conditions, and the exact nature of the flow under these conditions has until recently been unknown. This study seeks to extend the work done by researchers at the university of Oklahoma in examining and documenting the behavior of helium jets in micro-gravity conditions. Quantitative rainbow schlieren deflectometry data have been obtained for helium jets discharging vertically into quiescent ambient air from tubes of several diameters at various flow rates using a high-speed digital camera. These data have obtained before, during and after the onset of microgravity conditions. High-speed rainbow schlieren deflectometry has been developed for this study with the installation and use of a high-speed digital camera and modifications to the optical setup. Higher temporal resolution of the transitional phase between terrestrial and micro-gravity conditions has been obtained which has reduced the averaging effect of longer exposure times used in all previous schlieren studies. Results include color schlieren images, color time-space images (temporal evolution images), frequency analyses, contour plots of hue and contour plots of helium mole fraction. The results, which focus primarily on the periods before and during the onset of microgravity conditions, show that the pulsation of the jets normally found in terrestrial gravity ("earth"-gravity) conditions cease, and the gradients in helium diminish to produce a widening of the jet in micro-gravity conditions. In addition, the results show that the disturbance propagate upstream from a downstream source.

  6. Considerations of Air Flow in Combustion Chambers of High-Speed Compression-Ignition Engines

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1932-01-01

    The air flow in combustion chambers is divided into three fundamental classes - induced, forced, and residual. A generalized resume is given of the present status of air flow investigations and of the work done at this and other laboratories to determine the direction and velocity of air movement in auxiliary and integral combustion chambers. The effects of air flow on engine performance are mentioned to show that although air flow improves the combustion efficiency, considerable induction, friction, and thermal losses must be guarded against.

  7. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows

    NASA Astrophysics Data System (ADS)

    Men'shov, Igor S.; Nakamura, Yoshiaki

    2000-11-01

    A computational fluid dynamics (CFD) technique is employed to study hypersonic high-enthalpy air flows around blunt bodies with the purpose of predicting convective heat transfer on the body surface for a range of flow velocities relevant to suborbital flight of re-entry vehicles such as the Space Shuttle Orbiter (USA), and the Buran (Russia). The method uses Park's two-temperature model for the description of thermochemical nonequilibrium processes in high-temperature air and solves the full Navier-Stokes equations for a model of multicomponent reacting gas mixture in the finite volume formulation. The calculations performed in this research are intended to simulate some experiments carried out in the high-energy shock tunnels of the DLR, Germany, and the CALSPAN, USA, where the heat flux distribution over a model surface was measured at several freestream conditions related to the range of velocities mentioned above. The main emphasis is on comparing numerical and experimental results in order to verify adequacy of the heat flux data predicted by the CFD technique for suborbital flight speeds of re-entry vehicles.

  8. Apparatus and method for generating large mass flow of high temperature air at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.; Stewart, R. B. (Inventor)

    1973-01-01

    High temperature, high mass air flow and a high Reynolds number test air flow in the Mach number 8-10 regime of adequate test flow duration is attained by pressurizing a ceramic-lined storage tank with air to a pressure of about 100 to 200 atmospheres. The air is heated to temperatures of 7,000 to 8,000 R prior to introduction into the tank by passing the air over an electric arc heater means. The air cools to 5,500 to 6,000 R while in the tank. A decomposable gas such as nitrous oxide or a combustible gas such as propane is injected into the tank after pressurization and the heated pressurized air in the tank is rapidly released through a Mach number 8-10 nozzle. The injected gas medium upon contact with the heated pressurized air effects an exothermic reaction which maintains the pressure and temperature of the pressurized air during the rapid release.

  9. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  10. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  11. Measurement of spatiotemporal phase statistics in turbulent air flow using high-speed digital holographic interferometry.

    PubMed

    Lycksam, Henrik; Sjödahl, Mikael; Gren, Per

    2010-03-10

    We describe a method of measuring spatiotemporal (ST) structure and covariance functions of the phase fluctuations in a collimated light beam propagated through a region of refractive index turbulence. The measurements are performed in a small wind tunnel, in which a turbulent temperature field is created using heated wires at the inlet of the test section. A collimated sheet of light is sent through the channel, and the phase fluctuations across the sheet are measured. The spatial phase structure function can be estimated from a series of images captured at an arbitrary frame rate by spatial phase unwrapping, whereas the ST structure function requires a time resolved measurement and a full three-dimensional unwrapping. The measured spatial phase structure function shows agreement with the Kolmogorov theory with a pronounced inertial subrange, which is taken as a validation of the method. Because of turbulent mixing in the boundary layers close to the walls of the channel, the flow will not obey the Taylor hypothesis of frozen turbulence. This can be clearly seen in the ST structure function calculated in a coordinate system that moves along with the bulk flow. At zero spatial separation, this function should always be zero according to the Taylor hypothesis, but due to the mixing effect there will be a growth in the structure function with increasing time difference depending on the rate of mixing. PMID:20220886

  12. Simulation of effects of direction and air flow speed on temperature distribution in the room covered by various roof materials

    NASA Astrophysics Data System (ADS)

    Sukanto, H.; Budiana, E. P.; Putra, B. H. H.

    2016-03-01

    The objective of this research is to get a comparison of the distribution of the room temperature by using three materials, namely plastic-rubber composite, clay, and asbestos. The simulation used Ansys Fluent to get the temperature distribution. There were two conditions in this simulations, first the air passing beside the room and second the air passing in front of the room. Each condition will be varied with the air speed of 1 m/s, 2 m/s, 3 m/s, 4 m/s, 5 m/s for each material used. There are three heat transfers in this simulation, namely radiation, convection, and conduction. Based on the ANSI/ ASHRAE Standard 55-2004, the results of the simulation showed that the best temperature distribution was the roof of plastic-rubber composites.

  13. Experimental Studies on High Speed Air Intakes

    NASA Astrophysics Data System (ADS)

    Panigrahy, Amit Kumar; Muruganandam, T. M.

    All high speed air breathing engines require an inlet to decelerate air from free stream velocity to a lower velocity conducive to combustion. The inlet is designed to capture and deliver the required mass flow to combustion chamber with minimum pressure loss, along with minimum flow distortion. Inlet buzz can occur due to several reasons, such as large internal area contraction ratio, serious shock-boundary layer interactions, and high back pressure. Inlet buzz is detrimental to thrust and can even cause structural damage. Thus a detailed back pressure and over contraction based study of inlet behavior is needed.

  14. Improvement of oxygen transfer coefficient during Penicillium canescens culture. Influence of turbine design, agitation speed, and air flow rate on xylanase production.

    PubMed

    Gaspar, A; Strodiot, L; Thonart, P

    1998-01-01

    To improve xylanase productivity from Penicillium canescens 10-10c culture, an optimization of oxygen supply is required. Because the strain is sensitive to shear forces, leading to lower xylanase productivity as to morphological alteration, vigorous mixing is not desired. The influence of turbine design, agitation speed, and air flow rate on K1a (global mass transfer coefficient, h(-1)) and enzyme production is discussed. K1a values increased with agitation speed and air flow rate, whatever the impeller, in our assay conditions. Agitation had more influence on K1a values than air flow, when a disk-mounted blade's impeller (DT) is used; an opposite result was obtained with a hub-mounted pitched blade's impeller (PBT). Xylanase production appeared as a function of specific power (W/m3), and an optimum was found in 20 and 100 L STRs fitted with DT impellers. On the other hand, the use of a hub-mounted pitched blade impeller (PBT8), instead of a disk-mounted blade impeller (DT4), reduced the lag time of hemicellulase production and increased xylanase productivity 1.3-fold. PMID:18576019

  15. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  16. Ethylene Trace-gas Techniques for High-speed Flows

    NASA Technical Reports Server (NTRS)

    Davis, David O.; Reichert, Bruce A.

    1994-01-01

    Three applications of the ethylene trace-gas technique to high-speed flows are described: flow-field tracking, air-to-air mixing, and bleed mass-flow measurement. The technique involves injecting a non-reacting gas (ethylene) into the flow field and measuring the concentration distribution in a downstream plane. From the distributions, information about flow development, mixing, and mass-flow rates can be dtermined. The trace-gas apparatus and special considerations for use in high-speed flow are discussed. A description of each application, including uncertainty estimates is followed by a demonstrative example.

  17. Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2003-01-01

    A review of research conducted at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data are for flat plates, cavities, bodies, missiles, wings, and aircraft with Mach numbers of 1.5 to 4.6. Data are presented to show the types of vortex structures that occur at supersonic speeds and the impact of these flow structures on vehicle performance and control. The data show the presence of both small- and large-scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices. Data are shown that highlight the effect of leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber on the aerodynamics of and flow over delta wings. Finally, a discussion of a design approach for wings that use vortex flows for improved aerodynamic performance at supersonic speeds is presented.

  18. High speed flow past wings

    NASA Technical Reports Server (NTRS)

    Norstrud, H.

    1973-01-01

    The analytical solution to the transonic small perturbation equation which describes steady compressible flow past finite wings at subsonic speeds can be expressed as a nonlinear integral equation with the perturbation velocity potential as the unknown function. This known formulation is substituted by a system of nonlinear algebraic equations to which various methods are applicable for its solution. Due to the presence of mathematical discontinuities in the flow solutions, however, a main computational difficulty was to ensure uniqueness of the solutions when local velocities on the wing exceeded the speed of sound. For continuous solutions this was achieved by embedding the algebraic system in an one-parameter operator homotopy in order to apply the method of parametric differentiation. The solution to the initial system of equations appears then as a solution to a Cauchy problem where the initial condition is related to the accompanying incompressible flow solution. In using this technique, however, a continuous dependence of the solution development on the initial data is lost when the solution reaches the minimum bifurcation point. A steepest descent iteration technique was therefore, added to the computational scheme for the calculation of discontinuous flow solutions. Results for purely subsonic flows and supersonic flows with and without compression shocks are given and compared with other available theoretical solutions.

  19. The Measurement of Air Speed in Airplanes

    NASA Technical Reports Server (NTRS)

    Thompson, F L

    1937-01-01

    Various methods of measuring the air speed of airplanes are described. Particular emphasis is placed on the procedure required to obtain precise measurements of speed by the use of the suspended Pitot-static head or the suspended static head. Typical calibration curves for service installations of Pitot-static heads are shown and the relation between errors in air speed and corresponding errors in observed altitude for such installations is discussed. There is included a brief discussion of various speed-course methods of measuring speed.

  20. Flow Control Effectiveness at High Speed Flows

    NASA Astrophysics Data System (ADS)

    Kontis, K.; Lada, C.

    2005-02-01

    The effects of two important flow control techniques, i.e. jet control and dimples, on the aerodynamic characteristics and performance of a number of body configurations have been studied experimentally. The dimple studies have been carried out in a transonic-supersonic wind tunnel and the jet studies in a hypersonic gun tunnel at a Mach number of 8.2. Air was used as the working gas. The tests employed schlieren photography and oil-flow to study the overall flow field. Quantitative studies have been made by pressure measurements.

  1. The need for speed: global optic flow speed influences steering.

    PubMed

    Kountouriotis, Georgios K; Mole, Callum D; Merat, Natasha; Wilkie, Richard M

    2016-05-01

    How do animals follow demarcated paths? Different species are sensitive to optic flow and one control solution is to maintain the balance of flow symmetry across visual fields; however, it is unclear whether animals are sensitive to changes in asymmetries when steering along curved paths. Flow asymmetries can alter the global properties of flow (i.e. flow speed) which may also influence steering control. We tested humans steering curved paths in a virtual environment. The scene was manipulated so that the ground plane to either side of the demarcated path produced larger or smaller asymmetries in optic flow. Independent of asymmetries and the locomotor speed, the scene properties were altered to produce either faster or slower globally averaged flow speeds. Results showed that rather than being influenced by changes in flow asymmetry, steering responded to global flow speed. We conclude that the human brain performs global averaging of flow speed from across the scene and uses this signal as an input for steering control. This finding is surprising since the demarcated path provided sufficient information to steer, whereas global flow speed (by itself) did not. To explain these findings, existing models of steering must be modified to include a new perceptual variable: namely global optic flow speed. PMID:27293789

  2. The need for speed: global optic flow speed influences steering

    PubMed Central

    Kountouriotis, Georgios K.; Mole, Callum D.; Merat, Natasha

    2016-01-01

    How do animals follow demarcated paths? Different species are sensitive to optic flow and one control solution is to maintain the balance of flow symmetry across visual fields; however, it is unclear whether animals are sensitive to changes in asymmetries when steering along curved paths. Flow asymmetries can alter the global properties of flow (i.e. flow speed) which may also influence steering control. We tested humans steering curved paths in a virtual environment. The scene was manipulated so that the ground plane to either side of the demarcated path produced larger or smaller asymmetries in optic flow. Independent of asymmetries and the locomotor speed, the scene properties were altered to produce either faster or slower globally averaged flow speeds. Results showed that rather than being influenced by changes in flow asymmetry, steering responded to global flow speed. We conclude that the human brain performs global averaging of flow speed from across the scene and uses this signal as an input for steering control. This finding is surprising since the demarcated path provided sufficient information to steer, whereas global flow speed (by itself) did not. To explain these findings, existing models of steering must be modified to include a new perceptual variable: namely global optic flow speed. PMID:27293789

  3. Development of Air Speed Nozzles

    NASA Technical Reports Server (NTRS)

    Zahm, A F

    1920-01-01

    Report describes the development of a suitable speed nozzle for the first few thousand airplanes made by the United States during the recent war in Europe, and to furnish a basis for more mature instruments in the future. Requirements for the project were to provide a suitable pressure collector for aircraft speed meters and to develop a speed nozzle which would be waterproof, powerful, unaffected by slight pitch and yaw, rugged and easy to manufacture, and uniform in structure and reading, so as not to require individual calibration.

  4. Turbulence modeling for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Chandra, Suresh

    1993-01-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  5. Turbulence modeling for high speed compressible flows

    NASA Astrophysics Data System (ADS)

    Chandra, Suresh

    1993-08-01

    The following grant objectives were delineated in the proposal to NASA: to offer course work in computational fluid dynamics (CFD) and related areas to enable mechanical engineering students at North Carolina A&T State University (N.C. A&TSU) to pursue M.S. studies in CFD, and to enable students and faculty to engage in research in high speed compressible flows. Since no CFD-related activity existed at N.C. A&TSU before the start of the NASA grant period, training of students in the CFD area and initiation of research in high speed compressible flows were proposed as the key aspects of the project. To that end, graduate level courses in CFD, boundary layer theory, and fluid dynamics were offered. This effort included initiating a CFD course for graduate students. Also, research work was performed on studying compressibility effects in high speed flows. Specifically, a modified compressible dissipation model, which included a fourth order turbulent Mach number term, was incorporated into the SPARK code and verified for the air-air mixing layer case. The results obtained for this case were compared with a wide variety of experimental data to discern the trends in the mixing layer growth rates with varying convective Mach numbers. Comparison of the predictions of the study with the results of several analytical models was also carried out. The details of the research study are described in the publication entitled 'Compressibility Effects in Modeling Turbulent High Speed Mixing Layers,' which is attached to this report.

  6. Speed control with end cushion for high speed air cylinder

    DOEpatents

    Stevens, Wayne W.; Solbrig, Charles W.

    1991-01-01

    A high speed air cylinder in which the longitudinal movement of the piston within the air cylinder tube is controlled by pressurizing the air cylinder tube on the accelerating side of the piston and releasing pressure at a controlled rate on the decelerating side of the piston. The invention also includes a method for determining the pressure required on both the accelerating and decelerating sides of the piston to move the piston with a given load through a predetermined distance at the desired velocity, bringing the piston to rest safely without piston bounce at the end of its complete stroke.

  7. 26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. "AIR INSTALLATIONS; EDWARDS AIR FORCE BASE, CALIFORNIA; HIGH SPEED TEST TRACK." Drawing No. 10-259. One inch to 400 feet plan of original 10,000-foot sled track. No date. No D.O. series number. No headings as above. - Edwards Air Force Base, South Base Sled Track, Edwards Air Force Base, North of Avenue B, between 100th & 140th Streets East, Lancaster, Los Angeles County, CA

  8. Terminal Air Flow Planning

    NASA Technical Reports Server (NTRS)

    Denery, Dallas G.; Erzberger, Heinz; Edwards, Thomas A. (Technical Monitor)

    1998-01-01

    The Center TRACON Automation System (CTAS) will be the basis for air traffic planning and control in the terminal area. The system accepts arriving traffic within an extended terminal area and optimizes the flow based on current traffic and airport conditions. The operational use of CTAS will be presented together with results from current operations.

  9. Sound speed in downhole flow measurement.

    PubMed

    Ünalmis, Ö Haldun

    2016-07-01

    This paper describes the use of sound speed in flow measurement applications in the high-pressure/high-temperature downhole environment. The propagation speed of a sound wave is a powerful tool to extract useful information from a flowing fluid medium in pipe whether the medium consists of a single-phase or multiphase flow. Considering the complex nature of the flow patterns and changing phase fractions from reservoir to surface, utilizing the propagation speed of sound of a fluid mixture is not a trivial task, especially if the interest is real-time flow measurement. The demanding applications span a wide spectrum from noisy medium originating from fast-moving gas/liquid flows to quiet medium originating from slow-moving liquid/liquid flows. In the current work, multiple flow loop tests are conducted in different facilities to evaluate the direct use of sound speed in flow rate measurement and the results are associated with real-life field examples. A tool analysis map is developed that addresses the use of sound speed for flow measurement under different scenarios. Although most examples are based on strain-based local sensing of the flow, the use of sound speed is independent of the methodology and can be implemented by other methods such as acoustic-based distributed sensing. PMID:27475167

  10. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  11. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  12. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... specified in § 25.335(d); and (3) Is sufficiently less than VMO to ensure that likely speed variation...

  13. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  14. 14 CFR 25.1517 - Rough air speed, VRA.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Rough air speed, VRA. 25.1517 Section 25... Limitations § 25.1517 Rough air speed, VRA. A rough air speed, VRA, for use as the recommended turbulence... rough air encounters will not cause the overspeed warning to operate too frequently. In the absence of...

  15. Reconstructing Tsunami Flow Speed from Sedimentary Deposits

    NASA Astrophysics Data System (ADS)

    Jaffe, B. E.; Gelfenbaum, G. R.

    2014-12-01

    Paleotsunami deposits contain information about the flow that created them that can be used to reconstruct tsunami flow speed and thereby improving assessment of tsunami hazard. We applied an inverse tsunami sediment transport model to sandy deposits near Sendai Airport, Japan, that formed during the 11 March 2011 Tohoku-oki tsunami to test model performance and explore the spatial variations in tsunami flow speed. The inverse model assumes the amount of suspended sediment in the water column is in equilibrium with local flow speed and that sediment transport convergences, primarily from bedload transport, do not contribute significantly to formation of the portion of the deposit we identify as formed by sediment settling out of suspension. We interpret massive or inversely graded intervals as forming from sediment transport convergences and do not model them. Sediment falling out of suspension forms a specific type of normal grading, termed 'suspension' grading, where the entire grain size distribution shifts to finer sizes higher up in a deposit. Suspension grading is often observed in deposits of high-energy flows, including turbidity currents and tsunamis. The inverse model calculates tsunami flow speed from the thickness and bulk grain size of a suspension-graded interval. We identified 24 suspension-graded intervals from 7 trenches located near the Sendai Airport from ~250-1350 m inland from the shoreline. Flow speeds were highest ~500 m from the shoreline, landward of the forested sand dunes where the tsunami encountered lower roughness in a low-lying area as it traveled downslope. Modeled tsunami flow speeds range from 2.2 to 9.0 m/s. Tsunami flow speeds are sensitive to roughness, which is unfortunately poorly constrained. Flow speed calculated by the inverse model was similar to those calculated from video taken from a helicopter about 1-2 km inland. Deposit reconstructions of suspension-graded intervals reproduced observed upward shifts in grain size

  16. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    NASA Technical Reports Server (NTRS)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  17. Transduction in Drosophila olfactory receptor neurons is invariant to air speed

    PubMed Central

    Zhou, Yi

    2012-01-01

    In the vertebrate nose, increasing air speed tends to increase the magnitude of odor-evoked activity in olfactory receptor neurons (ORNs), given constant odor concentration and duration. It is often assumed that the same is true of insect olfactory organs, but this has not been directly tested. In this study, we examined the effect of air speed on ORN responses in Drosophila melanogaster. We constructed an odor delivery device that allowed us to independently vary concentration and air speed, and we used a fast photoionization detector to precisely measure the actual odor concentration at the antenna while simultaneously recording spikes from ORNs in vivo. Our results demonstrate that Drosophila ORN odor responses are invariant to air speed, as long as odor concentration is kept constant. This finding was true across a >100-fold range of air speeds. Because odor hydrophobicity has been proposed to affect the air speed dependence of olfactory transduction, we tested a >1,000-fold range of hydrophobicity values and found that ORN responses are invariant to air speed across this full range. These results have implications for the mechanisms of odor delivery to Drosophila ORNs. Our findings are also significant because flies have a limited ability to control air flow across their antennae, unlike terrestrial vertebrates, which can control air flow within their nasal cavity. Thus, for the fly, invariance to air speed may be adaptive because it confers robustness to changing wind conditions. PMID:22815404

  18. Permeable Gas Flow Influences Magma Fragmentation Speed.

    NASA Astrophysics Data System (ADS)

    Richard, D.; Scheu, B.; Spieler, O.; Dingwell, D.

    2008-12-01

    Highly viscous magmas undergo fragmentation in order to produce the pyroclastic deposits that we observe, but the mechanisms involved remain unclear. The overpressure required to initiate fragmentation depends on a number of physical parameters, such as the magma's vesicularity, permeability, tensile strength and textural properties. It is clear that these same parameters control also the speed at which a fragmentation front travels through magma when fragmentation occurs. Recent mathematical models of fragmentation processes consider most of these factors, but permeable gas flow has not yet been included in these models. However, it has been shown that permeable gas flow through a porous rock during a sudden decompression event increases the fragmentation threshold. Fragmentation experiments on natural samples from Bezymianny (Russia), Colima (Mexico), Krakatau (Indonesia) and Augustine (USA) volcanoes confirm these results and suggest in addition that high permeable flow rates may increase the speed of fragmentation. Permeability from the investigated samples ranges from as low as 5 x 10-14 to higher than 9 x 10- 12 m2 and open porosity ranges from 16 % to 48 %. Experiments were performed for each sample series at applied pressures up to 35 MPa. Our results indicate that the rate of increase of fragmentation speed is higher when the permeability is above 10-12 m2. We confirm that it is necessary to include the influence of permeable flow on fragmentation dynamics.

  19. A Study on the Air flow outside Ambient Vaporizer Fin

    NASA Astrophysics Data System (ADS)

    Oh, G.; Lee, T.; Jeong, H.; Chung, H.

    2015-09-01

    In this study, we interpreted Fog's Fluid that appear in the Ambient Vaporizer and predict the point of change Air to Fog. We interpreted using Analysis working fluid was applied to LNG and Air. We predict air flow when there is chill of LNG in the air Temperature and that makes fog. Also, we interpreted based on Summer and Winter criteria in the air temperature respectively. Finally, we can check the speed of the fog when fog excreted.

  20. Device for Measuring Low Flow Speed in a Duct

    NASA Technical Reports Server (NTRS)

    Quinn, Frank; Magee, Kevin

    2009-01-01

    A multiple-throat venturi system has been invented for measuring laminar flow of air or other gas at low speed (1 to 30 cm/s) in a duct while preserving the laminar nature of the flow and keeping the velocity profile across the duct as nearly flat as possible. While means for measuring flows at higher speeds are well established, heretofore, there have been no reliable means for making consistent, accurate measurements in this speed range. In the original application for which this system was invented, the duct leads into the test section of a low-speed wind tunnel wherein uniform, low-speed, laminar flow is required for scientific experiments. The system could also be used to monitor a slow flow of gas in an industrial process like chemical vapor deposition. In the original application, the multiple- throat venturi system is mounted at the inlet end of the duct having a rectangular cross section of 19 by 14 cm, just upstream of an assembly of inlet screens and flow straighteners that help to suppress undesired flow fluctuations (see Figure 1). The basic venturi measurement principle is well established: One measures the difference in pressure between (1) a point just outside the inlet, where the pressure is highest and the kinetic energy lowest; and (2) the narrowest part (the throat) of the venturi passage, where the kinetic energy is highest and the pressure is lowest. Then by use of Bernoulli s equation for the relationship between pressure and kinetic energy, the volumetric flow speed in the duct can be calculated from the pressure difference and the inlet and throat widths. The design of this system represents a compromise among length, pressure recovery, uniformity of flow, and complexity of assembly. Traditionally, venturis are used to measure faster flows in narrower cross sections, with longer upstream and downstream passages to maintain accuracy. The dimensions of the passages of the present venturi system are sized to provide a readily measurable

  1. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  2. Modeling Compressibility Effects in High-Speed Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Sarkar, S.

    2004-01-01

    Man has strived to make objects fly faster, first from subsonic to supersonic and then to hypersonic speeds. Spacecraft and high-speed missiles routinely fly at hypersonic Mach numbers, M greater than 5. In defense applications, aircraft reach hypersonic speeds at high altitude and so may civilian aircraft in the future. Hypersonic flight, while presenting opportunities, has formidable challenges that have spurred vigorous research and development, mainly by NASA and the Air Force in the USA. Although NASP, the premier hypersonic concept of the eighties and early nineties, did not lead to flight demonstration, much basic research and technology development was possible. There is renewed interest in supersonic and hypersonic flight with the HyTech program of the Air Force and the Hyper-X program at NASA being examples of current thrusts in the field. At high-subsonic to supersonic speeds, fluid compressibility becomes increasingly important in the turbulent boundary layers and shear layers associated with the flow around aerospace vehicles. Changes in thermodynamic variables: density, temperature and pressure, interact strongly with the underlying vortical, turbulent flow. The ensuing changes to the flow may be qualitative such as shocks which have no incompressible counterpart, or quantitative such as the reduction of skin friction with Mach number, large heat transfer rates due to viscous heating, and the dramatic reduction of fuel/oxidant mixing at high convective Mach number. The peculiarities of compressible turbulence, so-called compressibility effects, have been reviewed by Fernholz and Finley. Predictions of aerodynamic performance in high-speed applications require accurate computational modeling of these "compressibility effects" on turbulence. During the course of the project we have made fundamental advances in modeling the pressure-strain correlation and developed a code to evaluate alternate turbulence models in the compressible shear layer.

  3. Computation of high-speed reacting flows

    NASA Astrophysics Data System (ADS)

    Clutter, James Keith

    A computational study has been conducted for high-speed reacting flows relevant to munition problems, including shock-induced combustion and gun muzzle blast. The theoretical model considers inviscid and viscous flows, multi-species, finite rate chemical reaction schemes, and turbulence. Both the physical and numerical aspects are investigated to determine their impact on simulation accuracy. A range of hydrogen and oxygen reaction mechanisms are evaluated for the shock-induced combustion flow scenario. Characteristics of the mechanisms such as the induction time, heat release rate, and second explosion limit are found to impact the accuracy of the computation. On the numerical side, reaction source term treatments, including logarithmic weighting and scaling modifications, are investigated to determine their effectiveness in addressing numerical errors caused by disparate length scales between chemical reactions and fluid dynamics. It is demonstrated that these techniques can enhance solution accuracy. Computations of shock-induced combustion have also been performed using a κ-ɛ model to account for the turbulent transport of species and heat. An algebraic model of the temperature fluctuations has been used to estimate the impact of the turbulent effect on the chemical reaction source terms. The turbulence effects when represented with the current models are found to be minimal in the shock-induced combustion flow investigated in the present work. For the gun system simulations, computations for both a large caliber howitzer and small caliber firearms are carried out. A reduced kinetic scheme and an algebraic turbulence model are employed. The present approach, which accounts for the chemical reaction aspects of the gun muzzle blast problem, is found to improve the prediction of peak overpressures and can capture the effects produced by small caliber firearm sound suppressors. The present study has established the numerical and physical requirements for

  4. Supersonic Air Flow due to Solid-Liquid Impact

    NASA Astrophysics Data System (ADS)

    Gekle, Stephan; Peters, Ivo R.; Gordillo, José Manuel; van der Meer, Devaraj; Lohse, Detlef

    2010-01-01

    A solid object impacting on liquid creates a liquid jet due to the collapse of the impact cavity. Using visualization experiments with smoke particles and multiscale simulations, we show that in addition, a high-speed air jet is pushed out of the cavity. Despite an impact velocity of only 1m/s, this air jet attains supersonic speeds already when the cavity is slightly larger than 1 mm in diameter. The structure of the air flow closely resembles that of compressible flow through a nozzle—with the key difference that here the “nozzle” is a liquid cavity shrinking rapidly in time.

  5. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  6. PERFORMANCE TESTING OF THE TETRADYNE HIGH SPEED AIR JET SKIMMER

    EPA Science Inventory

    The U.S. Environmental Protection Agency evaluated the performance of the prototype Tetradyne High Speed Air Jet Skimmer at their OHMSETT test facility at Leonardo, New Jersey. The skimmer depends on an air-jet impacting the water surface at an angle and deflecting rapidly moving...

  7. Transient flow characteristics of a high speed rotary valve

    NASA Astrophysics Data System (ADS)

    Browning, Patrick H.

    Pressing economic and environmental concerns related to the performance of fossil fuel burning internal combustion engines have revitalized research in more efficient, cleaner burning combustion methods such as homogeneous charge compression ignition (HCCI). Although many variations of such engines now exist, several limiting factors have restrained the full potential of HCCI. A new method patented by West Virginia University (WVU) called Compression Ignition by Air Injection (CIBAI) may help broaden the range of effective HCCI operation. The CIBAI process is ideally facilitated by operating two synchronized piston-cylinders mounted head-to-head with one of the cylinders filled with a homogeneous mixture of air and fuel and the other cylinder filled with air. A specialized valve called the cylinder connecting valve (CCV) separates the two cylinders, opens just before reaching top dead center (TDC), and allows the injection air into the charge to achieve autoignition. The CCV remains open during the entire power stroke such that upon ignition the rapid pressure rise in the charge cylinder forces mass flow back through the CCV into the air-only cylinder. The limited mass transfer between the cylinders through the CCV limits the theoretical auto ignition timing capabilities and thermal efficiency of the CIBAI cycle. Research has been performed to: (1) Experimentally measure the transient behavior of a potential CCV design during valve opening between two chambers maintained at constant pressure and again at constant volume; (2) Develop a modified theoretical CCV mass flow model based upon the measured cold flow valve performance that is capable of predicting the operating conditions required for successful mixture autoignition; (3) Make recommendations for future CCV designs to maximize CIBAI combustion range. Results indicate that the modified-ball CCV design offers suitable transient flow qualities required for application to the CIBAI concept. Mass injection events

  8. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.

    1995-11-14

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  9. High speed flow cytometric separation of viable cells

    DOEpatents

    Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie

    1995-01-01

    Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.

  10. N.A.C.A. Recording Air Speed Meter

    NASA Technical Reports Server (NTRS)

    Norton, F H

    1921-01-01

    A new type of air speed meter is described which was designed by the technical staff of the National Advisory Committee for Aeronautics. The instrument consists essentially of a tight metal diaphragm of high natural period which is acted upon by the pressure difference of a pitot-static head. The resulting deflection of this diaphragm is recorded optically on a moving film.

  11. The Altitude Effect on Air Speed Indicators II

    NASA Technical Reports Server (NTRS)

    Eaton, H N; Macnair, W A

    1923-01-01

    In an investigation described in NACA Technical Report 110, it was shown that under certain conditions, particularly for the relatively low-speed flight of airships, the data obtained were not sufficiently accurate. This report describes an investigation in which the data obtained were sufficiently accurate and complete to enable the viscosity correction to be deduced quantitatively for a number of the air-speed pressure nozzles in common use. The report opens with a discussion of the theory of the performance of air-speed nozzles and of the calibration of the indicators, from which the theory of the altitude correction is developed. Then follows the determination of the performance characteristics of the nozzles and calibration constants used for the indicators. In the latter half of the report, the viscosity correction is computed for the Zahm Pitot-venturi nozzles.

  12. Accurate measurement of streamwise vortices in low speed aerodynamic flows

    NASA Astrophysics Data System (ADS)

    Waldman, Rye M.; Kudo, Jun; Breuer, Kenneth S.

    2010-11-01

    Low Reynolds number experiments with flapping animals (such as bats and small birds) are of current interest in understanding biological flight mechanics, and due to their application to Micro Air Vehicles (MAVs) which operate in a similar parameter space. Previous PIV wake measurements have described the structures left by bats and birds, and provided insight to the time history of their aerodynamic force generation; however, these studies have faced difficulty drawing quantitative conclusions due to significant experimental challenges associated with the highly three-dimensional and unsteady nature of the flows, and the low wake velocities associated with lifting bodies that only weigh a few grams. This requires the high-speed resolution of small flow features in a large field of view using limited laser energy and finite camera resolution. Cross-stream measurements are further complicated by the high out-of-plane flow which requires thick laser sheets and short interframe times. To quantify and address these challenges we present data from a model study on the wake behind a fixed wing at conditions comparable to those found in biological flight. We present a detailed analysis of the PIV wake measurements, discuss the criteria necessary for accurate measurements, and present a new dual-plane PIV configuration to resolve these issues.

  13. Transient response of sap flow to wind speed.

    PubMed

    Chu, Chia R; Hsieh, Cheng-I; Wu, Shen-Yuang; Phillips, Nathan G

    2009-01-01

    Transient responses of sap flow to step changes in wind speed were experimentally investigated in a wind tunnel. A Granier-type sap flow sensor was calibrated and tested in a cylindrical tube for analysis of its transient time response. Then the sensor was used to measure the transient response of a well-watered Pachira macrocarpa plant to wind speed variations. The transient response of sap flow was described using the resistance-capacitance model. The steady sap flow rate increased as the wind speed increased at low wind speeds. Once the wind speed exceeded 8.0 m s(-1), the steady sap flow rate did not increase further. The transpiration rate, measured gravimetrically, showed a similar trend. The response of nocturnal sap flow to wind speed variation was also measured and compared with the results in the daytime. Under the same wind speed, the steady sap flow rate was smaller than that in the daytime, indicating differences between diurnal and nocturnal hydraulic function, and incomplete stomatal closure at night. In addition, it was found that the temporal response of the Granier sensor is fast enough to resolve the transient behaviour of water flux in plant tissue. PMID:19022910

  14. High-speed Tests of a Ducted Body with Various Air-outlet Openings

    NASA Technical Reports Server (NTRS)

    Becker, John V.; Baals, Donald D.

    1942-01-01

    Test of a ducted body with Internal flow were made in the 8-foot high-speed wind tunnel for the purpose of studying the effects on external drag and an critical speed of the addition of efficient inlet and outlet openings to a basic streamline shape. Drag tests of a 13.6- inch-diameter streamline body of fineness ratio 6.14 were made at Mach numbers ranging from 0.20 to 0.75. The model was centrally mounted on a 9-percent-thick airfoil and was designed to have an efficient airfoil-body juncture and a high critical speed. An air inlet at the nose and various outlets at the tail were added: drag and internal-flow data were obtained over the given speed range. The critical speed of the ducted bodies was found to be as high as that of the streamline body. The external - drag with air flow through the body did not exceed the drag of the basic streamline shape. No appreciable variation in the efficiency of the diffuser section of the internal duct occurred throughout the Mach number range of the tests.

  15. Adjustments of wingbeat frequency and air speed to air density in free-flying migratory birds.

    PubMed

    Schmaljohann, H; Liechti, F

    2009-11-01

    Birds adjust their flight behaviour to the physical properties of the air. Lift and drag, the two major properties in aerodynamics, are highly dependent on air density. With decreasing air density drag is reduced and lift per wingbeat decreases. According to flight mechanical theory, wingbeat frequency and air speed should increase with decreasing air density, i.e. increasing flight altitude. Although wind tunnel experiments have shed light on many aspects of avian flight, the effect of air density remained ambiguous, because air density could not be adjusted in wind tunnels, until now. By means of radar we recorded tracks of several thousand free-flying individual birds during nocturnal migration. From these tracks we derived wingbeat frequencies and air speeds covering air densities from 0.84 kg m(-3) to 1.13 kg m(-3), corresponding to an altitudinal range of about 3000 m. We demonstrate here with this sample of nocturnal migrants that: (1) wingbeat frequency decreases with air density (which corresponds to an increase in flap-gliding flyers by 0.4 Hz km(-1) and in bounding flyers by 1.1 Hz km(-1)), (2) reducing wingbeat frequency to equivalent sea level values did not abolish the dependency on air density, as expected by flight mechanical theory, and (3) bounding flyers show a higher response in their flight behavioural adjustments to changes in air density than flap-gliding flyers. With respect to air speed flap-gliding flyers increase their air speed by 1.0 m s(-1) km(-1) and bounding flyers by 1.4 m s(-1) km(-1). PMID:19880724

  16. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  17. Unsteady Flow Simulation of High-speed Turbopumps

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeffrey A.

    2006-01-01

    Computation of high-speed hydrodynamics requires high-fidelity simulation to resolve flow features involving transient flow, cavitation, tip vortex and multiple scales of unsteady fluctuations. One example of this type in aerospace is related to liquid-fueled rocket turbopump. Rocket turbopumps operate under severe conditions at very high rotational speeds typically at thousands of rpm. For example, the Shuttle orbiter low-pressure-fuel-turbopump creates transient flow features associated with reverse flows, tip clearance effects, secondary flows, vortex shedding, junction flows, and cavitation effects. Flow unsteadiness originating from the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the flow liners just upstream of the LPFTP. The reverse flow generated at the tip of the inducer blades travels upstream and interacts with the bellows cavity. Simulation procedure for this type high-speed hydrodynamic problems requires a method for quantifying multi-scale and multi-phase flow as well as an efficient high-end computing strategy. The current paper presents a high-fidelity computational procedure for unsteady hydrodynamic problems using a high-speed liquid-fueled rocket turbopump.

  18. Speeding Convergence In Simulations Of Hypersonic Flow

    NASA Technical Reports Server (NTRS)

    Flores, J.; Cheung, S.; Cheer, A.; Hafez, M.

    1991-01-01

    Report describes study aimed at accelerating rates of convergence of iterative schemes for numerical integration of equations of hypersonic flow of viscous and inviscid fluids. Richardson-type overrelaxation method applied.

  19. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  20. Measuring the speed of sound in air using smartphone applications

    NASA Astrophysics Data System (ADS)

    Yavuz, A.

    2015-05-01

    This study presents a revised version of an old experiment available in many textbooks for measuring the speed of sound in air. A signal-generator application in a smartphone is used to produce the desired sound frequency. Nodes of sound waves in a glass pipe, of which one end is immersed in water, are more easily detected, so results can be obtained more quickly than from traditional acoustic experiments using tuning forks.

  1. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  2. Embedded function methods for compressible high speed turbulent flow

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1989-01-01

    Fundamental issues relating to compressible turbulent flow are addressed. The focus has been on developing methods and testing concepts for attached flows rather than trying to force a conventional law of the wall into a zone of backflow. Although the dynamics of the near-wall flow in an attached turbulent boundary layer are relatively well documented, the dynamical features of a zone of reversed turbulent flow are not, nor are they well understood. Incompressibility introduces effects and issues that have been dealt with only marginally in the literature, therefore, the present work has been focussed on attached high-speed flows. The wall function method has been extended up through the supersonic to hypersonic speeds. Algorithms have been successfully introduced into the code that calculates the flow all the way to the wall, and testing is being carried out for progressively more complex flow situations.

  3. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  4. Computational and experimental study of spin coater air flow

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  5. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows.

  6. Summer melt regulates winter glacier flow speeds throughout Alaska

    NASA Astrophysics Data System (ADS)

    Burgess, Evan W.; Larsen, Christopher F.; Forster, Richard R.

    2013-12-01

    how climate change will affect glacier and ice sheet flow speeds remains a large hurdle toward accurate sea level rise forecasting. Increases in surface melt rates are known to accelerate glacier flow in summer, whereas in winter, flow speeds are believed to be relatively invariant. Here we show that wintertime flow speeds on nearly all major glaciers throughout Alaska are not only variable but are inversely related to melt from preceding summers. For each additional meter of summertime melt, we observe an 11% decrease in wintertime velocity on glaciers of all sizes, geometries, climates, and bed types. This dynamic occurs because interannual differences in summertime melt affect how much water is retained in the subglacial system during winter. The ubiquity of the dynamic indicates it occurs globally on glaciers and ice sheets not frozen to their beds and thus constitutes a new mechanism affecting sea level rise projections.

  7. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  8. Ionospheric Heating Rates Associated with Solar Wind Forcing: Ejecta flow, High Speed Flow and Slow Flow

    NASA Astrophysics Data System (ADS)

    Knipp, D. J.; Kasprzak, B.; Richardson, I.; Paige, T.; Evans, D.

    2001-12-01

    We present estimates of global ionospheric Joule and particle heating as a function of solar wind flow types over solar cycles 21, 22 and the first half of solar cycle 23. Richardson et al., [JGR, 2000] used a variety of techniques to categorize the solar wind flow as ejecta, high-speed stream or slow flow. Their work provides the basis for our catigorization of heating by flow type. The estimates of Joule heating are based on output of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure, and fits to the Polar Cap Index [Chun et al., GRL, 1999]. Estimates of particle heating are derived from polar orbiting satellites. Although ejecta only account for 19% of the solar wind flow, they account for 27% of the Joule heating. High-speed stream flow accounts for 47% of the flow occurrence and 44% of the Joule heating. We will show similar comparisons for particle heating. Our solar cycle statistics indicate that Joule heating produces a yearly average hemispheric heating rate of 53 GW while particles produce a hemispheric heating rate of 38 GW. Joule heating exhibits more variability than particle heating. During solar cycle maximum years Joule heating accounts for twice the heating associated with particles heating.

  9. Flux or speed? Examining speckle contrast imaging of vascular flows.

    PubMed

    Kazmi, S M Shams; Faraji, Ehssan; Davis, Mitchell A; Huang, Yu-Yen; Zhang, Xiaojing J; Dunn, Andrew K

    2015-07-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  10. Flux or speed? Examining speckle contrast imaging of vascular flows

    PubMed Central

    Kazmi, S. M. Shams; Faraji, Ehssan; Davis, Mitchell A.; Huang, Yu-Yen; Zhang, Xiaojing J.; Dunn, Andrew K.

    2015-01-01

    Speckle contrast imaging enables rapid mapping of relative blood flow distributions using camera detection of back-scattered laser light. However, speckle derived flow measures deviate from direct measurements of erythrocyte speeds by 47 ± 15% (n = 13 mice) in vessels of various calibers. Alternatively, deviations with estimates of volumetric flux are on average 91 ± 43%. We highlight and attempt to alleviate this discrepancy by accounting for the effects of multiple dynamic scattering with speckle imaging of microfluidic channels of varying sizes and then with red blood cell (RBC) tracking correlated speckle imaging of vascular flows in the cerebral cortex. By revisiting the governing dynamic light scattering models, we test the ability to predict the degree of multiple dynamic scattering across vessels in order to correct for the observed discrepancies between relative RBC speeds and multi-exposure speckle imaging estimates of inverse correlation times. The analysis reveals that traditional speckle contrast imagery of vascular flows is neither a measure of volumetric flux nor particle speed, but rather the product of speed and vessel diameter. The corrected speckle estimates of the relative RBC speeds have an average 10 ± 3% deviation in vivo with those obtained from RBC tracking. PMID:26203384

  11. Particle displacement tracking applied to air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.

    1991-01-01

    Electronic Particle Image Velocimeter (PIV) techniques offer many advantages over conventional photographic PIV methods such as fast turn around times and simplified data reduction. A new all electronic PIV technique was developed which can measure high speed gas velocities. The Particle Displacement Tracking (PDT) technique employs a single cw laser, small seed particles (1 micron), and a single intensified, gated CCD array frame camera to provide a simple and fast method of obtaining two-dimensional velocity vector maps with unambiguous direction determination. Use of a single CCD camera eliminates registration difficulties encountered when multiple cameras are used to obtain velocity magnitude and direction information. An 80386 PC equipped with a large memory buffer frame-grabber board provides all of the data acquisition and data reduction operations. No array processors of other numerical processing hardware are required. Full video resolution (640x480 pixel) is maintained in the acquired images, providing high resolution video frames of the recorded particle images. The time between data acquisition to display of the velocity vector map is less than 40 sec. The new electronic PDT technique is demonstrated on an air nozzle flow with velocities less than 150 m/s.

  12. A time-accurate algorithm for chemical non-equilibrium viscous flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, J.-S.; Chen, K.-H.; Choi, Y.

    1992-01-01

    A time-accurate, coupled solution procedure is described for the chemical nonequilibrium Navier-Stokes equations over a wide range of Mach numbers. This method employs the strong conservation form of the governing equations, but uses primitive variables as unknowns. Real gas properties and equilibrium chemistry are considered. Numerical tests include steady convergent-divergent nozzle flows with air dissociation/recombination chemistry, dump combustor flows with n-pentane-air chemistry, nonreacting flow in a model double annular combustor, and nonreacting unsteady driven cavity flows. Numerical results for both the steady and unsteady flows demonstrate the efficiency and robustness of the present algorithm for Mach numbers ranging from the incompressible limit to supersonic speeds.

  13. Simulator Of Rain In Flowing Air

    NASA Technical Reports Server (NTRS)

    Clayton, Richard M.; Cho, Young I.; Shakkottai, Parthasarathy; Back, Lloyd H.

    1989-01-01

    Report describes relatively inexpensive apparatus that creates simulated precipitation from drizzle to heavy rain in flowing air. Small, positive-displacement pump and water-injecting device positioned at low-airspeed end of converging section of wind tunnel 10 in. in diameter. Drops injected by array entrained in flow of air as it accelerates toward narrower outlet, 15 in. downstream. Outlet 5 in. in diameter.

  14. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  15. Effect of desired speed variability on highway traffic flow.

