Science.gov

Sample records for air foil bearings

  1. Performance of Simple Gas Foil Thrust Bearings in Air

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2012-01-01

    Foil bearings are self-acting hydrodynamics devices used to support high speed rotating machinery. The advantages that they offer to process fluid lubricated machines include: high rotational speed capability, no auxiliary lubrication system, non-contacting high speed operation, and improved damping as compared to rigid hydrodynamic bearings. NASA has had a sporadic research program in this technology for almost 6 decades. Advances in the technology and understanding of foil journal bearings have enabled several new commercial products in recent years. These products include oil-free turbochargers for both heavy trucks and automobiles, high speed electric motors, microturbines for distributed power generation, and turbojet engines. However, the foil thrust bearing has not received a complimentary level of research and therefore has become the weak link of oil-free turbomachinery. In an effort to both provide machine designers with basic performance parameters and to elucidate the underlying physics of foil thrust bearings, NASA Glenn Research Center has completed an effort to experimentally measure the performance of simple gas foil thrust bearing in air. The database includes simple bump foil supported thrust bearings with full geometry and manufacturing techniques available to the user. Test conditions consist of air at ambient pressure and temperatures up to 500 C and rotational speeds to 55,000 rpm. A complete set of axial load, frictional torque, and rotational speed is presented for two different compliant sub-structures and inter-pad gaps. Data obtained from commercially available foil thrust bearings both with and without active cooling is presented for comparison. A significant observation made possible by this data set is the speed-load capacity characteristic of foil thrust bearings. Whereas for the foil journal bearing the load capacity increases linearly with rotational speed, the foil thrust bearing operates in the hydrodynamic high speed limit. In

  2. Foil bearings

    NASA Astrophysics Data System (ADS)

    Elrod, David A.

    1993-11-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  3. Foil bearings

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1993-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are: (1) rolling or sliding contact within the bearing has life-limiting consequences; and (2) REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contracts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exists for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. This report describes the first phase of a structural analysis of a bending-dominated, multileaf CFB. A brief discussion of CFB literature is followed by a description and results of the present analysis.

  4. The Effect of Journal Roughness and Foil Coatings on the Performance of Heavily Loaded Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2001-01-01

    Foil air bearing load capacity tests were conducted to investigate if a solid lubricant coating applied to the surface of the bearing's top foil can function as a break-in coating. Two foil coating materials, a conventional soft polymer film (polyimide) and a hard ceramic (alumina), were independently evaluated against as-ground and worn (run-in) journals coated with NASA PS304, a high-temperature solid lubricant composite coating. The foil coatings were evaluated at journal rotational speeds of 30,000 rpm and at 25 C. Tests were also performed on a foil bearing with a bare (uncoated) nickel-based superalloy top foil to establish a baseline for comparison. The test results indicate that the presence of a top foil solid lubricant coating is effective at increasing the load capacity performance of the foil bearing. Compared to the uncoated baseline, the addition of the soft polymer coating on the top foil increased the bearing load coefficient by 120% when operating against an as-ground journal surface and 85 percent against a run-in journal surface. The alumina coating increased the load coefficient by 40% against the as-ground journal but did not have any affect when the bearing was operated with the run-in journal. The results suggest that the addition of solid lubricant films provide added lubrication when the air film is marginal indicating that as the load capacity is approached foil air bearings transition from hydrodynamic to mixed and boundary lubrication.

  5. The Role of Radial Clearance on the Performance of Foil Air Bearings

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Howard, Samuel; Dykas, Brian

    2002-01-01

    Load capacity tests were conducted to determine how radial clearance variations affect the load capacity coefficient of foil air bearings. Two Generation III foil air bearings with the same design but possessing different initial radial clearances were tested at room temperature against an as-ground PS304 coated journal operating at 30,000 rpm. Increases in radial clearance were accomplished by reducing the journal's outside diameter via an in-place grinding system. From each load capacity test the bearing load capacity coefficient was calculated from the rule-of-thumb (ROT) model developed for foil air bearings. The test results indicate that, in terms of the load capacity coefficient, radial clearance has a direct impact on the performance of the foil air bearing. Each test bearing exhibited an optimum radial clearance that resulted in a maximum load capacity coefficient. Relative to this optimum value are two separate operating regimes that are governed by different modes of failure. Bearings operating with radial clearances less than the optimum exhibit load capacity coefficients that are a strong function of radial clearance and are prone to a thermal runaway failure mechanism and bearing seizure. Conversely, a bearing operating with a radial clearance twice the optimum suffered only a 20 percent decline in its maximum load capacity coefficient and did not experience any thermal management problems. However, it is unknown to what degree these changes in radial clearance had on other performance parameters, such as the stiffness and damping properties of the bearings.

  6. A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Zaldana, Antonio R.; Radil, Kevin C.

    2002-01-01

    Foil air bearings are self-acting hydrodynamic bearings which rely upon solid lubricants to reduce friction and minimize wear during sliding which occurs at start-up and shut-down when surface speeds are too low to allow the formation of a hydrodynamic air film. This solid lubrication is typically accomplished by coating the non-moving foil surface with a thin, soft polymeric film. The following paper introduces a systems approach in which the solid lubrication is provided by a combination of self lubricating shaft coatings coupled with various wear resistant and lubricating foil coatings. The use of multiple materials, each providing different functions is modeled after oil-lubricated hydrodynamic sleeve bearing technology which utilizes various coatings and surface treatments in conjunction with oil lubricants to achieve optimum performance. In this study, room temperature load capacity tests are performed on journal foil air bearings operating at 14,000 rpm. Different shaft and foil coating technologies such as plasma sprayed composites, ceramic, polymer and inorganic lubricant coatings are evaluated as foil bearing lubricants. The results indicate that bearing performance is improved through the individual use of the lubricants and treatments tested. Further, combining several solid lubricants together yielded synergistically better results than any material alone.

  7. Changes in Hardware in Order to Accommodate Compliant Foil Air Bearings of a Larger Size

    NASA Technical Reports Server (NTRS)

    Zeszotek, Michelle

    2004-01-01

    Compliant foil air bearings are at the forefront of the Oil-Free turbomachinery revolution of supporting gas turbine engines with air lubricated hydrodynamic bearings. Foil air bearings have existed for almost fifty years, yet their commercialization has been confined to relatively small, high-speed systems characterized by low temperatures and loads, such as in air cycle machines, turbocompressors and micro-turbines. Recent breakthroughs in foil air bearing design and solid lubricant coating technology, have caused a resurgence of research towards applying Oil-Free technology to more demanding applications on the scale of small and mid range aircraft gas turbine engines. In order to foster the transition of Oil-Free technology into gas turbine engines, in-house experiments need to be performed on foil air bearings to further the understanding of their complex operating principles. During my internship at NASA Glenn in the summer of 2003, a series of tests were performed to determine the internal temperature profile in a compliant bump- type foil journal air bearing operating at room temperature under various speeds and load conditions. From these tests, a temperature profile was compiled, indicating that the circumferential thermal gradients were negligible. The tests further indicated that both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. As a result of the findings from the tests done during the summer of 2003, it was decided that further testing would need to be done, but with a bearing of a larger diameter. The bearing diameter would now be increased from two inches to three inches. All of the currently used testing apparatus was designed specifically for a bearing that was two inches in diameter. Thus, my project for the summer of 2004 was to focus specifically on the scatter shield put around the testing rig while running the bearings. Essentially

  8. Load Capacity Estimation of Foil Air Journal Bearings for Oil-Free Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.

  9. System Being Developed to Measure the Rotordynamic Characteristics of Air Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.

    2000-01-01

    Because of the many possible advantages of oil-free engine operation, interest in using air lubricated foil-bearing technology in advanced oil-free engine concepts has recently increased. The Oil-Free Turbomachinery Program at the NASA Glenn Research Center at Lewis Field has partially driven this recent push for oil-free technology. The program's goal of developing an innovative, practical, oil-free gas turbine engine for aeropropulsion began with the development of NASA's high-temperature solid-lubricant coating, PS304. This coating virtually eliminates the life-limiting wear that occurs during the startup and shutdown of the bearings. With practically unlimited life, foil air bearings are now very attractive to rotating machinery designers for use in turbomachinery. Unfortunately, the current knowledge base of these types of bearings is limited. In particular, the understanding of how these types of bearings contribute to the rotordynamic stability of turbomachinery is insufficient for designers to design with confidence. Recent work in oil-free turbomachinery has concentrated on advancing the understanding of foil bearings. A high-temperature fiber-optic displacement probe system and measurement method were developed to study the effects of speed, load, temperature, and other environmental issues on the stiffness characteristics of air foil bearings. Since high temperature data are to be collected in future testing, the testing method was intentionally simplified to minimize the need for expensive test hardware. The method measures the displacement induced upon a bearing in response to an applied perturbation load. The early results of these studies, which are shown in the accompanying figure, indicate trends in steady state stiffness that suggest stiffness increases with load and decreases with speed. It can be seen, even from these data, that stiffness is not expected to change by orders of magnitude over the normal operating range of most turbomachinery; a

  10. Performance and Durability of High Temperature Foil Air Bearing for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    1999-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304, is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  11. Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Lukaszewicz, V.; Valco, M. J.; Radil, K. C.; Heshmat, H.

    2000-01-01

    The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.

  12. An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing

    NASA Technical Reports Server (NTRS)

    Radil, Kevin; Zeszotek, Michelle

    2004-01-01

    A series of tests was performed to determine the internal temperature profile in a compliant bump-type foil journal air bearing operating at room temperature under various speeds and load conditions. The temperature profile was collected by instrumenting a foil bearing with nine, type K thermocouples arranged in the center and along the bearing s edges in order to measure local temperatures and estimate thermal gradients in the axial and circumferential directions. To facilitate the measurement of maximum temperatures from viscous shearing in the air film, the thermocouples were tack welded to the backside of the bumps that were in direct contact with the top foil. The mating journal was coated with a high temperature solid lubricant that, together with the bearing, underwent high temperature start-stop cycles to produce a smooth, steady-state run-in surface. Tests were conducted at speeds from 20 to 50 krpm and loads ranging from 9 to 222 N. The results indicate that, over the conditions tested, both journal rotational speed and radial load are responsible for heat generation with speed playing a more significant role in the magnitude of the temperatures. The temperature distribution was nearly symmetric about the bearing center at 20 and 30 krpm but became slightly skewed toward one side at 40 and 50 krpm. Surprisingly, the maximum temperatures did not occur at the bearing edge where the minimum film thickness is expected but rather in the middle of the bearing where analytical investigations have predicted the air film to be much thicker. Thermal gradients were common during testing and were strongest in the axial direction from the middle of the bearing to its edges, reaching 3.78 8C/mm. The temperature profile indicated the circumferential thermal gradients were negligible.

  13. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    NASA Astrophysics Data System (ADS)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  14. On the nonlinear steady-state response of rigid rotors supported by air foil bearings-Theory and experiments

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.

    2015-06-01

    The demand for oil-free turbo compressors is increasing. Current trends are divided between active magnetic bearings and air foil bearings (AFB), the latter being important due to mechanical simplicity. AFB supported rotors are sensitive to unbalance due to low damping and nonlinear characteristics, hence accurate prediction of their response is important. This paper gives theoretical and experimental contributions by implementing and validating a new method to simulate the nonlinear steady-state response of a rotor supported by three pads segmented AFBs. The fluid film pressures, foil deflections and rotor movements are simultaneously solved, considering foil stiffness and damping coefficients estimated using a structural model, previously described and validated against experiments.

  15. Technical Development Path for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2008-01-01

    Foil gas bearings are in widespread commercial use in air cycle machines, turbocompressors and microturbine generators and are emerging in more challenging applications such as turbochargers, auxiliary power units and propulsion gas turbines. Though not well known, foil bearing technology is well over fifty years old. Recent technological developments indicate that their full potential has yet to be realized. This paper investigates the key technological developments that have characterized foil bearing advances. It is expected that a better understanding of foil gas bearing development path will aid in future development and progress towards more advanced applications.

  16. Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher; Valco, Mark J.; Prahl, Joseph M.; Heshmat, Hooshang

    2001-01-01

    Using a high-temperature optically based displacement measurement system, a foil air bearing's stiffness and damping characteristics were experimentally determined. Results were obtained over a range of modified Sommerfeld Number from 1.5E6 to 1.5E7, and at temperatures from 25 to 538 C. An Experimental procedure was developed comparing the error in two curve fitting functions to reveal different modes of physical behavior throughout the operating domain. The maximum change in dimensionless stiffness was 3.0E-2 to 6.5E-2 over the Sommerfeld Number range tested. Stiffness decreased with temperature by as much as a factor of two from 25 to 538 C. Dimensionless damping was a stronger function of Sommerfeld Number ranging from 20 to 300. The temperature effect on damping being more qualitative, showed the damping mechanism shifted from viscous type damping to frictional type as temperature increased.

  17. Stability of rigid rotors supported by air foil bearings: Comparison of two fundamental approaches

    NASA Astrophysics Data System (ADS)

    Larsen, Jon S.; Santos, Ilmar F.; von Osmanski, Sebastian

    2016-10-01

    High speed direct drive motors enable the use of Air Foil Bearings (AFB) in a wide range of applications due to the elimination of gear forces. Unfortunately, AFB supported rotors are lightly damped, and an accurate prediction of their Onset Speed of Instability (OSI) is therefore important. This paper compares two fundamental methods for predicting the OSI. One is based on a nonlinear time domain simulation and another is based on a linearised frequency domain method and a perturbation of the Reynolds equation. Both methods are based on equivalent models and should predict similar results. Significant discrepancies are observed leading to the question, is the classical frequency domain method sufficiently accurate? The discrepancies and possible explanations are discussed in detail.