    PubMed

    Lipshtat, Azi

    2009-06-01

    Traffic flow is a function of many natural, environmental, and human factors. Not only that weather and road condition can vary, but drivers' decisions and policies also can affect the flow. Here we analyze the effect of distribution of desired speeds. We show that a broader distribution can reduce the flow efficiency and increase congestions. Since different drivers react differently to changes in weather or road conditions, such a change leads to a change in desired speed distribution as well. As a result, nonintuitive changes in traffic flow may occur. Besides providing insight and analyzing the underlying mechanism of a collective phenomenon, this example sheds light on a fundamental aspect of computational modeling. Although "mean-field" models that deal with average values only and ignore variability are simpler and easier to analyze, they can very easily turn into oversimplifications and miss relevant qualitative phenomena. PMID:19658567

  16. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  17. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Taulbee, D. B.; Madnia, C. K.; Jaberi, F. A.; Colucci, P. J.; Gicquel, L. Y. M.; Adumitroaie, V.; James, S.

    1999-01-01

    The objectives of this research are: (1) to develop and implement a new methodology for large eddy simulation of (LES) of high-speed reacting turbulent flows. (2) To develop algebraic turbulence closures for statistical description of chemically reacting turbulent flows. We have just completed the third year of Phase III of this research. This is the Final Report of our activities on this research sponsored by the NASA LaRC.

  18. Numerical Simulation of High-Speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Jaberi, F. A.; Colucci, P. J.; James, S.; Givi, P.

    1996-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES) methods for computational analysis of high-speed reacting turbulent flows. We have just completed the first year of Phase 3 of this research.

  19. Air flow cued spatial learning in mice.

    PubMed

    Bouchekioua, Youcef; Mimura, Masaru; Watanabe, Shigeru

    2015-01-01

    Spatial learning experiments in rodents typically employ visual cues that are associated with a goal place, even though it is now well established that they have poor visual acuity. We assessed here the possibility of spatial learning in mice based on an air flow cue in a dry version of the Morris water maze task. A miniature fan was placed at each of the four cardinal points of the circular maze, but only one blew air towards the centre of the maze. The three other fans were blowing towards their own box. The mice were able to learn the task only if the spatial relationship between the air flow cue and the position of the goal place was kept constant across trials. A change of this spatial relationship resulted in an increase in the time to find the goal place. We report here the first evidence of spatial learning relying on an air flow cue. PMID:25257773

  20. Flame Speeds of Methane-Air, Propane-Air, and Ethylene-Air Mixtures at Low Initial Temperatures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L; Heimel, Sheldon

    1952-01-01

    Flame speeds were determined for methane-air, propane-air, and ethylene-air mixtures at -73 C and for methane-air mixtures at -132 C. The data extend the curves of maximum flame speed against initial mixture temperature previously established for the range from room temperature to 344 C. Empirical equations for maximum flame speed u(cm/ sec) as a function of initial mixture temperature T(sub O) were determined to be as follows: for methane, for T(sub O) from 141 to 615 K, u = 8 + 0.000160 T(sub O)(exp 2.11); for propane, for T(sub O) from 200 to 616 K, u = 10 + 0.000342 T(sub O)(exp 2.00); for ethylene, for T(sub O) from 200 to 617 K, u = 10 + 0.00259 T(sub O)(exp 1.74). Relative flame speeds at low initial temperatures were predicted within approximately 20 percent by either the thermal theory as presented by Semenov or by the diffusion theory of Tanford and Pease. The same order was found previously for high initial temperatures. The low-temperature data were also found to extend the linear correlations between maximum flame speed and calculated equilibrium active-radical concentrations, which were established by the previously reported high-temperature data.

  1. Air flow through poppet valves

    NASA Technical Reports Server (NTRS)

    Lewis, G W; Nutting, E M

    1920-01-01

    Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.

  2. Direct Numerical Simulation of Disperse Multiphase High-Speed Flows

    SciTech Connect

    Nourgaliev, R R; Dinh, T N; Theofanous, T G; Koning, J M; Greenman, R M; Nakafuji, G T

    2004-02-17

    A recently introduced Level-Set-based Cartesian Grid (LSCG) Characteristics-Based Matching (CBM) method is applied for direct numerical simulation of shock-induced dispersal of solid material. The method incorporates the latest advancements in the level set technology and characteristics-based numerical methods for solution of hyperbolic conservation laws and boundary treatment. The LSCG/CBM provides unique capabilities to simulate complex fluid-solid (particulate) multiphase flows under high-speed flow conditions and taking into account particle-particle elastic and viscoelastic collisions. The particular emphasis of the present study is placed on importance of appropriate modeling of particle-particle collisions, which are demonstrated to crucially influence the global behavior of high-speed multiphase particulate flows. The results of computations reveal the richness and complexity of flow structures in compressible disperse systems, due to dynamic formation of shocks and contact discontinuities, which provide an additional long-range interaction mechanism in dispersed high-speed multiphase flows.

  3. Gpu Implementation of Preconditioning Method for Low-Speed Flows

    NASA Astrophysics Data System (ADS)

    Zhang, Jiale; Chen, Hongquan

    2016-06-01

    An improved preconditioning method for low-Mach-number flows is implemented on a GPU platform. The improved preconditioning method employs the fluctuation of the fluid variables to weaken the influence of accuracy caused by the truncation error. The GPU parallel computing platform is implemented to accelerate the calculations. Both details concerning the improved preconditioning method and the GPU implementation technology are described in this paper. Then a set of typical low-speed flow cases are simulated for both validation and performance analysis of the resulting GPU solver. Numerical results show that dozens of times speedup relative to a serial CPU implementation can be achieved using a single GPU desktop platform, which demonstrates that the GPU desktop can serve as a cost-effective parallel computing platform to accelerate CFD simulations for low-Speed flows substantially.

  4. Design and experimental study of high-speed low-flow-rate centrifugal compressors

    SciTech Connect

    Gui, F.; Reinarts, T.R.; Scaringe, R.P.; Gottschlich, J.M.

    1995-12-31

    This paper describes a design and experimental effort to develop small centrifugal compressors for aircraft air cycle cooling systems and small vapor compression refrigeration systems (20--100 tons). Efficiency improvements at 25% are desired over current designs. Although centrifugal compressors possess excellent performance at high flow rates, low-flow-rate compressors do not have acceptable performance when designed using current approaches. The new compressors must be designed to operate at a high rotating speed to retain efficiency. The emergence of the magnetic bearing provides the possibility of developing such compressors that run at speeds several times higher than current dominating speeds. Several low-flow-rate centrifugal compressors, featured with three-dimensional blades, have been designed, manufactured and tested in this study. An experimental investigation of compressor flow characteristics and efficiency has been conducted to explore a theory for mini-centrifugal compressors. The effects of the overall impeller configuration, number of blades, and the rotational speed on compressor flow curve and efficiency have been studied. Efficiencies as high as 84% were obtained. The experimental results indicate that the current theory can still be used as a guide, but further development for the design of mini-centrifugal compressors is required.

  5. Molecular dynamics simulations of high speed rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Dongari, Nishanth; Zhang, Yonghao; Reese, Jason M.

    2012-11-01

    To understand the molecular behaviour of gases in high speed rarefied conditions, we perform molecular dynamics (MD) numerical experiments using the open source code Open FOAM. We use shear-driven Couette flows as test cases, where the two parallel plates are moving with a speed of Uw in opposite directions with their temperatures set to Tw. The gas rarefaction conditions vary from slip to transition, and compressibility conditions vary from low speed isothermal to hypersonic flow regimes, i.e. Knudsen number (Kn) from 0.01 to 1 and Mach number (Ma) from 0.05 to 10. We measure the molecular velocity distribution functions, the spatial variation of gas mean free path profiles and other macroscopic properties. Our MD results convey that flow properties in the near-wall non-equilibrium region do not merely depend on Kn, but they are also significantly affected by Ma. These results may yield new insight into diffusive transport in rarefied gases at high speeds.

  6. High-Speed Civil Transport Will Revolutionize Air Travel

    NASA Technical Reports Server (NTRS)

    1998-01-01

    NASA is developing advanced technologies that will allow industry to build a high-speed civil transport that will revolutionize overseas air travel. The technology challenges include developing low-cost materials and structural concepts as well as supersonic engines that can meet stringent noise and emissions standards. NASA's goal is to provide enabling technologies that will reduce the travel time to the Far East by 50 percent within 25 years, and do so at today's subsonic ticket prices. This research is part of NASA's Aeronautics and Space Transportation Technology (ASTT) Enterprise's strategy to sustain U.S. leadership in aeronautics and space. The Enterprise has set bold goals that are grouped into Three Pillars: Global Civil Aviation, Revolutionary Technology Leaps and Access to Space.

  7. Gravity Waves in Hot Planet Atmospheres with High Speed Flows

    NASA Astrophysics Data System (ADS)

    Cho, J. Y.-K.; Watkins, C. L.

    2013-09-01

    Many global hydrodynamics models have been used to study the large-scale flows of close-in extrasolar planet atmospheres. None of these models, however, resolve gravity waves which can significantly affect the large-scale flow and its associated variability in the atmosphere. Such waves are generated by a variety of mechanisms - including, inter alia, spatially or temporally varying diabatic heating, convective overshoots, hydrodynamic instabilities and adjustment processes. Previously, we have examined mesoscale gravity waves in an inviscid atmosphere with moderately fast background flows [1]. In this work, we study large-scale, as well as mesoscale, waves in atmospheres containing high-speed flows and regions of strong dissipation. The primary focus is on the waves' propagation characteristics and interaction with the mean-flow.

  8. 40 CFR 91.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  9. High speed turbulent reacting flows: DNS and LES

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1990-01-01

    Work on understanding the mechanisms of mixing and reaction in high speed turbulent reacting flows was continued. Efforts, in particular, were concentrated on taking advantage of modern computational methods to simulate high speed turbulent flows. In doing so, two methodologies were used: large eddy simulations (LES) and direct numerical simulations (DNS). In the work related with LES the objective is to study the behavior of the probability density functions (pdfs) of scalar properties within the subgrid in reacting turbulent flows. The data base obtained by DNS for a detailed study of the pdf characteristics within the subgrid was used. Simulations are performed for flows under various initializations to include the effects of compressibility on mixing and chemical reactions. In the work related with DNS, a two-dimensional temporally developing high speed mixing layer under the influence of a second-order non-equilibrium chemical reaction of the type A + B yields products + heat was considered. Simulations were performed with different magnitudes of the convective Mach numbers and with different chemical kinetic parameters for the purpose of examining the isolated effects of the compressibility and the heat released by the chemical reactions on the structure of the layer. A full compressible code was developed and utilized, so that the coupling between mixing and chemical reactions is captured in a realistic manner.

  10. Development of a Pulsed Combustion Actuator For High-Speed Flow Control

    NASA Technical Reports Server (NTRS)

    Cutler, Andrew D.; Beck, B. Terry; Wilkes, Jennifer A.; Drummond, J. Philip; Alderfer, David W.; Danehy, Paul M.

    2005-01-01

    This paper describes the flow within a prototype actuator, energized by pulsed combustion or detonations, that provides a pulsed jet suitable for flow control in high-speed applications. A high-speed valve, capable of delivering a pulsed stream of reactants a mixture of H2 and air at rates of up to 1500 pulses per second, has been constructed. The reactants burn in a resonant chamber, and the products exit the device as a pulsed jet. High frequency pressure transducers have been used to monitor the pressure fluctuations in the device at various reactant injection frequencies, including both resonant and off-resonant conditions. The combustion chamber has been constructed with windows, and the flow inside it has been visualized using Planar Laser-Induced Fluorescence (PLIF). The pulsed jet at the exit of the device has been observed using schlieren.

  11. Liquid and liquid–gas flows at all speeds

    SciTech Connect

    LeMartelot, S.; Nkonga, B.; Saurel, R.

    2013-12-15

    All speed flows and in particular low Mach number flow algorithms are addressed for the numerical approximation of the Kapila et al. [1] multiphase flow model. This model is valid for fluid mixtures evolving in mechanical equilibrium but out of temperature equilibrium and is efficient for material interfaces computation separating miscible and non-miscible fluids. In this context, the interface is considered as a numerically diffused zone, captured as well as all present waves (shocks, expansion waves). The same flow model can be used to solve cavitating and boiling flows [2]. Many applications occurring with liquid–gas interfaces and cavitating flows involve a very wide range of Mach number, from 10{sup −3} to supersonic (and even hypersonic) conditions with respect to the mixture sound speed. It is thus important to address numerical methods free of restrictions regarding the Mach number. To do this, a preconditioned Riemann solver is built and embedded into the Godunov explicit scheme. It is shown that this method converges to exact solutions but needs too small time steps to be efficient. An implicit version is then derived, first in one dimension and second in the frame of 2D unstructured meshes. Two-phase flow preconditioning is then addressed in the frame of the Saurel et al. [3] algorithm. Modifications of the preconditioned Riemann solver are needed and detailed. Convergence of both single phase and two-phase numerical solutions are demonstrated with the help of single phase and two-phase steady nozzle flow solutions. Last, the method is illustrated by the computation of real cavitating flows in Venturi nozzles. Vapour pocket size and instability frequencies are reproduced by the model and method without using any adjustable parameter.

  12. Speed limit and ramp meter control for traffic flow networks

    NASA Astrophysics Data System (ADS)

    Goatin, Paola; Göttlich, Simone; Kolb, Oliver

    2016-07-01

    The control of traffic flow can be related to different applications. In this work, a method to manage variable speed limits combined with coordinated ramp metering within the framework of the Lighthill-Whitham-Richards (LWR) network model is introduced. Following a 'first-discretize-then-optimize' approach, the first order optimality system is derived and the switch of speeds at certain fixed points in time is explained, together with the boundary control for the ramp metering. Sequential quadratic programming methods are used to solve the control problem numerically. For application purposes, experimental setups are presented wherein variable speed limits are used as a traffic guidance system to avoid traffic jams on highway interchanges and on-ramps.

  13. 6. FAN HOUSE OF 8FOOT HIGH SPEED TUNNEL. AIR INTAKES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. FAN HOUSE OF 8-FOOT HIGH SPEED TUNNEL. AIR INTAKES AND FILTERS ARE ENCLOSED IN THE UPPER LEVEL STRUCTURE. - NASA Langley Research Center, 8-Foot High Speed Wind Tunnel, 641 Thornell Avenue, Hampton, Hampton, VA

  14. Embedded function methods for compressible high speed turbulent flow

    NASA Technical Reports Server (NTRS)

    Walker, J. D. A.

    1994-01-01

    This is the final report on the work performed on the grant 'Embedded Function Methods for Compressible High Speed Turbulent Flow' carried out at Lehigh University during the contract period from September, 1987, to October of 1991. Work has continued at Lehigh on this project on an unfunded basis to the present. The original proposed work had two separate thrusts which were associated with developing embedded function methods in order to obviate the need to expend computational resources on turbulent wall layers in Navier Stokes and boundary-layer calculations. Previous work on the incompressible problem had indicated that this could be done successfully for two-dimensional and three-dimensional incompressible flows. The central objective here was to extend the basic approach to the high speed compressible problem.

  15. Vision and air flow combine to streamline flying honeybees

    PubMed Central

    Taylor, Gavin J.; Luu, Tien; Ball, David; Srinivasan, Mandyam V.

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a ‘streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality. PMID:24019053

  16. Nonequilibrium condensation in high-speed gas flows

    SciTech Connect

    Ryzhov, Y.A.; Pirumov, U.G.; Gorbunov, V.N. )

    1989-01-01

    Nonequilibrium condensation is an important aspect of weather forecasting, aerosol formation, and the design of jet propulsion engines, steam turbines and nuclear reactors. It has recently taken on a new significance with the development of technologies such as the production of fine powders, cluster spraying, the development of laser media and isotope separation. This book discusses the general theory of condensation in high speed gas flows, and the new theoretical, experimental and numerical methods necessary for solving the partial differential equations governing the flows.

  17. Summer melt regulates winter glacier flow speeds throughout Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Burgess, E. W.; Forster, R. R.; Larsen, C. F.

    2013-12-01

    Projecting the long-term response of glacier and ice sheet flow to climate change remains the single largest hurdle towards accurate sea level rise forecasting. Increases in surface melt rates are known to accelerate glacier flow in spring and summer1-4 whereas in winter, flow speeds have been found to be relatively invariant5. Here we find that wintertime flow velocities on nearly all major glaciers throughout Alaska are not only variable but are inversely correlated with summertime positive degree days (PDDs). The response is slight--an 11% decrease in wintertime velocity per additional meter of summertime melt. The mechanism is likely due to inter-annual differences in summertime meltwater production, which affect the efficiency of sub-glacial drainage systems to evacuate water from the glacier bed in fall. Consequent inter-annual variation in the amount of bed separation come winter leads to the observed differences in flow speed. We find this mechanism to be ubiquitous in Alaska and thus is likely a global phenomenon. If the dynamic evolves over the long-term, it represents a new mechanism affecting sea level rise contributions.

  18. Flow measurement in base cooling air passages of a rotating turbine blade

    NASA Technical Reports Server (NTRS)

    Liebert, C. H.; Pollack, F. G.

    1974-01-01

    The operational performance is decribed of a shaft-mounted system for measuring the air mass flow rate in the base cooling passages of a rotating turbine blade. Shaft speeds of 0 to 9000 rpm, air mass flow rates of 0.0035 to 0.039 kg/sec (0.0077 to 0.085 lbm/sec), and blade air temperatures of 300 to 385 K (80 to 233 F) were measured. Comparisons of individual rotating blade flows and corresponding stationary supply orifice flows agreed to within 10 percent.

  19. Turbulent flow between two disks contrarotating at different speeds

    SciTech Connect

    Kilic, M.; Gan, X.; Owen, J.M.

    1996-04-01

    This paper describes a combined computational and experimental study of the turbulent flow between two contrarotating disks for {minus}1 {le} {Gamma} {le} 0 and Re{sub {phi}} {approx} 1.2 {times} 10{sup 6}, where {Gamma} is the ratio of the speed of the slower disk to that of the faster one and Re{sub {phi}} is the rotational Reynolds number. The computations were conducted using an axisymmetric elliptic multigrid solver and a low-Reynolds-number {kappa}-{epsilon} turbulence model. Velocity measurements were made using LDA at nondimensional radius ratios of 0.6 {le} x {le} 0.85. For {Gamma} = 0, the rotor-stator case, Batchelor-type flow occurs: There is radial outflow and inflow in boundary layers on the rotor and stator, respectively, between which is an inviscid rotating core of fluid where the radial component of velocity is zero and there is an axial flow from stator to rotor. For {Gamma} = {minus}1, antisymmetric contrarotating disks, Stewartson-type flow occurs with radial outflow in boundary layers on both disks and inflow in the viscid nonrotating core. At intermediate values of {Gamma}, two cells separated by a streamline that stagnates on the slower disk are formed: Batchelor-type flow and Stewartson-type flow occur radially outward and inward, respectively, of the stagnation streamline. Agreement between the computed and measured velocities is mainly very good, and no evidence was found of nonaxisymmetric or unsteady flow.

  20. Nitric oxide flow tagging in unseeded air.

    PubMed

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  1. On the Resistance of the Air at High Speeds and on the Automatic Rotation of Projectiles

    NASA Technical Reports Server (NTRS)

    Riabouchinski, D

    1921-01-01

    Here, the laws governing the flow of a compressible fluid through an opening in a thin wall are applied to the resistance of the air at high speeds, especially as applied to the automatic rotation of projectiles. The instability which we observe in projectiles shot into the air without being given a moment of rotation about their axis of symmetry, or without stabilizing planes, is a phenomenon of automatic rotation. It is noted that we can prevent this phenomenon of automatic rotation by bringing the center of gravity sufficiently near one end, or by fitting the projectile with stabilizing planes or a tail. The automatic rotation of projectiles is due to the suction produced by the systematic formation of vortices behind the extremity of the projectile moving with the wind.

  2. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  3. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications. 89.414 Section 89.414 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement...

  4. Bifurcation analysis of a speed gradient continuum traffic flow model

    NASA Astrophysics Data System (ADS)

    Ai, Wen-Huan; Shi, Zhong-Ke; Liu, Da-Wei

    2015-11-01

    A bifurcation analysis approach is presented based on the macroscopic traffic flow model. This method can be used to describe and predict the nonlinear traffic phenomena on the highway from a system global stability perspective. Based on a recently proposed speed gradient continuum traffic flow model, the types and stabilities of the equilibrium solutions are discussed and the existence of Hopf bifurcation and saddle-node bifurcation is proved. Then various bifurcations such as Hopf bifurcation, saddle-node bifurcation, Limit Point bifurcation of cycles, Cusp bifurcation and Bogdanov-Takens bifurcation are found and the traffic flow behaviors at some of them are analyzed. When the Hopf bifurcation is selected as the starting point of density temporal evolution, it may help to explain the stop-and-go traffic phenomena.

  5. Experimental Studies on Unsteady Start/Unstart of High Speed Air Intakes with Moving Cowl

    NASA Astrophysics Data System (ADS)

    Senthilkumar, P.; Muruganandam, T. M.

    Inlet plays a major role in the performance of scramjet engines. It should be designed to deliver required quantity of air at supersonic speed to the combustion chamber. When the back pressure is increased in a scramjet inlet, it will make the inlet unstart. It may lead to severe shock oscillations, pressure fluctuations, thrust loss and even combustor flame out. There could be some ways to restart the inlet at the same back pressure in order to save the engine from complete failure. An attempt is made in this research to study the influence of the continuous movement of cowl to start the inlet during the flow. The inlet is forced to unstart by back pressure rise. Then the inlet is started by cowl movement at the same back pressure. This is done by moving the cowl continuously. The flow field is captured by high speed camera. The unstart, transition and start processes are studied from high speed Schlieren images. Then the cowl is returned back to determine any hysteresis present.

  6. Effect of speed matching on fundamental diagram of pedestrian flow

    NASA Astrophysics Data System (ADS)

    Fu, Zhijian; Luo, Lin; Yang, Yue; Zhuang, Yifan; Zhang, Peitong; Yang, Lizhong; Yang, Hongtai; Ma, Jian; Zhu, Kongjin; Li, Yanlai

    2016-09-01

    Properties of pedestrian may change along their moving path, for example, as a result of fatigue or injury, which has never been properly investigated in the past research. The paper attempts to study the speed matching effect (a pedestrian adjusts his velocity constantly to the average velocity of his neighbors) and its influence on the density-velocity relationship (a pedestrian adjust his velocity to the surrounding density), known as the fundamental diagram of the pedestrian flow. By the means of the cellular automaton, the simulation results fit well with the empirical data, indicating the great advance of the discrete model for pedestrian dynamics. The results suggest that the system velocity and flow rate increase obviously under a big noise, i.e., a diverse composition of pedestrian crowd, especially in the region of middle or high density. Because of the temporary effect, the speed matching has little influence on the fundamental diagram. Along the entire density, the relationship between the step length and the average pedestrian velocity is a piecewise function combined two linear functions. The number of conflicts reaches the maximum with the pedestrian density of 2.5 m-2, while decreases by 5.1% with the speed matching.

  7. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  8. Seed particle response and size characterization in high speed flows

    NASA Technical Reports Server (NTRS)

    Rudoff, Roger C.; Bachalo, William D.

    1991-01-01

    The response of seed particles ranging between 0.7 and 8.7 micron is determined using a phase Doppler particle analyzer which simultaneously measures particle size and velocity. The stagnant seed particles are entrained into a high speed free jet at velocities ranging from 40 to 300 m/s. The size-mean axial velocity correlation and size-rms velocity correlations are used to determine the particle response to the sudden acceleration. It was determined that at the lower speeds, seed particles up to approximately 5 microns are adequate, but as velocities approach 300 m/s only particles on the order of one micron are suitable. The ability to determine size and velocity simultaneously is essential if seeding with polydispersions is used since it allows the rejection of data which will not accurately represent the flow field.

  9. Modeling and simulation of high-speed wake flows

    NASA Astrophysics Data System (ADS)

    Barnhardt, Michael Daniel

    High-speed, unsteady flows represent a unique challenge in computational hypersonics research. They are found in nearly all applications of interest, including the wakes of reentry vehicles, RCS jet interactions, and scramjet combustors. In each of these examples, accurate modeling of the flow dynamics plays a critical role in design performance. Nevertheless, literature surveys reveal that very little modern research effort has been made toward understanding these problems. The objective of this work is to synthesize current computational methods for high-speed flows with ideas commonly used to model low-speed, turbulent flows in order to create a framework by which we may reliably predict unsteady, hypersonic flows. In particular, we wish to validate the new methodology for the case of a turbulent wake flow at reentry conditions. Currently, heat shield designs incur significant mass penalties due to the large margins applied to vehicle afterbodies in lieu of a thorough understanding of the wake aerothermodynamics. Comprehensive validation studies are required to accurately quantify these modeling uncertainties. To this end, we select three candidate experiments against which we evaluate the accuracy of our methodology. The first set of experiments concern the Mars Science Laboratory (MSL) parachute system and serve to demonstrate that our implementation produces results consistent with prior studies at supersonic conditions. Second, we use the Reentry-F flight test to expand the application envelope to realistic flight conditions. Finally, in the last set of experiments, we examine a spherical capsule wind tunnel configuration in order to perform a more detailed analysis of a realistic flight geometry. In each case, we find that current 1st order in time, 2nd order in space upwind numerical methods are sufficiently accurate to predict statistical measurements: mean, RMS, standard deviation, and so forth. Further potential gains in numerical accuracy are

  10. Detonation diffraction in combustible high-speed flows

    NASA Astrophysics Data System (ADS)

    Gui, Mingyue; Fan, Baochun; Li, Baoming

    2016-03-01

    Detonation propagating in a T-shaped tube with quiescent and moving hydrogen/oxygen/argon mixtures is numerically examined based on the Euler equations with detailed finite-rate chemistry using the fifth-order weighted essentially non-oscillatory scheme. When diffracted in a quiescent combustible mixture, the detonation wave propagating from the bottom of the T-shaped tube is influenced by the corner rarefaction waves and decays into a non-reacting shock. Subsequently, the decoupled shock reflects irregularly from the top wall. Through several reflections back and forth between the top and bottom walls, a planar detonation is finally re-established. When the combustible mixture in the horizontal part flows from the left to the right, the detonation products ejected from the vertical tube will retard the flow, generating a compression flow upstream and a rarefaction flow downstream. The disturbed detonation on the left side is stronger than that on the right side. The final planar detonation in the upstream direction propagates faster than the Chapman-Jouguet (CJ) detonation with compressed, fine cellular structures, whereas the detonation in the downstream direction propagates more slowly than the CJ detonation with elongated, coarse cellular structures. The details of the transient behavior of diffracting detonation in high-speed flows are discussed.

  11. Maximum speeds and alpha angles of flowing avalanches

    NASA Astrophysics Data System (ADS)

    McClung, David; Gauer, Peter

    2016-04-01

    A flowing avalanche is one which initiates as a slab and, if consisting of dry snow, will be enveloped in a turbulent snow dust cloud once the speed reaches about 10 m/s. A flowing avalanche has a dense core of flowing material which dominates the dynamics by serving as the driving force for downslope motion. The flow thickness typically on the order of 1 -10 m which is on the order of about 1% of the length of the flowing mass. We have collected estimates of maximum frontal speed um (m/s) from 118 avalanche events. The analysis is given here with the aim of using the maximum speed scaled with some measure of the terrain scale over which the avalanches ran. We have chosen two measures for scaling, from McClung (1990), McClung and Schaerer (2006) and Gauer (2012). The two measures are the √H0-;√S0-- (total vertical drop; total path length traversed). Our data consist of 118 avalanches with H0 (m)estimated and 106 with S0 (m)estimated. Of these, we have 29 values with H0 (m),S0 (m)and um (m/s)estimated accurately with the avalanche speeds measured all or nearly all along the path. The remainder of the data set includes approximate estimates of um (m/s)from timing the avalanche motion over a known section of the path where approximate maximum speed is expected and with either H0or S0or both estimated. Our analysis consists of fitting the values of um/√H0--; um/√S0- to probability density functions (pdf) to estimate the exceedance probability for the scaled ratios. In general, we found the best fits for the larger data sets to fit a beta pdf and for the subset of 29, we found a shifted log-logistic (s l-l) pdf was best. Our determinations were as a result of fitting the values to 60 different pdfs considering five goodness-of-fit criteria: three goodness-of-fit statistics :K-S (Kolmogorov-Smirnov); A-D (Anderson-Darling) and C-S (Chi-squared) plus probability plots (P-P) and quantile plots (Q-Q). For less than 10% probability of exceedance the results show that

  12. Turbulence and transition modeling for high-speed flows

    NASA Technical Reports Server (NTRS)

    Wilcox, David C.

    1993-01-01

    Research conducted during the past three and a half years aimed at developing and testing a turbulence/transition model applicable to high-speed turbulent flows is summarized. The first two years of the project focused on fully turbulent flows, while emphasis shifted to boundary-layer development in the transition region during the final year and a half. A brief summary of research accomplished during the first three years is included and publications that describe research results in greater detail are cited. Research conducted during the final six months of the period of performance is summarized. The primary results of the last six months of the project are elimination of the k-omega model's sensitivity to the freestream value of omega and development of a method for triggering transition at a specified location, independent of the freestream turbulence level.

  13. Review of air flow measurement techniques

    SciTech Connect

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  14. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  15. Preconditioned Conjugate Gradient methods for low speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations are integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and the convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the lower-upper (L-U)-successive symmetric over-relaxation iterative scheme is more efficient than a preconditioner based on incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional line Gauss-Seidel relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  16. HIGH-SPEED GC/MS FOR AIR ANALYSIS

    EPA Science Inventory

    High speed or fast gas chromatography (FGC) consists of narrow bandwidth injection into a high-speed carrier gas stream passing through a short column leading to a fast detector. Many attempts have been made to demonstrate FGC, but until recently no practical method for routin...

  17. Natural laminar flow hits smoother air

    NASA Technical Reports Server (NTRS)

    Holmes, B. J.

    1985-01-01

    Natural laminar flow (NLF) may be attained in aircraft with lower cost, weight, and maintenance penalties than active flow laminarization by means of a slot suction system. A high performance general aviation jet aircraft possessing a moderate degree of NLF over wing, fuselage, empennage and engine nacelles will accrue a 24 percent reduction in total aircraft drag in the cruise regime. NASA-Langley has conducted NLF research centered on the use of novel airfoil profiles as well as composite and milled aluminum alloy construction methods which minimize three-dimensional aerodynamic surface roughness and waviness. It is noted that higher flight altitudes intrinsically reduce unit Reynolds numbers, thereby minimizing turbulence for a given cruise speed.

  18. Review of numerical simulations for high-speed, turbulent cavity flows

    NASA Astrophysics Data System (ADS)

    Lawson, S. J.; Barakos, G. N.

    2011-04-01

    High speed flows inside cavities are encountered in many aerospace applications including weapon bays of combat aircraft as well as landing gear. The flow field inside these cavities is associated with strong acoustic effects, unsteadiness and turbulence. With increasing emphasis on stealth operation of unmanned combat air vehicles and noise concerns near airports, cavity flows attracted the interest of many researchers in aerodynamics and aeroacoustics. Several attempts were made using wind tunnel experimentation and computational fluid dynamics analyses to understand the complex flow physics associated with cavity flows and alleviate their adverse effects via flow control. The problem proved to be complex, and current research revealed a very complex flow with several flow phenomena taking place. With the aid of experiments, CFD methods were validated and then used for simulations of several cavity configurations. The detached-eddy and large-eddy simulation methods proved invaluable for these studies and their application highlights the need for advanced turbulence simulation techniques in aerospace. The success of these methods and a summary of the current status of the experimental and computational progress over the past twenty years is summarised in this paper.

  19. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Air flow measurement specifications. 89... Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  20. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  1. 40 CFR 89.414 - Air flow measurement specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... during the test. Overall measurement accuracy must be ± 2 percent of the maximum engine value for...

  2. 40 CFR 90.416 - Intake air flow measurement specifications.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  3. Numerical simulation of high speed chemically reacting flows

    NASA Astrophysics Data System (ADS)

    Schuricht, Scott Richard

    A single step second-order accurate flux-difference-splitting method has been developed for solving unsteady quasi-one-dimensional and two-dimensional flows of multispecies fluids with finite rate chemistry. A systematic method for incorporating the source term effects into the wave strength parameters of Roe's linearized approximate Riemann solver is presented that is consistent with characteristic theory. The point implicit technique is utilized to achieve second-order time accuracy of the local area source term The stiffness associated with the chemical reactions is removed by implicitly integrating the kinetics system using the LSODE package. From the implicit integration, values of the species production rates are developed and incorporated into the flux-difference-splitting framework using a source term projection and splitting technique that preserves the upwind nature of source terms. Numerous validation studies are presented to illustrate the capability of the numerical method. Shock tube and converging-diverging nozzle cases show the method is second order accurate in space and time for one-dimensional flows. A supersonic source flow case and a subsonic sink flow case show the method is second order spatially accurate for two-dimensional flows. Static combustion and steady supersonic combustion cases illustrate the ability of the method to accurately capture the ignition delay for hydrogen-air mixtures. Demonstration studies are presented to illustrate the capabilities of the method. One-dimensional flow in a shock tube predicts species dissociation behind the main shock wave. One-dimension flow in supersonic nozzles predicts the well-known chemical freezing effect in an expanding flow. Two-dimensional cases consisted of a model of a scramjet combustor and a rocket motor nozzle. A parametric study was performed on a model of a scramjet combustor. The parameters studied were; wall angle, inlet Mach number, inlet temperature, and inlet equivalence ratio

  4. Topology and grid adaption for high-speed flow computations

    NASA Technical Reports Server (NTRS)

    Abolhassani, Jamshid S.; Tiwari, Surendra N.

    1989-01-01

    This study investigates the effects of grid topology and grid adaptation on numerical solutions of the Navier-Stokes equations. In the first part of this study, a general procedure is presented for computation of high-speed flow over complex three-dimensional configurations. The flow field is simulated on the surface of a Butler wing in a uniform stream. Results are presented for Mach number 3.5 and a Reynolds number of 2,000,000. The O-type and H-type grids have been used for this study, and the results are compared together and with other theoretical and experimental results. The results demonstrate that while the H-type grid is suitable for the leading and trailing edges, a more accurate solution can be obtained for the middle part of the wing with an O-type grid. In the second part of this study, methods of grid adaption are reviewed and a method is developed with the capability of adapting to several variables. This method is based on a variational approach and is an algebraic method. Also, the method has been formulated in such a way that there is no need for any matrix inversion. This method is used in conjunction with the calculation of hypersonic flow over a blunt-nose body. A movie has been produced which shows simultaneously the transient behavior of the solution and the grid adaption.

  5. High speed viscous flow calculations about complex configurations

    NASA Technical Reports Server (NTRS)

    Chaussee, D. S.

    1986-01-01

    Applications of the NASA Ames Parabolized Navier-Stokes (PNS) code to a variety of complex generic configurations is presented. The algorithm, boundary conditions, initial conditions, and grid generators are discussed as applied to these configurations. The PNS code was used as the mainline procedure to numerically simulate the viscous supersonic flow over these generic configurations. The turbulence model that was used in this study is the Baldwin-Lomax model. The boundary conditions are the usual viscous no slip at the wall, and a characteristic procedure is used to fit the bow shock wave which is the outermost boundary. An elliptic grid generator is employed to discretize the flow domain. In addition, an equilibrium air capability has been incorporated into the code. It uses the curve fits of Tannehill, et al. The flow regimes vary from a Mach number of 2 up to 25. Both laminar and turbulent flow are considered. Varying angles of attack have also been computed. Configurations vary from simple cone-type bodies to lifting winged bodies, such as the space shuttle or the generic supersonic cruise fighter.

  6. High speed viscous flow calculations about complex configurations

    NASA Astrophysics Data System (ADS)

    Chaussee, D. S.

    1986-04-01

    Applications of the NASA Ames Parabolized Navier-Stokes (PNS) code to a variety of complex generic configurations is presented. The algorithm, boundary conditions, initial conditions, and grid generators are discussed as applied to these configurations. The PNS code was used as the mainline procedure to numerically simulate the viscous supersonic flow over these generic configurations. The turbulence model that was used in this study is the Baldwin-Lomax model. The boundary conditions are the usual viscous no slip at the wall, and a characteristic procedure is used to fit the bow shock wave which is the outermost boundary. An elliptic grid generator is employed to discretize the flow domain. In addition, an equilibrium air capability has been incorporated into the code. It uses the curve fits of Tannehill, et al. The flow regimes vary from a Mach number of 2 up to 25. Both laminar and turbulent flow are considered. Varying angles of attack have also been computed. Configurations vary from simple cone-type bodies to lifting winged bodies, such as the space shuttle or the generic supersonic cruise fighter.

  7. Investigation of low-speed turbulent separated flow around airfoils

    NASA Technical Reports Server (NTRS)

    Wadcock, Alan J.

    1987-01-01

    Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.

  8. Compressive high speed flow microscopy with motion contrast (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bosworth, Bryan; Stroud, Jasper R.; Tran, Dung N.; Tran, Trac D.; Chin, Sang; Foster, Mark A.

    2016-03-01

    High-speed continuous imaging systems are constrained by analog-to-digital conversion, storage, and transmission. However, real video signals of objects such as microscopic cells and particles require only a few percent or less of the full video bandwidth for high fidelity representation by modern compression algorithms. Compressed Sensing (CS) is a recent influential paradigm in signal processing that builds real-time compression into the acquisition step by computing inner products between the signal of interest and known random waveforms and then applying a nonlinear reconstruction algorithm. Here, we extend the continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) framework to acquire motion contrast video of microscopic flowing objects. We employ chirp processing in optical fiber and high-speed electro-optic modulation to produce ultrashort pulses each with a unique pseudorandom binary sequence (PRBS) spectral pattern with 325 features per pulse at the full laser repetition rate (90 MHz). These PRBS-patterned pulses serve as random structured illumination inside a one-dimensional (1D) spatial disperser. By multiplexing the PRBS patterns with a user-defined repetition period, the difference signal y_i=&phi_i (x_i - x_{i-tau}) can be computed optically with balanced detection, where x is the image signal, phi_i is the PRBS pattern, and tau is the repetition period of the patterns. Two-dimensional (2D) image reconstruction via iterative alternating minimization to find the best locally-sparse representation yields an image of the edges in the flow direction, corresponding to the spatial and temporal 1D derivative. This provides both a favorable representation for image segmentation and a sparser representation for many objects that can improve image compression.

  9. Decentralized and Tactical Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  10. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  11. Design criteria for light high speed desert air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Abulnaga, B. E.

    An evaluation is made of the applicability and prospective performance of ACVs in trans-Saharan cargo transport, in view of the unique characteristics of the dry sand environment. The lightweight/high-speed ACV concept envisioned is essentially ground effect aircraftlike, with conventional wheels as a low-speed backup suspension system. A propeller is used in ground effect cruise. Attention is given to the effects on vehicle stability and performance of sandy surface irregularities of the desert topography and of cross-winds from various directions relative to vehicle movement.

  12. High speed flow cytometer droplet formation system and method

    DOEpatents

    Van den Engh, Ger

    2000-01-01

    A droplet forming flow cytometer system allows high speed processing without the need for high oscillator drive powers through the inclusion of an oscillator or piezoelectric crystal such as within the nozzle volume or otherwise unidirectionally coupled to the sheath fluid. The nozzle container continuously converges so as to amplify unidirectional oscillations which are transmitted as pressure waves through the nozzle volume to the nozzle exit so as to form droplets from the fluid jet. The oscillator is directionally isolated so as to avoid moving the entire nozzle container so as to create only pressure waves within the sheath fluid. A variation in substance concentration is achieved through a movable substance introduction port which is positioned within a convergence zone to vary the relative concentration of substance to sheath fluid while still maintaining optimal laminar flow conditions. This variation may be automatically controlled through a sensor and controller configuration. A replaceable tip design is also provided whereby the ceramic nozzle tip is positioned within an edge insert in the nozzle body so as to smoothly transition from nozzle body to nozzle tip. The nozzle tip is sealed against its outer surface to the nozzle body so it may be removable for cleaning or replacement.

  13. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    NASA Astrophysics Data System (ADS)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  14. Hydraulic Performance Comparison for Axial Flow Impeller and Mixed Flow Impeller with Same Specific Speed

    NASA Astrophysics Data System (ADS)

    Pan, Zhongyong; Ni, Yongyan; Yuan, Jianping; Ji, Pei

    2015-12-01

    An axial flow impeller and a mixed flow impeller with same specific speed were experimentally investigated, and the suction performance was studied with the help of CFD simulations. The results show that the axial impeller is roughly better than the mixed flow one. Especially under the design condition and a low flow rate condition range near the designed one, the axial flow impeller is more stable and therefore more suitable to be used in a water jet propulsion, while under these conditions the mixed flow impeller displays significant discrepancies. On the other hand, though its efficiency at the best efficiency point is lower than that of the axial flow one, the mixed flow impeller has a larger range of high efficiency conditions and is more convenient to be controlled to satisfy the irrigation and drainage systems that ought to be adjusted to varied flow rate conditions under a fixed head. In addition, the numerical investigation at the rated point shows that the axial impeller has a much better suction performance than the mixed flow impeller, which contradicts with the experience knowledge and therefore details need to be further studied.

  15. Flow characteristics and methods of flow calculation of high-speed compressible flow through pipe orifices

    NASA Astrophysics Data System (ADS)

    Torizumi, Y.; Hirayama, N.; Maeda, T.

    1983-01-01

    Flow characteristics of a compressible gas flow through an orifice are investigated experimentally at pressure ratios below the regulation values of JIS and ASME. For practical mass flow measurements, a theoretical method of mass flow estimations is extended using one-dimensional flow theory and experimental data. Using the method, the accuracy of mass flow measurements with orifice meters is about + or 1% in the Reynolds number range of turbulent flows and also in supercritical flows. Tables of the product of flow coefficient and expansion factor are obtained by the method at various diameter ratios, pressure ratios, and specific heats.

  16. Low-speed Investigation of a Semisubmerged Air Scoop with and Without Boundary-layer Suction

    NASA Technical Reports Server (NTRS)

    Pierpont, P Kenneth; Howell, Robert R

    1951-01-01

    A preliminary low-speed investigation has been made of an air scoop submerged one-half the inlet height in a depression on the surface of a simulated fuselage. Boundary-layer suction was used on the steep approach ramp to improve the internal flow. A 6-degree-included-angle diffuser with an area ratio of 1.9:1 was located behind the inlet in the model. Most of the tests were conducted with an initial turbulent boundary layer believed to approximate that which would occur on the forward part of a fuselage. A few tests were made with a boundary layer about 2.5 times the thickness of the original boundary layer to determine the effect of moving the inlet further rearward on the fuselage. The effects of suction-slot location and slot width were determined and a few tests with area suction were made. The maximum quantity of suction flow was about 15 percent of the inlet flow at an inlet-velocity ratio of 0.6.

  17. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    NASA Astrophysics Data System (ADS)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  18. Method of high speed flow field influence and restrain on laser communication

    NASA Astrophysics Data System (ADS)

    Meng, Li-xin; Wang, Chun-hui; Qian, Cun-zhu; Wang, Shuo; Zhang, Li-zhong

    2013-08-01

    For laser communication performance which carried by airplane or airship, due to high-speed platform movement, the air has two influences in platform and laser communication terminal window. The first influence is that aerodynamic effect causes the deformation of the optical window; the second one is that a shock wave and boundary layer would be generated. For subsonic within the aircraft, the boundary layer is the main influence. The presence of a boundary layer could change the air density and the temperature of the optical window, which causes the light deflection and received beam spot flicker. Ultimately, the energy hunting of the beam spot which reaches receiving side increases, so that the error rate increases. In this paper, aerodynamic theory is used in analyzing the influence of the optical window deformation due to high speed air. Aero-optics theory is used to analyze the influence of the boundary layer in laser communication link. Based on this, we focused on working on exploring in aerodynamic and aero-optical effect suppression method in the perspective of the optical window design. Based on planning experimental aircraft types and equipment installation location, we optimized the design parameters of the shape and thickness of the optical window, the shape and size of air-management kit. Finally, deformation of the optical window and air flow distribution were simulated by fluid simulation software in the different mach and different altitude fly condition. The simulation results showed that the optical window can inhibit the aerodynamic influence after optimization. In addition, the boundary layer is smoothed; the turbulence influence is reduced, which meets the requirements of the airborne laser communication.

  19. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    NASA Astrophysics Data System (ADS)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  20. Experiment of Flow Control Using Laser Energy Deposition Around High Speed Propulsion System

    NASA Astrophysics Data System (ADS)

    Lee, HyoungJin; Jeung, InSeuck; Lee, SangHun; Kim, Seihwan

    2011-11-01

    An experimental investigation was conducted to examine the effect of a pulsed Nd:YAG laser energy deposition on the shock structures in supersonic/hypersonic flow and quiescent air. The effect of the laser energy and pressure in the blast wave generation were also investigated. As a result, the strength of plasma and blast wave becomes stronger as pressure or laser energy increase. And the breakdown threshold of air by laser energy deposition is 0.015 bar at 508 mJ laser energy, the blast wave threshold generation in air by laser energy deposition is 0.100 bar at same laser energy. As qualitative analysis, schlieren images are also obtained. After the series of experiments, the effect of laser energy deposition (LED) on high speed flow around the shock—shock interaction created by a wedge and blunt body. By LED, the structure of shock—shock interaction was collapsed momentary and the pressure of the stagnation point was fluctuated while interference of wave.

  1. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    ERIC Educational Resources Information Center

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the…

  2. Experimental Investigation of Porous-floor Effects on Cavity Flow Fields at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1990-01-01

    An experimental investigation was conducted to determine the effectiveness of a passive-venting system to modify the flow field characteristics of a rectangular-box cavity at supersonic speeds. The passive-venting system consists of a porous floor with a vent chamber beneath the floor. For certain cavity length-to-height ratios, this configuration allowed high-pressure air at the rear of the cavity to vent to the forward part of the cavity, thereby modifying the cavity flow field. The wind-tunnel model consisted of a flat plate that housed a cavity mounted on a balance such that only the cavity drag was measured. The cavity height remained constant, and the length varied with rectangular-block inserts. Both solid-and porous-floor cavities were tested for comparison at Mach numbers of 1.60, 1.90, 2.16, and 2.86. These results showed that the passive-venting system did modify the cavity flow field. In order to determine the type flow field which existed for the porous-floor configuration, pressures were measured inside the cavity at the same conditions and for the same configurations as those used in the drag tests. Pressure data were also obtained with stores mounted in the cavity. These results, along with Schlieren photographs and the tabulated data, are presented to document the porous-floor cavity flow field.