  18. A New Foil Air Bearing Test Rig for Use to 700 C and 70,000 rpm

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1997-01-01

    A new test rig has been developed for evaluating foil air bearings at high temperatures and speeds. These bearings are self acting hydrodynamic air bearings which have been successfully applied to a variety of turbomachinery operating up to 650 C. This unique test rig is capable of measuring bearing torque during start-up, shut-down and high speed operation. Load capacity and general performance characteristics, such as durability, can be measured at temperatures to 700 C and speeds to 70,000 rpm. This paper describes the new test rig and demonstrates its capabilities through the preliminary characterization of several bearings. The bearing performance data from this facility can be used to develop advanced turbomachinery incorporating high temperature oil-free air bearing technology.

  19. Evaluation of Advanced Solid Lubricant Coatings for Foil Air Bearings Operating at 25 and 500 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Fellenstein, James A.; Benoy, Patricia A.

    1998-01-01

    The tribological properties of one chrome oxide and one chrome carbide based solid lubricant coating were evaluated in a partial-arc foil bearing at 25 and 500 C. Start/stop bearing operation up to 20,000 cycles were run under 10 kPa (1.5 psi) static deadweight load. Bearing friction (torque) was measured during the test. Specimen wear and SEM/EDS surface analyses were conducted after testing to understand and elucidate the tribological characteristics observed. The chrome oxide coating which contains both (Ag) and (BaF2/CaF2) for low and high temperature lubrication, exhibited low friction in sliding against Al2O3 coated foils at 25 and 500 C. The chrome carbide coating, which lacked a low temperature lubricant but contained BaF2/CaF2 as a high temperature lubricant, exhibited high friction at 25 C and low friction at 500 C against both bare and Al2O3 coated superalloy foil surfaces. Post test surface analyses suggest that improved tribological performance is exhibited when a lubricant film from the coating transfers to the foil surface.

  20. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  1. Bending fatigue of electron-beam-welded foils. Application to a hydrodynamic air bearing in the Chrysler/DOE upgraded automotive gas tubine engine

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1984-01-01

    A hydrodynamic air bearing with a compliment surface is used in the gas generator of an upgraded automotive gas turbine engine. In the prototype design, the compliant surface is a thin foil spot welded at one end to the bearing cartridge. During operation, the foil failed along the line of spot welds which acted as a series of stress concentrators. Because of its higher degree of geometric uniformity, electron beam welding of the foil was selected as an alternative to spot welding. Room temperature bending fatigue tests were conducted to determine the fatigue resistance of the electron beam welded foils. Equations were determined relating cycles to crack initiation and cycles to failure to nominal total strain range. A scaling procedure is presented for estimating the reduction in cyclic life when the foil is at its normal operating temperature of 260 C (500 F).

  2. Passive Thermal Management of Foil Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J. (Inventor)

    2015-01-01

    Systems and methods for passive thermal management of foil bearing systems are disclosed herein. The flow of the hydrodynamic film across the surface of bearing compliant foils may be disrupted to provide passive cooling and to improve the performance and reliability of the foil bearing system.

  3. Mystery of Foil Air Bearings for Oil-free Turbomachinery Unlocked: Load Capacity Rule-of-thumb Allows Simple Estimation of Performance

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2002-01-01

    The Oil-Free Turbomachinery team at the NASA Glenn Research Center has unlocked one of the mysteries surrounding foil air bearing performance. Foil air bearings are self-acting hydrodynamic bearings that use ambient air, or any fluid, as their lubricant. In operation, the motion of the shaft's surface drags fluid into the bearing by viscous action, creating a pressurized lubricant film. This lubricating film separates the stationary foil bearing surface from the moving shaft and supports load. Foil bearings have been around for decades and are widely employed in the air cycle machines used for cabin pressurization and cooling aboard commercial jetliners. The Oil-Free Turbomachinery team is fostering the maturation of this technology for integration into advanced Oil-Free aircraft engines. Elimination of the engine oil system can significantly reduce weight and cost and could enable revolutionary new engine designs. Foil bearings, however, have complex elastic support structures (spring packs) that make the prediction of bearing performance, such as load capacity, difficult if not impossible. Researchers at Glenn recently found a link between foil bearing design and load capacity performance. The results have led to a simple rule-of-thumb that relates a bearing's size, speed, and design to its load capacity. Early simple designs (Generation I) had simple elastic (spring) support elements, and performance was limited. More advanced bearings (Generation III) with elastic supports, in which the stiffness is varied locally to optimize gas film pressures, exhibit load capacities that are more than double those of the best previous designs. This is shown graphically in the figure. These more advanced bearings have enabled industry to introduce commercial Oil-Free gas-turbine-based electrical generators and are allowing the aeropropulsion industry to incorporate the technology into aircraft engines. The rule-of-thumb enables engine and bearing designers to easily size and

  4. Foil bearing research at Penn State

    NASA Astrophysics Data System (ADS)

    Carpino, Marc

    1993-11-01

    Foil journal bearings consist of a compliant metal shell or foil which supports a rigid journal by means of a fluid film. Foil bearings are considered to be a potential alternative to rolling element or traditional rigid surface bearings in cryogenic turbomachinery applications. The prediction of foil bearing performance requires the coupled solution of the foil deflection and the fluid flow in the bearing clearance between the rotor and the foil. The investigations being conducted in the Department of Mechanical Engineering at Penn State are focused in three areas: theoretical prediction of steady state bearing performance, modeling of the dynamic bearing characteristics to determine performance in rotor systems, and experimental verification of analysis codes. The current status and results from these efforts will be discussed.

  5. A Preliminary Foil Gas Bearing Performance Map

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2006-01-01

    Recent breakthrough improvements in foil gas bearing load capacity, high temperature tribological coatings and computer based modeling have enabled the development of increasingly larger and more advanced Oil-Free Turbomachinery systems. Successful integration of foil gas bearings into turbomachinery requires a step wise approach that includes conceptual design and feasibility studies, bearing testing, and rotor testing prior to full scale system level demonstrations. Unfortunately, the current level of understanding of foil gas bearings and especially their tribological behavior is often insufficient to avoid developmental problems thereby hampering commercialization of new applications. In this paper, a new approach loosely based upon accepted hydrodynamic theory, is developed which results in a "Foil Gas Bearing Performance Map" to guide the integration process. This performance map, which resembles a Stribeck curve for bearing friction, is useful in describing bearing operating regimes, performance safety margins, the effects of load on performance and limiting factors for foil gas bearings.

  6. Gas Foil Bearing Misalignment and Unbalance Effects

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    The effects of misalignment and unbalance on gas foil bearings are presented. The future of U.S. space exploration includes plans to conduct science missions aboard space vehicles, return humans to the Moon, and place humans on Mars. All of these endeavors are of long duration, and require high amounts of electrical power for propulsion, life support, mission operations, etc. One potential source of electrical power of sufficient magnitude and duration is a nuclear-fission-based system. The system architecture would consist of a nuclear reactor heat source with the resulting thermal energy converted to electrical energy through a dynamic power conversion and heat rejection system. Various types of power conversion systems can be utilized, but the Closed Brayton Cycle (CBC) turboalternator is one of the leading candidates. In the CBC, an inert gas heated by the reactor drives a turboalternator, rejects excess heat to space through a heat exchanger, and returns to the reactor in a closed loop configuration. The use of the CBC for space power and propulsion is described in more detail in the literature (Mason, 2003). In the CBC system just described, the process fluid is a high pressure inert gas such as argon, krypton, or a helium-xenon mixture. Due to the closed loop nature of the system and the associated potential for damage to components in the system, contamination of the working fluid is intolerable. Since a potential source of contamination is the lubricant used in conventional turbomachinery bearings, Gas Foil Bearings (GFB) have high potential for the rotor support system. GFBs are compliant, hydrodynamic journal and thrust bearings that use a gas, such as the CBC working fluid, as their lubricant. Thus, GFBs eliminate the possibility of contamination due to lubricant leaks into the closed loop system. Gas foil bearings are currently used in many commercial applications, both terrestrial and aerospace. Aircraft Air Cycle Machines (ACMs) and ground

  7. Large deflection analysis of a tension-foil bearing

    NASA Technical Reports Server (NTRS)

    Elrod, David A.

    1996-01-01

    The rolling element bearings (REB's) which support many turbomachinery rotors offer high load capacity, low power requirements, and durability. Two disadvantages of REB's are as follows: rolling or sliding contact within the bearing has life-limiting consequences; and REB's provide essentially no damping. The REB's in the Space Shuttle Main Engine (SSME) turbopumps must sustain high static and dynamic loads, at high speeds, with a cryogenic fluid as lubricant and coolant. The pump end ball bearings limit the life of the SSME high pressure oxygen turbopump (HPOTP). Compliant foil bearing (CFB) manufacturers have proposed replacing turbopump REB's with CFB's. CFB's work well in aircraft air cycle machines, auxiliary power units, and refrigeration compressors. In a CFB, the rotor only contacts the foil support structure during start up and shut down. CFB damping is higher than REB damping. However, the load capacity of the CFB is low, compared to a REB. Furthermore, little stiffness and damping data exist for the CFB. A rotordynamic analysis for turbomachinery critical speeds and stability requires the input of bearing stiffness and damping coefficients. The two basic types of CFB are the tension-dominated bearing and the bending-dominated bearing. Many investigators have analyzed and measured characteristics of tension-dominated foil bearings, which are applied principally in magnetic tape recording. The bending-dominated CFB is used more in rotating machinery. Recently, a new tension-foil bearing configuration has been proposed for turbomachinery applications.

  8. Foil bearing performance in liquid nitrogen and liquid oxygen

    NASA Technical Reports Server (NTRS)

    Genge, Gary G.; Saville, Marshall; Gu, Alston

    1993-01-01

    Space transfer vehicles and other power and propulsion systems require long-life turbopumps. Rolling-element bearings used in current turbopumps do not have sufficient life for these applications. Process fluid foil bearings have established long life, with exceptional reliability, over a wide range of temperatures and fluids in many high-speed turbomachinery applications. However, actual data on bearing performance in cryogenic fluids has been minimal. The National Aeronautics and Space Administration (NASA) and AlliedSignal Aerospace Systems and Equipment (ASE) have attempted to characterize the leaf-type compliant foil bearing in oxygen and nitrogen. The work performed under a joint internal research and development program between Marshall Space Flight Center (MSFC) and ASE demonstrated that the foil bearing has load capacities of at least 266 psi in liquid oxygen and 352 psi in liquid nitrogen. In addition, the bearing demonstrated a direct damping coefficient of 40 to 50 lb-sec/in. with a damping ratio of .7 to 1.4 in. liquid nitrogen using a bearing sized for upper-stage turbopumps. With the results from this testing and the years of successful use in air cycle machines and other applications, leaf-type compliant foil bearings are ready for testing in liquid oxygen turbopumps.

  9. Wind turbine with adjustable air foils

    SciTech Connect

    Pryor, D.H.

    1983-05-17

    A wind turbine has axially aligned, spaced, rotatable support flanges with a plurality of vertically aligned air foils having opposed ends journaled thereto. The air foils are pivoted respective to the wind by a pitch flange mounted eccentrically respective to the support flanges. The pitch flange moves the air foils into an aligned relationship respective to the wind to optimize the energy derived from the blowing wind.

  10. Method to Increase Performance of Foil Bearings Through Passive Thermal Management

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    This invention is a new approach to designing foil bearings to increase their load capacity and improve their reliability through passive thermal management. In the present case, the bearing is designed in such a way as to prevent the carryover of lubricant from the exit of one sector to the inlet of the ensuing sector of the foil bearing. When such passive thermal management techniques are used, bearing load capacity is improved by multiples, and reliability is enhanced when compared to current foil bearings. This concept has recently been tested and validated, and shows that load capacity performance of foil bearings can be improved by a factor of two at relatively low speeds with potentially greater relative improvements at higher speeds. Such improvements in performance with respect to speed are typical of foil bearings. Additionally, operation of these newly conceived bearings shows much more reliability and repeatable performance. This trait can be exploited in machine design to enhance safety, reliability, and overall performance. Finally, lower frictional torque has been demonstrated when operating at lower (non-load capacity) loads, thus providing another improvement above the current state of the art. The objective of the invention is to incorporate features into a foil bearing that both enhance passive thermal management and temperature control, while at the same time improve the hydrodynamic (load capacity) performance of the foil bearing. Foil bearings are unique antifriction devices that can utilize the working fluid of a machine as a lubricant (typically air for turbines and motors, liquids for pumps), and as a coolant to remove excess energy due to frictional heating. The current state of the art of foil bearings utilizes forced cooling of the bearing and shaft, which represents poor efficiency and poor reliability. This invention embodies features that utilize the bearing geometry in such a manner as to both support load and provide an inherent and

  11. An Oil-Free Thrust Foil Bearing Facility Design, Calibration, and Operation

    NASA Technical Reports Server (NTRS)

    Bauman, Steve

    2005-01-01

    New testing capabilities are needed in order to foster thrust foil air bearing technology development and aid its transition into future Oil-Free gas turbines. This paper describes a new test apparatus capable of testing thrust foil air bearings up to 100 mm in diameter at speeds to 80,000 rpm and temperatures to 650 C (1200 F). Measured parameters include bearing torque, load capacity, and bearing temperatures. This data will be used for design performance evaluations and for validation of foil bearing models. Preliminary test results demonstrate that the rig is capable of testing thrust foil air bearings under a wide range of conditions which are anticipated in future Oil-Free gas turbines. Torque as a function of speed and temperature corroborates results expected from rudimentary performance models. A number of bearings were intentionally failed with no resultant damage whatsoever to the test rig. Several test conditions (specific speeds and loads) revealed undesirable axial shaft vibrations which have been attributed to the magnetic bearing control system and are under study. Based upon these preliminary results, this test rig will be a valuable tool for thrust foil bearing research, parametric studies and technology development.

  12. High temperature self-lubricating coatings for air lubricated foil bearings for the automotive gas turbine engine

    NASA Technical Reports Server (NTRS)

    Bhushan, B.

    1980-01-01

    coating combinations were developed for compliant surface bearings and journals to be used in an automotive gas turbine engine. The coatings were able to withstand the sliding start/stops during rotor liftoff and touchdown and occasional short time, high speed rubs under representative loading of the engine. Some dozen coating variations of CdO-graphite, Cr2O3 (by sputtering) and CaF2 (plasma sprayed) were identified. The coatings were optimized and they were examined for stoichiometry, metallurgical condition, and adhesion. Sputtered Cr2O3 was most adherent when optimum parameters were used and it was applied on an annealed (soft) substrate. Metallic binders and interlayers were used to improve the ductility and the adherence.

  13. Fluid-film foil bearings control engine heat

    NASA Astrophysics Data System (ADS)

    O'Connor, Leo

    1993-05-01

    The state-of-the-art of fluid-film foil bearings and their current and prospective applications are briefly reviewed. In particular, attention is given to the general design of fluid-film foil bearings, the materials used, and bearing performance. The applications discussed include launch vehicle turbopumps, turbines used to cool aircraft cabins, and turbocompressors and turboexpanders used in the processing of cryogenic fluids. Future applications may include turbochargers, textile spindles, cryocoolers, motor blowers, heat pumps, and solar chillers.

  14. Misalignment in Gas Foil Journal Bearings: An Experimental Study

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2008-01-01

    As gas foil journal bearings become more prevalent in production machines, such as small gas turbine propulsion systems and microturbines, system-level performance issues must be identified and quantified in order to provide for successful design practices. Several examples of system-level design parameters that are not fully understood in foil bearing systems are thermal management schemes, alignment requirements, balance requirements, thrust load balancing, and others. In order to address some of these deficiencies and begin to develop guidelines, this paper presents a preliminary experimental investigation of the misalignment tolerance of gas foil journal bearing systems. Using a notional gas foil bearing supported rotor and a laser-based shaft alignment system, increasing levels of misalignment are imparted to the bearing supports while monitoring temperature at the bearing edges. The amount of misalignment that induces bearing failure is identified and compared to other conventional bearing types such as cylindrical roller bearings and angular contact ball bearings. Additionally, the dynamic response of the rotor indicates that the gas foil bearing force coefficients may be affected by misalignment.

  15. Compliant Foil Journal Bearing Performance at Alternate Pressures and Temperatures

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; Puleo, Bernadette J.

    2008-01-01

    An experimental test program has been conducted to determine the highly loaded performance of current generation gas foil bearings at alternate pressures and temperatures. Typically foil bearing performance has been reported at temperatures relevant to turbomachinery applications but only at an ambient pressure of one atmosphere. This dearth of data at alternate pressures has motivated the current test program. Two facilities were used in the test program, the ambient pressure rig and the high pressure rig. The test program utilized a 35 mm diameter by 27 mm long foil journal bearing having an uncoated Inconel X-750 top foil running against a shaft with a PS304 coated journal. Load capacity tests were conducted at 3, 6, 9, 12, 15, 18, and 21 krpm at temperatures from 25 to 500 C and at pressures from 0.1 to 2.5 atmospheres. Results show an increase in load capacity with increased ambient pressure and a reduction in load capacity with increased ambient temperature. Below one-half atmosphere of ambient pressure a dramatic loss of load capacity is experienced. Additional lightly loaded foil bearing performance in nitrogen at 25 C and up to 48 atmospheres of ambient pressure has also been reported. In the lightly loaded region of operation the power loss increases for increasing pressure at a fixed load. Knowledge of foil bearing performance at operating conditions found within potential machine applications will reduce program development risk of future foil bearing supported turbomachines.

  16. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery.

    PubMed

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper--fabricated by compressing a copper wire mesh--with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250,000 rpm and axial displacements as a function of rotational speed are presented. PMID:24182175

  17. Note: Radial-thrust combo metal mesh foil bearing for microturbomachinery

    NASA Astrophysics Data System (ADS)

    Park, Cheol Hoon; Choi, Sang Kyu; Hong, Doo Euy; Yoon, Tae Gwang; Lee, Sung Hwi

    2013-10-01

    This Note proposes a novel radial-thrust combo metal mesh foil bearing (MMFB). Although MMFBs have advantages such as higher stiffness and damping over conventional air foil bearings, studies related to MMFBs have been limited to radial MMFBs. The novel combo MMFB is composed of a radial top foil, thrust top foils, and a ring-shaped metal mesh damper—fabricated by compressing a copper wire mesh—with metal mesh thrust pads for the thrust bearing at both side faces. In this study, the combo MMFB was fabricated in half-split type to support the rotor for a micro gas turbine generator. The manufacture and assembly process for the half-split-type combo MMFB is presented. In addition, to verify the proposed combo MMFB, motoring test results up to 250 000 rpm and axial displacements as a function of rotational speed are presented.

  18. Foil Gas Thrust Bearings for High-Speed Turbomachinery

    NASA Technical Reports Server (NTRS)

    Edmonds, Brian; DellaCorte, Christopher; Dykas, Brian

    2010-01-01

    A methodology has been developed for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs, supporting continued development of oil-free turbomachinery. A bearing backing plate is first machined and surface-ground to produce flat and parallel faces. Partial-arc slots needed to retain the foil components are then machined into the plate by wire electrical discharge machining. Slot thicknesses achievable by a single wire pass are appropriate to accommodate the practical range of foil thicknesses, leaving a small clearance in this hinged joint to permit limited motion. The backing plate is constructed from a nickel-based superalloy (Inconel 718) to allow heat treatment of the entire assembled bearing, as well as to permit hightemperature operation. However, other dimensionally stable materials, such as precipitation-hardened stainless steel, can also be used for this component depending on application. The top and bump foil blanks are cut from stacks of annealed Inconel X-750 foil by the same EDM process. The bump foil has several azimuthal slits separating it into five individual bump strips. This configuration allows for variable bump spacing, which helps to accommodate the effects of the varying surface velocity, thermal crowning, centrifugal dishing, and misalignment. Rectangular tabs on the foil blanks fit into the backing plate slots. For this application, a rather traditional set of conventionally machined dies is selected, and bump foil blanks are pressed into the dies for forming. This arrangement produces a set of bump foil dies for foil thrust bearings that provide for relatively inexpensive fabrication of various bump configurations, and employing methods and features from the public domain.

  19. Gas Foil Bearings for Space Propulsion Nuclear Electric Power Generation

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; DellaCorte, Christopher

    2006-01-01

    The choice of power conversion technology is critical in directing the design of a space vehicle for the future NASA mission to Mars. One candidate design consists of a foil bearing supported turbo alternator driven by a helium-xenon gas mixture heated by a nuclear reactor. The system is a closed-loop, meaning there is a constant volume of process fluid that is sealed from the environment. Therefore, foil bearings are proposed due to their ability to use the process gas as a lubricant. As such, the rotor dynamics of a foil bearing supported rotor is an important factor in the eventual design. The current work describes a rotor dynamic analysis to assess the viability of such a system. A brief technology background, assumptions, analyses, and conclusions are discussed in this report. The results indicate that a foil bearing supported turbo alternator is possible, although more work will be needed to gain knowledge about foil bearing behavior in helium-xenon gas.

  20. Foil Bearing Starting Considerations and Requirements for Rotorcraft Engine Applications

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.; DellaCorte, Christopher

    2009-01-01

    Foil gas bearings under development for rotorcraft-sized, hot core engine applications have been susceptible to damage from the slow acceleration and rates typically encountered during the pre-ignition stage in conventional engines. Recent laboratory failures have been assumed to be directly linked to operating foil bearings below their lift-off speed while following conventional startup procedures for the engines. In each instance, the continuous sliding contact between the foils and shaft was believed to thermally overload the bearing and cause the engines to fail. These failures highlight the need to characterize required acceleration rates and minimum operating speeds for these applications. In this report, startup experiments were conducted with a large, rotorcraft engine sized foil bearing under moderate load and acceleration rates to identify the proper start procedures needed to avoid bearing failure. The results showed that a bearing under a 39.4 kPa static load can withstand a modest acceleration rate of 500 rpm/s and excessive loitering below the bearing lift-off speed provided an adequate solid lubricant is present.

  1. Gas Foil Bearing Technology Advancements for Closed Brayton Cycle Turbines

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; DellaCorte, Christopher; Radil, Kevin C.

    2007-01-01

    Closed Brayton Cycle (CBC) turbine systems are under consideration for future space electric power generation. CBC turbines convert thermal energy from a nuclear reactor, or other heat source, to electrical power using a closed-loop cycle. The operating fluid in the closed-loop is commonly a high pressure inert gas mixture that cannot tolerate contamination. One source of potential contamination in a system such as this is the lubricant used in the turbomachine bearings. Gas Foil Bearings (GFB) represent a bearing technology that eliminates the possibility of contamination by using the working fluid as the lubricant. Thus, foil bearings are well suited to application in space power CBC turbine systems. NASA Glenn Research Center is actively researching GFB technology for use in these CBC power turbines. A power loss model has been developed, and the effects of a very high ambient pressure, start-up torque, and misalignment, have been observed and are reported here.

  2. Conceptual Design and Feasibility of Foil Bearings for Rotorcraft Engines: Hot Core Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    2007-01-01

    Recent developments in gas foil bearing technology have led to numerous advanced high-speed rotating system concepts, many of which have become either commercial products or experimental test articles. Examples include oil-free microturbines, motors, generators and turbochargers. The driving forces for integrating gas foil bearings into these high-speed systems are the benefits promised by removing the oil lubrication system. Elimination of the oil system leads to reduced emissions, increased reliability, and decreased maintenance costs. Another benefit is reduced power plant weight. For rotorcraft applications, this would be a major advantage, as every pound removed from the propulsion system results in a payload benefit.. Implementing foil gas bearings throughout a rotorcraft gas turbine engine is an important long-term goal that requires overcoming numerous technological hurdles. Adequate thrust bearing load capacity and potentially large gearbox applied radial loads are among them. However, by replacing the turbine end, or hot section, rolling element bearing with a gas foil bearing many of the above benefits can be realized. To this end, engine manufacturers are beginning to explore the possibilities of hot section gas foil bearings in propulsion engines. This overview presents a logical follow-on activity by analyzing a conceptual rotorcraft engine to determine the feasibility of a foil bearing supported core. Using a combination of rotordynamic analyses and a load capacity model, it is shown to be reasonable to consider a gas foil bearing core section. In addition, system level foil bearing testing capabilities at NASA Glenn Research Center are presented along with analysis work being conducted under NRA Cooperative Agreements.

  3. Linear kinematic air bearing

    NASA Technical Reports Server (NTRS)

    Mayall, S. D.

    1974-01-01

    Bearing provides continuous, smooth movement of the cat's-eye mirror, eliminating wear and deterioration of bearing surface and resulting oscillation effects in servo system. Design features self-aligning configuration; single-point, pivotal pad mounting, having air passage through it; and design of pads that allows for precise control of discharge path of air from pads.

  4. Friction and Wear Characteristics of Cu-4Al Foil Bearing Coating at 25 and 650 degree C

    NASA Technical Reports Server (NTRS)

    Stanford, Malcolm K.; DellaCorte, Christopher

    2004-01-01

    The friction and wear performance of a Cu-4Al top foil coating has been investigated in Generation I foil air bearings. The copper alloy was applied by a novel deposition technique (ion diffusion) and the journal was coated with PS304, a plasma spray deposited high temperature composite solid lubricant coating. The ion diffusion coating process deposits a desirable smooth layer compared to other methods like cathodic arc deposition. The tribological performance of bearings with and without Cu-4Al foil coatings were evaluated through start-stop tests on an air bearing test rig at 25 and 650 C. The results indicate that the Cu-4Al assists during the initial break-in period, gives more stable friction performance with respect to temperature, and appears to prevent top foil wear at high temperature. The measured load capacity coefficient was 0.5, which was comparable to earlier testing of more advanced design Generation III bearings coated with standard cathodic arc deposited Cu-4Al. However, further studies are needed to determine if deeper penetration of the copper alloy into the foil would help make the transition in friction behavior from contact with the Cu-4Al coated foil to contact with the base foil material more gradual. Also, future work is recommended to assess the performance of ion diffusion coatings with different Cu-based alloy compositions and to investigate the effect the coating has on the elastic modulus of the foil material.

  5. Prediction of Gas Lubricated Foil Journal Bearing Performance

    NASA Technical Reports Server (NTRS)

    Carpino, Marc; Talmage, Gita

    2003-01-01

    This report summarizes the progress in the first eight months of the project. The objectives of this research project are to theoretically predict the steady operating conditions and the rotor dynamic coefficients of gas foil journal bearings. The project is currently on or ahead of schedule with the development of a finite element code that predicts steady bearing performance characteristics such as film thickness, pressure, load, and drag. Graphical results for a typical bearing are presented in the report. Project plans for the next year are discussed.

  6. Design, Fabrication and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Radil, Kevin C.; Bruckner, Robert J.; Howard, S. Adam

    2007-01-01

    Foil gas bearings are self-acting hydrodynamic bearings made from sheet metal foils comprised of at least two layers. The innermost top foil layer traps a gas pressure film that supports a load while a layer or layers underneath provide an elastic foundation. Foil bearings are used in many lightly loaded, high-speed turbo-machines such as compressors used for aircraft pressurization, and small micro-turbines. Foil gas bearings provide a means to eliminate the oil system leading to reduced weight and enhanced temperature capability. The general lack of familiarity of the foil bearing design and manufacturing process has hindered their widespread dissemination. This paper reviews the publicly available literature to demonstrate the design, fabrication and performance testing of both first and second generation bump style foil bearings. It is anticipated that this paper may serve as an effective starting point for new development activities employing foil bearing technology.

  7. Consideration of Alternate Working Fluid Properties in Gas Lubricated Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Smith, Matthew J.