  3. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2016-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  4. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  5. Experimental and numerical study of the accuracy of flame-speed measurements for methane/air combustion in a slot burner

    SciTech Connect

    Selle, L.; Ferret, B.; Poinsot, T.

    2011-01-15

    Measuring the velocities of premixed laminar flames with precision remains a controversial issue in the combustion community. This paper studies the accuracy of such measurements in two-dimensional slot burners and shows that while methane/air flame speeds can be measured with reasonable accuracy, the method may lack precision for other mixtures such as hydrogen/air. Curvature at the flame tip, strain on the flame sides and local quenching at the flame base can modify local flame speeds and require corrections which are studied using two-dimensional DNS. Numerical simulations also provide stretch, displacement and consumption flame speeds along the flame front. For methane/air flames, DNS show that the local stretch remains small so that the local consumption speed is very close to the unstretched premixed flame speed. The only correction needed to correctly predict flame speeds in this case is due to the finite aspect ratio of the slot used to inject the premixed gases which induces a flow acceleration in the measurement region (this correction can be evaluated from velocity measurement in the slot section or from an analytical solution). The method is applied to methane/air flames with and without water addition and results are compared to experimental data found in the literature. The paper then discusses the limitations of the slot-burner method to measure flame speeds for other mixtures and shows that it is not well adapted to mixtures with a Lewis number far from unity, such as hydrogen/air flames. (author)

  6. An Inexpensive and Versatile Version of Kundt's Tube for Measuring the Speed of Sound in Air

    NASA Astrophysics Data System (ADS)

    Papacosta, Pangratios; Linscheid, Nathan

    2016-01-01

    Experiments that measure the speed of sound in air are common in high schools and colleges. In the Kundt's tube experiment, a horizontal air column is adjusted until a resonance mode is achieved for a specific frequency of sound. When this happens, the cork dust in the tube is disturbed at the displacement antinode regions. The location of the displacement antinodes enables the measurement of the wavelength of the sound that is being used. This paper describes a design that uses a speaker instead of the traditional aluminum rod as the sound source. This allows the use of multiple sound frequencies that yield a much more accurate speed of sound in air.

  7. Empirical analysis of gross vehicle weight and free flow speed and consideration on its relation with differential speed limit.

    PubMed

    Saifizul, Ahmad Abdullah; Yamanaka, Hideo; Karim, Mohamed Rehan

    2011-05-01

    Most highly motorized countries in the world have implemented different speed limits for light weight and heavy weight vehicles. The heavy vehicle speed limit is usually chosen to be lower than that of passenger cars due to the difficulty for the drivers to safely maneuver the heavy vehicle at high speed and greater impact during a crash. However, in many cases, the speed limit for heavy vehicle is set by only considering the vehicle size or category, mostly due to simplicity in enforcement. In this study, traffic and vehicular data for all vehicle types were collected using a weigh-in-motion system installed at Federal Route 54 in Malaysia. The first finding from the data showed that the weight variation for each vehicle category is considerable. Therefore, the effect of gross vehicle weight (GVW) and category of heavy vehicle on free flow speed and their interaction were analyzed using statistical techniques. Empirical analysis results showed that statistically for each type of heavy vehicle, there was a significant relationship between free flow speed of a heavy vehicle and GVW. Specifically, the results suggest that the mean and variance of free flow speed decrease with an increase GVW by the amount unrelated to size and shape for all GVW range. Then, based on the 85th percentile principle, the study proposed a new concept for setting the speed limit for heavy vehicle by incorporating GVW where a different speed limit is imposed to the heavy vehicle, not only based on vehicle classification, but also according to its GVW. PMID:21376903

  8. Pre- and post-injection flow characterization in a heavy-duty diesel engine using high-speed PIV

    NASA Astrophysics Data System (ADS)

    Zegers, R. P. C.; Luijten, C. C. M.; Dam, N. J.; de Goey, L. P. H.

    2012-09-01

    High-speed particle image velocimetry (HS-PIV) using hollow microspheres has been applied to characterize the flow in a heavy-duty diesel engine during and after fuel injection. The injection timings were varied in the range representing those used in premixed charge compression ignition (PCCI) regimes, and multiple injections have been applied to investigate their influence on the flow inside the combustion chamber. By injecting into pure nitrogen, combustion is avoided and the flow can be studied long after injection. The results show a sudden change of air motion at the start of injection as a result of the air entrainment at the core of the spray. Furthermore, as expected, spray injection causes a considerable increase in the cycle-to-cycle fluctuations of the flow pattern, the more so for longer injection durations.

  9. Numerical study on the impact of ground heating and ambient wind speed on flow fields in street canyons

    NASA Astrophysics Data System (ADS)

    Li, Lei; Yang, Lin; Zhang, Li-Jie; Jiang, Yin

    2012-11-01

    The impact of ground heating on flow fields in street canyons under different ambient wind speed conditions was studied based on numerical methods. A series of numerical tests were performed, and three factors including height-to-width (H/W) ratio, ambient wind speed and ground heating intensity were taken into account. Three types of street canyon with H/W ratios of 0.5, 1.0 and 2.0, respectively, were used in the simulation and seven speed values ranging from 0.0 to 3.0 m s-1 were set for the ambient wind speed. The ground heating intensity, which was defined as the difference between the ground temperature and air temperature, ranged from 10 to 40 K with an increase of 10 K in the tests. The results showed that under calm conditions, ground heating could induce circulation with a wind speed of around 1.0 m s-1, which is enough to disperse pollutants in a street canyon. It was also found that an ambient wind speed threshold may exist for street canyons with a fixed H/W ratio. When ambient wind speed was lower than the threshold identified in this study, the impact of the thermal effect on the flow field was obvious, and there existed a multi-vortex flow pattern in the street canyon. When the ambient wind speed was higher than the threshold, the circulation pattern was basically determined by dynamic effects. The tests on the impact of heating intensity showed that a higher ground heating intensity could strengthen the vortical flow within the street canyon, which would help improve pollutant diffusion capability in street canyons.

  10. Effect of passive flow-control devices on turbulent low-speed base flow

    NASA Astrophysics Data System (ADS)

    Heidari-Miandoab, Farid

    Some configurations of blunt trailing-edge airfoils are known to have a lower pressure drag compared to sharp trailing-edge airfoils. However, this advantage in addition to the structural advantage of a thick trailing-edge airfoil is offset by its high base drag. At subsonic velocities, this is attributed to the low-pressure base flow dominated by a Karman vortex street. In the limiting case, the steady separated flow over a rearward-facing step is attained if the periodically shed vortices from a blunt trailing-edge are suppressed by the addition of a base spiltter-plate. Experimental studies in the Old Dominion University Low-Speed Closed-Circuit Wind Tunnel were conducted to examine the effect of several passive flow-control devices such as Wheeler doublets and wishbone vortex generators, longitudinal surface grooves, base cavities, and serrations on the characteristics of two- and three-dimensional base flows. Flow over flat-plate airfoil and rearward-facing step models was studied in the turbulent incompressible subsonic flow regime. Models with trailing-edge and step-sweep angles of 0, 30, and 45 degrees with respect to the crossflow direction were considered. Constant-temperature hot-wire anemometry, infrared surface thermography, and pitot-static probes were used to conduct flow measurements. The parameters measured included vortex shedding frequency, convective heat-transfer rates, base pressure, and flow reattachment distance. Surveys of mean velocity profiles in the wake were also conducted. Results have shown that most of the flow control devices tested increased the base pressure of the 2-D and 3-D flat-plate airfoils. Use of longitudinal surface grooves resulted in shorter flow reattachment distances and higher convective heat transfer rates downstream of the 2-D rearward-facing steps.

  11. Femtosecond laser flow tagging in non-air flows

    NASA Astrophysics Data System (ADS)

    Zhang, Yibin; Calvert, Nathan

    2015-11-01

    The Femtosecond Laser Electronic Excitation Tagging (FLEET) [Michael, J. B. et al., Applied optics, 50(26), 2011] method is studied in nitrogen-containing gaseous flows. The underlying mechanism behind the FLEET process is the dissociation of molecular nitrogen into atomic nitrogen, which produces long-lived florescence as the nitrogen atoms recombine. Spectra and images of the resulting tagged line provide insight into the effects of different atmospheric gases on the FLEET process. The ionization cross-section, conductivity and energy states of the gaseous particles are each brought into consideration. These experiments demonstrate the feasibility for long-lived flow tagging on the order of hundreds of microseconds in non-air environments. Of particular interest are the enhancement of the FLEET signal with the addition of argon gas, and the non-monotonic quenching effect of oxygen on the length, duration and intensity of the resulting signal and spectra. FLEET is characterized in number of different atmospheric gases, including that simulating Mar's atmospheric composition.

  12. Preliminary Design of the Low Speed Propulsion Air Intake of the LAPCAT-MR2 Aircraft

    NASA Astrophysics Data System (ADS)

    Meerts, C.; Steelant, J.; Hendrick, P.

    2011-08-01

    A supersonic air intake has been designed for the low speed propulsion system of the LAPCAT-MR2 aircraft. Development has been based on the XB-70 aircraft air intake which achieves extremely high performances over a wide operation range through the combined use of variable geometry and porous wall suction for boundary layer control. Design of the LAPCAT-MR2 intake has been operated through CFD simulations using DLR TAU-Code (perfect gas model - Menter SST turbulence model). First, a new boundary condition has been validated into the DLR TAU-Code (perfect gas model) for porous wall suction modelling. Standard test cases have shown surprisingly good agreement with both theoretical predictions and experimental results. Based upon this validation, XB-70 air intake performances have been assessed through CFD simulations over the subsonic, transonic and supersonic operation regions and compared to available flight data. A new simulation strategy was deployed avoiding numerical instabilities when initiating the flow in both transonic and supersonic operation modes. First, the flow must be initiated with a far field Mach number higher than the target flight Mach number. Additionally, the inlet backpressure may only be increased to its target value once the oblique shock pattern downstream the intake compression ramps is converged. Simulations using that strategy have shown excellent agreement with in-flight measurements for both total pressure recovery ratio and variable geometry schedule prediction. The demarcation between stable and unstable operation could be well reproduced. Finally, a modified version of the XB-70 air intake has been integrated in the elliptical intake on the LAPCAT vehicle. Operation of this intake in the LAPCAT-MR2 environment is under evaluation using the same simulation strategy as the one developed for the XB-70. Performances are assessed at several key operation points to assess viability of this design. This information will allow in a next

  13. Turbulence measurements in high-speed flows by resonant fluoresence

    NASA Technical Reports Server (NTRS)

    Miles, R. B.

    1982-01-01

    Both mean flow and turbulence measurements were investigated using the resonant Doppler velocimeter in a Mach 3.2 nitrogen flow. Data are presented showing velocity, temperature and pressure measured point by point across the flow field. This data is compared with conventional pitot and temperature surveys. Turbulence was induced by a small metal tab in the flow and observed by both hot wire and RDV techniques. Photographs of the flow field demonstrate the utility of the RDV for quantitative flow field visualization.

  14. The Lag Model Applied to High Speed Flows

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Coakley, Thomas J.; Lillard, Randolph P.

    2005-01-01

    The Lag model has shown great promise in prediction of low speed and transonic separations. The predictions of the model, along with other models (Spalart-Allmaras and Menter SST) are assessed for various high speed flowfields. In addition to skin friction and separation predictions, the prediction of heat transfer are compared among these models, and some fundamental building block flowfields, are investigated.

  15. The Effect of Rotor Blade Speed to the Best Efficiency Point of Single Stage Axial Flow Compressor

    NASA Astrophysics Data System (ADS)

    Sukri, Mohamad Firdaus; Wasbari, Faizil; Mat, Shafizal

    2010-06-01

    The best efficiency point is ideal operational point for any turbomachinery. Selections of turbomachines in industry such as pump, turbine, compressor, etc are basically based on their operating point. The best efficiency point is a point at the highest efficiency. Therefore, turbomachines with nearest operating point to best efficiency point will be chosen due to higher efficiency thus produce great reduction in cost saving. Different speed of rotor blade will cause effect to the best efficiency point, as well as different in rotor and stator blade angle. If angle of rotor and stator blade constant while speed of rotor blade increased, the net head produced by the compressor will also increased. Thus, it will increase the brake horse power and fluid horse power. Although the efficiency of the compressor increases if fluid horse power increased, the increasing in brake horse power will produce lower efficiency. In this paper, the effect of rotor blade speed on best efficiency point of an axial flow compressor will be investigated and discussed. Through this paper, the highest efficiency is only 73 %, achieved at rotor blade speed of 750 rpm with net head of 9.4 mmWG, and air volumetric flow rate of 0.56m3/s. For higher net head, the rotor blade speed must be increased, but the efficiency will decrease simultaneously. The type of compressor used in this research is single stage axial flow compressor; model Dixson FM36, manufactured by Dixson FA Engineering Sdn. Bhd.

  16. Structure of Turbulence in Katabatic Flows Below and Above the Wind-Speed Maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey A.; Leo, Laura S.; Sabatino, Silvana Di; Fernando, Harindra J. S.; Pardyjak, Eric R.; Fairall, Christopher W.

    2016-06-01

    Measurements of small-scale turbulence made in the atmospheric boundary layer over complex terrain during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the structure of turbulence in katabatic flows. Turbulent and mean meteorological data were continuously measured on four towers deployed along the east lower slope (2-4°) of Granite Mountain near Salt Lake City in Utah, USA. The multi-level (up to seven) observations made during a 30-day long MATERHORN field campaign in September-October 2012 allowed the study of temporal and spatial structure of katabatic flows in detail, and herein we report turbulence statistics (e.g., fluxes, variances, spectra, and cospectra) and their variations in katabatic flow. Observed vertical profiles show steep gradients near the surface, but in the layer above the slope jet the vertical variability is smaller. It is found that the vertical (normal to the slope) momentum flux and horizontal (along-slope) heat flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The momentum flux is directed downward (upward) whereas the along-slope heat flux is downslope (upslope) below (above) the wind maximum. This suggests that the position of the jet-speed maximum can be obtained by linear interpolation between positive and negative values of the momentum flux (or the along-slope heat flux) to derive the height where the flux becomes zero. It is shown that the standard deviations of all wind-speed components (and therefore of the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind-speed maximum. We report several cases when the destructive effect of vertical heat flux is completely cancelled by the generation of turbulence due to the along-slope heat flux. Turbulence above the wind-speed

  17. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  18. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  19. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  20. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  1. 40 CFR 1065.225 - Intake-air flow meter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter. 1065.225 Section 1065.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225...

  2. Integrated turbine-compressor provides air flow for cooling

    NASA Technical Reports Server (NTRS)

    Ferri, A.

    1970-01-01

    Modified supersonic turbine cycle provides cooling air to surrounding structures. Simplified mechanical design assures correct balance of air flow, allows direct issue of cool air to the structure, and assists in matching turbine work output to work input required by the compressor.

  3. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  4. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  5. Three-dimensional freezing of flowing water in a tube cooled by air flow

    NASA Astrophysics Data System (ADS)

    Sugawara, M.; Komatsu, Y.; Beer, H.

    2015-05-01

    The 3-D freezing of flowing water in a copper tube cooled by air flow is investigated by means of a numerical analysis. The air flows normal to the tube axis. Several parameters as inlet water mean velocity w m , inlet water temperature T iℓ t , air flow temperature T a and air flow velocity u a are selected in the calculations to adapt it to a winter season actually encountered. The numerical results present the development of the ice layer mean thickness and its 3-D morphologies as well as the critical ice layer thickness in the tube choked by the ice layer.

  6. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  7. The turbulence structure of katabatic flows below and above wind-speed maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher

    2015-04-01

    Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat

  8. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  9. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    NASA Astrophysics Data System (ADS)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  10. Improving the performance of a compression ignition engine by directing flow of inlet air

    NASA Technical Reports Server (NTRS)

    Kemper, Carlton

    1946-01-01

    The object of this report is to present the results of tests performed by the National Advisory Committee for Aeronautics to determine the effect on engine performance of directing the flow of the inlet air to a 5-inch by 7-inch cylinder, solid injection, compression ignition engine, After a few preliminary tests, comparative runs were made at a speed of 1500 r.p.m. with and without directed air flow. It was found that directing the flow of the inlet air toward the fuel injection valve gave steadier engine operation, and an appreciable increase in power, and decreased fuel consumption. The results indicate the possibility of improving the performance of a given type of combustion chamber without changing its shape and with no change in valve timing. They would also seem to prove that directional turbulence, set up before the inlet valve of a four-stroke cycle engine, continues in the engine cylinder throughout the compression stroke.

  11. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, Cyrus K.; Steinberger, Craig J.

    1990-01-01

    This research is involved with the implementation of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program to extend the present capabilities of this method was initiated for the treatment of chemically reacting flows. In the DNS efforts, the focus is on detailed investigations of the effects of compressibility, heat release, and non-equilibrium kinetics modelings in high speed reacting flows. Emphasis was on the simulations of simple flows, namely homogeneous compressible flows, and temporally developing high speed mixing layers.

  12. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    NASA Astrophysics Data System (ADS)

    Fu, Hailing; Yeatman, Eric M.

    2015-12-01

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic "plucking" of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  13. A miniaturized piezoelectric turbine with self-regulation for increased air speed range

    SciTech Connect

    Fu, Hailing Yeatman, Eric M.

    2015-12-14

    This paper presents the design and demonstration of a piezoelectric turbine with self-regulation for increased air speed range. The turbine's transduction is achieved by magnetic “plucking” of a piezoelectric beam by the passing rotor. The increased speed range is achieved by the self-regulating mechanism which can dynamically adjust the magnetic coupling between the magnets on the turbine rotor and the piezoelectric beam using a micro-spring. The spring is controlled passively by the centrifugal force of the magnet on the rotor. This mechanism automatically changes the relative position of the magnets at different rotational speeds, making the coupling weak at low airflow speeds and strong at high speeds. Hence, the device can start up with a low airflow speed, and the output power can be ensured when the airflow speed is high. A theoretical model was established to analyse the turbine's performance, advantages, and to optimize its design parameters. A prototype was fabricated and tested in a wind tunnel. The start-up airflow speed was 2.34 m/s, showing a 30% improvement against a harvester without the mechanism.

  14. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    NASA Astrophysics Data System (ADS)

    Henninger, Sascha

    2013-04-01

    Kigali, the capital of the Equatorial African country Rwanda, indicates a fast growing population. This fact and the coherent rising rate of motorization are a reason for a sustainable degradation of the urban air quality. Poorly maintained old mopeds, motorcycles and vehicles cause an increasing concentration of different air pollutants. Apart from the traffic emissions there is another source of air pollution: the usage of simple stoves and open fireplaces. Burning wood, kerosene or dung for domestic energy, cooking and household chores produces a lot of emission, in- and outdoors. Kigali shows a distinctive relief, situated in the Central Highlands of Rwanda. The main business and residential districts are on top of the ridges, which are enclosed by small valleys called "Marais". The lack of space forces more and more people to settle along the slopes and on the bottom of the hills. Though the existence of air pollution depends on the spatial distribution and of course on the intensity of the sources. But pollution is not necessarily bound within the area of strongest emission. Topographical and meteorological conditions could have a very strong influence on the spatial distribution of air quality. This paper presents the results performed by stationary and mobile measurements between 2008 and 2012. Air temperature, air humidity, precipitation, wind speed and direction, carbon monoxide and suspended particulate matter (PM10) were measured at fixed stations within the urban area. CO and PM10 were additionally detected by mobile measurements using a car traverse, which started in the outskirts of Kigali following paved and unpaved roads through the urban area. A mixture of different types of land use composed the measuring route where different commercial, industrial, residential and mobile sources could be expected. Although highest levels of concentration were measured in areas with paved roads in business and commercial areas with the highest traffic rates

  15. An Undergraduate Experiment for the Measurement of the Speed of Sound in Air: Phenomena and Discussion

    ERIC Educational Resources Information Center

    Yang, Hujiang; Zhao, Xiaohong; Wang, Xin; Xiao, Jinghua

    2012-01-01

    In this paper, we present and discuss some phenomena in an undergraduate experiment for the measurement of the speed of sound in air. A square wave distorts when connected to a piezoelectric transducer. Moreover, the amplitude of the receiving signal varies with the driving frequency. Comparing with the Gibbs phenomenon, these phenomena can be…

  16. Molecular-Based Optical Measurement Techniques for Transition and Turbulence in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Cutler, Andrew D.

    2013-01-01

    High-speed laminar-to-turbulent transition and turbulence affect the control of flight vehicles, the heat transfer rate to a flight vehicle's surface, the material selected to protect such vehicles from high heating loads, the ultimate weight of a flight vehicle due to the presence of thermal protection systems, the efficiency of fuel-air mixing processes in high-speed combustion applications, etc. Gaining a fundamental understanding of the physical mechanisms involved in the transition process will lead to the development of predictive capabilities that can identify transition location and its impact on parameters like surface heating. Currently, there is no general theory that can completely describe the transition-to-turbulence process. However, transition research has led to the identification of the predominant pathways by which this process occurs. For a truly physics-based model of transition to be developed, the individual stages in the paths leading to the onset of fully turbulent flow must be well understood. This requires that each pathway be computationally modeled and experimentally characterized and validated. This may also lead to the discovery of new physical pathways. This document is intended to describe molecular based measurement techniques that have been developed, addressing the needs of the high-speed transition-to-turbulence and high-speed turbulence research fields. In particular, we focus on techniques that have either been used to study high speed transition and turbulence or techniques that show promise for studying these flows. This review is not exhaustive. In addition to the probe-based techniques described in the previous paragraph, several other classes of measurement techniques that are, or could be, used to study high speed transition and turbulence are excluded from this manuscript. For example, surface measurement techniques such as pressure and temperature paint, phosphor thermography, skin friction measurements and

  17. Optic flow asymmetries bias high-speed steering along roads.

    PubMed

    Kountouriotis, Georgios K; Shire, Katy A; Mole, Callum D; Gardner, Peter H; Merat, Natasha; Wilkie, Richard M

    2013-01-01

    How do animals and insects use visual information to move through the world successfully? Optic flow, the pattern of motion at the eye, is a powerful source of information about self-motion. Insects and humans are sensitive to the global pattern of optic flow and try to maintain flow symmetry when flying or walking. The environments humans encounter, however, often contain demarcated paths that constrain future trajectories (e.g., roads), and steering has been successfully modeled using only road edge information. Here we examine whether flow asymmetries from a textured ground plane influences humans steering along demarcated paths. Using a virtual reality simulator we observed that different textures on either side of the path caused predictable biases to steering trajectories, consistent with participants reducing flow asymmetries. We also generated conditions where one textured region had no flow (either the texture was removed or the textured region was static). Despite the presence of visible path information, participants were biased toward the no-flow region consistent with reducing flow asymmetries. We conclude that optic flow asymmetries can lead to biased locomotor steering even when traveling along demarcated paths. PMID:23988389

  18. PDF methods for combustion in high-speed turbulent flows

    NASA Technical Reports Server (NTRS)

    Pope, Stephen B.

    1995-01-01

    This report describes the research performed during the second year of this three-year project. The ultimate objective of the project is extend the applicability of probability density function (pdf) methods from incompressible to compressible turbulent reactive flows. As described in subsequent sections, progress has been made on: (1) formulation and modelling of pdf equations for compressible turbulence, in both homogeneous and inhomogeneous inert flows; and (2) implementation of the compressible model in various flow configurations, namely decaying isotropic turbulence, homogeneous shear flow and plane mixing layer.

  19. One-layer microfluidic device for hydrodynamic 3D self-flow-focusing operating in low flow speed

    NASA Astrophysics Data System (ADS)

    Daghighi, Yasaman; Gnyawali, Vaskar; Strohm, Eric M.; Tsai, Scott S. H.; Kolios, Michael C.

    2016-03-01

    Hydrodynamic 3D flow-focusing techniques in microfluidics are categorized as (a) sheathless techniques which require high flow rates and long channels, resulting in high operating cost and high flow rates which are inappropriate for applications with flow rate limitations, and (b) sheath-flow based techniques which usually require excessive sheath flow rate to achieve hydrodynamic 3D flow-focusing. Many devices based on these principles use complicated fabrication methods to create multi-layer microchannels. We have developed a sheath-flow based microfluidic device that is capable of hydrodynamic 3D self-flow-focusing. In this device the main flow (black ink) in a low speed, and a sheath flow, enter through two inlets and enter a 180 degree curved channel (300 × 300 μm cross-section). Main flow migrates outwards into the sheath-flow due to centrifugal effects and consequently, vertical focusing is achieved at the end of the curved channel. Then, two other sheath flows horizontally confine the main flow to achieve horizontal focusing. Thus, the core flow is three-dimensionally focused at the center of the channel at the downstream. Using centrifugal force for 3D flow-focusing in a single-layer fabricated microchannel has been previously investigated by few groups. However, their demonstrated designs required high flow speed (>1 m/s) which is not suitable for many applications that live biomedical specie are involved. Here, we introduce a new design which is operational in low flow speed (<0.05 m/s) and is suitable for applications involving live cells. This microfluidic device can be used in detecting, counting and isolating cells in many biomedical applications.

  20. High-Speed Unsteady Flows around Concave Axisymmetric Bodies: Flow Instabilities and their Suppression

    NASA Astrophysics Data System (ADS)

    Panaras, A.; Drikakis, D.

    2009-01-01

    The axisymmetric concave body, i.e. a body in which the normals to its surface intersect, is a typical configuration about which shock/shock interactions appear. Various shapes of axisymmetric concave bodies are used in a variety of applications in aeronautics. For exampe: axisymmetric jet inlets with conical centerbody, ballistic missiles drag reduction by spike, plasma or hot gas injection, parachutes for pilot-ejection capsules. However, it is well known that two distinct modes of instability appear around a concave body in the high-speed flow regime, for a certain range of geometric parameters. These instabilities can cause undesirable effects such as severe vibration of the structure, heating and pressure loads. According to the experimental evidence, the unsteady flow is characterized by periodic radial inflation and collapse of the conical separation bubble formed around the forebody (pulsation). Various explanations have been given for the driving mechanism of the instabilities. They are based on interpretation of experimental results or on numerical simulation of the related flows. A merging of the leading explanations is done, and basic rules for the passive suppression of the instabilities are applied, in order to enforce the proposed driving mechanism of the instabilities. Most of the analysis is based on numerical simulations.

  1. Effect of Reynolds Number in Turbulent-Flow Range on Flame Speeds of Bunsen Burner Flames

    NASA Technical Reports Server (NTRS)

    Bollinger, Lowell M; Williams, David T

    1949-01-01

    The effect of flow conditions on the geometry of the turbulent Bunsen flame was investigated. Turbulent flame speed is defined in terms of flame geometry and data are presented showing the effect of Reynolds number of flow in the range of 3000 to 35,000 on flame speed for burner diameters from 1/4 to 1 1/8 inches and three fuels -- acetylene, ethylene, and propane. The normal flame speed of an explosive mixture was shown to be an important factor in determining its turbulent flame speed, and it was deduced from the data that turbulent flame speed is a function of both the Reynolds number of the turbulent flow in the burner tube and of the tube diameter.

  2. Speed and pressure recording in three-dimensional flow

    NASA Technical Reports Server (NTRS)

    Krisam, F

    1932-01-01

    Van der Megge Zijnen's spherical Pitot tube with its 5 test holes insures a simultaneous record of static pressure and magnitude and direction of velocity in three-dimensional flow. The report treats the method as well as the range of application of this Pitot in the light of modern knowledge on flow around spheres.

  3. Icing characteristics of a natural-laminar-flow, a medium-speed, and a swept, medium-speed airfoil

    NASA Technical Reports Server (NTRS)

    Bidwell, Colin S.

    1991-01-01

    Tests were conducted at the Icing Research Tunnel at the NASA Lewis Research Center to determine the icing characteristics of three modern airfoils, a natural laminar flow, a medium speed and a swept medium speed airfoil. Tests measured the impingement characteristics and drag degradation for angles of attack typifying cruise and climb for cloud conditions typifying the range that might be encountered in flight. The maximum degradation occurred for the cruise angle of attack for the long glaze ice condition for all three airfoils with increases over baseline drag being 486 percent, 510 percent, and 465 percent for the natural laminar flow, the medium speed and the swept medium speed airfoil respectively. For the climb angle of attack, the maximum drag degradation (and extent of impingement) observed were also for the long glaze ice condition, and were 261 percent, 181 percent and 331 percent respectively. The minimum drag degradation (and extent of impingement) occurred for the cruise condition and for the short, rime spray which increases over baseline drag values of 47 percent, 28 percent and 46 percent respectively.

  4. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  5. A Low-speed Investigation of an Annular Transonic Air Inlet

    NASA Technical Reports Server (NTRS)

    Nichols, Mark R; Rinkoski, Donald W

    1952-01-01

    Low-speed wind-tunnel tests were conducted as preliminary steps in the study of fuselage-air-inlet arrangements believed suitable for use at transonic speeds. The forward part of the model consisted of an NACA 1-85-050 cowling located at the base of the long protruding fuselage nose designed to maintain substream surface velocities everywhere ahead of the entrance and thereby to avoid or minimize adverse boundary-layer-shock interaction effects up to low supersonic speeds. Pressure-recovery and surface-pressure measurements are presented for the model with three fuselage nose shapes for ranges of angle of attack and inlet-velocity ratio useful for high-speed flight

  6. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  7. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2013-01-01

    This is the presentation related to the paper of the same name describing Reynolds Averaged Navier Stokes (RANS) computational Fluid Dynamics (CFD) analysis of low speed stall aerodynamics of a swept wing with a laminar flow wing glove.

  8. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    NASA Technical Reports Server (NTRS)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  9. Study of high speed combustion flows by laser velocimetry

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.

    1984-01-01

    The feasibility of laser velocimetry in a high temperature jet was assessed in a model of an aircraft engine combustor. Experiments show that the problems encountered in measuring combustion flow can flow can be overcome by a carefully designed optical set-up and an appropriate signal processing and data acquisition system. Laser Doppler velocimetry provides useful information about coherent structures in hot free jets. The measurements agree with measurements in an isothermal jet.

  10. Active Closed-Loop Stator Vane Flow Control Demonstrated in a Low-Speed Multistage Compressor

    NASA Technical Reports Server (NTRS)

    Bright, Michelle M.; Culley, Dennis E.; Strazisar, Anthony J.

    2004-01-01

    Closed-loop flow control was successfully demonstrated on the surface of stator vanes in NASA Glenn Research Center's Low-Speed Axial Compressor (LSAC) facility. This facility provides a flow field that accurately duplicates the aerodynamics of modern highly loaded compressors. Closed-loop active flow control uses sensors and actuators embedded within engine components to dynamically alter the internal flow path during off-nominal operation in order to optimize engine performance and maintain stable operation.

  11. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed.

    PubMed

    Gilmore, Rick O; Thomas, Amanda L; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  12. Children's Brain Responses to Optic Flow Vary by Pattern Type and Motion Speed

    PubMed Central

    Thomas, Amanda L.; Fesi, Jeremy

    2016-01-01

    Structured patterns of global visual motion called optic flow provide crucial information about an observer's speed and direction of self-motion and about the geometry of the environment. Brain and behavioral responses to optic flow undergo considerable postnatal maturation, but relatively little brain imaging evidence describes the time course of development in motion processing systems in early to middle childhood, a time when psychophysical data suggest that there are changes in sensitivity. To fill this gap, electroencephalographic (EEG) responses were recorded in 4- to 8-year-old children who viewed three time-varying optic flow patterns (translation, rotation, and radial expansion/contraction) at three different speeds (2, 4, and 8 deg/s). Modulations of global motion coherence evoked coherent EEG responses at the first harmonic that differed by flow pattern and responses at the third harmonic and dot update rate that varied by speed. Pattern-related responses clustered over right lateral channels while speed-related responses clustered over midline channels. Both children and adults show widespread responses to modulations of motion coherence at the second harmonic that are not selective for pattern or speed. The results suggest that the developing brain segregates the processing of optic flow pattern from speed and that an adult-like pattern of neural responses to optic flow has begun to emerge by early to middle childhood. PMID:27326860

  13. Effect of air flow on tubular solar still efficiency

    PubMed Central

    2013-01-01

    Background An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. Findings The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. Conclusions On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. PMID:23587020

  14. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2015-08-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  15. Dynamic simulation and safety evaluation of high-speed trains meeting in open air

    NASA Astrophysics Data System (ADS)

    Li, Songyan; Zheng, Zhijun; Yu, Jilin; Qian, Chunqiang

    2016-04-01

    Dynamic responses of a carriage under excitation with the German high-speed low-interference track spectrum together with the air pressure pulse generated as high-speed trains passing each other are investigated with a multi-body dynamics method. The variations of degrees of freedom (DOFs: horizontal movement, roll angle, and yaw angle), the lateral wheel-rail force, the derailment coefficient, and the rate of wheel load reduction with time when two carriages meet in open air are obtained and compared with the results of a single train travelling at specified speeds. Results show that the rate of wheel load reduction increases with the increase of train speed and meets some safety standard at a certain speed, but exceeding the value of the rate of wheel load reduction does not necessarily mean derailment. The evaluation standard of the rate of wheel load reduction is somewhat conservative and may be loosened. The pressure pulse has significant effects on the train DOFs, and the evaluations of these safety indexes are strongly suggested in practice. The pressure pulse has a limited effect on the derailment coefficient and the lateral wheel-rail force, and, thus, their further evaluations may be not necessary.

  16. Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, B.; Kritsuk, A. G.

    2016-02-01

    The Yee & Sjögreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov et al. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjögreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the

  17. Time of flight measurement of speed of sound in air with a computer sound card

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz

    2014-11-01

    A computer sound card and freely available audio editing software are used to measure accurately the speed of sound in air using the time-of-flight method. In addition to speed of sound measurement, inversion behaviour upon reflection from an open and closed end of a pipe is demonstrated. Also, it is demonstrated that the reflection at an open end of a pipe occurs slightly outside the pipe. The equipment needed is readily available to any student with access to a microphone, loudspeaker and computer.

  18. High Speed Size Sorting of Subcellular Organelles by Flow Field-Flow Fractionation.

    PubMed

    Yang, Joon Seon; Lee, Ju Yong; Moon, Myeong Hee

    2015-06-16

    Separation/isolation of subcellular species, such as mitochondria, lysosomes, peroxisomes, Golgi apparatus, and others, from cells is important for gaining an understanding of the cellular functions performed by specific organelles. This study introduces a high speed, semipreparative scale, biocompatible size sorting method for the isolation of subcellular organelle species from homogenate mixtures of HEK 293T cells using flow field-flow fractionation (FlFFF). Separation of organelles was achieved using asymmetrical FlFFF (AF4) channel system at the steric/hyperlayer mode in which nuclei, lysosomes, mitochondria, and peroxisomes were separated in a decreasing order of hydrodynamic diameter without complicated preprocessing steps. Fractions in which organelles were not clearly separated were reinjected to AF4 for a finer separation using the normal mode, in which smaller sized species can be well fractionated by an increasing order of diameter. The subcellular species contained in collected AF4 fractions were examined with scanning electron microscopy to evaluate their size and morphology, Western blot analysis using organelle specific markers was used for organelle confirmation, and proteomic analysis was performed with nanoflow liquid chromatography-tandem mass spectrometry (nLC-ESI-MS/MS). Since FlFFF operates with biocompatible buffer solutions, it offers great flexibility in handling subcellular components without relying on a high concentration sucrose solution for centrifugation or affinity- or fluorescence tag-based sorting methods. Consequently, the current study provides an alternative, competitive method for the isolation/purification of subcellular organelle species in their intact states. PMID:26005782

  19. A coupled implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun; Chen, Kuo-Huey; Choi, Yunho

    1993-01-01

    The present time-accurate coupled-solution procedure addresses the chemical nonequilibrium Navier-Stokes equations over a wide Mach-number range uses, in conjunction with the strong conservation form of the governing equations, five unknown primitive variables. The numerical tests undertaken address steady convergent-divergent nozzle flows with air dissociation/recombination, dump combustor flows with n-pentane/air chemistry, and unsteady nonreacting cavity flows.

  20. Ultraviolet Molecular Rayleigh Scattering Used to Measure Velocity in High-Speed Flow

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1997-01-01

    Molecular Rayleigh scattering offers a means to measure gas flow parameters including density, temperature, and velocity. No seeding of the flow is necessary. The Rayleigh scattered power is proportional to the gas density, the spectral width is related to the gas temperature, and the shift in the frequency of the spectral peak is proportional to one component of the fluid velocity. Velocity measurements based on Rayleigh scattering are more suitable for high-speed flow, where the bulk fluid velocity is on the order of, or larger than, the molecular thermal velocities. Use of ultraviolet wavelengths for Rayleigh scattering diagnostics is attractive for two reasons. First, the Rayleigh scattering cross section is proportional to the inverse 4th power of the wavelength. And second, the reflectivity of metallic surfaces is generally less than it is at longer wavelengths. This is of particular interest in confined flow situations, such as in small wind tunnels and aircraft engine components, where the stray laser light scattered from the windows and internal surfaces in the test facility limits the application of Rayleigh scattering diagnostics. In this work at the NASA Lewis Research Center, molecular Rayleigh scattering of the 266-nm fourth harmonic of a pulsed, injection seeded Nd:YAG (neodymium:yttriumaluminum- garnet) laser was used to measure velocity in a supersonic free air jet with a 9.3- mm exit diameter. The frequency of the Rayleigh scattered light was analyzed with a planar mirror Fabry-Perot interferometer used in a static imaging mode, with the images recorded on a cooled, high-quantum-efficiency charge-coupled discharge (CCD) camera. In addition, some unshifted light from the same laser pulse was imaged through the interferometer to generate a reference. Data were obtained with single laser pulses at velocities up to Mach 1.3. The measured velocities were in good agreement with velocities calculated from isentropic flow relations. Our conclusion from

  1. Measurement of direct current electric fields and plasma flow speeds in Jupiter's magnetosphere

    NASA Technical Reports Server (NTRS)

    Kellogg, Paul J.; Goetz, K.; Howard, R. L.; Monson, S. J.; Balogh, A.; Forsyth, R. J.

    1993-01-01

    During the encounter of Ulysses with Jupiter, we have measured two components of the dc electric field and deduced from them the flow speed in the Io toms, as well as the presence of a polar cap region end what we interpret as a cleft region. Within the toms the flow speed is approximately equal to the speed of a plasma corotating with Jupiter but has significant deviations. The dominant deviations have an apparent period of the order of Jupiter's rotation period, but this might be a latitudinal effect. Other important periods are about 40 min and less than 25 min.

  2. High speed optical holography of retinal blood flow

    NASA Astrophysics Data System (ADS)

    Pellizzari, M.; Simonutti, M.; Degardin, J.; Sahel, J.-A.; Fink, M.; Paques, M.; Atlan, M.

    2016-08-01

    We performed non-invasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (30 microns diameter) over 400 by 400 pixels with a spatial resolution of 8 microns and a temporal resolution of 6.5 ms.

  3. High speed mask inspection data prep flow based on pipelining

    NASA Astrophysics Data System (ADS)

    Hung, Dan; Morales, Domingo; Canepa, Juan Pablo; Kim, Stephen; Liu, Po; Sier, Jean-Paul; LoPresti, Patrick

    2011-11-01

    Mask manufacturers are continuously challenged as a result of the explosive growth in mask pattern data volume. This paper presents a new pipelined approach to mask data preparation for inspection that significantly reduces the data preparation times compared to the conventional flows used today. The focus of this approach minimizes I/O bottlenecks and allows for higher throughput on computer clusters. This solution is optimized for the industry standard OASIS.MASK format. These enhancements in the data processing flow, along with optimizations in the data preparation system architecture, offer a more efficient and highly scalable solution for mask inspection data preparation.

  4. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  5. The temperature measurement research for high-speed flow based on tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Di, Yue; Jin, Yi; Jiang, Hong-liang; Zhai, Chao

    2013-09-01

    Due to the particularity of the high-speed flow, in order to accurately obtain its' temperature, the measurement system should has some characteristics of not interfereing with the flow, non-contact measurement and high time resolution. The traditional measurement method cannot meet the above requirements, however the measurement method based on tunable diode laser absorption spectroscopy (TDLAS) technology can meet the requirements for high-speed flow temperature measurement. When the near-infared light of a specific frequency is through the media to be measured, it will be absorbed by the water vapor molecules and then the transmission light intensity is detected by the detector. The temperature of the water vapor which is also the high-speed flow temperature, can be accurately obtained by the Beer-Lambert law. This paper focused on the research of absorption spectrum method for high speed flow temperature measurement with the scope of 250K-500K. Firstly, spectral line selection method for low temperature measurement of high-speed flow is discussed. Selected absorption lines should be isolated and have a high peak absorption within the range of 250-500K, at the same time the interference of the other lines should be avoided, so that a high measurement accuracy can be obtained. According to the near-infrared absorption spectra characteristics of water vapor, four absorption lines at the near 1395 nm and 1409 nm are selected. Secondly, a system for the temperature measurement of the water vapor in the high-speed flow is established. Room temperature are measured through two methods, direct absorption spectroscopy (DAS) and wavelength modulation spectroscopy (WMS) ,the results show that this system can realize on-line measurement of the temperature and the measurement error is about 3%. Finally, the system will be used for temperature measurement of the high-speed flow in the shock tunnel, its feasibility of measurement is analyzed.

  6. An analytical model for highly seperated flow on airfoils at low speeds

    NASA Technical Reports Server (NTRS)

    Zunnalt, G. W.; Naik, S. N.

    1977-01-01

    A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.

  7. Low-noise flow valve for air ducts

    NASA Technical Reports Server (NTRS)

    Gallo, E. A.

    1970-01-01

    Valve assembly controls air flow from feeder into main duct, with minimum of turbulence, friction, pressure differential, and noise. Valve consists of damper, deflector, and spring. Streamlining of damper and deflector merges flow smoothly, while spring keeps damper and deflector in contact and eliminates valve chatter and damping vibrations.

  8. Controlling Compressor Vane Flow Vectoring Angles at Transonic Speeds

    NASA Astrophysics Data System (ADS)

    Munson, Matthew; Rempfer, Dietmar; Williams, David; Acharya, Mukund

    2003-11-01

    The ability to control flow separation angles from compressor inlet guide vanes with a Coanda-type actuator is demonstrated using both wind tunnel experiments and finite element simulations. Vectoring angles up to 40 degrees from the uncontrolled baseline state were measured with helium schlieren visualization at transonic Mach numbers ranging from 0.1 to 0.6, and with airfoil chord Reynolds numbers ranging from 89,000 to 710,000. The magnitude of the vectoring angle is shown to depend upon the geometry of the trailing edge, and actuator slot size, and the momentum flux coefficient. Under certain conditions the blowing has no effect on the vectoring angle indicating that the Coanda effect is not present. DNS simulations with the finite element method investigated the effects of geometry changes and external flow. Continuous control of the vectoring angle is demonstrated, which has important implications for application to rotating machinery. The technique is shown to reduce the stall flow coefficient by 15 percent in an axial flow compressor.

  9. Absorption Filter Based Optical Diagnostics in High Speed Flows

    NASA Technical Reports Server (NTRS)

    Samimy, Mo; Elliott, Gregory; Arnette, Stephen

    1996-01-01

    Two major regimes where laser light scattered by molecules or particles in a flow contains significant information about the flow are Mie scattering and Rayleigh scattering. Mie scattering is used to obtain only velocity information, while Rayleigh scattering can be used to measure both the velocity and the thermodynamic properties of the flow. Now, recently introduced (1990, 1991) absorption filter based diagnostic techniques have started a new era in flow visualization, simultaneous velocity and thermodynamic measurements, and planar velocity measurements. Using a filtered planar velocimetry (FPV) technique, we have modified the optically thick iodine filter profile of Miles, et al., and used it in the pressure-broaden regime which accommodates measurements in a wide range of velocity applications. Measuring velocity and thermodynamic properties simultaneously, using absorption filtered based Rayleigh scattering, involves not only the measurement of the Doppler shift, but also the spectral profile of the Rayleigh scattering signal. Using multiple observation angles, simultaneous measurement of one component velocity and thermodynamic properties in a supersonic jet were measured. Presently, the technique is being extended for simultaneous measurements of all three components of velocity and thermodynamic properties.

  10. Experimental determination of sound and high-speed flow interaction

    NASA Technical Reports Server (NTRS)

    Lumsdaine, E.; Silcox, R.

    1976-01-01

    A facility that was used to measure the interaction of flow with sound at high Mach numbers is described. Four inlets with different area variations (or axial gradients) were tested. Sound of selected frequencies and modes (0,0), (1,0), (2,0) was generated with eight circumferential acoustic drivers.

  11. Simultaneous measurements of temperature and density in air flows using UV laser spectroscopy

    NASA Technical Reports Server (NTRS)

    Fletcher, D. G.; Mckenzie, R. L.

    1991-01-01

    The simultaneous measurement of temperature and density using laser-induced fluorescence of oxygen in combination with Q-branch Raman scattering of nitrogen and oxygen is demonstrated in a low-speed air flow. The lowest density and temperature measured in the experiment correspond to the freestream values at Mach 5 in the Ames 3.5-Foot Hypersonic Wind Tunnel for stagnation conditions of 100 atm and 1000 K. The experimental results demonstrate the viability of the optical technique for measurements that support the study of compressible turbulence and the validation of numerical codes in supersonic and hypersonic wind tunnel flows.