    2004-01-01

    The Oil-Free Turbomachinery Program at the NASA Glenn Research center is committed to, revolutionary improvements in performance, efficiency and reliability of turbomachinery propulsion systems. One of the key breakthroughs by which this goal is being achieved is the maturation of air lubricated foil bearing technology. Through experimental testing, foil bearings have demonstrated a variety of exceptional qualities that show them to have an important role in the future of rotordynamic lubrication. Most of the work done with foil bearings thus far has considered ambient air at atmospheric pressure as the working fluid or lubricating fluid in the bearing. However, special applications of oil-free technology require the use of air at non- standard ambient conditions or completely different working fluids altogether. The NASA Jupiter Icy Moon Orbiter program presents power generation needs far beyond that of any previous space exploration effort. The proposed spacecraft will require significant power generation to provide the propulsion necessary to reach the moons of Jupiter and navigate between them. Once there, extensive scientific research will be conducted that will also present significant power requirements. Such extreme needs require exploring a new method for power generation in space. A proposed solution involves a Brayton cycle nuclear fission reactor. The nature of this application requires reliable performance of all reactor components for many years of operation under demanding conditions. This includes the bearings which will be operating with an alternative working fluid that is a combination of Helium and Xenon gases commonly known as HeXe. This fluid has transport and thermal properties that vary significantly from that of air and the effect of these property differences on bearing performance must be considered. One of the most promising applications of oil-free technology is in aircraft turbine engines. Eliminating the oil supply systems from

  8. Analytic Modeling of the Hydrodynamic, Thermal, and Structural Behavior of Foil Thrust Bearings

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.; DellaCorte, Christopher; Prahl, Joseph M.

    2005-01-01

    A simulation and modeling effort is conducted on gas foil thrust bearings. A foil bearing is a self acting hydrodynamic device capable of separating stationary and rotating components of rotating machinery by a film of air or other gaseous lubricant. Although simple in appearance these bearings have proven to be complicated devices in analysis. They are sensitive to fluid structure interaction, use a compressible gas as a lubricant, may not be in the fully continuum range of fluid mechanics, and operate in the range where viscous heat generation is significant. These factors provide a challenge to the simulation and modeling task. The Reynolds equation with the addition of Knudsen number effects due to thin film thicknesses is used to simulate the hydrodynamics. The energy equation is manipulated to simulate the temperature field of the lubricant film and combined with the ideal gas relationship, provides density field input to the Reynolds equation. Heat transfer between the lubricant and the surroundings is also modeled. The structural deformations of the bearing are modeled with a single partial differential equation. The equation models the top foil as a thin, bending dominated membrane whose deflections are governed by the biharmonic equation. A linear superposition of hydrodynamic load and compliant foundation reaction is included. The stiffness of the compliant foundation is modeled as a distributed stiffness that supports the top foil. The system of governing equations is solved numerically by a computer program written in the Mathematica computing environment. Representative calculations and comparisons with experimental results are included for a generation I gas foil thrust bearing.

  9. Tribological composition optimization of chromium-carbide-based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1988-01-01

    The determination of the tribilogically optimum composition of chromium-carbide-based solid lubricant coatings using a foil gas bearing test apparatus is described. The coatings contain a wear resistant chromium carbide `base stock' with the lubricant additives silver and BaF2-CaF2 eutectic. The coating composition is optimized for air-lubricated foil gas bearings at temperatures ranging from 25 to 650 C. The various compositions were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized Ni-Cr alloy foils, and the test bearings were subjected to repeated start-stop cycles under a bearing unit of 14 kPa. Sliding contact between the coated journal and the smooth foil occurs during bearing start-up before lift-off or hydrodynamic lubrication by the air film and during bearing coast-down. The bearings were tested for 9000 start-stop cycles or until specimen reached a predetermined failure level.

  10. An Assessment of Gas Foil Bearing Scalability and the Potential Benefits to Civilian Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2010-01-01

    Over the past several years the term oil-free turbomachinery has been used to describe a rotor support system for high speed turbomachinery that does not require oil for lubrication, damping, or cooling. The foundation technology for oil-free turbomachinery is the compliant foil bearing. This technology can replace the conventional rolling element bearings found in current engines. Two major benefits are realized with this technology. The primary benefit is the elimination of the oil lubrication system, accessory gearbox, tower shaft, and one turbine frame. These components account for 8 to 13 percent of the turbofan engine weight. The second benefit that compliant foil bearings offer to turbofan engines is the capability to operate at higher rotational speeds and shaft diameters. While traditional rolling element bearings have diminished life, reliability, and load capacity with increasing speeds, the foil bearing has a load capacity proportional to speed. The traditional applications for foil bearings have been in small, lightweight machines. However, recent advancements in the design and manufacturing of foil bearings have increased their potential size. An analysis, grounded in experimentally proven operation, is performed to assess the scalability of the modern foil bearing. This analysis was coupled to the requirements of civilian turbofan engines. The application of the foil bearing to larger, high bypass ratio engines nominally at the 120 kN (approx.25000 lb) thrust class has been examined. The application of this advanced technology to this system was found to reduce mission fuel burn by 3.05 percent.

  11. Experimental evaluation of foil-supported resilient-pad gas-lubricated thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1977-01-01

    A new type of resilient-pad gas thrust bearing was tested to determine the feasibility of the design. The bearing consists of carbon graphite pads mounted asymmetrically on foil beams. Two bearing configurations were tested at thrust loads from 27 to 80 newtons at speeds to 9000 rpm. The outside diameter of the bearing was 8.9 centimeters.

  12. Static and dynamic performances of refrigerant-lubricated foil bearings

    NASA Astrophysics Data System (ADS)

    Bouchehit, B.; Bou-Saïd, B.; Garcia, M.

    2016-08-01

    Gas bearings are successfully used over a large panel of turbo-machineries. Some of these systems run in controlled environments such as refrigerating gas. We present in this paper a theoretical and numerical model which consider the vapor/liquid lubricant transition, the laminar/turbulent flow transition and both temperature and viscosity 3D variations in the fluid and the solids for both static and dynamic situations. The foil deflection is considered using the Heshmat's approach. This model involves: the resolution of the generalized Reynolds equation for compressible fluids with 3D variable viscosity, the description of the turbulence effects by the phenomenological approach of Elrod, using a 3D eddy viscosity field, the resolution of a non-linear equation of state for the lubricant, able to describe the vapor/liquid transition and a local thermal approach to obtain a 3D estimation of the fluid temperature, thanks to the thin-film energy equation and an actualisation of the film thickness. The thermal effects in solids are also taken into account. Both static and dynamic behaviours of GFBs are analysed.

  13. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 1: Journal bearing performance

    NASA Technical Reports Server (NTRS)

    Ruscitto, D.; Mccormick, J.; Gray, S.

    1978-01-01

    A 38.1 mm (1.5 inch) diameter Hydresil Compliant Surface Air Lubricated Journal Bearing was designed and tested to obtain bearing performance characteristics at both room temperature and 315 C (600 F). Testing was performed at various speeds up to 60,000 rpm with varying loads. Rotating sensors provided an opportunity to examine the film characteristics of the compliant surface bearing. In addition to providing minimum film thickness values and profiles, many other insights into bearing operation were gained such as the influence of bearing fabrication accuracy and the influence of smooth foil deflection between the bumps.

  14. The Chevron Foil Thrust Bearing: Improved Performance Through Passive Thermal Management and Effective Lubricant Mixing

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert

    2013-01-01

    An improved foil thrust bearing is described that eliminates or reduces the need for forced cooling of the bearing foils while at the same time improves the load capacity of the bearing, enhances damping, provides overload tolerance, and eliminates the high speed load capacity drop-off that plagues the current state of the art. The performance improvement demonstrated by the chevron foil thrust bearing stems from a novel trailing edge shape that splays the hot lubricant in the thin film radially, thus preventing hot lubricant carry-over into the ensuing bearing sector. Additionally, the chevron shaped trailing edge induces vortical mixing of the hot lubricant with the gas that is naturally resident within the inter-pad region of a foil thrust bearing. The elimination of hot gas carry-over in combination with the enhanced mixing has enabled a completely passive thermally managed foil bearing design. Laboratory testing at NASA has confirmed the original analysis and reduced this concept to practice.

  15. Design, Fabrication, and Performance of Foil Gas Thrust Bearings for Microturbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Dykas, Brian; Bruckner, Robert; DellaCorte, Christopher; Edmonds, Brian; Prahl, Joseph

    2008-01-01

    A methodology for the design and construction of simple foil thrust bearings intended for parametric performance testing and low marginal costs is presented. Features drawn from a review of the open literature are discussed as they relate to bearing performance. The design of fixtures and tooling required to fabricate foil thrust bearings is presented, using conventional machining processes where possible. A prototype bearing with dimensions drawn from the literature is constructed, with all fabrication steps described. A load-deflection curve for the bearing is presented to illustrate structural stiffness characteristics. Start-top cycles are performed on the bearing at a temperature of 425 C to demonstrate early-life wear patterns. A test of bearing load capacity demonstrates useful performance when compared with data obtained from the open literature.

  16. A New Analysis Tool Assessment for Rotordynamic Modeling of Gas Foil Bearings

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; SanAndres, Luis

    2010-01-01

    Gas foil bearings offer several advantages over traditional bearing types that make them attractive for use in high-speed turbomachinery. They can operate at very high temperatures, require no lubrication supply (oil pumps, seals, etc.), exhibit very long life with no maintenance, and once operating airborne, have very low power loss. The use of gas foil bearings in high-speed turbomachinery has been accelerating in recent years, although the pace has been slow. One of the contributing factors to the slow growth has been a lack of analysis tools, benchmarked to measurements, to predict gas foil bearing behavior in rotating machinery. To address this shortcoming, NASA Glenn Research Center (GRC) has supported the development of analytical tools to predict gas foil bearing performance. One of the codes has the capability to predict rotordynamic coefficients, power loss, film thickness, structural deformation, and more. The current paper presents an assessment of the predictive capability of the code, named XLGFBTH (Texas A&M University). A test rig at GRC is used as a simulated case study to compare rotordynamic analysis using output from the code to actual rotor response as measured in the test rig. The test rig rotor is supported on two gas foil journal bearings manufactured at GRC, with all pertinent geometry disclosed. The resulting comparison shows that the rotordynamic coefficients calculated using XLGFBTH represent the dynamics of the system reasonably well, especially as they pertain to predicting critical speeds.

  17. Air bearing vacuum seal assembly

    DOEpatents

    Booth, Rex

    1978-01-01

    An air bearing vacuum seal assembly capable of rotating at the speed of several thousand revolutions per minute using an air cushion to prevent the rotating and stationary parts from touching, and a two stage differential pumping arrangement to maintain the pressure gradient between the air cushion and the vacuum so that the leak rate into the vacuum is, for example, less than 1 .times. 10.sup.-4 Pa m.sup.3 /s. The air bearing vacuum seal has particular application for mounting rotating targets to an evacuated accelerator beam tube for bombardment of the targets with high-power charged particle beams in vacuum.

  18. Nonlinear dynamics of flexible rotor supported on the gas foil journal bearings

    NASA Astrophysics Data System (ADS)

    Bhore, Skylab P.; Darpe, Ashish K.

    2013-09-01

    Investigation on nonlinear dynamics of a flexible rotor supported on the gas foil journal bearings is attempted. A time domain orbit simulation is carried out that couples the equations of rotor motion, unsteady Reynolds equation and foil deformation. The unsteady Reynolds equation is solved using control volume formulation with power law hybrid scheme and Gauss-Seidel method. The nonlinear dynamic response is analyzed using disc center and journal center trajectories, Poincaré maps, Fast Fourier transforms and bifurcation plots. The analysis is carried out for different system parameters, namely, rotating speed, unbalance eccentricity, compliance and loss factor of gas foil bearing. The analysis reveals highly nonlinear behavior with periodic, multi-periodic and quasiperiodic motion of the disc and the journal center. The present analysis can be useful in designing and selection of suitable operating parameters of rotor bearing system.

  19. Nonlinear Dynamics of a Foil Bearing Supported Rotor System: Simulation and Analysis

    NASA Technical Reports Server (NTRS)

    Li, Feng; Flowers, George T.

    1996-01-01

    Foil bearings provide noncontacting rotor support through a number of thin metal strips attached around the circumference of a stator and separated from the rotor by a fluid film. The resulting support stiffness is dominated by the characteristics of the foils and is a nonlinear function of the rotor deflection. The present study is concerned with characterizing this nonlinear effect and investigating its influence on rotordynamical behavior. A finite element model is developed for an existing bearing, the force versus deflection relation characterized, and the dynamics of a sample rotor system are studied. Some conclusions are discussed with regard to appropriate ranges of operation for such a system.

  20. Foil bearings for axial and radial support of high speed rotors: Design, development, and determination of operating characteristics

    NASA Technical Reports Server (NTRS)

    Licht, L.

    1978-01-01

    Flexible surface thrust and journal foil bearings were fabricated, and their performance was demonstrated, both individually and jointly as a unified rotor support system. Experimental results are documented with graphs and oscilloscopic data of trajectories, waveforms, and scans of amplitude response. At speeds of 40,000 to 45,000 rpm and a mean clearance of the order of 15 to 20 micrometers (600 to 800 micrometers, the resilient, air lubricated, spiral groove thrust bearings support a load of 127 N (29 lb; 13 kgf), equivalent to 3.0 N/sq cm (4.5 lb/sq in 0.31 kgf sq cm). Journal bearings with polygonal sections provided stable and highly damped supports at speeds up to 50,000 rpm.

  1. Experimental test program for evaluation of solid lubricant coating as applied to compliant foil gas bearings to 315 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.

    1985-01-01

    An experimental apparatus and test procedure was developed to compare the performance of two solid lubricant coatings for air lubricated compliant foil gas bearings in the temperature range of 25 to 315 C. Polyimide bonded additive (SBGC) were tested extensively for durability and frictional characteristics. A partial arc bearing constructed of Inconel X-750 was coated on the bore with one of these coatings. The foil was subjected to repeated start/stop cycles. Performance comparisons reveal that although both coatings survive thousands of start/stop cycles, only the PBGF coated bearing achieves the specified 9000 start/stops. There is enough wear on the SBGC coated bearing to warrant termination of the test prior to 9000 start/stop cycles due to coating failure. The frictional characteristics of the PBGF are better at the elevated temperatures than at lower temperatures; a marked increase in sliding friction occurs as the temperature decreases. The SBGC maintains relatively constant frictional characteristics independent of operating temperature.

  2. A Multi-Point Measurement Method for Thermal Characterization of Foil Bearings Using Customized Thermocouples

    NASA Astrophysics Data System (ADS)

    Lubieniecki, Michał; Roemer, Jakub; Martowicz, Adam; Wojciechowski, Krzysztof; Uhl, Tadeusz

    2016-03-01

    Gas foil bearings have become widespread covering the applications of micro-turbines, motors, compressors, and turbocharges, prevalently of small size. The specific construction of the bearing, despite all of its advantages, makes it vulnerable to a local difference in heat generation rates that can be extremely detrimental. The developing thermal gradients may lead to thermal runaway or seizure that eventually causes bearing failure, usually abrupt in nature. The authors propose a method for thermal gradient removal with the use of current-controlled thermoelectric modules. To fulfill the task of control law adoption the numerical model of the heat distribution in a bearing has been built. Although sparse readings obtained experimentally with standard thermocouples are enough to determine thermal gradients successfully, validation of the bearing numerical model may be impeded. To improve spatial resolution of the experimental measurements the authors proposed a matrix of customized thermocouples located on the top foil. The foil acts as a shared conductor for each thermocouple that reduces the number of cable connections. The proof of concept of the control and measurement systems has been demonstrated in a still bearing heated by a cartridge heater.

  3. Friction and Wear Characteristics of Candidate Foil Bearing Materials from 25 C to 800 C

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Laskowski, J. A.

    1996-01-01

    The friction and wear behavior of unlubricated metal/metal sliding couples was investigated to screen potential candidates for high temperature foil bearings. The tribo-tests were run in an induction-heated high temperature pin-on-disk tribometer in an air atmosphere at a load of 4.9 N and at a sliding velocity of 1 m/s. The friction and wear properties of several nickel based alloys (Rene'41, Inconel X-750, Inconel 713C), iron based alloys (MA956 and Inconel 909) and a ceramic (Al2O3) were tested at 25, 500, and 800 C. In general, at elevated temperatures the alloys oxidized and formed a tenacious and lubricous oxide surface film or layer. At 800 C, Inconel X-750 versus Rene'41 had the lowest friction coefficient (0.27) and at 500 C, Inconel X-750 versus Inconel 909 the lowest pin wear (2.84 x 10(exp -6)cu mm/N-m). Gouging and severe wear of the softer material occurred whenever a significant difference in hardness existed between the pin and disk specimens.

  4. Measurement of the radon diffusion through a nylon foil for different air humidities

    NASA Astrophysics Data System (ADS)

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-01

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  5. Measurement of the radon diffusion through a nylon foil for different air humidities

    SciTech Connect

    Mamedov, Fadahat; Štekl, Ivan; Smolek, Karel

    2015-08-17

    The dependency of the radon penetration through a nylon foil on air humidity was measured. Such information is needed for the tracking part of the SuperNEMO detector, which is planned to be shielded against radon by nylon foil and in which the air humidity is not negligible. The long term measurements of radon penetration through nylon foils for different air humidities were performed with the radon diffusion setup constructed at the IEAP, CTU in Prague. The setup consists of two stainless steel hemispheres with Si detector in each of them. Both hemispheres are separated by the tested foil. While the left hemisphere contains high Rn activity, the right part contains only activity caused by the radon penetration through the tested foil. Obtained results of this study with a nylon foil with the thickness of 50 µm are presented.

  6. Durable solid lubricant coatings for foil gas bearings to 315 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, H. E.

    1984-01-01

    The durability and friction characteristics of bonded solid lubricant films on compliant gas bearings were measured. Coating compositions, which were judged to be suitable for use to at least 315 C, were selected for this study. Most of the data were obtained with polyimide-bonded graphite fluoride coatings and with silicate-bonded graphite coatings. These coatings were applied to the bore of Inconel 750 foil bearings. The journals were A286 stainless steel, with a rms surface finish of 0.2 microns. The foils were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. Sliding contact occurred during lift-off and coast down at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 cycles were accumulated or until a rise in starting torque indicated that the coating had failed. The coatings were evaluated in the temperature range from 25 C to 315 C. Comparisons in coating performance as well as discussions of their properties and methods of application are given.

  7. Composition optimization of chromium carbide based solid lubricant coatings for foil gas bearings at temperatures to 650 C

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1987-01-01

    A test program to determine the optimum composition of chromium carbide based solid lubricant coatings for compliant gas bearings is described. The friction and wear properties of the coatings are evaluated using a foil gas bearing test apparatus. The various coatings were prepared by powder blending, then plasma sprayed onto Inconel 718 test journals and diamond ground to the desired coating thickness and surface finish. The journals were operated against preoxidized nickel-chromium alloy foils. The test bearings were subjected to repeated start/stop cycles under a 14 kPa (2 psi) bearing unit load. The bearings were tested for 9000 start/stop cycles or until the specimen wear reached a predetermined failure level. In general, the addition of silver and eutectic to the chromium carbide base stock significantly reduced foil wear and increased journal coating wear. The optimum coating composition, PS212 (70 wt% metal bonded Cr3C2, 15 wt% Ag, 15% BaF2/CaF2 eutectic), reduced foil wear by a factor of two and displayed coating wear well within acceptable limits. The load capacity of the bearing using the plasma-sprayed coating prior to and after a run-in period was ascertained and compared to polished Inconel 718 specimens.

  8. The Evaluation of a Modified Chrome Oxide Based High Temperature Solid Lubricant Coating for Foil Gas Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Chris

    1998-01-01

    This paper describes the friction and wear performance of PS304, a modified chrome oxide based coating, for foil gas bearings. PS304 contains 60 wt% NiCr binder, 20 wt% Cr2O3 hardener, and 10 wt% each Ag, and BaF2/CaF2 lubricants. For evaluation, the coating is plasma spray deposited onto test journals which are slid against a superalloy partial arc foil bearing. The test load was 10 KPa (1.5 psi) and the bearings were run under start/stop cyclic conditions. The data show good wear performance of the bearing, especially at temperatures above 25 deg. C. Bearing friction was moderate (micron approx. or equal to 0.4) over the entire temperature range. Based upon the results obtained, the PS304 coating has promise for high temperature, oil-free turbomachinery applications.

  9. Horizontal Air Bearing Experiment Number 1

    SciTech Connect

    Clauson, T.L.

    1999-08-31

    The Horizontal Air Bearing Experiment No.1 is a series of tests intended to further the understanding of rotational dynamics. A simple experimental assembly is rotated using the Horizontal Air Bearing and allowed to spin freely as the internal rotational damping is measured. The low friction of the bearing effectively isolates the test assembly, allowing the internal damping of the test object to be evaluated. The experimental assembly is composed of an aluminum ball within a spherical cavity. A flanged pipe section and an auxiliary adapter plate secure the assembly to the Air Bearing interface plate. Three aluminum balls are interchanged to vary test parameters. The aluminum balls are free to move independently as the entire assembly rotates. The aluminum balls vary in diameter and/or surface finish. While the diameter and surface finish is varied, the space between the ball and socket is dry. To examine the effect of viscosity, the space is filled with a lubricant while the ball diameter and surface finish is held constant.

  10. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    NASA Technical Reports Server (NTRS)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  11. Effects of silver and group II fluoride solid lubricant additions to plasma-sprayed chromium carbide coatings for foil gas bearings to 650 C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, Harold E.

    1986-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start-stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 748. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The additional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-Psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rPm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  12. Effects of silver and group 2 fluorides addition to plasma sprayed chromium carbide high temperature solid lubricant for foil gas bearing to 650 deg C

    NASA Technical Reports Server (NTRS)

    Wagner, R. C.; Sliney, H. E.

    1984-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide formulated with silver and Group II fluorides was developed in a research program on high temperature solid lubricants. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for complaint foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650 C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The addtitional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized Inconel X-750 foil bearings were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  13. Effects of silver and Group II fluorides addition to plasma sprayed chromium carbide high temperature solid lubricant for foil gas bearings to 650/sup 0/C

    SciTech Connect

    Wagner, R.C.; Sliney, H.E.

    1985-01-01

    A new self-lubricating coating composition of nickel aluminide-bonded chromium carbide fromulated with silver and Group II fluorides was developed. One of the proposed applications for this new coating composition is as a wide temperature spectrum solid lubricant for compliant foil gas bearings. Friction and wear properties were obtained using a foil gas bearing start/stop apparatus at temperatures from 25 to 650/sup 0/C. The journals were Inconel 718. Some were coated with the plasma sprayed experimental coating, others with unmodified nickel aluminide/chromium carbide as a baseline for comparison. The additional components were provided to assist in achieving low friction over the temperature range of interest. Uncoated, preoxidized inconel X-750 foil bearing were operated against these surfaces. The foils were subjected to repeated start/stop cycles under a 14-kPa (2-psi) bearing unit loading. Sliding contact occurred during lift-off and coastdown at surface velocities less than 6 m/s (3000 rpm). Testing continued until 9000 start/stop cycles were accumulated or until a rise in starting torque indicated the journal/bearing had failed. Comparison in coating performance as well as discussions of their properties and methods of application are given.

  14. Comparison of rotational speeds and torque properties between air-bearing and ball-bearing air-turbine handpieces.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1989-06-01

    We examined the effects of air pressure on the free-running speed of air-bearing and torque-type ball-bearing air-turbine handpieces. The air pressure for the former should be kept at a certain high level to maintain the stable super-thin air-bearing film and to provide the quasi-constant speed of around 420,000 to 480,000 rpm. On the other hand, the air pressure for the latter could be adjusted to provide some varieties of speeds, ranging from about 150,000 to 320,000 rpm. Subsequently, to compare torque properties and cutting effectiveness between these two handpieces, weight-load cutting tests were conducted, using a glass-ceramic workpiece and a commercial diamond point. It was confirmed that the air-bearing handpiece had the lower torque power but exhibited better cutting effectiveness, compared with its counterpart.

  15. Pressure measurements of a three wave journal air bearing

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin; Addy, Harold E., Jr.

    1994-01-01

    In order to validate theoretical predictions of a wave journal bearing concept, a bench test rig was assembled at NASA Lewis Research Center to measure the steady-state performance of a journal air bearing. The tester can run up to 30,000 RPM and the spindle has a run out of less than 1 micron. A three wave journal bearing (50 mm diameter and 58 mm length) has been machined at NASA Lewis. The pressures at 16 ports along the bearing circumference at the middle of the bearing length were measured and compared to the theoretical prediction. The bearing ran at speeds up to 15,000 RPM and certain loads. Good agreement was found between the measured and calculated pressures.

  16. Air-bearing spin facility for measuring energy dissipation

    NASA Technical Reports Server (NTRS)

    Peterson, R. L.

    1976-01-01

    The air-bearing spin facility was developed to determine experimentally the effect of energy dissipation upon the motion of spinning spacecraft. The facility consists of an air-bearing spin table, a telemetry system, a command system, and a ground control station. The air-bearing spin table was designed to operate in a vacuum chamber. Tests were run on spacecraft components such as fuel tanks, nutation dampers, reaction wheels, and active nutation damper systems. Each of these items affected the attitude of a spinning spacecraft. An experimental approach to determine these effects was required because the dissipation of these components could not be adequately analyzed. The results of these experiments have been used, with excellent results, to predict spacecraft motion.

  17. Yaw rate control of an air bearing vehicle

    NASA Technical Reports Server (NTRS)

    Walcott, Bruce L.

    1989-01-01

    The results of a 6 week project which focused on the problem of controlling the yaw (rotational) rate the air bearing vehicle used on NASA's flat floor facility are summarized. Contained within is a listing of the equipment available for task completion and an evaluation of the suitability of this equipment. The identification (modeling) process of the air bearing vehicle is detailed as well as the subsequent closed-loop control strategy. The effectiveness of the solution is discussed and further recommendations are included.

  18. Foil Face Seal Testing

    NASA Technical Reports Server (NTRS)

    Munson, John

    2009-01-01

    In the seal literature you can find many attempts by various researchers to adapt film riding seals to the gas turbine engine. None have been successful, potential distortion of the sealing faces is the primary reason. There is a film riding device that does accommodate distortion and is in service in aircraft applications, namely the foil bearing. More specifically a foil thrust bearing. These are not intended to be seals, and they do not accommodate large axial movement between shaft & static structure. By combining the 2 a unique type of face seal has been created. It functions like a normal face seal. The foil thrust bearing replaces the normal primary sealing surface. The compliance of the foil bearing allows the foils to track distortion of the mating seal ring. The foil seal has several perceived advantages over existing hydrodynamic designs, enumerated in the chart. Materials and design methodology needed for this application already exist. Also the load capacity requirements for the foil bearing are low since it only needs to support itself and overcome friction forces at the antirotation keys.

  19. Windage Power Loss in Gas Foil Bearings and the Rotor-Stator Clearance of High Speed Generators Operating in High Pressure Environments

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2009-01-01

    Closed Brayton Cycle (CBC) and Closed Supercritical Cycle (CSC) engines are prime candidates to convert heat from a reactor into electric power for robotic space exploration and habitation. These engine concepts incorporate a permanent magnet starter/generator mounted on the engine shaft along with the requisite turbomachinery. Successful completion of the long-duration missions currently anticipated for these engines will require designs that adequately address all losses within the machine. The preliminary thermal management concept for these engine types is to use the cycle working fluid to provide the required cooling. In addition to providing cooling, the working fluid will also serve as the bearing lubricant. Additional requirements, due to the unique application of these microturbines, are zero contamination of the working fluid and entirely maintenance-free operation for many years. Losses in the gas foil bearings and within the rotor-stator gap of the generator become increasingly important as both rotational speed and mean operating pressure are increased. This paper presents the results of an experimental study, which obtained direct torque measurements on gas foil bearings and generator rotor-stator gaps. Test conditions for these measurements included rotational speeds up to 42,000 revolutions per minute, pressures up to 45 atmospheres, and test gases of nitrogen, helium, and carbon dioxide. These conditions provided a maximum test Taylor number of nearly one million. The results show an exponential rise in power loss as mean operating density is increased for both the gas foil bearing and generator windage. These typical "secondary" losses can become larger than the total system output power if conventional design paradigms are followed. A nondimensional analysis is presented to extend the experimental results into the CSC range for the generator windage.