  12. Analytical and Experimental Investigation of the Effects of Compressor Interstage Air Bleed on Performance Characteristics of a 13-stage Axial-flow Compressor

    NASA Technical Reports Server (NTRS)

    Lucas, James G; Geye, Richard P; Calvert, Howard F

    1957-01-01

    Air was bled over the fifth-and tenth-stage rotor-blade rows through ports designed to pass 11 and 9 percent of the inlet flow, respectively, at 80 percent speed. Along the rated operating line the maximum speed at which rotating stall was encountered was lowered by either of these bleeds, and the stall patterns below these speeds were altered so that no dangerous resonant rotor-blade bending vibrations were excited. The combination of the two bleeds completely eliminated rotating stall to at least 50 percent speed. The compressor-discharge weight flow was decreased only at intermediate speeds, and the overall pressure ratio was affected only at intermediate speeds, and the overall pressure ratio was affected only by the combination bleed at intermediate speeds. Fifth-stage bleed increased compressor efficiency at low speeds, and tenth-stage bleed decreased efficiency at intermediate speeds.

  13. Air-bridge high-speed InGaAs/InP waveguide photodiode

    NASA Astrophysics Data System (ADS)

    Yang, H.; Daunt, C. L. L. M.; Han, W.; Thomas, K.; Corbett, B.; Peters, F. H.

    2012-04-01

    The photodiode (PD) is a key component in optical transmission and optical measurement systems which receive optical signals and convert them into electric signals. High speed, high responsivity, high power and low dark current are desirable attributes of the PD in these applications, but also a simple fabrication process for high yield and low cost is essential for industry production. In this paper, an undercut-air-bridge high speed InGaAs/InP PIN structural photodiode is presented. By utilizing the crystal orientation dependent wet etching of InP material and designing the arms of the bridge with proper angle, the air bridge was easily obtained, which greatly eased the fabrication. The fabricated devices with 120μm×3μm ridge waveguides work robustly up to 30GHz in the measurements and potentially faster with optimized material.

  14. Numerical Study on a Detailed Air Flows in an Urban Area Using a CFD model

    NASA Astrophysics Data System (ADS)

    Kwon, A.

    2014-12-01

    In this study, detailed air flows in an urban area were analyzed using a computational fluid dynamics (CFD) model. For this model buildings used as the surface boundary in the model were constructed using Los Angeles Region Imagery Acquisition Consortium 2 Geographic Information System (LARIAC2 GIS) data. Three target areas centered at the cross roads of Broadway & 7th St., Olive & 12th St., and Wilshire blvd. & Carondelet, Los Angeles, California were considered. The size of each numerical domain is 400 m, 400 m, and 200 m in the x‒, y‒, and z‒directions, respectively. The grid sizes in the x‒, y‒, and z‒directions are 2 m, 2 m, and 2 m, respectively. Based on the inflow wind data provided by California Air Resources Board, detailed flow characteristics were investigated for each target area. Descending air flow were developed at the leeward area of tall building and ascending air current were occurred on the windward area of tall building. Vertically rotating vortices were formed in spaces between buildings, so-called, street canyons and horizontally rotating vortices appeared near cross roads. When flows came into narrow street canyon from wide street canyon, channeling effects appeared and flow speed increased for satisfying mass continuity.

  15. The Heat Transfer to a Plate in Flow at High Speed

    NASA Technical Reports Server (NTRS)

    Eckert, E.; Drewitz, O.

    1943-01-01

    The heat transfer in the laminar boundary layer of a heated plate in flow at high speed can be obtained by integration of the conventional differential equations of the boundary layer, so long as the material values can be regarded as constant. This premise is fairly well satisfied at speeds up to about twice the sonic speed and at not excessive temperature rise of the heated plate. The general solution of the equation includes Pohlhausen's specific cases of heat transfer to a plate at low speeds and of the plate thermometer. The solution shows that the heat transfer coefficient at high speed must be computed with the same equation as at low speed, when it is referred to the difference of the wall temperature of the heated plate in respect to its "natural temperature." Since this fact follows from the linear structure of the differential equation describing the temperature field, it is equally applicable to the heat transfer in the turbulent boundary layer.

  16. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  17. Visualization of the air flow behind the automotive benchmark vent

    NASA Astrophysics Data System (ADS)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  18. Evaporation of stationary alcohol layer in minichannel under air flow

    NASA Astrophysics Data System (ADS)

    Afanasyev, Ilya; Orlova, Evgenija; Feoktistov, Dmitriy

    2015-01-01

    This paper presents experimental investigation of effect of the gas flow rate moving parallel to the stationary liquid layer on the evaporation rate under the conditions of formation of a stable plane "liquid-gas" interface. The average evaporation flow rate of liquid layer (ethanol) by the gas flow (air) has been calculated using two independent methods. Obtained results have been compared with previously published data.

  19. High speed optical holography of retinal blood flow.

    PubMed

    Pellizzari, M; Simonutti, M; Degardin, J; Sahel, J-A; Fink, M; Paques, M; Atlan, M

    2016-08-01

    We performed noninvasive video imaging of retinal blood flow in a pigmented rat by holographic interferometry of near-infrared laser light backscattered by retinal tissue, beating against an off-axis reference beam sampled at a frame rate of 39 kHz with a high throughput camera. Local Doppler contrasts emerged from the envelopes of short-time Fourier transforms and the phase of autocorrelation functions of holograms rendered by Fresnel transformation. This approach permitted imaging of blood flow in large retinal vessels (∼30 microns diameter) over 400×400  pixels with a spatial resolution of ∼8 microns and a temporal resolution of ∼6.5  ms. PMID:27472604

  20. F-14A aircraft high-speed flow simulations

    NASA Technical Reports Server (NTRS)

    Boppe, C. W.; Rosen, B. S.

    1985-01-01

    A model of the Grumman/Navy F-14A aircraft was developed for analyses using the NASA/Grumman Transonic Wing-Body Code. Computations were performed for isolated wing and wing fuselage glove arrangements to determine the extent of aerodynamic interference effects which propagate outward onto the main wing outer panel. Additional studies were conducted using the full potential analysis, FLO 22, to calibrate any inaccuracies that might accrue because of small disturbance code limitations. Comparisons indicate that the NASA/Grumman code provides excellent flow simulations for the range of wing sweep angles and flow conditions that will be of interest for the upcoming F-14 Variable Sweep Flight Transition Experiment.

  1. Plane and Three-Dimensional Flow at High Subsonic Speeds

    NASA Technical Reports Server (NTRS)

    Gothert, B.

    1946-01-01

    For two- and three-dimensional flow in a compressible medium, a simple relation is given by which, to a first approximation, the quantitative influence of compressibility upon the velocities and pressures can be understood in a clear manner. In the application of this relation the distinct behaviors of two-dimensional and axially symmetric three-dimensional flow with increasing Mach number are brought out. For slender elliptic cylinders and ellipsoids of revolution, calculations are made of the critical Mach number; that is, the Mach number at which local sonic velocity is achieved on the body. As a further example, the lifting wing of finite span is considered, and it is shown that the increase of wing lift with Mach number at a given angle of attack is greatly dependent upon the aspect ratio b(exp 2)/F.

  2. A multigrid nonoscillatory method for computing high speed flows

    NASA Technical Reports Server (NTRS)

    Li, C. P.; Shieh, T. H.

    1993-01-01

    A multigrid method using different smoothers has been developed to solve the Euler equations discretized by a nonoscillatory scheme up to fourth order accuracy. The best smoothing property is provided by a five-stage Runge-Kutta technique with optimized coefficients, yet the most efficient smoother is a backward Euler technique in factored and diagonalized form. The singlegrid solution for a hypersonic, viscous conic flow is in excellent agreement with the solution obtained by the third order MUSCL and Roe's method. Mach 8 inviscid flow computations for a complete entry probe have shown that the accuracy is at least as good as the symmetric TVD scheme of Yee and Harten. The implicit multigrid method is four times more efficient than the explicit multigrid technique and 3.5 times faster than the single-grid implicit technique. For a Mach 8.7 inviscid flow over a blunt delta wing at 30 deg incidence, the CPU reduction factor from the three-level multigrid computation is 2.2 on a grid of 37 x 41 x 73 nodes.

  3. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory.

    PubMed

    Pennycuick, C J; Åkesson, Susanne; Hedenström, Anders

    2013-09-01

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species' average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000-250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods. PMID:23804440

  4. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory

    PubMed Central

    Pennycuick, C. J.; Åkesson, Susanne; Hedenström, Anders

    2013-01-01

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species’ average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods. PMID:23804440

  5. Local scattering property scales flow speed estimation in laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Miao, Peng; Chao, Zhen; Feng, Shihan; Yu, Hang; Ji, Yuanyuan; Li, Nan; Thakor, Nitish V.

    2015-07-01

    Laser speckle contrast imaging (LSCI) has been widely used in in vivo blood flow imaging. However, the effect of local scattering property (scattering coefficient µ s ) on blood flow speed estimation has not been well investigated. In this study, such an effect was quantified and involved in relation between speckle autocorrelation time τ c and flow speed v based on simulation flow experiments. For in vivo blood flow imaging, an improved estimation strategy was developed to eliminate the estimation bias due to the inhomogeneous distribution of the scattering property. Compared to traditional LSCI, a new estimation method significantly suppressed the imaging noise and improves the imaging contrast of vasculatures. Furthermore, the new method successfully captured the blood flow changes and vascular constriction patterns in rats’ cerebral cortex from normothermia to mild and moderate hypothermia.

  6. The numerical simulation of a high-speed axial flow compressor

    NASA Technical Reports Server (NTRS)

    Mulac, Richard A.; Adamczyk, John J.

    1991-01-01

    The advancement of high-speed axial-flow multistage compressors is impeded by a lack of detailed flow-field information. Recent development in compressor flow modeling and numerical simulation have the potential to provide needed information in a timely manner. The development of a computer program is described to solve the viscous form of the average-passage equation system for multistage turbomachinery. Programming issues such as in-core versus out-of-core data storage and CPU utilization (parallelization, vectorization, and chaining) are addressed. Code performance is evaluated through the simulation of the first four stages of a five-stage, high-speed, axial-flow compressor. The second part addresses the flow physics which can be obtained from the numerical simulation. In particular, an examination of the endwall flow structure is made, and its impact on blockage distribution assessed.

  7. Annular fuel and air co-flow premixer

    SciTech Connect

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  8. Computation of flow and heat transfer in rotating cavities with peripheral flow of cooling air.

    PubMed

    Kiliç, M

    2001-05-01

    Numerical solutions of the Navier-Stokes equations have been used to model the flow and the heat transfer that occurs in the internal cooling-air systems of gas turbines. Computations are performed to study the effect of gap ratio, Reynolds number and the mass flow rate on the flow and the heat transfer structure inside isothermal and heated rotating cavities with peripheral flow of cooling air. Computations are compared with some of the recent experimental work on flow and heat transfer in rotating-cavities. The agreement between the computed and the available experimental data is reasonably good. PMID:11460668

  9. Bumblebees measure optic flow for position and speed control flexibly within the frontal visual field.

    PubMed

    Linander, Nellie; Dacke, Marie; Baird, Emily

    2015-04-01

    When flying through narrow spaces, insects control their position by balancing the magnitude of apparent image motion (optic flow) experienced in each eye and their speed by holding this value about a desired set point. Previously, it has been shown that when bumblebees encounter sudden changes in the proximity to nearby surfaces - as indicated by a change in the magnitude of optic flow on each side of the visual field - they adjust their flight speed well before the change, suggesting that they measure optic flow for speed control at low visual angles in the frontal visual field. Here, we investigated the effect that sudden changes in the magnitude of translational optic flow have on both position and speed control in bumblebees if these changes are asymmetrical; that is, if they occur only on one side of the visual field. Our results reveal that the visual region over which bumblebees respond to optic flow cues for flight control is not dictated by a set viewing angle. Instead, bumblebees appear to use the maximum magnitude of translational optic flow experienced in the frontal visual field. This strategy ensures that bumblebees use the translational optic flow generated by the nearest obstacles - that is, those with which they have the highest risk of colliding - to control flight. PMID:25657205

  10. Contribution to the Problem of Flow at High Speed

    NASA Technical Reports Server (NTRS)

    Schmieden, C.; Kawalki, K. H.

    1949-01-01

    The authors regret that due to the lack of time the investigations could not be carried out to a more finished form. Especially in the first part it was intended to include a few further applications and to use them in the general considerations of this part. In spite of the fact that the intentions of the authors could not be realized, the authors felt that it would serve the aims of the competition to present part I in its present fragmentary form. The topics include: 1) A Few General Remarks Covering the Prandtl-Busemann Method; and 2) Effect of Compressibility in Axially Symmetrical Flow around an Ellipsoid.

  11. Vortex design of a diagonal flow impeller with high specific speed

    NASA Astrophysics Data System (ADS)

    Kamada, Yoshihisa; Yamaguchi, Sumio; Sasaki, Kazuto; Inoue, Masahiro

    1986-09-01

    The 'vortex design' method applied to an axial flow compressor stage has been extended to a diagonal flow impeller with high specific speed. For a given type of vortex flow, the through flow problem is solved by the streamline curvature method, and a blade element is determined on the basis of this solution. However, for any vortex type except free vortex, the exit flow condition changes due to a secondary flow induced by vortices shed from the trailing edges. The given vortex type can be obtained by correcting this effect with a so-called secondary flow theory.The validity of this method has been examined in experiments on three kinds of vortex flows: free vortex type, and constant tangential velocity types with or without correction of the secondary flow effects.

  12. Two-phase air/oil flow in aero engine bearing chambers: Characterization of oil film flows

    SciTech Connect

    Glahn, A.; Wittig, S.

    1996-07-01

    For the design of secondary air and lubrication oil systems, a sufficient knowledge of two-phase flow and heat transfer phenomena under bearing chamber flow conditions is required. The characterization of oil film flows at the bearing chamber walls is one of the major tasks for a better understanding of these processes and, therefore, a necessity for improvements of the efficiency of aero engines. The present paper gives a contribution to this subject. Utilizing a fiber-optic LDV setup, measurements of oil film velocity profiles have been performed in the high-speed bearing chamber rig simulating real engine conditions. All data have been compared with different theoretical approaches, which have been derived from a force balance at a liquid film element, including geometric conditions and temperature dependent fluid properties, and by approaches for the eddy viscosity available in the literature.

  13. Development of High Speed Inverter Rotary Compressor for the Air-conditioning System

    NASA Astrophysics Data System (ADS)

    Kang, Seoung-Min; Yang, Eun-soo; Shin, Jin-Ung; Park, Joon-Hong; Lee, Se-Dong; Ha, Jong-Hun; Son, Young-Boo; Lee, Byeong-Chul

    2015-08-01

    In order to meet the various operating loads of an air-conditioning system, an inverter compressor with a wide operational range is necessary. One of the ways to achieve a wide operation range is to drive a small capacity compressor at high speed. Moreover, it is possible to maximize the efficiency in part-load operation condition close to actual operating conditions and to reduce the cost by compact design of a small capacity compressor. In addition, the shortage of maximum capacity, due to the small rated capacity, is covered through high speed operation. However, in general, if the compressor operates at high speed, problems occurs such as reduced efficiency due to friction, increased noise, increased amount of oil discharge and decreased durability of the main components. In order to solve these problems the following have been investigated: optimized dimension parameters of the compression chamber, enhanced shaft design and the structure for the reduction of oil discharge and noise at high speed operation. Finally the high speed inverter rotary compressor with high efficiency and more compact size has been developed as compared with the conventional rotary compressor.

  14. Spool Valve for Switching Air Flows Between Two Beds

    NASA Technical Reports Server (NTRS)

    Dean, W. Clark

    2005-01-01

    U.S. Patent 6,142,151 describes a dual-bed ventilation system for a space suit, with emphasis on a multiport spool valve that switches air flows between two chemical beds that adsorb carbon dioxide and water vapor. The valve is used to alternately make the air flow through one bed while exposing the other bed to the outer-space environment to regenerate that bed through vacuum desorption of CO2 and H2O. Oxygen flowing from a supply tank is routed through a pair of periodically switched solenoid valves to drive the spool valve in a reciprocating motion. The spool valve equalizes the pressures of air in the beds and the volumes of air flowing into and out of the beds during the alternations between the adsorption and desorption phases, in such a manner that the volume of air that must be vented to outer space is half of what it would be in the absence of pressure equalization. Oxygen that has been used to actuate the spool valve in its reciprocating motion is released into the ventilation loop to replenish air lost to vacuum during the previous desorption phase of the operating cycle.

  15. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozian, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The essentially nonoscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  16. Numerical Simulations of High-Speed Chemically Reacting Flow

    NASA Technical Reports Server (NTRS)

    Ton, V. T.; Karagozin, A. R.; Marble, F. E.; Osher, S. J.; Engquist, B. E.

    1994-01-01

    The Essentially NonOscillatory (ENO) shock-capturing scheme for the solution of hyperbolic equations is extended to solve a system of coupled conservation equations governing two-dimensional, time-dependent, compressible chemically reacting flow with full chemistry. The thermodynamic properties of the mixture are modeled accurately, and stiff kinetic terms are separated from the fluid motion by a fractional step algorithm. The methodology is used to study the concept of shock-induced mixing and combustion, a process by which the interaction of a shock wave with a jet of low-density hydrogen fuel enhances mixing through streamwise vorticity generation. Test cases with and without chemical reaction are explored here. Our results indicate that, in the temperature range examined, vorticity generation as well as the distribution of atomic species do not change significantly with the introduction of a chemical reaction and subsequent heat release. The actual diffusion of hydrogen is also relatively unaffected by the reaction process. This suggests that the fluid mechanics of this problem may be successfully decoupled from the combustion processes, and that computation of the mixing problem (without combustion chemistry) can elucidate much of the important physical features of the flow.

  17. Interpretation of high-speed flows in the plasma sheet

    NASA Technical Reports Server (NTRS)

    Chen, C. X.; Wolf, R. A.

    1993-01-01

    Pursuing an idea suggested by Pontius and Wolf (1990), we propose that the `bursty bulk flows' observed by Baumjohann et al. (1990) and Angelopoulos et al. (1992) are `bubbles' in the Earth's plasma sheet. Specifically, they are flux tubes that have lower values of pV(exp 5/3) than their neighbors, where p is the thermal pressure of the particles and V is the volume of a tube containing one unit of magnetic flux. Whether they are created by reconnection or some other mechanism, the bubbles are propelled earthward by a magnetic buoyancy force, which is related to the interchange instability. Most of the major observed characteristics of the bursty bulk flows can be interpreted naturally in terms of the bubble picture. We propose a new `stratified fluid' picture of the plasma sheet, based on the idea that bubbles constitute the crucial transport mechanism. Results from simple mathematical models of plasma sheet transport support the idea that bubbles can resolve the pressure balance inconsistency, particularly in cases where plasma sheet ions are lost by gradient/curvature drift out the sides of the tail or bubbles are generated by reconnection in the middle of plasma sheet.

  18. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  19. Flying fruit flies correct for visual sideslip depending on relative speed of forward optic flow

    PubMed Central

    Cabrera, Stephanie; Theobald, Jamie C.

    2013-01-01

    As a fly flies through its environment, static objects produce moving images on its retina, and this optic flow is essential for steering and course corrections. Different types of rotation and translation produce unique flow fields, which fly brains are wired to identify. However, a feature of optic flow unique to translational motion is that adjacent images may move across the retina at different speeds, depending on their distance from the observer. Many insects take advantage of this depth cue, called motion parallax, to determine the distance to objects. We wanted to know if differential object speeds affect the corrective responses of fruit flies when they experience unplanned course deviations. We presented tethered flying flies with optic flow and measured their corrective responses to sideways perturbations of images with different relative forward speeds. We found that flying flies attend to the relative speed of dots during forward motion, and adjust their corrective responses to sideslip deviations depending on this cue. With no other distinguishing features (such as brightness or size), flies mounted a greater response to sideways deviations that were signaled by faster moving dots in the forward flow field, those that appeared radially closer by their speeds. This is consistent with the interpretation that fruit flies attend to seemingly nearer objects, and correct more strongly when they indicate a perturbation. PMID:23847482

  20. Effects of oblique air flow on burning rates of square ethanol pool fires.

    PubMed

    Tao, Changfa; He, Yaping; Li, Yuan; Wang, Xishi

    2013-09-15

    The effects of downward airflow on the burning rate and/or burning intensity of square alcohol pool fires for different airflow speeds and directions have been studied experimentally in an inclined wind tunnel. An interesting flame-wrapping phenomenon, caused by impingement of air flow, was observed. The mass burning intensity was found to increase with the airflow speed and the impinging angle. The fuel pan rim temperatures were also measured to study the effect of wind direction and speed on heat transfer from the flame to the fuel source. A model based on heat transfer analysis was developed to correlate the burning intensity with the pan rim characteristic temperature. A good correlation was established between the model results and the experimental results. PMID:23811377

  1. Cross-flow versus counterflow air-stripping towers

    SciTech Connect

    Little, J.C.; Marinas, B.J.

    1997-07-01

    Mass-transfer and pressure-drop packing performance correlations are used together with tower design equations and detailed cost models to compare the effectiveness of cross-flow and counterflow air stripping towers over a wide range of contaminant volatility. Cross-flow towers are shown to offer a significant economic advantage over counterflow towers when stripping low volatility organic contaminants primarily due to savings in energy costs. These savings increase as contaminant volatility decreases and as water flow rate increases. A further advantage of the cross-flow configuration is that it extends the feasible operating range for air stripping as cross-flow towers can accommodate higher air-to-water flow ratios than conventional counterflow towers. Finally it is shown that the optimized least-cost design for both counterflow and cross-flow towers varies with Henry`s law constant, water flow rate, and percent removal, but that the optimum is virtually insensitive to other cost and operating variables. This greatly simplifies the tower design procedure.

  2. High speed magnetized flows in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Borrero, J. M.; Orozco Suárez, D.; Ruiz Cobo, B.

    2014-09-01

    display the opposite velocity stratification. The change of sign in LOS velocity happens at the same optical depth in which the magnetic field becomes zero. Conclusions: The physical mechanism that best explains the inferred magnetic field configuration and flow motions is a siphon flow along an arched magnetic flux tube. Further investigation is required, however, as the expected features of a siphon flow cannot be unequivocally identified.

  3. TsuSpeedv0.5: Inversion of flow depth and flow speed along a cross section

    NASA Astrophysics Data System (ADS)

    Tang, H.; Weiss, R.

    2013-12-01

    Modern tsunami deposits are employed to estimate the overland flow characteristics of the tsunami. With the help of the overland-flow characteristics, the characteristics of the causative tsunami wave can be estimated. The understanding of tsunami deposits has tremendously improved over the last decades, and the importance of tsunami sediment studies for hazard assessments was highlight after the 2004 Sumatra tsunami. Tsunami deposits are studied in forward and inversion models. There are three prominent inversion models: (a) Moore's advection model (Moore et al., 2007), (b) Soulsby Inundation model (Soulsby et al. 2007), and (c) TsuSedMod (Jaffe et al., 2007). TsuSpeedv0.5 incorporates all three models and adds new modules to better estimate the characteristics of individual sediment layers. TsuSpeedv0.5 takes a grain-size distribution of a sampled tsunami deposits and initial estimates for the flow depths at the shore and the location of the sampled tsunami deposits as input. TsuSpeedv0.5 then computes sediment concentration, grain-size distribution of sediment source and flow speed to match the tsunami sediment thickness and grain size distribution from field observation, on which the final estimate of the grain-size distribution, flow speed, and froude number for each layer is based. Furthermore, the characteristics of the tsunami deposit matched (as good as it gets) at the sample location are then also extrapolated along a cross section. Keywords: Tsunami; Tsunami sediment; Sediment transport; Flow depth;Flow Speed

  4. Estimating the energy-saving benefit of reduced-flow and/or multi-speed commercial kitchen ventilation systems

    SciTech Connect

    Fisher, D.; Schmid, F.; Spata, A.J.

    1999-07-01

    Kitchen exhaust ventilation systems are recognized as a major energy user within commercial food service facilities and restaurants. Minimizing the design ventilation rate of an appliance/hood system by optimizing hood performance in the laboratory is a viable strategy for reducing the makeup air heating and cooling loads as well as the exhaust and supply fan energy. Cutting back the exhaust flow under conditions of noncooking (appliance idle) can further reduce the energy load associated with a kitchen ventilation system. An optimized, two-speed exhaust system was installed within the scope of an energy-efficient, quick service restaurant (QSR) design and demonstration project. This paper evaluates the energy benefit of this variable-flow strategy as well as the savings associated with reducing the design ventilation rate (compared to an off-the-shelf exhaust hood). The paper describes a new public-domain software tool for estimating heating and cooling loads associated with the makeup air requirements of commercial kitchens. This bin-based software provides ASHRAE engineers with an alternative to hand calculations or more sophisticated hour-by-hour simulation. The dramatic impact that both makeup air set point and geographic location have on the outdoor air load is illustrated. The paper concludes with an industry-wide projection of energy savings associated with optimizing the design and operation of commercial kitchen ventilation (CKV) systems.

  5. A study of inviscid flow about airfoils at high supersonic speeds

    NASA Technical Reports Server (NTRS)

    Eggers, A J; Syvertson, Clarence A; Kraus, Samuel

    1953-01-01

    Steady flow about curved airfoils is investigated analytically, first assuming air behaves as an ideal gas, and then assuming it behaves as a thermally perfect, calorically imperfect gas. Conclusions are drawn from the study.

  6. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Madnia, C. K.; Steinberger, C. J.; Tsai, A.

    1991-01-01

    This research is involved with the implementations of advanced computational schemes based on large eddy simulations (LES) and direct numerical simulations (DNS) to study the phenomenon of mixing and its coupling with chemical reactions in compressible turbulent flows. In the efforts related to LES, a research program was initiated to extend the present capabilities of this method for the treatment of chemically reacting flows, whereas in the DNS efforts, focus was on detailed investigations of the effects of compressibility, heat release, and nonequilibrium kinetics modeling in high speed reacting flows. The efforts to date were primarily focussed on simulations of simple flows, namely, homogeneous compressible flows and temporally developing hign speed mixing layers. A summary of the accomplishments is provided.

  7. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  8. Distributed flow sensing for closed-loop speed control of a flexible fish robot.

    PubMed

    Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A

    2015-12-01

    Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude. PMID:26495855

  9. Three-dimensional interactions and vortical flows with emphasis on high speeds

    NASA Technical Reports Server (NTRS)

    Peake, D. J.; Tobak, M.

    1980-01-01

    Diverse kinds of three-dimensional regions of separation in laminar and turbulent boundary layers are discussed that exist on lifting aerodynamic configurations immersed in flows from subsonic to hypersonic speeds. In all cases of three dimensional flow separation, the assumption of continuous vector fields of skin-friction lines and external-flow streamlines, coupled with simple topology laws, provides a flow grammar whose elemental constituents are the singular points: nodes, foci, and saddles. Adopting these notions enables one to create sequences of plausible flow structures, to deduce mean flow characteristics, expose flow mechanisms, and to aid theory and experiment where lack of resolution in numerical calculations or wind tunnel observation causes imprecision in diagnosing the three dimensional flow features.

  10. Validation of the NPARC code for nozzle afterbody flows at transonic speeds

    NASA Technical Reports Server (NTRS)

    Debonis, James R.; Georgiadis, Nicholas J.; Smith, Crawford F.

    1995-01-01

    The NPARC code, a Reynolds-averaged full Navier-Stokes code, was validated for nozzle afterbody (boatail) flow fields at transonic speeds. The flow fields about three geometries were studied: an axisymmetric nozzle with attached flow; an axisymmetric nozzle with separated flow: and a two-dimensional (rectangular) nozzle with separated flow. Three turbulence models, Baldwin-Lomax, Baldwin-Barth, and Chien k-epsilon, were used to determine the effect of turbulence model selection on the flow field solution. Static pressure distributions on the nozzle surfaces and pitot pressure measurements in the exhaust plume were examined. Results from the NPARC code compared very well with experimental data for all cases. For attached flow fields, the effect of the turbulence models showed no discernable differences. The Baldwin-Barth model yielded better results than either the Chien k-epsilon or the Baldwin-Lomax model for separated flow fields.

  11. Low-Speed Flow Studies Using the Pressure Sensitive Paint Technique

    NASA Technical Reports Server (NTRS)

    Brown, O. C.; Mehta, R. D.; Cantwell, B. J.

    1998-01-01

    Optical pressure measurements have been made on a NACA 0012 airfoil coated with Pressure Sensitive Paint (PSP) at very low flow speeds (less than 50 m/s). Angle of attack was limited to 5 deg. for most measurements. Effects of temperature gradients and mis-registration errors on PSP response have been established and minimized. By reducing measurement error caused by these effects. PSP sensitivity has been enhanced. Acceptable aerodynamic data at flow speeds down to 20 m/s have been obtained and valid pressure paint response was observed down to 10 m/s. Measurement errors (in terms of pressure and pressure coefficient) using PSP with pressure taps as a reference are provided for the range of flow speeds from 50 m/s to 10 m/s.

  12. Sound Sources Identified in High-Speed Jets by Correlating Flow Density Fluctuations With Far-Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta; Seasholtz, Richard G.

    2003-01-01

    Noise sources in high-speed jets were identified by directly correlating flow density fluctuation (cause) to far-field sound pressure fluctuation (effect). The experimental study was performed in a nozzle facility at the NASA Glenn Research Center in support of NASA s initiative to reduce the noise emitted by commercial airplanes. Previous efforts to use this correlation method have failed because the tools for measuring jet turbulence were intrusive. In the present experiment, a molecular Rayleigh-scattering technique was used that depended on laser light scattering by gas molecules in air. The technique allowed accurate measurement of air density fluctuations from different points in the plume. The study was conducted in shock-free, unheated jets of Mach numbers 0.95, 1.4, and 1.8. The turbulent motion, as evident from density fluctuation spectra was remarkably similar in all three jets, whereas the noise sources were significantly different. The correlation study was conducted by keeping a microphone at a fixed location (at the peak noise emission angle of 30 to the jet axis and 50 nozzle diameters away) while moving the laser probe volume from point to point in the flow. The following figure shows maps of the nondimensional coherence value measured at different Strouhal frequencies ([frequency diameter]/jet speed) in the supersonic Mach 1.8 and subsonic Mach 0.95 jets. The higher the coherence, the stronger the source was.

  13. Skin friction measurements in high temperature high speed flows

    NASA Technical Reports Server (NTRS)

    Schetz, J. A.; Diller, Thomas E.; Wicks, A. L.

    1992-01-01

    An experimental investigation was conducted to measure skin friction along the chamber walls of supersonic combustors. A direct force measurement device was used to simultaneously measure an axial and transverse component of the small tangential shear force passing over a non-intrusive floating element. The floating head is mounted to a stiff cantilever beam arrangement with deflection due to the flow on the order of 0.00254 mm (0.0001 in.). This allowed the instrument to be a non-nulling type. A second gauge was designed with active cooling of the floating sensor head to eliminate non-uniform temperature effects between the sensor head and the surrounding wall. Samples of measurements made in combustor test facilities at NASA Langley Research Center and at the General Applied Science Laboratory (GASL) are presented. Skin friction coefficients between 0.001 - 0.005 were measured dependent on the facility and measurement location. Analysis of the measurement uncertainties indicate an accuracy to within +/- 10-15 percent of the streamwise component.

  14. Mapping transverse capillary flow speed using time-varying OCT speckle signals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Wang, Ruikang K.

    2016-03-01

    We present an optical coherence tomography (OCT) based method for mapping transverse red blood cell (RBC) flow speed at capillary. This OCT velocimetry utilizes a quantitative laser speckle temporal contrast analysis that estimates reliable speckle decorrelation time from the observed speckle contrast, which is related to microcirculatory flow velocity. For capillary speed measurement, we employ a home-built 1.3 µm MHz swept-source OCT (SS-OCT) system that can acquire OCT B-frames at a rate of 1.7 kHz. From the multiple B-frames obtained at the same location, intensity profiles with time-varying OCT speckle contrast are extracted at single capillaries using a capillary binary mask and then the transverse flow speed is calculated by adapting the profiles to the speckle contrast analytic model. Finally, a 3D speed map can be achieved for OCT volume imaging. To validate this method, we perform a systematic study using both phantom and in vivo rodent models. Result shows that our method is effective to measure transverse capillary flow speed.

  15. Break-up and atomization of a round water jet by a high-speed annular air jet

    NASA Astrophysics Data System (ADS)

    Lasheras, J. C.; Villermaux, E.; Hopfinger, E. J.

    1998-02-01

    The near- and far-field break-up and atomization of a water jet by a high-speed annular air jet are examined by means of high-speed flow visualizations and phase Doppler particle sizing techniques. Visualization of the jet's near field and measurements of the frequencies associated with the gas liquid interfacial instabilities are used to study the underlying physical mechanisms involved in the primary break-up of the water jet. This process is shown to consist of the stripping of water sheets, or ligaments, which subsequently break into smaller lumps or drops. An entrainment model of the near-field stripping of the liquid is proposed, and shown to describe the measured liquid shedding frequencies. This simplified model explains qualitatively the dependence of the shedding frequency on the air/water momentum ratio in both initially laminar and turbulent water jets. The role of the secondary liquid break-up in the far-field atomization of the water jet is also investigated, and an attempt is made to apply the classical concepts of local isotropy to explain qualitatively the measurement of the far-field droplet size distribution and its dependence on the water to air mass and momentum ratios. Models accounting for the effect of the local turbulent dissipation rate in the gas on both the break-up and coalescence of the droplets are developed and compared with the measurements of the variation of the droplet size along the jet's centreline. The total flux of kinetic energy supplied by the gas per unit total mass of the spray jet was found to be the primary parameter determining the secondary break-up and coalescence of the droplets in the far field.

  16. Air flow management in an internal combustion engine through the use of electronically controlled air jets

    SciTech Connect

    Swain, M.R.

    1988-12-27

    This patent describes a means for producing an air/fuel mixture in the valve pocket and means for directing the air/fuel mixture past the intake valve into the combustion chamber, the improvement comprising a device for generating a swirling flow of the air/fuel mixture in the combustion chamber to thereby obtain greater combustion stability. The device has a nozzle positioned within the valve pocket and directed at an acute angle toward the intake valve comprising at least one opening for receiving air, connected to a first pathway, and at least one opening for expelling air, connected, to a second pathway joined to the first pathway and extending to the expulsion opening. The device also includes a means for controlling the flow of air through the pathway and out the expulsion opening comprising: (i) a stopper having sides complementary in shape to the pair of opposed arcuate walls movable from an open position allowing air through the pathway to a closed position, wherein the sides of the stopper are in a sealed relationship with the opposed arcaute sides of the junction thereby preventing the flow of air through the second pathway and out of the expulsion opening; and (ii) an electronic computer which determines the size and duration of the pathway opening.

  17. Interstellar flow direction from pickup ion cut-off dependence on longitude, flow and solar wind speed

    NASA Astrophysics Data System (ADS)

    Möbius, Eberhard; Lee, Martin A.; Drews, Christian; Gloeckler, George

    2016-03-01

    The precise interstellar neutral (ISN) flow direction is important because of its strong leverage on the plane subtended by the ISN and magnetic field vectors, which controls the heliospheric shape and interaction with the interstellar medium. IBEX measurements provide a very precise relation between ISN flow longitude and speed via the hyperbolic trajectory equation, forming a 4-dimensional tube in the ISN parameter space, with substantially larger uncertainty along this tube and thus for the longitude alone. As demonstrated before, the interstellar pickup ion (PUI) cut-off speed is a function of the ratio of the radial ISN flow component and the solar wind speed at the observer location. The former is largest precisely upwind and decreases symmetrically with the angle from the upwind direction. Using this functional dependence and the observed solar wind speed, the PUI cut-off can be constructed solely as a function of the ISN flow longitude. From ACE SWICS and STEREO PLASTIC, data sets that span 18+ years are available. We will show, in particular, that by selecting observations for local interplanetary magnetic fields perpendicular to the solar wind and transforming the observed distributions into the solar wind frame, a comparison with data can be devised that is much less sensitive to PUI production and transport effects than methods that rely on pickup ion fluxes.

  18. Efficient Computation of Separation-Compliant Speed Advisories for Air Traffic Arriving in Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2012-01-01

    A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.

  19. Correlation of flame speed with stretch in turbulent premixed methane/air flames

    SciTech Connect

    Chen, J.H.; Im, H.G.

    1998-03-01

    Direct numerical simulations of two-dimensional unsteady premixed methane/air flames are performed to determine the correlation of flame speed with stretch over a wide range of curvatures and strain rates generated by intense two-dimensional turbulence. Lean and stoichiometric premixtures are considered with a detailed C{sub 1}-mechanism for methane oxidation. The computed correlation shows the existence of two distinct stable branches. It further shows that exceedingly large negative values of stretch can be obtained solely through curvature effects which give rise to an overall nonlinear correlation of the flame speed with stretch. Over a narrower stretch range, {minus}1 {le} Ka {le} 1, which includes 90% of the sample, the correlation is approximately linear, and hence, the asymptotic theory for stretch is practically applicable. Overall, one-third of the sample has negative stretch. In this linear range, the Markstein number associated with the positive branch is determined and is consistent with values obtained from comparable steady counterflow computations. In addition to this conventional positive branch, a negative branch is identified. This negative branch occurs when a flame cusp, with a center of curvature in the burnt gases, is subjected to intense compressive strain, resulting in a negative displacement speed. Negative flame speeds are also encountered for extensive tangential strain rates exceeding a Karlovitz number of unity, a value consistent with steady counterflow computations.

  20. Effects of Passive Porosity on Interacting Vortex Flows at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPW7) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS). These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  1. Effects of Passive Porosity on Interacting Vortex Flows At Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2000-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) Unitary Plan Wind Tunnel (UPWT) to determine the effects of passive surface porosity on vortex flow interaction about a general research fighter configuration at supersonic speeds. Optical flow measurement and flow visualization techniques were used and included pressure-sensitive paint (PSP), schlieren, and laser vapor screen (LVS) These techniques were combined with force and moment and conventional electronically-scanned pressure (ESP) measurements to quantify and to visualize the effects of flow-through porosity applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model.

  2. Penetration Characteristics of Air, Carbon Dioxide and Helium Transverse Sonic Jets in Mach 5 Cross Flow

    PubMed Central

    Erdem, Erinc; Kontis, Konstantinos; Saravanan, Selvaraj

    2014-01-01

    An experimental investigation of sonic air, CO2 and Helium transverse jets in Mach 5 cross flow was carried out over a flat plate. The jet to freestream momentum flux ratio, J, was kept the same for all gases. The unsteady flow topology was examined using high speed schlieren visualisation and PIV. Schlieren visualisation provided information regarding oscillating jet shear layer structures and bow shock, Mach disc and barrel shocks. Two-component PIV measurements at the centreline, provided information regarding jet penetration trajectories. Barrel shocks and Mach disc forming the jet boundary were visualised/quantified also jet penetration boundaries were determined. Even though J is kept the same for all gases, the penetration patterns were found to be remarkably different both at the nearfield and the farfield. Air and CO2 jet resulted similar nearfield and farfield penetration pattern whereas Helium jet spread minimal in the nearfield. PMID:25494348

  3. Airway blood flow response to dry air hyperventilation in sheep

    SciTech Connect

    Parsons, G.H.; Baile, E.M.; Pare, P.D.

    1986-03-01

    Airway blood flow (Qaw) may be important in conditioning inspired air. To determine the effect of eucapneic dry air hyperventilation (hv) on Qaw in sheep the authors studied 7 anesthetized open-chest sheep after 25 min. of warm dry air hv. During each period of hv the authors have recorded vascular pressures, cardiac output (CO), and tracheal mucosal and inspired air temperature. Using a modification of the reference flow technique radiolabelled microspheres were injected into the left atrium to make separate measurements after humid air and dry air hv. In 4 animals a snare around the left main pulmonary artery was used following microsphere injection to prevent recirculation (entry into L lung of microspheres from the pulmonary artery). Qaw to the trachea and L lung as measured and Qaw for the R lung was estimated. After the final injection the sheep were killed and bronchi (Br) and lungs removed. Qaw (trachea plus L lung plus R lung) in 4 sheep increased from a mean of 30.8 to 67.0 ml/min. Airway mucosal temp. decreased from 39/sup 0/ to 33/sup 0/C. The authors conclude that dry air hv cools airway mucosa and increases Qaw in sheep.

  4. High-speed impact test of an air-transportable plutonium nitrate shipping container

    SciTech Connect

    Yoshimura, H.R.; Pope, R.B.; Leisher, W.B.; Joseph, B.J.

    1980-04-01

    To obtain information on package response for comparison with other test environments, a high-speed impact test was performed on a modified Federal Republic of Germany 18B plutonium nitrate air-transportable container. The container, modified with reinforcing rings for improved crush resistance around the inner tube assembly, was impacted at a velocity of 137 m/s onto an unyielding surface. Substantial crushing of the foam overpack and extensive deformation of the container cavity occurred, causing release of the liquid surrogate contents from the titanium shipping container. The container damage resulting from the high-speed pulldown test was more severe than that from a 185-m free fall onto a semirigid surface by a similar container or the crush environment produced by a 9-m drop of a 2-Mg block onto the container resting on an unyielding surface.

  5. Development of the High Speed Air Drop Container (HISAC): Status report

    SciTech Connect

    Cyrus, J.D.; Thibault, G.W.

    1989-01-01

    This paper discusses the development of the High Speed Air Drop Container (HISAC). The HISAC is an aerodynamically configured cargo container which will be transported and delivered as an external store by high performance tactical aircraft. It will be used to resupply ground forces with up to 500 pounds of equipment and supplies at release speeds up to Mach 0.95 and at altitudes as low as 300 feet above ground level (AGL). The HISAC design requirements are presented and the development approach is discussed. The store design is presented in detail and results of numerous tests are discussed. The parachute system design and testing is covered but not in detail, as this is the subject of another technical paper. Finally, the present status of the development program is discussed along with the future direction of the program. 5 refs., 10 figs., 3 tabs.

  6. Speeding for fun? Exploring the speeding behavior of riders of heavy motorcycles using the theory of planned behavior and psychological flow theory.

    PubMed

    Chen, Ching-Fu; Chen, Cheng-Wen

    2011-05-01

    This paper focuses on a special segment of motorcyclists in Taiwan--riders of heavy motorcycles--and investigates their speeding behavior and its affecting factors. It extends the theory of planned behavior (TPB) to explore motorcyclist speeding behavior by including the variables of psychological flow theory. The levels of sensation-seeking and riding experience are also used as grouping variables to investigate group differences from the influences of their affecting factors on speeding behavior. The results reveal that the psychological flow variables have greater predictive power in explaining speeding behavior than the TPB variables, providing useful insights into the unique nature of this group of motorcyclists, who are more prone to engage in speeding. Group differences with regard to both sensation-seeking and rider experience in speeding behavior are highlighted, and the implications of the findings are discussed. PMID:21376891

  7. The 90 deg Acoustic Spectrum of a High Speed Air Jet

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.

    2004-01-01

    Tam and Auriault successfully predicted the acoustic spectrum at 90deg to the axis of a high speed air jet by using an acoustic equation derived from ad hoc kinetic theory-type arguments. The present paper shows that similar predictions can be obtained by using a rigorous acoustic analogy approach together with actual measurements of the relevant acoustic source correlations. This puts the result on a firmer basis and enables its extension to new situations and to the prediction of sound at other observation angles.

  8. Enhancement of USM3D Unstructured Flow Solver for High-Speed High-Temperature Shear Flows

    NASA Technical Reports Server (NTRS)

    Pandya, Mohagna J.; Abdol-Hamid, Khaled S.; Frink, Neal T.

    2009-01-01

    Large temperature and pressure fluctuations have a profound effect on turbulence development in transonic and supersonic jets. For high-speed, high-temperature jet flows, standard turbulence models lack the ability to predict the observed mixing rate of a shear layer. Several proposals to address this deficiency have been advanced in the literature to modify the turbulence transport equations in a variety of ways. In the present study, some of the most proven and simple modifications to two-equation turbulence models have been selected and implemented in NASA's USM3D tetrahedral Navier-Stokes flow solver. The modifications include the addition of compressibility correction and pressure dilatation terms in the turbulence transport equations for high-speed flows, and the addition of a simple modification to the Boussinesq's closure model coefficient for high-temperature jets. The efficacy of the extended models is demonstrated by comparison with experimental data for two supersonic axisymmetric jet test cases at design pressure ratio.

  9. Application of PIV to the Measurement of High Speed Jet Flows

    NASA Technical Reports Server (NTRS)

    Lourenco, L.

    1999-01-01

    The Particle Image Velocimetry, PIV, has been implemented for the investigation of high-speed jet flows at the NASA Langley Research Center. In this approach the velocity (displacement) is found as the location of a peak in the correlation map of particle images acquired in quick succession. In the study, the technique for the correct seeding of the flow field were developed and implemented and the operational parameters influencing the accuracy of the measurement have been optimized.

  10. A combined system for measurements of high-speed flow by interferometry, schlieren and shadowgraph

    NASA Astrophysics Data System (ADS)

    Gregory-Smith, D. G.; Senior, P.; Gilchrist, A. R.

    1990-05-01

    Details are given of a system for making measurements of a jet flow using interferometry, schlieren or shadowgraph. The system is relatively inexpensive and should be generally applicable for any high-speed flows where density gradients are significant. Particular features of the system are the ease of conversion between modes of operation, the stability of the arrangement, and the solution of vibration problems. A computerized technique for analysis of interferograms is described and the results compare well with independent measurements.

  11. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    SciTech Connect

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  12. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    NASA Technical Reports Server (NTRS)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  13. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    NASA Astrophysics Data System (ADS)

    Timerkaev, B. A.; Zalyaliev, B. R.; Saifutdinov, A. I.

    2014-11-01

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  14. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, Robert F.

    1987-01-01

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs.

  15. The Wells turbine in an oscillating air flow

    SciTech Connect

    Raghunathan, S.; Ombaka,

    1984-08-01

    An experimental study of the performance of a 0.2 m diameter Wells self rectifying air turbine with NACA 0021 blades is presented. Experiments were conducted in an oscillating flowrig. The effects of Reynolds number and Strouhal number on the performance of the turbine were investigated. Finally comparison between the results with the predictions from uni-directional flow tests are made.

  16. Split-flow regeneration in absorptive air separation

    DOEpatents

    Weimer, R.F.

    1987-11-24

    A chemical absorptive separation of air in multiple stage of absorption and desorption is performed with partial recycle of absorbent between stages of desorption necessary to match equilibrium conditions in the various stages of absorption. This allows reduced absorbent flow, reduced energy demand and reduced capital costs. 4 figs.

  17. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  18. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  19. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  20. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  1. 30 CFR 57.22213 - Air flow (III mines).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Air flow (III mines). 57.22213 Section 57.22213 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards...

  2. Computing Isentropic Flow Properties of Air/R-134a Mixtures

    NASA Technical Reports Server (NTRS)

    Kvaternik, Ray

    2006-01-01

    MACHRK is a computer program that calculates isentropic flow properties of mixtures of air and refrigerant R-134a (tetrafluoroethane), which are used in transonic aerodynamic testing in a wind tunnel at Langley Research Center. Given the total temperature, total pressure, static pressure, and mole fraction of R-134a in a mixture, MACHRK calculates the Mach number and the following associated flow properties: dynamic pressure, velocity, density, static temperature, speed of sound, viscosity, ratio of specific heats, Reynolds number, and Prandtl number. Real-gas effects are taken into account by treating the gases comprising the mixture as both thermally and calorically imperfect. The Redlich-Kwong equation of state for mixtures and the constant-pressure ideal heat-capacity equation for the mixture are used in combination with the departure- function approach of thermodynamics to obtain the equations for computing the flow properties. In addition to the aforementioned calculations for air/R-134a mixtures, a research version of MACHRK can perform the corresponding calculations for mixtures of air and R-12 (dichlorodifluoromethane) and for air/SF6 mixtures. [R-12 was replaced by R-134a because of environmental concerns. SF6 has been considered for use in increasing the Reynolds-number range.

  3. A time-accurate implicit method for chemical non-equilibrium flows at all speeds

    NASA Technical Reports Server (NTRS)

    Shuen, Jian-Shun

    1992-01-01

    A new time accurate coupled solution procedure for solving the chemical non-equilibrium Navier-Stokes equations over a wide range of Mach numbers is described. The scheme is shown to be very efficient and robust for flows with velocities ranging from M less than or equal to 10(exp -10) to supersonic speeds.

  4. High-speed sterilization technique using dielectric barrier discharge plasmas in atmospheric humid air

    NASA Astrophysics Data System (ADS)

    Miyamae, M.; Kikuchi, Y.; Fukumoto, N.; Nagata, M.

    2010-11-01

    The inactivation of Bacillus atrophaeus spores by a dielectric barrier discharge (DBD) plasma produced by an ac voltage application of 1 kHz in atmospheric humid air was investigated in order to develop low-temperature, low-cost and high-speed plasma sterilization technique. The biological indicators covered with a Tyvek sheet were set just outside the DBD plasma region, where the air temperature and humidity as a discharge gas were precisely controlled by an environmental test chamber. The results show that the inactivation of Bacillus atrophaeus spores was found to be dependent strongly on the humidity, and was completed within 15 min at a relative humidity of 90 % and a temperature of 30 C. The treatment time for sterilization is shorter than those of conventional sterilization methods using ethylene oxide gas and dry heat treatment. It is considered that reactive species such as hydroxyl radicals that are effective for the inactivation of Bacillus atrophaeus spores could be produced by the DBD plasma in the humid air. Repetitive micro-pulsed discharge plasmas in the humid air will be applied for the sterilization experiment to enhance the sterilization efficiency.

  5. A stagnation pressure probe for droplet-laden air flow

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.; Leonardo, M.; Ehresman, C. M.

    1985-01-01

    It is often of interest in a droplet-laden gas flow to obtain the stagnation pressure of both the gas phase and the mixture. A flow-decelerating probe (TPF), with separate, purged ports for the gas phase and the mixture and with a bleed for accumulating liquid at the closed end, has been developed. Measurements obtained utilizing the TPF in a nearly isothermal air-water droplet mixture flow in a smooth circular pipe under various conditions of flow velocity, pressure, liquid concentration and droplet size are presented and compared with data obtained under identical conditions with a conventional, gas phase stagnation pressure probe (CSP). The data obtained with the CSP and TPF probes are analyzed to determine the applicability of the two probes in relation to the multi-phase characteristics of the flow and the geometry of the probe.

  6. Study on law of negative corona discharge in microparticle-air two-phase flow media

    NASA Astrophysics Data System (ADS)

    He, Bo; Li, Tianwei; Xiu, Yaping; Zhao, Heng; Peng, Zongren; Meng, Yongpeng

    2016-03-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image velocity) measurements and ultraviolet observations.

  7. Wire-mesh sensor, ultrasound and high-speed videometry applied for the characterization of horizontal gas-liquid slug flow

    NASA Astrophysics Data System (ADS)

    Ofuchi, C. Y.; Morales, R. E. M.; Arruda, L. V. R.; Neves, F., Jr.; Dorini, L.; do Amaral, C. E. F.; da Silva, M. J.

    2012-03-01

    Gas-liquid flows occur in a broad range of industrial applications, for instance in chemical, petrochemical and nuclear industries. Correct understating of flow behavior is crucial for safe and optimized operation of equipments and processes. Thus, measurement of gas-liquid flow plays an important role. Many techniques have been proposed and applied to analyze two-phase flows so far. In this experimental research, data from a wire-mesh sensor, an ultrasound technique and high-speed camera are used to study two-phase slug flows in horizontal pipes. The experiments were performed in an experimental two-phase flow loop which comprises a horizontal acrylic pipe of 26 mm internal diameter and 9 m length. Water and air were used to produce the two-phase flow and their flow rates are separately controlled to produce different flow conditions. As a parameter of choice, translational velocity of air bubbles was determined by each of the techniques and comparatively evaluated along with a mechanistic flow model. Results obtained show good agreement among all techniques. The visualization of flow obtained by the different techniques is also presented.

  8. Parametric Studies of Flow Separation using Air Injection

    NASA Technical Reports Server (NTRS)

    Zhang, Wei

    2004-01-01

    Boundary Layer separation causes the airfoil to stall and therefore imposes dramatic performance degradation on the airfoil. In recent years, flow separation control has been one of the active research areas in the field of aerodynamics due to its promising performance improvements on the lifting device. These active flow separation control techniques include steady and unsteady air injection as well as suction on the airfoil surface etc. This paper will be focusing on the steady and unsteady air injection on the airfoil. Although wind tunnel experiments revealed that the performance improvements on the airfoil using injection techniques, the details of how the key variables such as air injection slot geometry and air injection angle etc impact the effectiveness of flow separation control via air injection has not been studied. A parametric study of both steady and unsteady air injection active flow control will be the main objective for this summer. For steady injection, the key variables include the slot geometry, orientation, spacing, air injection velocity as well as the injection angle. For unsteady injection, the injection frequency will also be investigated. Key metrics such as lift coefficient, drag coefficient, total pressure loss and total injection mass will be used to measure the effectiveness of the control technique. A design of experiments using the Box-Behnken Design is set up in order to determine how each of the variables affects each of the key metrics. Design of experiment is used so that the number of experimental runs will be at minimum and still be able to predict which variables are the key contributors to the responses. The experiments will then be conducted in the 1ft by 1ft wind tunnel according to the design of experiment settings. The data obtained from the experiments will be imported into JMP, statistical software, to generate sets of response surface equations which represent the statistical empirical model for each of the metrics as

  9. A Comparative Study of Sound Speed in Air at Room Temperature between a Pressure Sensor and a Sound Sensor

    ERIC Educational Resources Information Center

    Amrani, D.

    2013-01-01

    This paper deals with the comparison of sound speed measurements in air using two types of sensor that are widely employed in physics and engineering education, namely a pressure sensor and a sound sensor. A computer-based laboratory with pressure and sound sensors was used to carry out measurements of air through a 60 ml syringe. The fast Fourier…

  10. Speed-dependent emission of air pollutants from gasoline-powered passenger cars.

    PubMed

    Jung, Sungwoon; Lee, Meehye; Kim, Jongchoon; Lyu, Youngsook; Park, Junhong

    2011-01-01

    In Korea emissions from motor vehicles are a major source of air pollution in metropolitan cities, and in Seoul a large proportion of the vehicle fleet is made up of gasoline-powered passenger cars. The carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and carbon dioxide (CO2) contained in the exhaust emissions from 76 gasoline-powered passenger cars equipped with three-way catalysts has been assessed by vehicle speed, vehicle mileage and model year. The results show that CO, HC, NOx and CO2 emissions remained almost unchanged at higher speeds but decreased rapidly at lower speeds. While a reduction in CO, HC and NOx emissions was noticeable in vehicles of recent manufacture and lower mileage, CO2 emissions were found to be insensitive to vehicle mileage, but strongly dependent on gross vehicle weight. Lower emissions from more recent gasoline-powered vehicles arose mainly from improvements in three-way catalytic converter technology following strengthened emission regulations. The correlation between CO2 emission and fuel consumption has been investigated with a view to establishing national CO2 emission standards for Korea. PMID:21970159

  11. Preliminary Investigation of Certain Laminar-Flow Airfoils for Application at High Speeds and Reynolds Numbers

    NASA Technical Reports Server (NTRS)

    Jacobs, E.N.; Abbott, Ira H.; von Doenhoff, A.E.

    1939-01-01

    In order to extend the useful range of Reynolds numbers of airfoils designed to take advantage of the extensive laminar boundary layers possible in an air stream of low turbulence, tests were made of the NACA 2412-34 and 1412-34 sections in the NACA low-turbulence tunnel. Although the possible extent of the laminar boundary layer on these airfoils is not so great as for specially designed laminar-flow airfoils, it is greater than that for conventional airfoils, and is sufficiently extensive so that at Reynolds numbers above 11,000,000 the laminar region is expected to be limited by the permissible 'Reynolds number run' and not by laminar separation as is the case with conventional airfoils. Drag measurements by the wake-survey method and pressure-distribution measurements were made at several lift coefficients through a range of Reynolds numbers up to 11,400,000. The drag scale-effect curve for the NACA 1412-34 is extrapolated to a Reynolds number of 30,000,000 on the basis of theoretical calculations of the skin friction. Comparable skin-friction calculations were made for the NACA 23012. The results indicate that, for certain applications at moderate values of the Reynolds number, the NACA 1412-34 and 2412-34 airfoils offer some advantages over such conventional airfoils as the NACA 23012. The possibility of maintaining a more extensive laminar boundary layer on these airfoils should result in a small drag reduction, and the absence of pressure peaks allows higher speeds to be reached before the compressibility burble is encountered. At lower Reynold numbers, below about 10,000,000, these airfoils have higher drags than airfoils designed to operate with very extensive laminar boundary layers.

  12. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Adumitroaie, V.; Colucci, P. J.; Taulbee, D. B.; Givi, P.

    1995-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Aug. 1994 - 31 Jul. 1995, we have focused our efforts on two programs: (1) developments of explicit algebraic moment closures for statistical descriptions of compressible reacting flows and (2) development of Monte Carlo numerical methods for LES of chemically reacting flows.

  13. Nearly Interactive Parabolized Navier-Stokes Solver for High Speed Forebody and Inlet Flows

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Liou, May-Fun; Jones, William H.; Trefny, Charles J.

    2009-01-01

    A system of computer programs is being developed for the preliminary design of high speed inlets and forebodies. The system comprises four functions: geometry definition, flow grid generation, flow solver, and graphics post-processor. The system runs on a dedicated personal computer using the Windows operating system and is controlled by graphical user interfaces written in MATLAB (The Mathworks, Inc.). The flow solver uses the Parabolized Navier-Stokes equations to compute millions of mesh points in several minutes. Sample two-dimensional and three-dimensional calculations are demonstrated in the paper.

  14. High-speed holocinematographic velocimeter for studying turbulent flow control physics

    NASA Technical Reports Server (NTRS)

    Weinstein, L. M.; Beeler, G. B.; Lindemann, A. M.

    1985-01-01

    Use of a dual view, high speed, holographic movie technique is examined for studying turbulent flow control physics. This approach, which eliminates some of the limitations of previous holographic techniques, is termed a holocinematographic velocimeter (HCV). The data from this system can be used to check theoretical turbulence modeling and numerical simulations, visualize and measure coherent structures in 'non-simple' turbulent flows, and examine the mechanisms operative in various turbulent control/drag reduction concepts. This system shows promise for giving the most complete experimental characterization of turbulent flows yet available.

  15. Analysis of the Air Flow Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans Using a 3D Sonic Anemometer

    PubMed Central

    García-Ramos, F. Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans. PMID:22969363

  16. Numerical computation of viscous flow around bodies and wings moving at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Tannehill, J. C.

    1984-01-01

    Research in aerodynamics is discussed. The development of equilibrium air curve fits; computation of hypersonic rarefield leading edge flows; computation of 2-D and 3-D blunt body laminar flows with an impinging shock; development of a two-dimensional or axisymmetric real gas blunt body code; a study of an over-relaxation procedure forthe MacCormack finite-difference scheme; computation of 2-D blunt body turbulent flows with an impinging shock; computation of supersonic viscous flow over delta wings at high angles of attack; and computation of the Space Shuttle Orbiter flowfield are discussed.

  17. Parametric study on laminar flow for finite wings at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Garcia, Joseph Avila

    1994-01-01

    Laminar flow control has been identified as a key element in the development of the next generation of High Speed Transports. Extending the amount of laminar flow over an aircraft will increase range, payload, and altitude capabilities as well as lower fuel requirements, skin temperature, and therefore the overall cost. A parametric study to predict the extent of laminar flow for finite wings at supersonic speeds was conducted using a computational fluid dynamics (CFD) code coupled with a boundary layer stability code. The parameters investigated in this study were Reynolds number, angle of attack, and sweep. The results showed that an increase in angle of attack for specific Reynolds numbers can actually delay transition. Therefore, higher lift capability, caused by the increased angle of attack, as well as a reduction in viscous drag, due to the delay in transition, can be expected simultaneously. This results in larger payload and range.

  18. Flow over a Modern Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Mohammadi, Mohammad; Johari, Hamid

    2010-11-01

    The flow field on the central section of a modern ram-air parachute canopy was examined numerically using a finite-volume flow solver coupled with the one equation Spalart-Allmaras turbulence model. Ram-air parachutes are used for guided airdrop applications, and the canopy resembles a wing with an open leading edge for inflation. The canopy surfaces were assumed to be impermeable and rigid. The flow field consisted of a vortex inside the leading edge opening which effectively closed off the canopy and diverted the flow around the leading edge. The flow experienced a rather bluff leading edge in contrast to the smooth leading of an airfoil, leading to a separation bubble on the lower lip of the canopy. The flow inside the canopy was stagnant beyond the halfway point. The section lift coefficient increased linearly with the angle of attack up to 8.5 and the lift curve slope was about 8% smaller than the baseline airfoil. The leading edge opening had a major effect on the drag prior to stall; the drag is at least twice the baseline airfoil drag. The minimum drag of the section occurs over the angle of attack range of 3 -- 7 .

  19. Critical speed in the rat: implications for hindlimb muscle blood flow distribution and fibre recruitment.

    PubMed

    Copp, Steven W; Hirai, Daniel M; Musch, Timothy I; Poole, David C

    2010-12-15

    Critical speed (CS) constitutes an important metabolic and performance demarcator. However, active skeletal muscle blood flow distribution specifically surrounding CS remains unknown. We tested the hypotheses that CS could be accurately determined in the running rat and that measurement of hindlimb inter- and intramuscular blood flow below and above CS would support that the greatest muscle fibre recruitment above, relative to below, CS occurs in the predominantly glycolytic muscles. Seven male Sprague-Dawley rats performed five constant-speed tests to exhaustion at speeds between 95 and 115% of the speed that elicited to determine CS. Subsequent constant-speed tests were performed at speeds incrementally surrounding CS to determine time to exhaustion, V(O2), and hindlimb muscle blood flow distribution. Speed and time to exhaustion conformed to a hyperbolic relationship (r(2) = 0.92 ± 0.03) which corresponded to a linear 1/time function (r(2) = 0.93 ± 0.02) with a CS of 48.6 ± 1.0 m min(-1). Time to exhaustion below CS was ∼ 5× greater (P < 0.01) than that above. Below CS V(O2) stabilized at a submaximal value (58.5 ± 2.5 ml kg(-1) min(-1)) whereas above CS (81.7 ± 2.5 ml kg(-1) min(-1)) increased to (84.0 ± 1.8 ml kg(-1) min(-1), P > 0.05 vs. above CS). The 11 individual muscles or muscle parts that evidenced the greatest blood flow increases above, relative to below, CS were composed of ≥ 69% Type IIb/d/x muscle fibres. Moreover, there was a significant correlation (P < 0.05, r = 0.42) between the increased blood flow above expressed relative to below CS and the percentage Type IIb/d/x fibres found in the individual muscles or muscle parts. These data validate the powerful CS construct in the rat and identify that running above CS, relative to below CS, incurs disproportionate blood flow increases (indicative of recruitment) in predominantly highly glycolytic muscle fibres. PMID:20962004

  20. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    NASA Astrophysics Data System (ADS)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  1. Properties of a constricted-tube air-flow levitator

    NASA Technical Reports Server (NTRS)

    Rush, J. E.; Stephens, W. K.; Ethridge, E. C.

    1982-01-01

    The properties of a constricted-tube gas flow levitator first developed by Berge et al. (1981) have been investigated experimentally in order to predict its behavior in a gravity-free environment and at elevated temperatures. The levitator consists of a constricted (quartz) tube fed at one end by a source of heated air or gas. A spherical sample is positioned by the air stream on the downstream side of the constriction, where it can be melted and resolidified without touching the tube. It is shown experimentally that the kinematic viscosity is the important fluid parameter for operation in thermal equilibrium at high temperatures. If air is heated from room temperature to 1200 C, the kinematic viscosity increases by a factor of 14. To maintain a given value of the Reynolds number, the flow rate would have to be increased by the same factor for a specific geometry of tube and sample. Thus, to maintain stable equilibrium, the flow rate should be increased as the air or other gas is heated. The other stability problem discussed is associated with changes in the shape of a cylindrical sample as it melts.

  2. A qualitative view of cryogenic fluid injection into high speed flows

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Schlumberger, J.; Proctor, M.

    1991-01-01

    The injection of supercritical pressure, subcritical temperature fluids, into a 2-D, ambient, static temperature and static pressure supersonic tunnel and free jet supersonic nitrogen flow field was observed. Observed patterns with fluid air were the same as those observed for fluid nitrogen injected into the tunnel at 90 deg to the supersonic flow. The nominal injection pressure was of 6.9 MPa and tunnel Mach number was 2.7. When injected directly into and opposing the tunnel exhaust flow, the observed patterns with fluid air were similar to those observed for fluid nitrogen but appeared more diffusive. Cryogenic injection creates a high density region within the bow shock wake but the standoff distance remains unchanged from the gaseous value. However, as the temperature reaches a critical value, the shock faded and advanced into the supersonic stream. For both fluids, nitrogen and air, the phenomena was completely reversible.

  3. A simple model for calculating tsunami flow speed from tsunami deposits

    USGS Publications Warehouse

    Jaffe, B.E.; Gelfenbuam, G.

    2007-01-01

    This paper presents a simple model for tsunami sedimentation that can be applied to calculate tsunami flow speed from the thickness and grain size of a tsunami deposit (the inverse problem). For sandy tsunami deposits where grain size and thickness vary gradually in the direction of transport, tsunami sediment transport is modeled as a steady, spatially uniform process. The amount of sediment in suspension is assumed to be in equilibrium with the steady portion of the long period, slowing varying uprush portion of the tsunami. Spatial flow deceleration is assumed to be small and not to contribute significantly to the tsunami deposit. Tsunami deposits are formed from sediment settling from the water column when flow speeds on land go to zero everywhere at the time of maximum tsunami inundation. There is little erosion of the deposit by return flow because it is a slow flow and is concentrated in topographic lows. Variations in grain size of the deposit are found to have more effect on calculated tsunami flow speed than deposit thickness. The model is tested using field data collected at Arop, Papua New Guinea soon after the 1998 tsunami. Speed estimates of 14??m/s at 200??m inland from the shoreline compare favorably with those from a 1-D inundation model and from application of Bernoulli's principle to water levels on buildings left standing after the tsunami. As evidence that the model is applicable to some sandy tsunami deposits, the model reproduces the observed normal grading and vertical variation in sorting and skewness of a deposit formed by the 1998 tsunami.

  4. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow.

    PubMed

    Kerner, Boris S

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S→F instability. Whereas the S→F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S→F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S→F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S→F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S→F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S→F instability governs traffic breakdown-a phase transition from free flow to synchronized flow (F→S transition) at the bottleneck: The nucleation nature of the S→F instability explains the metastability of free flow with respect to an F→S transition at the bottleneck. PMID:26764764

  5. Microscopic theory of traffic-flow instability governing traffic breakdown at highway bottlenecks: Growing wave of increase in speed in synchronized flow

    NASA Astrophysics Data System (ADS)

    Kerner, Boris S.

    2015-12-01

    We have revealed a growing local speed wave of increase in speed that can randomly occur in synchronized flow (S) at a highway bottleneck. The development of such a traffic flow instability leads to free flow (F) at the bottleneck; therefore, we call this instability an S →F instability. Whereas the S →F instability leads to a local increase in speed (growing acceleration wave), in contrast, the classical traffic flow instability introduced in the 1950s-1960s and incorporated later in a huge number of traffic flow models leads to a growing wave of a local decrease in speed (growing deceleration wave). We have found that the S →F instability can occur only if there is a finite time delay in driver overacceleration. The initial speed disturbance of increase in speed (called "speed peak") that initiates the S →F instability occurs usually at the downstream front of synchronized flow at the bottleneck. There can be many speed peaks with random amplitudes that occur randomly over time. It has been found that the S →F instability exhibits a nucleation nature: Only when a speed peak amplitude is large enough can the S →F instability occur; in contrast, speed peaks of smaller amplitudes cause dissolving speed waves of a local increase in speed (dissolving acceleration waves) in synchronized flow. We have found that the S →F instability governs traffic breakdown—a phase transition from free flow to synchronized flow (F →S transition) at the bottleneck: The nucleation nature of the S →F instability explains the metastability of free flow with respect to an F →S transition at the bottleneck.

  6. Air Flow and Pressure Drop Measurements Across Porous Oxides

    NASA Technical Reports Server (NTRS)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  7. Performance potential of air turbo-ramjet employing supersonic through-flow fan

    NASA Technical Reports Server (NTRS)

    Kepler, C. E.; Champagne, G. A.

    1989-01-01

    A study was conducted to assess the performance potential of a supersonic through-flow fan in an advanced engine designed to power a Mach-5 cruise vehicle. It included a preliminary evaluation of fan performance requirements and the desirability of supersonic versus subsonic combustion, the design and performance of supersonic fans, and the conceptual design of a single-pass air-turbo-rocket/ramjet engine for a Mach 5 cruise vehicle. The study results showed that such an engine could provide high thrust over the entire speed range from sea-level takeoff to Mach 5 cruise, especially over the transonic speed range, and high fuel specific impulse at the Mach 5 cruise condition, with the fan windmilling.

  8. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Madnia, C. K.; Steinberger, C. J.; Frankel, S. H.; Vidoni, T. J.

    1991-01-01

    The main objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. In the efforts related to LES, we were concerned with developing reliable subgrid closures for modeling of the fluctuation correlations of scalar quantities in reacting turbulent flows. In the work on DNS, we focused our attention to further investigation of the effects of exothermicity in compressible turbulent flows. In our previous work, in the first year of this research, we have considered only 'simple' flows. Currently, we are in the process of extending our analyses for the purpose of modeling more practical flows of current interest at LaRC. A summary of our accomplishments during the third six months of the research is presented.

  9. Prediction of vortex flow characteristics of wings at subsonic and supersonic speeds

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1975-01-01

    The leading-edge-suction analogy of Polhamus, which has been successful in the prediction of vortex lift characteristics on wings with pointed tips at subsonic and supersonic speeds, has recently been extended to account for the vortex flow characteristics for wings with side edges. Comparisons of experimental data and other currently used methods with the extended method are made for wings having side edges at subsonic and supersonic speeds. Recent data obtained for a low-aspect-ratio cropped-delta wing with various amounts of asymmetrical tip rake, simulating a roll control device, are also presented.

  10. Development and numerical analysis of low specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Li, H. F.; Huo, Y. W.; Pan, Z. B.; Zhou, W. C.; He, M. H.

    2012-11-01

    With the development of the city, the market of the mixed flow pump with large flux and high head is prospect. The KSB Shanghai Pump Co., LTD decided to develop low speed specific speed mixed flow pump to meet the market requirements. Based on the centrifugal pump and axial flow pump model, aiming at the characteristics of large flux and high head, a new type of guide vane mixed flow pump was designed. The computational fluid dynamics method was adopted to analyze the internal flow of the new type model and predict its performances. The time-averaged Navier-Stokes equations were closed by SST k-ω turbulent model to adapt internal flow of guide vane with larger curvatures. The multi-reference frame(MRF) method was used to deal with the coupling of rotating impeller and static guide vane, and the SIMPLEC method was adopted to achieve the coupling solution of velocity and pressure. The computational results shows that there is great flow impact on the head of vanes at different working conditions, and there is great flow separation at the tailing of the guide vanes at different working conditions, and all will affect the performance of pump. Based on the computational results, optimizations were carried out to decrease the impact on the head of vanes and flow separation at the tailing of the guide vanes. The optimized model was simulated and its performance was predicted. The computational results show that the impact on the head of vanes and the separation at the tailing of the guide vanes disappeared. The high efficiency of the optimized pump is wide, and it fit the original design destination. The newly designed mixed flow pump is now in modeling and its experimental performance will be getting soon.

  11. Flow regime classification in air magnetic fluid two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuwahara, T.; DeVuyst, F.; Yamaguchi, H.

    2008-05-01

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  12. Flow regime classification in air-magnetic fluid two-phase flow.

    PubMed

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors. PMID:21694270

  13. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  14. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  15. Front Speed Enhancement by Incompressible Flows in Three or Higher Dimensions

    NASA Astrophysics Data System (ADS)

    El Smaily, Mohammad; Kirsch, Stéphane

    2014-07-01

    We study, in dimensions N ≥ 3, the family of first integrals of an incompressible flow: these are functions whose level surfaces are tangential to the streamlines of the advective incompressible field. One main motivation for this study comes from earlier results proving that the existence of nontrivial first integrals of an incompressible flow q is the main key that leads to a "linear speed up" by a large advection of pulsating traveling fronts solving a reaction-advection-diffusion equation in a periodic heterogeneous framework. The family of first integrals is not well understood in dimensions N ≥ 3 due to the randomness of the trajectories of q and this is in contrast with the case N = 2. By looking at the domain of propagation as a union of different components produced by the advective field, we provide more information about first integrals and we give a class of incompressible flows which exhibit "ergodic components" of positive Lebesgue measure (and hence are not shear flows) and which, under certain sharp geometric conditions, speed up the KPP fronts linearly with respect to the large amplitude. In the proofs, we establish a link between incompressibility, ergodicity, first integrals and the dimension to give a sharp condition about the asymptotic behavior of the minimal KPP speed in terms of the configuration of ergodic components.

  16. Character of energy flow in air shower core

    NASA Technical Reports Server (NTRS)

    Mizushima, K.; Asakimori, K.; Maeda, T.; Kameda, T.; Misaki, Y.

    1985-01-01

    Energy per charged particle near the core of air showers was measured by 9 energy flow detectors, which were the combination of Cerenkov counters and scintillators. Energy per particle of each detector was normalized to energy at 2m from the core. The following results were obtained as to the energy flow: (1) integral frequency distribution of mean energy per particle (averaged over 9 detectors) is composed of two groups separated distinctly; and (2) showers contained in one group show an anisotropy of arrival direction.

  17. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    PubMed

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks. PMID:25844537

  18. Interpretation of Helioseismic Travel Times. Sensitivity to Sound Speed, Pressure, Density, and Flows

    NASA Astrophysics Data System (ADS)

    Burston, Raymond; Gizon, Laurent; Birch, Aaron C.

    2015-12-01

    Time-distance helioseismology uses cross-covariances of wave motions on the solar surface to determine the travel times of wave packets moving from one surface location to another. We review the methodology to interpret travel-time measurements in terms of small, localised perturbations to a horizontally homogeneous reference solar model. Using the first Born approximation, we derive and compute 3D travel-time sensitivity (Fréchet) kernels for perturbations in sound-speed, density, pressure, and vector flows. While kernels for sound speed and flows had been computed previously, here we extend the calculation to kernels for density and pressure, hence providing a complete description of the effects of solar dynamics and structure on travel times. We treat three thermodynamic quantities as independent and do not assume hydrostatic equilibrium. We present a convenient approach to computing damped Green's functions using a normal-mode summation. The Green's function must be computed on a wavenumber grid that has sufficient resolution to resolve the longest lived modes. The typical kernel calculations used in this paper are computer intensive and require on the order of 600 CPU hours per kernel. Kernels are validated by computing the travel-time perturbation that results from horizontally-invariant perturbations using two independent approaches. At fixed sound-speed, the density and pressure kernels are approximately related through a negative multiplicative factor, therefore implying that perturbations in density and pressure are difficult to disentangle. Mean travel-times are not only sensitive to sound-speed, density and pressure perturbations, but also to flows, especially vertical flows. Accurate sensitivity kernels are needed to interpret complex flow patterns such as convection.

  19. DEVELOPMENT OF A LOW PRESSURE, AIR ATOMIZED OIL BURNER WITH HIGH ATOMIZER AIR FLOW

    SciTech Connect

    BUTCHER,T.A.

    1998-01-01

    This report describes technical advances made to the concept of a low pressure, air atomized oil burner for home heating applications. Currently all oil burners on the market are of the pressure atomized, retention head type. These burners have a lower firing rate limit of about 0.5 gallons per hour of oil, due to reliability problems related to small flow passage sizes. High pressure air atomized burners have been shown to be one route to avoid this problem but air compressor cost and reliability have practically eliminated this approach. With the low pressure air atomized burner the air required for atomization can be provided by a fan at 5--8 inches of water pressure. A burner using this concept, termed the Fan-Atomized Burner or FAB has been developed and is currently being commercialized. In the head of the FAB, the combustion air is divided into three parts, much like a conventional retention head burner. This report describes development work on a new concept in which 100% of the air from the fan goes through the atomizer. The primary advantage of this approach is a great simplification of the head design. A nozzle specifically sized for this concept was built and is described in the report. Basic flow pressure tests, cold air velocity profiles, and atomization performance have been measured. A burner head/flame tube has been developed which promotes a torroidal recirculation zone near the nozzle for flame stability. The burner head has been tested in several furnace and boiler applications over the tiring rate range 0.2 to 0.28 gallons per hour. In all cases the burner can operate with very low excess air levels (under 10%) without producing smoke. Flue gas NO{sub x} concentration varied from 42 to 62 ppm at 3% 0{sub 2}. The concept is seen as having significant potential and planned development efforts are discussed.

  20. Technique to Measure the Coronal Electron Temperature and Radial Flow Speed

    NASA Astrophysics Data System (ADS)

    Reginald, N. L.; Davila, J. M.; St Cyr, O. C.

    2011-12-01

    During the March 2006 total solar eclipse we conducted an imaging experiment using the Imaging Spectrograph of Coronal Electrons (ISCORE) to determine the coronal electron temperature and its radial flow speed in the low solar corona. This technique required taking images of the solar eclipse through four broadband filters centered at 385.0, 398.7, 410.0 and 423.3 nm. The K-coronal temperature is determined from intensity ratios from the 385.0 and 410.0 nm filters, and the K-coronal radial flow speed is determined from intensity ratios from the 398.7 and 423.3 nm filters. The theoretical model for this technique assumes a symmetric corona devoid of any features like streamers that might alter the coronal symmetry. The model also requires an isothermal temperature and a uniform outflow speed all along the line of sight. We will call this the Constant Parameter Thomson Scattering Model (CPTSM). The latter assumption may sound unreasonable but in the symmetric corona with rapid fall of the electron density with height in the solar corona, the major contributions to the K-coronal intensity along a given line of sight comes from the plasma properties in the vicinity of the plane of the sky. But the pressing question is how is the derived plasma properties by ISCORE compare with the nature of the true corona. For this we turn to the CORHEL model by Predictive Science Inc. which used magnetogram data to create a realistic model of the solar corona that are made available through the Community Coordinated Modeling Center (CCMC) at GSFC. That team has consistently produced the expected coronal image days prior to many total eclipses where the major coronal features from their model matched actual coronal image on the day of the eclipse. Using the CORHEL model data we have calculated the K-coronal intensities at 385.0, 398.7, 410.0 and 423.3 nm using the electron density, plasma temperature (assumed to be electron temperature) and the flow speeds of the plasma along the line

  1. Effects of air flow directions on composting process temperature profile

    SciTech Connect

    Kulcu, Recep; Yaldiz, Osman

    2008-07-01

    In this study, chicken manure mixed with carnation wastes was composted by using three different air flow directions: R1-sucking (downward), R2-blowing (upward) and R3-mixed. The aim was to find out the most appropriate air flow direction type for composting to provide more homogenous temperature distribution in the reactors. The efficiency of each aeration method was evaluated by monitoring the evolution of parameters such as temperature, moisture content, CO{sub 2} and O{sub 2} ratio in the material and dry material losses. Aeration of the reactors was managed by radial fans. The results showed that R3 resulted in a more homogenous temperature distribution and high dry material loss throughout the composting process. The most heterogeneous temperature distribution and the lowest dry material loss were obtained in R2.

  2. Influence mechanism on flow and heat transfer characteristics for air-cooled steam condenser cells

    NASA Astrophysics Data System (ADS)

    He, Wei Feng; Dai, Yi Ping; Li, Mao Qing; Ma, Qing Zhong

    2012-09-01

    Air-cooled steam condensers (ACSCs) have been extensively utilized to reject waste heat in power industry to save water resources. However, ACSC performance is so sensitive to ambient wind that almost all the air-cooled power plants in China are less efficient compared to design conditions. It is shown from previous research that the influence of ambient wind on the cell performance differs from its location in the condenser. As a result, a numerical model including two identical ACSC cells are established, and the different influence on the performance of the cells is demonstrated and analyzed through the computational fluid dynamics method. Despite the great influence from the wind speeds, similar cell performance is obtained for the two cells under both windless and wind speed conditions when the wind parallels to the steam duct. Fan volumetric effectiveness which characterizes the fan performance, as well as the exchanger heat transfer rate, drops obviously with the increasing wind speed, and performance difference between the exchanger pair in the same A-frame also rises continuously. Furthermore, different flow and heat transfer characteristics of the windward and leeward cell are obtained at different wind angles, and ambient wind enhances the performance of the leeward cell, while that of the windward one changes little.

  3. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  4. Development of an air flow thermal balance calorimeter

    NASA Technical Reports Server (NTRS)

    Sherfey, J. M.

    1972-01-01

    An air flow calorimeter, based on the idea of balancing an unknown rate of heat evolution with a known rate of heat evolution, was developed. Under restricted conditions, the prototype system is capable of measuring thermal wattages from 10 milliwatts to 1 watt, with an error no greater than 1 percent. Data were obtained which reveal system weaknesses and point to modifications which would effect significant improvements.

  5. Electron concentration distribution in a glow discharge in air flow

    NASA Astrophysics Data System (ADS)

    Mukhamedzianov, R. B.; Gaisin, F. M.; Sabitov, R. A.

    1989-04-01

    Electron concentration distributions in a glow discharge in longitudinal and vortex air flows are determined from the attenuation of the electromagnetic wave passing through the plasma using microwave probes. An analysis of the distribution curves obtained indicates that electron concentration decreases in the direction of the anode. This can be explained by charge diffusion toward the chamber walls and electron recombination and sticking within the discharge.

  6. Methods of Visually Determining the Air Flow Around Airplanes

    NASA Technical Reports Server (NTRS)

    Gough, Melvin N; Johnson, Ernest

    1932-01-01

    This report describes methods used by the National Advisory Committee for Aeronautics to study visually the air flow around airplanes. The use of streamers, oil and exhaust gas streaks, lampblack and kerosene, powdered materials, and kerosene smoke is briefly described. The generation and distribution of smoke from candles and from titanium tetrachloride are described in greater detail because they appear most advantageous for general application. Examples are included showing results of the various methods.

  7. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  8. High-resolution daily gridded datasets of air temperature and wind speed for Europe

    NASA Astrophysics Data System (ADS)

    Brinckmann, S.; Krähenmann, S.; Bissolli, P.

    2015-08-01

    New high-resolution datasets for near surface daily air temperature (minimum, maximum and mean) and daily mean wind speed for Europe (the CORDEX domain) are provided for the period 2001-2010 for the purpose of regional model validation in the framework of DecReg, a sub-project of the German MiKlip project, which aims to develop decadal climate predictions. The main input data sources are hourly SYNOP observations, partly supplemented by station data from the ECA&D dataset (http://www.ecad.eu). These data are quality tested to eliminate erroneous data and various kinds of inhomogeneities. Grids in a resolution of 0.044° (5 km) are derived by spatial interpolation of these station data into the CORDEX area. For temperature interpolation a modified version of a regression kriging method developed by Krähenmann et al. (2011) is used. At first, predictor fields of altitude, continentality and zonal mean temperature are chosen for a regression applied to monthly station data. The residuals of the monthly regression and the deviations of the daily data from the monthly averages are interpolated using simple kriging in a second and third step. For wind speed a new method based on the concept used for temperature was developed, involving predictor fields of exposure, roughness length, coastal distance and ERA Interim reanalysis wind speed at 850 hPa. Interpolation uncertainty is estimated by means of the kriging variance and regression uncertainties. Furthermore, to assess the quality of the final daily grid data, cross validation is performed. Explained variance ranges from 70 to 90 % for monthly temperature and from 50 to 60 % for monthly wind speed. The resulting RMSE for the final daily grid data amounts to 1-2 °C and 1-1.5 m s-1 (depending on season and parameter) for daily temperature parameters and daily mean wind speed, respectively. The datasets presented in this article are published at http://dx.doi.org/10.5676/DWD_CDC/DECREG0110v1.

  9. The Measurement of Fluctuations of Air Speed by the Hot-Wire Anemometer

    NASA Technical Reports Server (NTRS)

    Dryden, H L; Kuethe, A M

    1930-01-01

    The hot-wire anemometer suggests itself as a promising method for measuring the fluctuating air velocities found in turbulent flow. The only obstacle is the presence of a lag due to the limited energy input which makes even a fairly small wire incapable of following rapid fluctuations with accuracy. This paper gives the theory of the lag and describes an experimental arrangement for compensating for the lag for frequencies up to 100 or more per second when the amplitude of the fluctuation is not too great. An experimental test of the accuracy of compensation and some results obtained with the apparatus in a wind-tunnel air stream are described. While the apparatus is very bulky in its present form, it is believed possible to develop a more portable arrangement. (author)

  10. Significance of High-Speed Air Temperature Measurements in the Sampling Cell of a Closed-Path Gas Analyzer with a Short Tube

    NASA Astrophysics Data System (ADS)

    Kathilankal, James; Fratini, Gerardo; Burba, George

    2015-04-01

    Eddy covariance gas analyzers measure gas content in a known volume, thus essentially measuring gas density. The fundamental flux equation, however, is based on the dry mole fraction. The relationship between dry mole fraction and density is regulated by the ideal gas law describing the processes of temperature- and pressure-related expansions and contractions, and by the law of partial pressures, describing the process of dilution. As a result, this relationship depends on water vapor content, temperature and pressure of the air sample. If the instrument is able to output precise high-speed dry mole fraction, the flux processing is significantly simplified and WPL density terms accounting for the air density fluctuations are no longer required. This should also lead to the reduction in uncertainties associated with the density terms resulting from the eddy covariance measurements of sensible and latent heat fluxes used in these terms. In this framework, three main measurement approaches may be considered: Open-path approach Outputting correct high-speed dry mole fraction from the open-path instrument is difficult because of complexities with maintaining reliable fast temperature measurements integrated over the entire measuring path, and also because of extraordinary challenges with accurate measurements of fast pressure in the open air flow. Classical long-tube closed-path approach For instruments utilizing traditional long-tube closed-path design, with tube length 1000 or more times the tube diameter, the fast dry mole fraction can be used successfully when instantaneous fluctuations in the air temperature of the sampled air are effectively dampened to negligible levels, instantaneous pressure fluctuations are regulated or negligible, and water vapor is measured simultaneously with gas or the air sample is dried. Short-tube closed-path approach, the enclosed design For instruments with a short-tube enclosed design, most - but not all - of the temperature

  11. AGARD WG13 aerodynamics of high speed air intakes: Assessment of CFD results

    NASA Technical Reports Server (NTRS)

    Bissinger, N. C.; Benson, T. J.; Bradley, R. G., Jr.

    1992-01-01

    A brief review of the work accomplished by the numerical subgroup of AGARD Working Group 13 on the aerodynamics of high speed air intakes is presented. This work comprised the selection of test cases for which experimental data were available. The test cases were chosen to range in complexity from normal-shock/boundary-layer interaction to full forebody-inlet combinations. Computations for these test cases were solicited from a large number of organizations and individual researchers within the NATO countries. The computation methods reached from Euler solvers (with and without boundary layer corrections) to full Reynolds averaged Navier-Stokes codes. The group compared these results with the test data available for each test case. A short overview of the CFD methods employed, a description of the test cases selected, and some of the comparisons between CFD solutions and test data are presented. The conclusions and recommendations drawn from this assessment are given.

  12. On the Nature of the High-Speed Plasma Flows in the 2005 September 13 Flare

    NASA Astrophysics Data System (ADS)

    Liu, C.; Choudhary, D. P.; Deng, N.; Wang, H.

    2008-05-01

    A long-duration, successive flaring event accompanied by fast CMEs occurred on 2005 September 13 in the NOAA AR 10808 and was classified as 2B/X1.5 with peak time at 19:27 UT. In this study, we report direct and unambiguous observations of high-speed hot plasma flows associated with the second major peak in soft X-ray that reached X1.4 on the GOES scale at 20:05 UT. The flows are seen as streams of enhanced density in extreme-UV traveling above and toward arcades of the secondary compact-loop flare at the main δ spot with an apparent speed as high as ~350~km~s-1, and the times when they are initiated correspond to those of bursts of nonthermal emissions in hard X-rays (HXRs) and microwaves. In Hα, the flows appear to become emission later on when approaching the lower atmosphere nearby the flaring magnetic polarity inversion line and subsequently trigger a subflare with propagating kernels. It is particularly notable that the flows are spatially and temporally related to HXR sources detected by RHESSI and a large erupting flux rope. We scrutinize several scenarios to investigate the nature of the observed high-speed flows. We conclude that the observations could be interpreted in terms of materials braking away from a preceding filament eruption and falling gravitationally back into the flaring region. A separate scenario is that the observed flow motion could be a manifestation of sunward reconnection outflow supporting the standard reconnection model.

  13. Comparison of Space Shuttle Hot Gas Manifold analysis to air flow data

    NASA Technical Reports Server (NTRS)

    Mcconnaughey, P. K.

    1988-01-01

    This paper summarizes several recent analyses of the Space Shuttle Main Engine Hot Gas Manifold and compares predicted flow environments to air flow data. Codes used in these analyses include INS3D, PAGE, PHOENICS, and VAST. Both laminar (Re = 250, M = 0.30) and turbulent (Re = 1.9 million, M = 0.30) results are discussed, with the latter being compared to data for system losses, outer wall static pressures, and manifold exit Mach number profiles. Comparison of predicted results for the turbulent case to air flow data shows that the analysis using INS3D predicted system losses within 1 percent error, while the PHOENICS, PAGE, and VAST codes erred by 31, 35, and 47 percent, respectively. The INS3D, PHOENICS, and PAGE codes did a reasonable job of predicting outer wall static pressure, while the PHOENICS code predicted exit Mach number profiles with acceptable accuracy. INS3D was approximately an order of magnitude more efficient than the other codes in terms of code speed and memory requirements. In general, it is seen that complex internal flows in manifold-like geometries can be predicted with a limited degree of confidence, and further development is necessary to improve both efficiency and accuracy of codes if they are to be used as design tools for complex three-dimensional geometries.

  14. Active control of massively separated high-speed/base flows with electric arc plasma actuators

    NASA Astrophysics Data System (ADS)

    DeBlauw, Bradley G.

    The current project was undertaken to evaluate the effects of electric arc plasma actuators on high-speed separated flows. Two underlying goals motivated these experiments. The first goal was to provide a flow control technique that will result in enhanced flight performance for supersonic vehicles by altering the near-wake characteristics. The second goal was to gain a broader and more sophisticated understanding of these complex, supersonic, massively-separated, compressible, and turbulent flow fields. The attainment of the proposed objectives was facilitated through energy deposition from multiple electric-arc plasma discharges near the base corner separation point. The control authority of electric arc plasma actuators on a supersonic axisymmetric base flow was evaluated for several actuator geometries, frequencies, forcing modes, duty cycles/on-times, and currents. Initially, an electric arc plasma actuator power supply and control system were constructed to generate the arcs. Experiments were performed to evaluate the operational characteristics, electromagnetic emission, and fluidic effect of the actuators in quiescent ambient air. The maximum velocity induced by the arc when formed in a 5 mm x 1.6 mm x 2 mm deep cavity was about 40 m/s. During breakdown, the electromagnetic emission exhibited a rise and fall in intensity over a period of about 340 ns. After breakdown, the emission stabilized to a near-constant distribution. It was also observed that the plasma formed into two different modes: "high-voltage" and "low-voltage". It is believed that the plasma may be switching between an arc discharge and a glow discharge for these different modes. The two types of plasma do not appear to cause substantial differences on the induced fluidic effects of the actuator. In general, the characterization study provided a greater fundamental understanding of the operation of the actuators, as well as data for computational model comparison. Preliminary investigations

  15. Blown Away: The Shedding and Oscillation of Sessile Drops by Cross Flowing Air

    NASA Astrophysics Data System (ADS)

    Milne, Andrew James Barnabas

    For drops sessile on a solid surface, cross flowing air can drive drop oscillation or shedding, based on the balance and interaction of aerodynamic drag force (based on drop size/shape and air speed) and adhesion/capillary forces (based on surface tension and drop size/shape). Better understanding of the above has applications to, e.g., fuel cell flooding, airfoil icing, and visibility in rain. To understand the basic physics, experiments studying individual sessile drops in a low speed wind tunnel were performed in this thesis. Analysis of high speed video gave time resolved profiles and airspeed for shedding. Testing 0.5 mul to 100 mul drops of water and hexadecane on poly(methyl methacrylate) PMMA, Teflon, and a superhydrophobic surface (SHS) yielded a master curve describing critical airspeed for shedding for water drops on all surface tested. This curve predicts behavior for new surfaces, and explains experimental results published previously. It also indicates that the higher contact angle leads to easier shedding due to decreased adhesion and increased drag. Developing a novel floating element differential drag sensor gave the first measurements of the microNewton drag force experienced by drops. Forces magnitude is comparable to gravitational shedding from a tilted plate and to simplified models for drop adhesion, with deviations that suggest effects due to the air flow. Fluid properties are seen to have little effect on drag versus airspeed, and decreased adhesion is seen to be more important than increased drag for easing shedding. The relation between drag coefficient and Reynolds number increases slightly with liquid-solid contact angle, and with drop volume. Results suggest that the drop experiences increased drag compared to similarly shaped solid bodies due to drop oscillations aeroelasticly coupling into the otherwise laminar flow. The bulk and surface oscillations of sessile drops in cross flow was also studied, using a full profile analysis

  16. Numerical simulation of high-speed cavitating flows in submerged water jet

    NASA Astrophysics Data System (ADS)

    Peng, G.; Shimizu, S.