  20. An air bearing system for small high speed gas turbines

    NASA Astrophysics Data System (ADS)

    Turner, A. B.; Davies, S. J.; Nimir, Y. L.

    1994-03-01

    This paper describes the second phase of an experimental program concerning the application of air bearings to small turbomachinery test rigs and small gas turbines. The first phase examined externally pressurized (EP) journal bearings, with a novel EP thrust bearing, for application to 'warm air' test rigs, and was entirely successful at rotational speeds in excess of 100,000 rpm. This second phase examined several designs of tilting pad-spiring journal bearings, one with a novel form of externally pressurized pad, but all using the original EP thrust bearing. The designs tested are described, including some oscillogram traces, for tests up to a maximum of 70,000 rpm; the most successful using a carbon pad-titanium beam spring arrangement. The thrust bearing which gave trouble-free operation throughout, is also described. The results of an original experiment to measure the 'runway speed' of a radial inflow turbine are also presented, which show that overspeeds of 58 percent above the design speed can result from free-power turbine coupling failure.

  1. Treatment of poly(ethylene terephthalate) foils by atmospheric pressure air dielectric barrier discharge and its influence on cell growth

    NASA Astrophysics Data System (ADS)

    Kuzminova, Anna; Vandrovcová, Marta; Shelemin, Artem; Kylián, Ondřej; Choukourov, Andrei; Hanuš, Jan; Bačáková, Lucie; Slavínská, Danka; Biederman, Hynek

    2015-12-01

    In this contribution an effect of dielectric barrier discharge (DBD) sustained in air at atmospheric pressure on surface properties of poly(ethylene terephthalate) (PET) foils is studied. It is found that exposure of PET to DBD plasma leads to rapid changes of surface chemical composition, wettability, surface morphology as well as mechanical properties of PET surface. In addition, based on biological tests that were performed using two cell types (Saos-2 human osteoblast-like cells and HUVEC human umbilical vein endothelial cells), it may be concluded that DBD plasma treatment positively influences cell growth on PET. This effect was found to be connected predominantly with increased surface energy and oxygen content of the surface of treated PET foils.

  2. Transient hemorheology in an air-bearing viscosimeter.

    PubMed

    Ravey, J C; Ikimoto, S; Stoltz, J F

    1984-01-01

    Blood suspensions have been studied by using an air-bearing viscosimeter which is driven by a rotating magnetic induction. Each transient motion (rise, relaxation with zero or intermittent field) can be considered as a quasi-static motion, from which the curve viscosity-shear gradient can be obtained. Combining several transient motions allows an easier determination of the parameters describing a non newtonian fluid like blood. PMID:6592001

  3. Foil Artists

    ERIC Educational Resources Information Center

    Szekely, George

    2010-01-01

    Foil can be shaped into almost anything--it is the all-purpose material for children's art. Foil is a unique drawing surface. It reflects, distorts and plays with light and imagery as young artists draw over it. Foil permits quick impressions of a model or object to be sketched. Foil allows artists to track their drawing moves, seeing the action…

  4. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  5. Low-friction coatings for air bearings in fuel cell air compressors

    SciTech Connect

    Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

    2000-01-06

    In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

  6. In situ coupling of chitosan onto polypropylene foils by an Atmospheric Pressure Air Glow Discharge with a liquid cathode.

    PubMed

    Nikitin, D; Choukourov, A; Titov, V; Kuzmicheva, L; Lipatova, I; Mezina, E; Aleksandriiskii, V; Shelemin, A; Khalakhan, I; Slavinska, D; Biederman, H

    2016-12-10

    Atmospheric air plasma treatment of chitosan solutions leads to degradation of chitosan molecules by OH radicals and is accompanied by a predominant cleavage of glycosidic linkages and by a decrease of the molecular weight. The degradation proceeds via first order kinetics with the rate constant of (5.73±0.22)×10(-6)s(-1) and the energetic yield of chitosan bond scission of (2.4±0.2)×10(-8)mol/J. Products of degradation together with intact chitosan molecules adsorb and form coatings on polypropylene foils immersed into the solution that is being plasma treated. The plasma treatment results in strong binding of chitosan to polypropylene due to the formation of covalent bonds between the activated polymer surface and chitosan molecules. Plasma-driven crosslinking is responsible for the accumulation of compressive stress which leads to the development of buckling instabilities in the chitosan coatings.

  7. In situ coupling of chitosan onto polypropylene foils by an Atmospheric Pressure Air Glow Discharge with a liquid cathode.

    PubMed

    Nikitin, D; Choukourov, A; Titov, V; Kuzmicheva, L; Lipatova, I; Mezina, E; Aleksandriiskii, V; Shelemin, A; Khalakhan, I; Slavinska, D; Biederman, H

    2016-12-10

    Atmospheric air plasma treatment of chitosan solutions leads to degradation of chitosan molecules by OH radicals and is accompanied by a predominant cleavage of glycosidic linkages and by a decrease of the molecular weight. The degradation proceeds via first order kinetics with the rate constant of (5.73±0.22)×10(-6)s(-1) and the energetic yield of chitosan bond scission of (2.4±0.2)×10(-8)mol/J. Products of degradation together with intact chitosan molecules adsorb and form coatings on polypropylene foils immersed into the solution that is being plasma treated. The plasma treatment results in strong binding of chitosan to polypropylene due to the formation of covalent bonds between the activated polymer surface and chitosan molecules. Plasma-driven crosslinking is responsible for the accumulation of compressive stress which leads to the development of buckling instabilities in the chitosan coatings. PMID:27577893

  8. Parameter estimation of an air-bearing suspended test table

    NASA Astrophysics Data System (ADS)

    Fu, Zhenxian; Lin, Yurong; Liu, Yang; Chen, Xinglin; Chen, Fang

    2015-02-01

    A parameter estimation approach is proposed for parameter determination of a 3-axis air-bearing suspended test table. The table is to provide a balanced and frictionless environment for spacecraft ground test. To balance the suspension, the mechanical parameters of the table, including its angular inertias and centroid deviation from its rotating center, have to be determined first. Then sliding masses on the table can be adjusted by stepper motors to relocate the centroid of the table to its rotating center. Using the angular momentum theorem and the coriolis theorem, dynamic equations are derived describing the rotation of the table under the influence of gravity imbalance torque and activating torques. To generate the actuating torques, use of momentum wheels is proposed, whose virtue is that no active control is required to the momentum wheels, which merely have to spin at constant rates, thus avoiding the singularity problem and the difficulty of precisely adjusting the output torques, issues associated with control moment gyros. The gyroscopic torques generated by the momentum wheels, as they are forced by the table to precess, are sufficient to activate the table for parameter estimation. Then least-square estimation is be employed to calculate the desired parameters. The effectiveness of the method is validated by simulation.

  9. Development of a large support surface for an air-bearing type zero-gravity simulator

    NASA Technical Reports Server (NTRS)

    Glover, K. E.

    1976-01-01

    The methods used in producing a large, flat surface to serve as the supporting surface for an air-bearing type zero-gravity simulator using low clearance, thrust-pad type air bearings are described. Major problems encountered in the use of self-leveled epoxy coatings in this surface are discussed and techniques are recommended which proved effective in overcoming these problems. Performance requirements of the zero-gravity simulator vehicle which were pertinent to the specification of the air-bearing support surface are also discussed.

  10. Theoretical Analysis and Optimum Design of High Speed Air Film Thrust Bearings

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiromu; Ochiai, Masayuki; Nanba, Tadashi

    Hydrodynamic air film thrust bearings are widely used for very high speed, lightly loaded rotating machinery such as gas expander, compressor, gyroscope and business machines, etc. In the design of hydrodynamic air film thrust bearings, it is of cardinal importance to enhance the friction and stability capacities of air films for keeping the minimum friction loss within a particular level and for minimizing the vibration due to external excitations. Among various types of hydrodynamic air film thrust bearings, spiral and herring bone types of grooved bearings have an advantage of high stability and load carrying capacity, but the characteristics of the bearings depend on many design parameters. Therefore, when these parameters are designed suitably, it is expected to improve considerably the friction and stability characteristics of the bearings. In this paper, the optimum design methodology is presented to minimize the friction torque and also to maximize the stiffness of air film for spiral and herring bone types of grooved air film thrust bearings, and the applicability of the methodology is verified experimentally.

  11. Classroom Foils

    ERIC Educational Resources Information Center

    Pafford, William N.

    1970-01-01

    Aluminum foil, because of its characteristics, can be used for many elementary science activities: demonstrating Archimedes Principle, how to reduce cohesion, reflection and mirror effect, fuse action, condensation, friction, and as containers and barriers. (BR)

  12. The SOFIA telescope mounting on a large segment air-bearing

    NASA Astrophysics Data System (ADS)

    Kaercher, Hans J.; Lautner, H.

    1990-11-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope concepts are briefly discussed, and a new air-bearing design philosophy is presented. The telescope mounting system inside the hull of a Boeing 747 SP aircraft encompasses a large spherical air-bearing which supports the telescope in the rear bulkhead of the aircraft cavity in order to make it independent of the rotary movements of the airplane and to isolate it from aircraft vibrations through an additional vibration isolation system.

  13. Oil-Free Turbomachinery Research Enhanced by Thrust Bearing Test Capability

    NASA Technical Reports Server (NTRS)

    Bauman, Steven W.

    2003-01-01

    NASA Glenn Research Center s Oil-Free Turbomachinery research team is developing aircraft turbine engines that will not require an oil lubrication system. Oil systems are required today to lubricate rolling-element bearings used by the turbine and fan shafts. For the Oil-Free Turbomachinery concept, researchers combined the most advanced foil (air) bearings from industry with NASA-developed high-temperature solid lubricant technology. In 1999, the world s first Oil-Free turbocharger was demonstrated using these technologies. Now we are working with industry to demonstrate Oil-Free turbomachinery technology in a small business jet engine, the EJ-22 produced by Williams International and developed during Glenn s recently concluded General Aviation Propulsion (GAP) program. Eliminating the oil system in this engine will make it simpler, lighter (approximately 15 percent), more reliable, and less costly to purchase and maintain. Propulsion gas turbines will place high demands on foil air bearings, especially the thrust bearings. Up until now, the Oil-Free Turbomachinery research team only had the capability to test radial, journal bearings. This research has resulted in major improvements in the bearings performance, but journal bearings are cylindrical, and can only support radial shaft loads. To counteract axial thrust loads, thrust foil bearings, which are disk shaped, are required. Since relatively little research has been conducted on thrust foil air bearings, their performance lags behind that of journal bearings.

  14. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    NASA Astrophysics Data System (ADS)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  15. An air bearing fan for EVA suit ventilation

    NASA Technical Reports Server (NTRS)

    Murry, Roger P.

    1990-01-01

    The portable life-support system (PLSS) ventilation requirements are outlined, along with the application of a high-speed axial fan technology for extravehicular-activity (EVA) space-suit ventilation. Focus is placed on a mechanical design employing high-speed gas bearings, permanent magnet rotor, and current-fed chopper/inverter electronics. The operational characteristics of the fan unit and its applicability for use in a pure-oxygen environment are discussed. It delivers a nominal 0.17 cu m/min at 1.24 kPa pressure rise using 13.8 w of input power. It is shown that the overall selection of materials for all major component meets the NASA requirements.

  16. Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters

    NASA Astrophysics Data System (ADS)

    Rybus, Tomasz; Seweryn, Karol

    2016-03-01

    All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.

  17. Foil Electron Multiplier

    DOEpatents

    Funsten, Herbert O.; Baldonado, Juan R.; Dors, Eric E.; Harper, Ronnie W.; Skoug, Ruth M.

    2006-03-28

    An apparatus for electron multiplication by transmission that is designed with at least one foil having a front side for receiving incident particles and a back side for transmitting secondary electrons that are produced from the incident particles transiting through the foil. The foil thickness enables the incident particles to travel through the foil and continue on to an anode or to a next foil in series with the first foil. The foil, or foils, and anode are contained within a supporting structure that is attached within an evacuated enclosure. An electrical power supply is connected to the foil, or foils, and the anode to provide an electrical field gradient effective to accelerate negatively charged incident particles and the generated secondary electrons through the foil, or foils, to the anode for collection.

  18. Progress report on air bearing slumping of thin glass mirrors for x-ray telescopes

    NASA Astrophysics Data System (ADS)

    Schattenburg, Mark L.; Chalifoux, Brandon; DeTienne, Michael D.; Heilmann, Ralf K.; Zuo, Heng

    2015-09-01

    The successful NuSTAR telescope was fabricated with thin glass mirrors formed into conic shapes by thermal slumping of thin glass sheets onto high precision mandrels. While mirrors generated by this process have very good figure, the best mirrors to date have a resolution limited to ~7 arc sec, due primarily to mid-range scale spatial frequency errors. These mid-range errors are believed to be due to clumping and particulates in the anti-stick coatings used to prevent sticking between mandrel and mirrors. We have developed a new slumping process which avoids sticking and surface-induced mid-range error by floating hot glass substrates between a pair of porous air bearing mandrels through which compressed nitrogen is forced. We report on the design and testing of an improved air bearing slumping tool and show results of short and long slumping cycles.

  19. Development of an air-bearing fan for space extravehicular activity (EVA) suit ventilation

    NASA Technical Reports Server (NTRS)

    Fukumoto, Paul; Allen, Norman; Stonesifer, Greg

    1992-01-01

    A high-speed/variable flow fan has been developed for EVA suit ventilation which combines air bearings with a two-pole, toothless permanent-magnet motor. The fan has demonstrated quiet and vibration-free operation and a 2:1 range in flow rate variation. System weight is 0.9 kg, and input powers range from 12.4 to 42 W.