    2013-12-01

    Properties of existing cavitation models are discussed and a compressible mixture flow method based a simplified estimation of bubble cavitation is then presented for numerical simulation of high-speed water jets accompanied by intensive cavitation. Two-phase fluid media of cavitating flow are treated as a mixture of liquid and bubbles, and the mean flow is computed by solving RANS equations for compressible fluids considering the effect of bubble expansion a/o contraction. The intensity of cavitation is evaluated by the gas volume fraction, which is governed by the compressibility of bubble-liquid mixture corresponding to the status of mean flow field. Numerical results of cavitating water jet issuing from a submerged nozzle are presented and its applicability to intensively cavitating jets is demonstrated.

  17. Experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, M. D.; Chriss, R. M.; Wood, J. R.; Strazisar, A. J.

    1992-01-01

    An experimental and computational investigation of the NASA Low-Speed Centrifugal Compressor (LSCC) flow field has been conducted using laser anemometry and Dawes' 3D viscous code. The experimental configuration consists of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational analysis, and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the rotor as well as surface flow visualization along the impeller blade surfaces provide independent confirmation of the laser measurement technique.

  18. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman

    1994-01-01

    The objective of this research is to continue our efforts in advancing the state of knowledge in Large Eddy Simulation (LES), Direct Numerical Simulation (DNS), and Reynolds Averaged Navier Stokes (RANS) methods for the analysis of high-speed reacting turbulent flows. In the first phase of this research, conducted within the past six months, focus was in three directions: RANS of turbulent reacting flows by Probability Density Function (PDF) methods, RANS of non-reacting turbulent flows by advanced turbulence closures, and LES of mixing dominated reacting flows by a dynamics subgrid closure. A summary of our efforts within the past six months of this research is provided in this semi-annual progress report.

  19. High-speed compressible flow and other advection-dominated problems of fluid dynamics

    NASA Technical Reports Server (NTRS)

    Zienkiewicz, O. C.; Lohner, R.; Morgan, K.; Peraire, J.

    1985-01-01

    Finite element methods are described for modeling high speed compressible flows with strong advection, problems important to aerodynamics. The situations are characterized by high pressure and temperature gradients, transients and the appearance of discontinuities, factors which require mesh refinement during computations. Techniques are developed for temporal and spatial discretization of a model problem. Several observations are made regarding the explicit and implicit features of the calculations, the use of the Lax-Wendroff scheme to produce a mass-matrix for obtaining accurate results for transients, methods of performing stability analyses, and simplification techniques. Examples are provided of solving the nonlinear shallow-water equations and describing compressible flows, particularly transonic flows. Domain splitting is defined for improving the calculations at each time step and in different parts of the flow regime while simultaneously advancing the calculations towards a solution.

  20. New mixing-length model for turbulent high-speed flows

    NASA Technical Reports Server (NTRS)

    Situ, M.; Schetz, J. A.

    1989-01-01

    A modification of Prandtl's mixing-length model is presented which takes into account the effects of compressibility on turbulence for high speed flows. A parameter is introduced into the turbulent transport formula which acts like an effective turbulent Schmidt number for mixtures of gases or a turbulent Prandtl number for a homogeneous gas. Results presented for such cases as high Mach number turbulent boundary layer flows over a flat surface, tangential slot injection problems, and shock/turbulent shear-layer and boundary-layer interactions agree well with experimental data.

  1. Application of a finite element algorithm for high speed viscous flows using structured and unstructured meshes

    NASA Technical Reports Server (NTRS)

    Vemaganti, Gururaja R.; Wieting, Allan R.

    1990-01-01

    A higher-order streamline upwinding Petrov-Galerkin finite element method is employed for high speed viscous flow analysis using structured and unstructured meshes. For a Mach 8.03 shock interference problem, successive mesh adaptation was performed using an adaptive remeshing method. Results from the finite element algorithm compare well with both experimental data and results from an upwind cell-centered method. Finite element results for a Mach 14.1 flow over a 24 degree compression corner compare well with experimental data and two other numerical algorithms for both structured and unstructured meshes.

  2. Flame spreading over a thin solid in low-speed concurrent flow- Drop tower experimental results and comparison with theory

    NASA Technical Reports Server (NTRS)

    Grayson, G. D.; Sacksteder, K. R.; Ferkul, P. V.; T'Ien, J. S.

    1994-01-01

    Flame spread over thin paper samples in low-speed concurrent flow is experimentally investigated in a 5.18 s drop tower. In the experiment, the oxygen molar percentage is varied from 30% down to the flame extinction limits and the forced flow velocity from 5.29 cm/s down to the quenching limits. Motion pictures are taken to observe flame shape, color, size, and spread rates. These quantities are compared with a theoretical model describing concurrent flame spread over thin solids in low-speed flows. The paper also discusses the similarity and difference between concurrent-flow and opposed-flow flame spread in microgravity and between low-speed and high-speed concurrent-flow flame spread. Finally the limitations of using a drop tower for flame spread research is assessed.

  3. Flow over a Ram-Air Parachute Canopy

    NASA Astrophysics Data System (ADS)

    Eslambolchi, Ali; Johari, Hamid

    2012-11-01

    The flow field over a full-scale, ram-air personnel parachute canopy was investigated numerically using a finite-volume flow solver coupled with the Spalart-Allmaras turbulence model. Ram-air parachute canopies resemble wings with arc-anhedral, surface protuberances, and an open leading edge for inflation. The rectangular planform canopy had an aspect ratio of 2.2 and was assumed to be rigid and impermeable. The chord-based Reynolds number was 3.2 million. Results indicate that the oncoming flow barely penetrates the canopy opening, and creates a large separation bubble below the lower lip of canopy. A thick boundary layer exists over the entire lower surface of the canopy. The flow over the upper surface of the canopy remains attached for an extended fraction of the chord. Lift increases linearly with angle of attack up to about 12 degrees. To assess the capability of lifting-line theory in predicting the forces on the canopy, the lift and drag data from a two-dimensional simulation of the canopy profile were extended using finite-wing expressions and compared with the forces from the present simulations. The finite-wing predicted lift and drag trends compare poorly against the full-span simulation, and the maximum lift-to-drag ratio is over-predicted by 36%. Sponsored by the US Army NRDEC.

  4. Thermistor based, low velocity isothermal, air flow sensor

    NASA Astrophysics Data System (ADS)

    Cabrita, Admésio A. C. M.; Mendes, Ricardo; Quintela, Divo A.

    2016-03-01

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms-1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms-1 to 2 ms-1 with a standard uncertainty error less than 4%.

  5. Determining the Sun's Deep Meridional Flow Speed Using Active Latitude Drift Rates Since 1874

    NASA Technical Reports Server (NTRS)

    Hathaway, David H.; Wilson, Robert M.

    2005-01-01

    Dynamo models that incorporate a deep meridional return flow indicate that this flow regulates both the period and the amplitude of the sunspot cycle. We recently examined the equatorward drift of the active latitudes (as given by the centroid of the sunspot areas in each hemisphere) and found evidence supporting this view. In those studies we fit the equatorward drift in each hemisphere for each sunspot cycle with a simple parabola - giving us a drift rate and its deceleration for each hemisphere/cycle. Here we analyze the same data (the Royal Greenwich Observatory/JSAF/NOAA daily active region summaries) to determine the drift rates in each hemisphere on a yearly basis (rotation-by- rotation measurements smoothed to remove high frequencies) and fit them with a simple model for the meridional flow that provides the meridional flow speed as a function of latitude and time from 1874 to 2005. These flow speeds can be used to test dynamo models - some of which have predictive capabilities.

  6. Forecasting the Short-Term Passenger Flow on High-Speed Railway with Neural Networks

    PubMed Central

    Xie, Mei-Quan; Li, Xia-Miao; Zhou, Wen-Liang; Fu, Yan-Bing

    2014-01-01

    Short-term passenger flow forecasting is an important component of transportation systems. The forecasting result can be applied to support transportation system operation and management such as operation planning and revenue management. In this paper, a divide-and-conquer method based on neural network and origin-destination (OD) matrix estimation is developed to forecast the short-term passenger flow in high-speed railway system. There are three steps in the forecasting method. Firstly, the numbers of passengers who arrive at each station or depart from each station are obtained from historical passenger flow data, which are OD matrices in this paper. Secondly, short-term passenger flow forecasting of the numbers of passengers who arrive at each station or depart from each station based on neural network is realized. At last, the OD matrices in short-term time are obtained with an OD matrix estimation method. The experimental results indicate that the proposed divide-and-conquer method performs well in forecasting the short-term passenger flow on high-speed railway. PMID:25544838

  7. Simulation of three-dimensional shear flow around a nozzle-afterbody at high speeds

    SciTech Connect

    Baysal, O.; Hoffman, W.B. )

    1992-06-01

    In this paper, turbulent shear flows at supersonic and hypersonic speeds around a nozzle-afterbody are simulated. The three-dimensional, Reynolds-averaged Navier-Stokes equations are solved by a finite-volume and implicit method. The convective and the pressure terms are differenced by an upwind-biased algorithm. The effect of turbulence is incorporated by a modified Baldwin-Lomax eddy viscosity model. The success of the standard Baldwin-Lomax model for this flow type is shown by comparing it to a laminar case. These modifications made to the model are also shown to improve flow prediction when compared to the standard Baldwin-Lomax model. These modifications to the model reflect the effects of high compressibility, multiple walls, vortices near walls, and turbulent memory effects in the shear layer. This numerically simulated complex flowfield includes a supersonic duct flow, a hypersonic flow over an external double corner, a flow through a non-axisymmetric, internal-external nozzle, and a three-dimensional shear layer. The specific application is for the flow around the nozzle-afterbody of a generic hypersonic vehicle powered by a scramjet engine. The computed pressure distributions compared favorably with the experimentally obtained surface and off-surface flow surveys.

  8. Numerical Simulation of Combustion and Extinction of a Solid Cylinder in Low-Speed Cross Flow

    NASA Technical Reports Server (NTRS)

    Tien, J. S.; Yang, Chin Tien

    1998-01-01

    The combustion and extinction behavior of a diffusion flame around a solid fuel cylinder (PMMA) in low-speed forced flow in zero gravity was studied numerically using a quasi-steady gas phase model. This model includes two-dimensional continuity, full Navier Stokes' momentum, energy, and species equations with a one-step overall chemical reaction and second-order finite-rate Arrhenius kinetics. Surface radiation and Arrhenius pyrolysis kinetics are included on the solid fuel surface description and a parameter Phi, representing the percentage of gas-phase conductive heat flux going into the solid, is introduced into the interfacial energy balance boundary condition to complete the description for the quasi-steady gas-phase system. The model was solved numerically using a body-fitted coordinate transformation and the SIMPLE algorithm. The effects of varying freestream velocity and Phi were studied. These parameters have a significant effect on the flame structure and extinction limits. Two flame modes were identified: envelope flame and wake flame. Two kinds of flammability limits were found: quenching at low-flow speeds due to radiative loss and blow-off at high flow speeds due to insufficient gas residence time. A flammability map was constructed showing the existence of maximum Phi above which the solid is not flammable at any freestream velocity.

  9. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    NASA Astrophysics Data System (ADS)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  10. Use of nose cap and fuselage pressure orifices for determination of air data for space shuttle orbiter below supersonic speeds

    NASA Technical Reports Server (NTRS)

    Larson, T. J.; Siemers, P. M., III

    1980-01-01

    Wind tunnel pressure measurements were acquired from orifices on a 0.1 scale forebody model of the space shuttle orbiter that were arranged in a preliminary configuration of the shuttle entry air data system (SEADS). Pressures from those and auxiliary orifices were evaluated for their ability to provide air data at subsonic and transonic speeds. The orifices were on the vehicle's nose cap and on the sides of the forebody forward of the cabin. The investigation covered a Mach number range of 0.25 to 1.40 and an angle of attack range from 4 deg. to 18 deg. An air data system consisting of nose cap and forebody fuselage orifices constitutes a complete and accurate air data system at subsonic and transonic speeds. For Mach numbers less than 0.80 orifices confined to the nose cap can be used as a complete and accurate air data system. Air data systems that use only flush pressure orifices can be used to determine basic air data on other aircraft at subsonic and transonic speeds.

  11. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  12. 30 CFR 75.152 - Tests of air flow; qualified person.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  13. Analysis of the Flow About Delta Wings with Leading Edge Separation at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Nenni, J. P.; Tung, C.

    1973-01-01

    A research program was conducted to develop an improved theoretical flow model for the flow about sharp edge delta wings with leading-edge separation at supersonic speeds. The flow model incorporates a representation of the secondary separation region which occurs just inboard of the leading edge on such wings and is based on a slender-wing theory whereby the full three-dimensional problem is reduced to a quasi two-dimensional problem in the cross-flow plane. The secondary separation region was modeled by a surface distribution of singularities or a linearized type of cavity representation. The primary vortex and separation were modeled by a concentrated vortex and cut in the cross-flow potential which represents its feeding sheet. The cross-flow solutions for the cavity model were obtained, but these solutions have physical significance only in a very restricted range of angle of attack. The reasons for the failure of the flow model are discussed. The analysis is presented so that other interested researchers may critically review the work.

  14. Measurements of the tip-gap turbulent flow structure in a low-speed compressor cascade

    NASA Astrophysics Data System (ADS)

    Tang, Genglin

    This dissertation presents results from a thorough study of the tip-gap turbulent flow structure in a low-speed linear compressor cascade wind tunnel at Virginia Tech that includes a moving belt system to simulate the relative motion between the tip and the casing. The endwall pressure measurements and the surface oil flow visualizations were made on a stationary endwall to obtain the flow features and to determine the measurement profiles of interest. A custom-made miniature 3-orthogonal-velocity-component fiber-optic laser-Doppler velocimetry (LDV) system was used to measure all three components of velocity within a 50 mum spherical measurement volume within the gap between the endwall and the blade tip, mainly for the stationary wall with 1.65% and 3.30% tip gaps as well as some initial experiments for the moving wall. Since all of the vorticity in a flow originates from the surfaces under the action of strong pressure gradient, it was very important to measure the nearest-wall flow on the endwall and around the blade tip. The surface skin friction velocity was measured by using viscous sublayer velocity profiles, which verified the presence of an intense lateral shear layer that was observed from surface oil flow visualizations. All second- and third-order turbulence quantities were measured to provide detailed data for any parallel CFD efforts. The most complete data sets were acquired for 1.65% and 3.30% tip gap/chord ratios in a low-speed linear compressor cascade. This study found that tip gap flows are complex pressure-driven, unsteady three-dimensional turbulent flows. The crossflow velocity normal to the blade chord is nearly uniform in the and tip-gap and changes substantially from the pressure to suction side. The crossflow velocity relies on the local tip pressure loading that is different from the mid-span pressure loading because of tip leakage vortex influence. The tip gap flow is highly skewed three-dimensional flow throughout the full gap

  15. MHD Modelling of Coronal Loops: Injection of High-Speed Chromospheric Flows

    NASA Technical Reports Server (NTRS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-01-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims. We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods. We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (approximately 0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km per second, its initial density is 10(exp 11) per cubic centimeter, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (approximately 1.5 MK) background loop. Results. While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 10(exp 6) K. As a result, a bright moving front becomes visible in the 171 Angstrom channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions. For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess.

  16. Analysis of High-Speed Rotating Flow in 2D Polar (r - θ)Coordinate

    NASA Astrophysics Data System (ADS)

    Pradhan, S.

    2016-03-01

    The generalized analytical model for the radial boundary layer in a high-speed rotating cylinder is formulated for studying the gas flow field due to insertion of mass, momentum and energy into the rotating cylinder in the polar (r - θ) plane. The analytical solution includes the sixth order differential equation for the radial boundary layer at the cylindrical curved surface in terms of master potential (χ) , which is derived from the equations of motion in a polar (r - θ) plane. The linearization approximation (Wood & Morton, J. Fluid Mech-1980; Pradhan & Kumaran, J. Fluid Mech-2011; Kumaran & Pradhan, J. Fluid Mech-2014) is used, where the equations of motion are truncated at linear order in the velocity and pressure disturbances to the base flow, which is a solid-body rotation. Additional assumptions in the analytical model include constant temperature in the base state (isothermal condition), and high Reynolds number, but there is no limitation on the stratification parameter. In this limit, the gas flow is restricted to a boundary layer of thickness (Re (1 / 3) R) at the wall of the cylinder. Here, the stratification parameter A = √ ((mΩ 2R2) / (2kB T)) . This parameter Ais the ratio of the peripheral speed, ΩR , to the most probable molecular speed, √(2 k_B T/m), the Reynolds number Re = (ρ _w ΩR2 / μ) , where m is the molecular mass, Ω and R are the rotational speed and radius of the cylinder, k_B is the Boltzmann constant, T is the gas temperature, ρ_w is the gas density at wall, and μ is the gas viscosity. The analytical solutions are then compared with direct simulation Monte Carlo (DSMC) simulations.

  17. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    NASA Astrophysics Data System (ADS)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  18. Spanwise gradients in flow speed help stabilize leading-edge vortices on revolving wings.

    PubMed

    Jardin, T; David, L

    2014-07-01

    While a leading-edge vortex on an infinite translating wing is shed after a short distance of travel, its counterpart on a finite span revolving insect wing or maple seed membrane exhibits robust attachment. The latter explains the aerodynamic lift generated by such biological species. Here we analyze the mechanisms responsible for leading-edge vortex attachment. We compute the Navier-Stokes solution of the flow past a finite span wing (i) embedded in a uniform oncoming flow, (ii) embedded in a spanwise varying oncoming flow, and (iii) revolving about its root. We show that over flapping amplitudes typical of insect flight (ϕ = 120°), the spanwise gradient of the local wing speed may suffice in maintaining leading-edge vortex attachment. We correlate this result with the development of spanwise flow, driven by the spanwise gradient of pressure, and we evaluate the sensitivity of such a mechanism to the Reynolds number. It is noted, however, that leading-edge vortex attachment through the spanwise gradient of the local wing speed does not promote large lift, which ultimately arises from centrifugal and Coriolis effects. PMID:25122373

  19. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael K.

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two.

  20. Implementation of Speed Variation in the Structural Dynamic Assessment of Turbomachinery Flow-Path Components

    NASA Technical Reports Server (NTRS)

    Brown, Andrew M.; Davis, R. Benjamin; DeHaye, Michael

    2013-01-01

    During the design of turbomachinery flow path components, the assessment of possible structural resonant conditions is critical. Higher frequency modes of these structures are frequently found to be subject to resonance, and in these cases, design criteria require a forced response analysis of the structure with the assumption that the excitation speed exactly equals the resonant frequency. The design becomes problematic if the response analysis shows a violation of the HCF criteria. One possible solution is to perform "finite-life" analysis, where Miner's rule is used to calculate the actual life in seconds in comparison to the required life. In this situation, it is beneficial to incorporate the fact that, for a variety of turbomachinery control reasons, the speed of the rotor does not actually dwell at a single value but instead dithers about a nominal mean speed and during the time that the excitation frequency is not equal to the resonant frequency, the damage accumulated by the structure is diminished significantly. Building on previous investigations into this process, we show that a steady-state assumption of the response is extremely accurate for this typical case, resulting in the ability to quickly account for speed variation in the finite-life analysis of a component which has previously had its peak dynamic stress at resonance calculated. A technique using Monte Carlo simulation is also presented which can be used when specific speed time histories are not available. The implementation of these techniques can prove critical for successful turbopump design, as the improvement in life when speed variation is considered is shown to be greater than a factor of two

  1. KEY COMPARISON Final report on the APMP air speed key comparison (APMP.M.FF-K3)

    NASA Astrophysics Data System (ADS)

    Terao, Yoshiya; Choi, Yong Moon; Gutkin, Mikhail; Jian, Wu; Shinder, Iosif; Yang, Cheng-Tsair

    2010-01-01

    Key comparison APMP.M.FF-K3 has been undertaken by the APMP Technical Committee for Fluid Flow, and was piloted by the National Metrology Institute of Japan (NMIJ, AIST). The objective was to demonstrate the degrees of equivalence of the air speed standards, held at the participating laboratories, relative to the CCM.FF-K3 key comparison reference value and to provide supporting evidence for the Calibration and Measurement Capabilities (CMCs) claimed by the participating laboratories in the Asia-Pacific region. A selected transfer standard was circulated among the six participants in eleven months starting February 2009. The repeated calibration results at NMIJ demonstrated sufficient reproducibility of the transfer standard. At 2 m/s and 20 m/s, a linkage to the global key comparison (CCM.FF-K3) was established by applying corrections to the participant results based on the results from the linking laboratories, thus making it possible to extend the relevant graphs of equivalence. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (MRA).

  2. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds

    NASA Technical Reports Server (NTRS)

    Park, Chul; Yoon, Seokkwan

    1989-01-01

    A CFD technique is described in which the finite-rate chemistry in thermal and chemical nonequilibrium air is fully and implicitly coupled with the fluid motion. Developed for use in the suborbital hypersonic flight speed range, the method accounts for nonequilibrium vibrational and electronic excitation and dissociation, but not ionization. The steady-state solution to the resulting system of equations is obtained by using a lower-upper factorization and symmetric Gauss-Seidel sweeping technique through Newton iteration. Inversion of the left-hand-side matrices is replaced by scalar multiplications through the use of the diagonal dominance algorithm. The code, named CENS2H (Compressible-Euler-Navier-Stokes Two-Dimensional Hypersonic), is fully vectorized and requires about 8.8 x 10 to the -5th sec per node point per iteration using a Cray X-MP computer. Converged solutions are obtained after about 2400 iterations. Sample calculations are made for a circular cylinder and a 10 percent airfoil at 5 deg angle of attack. The calculated cylinder flow field agrees with that obtained experimentally. The code predicts a 10 percent change in lift, drag, and pitching moment for the airfoil due to the thermochemical phenomena.

  3. A Phase Locked High Speed Real-Time Interferometry System for Large Amplitude Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Squires, D. D.; Wilder, M. C.; Carr, L. W.; Kutler, Paul (Technical Monitor)

    1994-01-01

    A high speed phase locked interferometry system has been designed and developed for real-time measurements of the dynamic stall flow over a pitching airfoil. Point diffraction interferograms of incipient flow separation over a sinusoidally oscillating airfoil have been obtained at rates of up to 20 KHz and for free stream Mach numbers of 0.3 and 0.45. The images were recorded on ASA 125 and ASA 400 film using a drum camera. Special electronic timing and synchronizing circuits were developed to trigger the laser light source from the camera, and to initiate acquisition of the interferogram sequence from any desired phase angle of oscillation. The airfoil instantaneous angle of attack data provided by an optical encoder was recorded via a FIFO and in EPROM into a microcomputer. The interferograms have been analyzed using software developed in-house to get quantitative flow density and pressure distributions.

  4. Application of Synthetic Jets to Reduce Stator Flow Separation in a Low Speed Axial Compressor

    NASA Technical Reports Server (NTRS)

    Braunscheidel, Edward P.; Culley, Dennis E.; Zaman, Khairul B.M.Q.

    2008-01-01

    Flow control using synthetic jet injection has been applied in a low speed axial compressor. The synthetic jets were applied from the suction surface of a stator vane via a span-wise row of slots pitched in the streamwise direction. Actuation was provided externally from acoustic drivers coupled to the vane tip via flexible tubing. The acoustic resonance characteristics of the system, and the resultant jet velocities were obtained. The effects on the separated flow field for various jet velocities and frequencies were explored. Total pressure loss reductions across the vane passage were measured. The effect of synthetic jet injection was shown to be comparable to that of pulsatory injection with mass addition for stator vanes which had separated flow. While only a weak dependence of the beneficial effect was noted based on the excitation frequency, a strong dependence on the amplitude was observed at all frequencies.

  5. Theoretical Analysis of Stationary Potential Flows and Boundary Layers at High Speed

    NASA Technical Reports Server (NTRS)

    Oswaititsch, K.; Wieghardt, K.

    1948-01-01

    The present report consists of two parts. The first part deals with the two-dimensional stationary flow in the presence of local supersonic zones. A numerical method of integration of the equation of gas dynamics is developed. Proceeding from solutions at great distance from the body the flow pattern is calculated step by step. Accordingly the related body form is obtained at the end of the calculation. The second part treats the relationship between the displacement thickness of laminar and turbulent boundary layers and the pressure distribution at high speeds. The stability of the boundary layer is investigated, resulting in basic differences in the behavior of subsonic and supersonic flows. Lastly, the decisive importance of the boundary layer for the pressure distribution, particularly for thin profiles, is demonstrated.

  6. A rapid response 64-channel photomultiplier tube camera for high-speed flow velocimetry

    NASA Astrophysics Data System (ADS)

    Ecker, Tobias; Lowe, K. Todd; Ng, Wing F.

    2015-02-01

    In this technical design note, the development of a rapid response photomultiplier tube camera, leveraging field-programmable gate arrays (FPGA) for high-speed flow velocimetry at up to 10 MHz is described. Technically relevant flows, for example, supersonic inlets and exhaust jets, have time scales on the order of microseconds, and their experimental study requires resolution of these timescales for fundamental insight. The inherent rapid response time attributes of a 64-channel photomultiplier array were coupled with two-stage amplifiers on each anode, and were acquired using a FPGA-based system. Application of FPGA allows high data acquisition rates with many channels as well as on-the-fly preprocessing techniques. Results are presented for optical velocimetry in supersonic free jet flows, demonstrating the value of the technique in the chosen application example for determining supersonic shear layer velocity correlation maps.

  7. Nonlinear lift control at high speed and high angle of attack using vortex flow technology

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1986-01-01

    Nonlinear lift control at subsonic, transonic and low supersonic speeds owes its origin to the separated but organized vortical flows interacting with the wing upper surface. Since most of this flow originates near the wing or control-surface leading-edge, a variety of devices have been studied experimentally which interact with and/or control this flow in order to gain a beneficial effect. The benefits (effects) originally studied were only associated with lift enhancement. Whereas, now the studied benefits encompass performance increase, attention to changes in trimmed conditions and longitudinal stability, improvements in lateral stability, and the attendant variation with changing Mach number. For those devices that can be theoretically modeled, state-of-the-art computer codes have been used for device design and/or analysis. Comparisons at design and off-design conditions are presented for validation purposes.

  8. Nonlinear lift control at high speed and high angle of attack using vortex flow technology

    NASA Technical Reports Server (NTRS)

    Lamar, John E.

    1987-01-01

    Nonlinear lift control at subsonic, transonic and low supersonic speeds owes its origin to the separated but organized vortical flows interacting with the wing upper surface. Since most of this flow originates near the wing or control-surface leading edge, a variety of devices has been studied experimentally which interact with and/or control this flow in order to gain a beneficial effect. The benefits (effects) originally studied were associated only with lift enhancement. Whereas, now the studied benefits encompass performance increase, attention to changes in trimmed conditions and longitudinal stability, improvements in lateral stability, and the attendant variation with changing Mach number. For those devices that can be theoretically modeled, state-of-the-art computer codes have been used for device design and/or analysis. Comparisons at design and off-design conditions are presented for validation purposes.

  9. Flow speed alters the apparent size and concentration of particles measured using NanoSight nanoparticle tracking analysis.

    PubMed

    Tong, M; Brown, O S; Stone, P R; Cree, L M; Chamley, L W

    2016-02-01

    Nanoparticle tracking analysis (NTA) is commonly used to count and size nano-sized particles. A sample loading pump can be used to analyse a larger sample volume, but it is unclear whether accuracy is affected. Using a NanoSight NS300 with the manufacturer-supplied pump, we examined synthetic silica and latex microspheres, liposomes and placental extracellular vesicles at different flow speeds. Analysis at flow speeds of 20 or 50 significantly reduced the measured concentration and mean/modal size of particles, particularly for mono-dispersed samples. We identify sample flow speed as a crucial instrument setting which should be reported in all studies that use NTA. PMID:26907379

  10. Optical observation of ultrafine droplets and air flows from newly designed supersonic air assist spray nozzles

    NASA Astrophysics Data System (ADS)

    Miyashiro, Seiji S.; Mori, H.; Takechi, H.

    2001-04-01

    One of the authors developed a new spray drying nozzle (special quadruplet fluid spray nozzle) for drug manufacturing and it has succeeded in manufacturing fine particles of 2 micrometer diameter of 1/15 ratios to those currently in use. The flow visualization results show that the two air jets become under-expanded on both edge sides of the nozzle, generate shock and expansion waves alternately on each side and reach the edge tip, where they collide, unite, and spout out while shock and expansion waves are again formed in the mixed jet. When the edge surfaces are supplied with water, the water is extended into thin film by the air jet and intensely disturbed. At the nozzle tip it is torn into droplets, which are further atomized afterwards in shock waves. At the spray tip, the friction with ambient air shears the droplets furthermore, and they decrease further in size.

  11. Non-equilibrium Flows of Reacting Air Components in Nozzles

    NASA Astrophysics Data System (ADS)

    Bazilevich, S. S.; Sinitsyn, K. A.; Nagnibeda, E. A.

    2008-12-01

    The paper presents the results of the investigation of non-equilibrium flows of reacting air mixtures in nozzles. State-to-state approach based on the solution of the equations for vibrational level populations of molecules and atomic concentrations coupled to the gas dynamics equations is used. For the 5-component air mixture (N2, O2, NO, N, O) non-equilibrium distributions and gasdynamical parameters are calculated for different conditions in a nozzle throat. The influence of various kinetic processes on distributions and gas dynamics parameters is studied. The paper presents the comparison of the results with ones obtained for binary mixtures of molecules and atoms and various models of elementary processes.

  12. Low speed wind tunnel flow field results for JT8D refan engines on the Boeing 727-200

    NASA Technical Reports Server (NTRS)

    Easterbrook, W. G.; Roberts, W. H.

    1974-01-01

    Low speed flow angularity results are presented showing flow direction at the nacelle locations on the Boeing 727-200. Flow angle probes (yawheads) were used for measurements at side and center inlet positions on the aft fuselage. A range of flap settings were tested with flap angles of 0 deg, 15 deg, and 40 deg selected for investigation.

  13. Analysis of tonal noise generating mechanisms in low-speed axial-flow fans

    NASA Astrophysics Data System (ADS)

    Canepa, Edward; Cattanei, Andrea; Zecchin, Fabio Mazzocut

    2016-08-01

    The present paper reports a comparison of experimental SPL spectral data related to the tonal noise generated by axial-flow fans. A nine blade rotor has been operated at free discharge conditions and in four geometrical configurations in which different kinds of tonal noise generating mechanisms are present: large-scale inlet turbulent structures, tip-gap flow, turbulent wakes, and rotor-stator interaction. The measurements have been taken in a hemi-anechoic chamber at constant rotational speed and, in order to vary the acoustic source strength, during low angular acceleration, linear speed ramps. In order to avoid erroneous quantitative evaluations if the acoustic propagation effects are not considered, the acoustic response functions of the different test configurations have been computed by means of the spectral decomposition method. Then, the properties of the tonal noise generating mechanisms have been studied. To this aim, the constant-Strouhal number SPL, obtained by means of measurements taken during the speed ramps, have been compared with the propagation function. Finally, the analysis of the phase of the acoustic pressure has allowed to distinguish between random and deterministic tonal noise generating mechanisms and to collect information about the presence of important propagation effects.

  14. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  15. High-speed viscous flows past blunt bodies and compression corners with flux-split methods

    NASA Astrophysics Data System (ADS)

    Gaitonde, Datta

    1992-03-01

    This effort investigates the accuracy of some flux-split algorithms in high-speed viscous flows. Three methods are examined: (1) MacCormack and Candler's (MC) scheme; (2) the van Leer (vL) scheme; and (3) the method of Roe. The problems studied include the blunt body flow at Mach 16 and the flow past a 240 compression corner at Mach 14. Higher order accuracy is obtained with the MUSCL approach. Viscous terms are centered in the full Navier-Stokes cell-centered implicit finite volume simulation. The results indicate a relative similarity of predicted surface pressure with all methods on both flows. However, considerable disparity exists in heat transfer prediction especially on the coarser meshes with van Leer's splitting exhibiting the most overprediction. Generally, however, this disparity-diminishes as the grid is refined. The occurrence of anomalous carbuncle solutions with Roe's scheme may be suppressed with appropriate increase in entropy cutoff with no significant penalty in accuracy. For the ramp flow, the MC method predicts the size of the separated-flow region most accurately, though some overprediction of heat transfer is observed. Roe's algorithm, and on the finer grids, van Leer's method also exhibit comparable results.

  16. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    NASA Astrophysics Data System (ADS)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  17. Flow Analysis over Batten Reinforced Wings for Micro Air Vehicles

    NASA Astrophysics Data System (ADS)

    Townsend, Kurtis; Hicks, Travis; Hubner, James P.

    2008-11-01

    Flexible membrane wings modify the flow separation of low Reynolds number micro air vehicles (MAVs). A specific type of fixed-wing geometry is a batten-reinforced configuration in which the membrane is attached to a rigid frame with chordwise battens, allowing the vibration of the membrane at the trailing-edge. In this study, smoke-wire visualization and hot-wire anemometry, both near the trailing-edge and further downstream in the wake, are used to quantify the frequency and energy of these fluctuations for various cell geometries and flow angles-of-attack. Improvement in the wake momentum deficit will be analyzed to determine preferred membrane cell geometries for MAV flight conditions.

  18. Surface-slip equations for multicomponent, nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, Roop N.; Scott, Carl D.; Moss, James N.; Goglia, Gene

    1985-01-01

    Equations are presented for the surface slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds-number, high-altitude flight regime of a space vehicle. These are obtained from closed-form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities have been obtained in a form which can readily be employed in flow-field computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate species-concentration boundary condition for a multicomponent mixture in absence of slip.

  19. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2008-01-01

    The peak winds near the surface are an important forecast element for Space Shuttle landings. As defined in the Shuttle Flight Rules (FRs), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMTJ) developed a personal computer based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak-wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center. However, the shuttle must land at Edwards Air Force Base (EAFB) in southern California when weather conditions at Kennedy Space Center in Florida are not acceptable, so SMG forecasters requested that a similar tool be developed for EAFB. Marshall Space Flight Center (MSFC) personnel archived and performed quality control of 2-minute average and 10-minute peak wind speeds at each tower adjacent to the main runway at EAFB from 1997- 2004. They calculated wind climatologies and probabilities of average peak wind occurrence based on the average speed. The climatologies were calculated for each tower and month, and were stratified by hour, direction, and direction/hour. For the probabilities of peak wind occurrence, MSFC calculated empirical and modeled probabilities of meeting or exceeding specific 10-minute peak wind speeds using probability density functions. The AMU obtained and reformatted the data into Microsoft Excel PivotTables, which allows users to display different values with point-click-drag techniques. The GUT was then created from the PivotTables using Visual Basic for Applications code. The GUI is run through a macro within Microsoft Excel and allows forecasters to quickly display and

  20. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    SciTech Connect

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  1. On the relation between coronal heating, flux tube divergence, and the solar wind proton flux and flow speed

    NASA Technical Reports Server (NTRS)

    Sandbaek, Onulf; Leer, Egil; Hansteen, Viggo H.

    1994-01-01

    A one-fluid solar wind model is used to investigate some relations between coronal heating, the flux tube divergence near the Sun, and the solar wind proton flux and flow speed. The effects of energy addition to the supersonic region of the flow are also studied. We allow for a mechanical energy flux that heats the corona, and an Alfven wave energy flux that adds energy, mainly to the supersonic flow, both as momentum and as heat. We find that the mechanical energy flux determines the solar wind mass flux, and in order to keep an almost constant proton flux at the orbit of Earth with changing flow geometry, that the mechanical energy flux must vary linearly with the magnetic field in the inner corona. This thermally driven wind generally has a low asymptotic flow speed. When Alfven waves are added to the thermally driven flow, the asymptotic flow speed is increased and is determined by the ratio of the Alfven wave and the mechanical energy fluxes at the coronal base. Flow speeds characteristic of recurrent high-speed solar wind streams can be obtained only when the Alfven wave energy flux, deposited in the supersonic flow, is larger than the mechanical energy flux heating the corona.

  2. Upper air teleconnections to Ob River flows and tree rings

    NASA Astrophysics Data System (ADS)

    Meko, David; Panyushkina, Irina; Agafonov, Leonid

    2015-04-01

    The Ob River, one of the world's greatest rivers, with a catchment basin about the size of Western Europe, contributes 12% or more of the annual freshwater inflow to the Arctic Ocean. The input of heat and fresh water is important to the global climate system through effects on sea ice, salinity, and the thermohaline circulation of the ocean. As part of a tree-ring project to obtain multi-century long information on variability of Ob River flows, a network of 18 sites of Pinus, Larix, Populus and Salix has been collected along the Ob in the summers of 2013 and 2014. Analysis of collections processed so far indicates a significant relationship of tree-growth to river discharge. Moderation of the floodplain air temperature regime by flooding appears to be an important driver of the tree-ring response. In unraveling the relationship of tree-growth to river flows, it is important to identify atmospheric circulation features directly linked to observed time series variations of flow and tree growth. In this study we examine statistical links between primary teleconnection modes of Northern Hemisphere upper-air (500 mb) circulation, Ob River flow, and tree-ring chronologies. Annual discharge at the mouth of the Ob River is found to be significantly positively related to the phase of the East Atlantic (EA) pattern, the second prominent mode of low-frequency variability over the North Atlantic. The EA pattern, consisting of a north-south dipole of pressure-anomaly centers spanning the North Atlantic from east to west, is associated with a low-pressure anomaly centered over the Ob River Basin, and with a pattern of positive precipitation anomaly of the same region. The positive correlation of discharge and EA is consistent with these know patterns, and is contrasted with generally negative (though smaller) correlations between EA and tree-ring chronologies. The signs of correlations are consistent with a conceptual model of river influence on tree growth through air

  3. Transport theory for potato orbits in an axisymmetric torus with finite toroidal flow speed

    SciTech Connect

    Shaing, K. C.; Peng, Yueng Kay Martin

    2004-01-01

    Transport theory for potato orbits in the region near the magnetic axis in an axisymmetric torus such as tokamaks and spherical tori is extended to the situation where the toroidal flow speed is of the order of the sonic speed as observed in National Spherical Torus Experiment [E. J. Synakowski, M. G. Bell, R. E. Bell et al., Nucl. Fusion 43, 1653 (2003)]. It is found that transport fluxes such as ion radial heat flux, and bootstrap current density are modified by a factor of the order of the square of the toroidal Mach number. The consequences of the orbit squeezing are also presented. The theory is developed for parabolic (in radius r) plasma profiles. A method to apply the results of the theory for the transport modeling is discussed.

  4. High speed flow cytometric detection of rare glycophorin A mutations in human blood cells

    SciTech Connect

    Langlois, R.G.; Engh, G. van den )

    1993-01-01

    The glycophorin A (GPA) assay utilizes immunofluorescent labeling and flow cytometry to measure the frequency of peripheral erythrocytes with mutant phenotypes, presumably due to mutations in erythroid precursor cells. Analysis of 5 [times] 10[sup 6] cells/assay is used to enumerate variant erythrocytes that occur at a frequency of 3-10 [times] 10[sup [minus]6] in unexposed donors. Extension of this assay to human reticulocytes requires detection of variants that occur at frequencies as low as 3 [times] 10[sup [minus]8]. The authors have used high speed data acquisition and cell classification electronics to perform 3-color analysis at rates up to 20,000 cells/s. High speed analysis of up to 10[sup 8] cells/assay has been used to enumerate GPA-variant reticulocytes in normal donors.

  5. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  6. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  7. SALE: a simplified ALE computer program for fluid flow at all speeds

    SciTech Connect

    Amsden, A.A.; Ruppel, H.M.; Hirt, C.W.

    1980-06-01

    A simplified numerical fluid-dynamics computing technique is presented for calculating two-dimensional fluid flows at all speeds. It combines an implicit treatment of the pressure equation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique with the grid rezoning philosophy of the Arbitrary Lagrangian-Eulerian (ALE) method. As a result, it can handle flow speeds from supersonic to the incompressible limit in a grid that may be moved with the fluid in typical Lagrangian fashion, or held fixed in an Eulerian manner, or moved in some arbitrary way to give a continuous rezoning capability. The report describes the combined (ICEd-ALE) technique in the framework of the SALE (Simplified ALE) computer program, for which a general flow diagram and complete FORTRAN listing are included. A set of sample problems show how to use or modify the basic code for a variety of applications. Numerical listings are provided for a sample problem run with the SALE program.

  8. Flow Rate In Microfluidic Pumps As A Function Of Tension and Pump Motor Head Speed

    NASA Astrophysics Data System (ADS)

    Irwin, Anthony; McBride, Krista

    2015-03-01

    As the use of microfluidic devices has become more common in recent years the need for standardization within the pump systems has grown. The pumps are ball bearing rotor microfluidic pumps and work off the idea of peristalsis. The rapid contraction and relaxation propagating down a tube or a microfluidic channel. The ball bearings compress the tube (occlusion) and move along part of the tube length forcing fluid to move inside of the tube in the same direction of the ball bearings. When the ball bearing rolls off the area occupied by the microfluidic channel, its walls and ceiling undergo restitution and a pocket of low pressure is briefly formed pulling more of the liquid into the pump system. Before looking to standardize the pump systems it must be known how the tension placed by the pumps bearing heads onto the PDMS inserts channels affect the pumps performance (mainly the flow rate produced). The relationship of the speed at which the bearings on the motor head spin and the flow rate must also be established. This research produced calibration curves for flow rate vs. tension and rpm. These calibration curves allow the devices to be set to optimal user settings by simply varying either the motor head tension or the motor head speed. I would like to acknowledge the help and support of Vanderbilt University SyBBURE program, Christina Marasco, Stacy Sherod, Franck Block and Krista McBride.

  9. Effect of car speed on amount of air supplied by ventilation system to the space of car cabin

    NASA Astrophysics Data System (ADS)

    Fišer, Jan; Pokorný, Jan

    2014-03-01

    The amount of air supplied by ventilation system (HVAC system) of a car into a cabin is one of the main parameters for the correct simulation and prediction of a car cabin heat load. This amount is not based only on the current setting of the HVAC system, but also on the actual operating conditions and speed of the car. The authors therefore carried out experiments in the cabin of a passenger car in real traffic, while observing the amount of air on the speed of the car and setting of flap in mixing chamber. In a subsequent analysis the authors defined dependence of the airflow rate supplied by HVAC system on the speed of the car. Obtained empirical formulas were then used as a part of the code which calculates the data for the HVAC boundary conditions in the simulation of the car cabin environment.

  10. Boulders moved by the 29 September 2009 Tsunami: Flow-Speed Estimates at Taga, Samoa

    NASA Astrophysics Data System (ADS)

    Weiss, Robert; Fritz, Hermann

    2010-05-01

    On September 29, 2009 at 17:48:10 UTC (local time: UTC-11), an Mw ≈8.1 earthquake struck about 200 km S of the main Samoan Islands chain and 200 km E of Tonga's Niua Group. This is the most significant earthquake on the northern bend of the Tonga trench since 1917. At Taga, boulders of different sizes were observed; their distribution on the surface did not shore any recognizable pattern. It should be noted that the term 'boulder' in here is not applied to an indicated grain size, but to describe particles that have a size that cannot be neglected compared to the water depth. Taga village is located on south-central Savai'i Island, Samoa. The tsunami flooding reached about 180 m inundation and about 6m maximum runup . The tsunami waves were able to turn a empty water tank upside down and destroyed a house attached to a swimming pool. The flow depth reached 4 m marked by roof damage. In order to achieve estimates of the flow speed from the boulders on the surface, a few assumptions need to be made. Even though these assumptions simplify the physical problem almost to the level of the spherical cow, and yet they do not violate basic physics. Also, the initiation of motion is not considered, which is complex due to the necessary three-dimensional description of the turbulent flow field and shear-stress distribution around the boulder. Furthermore, the bedding and roughness in vicinity of the boulder is of pivotal importance for the initiation of motion. The first assumption is that the Froude number can be used to scale between the flow depth and the flow speed. The Froude number is the ratio of the flow speed and square root of gravity times the flow depth. It is classically used to evaluate the influence of inertia on a flow system and for scaling of gravity driven flows. The second assumption is that the boulders are spherical with varying bulk density. The last assumption is that the Rouse number can be employed to retrieve information on the transport mode. The

  11. Reverse roll-coating flow: a computational investigation towards high-speed defect free coating

    NASA Astrophysics Data System (ADS)

    Belblidia, F.; Tamaddon-Jahromi, H. R.; Echendu, S. O. S.; Webster, M. F.

    2013-11-01

    A finite element Taylor-Galerkin pressure-correction algorithm is employed to simulate a high-speed defect-free roll-coating flow, which substantiates a coating process with a free meniscus surface. Findings are applicable across a wide range of coating sectors in optimisation of coating performance, which targets adaptive and intelligent process control. Industrially, there is a major drive towards using new material products and raising coating line-speeds, to address increased efficiency and productivity. This study has sought to attack these issues by developing an effective predictive toolset for high-speed defect-free coatings. Here, time-stepping/finite element methods are deployed to model this free-surface problem that involves the transfer of a coating fluid from a roller to a substrate (of prescribed wet-film thickness). This procedure is used in conjunction with a set of constitutive equations capable of describing the relevant fluid-film rheology in appropriate detail. Quantities of pressure, lift and drag have been calculated streamwise across the flow domain, and streamline patterns reveal a large recirculating vortex around the meniscus region. Such pressure distributions across the domain display a positive peak which decreases as nip-gap size increases. Further analysis has been conducted, mimicking the presence of a wetting line, whilst varying boundary conditions at the nip. Observation has shown that such inclusion would serve as a relief mechanism to the positive peak pressures generated around the nip zone. Here, through an elasto-hydrodynamic formulation, the elastic deformation of a rubber roll cover (elastomer) has also been introduced, which offers fresh insight into the process with respect to nip-flow behaviour, and allows for the analysis of both positive and negative nip-gaps.

  12. Testing flow-through air samplers for use in near-field vapour drift studies by measuring pyrimethanil in air after spraying.

    PubMed

    Geoghegan, Trudyanne S; Hageman, Kimberly J; Hewitt, Andrew J

    2014-03-01

    Pesticide volatilisation and subsequent vapour drift reduce a pesticide's efficiency and contribute to environmental contamination. High-volume air samplers (HVSs) are often used to measure pesticide concentrations in air but these samplers are expensive to purchase and require network electricity, limiting the number and type of sites where they can be deployed. The flow-through sampler (FTS) presents an opportunity to overcome these limitations. The FTS is a wind-driven passive sampler that has been developed to quantify organic contaminants in remote ecosystems. FTSs differ from other passive samplers in that they turn into the wind and use the wind to draw air through the sampling media. The main objective of this work was to evaluate the FTS in a near-field pesticide vapour drift study by comparing the concentrations of pyrimethanil in air measured using one HVS and three FTSs placed in the same location. Pyrimethanil was sprayed onto a vineyard as part of normal pest management procedures. Air samples were collected every eight hours for 48 h. The volume of air sampled by the FTSs was calculated using the measured relationship between ambient wind speed and the wind speed inside the sampler as determined with a separate wind tunnel study. The FTSs sampled 1.7 to 40.6 m(3) of air during each 8 h sampling period, depending on wind speed, whereas the mean volume sampled by the HVS was 128.7 m(3). Mean pyrimethanil concentrations ranged from 0.4 to 3.2 μg m(-3) of air. Inter-sampler reproducibility, as represented by percent relative standard deviation, for the three FTSs was ∼20%. The largest difference in FTS-derived versus HVS-derived pyrimethanil concentrations occurred during the lowest wind-speed period. During this period, it is likely that the FTS predominately acted like a traditional diffusion-based passive sampler. As indicated by both types of sampler, pyrimethanil concentrations in air changed by a factor of ∼2 during the two days after spaying

  13. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    PubMed

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  14. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    PubMed Central

    Al-Hadhrami, Luai M.; Shaahid, S. M.; Tunde, Lukman O.; Al-Sarkhi, A.

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  15. Development of a Variable-Speed Residential Air-Source Integrated Heat Pump

    SciTech Connect

    Rice, C Keith; Shen, Bo; Munk, Jeffrey D; Ally, Moonis Raza; Baxter, Van D

    2014-01-01

    A residential air-source integrated heat pump (AS-IHP) is under development in partnership with a U.S. manufacturer. A nominal 10.6 kW (3-ton) cooling capacity variable-speed unit, the system provides both space conditioning and water heating. This multi-functional unit can provide domestic water heating (DWH) in either full condensing (FC) (dedicated water heating or simultaneous space cooling and water heating) or desuperheating (DS) operation modes. Laboratory test data were used to calibrate a vapor-compression simulation model for each mode of operation. The model was used to optimize the internal control options for efficiency while maintaining acceptable comfort conditions and refrigerant-side pressures and temperatures within allowable operating envelopes. Annual simulations were performed with the AS-IHP installed in a well-insulated house in five U.S. climate zones. The AS-IHP is predicted to use 45 to 60% less energy than a DOE minimum efficiency baseline system while meeting total annual space conditioning and water heating loads. Water heating energy use is lowered by 60 to 75% in cold to warmer climates, respectively. Plans are to field test the unit in Knoxville, TN.

  16. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    NASA Technical Reports Server (NTRS)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  17. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face

  18. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    SciTech Connect

    van den Engh, Gerrit J.; Stokdijk, Willem

    1992-01-01

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate.

  19. Experimental and Calculated Flow Fields Produced by Airplanes Flying at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Smith, Harriet J.

    1960-01-01

    Results are presented of a flight investigation conducted to survey the flow field generated by airplanes flying a t supersonic speeds. The pressure signatures of an F-100, an F-104, and a B-58 airplane, representing widely varying configurations, a t distances from 120 t o 425 f e e from the generating aircraft and at Mach numbers from 1.2 t o 1.8 are shown. Calculations were made by using Whitham's method and were compared with the experimental results.

  20. Parallel pulse processing and data acquisition for high speed, low error flow cytometry

    DOEpatents

    Engh, G.J. van den; Stokdijk, W.

    1992-09-22

    A digitally synchronized parallel pulse processing and data acquisition system for a flow cytometer has multiple parallel input channels with independent pulse digitization and FIFO storage buffer. A trigger circuit controls the pulse digitization on all channels. After an event has been stored in each FIFO, a bus controller moves the oldest entry from each FIFO buffer onto a common data bus. The trigger circuit generates an ID number for each FIFO entry, which is checked by an error detection circuit. The system has high speed and low error rate. 17 figs.

  1. Large eddy simulations and direct numerical simulations of high speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, P.; Frankel, S. H.; Adumitroaie, V.; Sabini, G.; Madnia, C. K.

    1993-01-01

    The primary objective of this research is to extend current capabilities of Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows. Our efforts in the first two years of this research have been concentrated on a priori investigations of single-point Probability Density Function (PDF) methods for providing subgrid closures in reacting turbulent flows. In the efforts initiated in the third year, our primary focus has been on performing actual LES by means of PDF methods. The approach is based on assumed PDF methods and we have performed extensive analysis of turbulent reacting flows by means of LES. This includes simulations of both three-dimensional (3D) isotropic compressible flows and two-dimensional reacting planar mixing layers. In addition to these LES analyses, some work is in progress to assess the extent of validity of our assumed PDF methods. This assessment is done by making detailed companions with recent laboratory data in predicting the rate of reactant conversion in parallel reacting shear flows. This report provides a summary of our achievements for the first six months of the third year of this program.

  2. A high-speed photographic system for flow visualization in a steam turbine

    NASA Technical Reports Server (NTRS)

    Barna, G. J.

    1973-01-01

    A photographic system was designed to visualize the moisture flow in a steam turbine. Good performance of the system was verified using dry turbine mockups in which an aerosol spray simulated, in a rough way, the moisture flow in the turbine. Borescopes and fiber-optic light tubes were selected as the general instrumentation approach. High speed motion-picture photographs of the liquid flow over the stator blade surfaces were taken using stroboscopic lighting. Good visualization of the liquid flow was obtained. Still photographs of drops in flight were made using short duration flash sources. Drops with diameters as small as 30 micrometers (0.0012 in.) could be resolved. In addition, motion pictures of a spray of water simulating the spray off the rotor blades and shrouds were taken at normal framing rates. Specially constructed light tubes containing small tungsten-halogen lamps were used. Sixteen millimeter photography was used in all cases. Two potential problems resulting from the two-phase turbine flow (attenuation and scattering of light by the fog present and liquid accumulation on the borescope mirrors) were taken into account in the photographic system design but not evaluated experimentally.

  3. Wave-speed limitation on expiratory flow-a unifying concept.

    PubMed

    Dawson, S V; Elliott, E A

    1977-09-01

    The mechanism limiting forced expiratory flow is explained on the basis that a local flow velocity reaches the local speed of wave propagation at a point, called the choke point, in intrathoracic airways. This theoretical approach to the "waterfall effect" leads to selection of the analogy of constricted open-channel flow to apply to the elastic network of airway tubes. Quantitative results are derived for the case of negligible friction by use of the Bernoulli principle. Shapes predicted for the maximum-flow static recoil curves depend only upon the nature of the pressure-area curve at the choke point in the case of negligible friction; and the magnitude of the critical rate of flow depends on reference values of cross-sectional area and elastic modulus at the choke point, on gas density, and on the static recoil pressure. The present theoretical results are used to interpret previous experiments, but quantitative applicability is limited because of frictional effects and lack of knowledge of choke point conditions. PMID:914721

  4. Air-flow separation over unsteady breaking wind waves

    NASA Astrophysics Data System (ADS)

    Saxena, Gaurav

    2005-11-01

    In air-sea interaction processes, when considering wind stress over small-scale breaking waves, there are few direct quantitative experimental investigations into the role of air-flow separation on the interfacial momentum flux. Reul et. al, (1999), found multiple coherent patches of vorticity downwind of the crest that were strongly influenced by the geometric characteristics of the breaker. However, their breakers were generated by dispersive focusing techniques and, therefore, independent of the wind stress. We present experimental results obtained with particle image velocimetry (PIV) where moderate to strong winds directly generate unsteady small-scale breaking waves, a scenario commonly found in the open ocean. Particular attention has been devoted to capturing the spatio-temporal evolution of the air-water interface. Specifically, texture segmentation algorithms typically used for face recognition (Grey Level Co-occurrence Matrix (GLCM) and the Cross-Diagonal Texture Matrix (CDTM)) have been combined to yield robust and accurate estimates of the instantaneous breaker geometry.

  5. Numerical simulation of air flow in a model of lungs with mouth cavity

    NASA Astrophysics Data System (ADS)

    Elcner, Jakub; Lizal, Frantisek; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    The air flow in a realistic geometry of human lung is simulated with computational flow dynamics approach as stationary inspiration. Geometry used for the simulation includes oral cavity, larynx, trachea and bronchial tree up to the seventh generation of branching. Unsteady RANS approach was used for the air flow simulation. Velocities corresponding to 15, 30 and 60 litres/min of flow rate were set as boundary conditions at the inlet to the model. These flow rates are frequently used as a representation of typical human activities. Character of air flow in the model for these different flow rates is discussed with respect to future investigation of particle deposition.

  6. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  7. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).

    PubMed

    Armitage, James M; Hayward, Stephen J; Wania, Frank

    2013-01-01

    The main objective of this study was to evaluate the performance and demonstrate the utility of a fugacity-based model of XAD passive air samplers (XAD-PAS) designed to simulate the uptake of neutral organic chemicals under variable temperatures, external wind speeds and ambient air concentrations. The model (PAS-SIM) simulates the transport of the chemical across the air-side boundary layer and within the sampler medium, which is segmented into a user-defined number of thin layers. Model performance was evaluated using data for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from a field calibration study (i.e., active and XAD-PAS data) conducted in Egbert, Ontario, Canada. With some exceptions, modeled PAS uptake curves are in good agreement with the empirical PAS data. The results are highly encouraging, given the uncertainty in the active air sampler data used as input and other uncertainties related to model parametrization (e.g., sampler-air partition coefficients, the influence of wind speed on sampling rates). The study supports the further development and evaluation of the PAS-SIM model as a diagnostic (e.g., to aid interpretation of calibration studies and monitoring data) and prognostic (e.g., to inform design of future passive air sampling campaigns) tool. PMID:24175752

  8. Methods for Prediction of High-Speed Reacting Flows in Aerospace Propulsion

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip

    2014-01-01

    Research to develop high-speed airbreathing aerospace propulsion systems was underway in the late 1950s. A major part of the effort involved the supersonic combustion ramjet, or scramjet, engine. Work had also begun to develop computational techniques for solving the equations governing the flow through a scramjet engine. However, scramjet technology and the computational methods to assist in its evolution would remain apart for another decade. The principal barrier was that the computational methods needed for engine evolution lacked the computer technology required for solving the discrete equations resulting from the numerical methods. Even today, computer resources remain a major pacing item in overcoming this barrier. Significant advances have been made over the past 35 years, however, in modeling the supersonic chemically reacting flow in a scramjet combustor. To see how scramjet development and the required computational tools finally merged, we briefly trace the evolution of the technology in both areas.

  9. Effect of high-speed jet on flow behavior, retrogradation, and molecular weight of rice starch.

    PubMed

    Fu, Zhen; Luo, Shun-Jing; BeMiller, James N; Liu, Wei; Liu, Cheng-Mei

    2015-11-20

    Effects of high-speed jet (HSJ) treatment on flow behavior, retrogradation, and degradation of the molecular structure of indica rice starch were investigated. Decreasing with the number of HSJ treatment passes were the turbidity of pastes (degree of retrogradation), the enthalpy of melting of retrograded rice starch, weight-average molecular weights and weight-average root-mean square radii of gyration of the starch polysaccharides, and the amylopectin peak areas of SEC profiles. The areas of lower-molecular-weight polymers increased. The chain-length distribution was not significantly changed. Pastes of all starch samples exhibited pseudoplastic, shear-thinning behavior. HSJ treatment increased the flow behavior index and decreased the consistency coefficient and viscosity. The data suggested that degradation of amylopectin was mainly involved and that breakdown preferentially occurred in chains between clusters. PMID:26344255

  10. LES, DNS and RANS for the analysis of high-speed turbulent reacting flows

    NASA Technical Reports Server (NTRS)

    Givi, Peyman; Taulbee, Dale B.; Adumitroaie, Virgil; Sabini, George J.; Shieh, Geoffrey S.

    1994-01-01

    The purpose of this research is to continue our efforts in advancing the state of knowledge in large eddy simulation (LES), direct numerical simulation (DNS), and Reynolds averaged Navier Stokes (RANS) methods for the computational analysis of high-speed reacting turbulent flows. In the second phase of this work, covering the period 1 Sep. 1993 - 1 Sep. 1994, we have focused our efforts on two research problems: (1) developments of 'algebraic' moment closures for statistical descriptions of nonpremixed reacting systems, and (2) assessments of the Dirichlet frequency in presumed scalar probability density function (PDF) methods in stochastic description of turbulent reacting flows. This report provides a complete description of our efforts during this past year as supported by the NASA Langley Research Center under Grant NAG1-1122.

  11. Analysis of instability inception in high-speed multistage axial-flow compressors

    SciTech Connect

    Hendricks, G.J.; Sabnis, J.S.; Feulner, M.R.

    1997-10-01

    A nonlinear, two-dimensional, compressible dynamic model has been developed to study rotating stall/surge inception and development in high-speed, multistage, axial flow compressors. The flow dynamics are represented by the unsteady Euler equations, solved in each interblade row gap and inlet and exit ducts as two-dimensional domains, and in each blade passage as a one-dimensional domain. The resulting equations are solved on a computational grid. The boundary conditions between domains are represented by ideal turning coupled with empirical loss and deviation correlations. Results are presented comparing model simulations to instability inception data of an eleven stage, high-pressure-ratio compressor operating at both part and full power, and the results analyzed in the context of a linear modal analysis.

  12. Discrete unified gas kinetic scheme for all Knudsen number flows: low-speed isothermal case.

    PubMed

    Guo, Zhaoli; Xu, Kun; Wang, Ruijie

    2013-09-01

    Based on the Boltzmann-BGK (Bhatnagar-Gross-Krook) equation, in this paper a discrete unified gas kinetic scheme (DUGKS) is developed for low-speed isothermal flows. The DUGKS is a finite-volume scheme with the discretization of particle velocity space. After the introduction of two auxiliary distribution functions with the inclusion of collision effect, the DUGKS becomes a fully explicit scheme for the update of distribution function. Furthermore, the scheme is an asymptotic preserving method, where the time step is only determined by the Courant-Friedricks-Lewy condition in the continuum limit. Numerical results demonstrate that accurate solutions in both continuum and rarefied flow regimes can be obtained from the current DUGKS. The comparison between the DUGKS and the well-defined lattice Boltzmann equation method (D2Q9) is presented as well. PMID:24125383

  13. A quiet-flow Ludwieg tube for experimental study of high speed boundary layer transition

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1991-01-01

    Laminar-turbulent transition in high speed boundary layers is a complicated problem which is still poorly understood, partly because of experimental ambiguities caused by operating in noisy wind tunnels. The NASA Langley experience with quiet tunnel design has been used to design a quiet flow tunnel which can be constructed less expensively. Fabrication techniques have been investigated, and inviscid, boundary layer, and stability computer codes have been adapted for use in the nozzle design. Construction of such a facility seems feasible, at a reasonable cost. Two facilities have been proposed: a large one, with a quiet flow region large enough to study the end of transition, and a smaller and less expensive one, capable of studying low Reynolds number issues such as receptivity. Funding for either facility remains to be obtained, although key facility elements have been obtained and are being integrated into the existing Purdue supersonic facilities.

  14. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  15. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  16. Flow Field in a Single-Stage Model Air Turbine With Seal Rings and Pre-Swirled Purge Flow

    NASA Astrophysics Data System (ADS)

    Dunn, Dennis M.

    Modern gas turbines operate at high mainstream gas temperatures and pressures, which requires high durability materials. A method of preventing these hot gases from leaking into the turbine cavities is essential for improved reliability and cost reduction. Utilizing bleed-off air from the compressor to cool internal components has been a common solution, but at the cost of decreasing turbine performance. The present work thoroughly describes the complex flow field between the mainstream gas and a single rotor-stator disk cavity, and mechanisms of mainstream gas ingestion. A combined approach of experimental measurement and numerical simulation are performed on the flow in a single-stage model gas turbine. Mainstream gas ingestion into the cavity is further reduced by utilizing two axially overlapping seal rings, one on the rotor disk and the other on the stator wall. Secondary purge air is injected into the rotor-stator cavity pre-swirled through the stator radially inboard of the two seal rings. Flow field predictions from the simulations are compared against experimental measurements of static pressure, velocity, and tracer gas concentration acquired in a nearly identical model configuration. Operational conditions were performed with a main airflow Reynolds number of 7.86e4 and a rotor disk speed of 3000rpm. Additionally the rotational Reynolds number was 8.74 e5 with a purge air nondimensional flow rate cw=4806. The simulation models a 1/14 rotationally periodic sector of the turbine rig, consisting of four rotor blades and four stator vanes. Gambit was used to generate the three-dimensional unstructured grids ranging from 10 to 20 million cells. Effects of turbulence were modeled using the single-equation Spalart-Allmaras as well as the realizable k-epsilon models. Computations were performed using FLUENT for both a simplified steady-state and subsequent time-dependent formulation. Simulation results show larger scale structures across the entire sector angle

  17. The effect of flow speed and body size on Kármán gait kinematics in rainbow trout

    PubMed Central

    Akanyeti, Otar; Liao, James C.

    2013-01-01

    SUMMARY We have little understanding of how fish hold station in unsteady flows. Here, we investigated the effect of flow speed and body size on the kinematics of rainbow trout Kármán gaiting behind a 5 cm diameter cylinder. We established a set of criteria revealing that not all fish positioned in a vortex street are Kármán gaiting. By far the highest probability of Kármán gaiting occurred at intermediate flow speeds between 30 and 70 cm s−1. We show that trout Kármán gait in a region of the cylinder wake where the velocity deficit is about 40% of the nominal flow. We observed that the relationships between certain kinematic and flow variables are largely preserved across flow speeds. Tail-beat frequency matched the measured vortex shedding frequency, which increased linearly with flow speed. Body wave speed was about 25% faster than the nominal flow velocity. At speeds where fish have a high probability of Kármán gaiting, body wavelength was about 25% longer than the cylinder wake wavelength. Likewise, the lateral (i.e. cross-stream) amplitude of the tail tip was about 50% greater than the expected lateral spacing of the cylinder vortices, while the body center amplitude was about 70% less. Lateral body center acceleration increased quadratically with speed. Head angle decreased with flow speed. While these values are different from those found in fish swimming in uniform flow, the strategy for locomotion is the same; fish adjust to increasing flow by increasing their tail-beat frequency. Body size also played a role in Kármán gaiting kinematics. Tail-beat amplitudes of Kármán gaiting increased with body size, as in freestream swimming, but were almost three times larger in magnitude. Larger fish had a shorter body wavelength and slower body wave speed than smaller fish, which is a surprising result compared with freestream swimming, where body wavelength and wave speed increased with size. In contrast to freestream swimming, tail-beat frequency

  18. Laser ignition of hypersonic air-hydrogen flow

    NASA Astrophysics Data System (ADS)

    Brieschenk, S.; Kleine, H.; O'Byrne, S.

    2013-09-01

    An experimental investigation of the behaviour of laser-induced ignition in a hypersonic air-hydrogen flow is presented. A compression-ramp model with port-hole injection, fuelled with hydrogen gas, is used in the study. The experiments were conducted in the T-ADFA shock tunnel using a flow condition with a specific total enthalpy of 2.5 MJ/kg and a freestream velocity of 2 km/s. This study is the first comprehensive laser spark study in a hypersonic flow and demonstrates that laser-induced ignition at the fuel-injection site can be effective in terms of hydroxyl production. A semi-empirical method to estimate the conditions in the laser-heated gas kernel is presented in the paper. This method uses blast-wave theory together with an expansion-wave model to estimate the laser-heated gas conditions. The spatially averaged conditions found with this approach are matched to enthalpy curves generated using a standard chemical equilibrium code (NASA CEA). This allows us to account for differences that are introduced due to the idealised description of the blast wave, the isentropic expansion wave as well as thermochemical effects.

  19. Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows.

    PubMed

    Hejranfar, Kazem; Hajihassanpour, Mahya

    2015-01-01

    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary conditions based on the spectral solution of the governing equations implemented on the boundaries are used. An iterative procedure is applied to provide consistent initial conditions for the distribution function and the pressure field for the simulation of unsteady flows. The main advantage of using the CCSLBM over other high-order accurate lattice Boltzmann method (LBM)-based flow solvers is the decay of the error at exponential rather than at polynomial rates. Note also that the CCSLBM applied does not need any numerical dissipation or filtering for the solution to be stable, leading to highly accurate solutions. Three two-dimensional (2D) test cases are simulated herein that are a regularized cavity, the Taylor vortex problem, and doubly periodic shear layers. The results obtained for these test cases are thoroughly compared with the analytical and available numerical results and show excellent agreement. The computational efficiency of the proposed solution methodology based on the CCSLBM is also examined by comparison with those of the standard streaming-collision (classical) LBM and two finite-difference LBM solvers. The study indicates that the CCSLBM provides more accurate and efficient solutions than these LBM solvers in terms of CPU and memory usage and an exponential

  20. Inversion of Flow Depth and Speed from Tsunami Deposits using TsuSedMod

    NASA Astrophysics Data System (ADS)

    Spiske, M.; Weiss, R.; Roskosch, J.; Bahlburg, H.

    2008-12-01

    The global evolution of a tsunami wave train can be expressed by the sum of local effects along a tsunami- wave beam. The near-shore evolution of tsunami is very complex as the waves interact with the sea-bottom sediments. Filtered through offshore and onshore erosion and deposition, this evolution is recorded in the coastal area by topographical changes, local erosion and tsunami deposits. Recordable sedimentary on-site features include grain-size distributions and horizontal thickness trends. Immediately after an event, indicators of flow depth and run up extent, such as water marks on buildings and vegetation, debris and plastic bags caught in trees and swash lines, can be measured in the field. A direct measurement of the overland flow velocity is usually not possible. However, regarding recent tsunami events, videos of surveillance cameras or witness accounts helped to estimate the characteristics of overland flow. For historical and paleotsunami events such information is not directly available. Jaffe & Gelfenbaum (2007) developed an inversion model (TsuSedMod) to estimate flow depth and speed based upon the grain-size distribution and the thickness of onshore tsunami sediments. This model assumes a steady distribution of sediment in the water column, for which the appication of the Rouse equation is possible. Further simplifications, especially concerning the turbulence structure, are based on the mixing- length theory by Prandtl, the standard approximation in physical sedimentology. We calculated flow depths for sediments left behind by the 2004 Sumatra-Tsunami in India and Kenya (Weiss & Bahlburg, 2006; Bahlburg & Weiss, 2007) and by the 2006 Java-Tsunami on Java (Piepenbreier et al., 2007), using the model of Jaffe and Gelfenbaum (2007). Estimated flow depth were compared with measured data to extend the validation procedure. This extension is needed to gain confidence and understanding before the next step is taken to compute the near

  1. Spatially-Resolved Velocity Measurements in Steady, High-Speed Reacting Flows Using Laser-Induced OH Fluorescence.

    NASA Astrophysics Data System (ADS)

    Klavuhn, Kurt G.

    The theoretical development and calibration of a nonintrusive, high-resolution, optical flowfield-diagnostic technique utilizing OH laser-induced fluorescence (OH LIF) for the measurement of velocity in steady, high-speed, reacting flows is reported. The particular high-speed, reacting flows of interest are those occurring in supersonic combustors for proposed hypersonic flight vehicles. The theory of the OH LIF strategy employed in this work is described, with emphasis on the optimization of the strategy for quantitative velocity measurements. A simplified model is derived for the calculation of expected signal levels from pulsed, narrow-linewidth, (1,0) band excitation of OH in flames when collecting filtered (1,1) and (0,0) band fluorescence with a gated detector. Several illumination techniques are presented for measuring the Doppler shift of the OH LIF while eliminating systematic errors. A unique reacting underexpanded jet was constructed for the calibration of the OH LIF velocity measurement technique over a wide range of flow conditions. A complete analysis of the distribution of flow properties in the jet flowfield is presented, including results from a full Navier-Stokes calculation with finite -rate chemistry. Comparisons of results from pointwise OH LIF velocity measurements along the centerline and planar OH LIF velocity measurements along the central plane of the reacting underexpanded jet with the numerical solution demonstrate the resolution, range, and accuracy of the technique. Measured and calculated velocities in the supersonic jet core agree on average to within +/-1.3% for the pointwise measurements and +/-2.2% for the planar measurements. The uncertainty (2 sigma) in the pointwise velocity measurements in the jet core was on average +/-6.0% for a single measurement and +/-3.5% for the average value of three scans. For the planar velocity measurements in the jet core, the uncertainty (2 sigma) was on average +/-4.9% for a single measurement

  2. MHD modelling of coronal loops: injection of high-speed chromospheric flows

    NASA Astrophysics Data System (ADS)

    Petralia, A.; Reale, F.; Orlando, S.; Klimchuk, J. A.

    2014-07-01

    Context. Observations reveal a correspondence between chromospheric type II spicules and bright upward-moving fronts in the corona observed in the extreme-ultraviolet (EUV) band. However, theoretical considerations suggest that these flows are probably not the main source of heating in coronal magnetic loops. Aims: We investigate the propagation of high-speed chromospheric flows into coronal magnetic flux tubes and the possible production of emission in the EUV band. Methods: We simulated the propagation of a dense 104 K chromospheric jet upward along a coronal loop by means of a 2D cylindrical MHD model that includes gravity, radiative losses, thermal conduction, and magnetic induction. The jet propagates in a complete atmosphere including the chromosphere and a tenuous cool (~0.8 MK) corona, linked through a steep transition region. In our reference model, the jet initial speed is 70 km s-1, its initial density is 1011 cm-3, and the ambient uniform magnetic field is 10 G. We also explored other values of jet speed and density in 1D and different magnetic field values in 2D, as well as the jet propagation in a hotter (~1.5 MK) background loop. Results: While the initial speed of the jet does not allow it to reach the loop apex, a hot shock-front develops ahead of it and travels to the other extreme of the loop. The shock front compresses the coronal plasma and heats it to about 106 K. As a result, a bright moving front becomes visible in the 171 Å channel of the SDO/AIA mission. This result generally applies to all the other explored cases, except for the propagation in the hotter loop. Conclusions: For a cool, low-density initial coronal loop, the post-shock plasma ahead of upward chromospheric flows might explain at least part of the observed correspondence between type II spicules and EUV emission excess. Movies associated to Figs. 3, 6, 7 are available in electronic form at http://www.aanda.org

  3. E-ɛ modelling of turbulent air flow downwind of a model forest edge

    NASA Astrophysics Data System (ADS)

    Liu, J.; Chen, J. M.; Black, T. A.; Novak, M. D.

    1996-01-01

    A two-dimensional E-ɛ model, which included the effects of plant-atmosphere interaction, was used to simulate air flow downwind of forest edges for the purpose of predicting the microclimate in forest openings. A suitable set of wall functions was selected to consider the aerodynamic effects of the ground in the opening. The model with discretization and parameter schemes was validated using a set of data from a wind-tunnel experiment. The simulated wind speed and turbulence kinetic energy closely agreed with the measured values. After validation, the model was used to predict eddy diffusivity in the lee of the forest edge. The modelled spatial distribution of the eddy diffusivity agreed in general with that calculated using wind-tunnel measurements. The usefulness and limitations of the E-ɛ model are discussed.

  4. Flow speed within the Antarctic ice sheet and its controls inferred from satellite observations

    NASA Astrophysics Data System (ADS)

    Arthern, Robert J.; Hindmarsh, Richard C. A.; Williams, C. Rosie

    2015-07-01

    Accurate dynamical models of the Antarctic ice sheet with carefully specified initial conditions and well-calibrated rheological parameters are needed to forecast global sea level. By adapting an inverse method previously used in electric impedance tomography, we infer present-day flow speeds within the ice sheet. This inversion uses satellite observations of surface velocity, snow accumulation rate, and rate of change of surface elevation to estimate the basal drag coefficient and an ice stiffness parameter that influences viscosity. We represent interior ice motion using a vertically integrated approximation to incompressible Stokes flow. This model represents vertical shearing within the ice and membrane stresses caused by horizontal stretching and shearing. Combining observations and model, we recover marked geographical variations in the basal drag coefficient. Relative changes in basal shear stress are smaller. No simple sliding law adequately represents basal shear stress as a function of sliding speed. Low basal shear stress predominates in central East Antarctica, where thick insulating ice allows liquid water at the base to lubricate sliding. Higher shear stress occurs in coastal East Antarctica, where a frozen bed is more likely. Examining Thwaites glacier in more detail shows that the slowest sliding often coincides with elevated basal topography. Differences between our results and a similar adjoint-based inversion suggest that inversion or regularization methods can influence recovered parameters for slow sliding and finer scales; on broader scales we recover a similar pattern of low basal drag underneath major ice streams and extensive regions in East Antarctica that move by basal sliding.

  5. Quality evaluation of energy consumed in flow regulation method by speed variation in centrifugal pumps

    NASA Astrophysics Data System (ADS)

    Morales, S.; Culman, M.; Acevedo, C.; Rey, C.

    2014-06-01

    Nowadays, energy efficiency and the Electric Power Quality are two inseparable issues in the evaluation of three-phase induction motors, framed within the program of Rational and Efficient Use of Energy (RUE).The use of efficient energy saving devices has been increasing significantly in RUE programs, for example the use of variable frequency drives (VFD) in pumping systems.The overall objective of the project was to evaluate the impact on power quality and energy efficiency in a centrifugal pump driven by an induction three-phase motor, using the flow control method of speed variation by VFD. The fundamental purpose was to test the opinions continuously heard about the use of flow control methods in centrifugal pumps, analyzing the advantages and disadvantages that have been formulated deliberately in order to offer support to the industry in taking correct decisions. The VFD changes the speed of the motor-pump system increasing efficiency compared to the classical methods of regulation. However, the VFD originates conditions that degrade the quality of the electric power supplied to the system and therefore its efficiency, due to the nonlinearity and presence of harmonic currents. It was possible to analyze the power quality, ensuring that the information that comes to the industry is generally biased.

  6. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    NASA Technical Reports Server (NTRS)

    Bui, Trong

    2013-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft s swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First AIAA CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  7. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  8. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  9. Full-field high-speed laser Doppler imaging system for blood-flow measurements

    NASA Astrophysics Data System (ADS)

    Serov, Alexandre; Lasser, Theo

    2006-02-01

    We describe the design and performance of a new full-field high-speed laser Doppler imaging system developed for mapping and monitoring of blood flow in biological tissue. The total imaging time for 256x256 pixels region of interest is 1.2 seconds. An integrating CMOS image sensor is utilized to detect Doppler signal in a plurality of points simultaneously on the sample illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurement, which results in high-quality flow-images provided by the system. The new technique is real-time, non-invasive and the instrument is easy to use. The wide range of applications is one of the major challenges for a future application of the imager. High-resolution high-speed laser Doppler perfusion imaging is a promising optical technique for diagnostic and assessing the treatment effect of the diseases such as e.g. atherosclerosis, psoriasis, diabetes, skin cancer, allergies, peripheral vascular diseases, skin irritancy and wound healing. We present some biological applications of the new imager and discuss the perspectives for the future implementations of the imager for clinical and physiological applications.

  10. Calibration of a γ- Re θ transition model and its application in low-speed flows

    NASA Astrophysics Data System (ADS)

    Wang, YunTao; Zhang, YuLun; Meng, DeHong; Wang, GunXue; Li, Song

    2014-12-01

    The prediction of laminar-turbulent transition in boundary layer is very important for obtaining accurate aerodynamic characteristics with computational fluid dynamic (CFD) tools, because laminar-turbulent transition is directly related to complex flow phenomena in boundary layer and separated flow in space. Unfortunately, the transition effect isn't included in today's major CFD tools because of non-local calculations in transition modeling. In this paper, Menter's γ- Re θ transition model is calibrated and incorporated into a Reynolds-Averaged Navier-Stokes (RANS) code — Trisonic Platform (TRIP) developed in China Aerodynamic Research and Development Center (CARDC). Based on the experimental data of flat plate from the literature, the empirical correlations involved in the transition model are modified and calibrated numerically. Numerical simulation for low-speed flow of Trapezoidal Wing (Trap Wing) is performed and compared with the corresponding experimental data. It is indicated that the γ- Re θ transition model can accurately predict the location of separation-induced transition and natural transition in the flow region with moderate pressure gradient. The transition model effectively imporves the simulation accuracy of the boundary layer and aerodynamic characteristics.

  11. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  12. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow- through porosity was applied to a wind leading-edge extension (LEX) mounted to a 65 deg cropped delta wind model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free- stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp-6) per foot, angles of attack up to 30 deg and angles of sideslip to plus or minus 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex- dominated aerodynamics to the location and level of porosity applied to the LEX.

  13. Control of Interacting Vortex Flows at Subsonic and Transonic Speeds Using Passive Porosity

    NASA Technical Reports Server (NTRS)

    Erickson, Gary E.

    2003-01-01

    A wind tunnel experiment was conducted in the NASA Langley Research Center (LaRC) 8-Foot Transonic Pressure Tunnel (TPT) to determine the effects of passive surface porosity on vortex flow interactions about a general research fighter configuration at subsonic and transonic speeds. Flow-through porosity was applied to a wing leading-edge extension (LEX) mounted to a 65 deg cropped delta wing model to promote large nose-down pitching moment increments at high angles of attack. Porosity decreased the vorticity shed from the LEX, which weakened the LEX vortex and altered the global interactions of the LEX and wing vortices at high angles of attack. Six-component forces and moments and wing upper surface static pressure distributions were obtained at free-stream Mach numbers of 0.50, 0.85, and 1.20, Reynolds number of 2.5(10(exp 6)) per foot, angles of attack up to 30 deg, and angles of sideslip to +/- 8 deg. The off-surface flow field was visualized in selected cross-planes using a laser vapor screen flow visualization technique. Test data were obtained with a centerline vertical tail and with alternate twin, wing-mounted vertical fins having 0 deg and 30 deg cant angles. In addition, the porosity of the LEX was compartmentalized to determine the sensitivity of the vortex-dominated aerodynamics to the location and level of porosity applied to the LEX.

  14. Preconditioned conjugate-gradient methods for low-speed flow calculations

    NASA Technical Reports Server (NTRS)

    Ajmani, Kumud; Ng, Wing-Fai; Liou, Meng-Sing

    1993-01-01

    An investigation is conducted into the viability of using a generalized Conjugate Gradient-like method as an iterative solver to obtain steady-state solutions of very low-speed fluid flow problems. Low-speed flow at Mach 0.1 over a backward-facing step is chosen as a representative test problem. The unsteady form of the two dimensional, compressible Navier-Stokes equations is integrated in time using discrete time-steps. The Navier-Stokes equations are cast in an implicit, upwind finite-volume, flux split formulation. The new iterative solver is used to solve a linear system of equations at each step of the time-integration. Preconditioning techniques are used with the new solver to enhance the stability and convergence rate of the solver and are found to be critical to the overall success of the solver. A study of various preconditioners reveals that a preconditioner based on the Lower-Upper Successive Symmetric Over-Relaxation iterative scheme is more efficient than a preconditioner based on Incomplete L-U factorizations of the iteration matrix. The performance of the new preconditioned solver is compared with a conventional Line Gauss-Seidel Relaxation (LGSR) solver. Overall speed-up factors of 28 (in terms of global time-steps required to converge to a steady-state solution) and 20 (in terms of total CPU time on one processor of a CRAY-YMP) are found in favor of the new preconditioned solver, when compared with the LGSR solver.

  15. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    NASA Technical Reports Server (NTRS)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  16. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  17. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  18. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  19. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  20. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  1. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... meter, a thermal-mass meter, an averaging Pitot tube, or a hot-wire anemometer. (c) Flow conditioning... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Dilution air and diluted exhaust flow...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related...

  2. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  3. Performance of a Compression-ignition Engine with a Precombustion Chamber Having High-Velocity Air Flow

    NASA Technical Reports Server (NTRS)

    Spanogle, J A; Moore, C S

    1931-01-01

    Presented here are the results of performance tests made with a single-cylinder, four stroke cycle, compression-ignition engine. These tests were made on a precombustion chamber type of cylinder head designed to have air velocity and tangential air flow in both the chamber and cylinder. The performance was investigated for variable load and engine speed, type of fuel spray, valve opening pressure, injection period and, for the spherical chamber, position of the injection spray relative to the air flow. The pressure variations between the pear-shaped precombustion chamber and the cylinder for motoring and full load conditions were determined with a Farnboro electric indicator. The combustion chamber designs tested gave good mixing of a single compact fuel spray with the air, but did not control the ensuing combustion sufficiently. Relative to each other, the velocity of air flow was too high, the spray dispersion by injection too great, and the metering effect of the cylinder head passage insufficient. The correct relation of these factors is of the utmost importance for engine performance.

  4. Numerical simulation of cantilevered ramp injector flow fields for hypervelocity fuel/air mixing enhancement

    NASA Astrophysics Data System (ADS)

    Schumacher, Jurgen Christian

    Increasing demand for affordable access to space and high speed terrestrial transport has spawned research interest into various air-breathing hypersonic propulsion systems. Propulsion concepts such as the supersonic combustion ramjet (scramjet) and the shock-induced combustion ramjet (shcramjet) utilize oxygen freely available in the atmosphere and thereby substantially reduce the weight penalty of on-board oxidizer tankage used in rocket based systems. Of key importance to the ultimate success of an air-breathing concept is the ability to efficiently mix the fuel with atmospheric air. In the case of a hypersonic air-breather the challenge is accentuated due to the requirement of supersonic combustion. Flow velocities through the combustor on the order of thousands of meters per second provide the fuel and air with only a brief time to adequately combine. Contemporary mixing augmentation methods to address this issue have focused on fuel injection devices which promote axial vortices to enhance the mixing process. Much research effort has been expended on investigation of ramp injectors for this purpose. The present study introduces a new ramp injector design, based on the conventional ramp injector, dubbed the cantilevered ramp injector. A two-pronged numerical approach was employed to investigate the mixing performance and characteristics of the cantilevered injector consisting of, (1) comparison with conventional designs and (2) a parametric study of various cantilevered injector geometries. A laminar, three-dimensional, multispecies flowsolver was developed in generalized coordinates to solve the Navier-Stokes equations for the flow fields of injected H2 into high-enthalpy air. The scheme consists of an upwind TVD scheme for discretization of the convective fluxes coupled with a semi-implicit LU-SGS scheme for temporal discretization. Through analysis of the numerical solutions, it has been shown that the cantilevered ramp injector is a viable fuel injection

  5. Concurrent Flame Growth, Spread and Extinction over Composite Fabric Samples in Low Speed Purely Forced Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoyang; T'ien, James S.; Ferkul, Paul V.; Olson, Sandra L.

    2015-01-01

    As a part of the NASA BASS and BASS-II experimental projects aboard the International Space Station, flame growth, spread and extinction over a composite cotton-fiberglass fabric blend (referred to as the SIBAL fabric) were studied in low-speed concurrent forced flows. The tests were conducted in a small flow duct within the Microgravity Science Glovebox. The fuel samples measured 1.2 and 2.2 cm wide and 10 cm long. Ambient oxygen was varied from 21% down to 16% and flow speed from 40 cm/s down to 1 cm/s. A small flame resulted at low flow, enabling us to observe the entire history of flame development including ignition, flame growth, steady spread (in some cases) and decay at the end of the sample. In addition, by decreasing flow velocity during some of the tests, low-speed flame quenching extinction limits were found as a function of oxygen percentage. The quenching speeds were found to be between 1 and 5 cm/s with higher speed in lower oxygen atmosphere. The shape of the quenching boundary supports the prediction by earlier theoretical models. These long duration microgravity experiments provide a rare opportunity for solid fuel combustion since microgravity time in ground-based facilities is generally not sufficient. This is the first time that a low-speed quenching boundary in concurrent spread is determined in a clean and unambiguous manner.

  6. A comparison of typical national gas turbine establishment and NACA axial-flow compressor blade sections in cascade at low speed

    NASA Technical Reports Server (NTRS)

    Felix, A Richard; Emery, James C

    1953-01-01

    Comparative cascade tests of the NGTE (National Gas Turbine Establishment of Great Britain) 10C4/30C50 and NACA 65-(12)10 axial flow compressor blade sections were conducted in a 5-inch low-speed cascade tunnel at the Langley Laboratory at air-inlet angles of 30 degrees, 45 degrees, and 60 degrees and a solidity of 1.0 by using the porous-wall technique. These NACA data for the NGTE 10C4/30C50 section were also compared with data from NGTE design charts for the same section. British and NACA incompressible cascade force-analysis equations are included.

  7. New sensor for measurement of low air flow velocity. Phase I final report

    SciTech Connect

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II.

  8. Surface-slip equations for multicomponent nonequilibrium air flow

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Scott, C. D.; Moss, J. N.

    1985-01-01

    Equations are presented for the surface-slip (or jump) values of species concentration, pressure, velocity, and temperature in the low-Reynolds number, high-altitude flight regime of a space vehicle. The equations are obtained from closed form solutions of the mass, momentum, and energy flux equations using the Chapman-Enskog velocity distribution function. This function represents a solution of the Boltzmann equation in the Navier-Stokes approximation. The analysis, obtained for nonequilibrium multicomponent air flow, includes the finite-rate surface catalytic recombination and changes in the internal energy during reflection from the surface. Expressions for the various slip quantities were obtained in a form which can be employed in flowfield computations. A consistent set of equations is provided for multicomponent, binary, and single species mixtures. Expression is also provided for the finite-rate, species-concentration boundary condition for a multicomponent mixture in absence of slip.

  9. Plasma torch for ignition, flameholding and enhancement of combustion in high speed flows

    NASA Technical Reports Server (NTRS)

    O'Brien, Walter F. (Inventor); Billingsley, Matthew C. (Inventor); Sanders, Darius D. (Inventor); Schetz, Joseph A. (Inventor)

    2009-01-01

    Preheating of fuel and injection into a plasma torch plume fro adjacent the plasma torch plume provides for only ignition with reduced delay but improved fuel-air mixing and fuel atomization as well as combustion reaction enhancement. Heat exchange also reduced erosion of the anode of the plasma torch. Fuel mixing atomization, fuel mixture distribution enhancement and combustion reaction enhancement are improved by unsteady plasma torch energization, integral formation of the heat exchanger, fuel injection nozzle and plasma torch anode in a more compact, low-profile arrangement which is not intrusive on a highspeed air flow with which the invention is particularly effective and further enhanced by use of nitrogen as a feedstock material and inclusion of high pressure gases in the fuel to cause effervescence during injection.

  10. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  11. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  12. Study on the stability of waterpower-speed control system for hydropower station with air cushion surge chamber

    NASA Astrophysics Data System (ADS)

    Guo, W. C.; Yang, J. D.; Chen, J. P.; Teng, Y.

    2014-03-01

    According to the fact that the effects of penstock, unit and governor on stability of water level fluctuation for hydropower station with air cushion surge chamber are neglected in previous researches, in this paper, Thoma assumption is broken through, the complete mathematical model of waterpower-speed control system for hydropower station with air cushion surge chamber is established, and the comprehensive transfer function and linear homogeneous differential equation that characterize the dynamic characteristics of system are derived. The stability domain that characterizes the good or bad of stability quantitatively is drawn by using the stability conditions. The effects of the fluid inertia in water diversion system, the air cushion surge chamber parameters, hydraulic turbine characteristics, generator characteristics, and regulation modes of governor on the stability of waterpower-speed control system are analyzed through stability domain. The main conclusions are as follows: The fluid inertia in water diversion system and hydraulic turbine characteristics have unfavorable effects on the system while generator characteristics have favorable effect. The stability keeps getting better with the increase of chamber height and basal area and the decrease of air pressure and air polytropic exponent. The stability of power regulation mode is obviously better than that of frequency regulation mode.

  13. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  14. 2D velocity and temperature measurements in high speed flows based on spectrally resolved Rayleigh scattering

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.