  20. The system integration and verification testing of an orbital maneuvering vehicle for an air bearing floor

    NASA Technical Reports Server (NTRS)

    Shields, N. L., Jr.; Martin, M. F.; Paulukaitis, K. R.; Haslam, J. W., Jr.; Henderson, D. E.

    1986-01-01

    The teleoperator and Robotics Evaluation Facility (TOREF) is composed of a 4,000 square foot precision air bearing floor, the Teleoperator Motion Base, the Target Motion and Support Simulator, the mock-ups of the Hubble Space Telescope, Multi-mission Modular Spacecraft, and the Orbital Maneuvering Vehicle (OMV). The TOREF and its general capabilities to support the OMV and other remote system simulations; the facility operating procedures and requirements; and the results of generic OMV investigations are summarized.

  1. Foil changing apparatus

    DOEpatents

    Crist, Charles E.; Ives, Harry C.; Leifeste, Gordon T.; Miller, Robert B.

    1988-01-01

    A self-contained hermetically sealed foil changer for advancing a portion of foil web into a position normal to the path of a high energy particle beam. The path of the beam is defined generally by an aperture plate and cooperating axially movable barrel such that the barrel can be advanced toward the plate thereby positioning a portion of the foil across the beam path and sealing the foil between the barrel and the plate to form a membrane across said beam path. A spooling apparatus contained in the foil changer permits selectively advancing a fresh supply of foil across the beam path without breaking the foil changer seal.

  2. Start-stop testing of two self-acting air-lubricated spiral groove thrust bearing coatings

    NASA Technical Reports Server (NTRS)

    Dunfee, J. D.; Shapiro, W.

    1974-01-01

    Start-stop tests were conducted on air-lubricated spiral-groove thrust bearings. Application of a matrix-bonded molybdenum disulfide (MoS2) coating over a porous chrome oxide coating resulted in significantly lower friction, compared to bearings coated with chrome oxide only. The MoS2 coated bearing sustained 15,000 start-stop cycles at a maximum of 3600 rpm. Each cycle was 15 seconds on, 30 seconds off. The chrome oxide coated bearing failed by local welding after 2030 cycles. Both types of coatings exhibited early failures under higher thrust loads when operating films were insufficient to sustain the load without overheating.

  3. Tracking Phragmites Australis Expansion in Bear River Migratory Bird Refuge using AggieAir Aircraft Data

    NASA Astrophysics Data System (ADS)

    Zaman, B.; McKee, M.

    2010-12-01

    This research examines the use of unmanned air vehicles (UAV), a cutting edge technology developed at the Utah Water research lab for acquiring airborne imagery using drones for the assessment of abundance of an invasive species Phragmites australis in a wetland vegetation setup. These UAV’s acquire multispectral data in the visible and near-infrared bands with a spatial resolution of 0.5 meters. The study area is the Bear River Migratory Bird Refuge (MBR) which lies in northern Utah, where the Bear River flows into the northeast arm of the Great Salt Lake. The Refuge protects the marshes found at the mouth of the Bear River; these marshes are the largest freshwater component of the Great Salt Lake ecosystem. A common reed, Phragmites australis, is a tall (1.5-4.0 m) coarse perennial grass found primarily in brackish and freshwater wetlands, growing at or above mean high water. The methodology is to build Bayesian statistical supervised classification model using relevance vector machine (RVM) employing the inexpensive and readily available UAV data. The UAV images of the bird refuge are processed to obtain calibrated reflectance imagery. Thereafter, the isodata clustering algorithm is applied to classify the multispectral imagery into different classes. Using ground sampling of the species, pixels containing the Phragmites australis are deduced. The training set for the supervised RVM classification model is prepared using the deduced pixel values. A separate set of ground sampling points containing the Phragmites australis are kept aside for validation. The distribution of Phragmites australis in the study area as obtained from RVM classification model is compared to the validation set. The RVM model results for tracking of Phragmites are encouraging and the new technique has promising real-time implementation for similar applications.

  4. Flexible Flapping Foils

    NASA Astrophysics Data System (ADS)

    Marais, Catherine; Godoy-Diana, Ramiro; Wesfreid, José. Eduardo

    2010-11-01

    Hydrodynamic tunnel experiments with flexible flapping foils of 4:1 span-to-chord aspect ratio are used in the present work to study the effect of foil compliance in the dynamical features of a propulsive wake. The average thrust force produced by the foil is estimated from 2D PIV measurements and the regime transitions in the wake are characterized according to a flapping frequency-amplitude phase diagram as in Godoy-Diana et al. (Phys. Rev. E 77, 016308, 2008). We show that the thrust production regime occurs on a broader region of the parameter space for flexible foils, with propulsive forces up to 3 times greater than for the rigid case. We examine in detail the vortex generation at the trailing edge of the foils, and propose a mechanism to explain how foil deformation leads to an optimization of propulsion.

  5. Contact sheet recording with a self-acting negative air bearing

    NASA Technical Reports Server (NTRS)

    Muftu , Sinan (Inventor); Hinteregger, Hans F (Inventor)

    2000-01-01

    A flat head and a tape transport arrangement impart a wrap angle to the tape at the upstream corner of the head. The wrap angle, corner sharpness and tape stiffness are sufficient to cause a moving tape to form a hollow bump at the upstream corner, thereby creating a hollow into which entrained air can expand, causing a subambient pressure within and downstream of the bump. This pressure keeps the tape in contact with the head. It is created without the need for a groove or complex pressure relief slot(s). No contact pressure arises at the signal exchange site due to media wrap. The highest contact pressures are developed at a wrapped upstream corner. For a tape drive, traveling in both forward and reverse, the wrap can be at both the upstream and downstream (which is the reverse upstream) corners. Heads that are not flat can also be used, if the wrap angle relative to a main surface is sufficient and not too large. The wrapped head can also be used with rotating media, such as disks (floppy and hard) and rotating heads, such as helical wound heads for video recording. Multiple flat tape bearing surfaces can be separated by grooves and/or angles. Each flat can carry heads along one or more gap lines. Multiple adjacent narrow tracks can thus be written for extreme high track density recording.

  6. SNS Injection Foil Experience

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Macek, Robert James; Raparia, Deepak; Plum, Michael A

    2010-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H0 excited states created during the H charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we will detail these and other interesting failure mechanisms, and describe the improvements we have made to mitigate them.

  7. Development of magnetically preloaded air bearings for a linear slide: active compensation of three degrees of freedom motion errors.

    PubMed

    Ro, Seung-Kook; Kim, Soohyun; Kwak, Yoonkeun; Park, Chun-Hong

    2008-03-01

    This article describes a linear air-bearing stage that uses active control to compensate for its motion errors. The active control is based on preloads generated by magnetic actuators, which were designed to generate nominal preloads for the air bearings using permanent magnets to maintain the desired stiffness while changing the air-bearing clearance by varying the magnetic flux generated by the current in electromagnetic coils. A single-axis linear stage with a linear motor and 240 mm of travel range was built to verify this design concept and used to test its performance. The motion of the table in three directions was controlled with four magnetic actuators driven by current amplifiers and a DSP (Digital Signal Processor)-based digital controller. The motion errors were measured using a laser interferometer combined with a two-probe method, and had 0.085 microm of repeatability for the straightness error. As a result of feed-forward active compensation, the errors were reduced from 1.09 to 0.11 microm for the vertical motion, from 9.42 to 0.18 arcsec for the pitch motion, and from 2.42 to 0.18 arcsec for the roll motion. PMID:18377049

  8. Synchronization and Phase Dynamics of Oscillating Foils

    NASA Astrophysics Data System (ADS)

    Finkel, Cyndee L.

    In this work, a two-dimensional model representing the vortices that animals produce, when they are ying/swimming, was constructed. A D{shaped cylinder and an oscillating airfoil were used to mimic these body{shed and wing{generated vortices, respectively. The parameters chosen are based on the Reynolds numbers similar to that which is observed in nature (˜10 4). In order to imitate the motion of ying/swimming, the entire system was suspended into a water channel from frictionless air{bearings. The position of the apparatus in the channel was regulated with a linear, closed loop PI controller. Thrust/drag forces were measured with strain gauges and particle image velocimetry (PIV) was used to examine the wake structure that develops. The Strouhal number of the oscillating airfoil was compared to the values observed in nature as the system transitions between the accelerated and steady states. The results suggest that self-regulation restricts the values of the Strouhal number to a certain range where no other external sensory input is necessary. As suggested by previous work, this self-regulation is a result of a limit cycle process that stems from nonlinear periodic oscillations. The limit cycles were used to examine the synchronous conditions due to the coupling of the foil and wake vortices. Noise is a factor that can mask details of the synchronization. In order to control its effect, we study the locking conditions using an analytic technique that only considers the phases. Our results show that the phase locking indices are dependent on the Strouhal value as it converges to a frequency locking ratio of ≃0:5. This indicates that synchronization occurs during cruising between the motion of the foil and the measured thrust/drag response of the uid forces. The results suggest that Strouhal number selection in steady forward natural swimming and ying is the result of a limit cycle process and not actively controlled by an organism. An implication of this is

  9. Monolithic exploding foil initiator

    DOEpatents

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  10. Preliminary Investigation of Molybdenum Disulfide-air-mist Lubrication for Roller Bearings Operating to DN Values of 1 x 10(exp 6) and Ball Bearings Operating to Temperatures of 1000 F

    NASA Technical Reports Server (NTRS)

    Macks, E F; Nemeth, Z N; Anderson, W J

    1951-01-01

    The effectiveness of molybdenum disulfide MoS2 as a bearing lubricant was determined at high temperature and at high speeds. A 1-inch-bore ball bearing operated at temperatures to 1000 F, a speed of 1725 rpm, and a thrust load of 20 pounds when lubricated only with MoS2-air mist. A 75-millimeter-bore cageless roller bearing, provided with a MoS2-syrup coating before operation, operated at DN values to 1 x 10(exp 6) with a load of 368 pounds.

  11. Evaluation of chromium oxide and molybdenum disulfide coatings in self-acting stops of an air-lubricated Rayleigh step thrust bearing

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1974-01-01

    Two coatings for a Rayleigh step thrust bearing were tested when coasting down and stopping under self-acting operation in air. The thrust bearing had an outside diameter of 8.9 cm (3.5 in.), an inside diameter of 5.4 cm (2.1 in.), and nine sectors. The load was 73 N (16.4 lbf). The load pressure was 19.1 kN/per square meter (2.77 lbf/per square inch) on the total thrust bearing area. The chromium oxide coating was good to 150 stops without bearing deterioration, and the molybdenum disulfide coating was good for only four stops before bearing deterioration. The molybdenum disulfide coated bearing failed after nine stops.

  12. Investigation of Pressurized Wave Bearings

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Dimofte, Florin

    2003-01-01

    The wave bearing has been pioneered and developed by Dr. Dimofte over the past several years. This bearing will be the main focus of this research. It is believed that the wave bearing offers a number of advantages over the foil bearing, which is the bearing that NASA is currently pursuing for turbomachinery applications. The wave bearing is basically a journal bearing whose film thickness varies around the circumference approximately sinusoidally, with usually 3 or 4 waves. Being a rigid geometry bearing, it provides precise control of shaft centerlines. The wave profile also provides good load capacity and makes the bearing very stable. Manufacturing techniques have been devised that should allow the production of wave bearings almost as cheaply as conventional full-circular bearings.

  13. Process for anodizing aluminum foil

    SciTech Connect

    Ball, J.A.; Scott, J.W.

    1984-11-06

    In an integrated process for the anodization of aluminum foil for electrolytic capacitors including the formation of a hydrous oxide layer on the foil prior to anodization and stabilization of the foil in alkaline borax baths during anodization, the foil is electrochemically anodized in an aqueous solution of boric acid and 2 to 50 ppm phosphate having a pH of 4.0 to 6.0. The anodization is interrupted for stabilization by passing the foil through a bath containing the borax solution having a pH of 8.5 to 9.5 and a temperature above 80/sup 0/ C. and then reanodizing the foil. The process is useful in anodizing foil to a voltage of up to 760 V.

  14. Design for H type co-planar precision stage based on closed air bearing guideway with vacuum attraction force

    NASA Astrophysics Data System (ADS)

    Zhang, Bin; Shi, Zhaoyao; Lin, Jiachun; Zhang, Hua

    2011-12-01

    The accuracy of traditional two-dimensional precision stage is limited not only by the accuracy of each guideway but also by the configuration of the stage. It is not easy to calculate and compensate the total accuracy of the stage due to the complicated influence caused by the different position of the slides. An air bearing guideways with vacuum attraction forces has been designed with closed slide structure to enhance the stiffness and avoid the deformation caused by the weight of slide and workpieces. An H style two-dimension ultra-precision stage with co-planar structure has been developed based on the air bearing guideways to avoid the multi-influence by the axes. Driven by linear motors, the position of the workpiece is encoded by length scales with resolution of 50nm and thermal expansion of 0.6 μm/m/°C (0 °C to 30 °C). The travel span of the stage is 320x320mm, during which each axis has a positioning accuracy of +/-1μm, a repeatability of +/-0.3μm and a straightness of +/-0.5μm. The stage can be applied in precision manufacturing and measurement.

  15. Bearings: Technology and needs

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1982-01-01

    A brief status report on bearing technology and present and near-term future problems that warrant research support is presented. For rolling element bearings a material with improved fracture toughness, life data in the low Lambda region, a comprehensive failure theory verified by life data and incorporated into dynamic analyses, and an improved corrosion resistant alloy are perceived as important needs. For hydrodynamic bearings better definition of cavitation boundaries and pressure distributions for squeeze film dampers, and geometry optimization for minimum power loss in turbulent film bearings are needed. For gas film bearings, foil bearing geometries that form more nearly optimum film shapes for maximum load capacity, and more effective surface protective coatings for high temperature operation are needed.

  16. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  17. Performance Testing of a Magnetically Suspended Double Gimbal Control Moment Gyro Based on the Single Axis Air Bearing Table

    PubMed Central

    Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng

    2012-01-01

    Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536

  18. Foil radiometer accessory improves measurements

    NASA Technical Reports Server (NTRS)

    Schumacher, P. E.