    1992-01-01

    The use of molecular Rayleigh scattering for measurements of gas velocity and temperature is evaluated. Molecular scattering avoids problems associated with the seeding required by conventional laser anemometry and particle image velocimetry. The technique considered herein is based on the measurement of the spectrum of the scattered light. Planar imaging of Rayleigh scattering using a laser light sheet is evaluated for conditions at 30 km altitude (typical hypersonic flow conditions). The Cramer-Rao lower bounds for velocity and temperature measurement uncertainties are calculated for an ideal optical spectrum analyzer and for a planar mirror Fabry-Perot interferometer used in a static, imaging mode. With this technique, a single image of the Rayleigh scattered light from clean flows can be analyzed to obtain temperature and one component of velocity. Experimental results are presented for planar velocity measurements in a Mach 1.3 air jet.

  15. Development of a Dual-PIV system for high-speed flow applications

    NASA Astrophysics Data System (ADS)

    Schreyer, Anne-Marie; Lasserre, Jean J.; Dupont, Pierre

    2015-10-01

    A new Dual-particle image velocimetry (Dual-PIV) system for application in supersonic flows was developed. The system was designed for shock wave/turbulent boundary layer interactions with separation. This type of flow places demanding requirements on the system, from the large range of characteristic frequencies O(100 Hz-100 kHz) to spatial and temporal resolutions necessary for the measurement of turbulent quantities (Dolling in AIAA J 39(8):1517-1531, 2001; Dupont et al. in J Fluid Mech 559:255-277, 2006; Smits and Dussauge in Turbulent shear layers in supersonic flow, 2nd edn. Springer, New York, 2006). While classic PIV systems using high-resolution CCD sensors allow high spatial resolution, these systems cannot provide the required temporal resolution. Existing high-speed PIV systems provide temporal and CMOS sensor resolutions, and even laser pulse energies, that are not adapted to our needs. The only obvious solution allowing sufficiently high spatial resolution, access to high frequencies, and a high laser pulse energy is a multi-frame system: a Dual-PIV system, consisting of two synchronized PIV systems observing the same field of view, will give access to temporal characteristics of the flow. The key technology of our system is frequency-based image separation: two lasers of different wavelengths illuminate the field of view. The cross-pollution with laser light from the respective other branches was quantified during system validation. The overall system noise was quantified, and the prevailing error of only 2 % reflects the good spatial and temporal alignment. The quality of the measurement system is demonstrated with some results on a subsonic jet flow including the spatio-temporal inter-correlation functions between the systems. First measurements in a turbulent flat-plate boundary layer at Mach 2 show the same satisfactory data quality and are also presented and discussed.

  16. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  17. The Paradox of Filamented Coronal Hole Flow but Uniform High Speed Wind

    NASA Technical Reports Server (NTRS)

    Suess, Steven T.; Parhi, Shyamsundar; Moore, Ronald L.

    1998-01-01

    Plumes and rays in coronal holes are nearly radially aligned density striations that follow the ambient magnetic field. They have long been known, but have gained new interest with growing awareness that coronal hole flow is inherently filamentary. In retrospect, filamentary flow should have been no surprise. This is because,Beta much less than 1 in coronal holes inside approximately 10 Solar radius, allowing the flow to be filamentary down to the smallest scale of photospheric magnetic activity. While the magnetic field itself is locally smooth across any height above ca. 50,000 km, SOHO/MDI has shown that the photospheric magnetic field is a complex array of rapidly evolving small bipoles that are constantly emerging, evolving, and cancelling. The resulting activity is manifested in microflares, concentrated in the magnetic network, that produce Impulsive injections at the footpoints of coronal field lines. The uneven distribution of this activity in space and time is the source of coronal hole filamentation. What is surprising is that the radial flow speed also exhibits filamentary structure. It is not well described as smooth, spherically symmetric, diverging flow, but instead ranges from 300 to over 1000 km/s at 5.5 Solar radius among field-aligned filaments like those seen in plumes and rays [Feldman et al., JGR, Dec. 1997]. This is completely unlike the constant high speed solar wind reported beyond 0.3 AU. Consequently, plumes and filamentary structure must be strongly mixed, and the mixing must be far along by 0.3 AU to be consistent with Helios observations. The paradox is what causes the mixing? Existing models of coronal heating and solar wind acceleration hardly address this issue. One possibility we are investigating is the MHD Kelvin-Helmholtz instability, to which the shear between plumes and interplume corona is expected to become unstable at 5-10 Solar radius. This instability can be simulated and followed far into the nonlinear regime and may

  18. Some Effects of Air Flow on the Penetration and Distribution of Oil Sprays

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Beardsley, E G

    1929-01-01

    Tests were made to determine the effects of air flow on the characteristics of fuel sprays from fuel injection valves. Curves and photographs are presented showing the airflow throughout the chamber and the effects of the air flow on the fuel spray characteristics. It was found that the moving air had little effect on the spray penetration except with the 0.006 inch orifice. The moving air did, however, affect the oil particles on the outside of the spray cone. After spray cut-off, the air flow rapidly distributed the atomized fuel throughout the spray chamber.

  19. Speed and path control for conflict-free flight in high air traffic demand in terminal airspace

    NASA Astrophysics Data System (ADS)

    Rezaei, Ali

    To accommodate the growing air traffic demand, flights will need to be planned and navigated with a much higher level of precision than today's aircraft flight path. The Next Generation Air Transportation System (NextGen) stands to benefit significantly in safety and efficiency from such movement of aircraft along precisely defined paths. Air Traffic Operations (ATO) relying on such precision--the Precision Air Traffic Operations or PATO--are the foundation of high throughput capacity envisioned for the future airports. In PATO, the preferred method is to manage the air traffic by assigning a speed profile to each aircraft in a given fleet in a given airspace (in practice known as (speed control). In this research, an algorithm has been developed, set in the context of a Hybrid Control System (HCS) model, that determines whether a speed control solution exists for a given fleet of aircraft in a given airspace and if so, computes this solution as a collective speed profile that assures separation if executed without deviation. Uncertainties such as weather are not considered but the algorithm can be modified to include uncertainties. The algorithm first computes all feasible sequences (i.e., all sequences that allow the given fleet of aircraft to reach destinations without violating the FAA's separation requirement) by looking at all pairs of aircraft. Then, the most likely sequence is determined and the speed control solution is constructed by a backward trajectory generation, starting with the aircraft last out and proceeds to the first out. This computation can be done for different sequences in parallel which helps to reduce the computation time. If such a solution does not exist, then the algorithm calculates a minimal path modification (known as path control) that will allow separation-compliance speed control. We will also prove that the algorithm will modify the path without creating a new separation violation. The new path will be generated by adding new

  20. Speed Modulation of the Continuous-Flow Total Artificial Heart to Simulate a Physiologic Arterial Pressure Waveform

    PubMed Central

    Shiose, Akira; Nowak, Kathleen; Horvath, David J.; Massiello, Alex L.; Golding, Leonard A.R.; Fukamachi, Kiyotaka

    2010-01-01

    This study demonstrated the concept of using speed modulation in a continuous-flow total artificial heart (CFTAH) to shape arterial pressure waveforms and to adjust pressure pulsatility. A programmable function generator was used to determine the optimum pulsatile speed profile. Three speed profiles (sinusoidal, rectangular, and optimized [a profile optimized for generation of a physiologic arterial pressure waveform]) were evaluated using the CFTAH mock circulatory loop. Hemodynamic parameters were recorded at average pump speeds of 2,700 rpm and a modulation cycle of 60 beats per minute. The effects of varying physiologically relevant vascular resistance and lumped compliance on the hemodynamics were assessed. The feasibility of using speed modulation to manipulate systemic arterial pressure waveforms, including a physiologic pressure waveform, was demonstrated in vitro. The additional pump power consumption needed to generate a physiologic pulsatile pressure was 16.2% of the power consumption in nonpulsatile continuous-flow mode. The induced pressure waveforms and pulse pressure were shown to be very responsive to changes in both systemic vascular resistance and arterial compliance. This system also allowed pulsatile pulmonary arterial waveform. Speed modulation in the continuous-flow total artificial heart could enable physicians to obtain desired pressure waveforms by simple manual adjustment of speed control input waveforms. PMID:20616704

  1. Requirements for Large Eddy Simulation Computations of Variable-Speed Power Turbine Flows

    NASA Technical Reports Server (NTRS)

    Ameri, Ali A.

    2016-01-01

    Variable-speed power turbines (VSPTs) operate at low Reynolds numbers and with a wide range of incidence angles. Transition, separation, and the relevant physics leading to them are important to VSPT flow. Higher fidelity tools such as large eddy simulation (LES) may be needed to resolve the flow features necessary for accurate predictive capability and design of such turbines. A survey conducted for this report explores the requirements for such computations. The survey is limited to the simulation of two-dimensional flow cases and endwalls are not included. It suggests that a grid resolution necessary for this type of simulation to accurately represent the physics may be of the order of Delta(x)+=45, Delta(x)+ =2 and Delta(z)+=17. Various subgrid-scale (SGS) models have been used and except for the Smagorinsky model, all seem to perform well and in some instances the simulations worked well without SGS modeling. A method of specifying the inlet conditions such as synthetic eddy modeling (SEM) is necessary to correctly represent the inlet conditions.

  2. Network Analysis of the Evolution of Traffic Flow with Speed Information

    NASA Astrophysics Data System (ADS)

    Li, Xin-Gang; Gao, Zi-You; Zheng, Jian-Feng; Jia, Bin

    In the cellular automata traffic flow model, the traffic state can be represented by the discrete speed value of vehicles, thus the traffic flow can be deemed as a discrete dynamical system. In the evolution process of traffic flow, complex networks are constructed by representing the traffic state as node and the evolution relationship in timescale as link. The emerging times of link is defined as its weight, then the node strength is equal to the emerging times of the corresponding traffic state. As a result, a weighted network is obtained. The dynamics of stop-and-go traffic are studied by investigating the statistical properties of the network. Simulation results show that scale-free behavior commonly exists in the evolution process of stop-and-go traffic. The degree distribution, node strength distribution and link weight distribution have the power law form. The node with high degree also has large strength. The structure of the network is not influenced by the randomization probability and density as long as the stop-and-go traffic is reproduced.

  3. Subsonic Aerodynamic Assessment of Vortex Flow Management Devices on a High-Speed Civil Transport Configuration

    NASA Technical Reports Server (NTRS)

    Campbell, Bryan A.; Applin, Zachary T.; Kemmerly, Guy T.

    1999-01-01

    An experimental investigation of the effects of leading-edge vortex management devices on the subsonic performance of a high-speed civil transport (HSCT) configuration was conducted in the Langley 14- by 22-Foot Subsonic Tunnel. Data were obtained over a Mach number range of 0.14 to 0.27, with corresponding chord Reynolds numbers of 3.08 x 10 (sup 6) to 5.47 x 10 (sup 6). The test model was designed for a cruise Mach number of 2.7. During the subsonic high-lift phase of flight, vortical flow dominates the upper surface flow structure, and during vortex breakdown, this flow causes adverse pitch-up and a reduction of usable lift. The experimental results showed that the beneficial effects of small leading-edge vortex management devices located near the model reference center were insufficient to substantially affect the resulting aerodynamic forces and moments. However, devices located at or near the wiring apex region demonstrated potential for pitch control with little effect on overall lift.

  4. ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.; Mokhtari, Simin

    1990-01-01

    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling.

  5. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  6. Characterizing and distinguishing free and jammed traffic flows from the distribution and correlation of experimental speed data

    NASA Astrophysics Data System (ADS)

    Tadaki, Shin-ichi; Kikuchi, Macoto; Nakayama, Akihiro; Shibata, Akihiro; Sugiyama, Yuki; Yukawa, Satoshi

    2016-08-01

    From a physics point of view, the emergence of a traffic jam is considered to be a dynamical phase transition. To verify this, we performed a series of circuit experiments. In previous work, Tadaki et al (2013 New J. Phys 15 103034), we confirmed the occurrence of this phase transition and estimated the critical density between free and jammed flows by analyzing the fundamental diagram. In this paper, we characterize and distinguish free and jammed flows, beyond the analyses of fundamental diagrams, according to the distribution and correlation of experimental speed data. We find that the speed in free flow does not correlate and its distribution has a narrow single peak at the average. The distribution of speed in jammed flow has two peaks or a single broad peak. The two peaks indicate the car speeds inside and outside of jam clusters. The broad single peak appears as a result of the appearance and disappearance of jam clusters. We also find that the formation of jam clusters induces a long correlation in speed. We can identify the size of jam clusters and the relative distance between coexisting jam clusters from this speed correlation.

  7. Optical Measurement of the Speed of Sound in Air Over the Temperature Range 300-650 K

    NASA Technical Reports Server (NTRS)

    Hart, Roger C.; Balla, R. Jeffrey; Herring, G. C.

    2000-01-01

    Using laser-induced thermal acoustics (LITA), the speed of sound in room air (1 atm) is measured over the temperature range 300-650 K. Since the LITA apparatus maintains a fixed sound wavelength as temperature is varied, this temperature range simultaneously corresponds to a sound frequency range of 10-15 MHz. The data are compared to a published model and typically agree within 0.1%-0.4% at each of 21 temperatures.

  8. On the influence of singlet oxygen molecules on the speed of flame propagation in methane-air mixture

    SciTech Connect

    Starik, A.M.; Kozlov, V.E.; Titova, N.S.

    2010-02-15

    The effect of the presence of singlet oxygen molecules O{sub 2}(a{sup 1}{delta}{sub g}) in a CH{sub 4}-air mixture on the speed of laminar flame propagation is considered. The known experimental data on the laminar flame speed and ignition delay are used to validate the developed kinetic model involving electronically excited oxygen molecules O{sub 2}(a{sup 1}{delta}{sub g}) and O{sub 2}(b{sup 1}{sigma}{sub g}{sup +}). Numerical simulation shows that the presence of 10% O{sub 2}(a{sup 1}{delta}{sub g}) in molecular oxygen enables to increase significantly (by a factor of 1.7) the speed of flame propagation in a fuel-lean ({phi}=0.45) methane-air mixture. The main reason for such an acceleration of flame propagation is the intensification of chain reactions due to addition of singlet delta oxygen molecules. For a fuel-rich mixture ({phi}=1.9), the growth in the flame speed is significantly smaller and attains a factor of 1.4. (author)

  9. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  10. A Novel Strategy for Numerical Simulation of High-speed Turbulent Reacting Flows

    NASA Technical Reports Server (NTRS)

    Sheikhi, M. R. H.; Drozda, T. G.; Givi, P.

    2003-01-01

    The objective of this research is to improve and implement the filtered mass density function (FDF) methodology for large eddy simulation (LES) of high-speed reacting turbulent flows. We have just completed Year 1 of this research. This is the Final Report on our activities during the period: January 1, 2003 to December 31, 2003. 2002. In the efforts during the past year, LES is conducted of the Sandia Flame D, which is a turbulent piloted nonpremixed methane jet flame. The subgrid scale (SGS) closure is based on the scalar filtered mass density function (SFMDF) methodology. The SFMDF is basically the mass weighted probability density function (PDF) of the SGS scalar quantities. For this flame (which exhibits little local extinction), a simple flamelet model is used to relate the instantaneous composition to the mixture fraction. The modelled SFMDF transport equation is solved by a hybrid finite-difference/Monte Carlo scheme.

  11. Thermokarst Lake Gyre Flow Speed and Direction Derivation Using Image Matching from Sequential Satellite Images

    NASA Astrophysics Data System (ADS)

    Zhan, S.; Wang, S.; Beck, R. A.; Liu, H.; Hinkel, K. M.

    2014-12-01

    Thermokarst lakes on the Arctic Coastal Plain of northern Alaska are closely coupled with the regional climate through energy, water and carbon budgets. These lakes exhibit striking elongated shapes perpendicular to the prevailing wind direction. This has led to the hypothesis that the expansion of lakes is caused by thermomechanical processes induced by wind-driven water circulation. The predominant bimodal wind regime in the region (easterly and westerly wind) redistributes lake sediment towards the west and east shores to form protective littoral shelves while the north and south shores are preferentially eroded. Previous research on wind-driven circulation in thermokarst lakes was mainly based on in situ studies which can only collect sparse measurements and is time-consuming. Examination of satellite imagery clearly reveals the wide-spread presence of gyres in thermokarst lakes. It allows the study of gyres and other circulation patterns at both lake and regional scales. This study examines the movement (speed, direction) of a 10-km-wide gyre using a Landsat-7 and an ASTER scene taken about 40 minutes apart. These two images are matched using a robust image matching technique based on cross-correlation. Flow speed and direction for the gyre are extracted from the images and are compared with the in situ measurements collected during previous field work. This study provides insight into the evolution of thermokarst lakes and their interaction with the local climate by quantifying gyre circulation rates over entire lakes.

  12. Modeling of High Speed Reacting Flows: Established Practices and Future Challenges

    NASA Technical Reports Server (NTRS)

    Baurle, R. A.

    2004-01-01

    Computational fluid dynamics (CFD) has proven to be an invaluable tool for the design and analysis of high- speed propulsion devices. Massively parallel computing, together with the maturation of robust CFD codes, has made it possible to perform simulations of complete engine flowpaths. Steady-state Reynolds-Averaged Navier-Stokes simulations are now routinely used in the scramjet engine development cycle to determine optimal fuel injector arrangements, investigate trends noted during testing, and extract various measures of engine efficiency. Unfortunately, the turbulence and combustion models used in these codes have not changed significantly over the past decade. Hence, the CFD practitioner must often rely heavily on existing measurements (at similar flow conditions) to calibrate model coefficients on a case- by-case basis. This paper provides an overview of the modeled equations typically employed by commercial- quality CFD codes for high-speed combustion applications. Careful attention is given to the approximations employed for each of the unclosed terms in the averaged equation set. The salient features (and shortcomings) of common models used to close these terms are covered in detail, and several academic efforts aimed at addressing these shortcomings are discussed.

  13. Determination of volume fractions in two-phase flows from sound speed measurement

    SciTech Connect

    Chaudhuri, Anirban; Sinha, Dipen N.; Osterhoudt, Curtis F.

    2012-08-15

    Accurate measurement of the composition of oil-water emulsions within the process environment is a challenging problem in the oil industry. Ultrasonic techniques are promising because they are non-invasive and can penetrate optically opaque mixtures. This paper presents a method of determining the volume fractions of two immiscible fluids in a homogenized two-phase flow by measuring the speed of sound through the composite fluid along with the instantaneous temperature. Two separate algorithms are developed by representing the composite density as (i) a linear combination of the two densities, and (ii) a non-linear fractional formulation. Both methods lead to a quadratic equation with temperature dependent coefficients, the root of which yields the volume fraction. The densities and sound speeds are calibrated at various temperatures for each fluid component, and the fitted polynomial is used in the final algorithm. We present results when the new algorithm is applied to mixtures of crude oil and process water from two different oil fields, and a comparison of our results with a Coriolis meter; the difference between mean values is less than 1%. Analytical and numerical studies of sensitivity of the calculated volume fraction to temperature changes and calibration errors are also presented.

  14. Fluidic assembly for an ultra-high-speed chromosome flow sorter

    DOEpatents

    Gray, J.W.; Alger, T.W.; Lord, D.E.

    1978-11-26

    A fluidic assembly for an ultra-high-speed chromosome flow sorter using a fluid drive system of high pressure in the range of 250 to 1000 psi for greater flow velocity, a nozzle with an orifice having a small ratio of length to diameter for laminar flow rates well above the critical Reynolds number for the high flow velocity, and means for vibrating the nozzle along its axis at high frequencies in a range of about 300 kHz to 800 kHz ae described. The orifice is provided with a sharp edge at its inlet, and a conical section at its outlet for a transition from a short cylindrical aperture of small length to diameter ratio to free space. Sample and sheath fluids in separte low pressure reservoirs are transferred into separate high pressure buffer reservoirs through valve means which first permit the fluids to be loaded into the buffer reservoirs under low pressure. Once loaded, the buffer reservoirs are subjected ato high pressure and valves are operated to permit the buffer reservoirs to be emptied through the nozzle under high pressure. A sensor and decision logic is positioned at the exit of the nozzle, and a charging pulse is applied to the jet when a particle reaches a position further downstream where the droplets are formed. In order to adjust the timing of charge pulses, the distance between the sensing station at the outlet of the nozzle and the droplet breakoff point is determined by stroboscopic illumination of the droplet breakoff region using a laser and a revolving lucite cylinder for breaking up the coherency of the laser, and a beam on/off modulator. The breakoff point in the region thus illuminated may then be viewed, using a television monitor.

  15. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    SciTech Connect

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  16. Dynamic stochastic optimization models for air traffic flow management

    NASA Astrophysics Data System (ADS)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  17. Investigations of Air-Cooled Turbine Rotors for Turbojet Engines. 1: Experimental Disk Temperature Distribution in Modified J33 Split-Disk Rotor at Speeds up to 6000 RPM

    NASA Technical Reports Server (NTRS)

    Schramm, Wilson B.; Ziemer, Robert R.

    1952-01-01

    An experimental investigation is being conducted at the Lewis laboratory to establish general principles for the design of noncritical turbine rotor configurations. This investigation includes evaluation of cooling effectiveness, structural stability, cooling-air flow distribution characteristics, and methods of supplying cooling air to the turbine rotor blades. Prior to design of a noncritical rotor, a standard turbine rotor of a commerical turbojet engine was split in the plane of rotation and machined to provide a passage for distributing cooling air to the base of each blade. The rotor was fitted with nontwisted, hollow, aircooled blades containing nine tubes in the coolant passage. In the investigation reported herein, the modified turbine rotor operated successfully up to speeds of 6000 rpm with ratios of cooling-air to combustion-gas flow as low as 0.02. The disk temperatures observed at these conditions were below 450 0 F when cooling air at 100 F was used from the laboratory air system. The calculated disk temperatures based on the correlation method presented for rated engine conditions were well below 1000 F at a cooling-air flow ratio of 0.02, which is considered adequate for a noncritical rotor. An appreciable difference in temperature level existed between the forward and rear disks. This temperature difference probably introduced undesirable disk stress distributions as a result of the relative elongations of the two disks. This investigation was terminated at 6000 rpm so that slight changes in the engine configuration could be made to relieve this condition.

  18. Efficient real gas Navier-Stokes computations of high speed flows using an LU scheme

    NASA Technical Reports Server (NTRS)

    Coirier, William J.

    1990-01-01

    An efficient method to account for the chemically frozen thermodynamic and transport properties of air in three dimensional Navier-Stokes calculations was demonstrated. This approach uses an explicitly specified equation of state (EOS) so that the fluid pressure, temperature and transport properties are directly related to the flow variables. Since the pressure is explicitly known as a general function of the flow variables no assumptions are made regarding the pressure derivatives in the construction of the flux Jacobians. The method is efficient since no sub-iterations are required to deduce the pressure and temperature from the flux variables and allows different equations of state to be easily supplied to the code. The flexibility of the EOS approach is demonstrated by implementing a high order TVD upwinding scheme based upon flux differencing and Van Leer's flux vector splitting. The EOS approach is demonstrated by computing the hypersonic flow through the corner region of two mutually perpendicular flat plates and through a simplified model of a scramjet module gap-seal configuration.

  19. Laminar burning speed measurements of indolene-air-diluent mixtures at high pressures and temperatures

    SciTech Connect

    Rhodes, D.B.; Keck, J.C.

    1985-01-01

    The laminar burning speeds of two practical multi-component hydrocarbon fuels similar to automotive gasoline were measured using a spherical combustion bomb with central ignition. Mixtures with equivalence ratios between 0.7 and 1.6, and volume fractions of simulated residual gas between 0 and 0.3 were tested at pressures from 0.4 atm to 12 atm and unburned gas temperatures from 350 K to 550 K. The laminar burning speeds were fitted to a power function expression involving the unburned gas pressure and temperature, and the diluent fraction. The pressure and temperature dependences of the laminar burning speed for undiluted mixtures agreed well with values reported by other investigators for various fuels, indicating that these dependences are independent of fuel type. The percentage reduction in laminar burning speed due to the addition of simulated residual gas was found to be a function only of the amount added, independent of the properties of the mixture.

  20. Relationship of O(+) Field-Aligned Flows and Densities to Convection Speed in the Polar Cap at 5000 km Altitude

    NASA Technical Reports Server (NTRS)

    Stevenson, B. A.; Horwitz, J. L.; Creel, B.; Elliott, H. A.; Comfort, R. H.; Su, Y. J.; Moore, T. E.; Craven, P. D.

    1999-01-01

    Measurements of thermal O(+) ion number fluxes, densities, field-aligned velocities, and convective velocities from the Thermal Ion Dynamics Experiment (TIDE) on POLAR obtained near 5000 km altitude over the Southern hemisphere are examined. We find that the O(+) parallel velocities and densities are strongly related to the convection speeds. The polar cap densities decrease rapidly with convection speed, with a linear least square fit formula to bin averaged data giving the relationship log(N(sub (sub _)O(+))) = -0.33* V(sub (sub _)conv)) + 0.07, with a linear regression coefficient of r = -0.96. The parallel bulk flow velocities are on average slightly downward (0 - 2 km/s) for V(sub (sub _)conv) < 2.5 km/s, but tend to be upward (0 - 4 km/s) for average V(sub (sub _)conv) > 2.5 km/s. We interpret these relationships in terms of the Cleft Ion Fountain paradigm [e.g., Horwitz and Lockwood, 1985]. The densities decline with convection speed owing to increased spreading and resulting dilution from the restricted cleft source over the polar cap area with convection speed. The parallel velocities tend to be downward for low convection speeds because they fall earthward after initial cleft injection at shorter distances into the polar cap for low convection speeds. At the higher convection speeds, the initially-upward flows are transported further into the polar cap and thus occupy a larger area of the polar cap.

  1. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot low speed wind tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at model scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  2. Hot gas ingestion testing of an advanced STOVL concept in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel with flow visualization

    NASA Technical Reports Server (NTRS)

    Johns, Albert L.; Flood, Joseph D.; Strock, Thomas W.; Amuedo, Kurt C.

    1988-01-01

    Advanced Short Takeoff/Vertical Landing (STOVL) aircraft capable of operating from remote sites, damaged runways, and small air capable ships are being pursued for deployment around the turn of the century. To achieve this goal, it is important that the technologies critical to this unique class of aircraft be developed. Recognizing this need, NASA Lewis Research Center, McDonnell Douglas Aircraft, and DARPA defined a cooperative program for testing in the NASA Lewis 9- by 15-foot Low Speed Wind Tunnel (LSWT) to establish a database for hot gas ingestion, one of the technologies critical to STOVL. Results from a test program are presented along with a discussion of the facility modifications allowing this type of testing at modal scale. These modifications to the tunnel include a novel ground plane, an elaborate model support which included 4 degrees of freedom, heated high pressure air for nozzle flow, a suction system exhaust for inlet flow, and tunnel sidewall modifications. Several flow visualization techniques were employed including water mist in the nozzle flows and tufts on the ground plane. Headwind (free-stream) velocity was varied from 8 to 23 knots.

  3. Application of Filtered Spherical Harmonics Radiation Transport to High-Speed Reactive Flow

    NASA Astrophysics Data System (ADS)

    Houim, Ryan; Oran, Elaine

    2015-11-01

    Radiative heat transfer is an important, but often neglected, process in high-speed reacting and multiphase flow applications. Some scenarios, such as dust explosions in coal mines, can have regions that are nearly transparent and other regions with high dust concentration that are optically thick. Most approximations to the radiative transfer equation (RTE) are not valid in both limits simultaneously. Issues also arise when solving approximations to the RTE that can often require the solution of elliptic equations. Many compressible hydrodynamic codes use explicit time-marching and block-structured adaptive-mesh-refinement algorithms. Adapting these codes to solve elliptic equations is not always straightforward. Recently, filtered spherical harmonics (FPN) approximations to the RTE have been developed. The FPN equations are hyperbolic and, as a result, can be solved using algorithms that are similar Godunov's method for compressible fluid flow. The FPN model is also valid in optically thick and thin situations provided that the order, N, is high enough. We show that the FPN equations are a promising alternative to traditional RTE approximations. Challenging test cases that involve both free-streaming and optically thick regions will be presented.

  4. An Improved Discrete-Time Model for Heterogeneous High-Speed Train Traffic Flow

    NASA Astrophysics Data System (ADS)

    Xu, Yan; Jia, Bin; Li, Ming-Hua; Li, Xin-Gang

    2016-03-01

    This paper aims to present a simulation model for heterogeneous high-speed train traffic flow based on an improved discrete-time model (IDTM). In the proposed simulation model, four train control strategies, including departing strategy, traveling strategy, braking strategy, overtaking strategy, are well defined to optimize train movements. Based on the proposed simulation model, some characteristics of train traffic flow are investigated. Numerical results indicate that the departure time intervals, the station dwell time, the section length, and the ratio of fast trains have different influence on traffic capacity and train average velocity. The results can provide some theoretical support for the strategy making of railway departments. Supported by the National Basic Research Program of China under Grant No. 2012CB725400, the National Natural Science Foundation of China under Grant No. 71222101, the Research Foundation of State Key Laboratory of Rail Traffic Control and Safety under Grant No. RCS2014ZT16, and the Fundamental Research Funds for the Central Universities No. 2015YJS088, Beijing Jiaotong University

  5. Effect of Sweep on Cavity Flow Fields at Subsonic and Transonic Speeds

    NASA Technical Reports Server (NTRS)

    Tracy, Maureen B.; Plentovich, Elizabeth B.; Hemsch, Michael J.; Wilcox, Floyd J.

    2012-01-01

    An experimental investigation was conducted in the NASA Langley 7 x 10-Foot High Speed Tunnel (HST) to study the effect of leading- and trailing-edge sweep on cavity flow fields for a range of cavity length-to-height (l/h) ratios. The free-stream Mach number was varied from 0.2 to 0.8. The cavity had a depth of 0.5 inches, a width of 2.5 inches, and a maximum length of 12.0 inches. The leading- and trailing-edge sweep was adjusted using block inserts to achieve leading edge sweep angles of 65 deg, 55 deg, 45 deg, 35 deg, and 0 deg. The fore and aft cavity walls were always parallel. The aft wall of the cavity was remotely positioned to achieve a range of length-to-depth ratios. Fluctuating- and static-pressure data were obtained on the floor of the cavity. The fluctuating pressure data were used to determine whether or not resonance occurred in the cavity rather than to provide a characterization of the fluctuating pressure field. Qualitative surface flow visualization was obtained using a technique in which colored water was introduced into the model through static-pressure orifices. A complete tabulation of the mean static-pressure data for the swept leading edge cavities is included.

  6. A laser-induced heat flux technique for convective heat transfer measurements in high speed flows

    NASA Technical Reports Server (NTRS)

    Porro, A. R.; Keith, T. G., Jr.; Hingst, W. R.

    1991-01-01

    A technique is developed to measure the local convective heat transfer coefficient on a model surface in a supersonic flow field. The technique uses a laser to apply a discrete local heat flux at the model test surface, and an infrared camera system determines the local temperature distribution due to the heating. From this temperature distribution and an analysis of the heating process, a local convective heat transfer coefficient is determined. The technique was used to measure the local surface convective heat transfer coefficient distribution on a flat plate at nominal Mach numbers of 2.5, 3.0, 3.5, and 4.0. The flat plate boundary layer initially was laminar and became transitional in the measurement region. The experimentally determined convective heat transfer coefficients were generally higher than the theoretical predictions for flat plate laminar boundary layers. However, the results indicate that this nonintrusive optical measurement technique has the potential to measure surface convective heat transfer coefficients in high speed flow fields.

  7. Numerical modeling of power generation from high-speed flows. II. Application, analysis, and design

    NASA Astrophysics Data System (ADS)

    Lorzel, Heath; Mikellides, Pavlos

    2011-05-01

    The upgraded nonequilibrium magnetohydrodynamics (MHD) solver MACH2 is applied to the modeling of an annular, Hall-type MHD generator that can be employed upstream of a turbojet engine at freestream conditions corresponding to Mach 5 flight at an altitude of 20 km. The simulations demonstrate the feasibility of converting inlet kinetic power to storable electric power on aircraft traveling at supersonic to hypersonic speeds. Using ionization provided by electron-beam guns and a radial magnetic field B = 3T, the generator is shown to produce a maximum of 4.8 MW of electric power while reducing the total kinetic power of the flow by 31%. Optimizing the loading parameter, K*Load, across the electrodes demonstrates that the generator could produce 1.54 MW of excess electric power that can be stored and used for on-board power requirements. Additionally, the reduction in flow kinetic power results in an increase in static pressure of 30% and a reduction in stagnation temperature of 3% at the turbojet's compressor inlet, aiding the subsequent process of combustion and allowing for operation of the turbojet at higher velocities.

  8. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    NASA Astrophysics Data System (ADS)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  9. Theoretical Evaluation of Electroactive Polymer Based Micropump Diaphragm for Air Flow Control

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Zhang, Qiming

    2004-01-01

    An electroactive polymer (EAP), high energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) [P(VDFTrFE)] copolymer, based actuation micropump diaphragm (PAMPD) have been developed for air flow control. The displacement strokes and profiles as a function of amplifier and frequency of electric field have been characterized. The volume stroke rates (volume rate) as function of electric field, driving frequency have been theoretically evaluated, too. The PAMPD exhibits high volume rate. It is easily tuned with varying of either amplitude or frequency of the applied electric field. In addition, the performance of the diaphragms were modeled and the agreement between the modeling results and experimental data confirms that the response of the diaphragms follow the design parameters. The results demonstrated that the diaphragm can fit some future aerospace applications to replace the traditional complex mechanical systems, increase the control capability and reduce the weight of the future air dynamic control systems. KEYWORDS: Electroactive polymer (EAP), micropump, diaphragm, actuation, displacement, volume rate, pumping speed, clamping ratio.

  10. Experimental study on gas-liquid flow characteristics of submerged air jets

    NASA Astrophysics Data System (ADS)

    Qin, S. J.; Liu, J. T.; Miao, T. C.; Wu, D. Z.

    2016-05-01

    The gas-liquid flow structure and interfacial behavior of submerged air jets were investigated experimentally using high speed digital video camera and image processing techniques. The jet pressure ratio varied from 1.8 to 4.8 in the experiment. And results from different jet nozzles were processed and compared. Statistical characteristics of the jet diameters along the axial distance were obtained and analyzed. Time series analysis was implemented to study the interface unsteadiness by calculating the gas-liquid interface deviation. The results showed that the jet diameters increase first linearly then nonlinearly and its growth rate decreases along the axial distance. The reason for the divergence between the result of this experiment and those done by other researchers was analyzed. Comparing the results of different pressure ratios and nozzle diameters, we found that larger jet pressure ratios have larger jet diameters and nozzle diameters nearly have no bearing on the distribution of dimensionless jet diameters. The interface unsteadiness in low and high pressure ratios exhibited totally distinct properties. And a minimum unsteady value was found along the axis of the air jets.

  11. Spray features in the near field of a flow-blurring injector investigated by high-speed visualization and time-resolved PIV

    NASA Astrophysics Data System (ADS)

    Jiang, Lulin; Agrawal, Ajay K.

    2015-05-01

    In a flow-blurring (FB) injector, atomizing air stagnates and bifurcates at the gap upstream of the injector orifice. A small portion of the air penetrates into the liquid supply line to create a turbulent two-phase flow. Pressure drop across the injector orifice causes air bubbles to expand and burst thereby disintegrating the surrounding liquid into a fine spray. In previous studies, we have demonstrated clean and stable combustion of alternative liquid fuels, such as biodiesel, straight vegetable oil and glycerol by using the FB injector without requiring fuel pre-processing or combustor hardware modification. In this study, high-speed visualization and time-resolved particle image velocimetry (PIV) techniques are employed to investigate the FB spray in the near field of the injector to delineate the underlying mechanisms of atomization. Experiments are performed using water as the liquid and air as the atomizing gas for air to liquid mass ratio of 2.0. Flow visualization at the injector exit focused on a field of view with physical dimensions of 2.3 mm × 1.4 mm at spatial resolution of 7.16 µm per pixel, exposure time of 1 µs, and image acquisition rate of 100 k frames per second. Image sequences illustrate mostly fine droplets indicating that the primary breakup by FB atomization likely occurs within the injector itself. A few larger droplets appearing mainly at the injector periphery undergo secondary breakup by Rayleigh-Taylor instabilities. Time-resolved PIV is applied to quantify the droplet dynamics in the injector near field. Plots of instantaneous, mean, and root-mean-square droplet velocities are presented to reveal the secondary breakup process. Results show that the secondary atomization to produce fine and stable spray is complete within a few diameters from the injector exit. These superior characteristics of the FB injector are attractive to achieve clean combustion of different fuels in practical systems.

  12. Numerical prediction of air flow within street canyons based on different two-equation k-ɛ models

    NASA Astrophysics Data System (ADS)

    Yazid, Afiq Witri Muhammad; Azwadi Che Sidik, Nor; Salim, Salim Mohamed; Hamizah Mohamad Yusoff, Nur

    2013-12-01

    Numerical simulations on airflow within street canyons were performed to investigate the effect of the street aspect ratio and wind speed on velocity profiles inside a street canyon. Three-dimensional Standard, Renormalization Group (RNG) and Realizable k-ɛ turbulence model are employed using the commercial CFD code FLUENT to solve the Reynolds-averaged Navier-Stokes (RANS) equations. A comparison of the results from the presently adopted models with those previously published demonstrated that the k-e model is most reliable when simulating wind flow. The model is then employed to predict the flow structures in a street canyon for a range of aspect ratios (building height to street width ratio) between 0.5 - 2 at Reynolds number of 9000, 19200 and 30700 corresponding to the ambient wind speeds of 0.68m/s, 1.46m/s and 2.32m/s respectively. It is observed that the flow structure in the street canyon is influenced by the buildings aspect ratios and prevailing wind speeds. As the street aspect ratio increases, the air ventilation within the canyon reduces.

  13. A diagram of wind speed versus air-sea temperature difference to understand the dynamics of the marine atmospheric boundary layer off northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2015-04-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at land-sea coastline discontinuities. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from measurement platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents updated results of measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal and offshore sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the North Sea illustrates how the wind characteristics vary spatially over large distances. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  14. MODELING AIR FLOW DYNAMICS IN RADON MITIGATION SYSTEMS: A SIMPLIFIED APPROACH

    EPA Science Inventory

    The paper refines and extends an earlier study--relating to the design of optimal radon mitigation systems based on subslab depressurization-- that suggested that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained betw...

  15. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  16. Ignition of hydrocarbon-air supersonic flow by volumetric ionization

    NASA Astrophysics Data System (ADS)

    Goldfeld, Marat A.; Pozdnyakov, George A.

    2015-11-01

    The paper describes the results of the electron-beam initiation of the combustion in the mixtures of hydrogen, natural gas or kerosene vapors with air. Electron beam characteristics were studied in closed volume with immobile gas. The researches included definition of an integrated current of an electronic beam, distribution of a current density and an estimation of average energy of electrons. Possibility of fuel mixtures ignition by means of this approach in the combustor at high velocity at the entrance was demonstrated. Experiments were carried out at Mach numbers of 4 and 5. Process of ignition and combustion under electron beam action was researched. It was revealed that ignition of mixture occurs after completion of electron gun operation. Data obtained have confirmed effectiveness of electron beam application for ignition of hydrogen and natural gas. The numerical simulation of the combustion of mixture in channel was carried out by means of ANSYS CFD 12.0 instrumentation on the basis of Reynolds averaged Navier-Stokes equation using SST/k-ω turbulence model. For combustion modeling, a detailed kinetic scheme with 38 reactions of 8 species was implemented taking into account finite rate chemistry. Computations have shown that the developed model allow to predict ignition of a mixture and flame propagation even at low flow temperatures.

  17. Quasi-three dimensional hydraulic design and performance calculation of high specific speed mixed-flow pump

    NASA Astrophysics Data System (ADS)

    Su, M.; Zhang, Y. X.; Zhang, J. Y.; Hou, H. C.

    2016-05-01

    According to the basic parameters of 211-80 high specific speed mixed-flow pump, based on the quasi-three dimensional flow theory, the hydraulic design of impeller and its matching spaced guide vanes for high specific speed mixed flow pump was completed, in which the iterative calculation of S 1, S 2 stream surfaces was employed to obtain meridional flow fields and the point-by-point integration method was employed to draw blade camber lines. Blades are thickened as well as blade leading edges are smoothed in the conformal mapping surface. Subsequently the internal fields of the whole flow passage of the designed pump were simulated by using RANS equations with RNG k-ε two-equation turbulent model. The results show that, compared with the 211-80 model, the hydraulic efficiency of the designed pump at the optimal flow rate increases 9.1%. The hydraulic efficiency of designed pump in low flow rate condition (78% designed flow rate) increases 6.46%. The hydraulic efficiency in high flow rate areas increases obviously and there is no bad phenomenon of suddenly decrease of hydraulic efficiency in model pump. From the distributions of velocity and pressure fields, it can be seen that the flow in impeller is uniform and the increase of pressure is gentle. There are no obvious impact phenomenon on impeller inlet and obvious wake shedding vortex phenomenon from impeller outlet to guide vanes inlet.

  18. Inversion of tsunami characteristics:Estimation of transient flow depth and speed with quantified uncertainties

    NASA Astrophysics Data System (ADS)

    Tang, H.; Weiss, R.; Xiao, H.; Wang, J.

    2014-12-01

    Tsunami deposits are recordings of tsunami events, containing the information about the flow conditions during events. Deciphering quantitative information from the deposits is especially important for paleo events where deposits are the only left-over physical evidence. Inversion of the flow conditions has been attempted in the past. One summarizing conclusion from the different inversion models is that it is a difficult endeavor, and the physical meaning of the inverted quantities depends on the physical assumptions that are applied. The aim of our study is to relate the time-varying characteristics of tsunamis with the deposits, and quantify the error and uncertainty that go with it. For this, we combine TsuSpeedv1 for the deposition with the Ensemble Kalman Filter (EnkF) method to study the deposition of an idealized deposit by one tsunami wave. In our modeling, we assume that information from the idealized deposit at different depths within the deposits can be used as observations, and the coupling between TsuSpeedv1 and EnkF allows us to correct for the different flow conditions causing deposition as the tsunami travels over a certain area. Applying an idealized deposit enables us to study the uncertainty and error that accompanies the inversion process by, for example, varying the number of unknown variables that we aim to invert, or how many observations are available, among others. Our tentative results indicate that sampling methods and sampling frequencies of tsunami deposit influence not only the magnitude of the inverted variables, but also their error and uncertainty. An interesting result of our technique is that a larger number of samples from a given tsunami deposits does not automatically mean that the inversion of, for example, flow speed and flow depth is more robust with smaller error and decreased uncertainty. The same also holds for the number of measured grain-size classes in the deposits. From a more general viewpoint, these two examples

  19. High-speed PIV measurements of the near-wall flow field over hairy surfaces

    NASA Astrophysics Data System (ADS)

    Winzen, Andrea; Klaas, Michael; Schröder, Wolfgang

    2013-03-01

    The geometry of the barn owl wing, that is, the planform, the camber line, and the thickness distribution, differs significantly from the wing geometry of other bird species of comparable weight and size. Moreover, the owl wing possesses special features like a velvet-like surface, fringes on the trailing edge, and a serrated leading edge. The influence on the flow field of one of the specific adaptations of the owl wing, namely the velvet-like surface structure on the suction side, was analyzed via high-speed particle-image velocimetry. Measurements were performed in a Reynolds number range of 40,000 ≤ Re c ≤ 120,000 based on the chord length and angles of attack of 0° ≤ α ≤ 6°. As a reference, a clean wing model which possesses the geometry of a natural owl wing with its distinct nose region and large thickness in conjunction with a small chordwise position of the maximum thickness was measured. A separation bubble on the suction side of the wing was found to be the dominant flow feature. The results were compared with measurements performed with the same model geometry covered with two artificial surface structures that resemble the surface of the natural wing to investigate the influence of these surfaces on the flow field. The first artificial textile, referred to as velvet 1, was selected to imitate the filament length, density, and thus the softness of the natural surface. Velvet 2, the second artificial texture, possesses longer, softer filaments and a preferred filament direction. A strong influence of the surface structures on the flow field was found for both velvet structures. The velvet seems to force the transition process in the wall-bounded shear layer at higher Reynolds numbers by redistributing the turbulent kinetic energy and thus enables the flow to reattach earlier. This leads to a stabilization and in some cases even to a reduction of the size of the separation bubble on the suction side of the wing.

  20. Inverse modeling of onshore tsunami flow speed and depth - examples from the 2004 Indian Ocean and 2006 Java tsunami

    NASA Astrophysics Data System (ADS)

    Spiske, Michaela; Weiss, Robert; Bahlburg, Heinrich; Roskosch, Julia; Amijaya, Hendra

    2010-05-01

    Flow depth and speed are important parameters that describe the overland flow of a tsunami. These parameters are in many cases known for recent events, but are not available for historical or paleo-tsunami. Inverse modeling uses the thickness, grain-size distribution and grain density of a tsunami deposit to estimate flow speeds and depths necessary to entrain the given sediment. In our study we used TsuSedMod, an inverse model by Jaffe and Gelfenbaum (2007). The model assumes a steady and uniform flow, and an equilibrium distribution of sediment in the water column. Additionally, the model assumes that only 10% of the sediment is transported as bed load and that a typical tsunami sediment is normally graded. An a priori assumption of TsuSedMod is the fact that no erosion by subsequent wave runup or backwash has altered the tsunami deposit in question. This, however, cannot be verified. We applied TsuSedMod to invert sediments from the 2004 Indian Ocean tsunami in India and Kenya, and of the 2006 Java tsunami in Southern Java. Model results for flow depths and observed field data were compared in order to validate the model. The comparisons show that model outputs appear to reasonably estimate the observed flow parameters along the surveyed tsunami runup sections. The computed flow depths and speeds of all runup sections show a landward decreasing trend. This is due to the general landward fining and thinning trends of tsunami layers; whereas thicker tsunami layers deposited in morphological depressions or coarser grained swash lines diverge from this general trend. Several subsequent waves of the tsunami wave train interfere close to the shoreline and result in an more scattered distribution of the computed runup parameters. The computed results become more diagnostic farther inland, where only single waves with higher inundation distances leave deposits. In one of the Java runup sections, an abrupt decrease of both flow depth and speed within a short distance can