    1967-01-01

    The responsiveness of a foil radiometer is increased and its time constant is simultaneously decreased by isolating the foil in a controlled environment. Using an optical system, it is coupled to the media to be measured, and the resulting concentration of energy permits the thermocouple junction temperature to respond quickly.

  19. Rhenium-Foil Witness Cylinders

    NASA Technical Reports Server (NTRS)

    Knight, B. L.

    1992-01-01

    Cylindrical portion of wall of combustion chamber replaced with rhenium foil mounted on holder. Rhenium oxidizes without melting, indicating regions of excess oxidizer in combustion-chamber flow. Rhenium witness foils also useful in detecting excess oxygen and other oxidizers at temperatures between 2,000 and 3,600 degrees F in burner cores of advanced gas-turbine engines.

  20. Consequences of FOIL for Undergraduates

    ERIC Educational Resources Information Center

    Koban, Lori; Sisneros-Thiry, Simone

    2015-01-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual…

  1. A comparison between the dimensions of positive transtibial residual limb molds prepared by air pressure casting and weight-bearing casting methods

    PubMed Central

    Hajiaghaei, Behnam; Ebrahimi, Ismail; Kamyab, Mojtaba; Saeedi, Hassan; Jalali, Maryam

    2016-01-01

    Background: Creating a socket with proper fit is an important factor to ensure the comfort and control of prosthetic devices. Several techniques are commonly used to cast transtibial stumps but their effect on stump shape deformation is not well understood. This study compares the dimensions, circumferences and volumes of the positive casts and also the socket comfort between two casting methods. Our hypothesis was that the casts prepared by air pressure method have less volume and are more comfortable than those prepared by weight bearing method. Methods: Fifteen transtibial unilateral amputees participated in the study. Two weight bearing and air pressure casting methods were utilized for their residual limbs. The diameters and circumferences of various areas of the residual limbs and positive casts were compared. The volumes of two types of casts were measured by a volumeter and compared. Visual Analogue Scale (VAS) was used to measure the sockets fit comfort. Results: Circumferences at 10 and 15 cm below the patella on the casts were significantly smaller in air pressure casting method compared to the weight bearing method (p=0.00 and 0.01 respectively). The volume of the cast in air pressure method was lower than that of the weight bearing method (p=0.006). The amputees found the fit of the sockets prepared by air pressure method more comfortable than the weight bearing sockets (p=0.015). Conclusion: The air pressure casting reduced the circumferences of the distal portion of residual limbs which has more soft tissue and because of its snug fit it provided more comfort for amputees, according to the VAS measurements. PMID:27390711

  2. Nature Foil Reliefs

    ERIC Educational Resources Information Center

    Lane, Shaw J.

    2012-01-01

    Nature has always been a source of inspiration for artists across the centuries. Artists such as Leonardo da Vinci, Georgia O'Keeffe, Ansel Adams, and Andy Goldsworthy all drew inspiration for their work from nature. Seeds come from the dried pods, which when planted and cared for, bear fruit. In this article, the author describes how her…

  3. Consequences of FOIL for undergraduates

    NASA Astrophysics Data System (ADS)

    Koban, Lori; Sisneros-Thiry, Simone

    2015-02-01

    FOIL is a well-known mnemonic that is used to find the product of two binomials. We conduct a large sample (n = 252) observational study of first-year college students and show that while the FOIL procedure leads to the accurate expansion of the product of two binomials for most students who apply it, only half of these students exhibit conceptual understanding of the procedure. We generalize this FOIL dichotomy and show that the ability to transfer a mathematical property from one context to a less familiar context is related to both procedural success and attitude towards math.

  4. Dynamic behavior of air lubricated pivoted-pad journal-bearing, rotor system. 2: Pivot consideration and pad mass

    NASA Technical Reports Server (NTRS)

    Nemeth, Z. N.

    1972-01-01

    Rotor bearing dynamic tests were conducted with tilting-pad journal bearings having three different pad masses and two different pivot geometries. The rotor was vertically mounted and supported by two three-pad tilting-pad gas journal bearings and a simple externally pressurized thrust bearing. The bearing pads were 5.1 cm (2.02 in.) in diameter and 2.8 cm (1.5 in.) long. The length to diameter ratio was 0.75. One pad was mounted on a flexible diaphragm. The bearing supply pressure ranged from 0 to 690 kilonewtons per square meter (0 to 100 psig), and speeds ranged to 38,500 rpm. Heavy mass pad tilting-pad assemblies produced three rotor-bearing resonances above the first two rotor critical speeds. Lower supply pressure eliminated the resonances. The resonances were oriented primarily in the direction normal to the diaphragm.

  5. Design, development and evaluation of a precision air bearing rotary table with large diameter through-hole

    SciTech Connect

    Accatino, M.R.

    1991-11-01

    A large diameter precision air bearing rotary table with a 16.0 inch diameter through-hole was designed, fabricated and tested in the course of this research. The rotary table will be used in conjunction with a specialized, computer controlled precision inspection machine being designed for the Department of Energy`s (DOE) Nuclear Weapons Complex (NWC). The design process included a complete engineering analysis to predict the final performance of the rotary table, and to ensure that the rotary table meets the required accuracy of 4.0 microinches of total radial (3.5 microinches average radial) and 4.0 microinches total axial (3.5 microinches average axial) errors. The engineering analysis included structural deformation, thermal sensitivity and dynamic analyses using finite element methods in some cases, as well as other analytic solutions. Comparisons are made between predicted and tested values, which are listed in the rotary table error budget. The rotary table performed as predicted with measured axial and radial stiffnesses of 1.1E06 lbf/inch and 2.9E06 lbf/inch, respectively, as well as average radial, axial and tilt errors of 2.5 microinches, 1.5 microinches, and less than 0.05 arcseconds, respectively.

  6. Numerical Simulation of the Slider Air Bearing Problem of Hard Disk Drives by Two Multidimensional Upwind Residual Distribution Schemes over Unstructured Triangular Meshes

    NASA Astrophysics Data System (ADS)

    Wu, Lin; Bogy, D. B.

    2001-09-01

    In this paper we present two multigrid numerical schemes over unstructured triangular meshes that solve the slider air bearing problem of hard disk drives. For each fixed slider attitude, the air bearing pressure is obtained by solving the generalized Reynolds equation. The convection part of the equation is modeled in one scheme by the PSI multidimensional upwind residual distribution approach and in the other scheme by the SUPG finite element approach cast in residual distribution form. In both schemes, a linear Galerkin method is used to discretize the diffusion terms. In addition, a non-nested multigrid iteration technique is used to speed up the convergence rate. Finally, the balanced steady state flying attitude of the slider subject to pre-applied suspension force and torques is obtained by a Quasi-Newton iteration method (Broyden's method), and the results of the numerical solutions are compared to each other and to experimental data.

  7. Method for fabricating uranium foils and uranium alloy foils

    DOEpatents

    Hofman, Gerard L.; Meyer, Mitchell K.; Knighton, Gaven C.; Clark, Curtis R.

    2006-09-05

    A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

  8. X-ray fiducial foils

    SciTech Connect

    Alford, C.; Serduke, F.; Makowiecki, D.; Jankowski, A.; Wall, M.

    1991-03-13

    An x-ray spectrum from a laser fusion experiment was passed through an Al, Si, Y multilayer foil. The position of the absorption edges of the Al, Si, and Y was used to calibrate the x-ray energy spectrum recorded on photographic film. The foil consisted of 4000 {angstrom} of Al, 6000 {angstrom} of Si and 4000 {angstrom} of Y sputter deposited on a 1.5 {mu}m thick Mylar{reg sign} film. It was necessary to layer the structure in order to achieve the required mechanical strength and dimensional stability. The results include analysis of the x-ray energy spectrum and microstructural characterization of the foil using x-ray diffraction and transmission electron microscopy.

  9. Carbon foils for space plasma instrumentation

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Funsten, H. O.

    2016-05-01

    Carbon foils have been successfully used for several decades in space plasma instruments to detect ions and neutral atoms. These instruments take advantage of two properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, which usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects mainly varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. In this paper, we describe these effects and the properties of the interaction. We also summarize results from recent studies with graphene foils, which can be made thinner than carbon foils due to their superior strength. Graphene foils may soon replace carbon foils in space plasma instruments and open new opportunities for space research in the future.

  10. Metal Foil Sandwiched Multiple Radiography

    NASA Astrophysics Data System (ADS)

    Takenaka, E.; Hatori, M.

    1982-11-01

    A new method to obtain simultaneously two or three radiographs with a wide dynamic range was studied. This is to divide the transmitted X-ray energy spectra through a human body into lower and higher parts than K absorption edge by a metal foil (Pb, Ta, Gd) and give radiographs using two or three pairs of an one-side coated film and an intensifying screen. The backward film has the informations filtered by the metal foil. The forward film before the metal foil, if the film density is same, relatively contains the informations of lower parts of the transmitted X-ray spectra through a human body. Secondly, a metal foil can make shadows of thin parts and thick parts of a human body displace on high region of film, respectively and separatedly. These radiographs of thin parts were useful to be observed superposing two films with a wide dynamic range. As to thick parts it was useful to view two films hanging side by side. This technique was appreciated to be applied to the organs such as extremities, knee and elbow, head and neck, lung and etc.

  11. Foil Patches Seal Small Vacuum Leaks

    NASA Technical Reports Server (NTRS)

    Spiegel, Kirk W.; Reed, David W.

    1995-01-01

    Report discloses technique to patch holes in nickel-alloy rocket-engine nozzle parts prior to vacuum brazing. Technique involves lightly spot-welding nickel foil 0.002 in. thick over hole patched, then spot-welding corrosion-resistant steel foil of same thickness over nickel foil. Once patches subject to pressure and temperature of vacuum brazing, nickel foil diffuses to bond with nickel-alloy nozzle, making vacuum-tight seal.

  12. Fabrication of antiferroelectric PLZT films on metal foils.

    SciTech Connect

    Ma, B.; Kwon, D.-K.; Narayanan, M.; Balachandran, U.; Energy Systems

    2009-01-01

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb{sub 0.92}La{sub 0.08}Zr{sub 0.95}Ti{sub 0.05}O{sub 3} (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E{sub AF} = 225 kV/cm, and the reverse phase transition field, E{sub FA} = 190 kV/cm, were measured at room temperature on a {approx}1.15 {micro}m-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were {approx}600 and {approx}730, respectively, with dielectric loss {approx}0.04 at room temperature. The Curie temperature was {approx}210 C. The thermal-induced transition of AFE-to-FE phase occurred at {approx}175 C. Breakdown field strength of 1.2 MV/cm was measured at room temperature.

  13. Fabrication of antiferroelectric PLZT films on metal foils

    SciTech Connect

    Ma Beihai Kwon, Do-Kyun; Narayanan, Manoj; Balachandran, U.

    2009-01-08

    Fabrication of high-dielectric-strength antiferroelectric (AFE) films on metallic foils is technically important for advanced power electronics. To that end, we have deposited crack-free Pb{sub 0.92}La{sub 0.08}Zr{sub 0.95}Ti{sub 0.05}O{sub 3} (PLZT 8/95/5) films on nickel foils by chemical solution deposition. To eliminate the parasitic effect caused by the formation of a low-permittivity interfacial oxide, a conductive buffer layer of lanthanum nickel oxide (LNO) was coated by chemical solution deposition on the nickel foil before the deposition of PLZT. Use of the LNO buffer allowed high-quality film-on-foil capacitors to be processed in air. With the PLZT 8/95/5 deposited on LNO-buffered Ni foils, we observed field- and thermal-induced phase transformations of AFE to ferroelectric (FE). The AFE-to-FE phase transition field, E{sub AF} = 225 kV/cm, and the reverse phase transition field, E{sub FA} = 190 kV/cm, were measured at room temperature on a {approx}1.15 {mu}m-thick PLZT 8/95/5 film grown on LNO-buffered Ni foils. The relative permittivities of the AFE and FE states were {approx}600 and {approx}730, respectively, with dielectric loss {approx}0.04 at room temperature. The Curie temperature was {approx}210 deg. C. The thermal-induced transition of AFE-to-FE phase occurred at {approx}175 deg. C. Breakdown field strength of 1.2 MV/cm was measured at room temperature.

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  16. Bearing system

    DOEpatents

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  17. Efficiency and lifetime of carbon foils

    SciTech Connect

    Chou, W.; Kostin, M.; Tang, Z.; /Fermilab

    2006-11-01

    Charge-exchange injection by means of carbon foils is a widely used method in accelerators. This paper discusses two critical issues concerning the use of carbon foils: efficiency and lifetime. An energy scaling of stripping efficiency was suggested and compared with measurements. Several factors that determine the foil lifetime--energy deposition, heating, stress and buckling--were studied by using the simulation codes MARS and ANSYS.

  18. Contribution of (222)Rn-bearing water to indoor radon and indoor air quality assessment in hot spring hotels of Guangdong, China.

    PubMed

    Song, Gang; Wang, Xinming; Chen, Diyun; Chen, Yongheng

    2011-04-01

    This study investigates the contribution of radon ((222)Rn)-bearing water to indoor (222)Rn in thermal baths. The (222)Rn concentrations in air were monitored in the bathroom and the bedroom. Particulate matter (PM, both PM(10) and PM(2.5)) and carbon dioxide (CO(2)) were also monitored with portable analyzers. The bathrooms were supplied with hot spring water containing 66-260 kBq m(-3) of (222)Rn. The results show that the spray of hot spring water from the bath spouts is the dominant mechanism by which (222)Rn is released into the air of the bathroom, and then it diffuses into the bedroom. Average (222)Rn level was 110-410% higher in the bedrooms and 510-1200% higher in the bathrooms compared to the corresponding average levels when there was no use of hot spring water. The indoor (222)Rn levels were influenced by the (222)Rn concentrations in the hot spring water and the bathing times. The average (222)Rn transfer coefficients from water to air were 6.2 × 10(-4)-4.1 × 10(-3). The 24-h average levels of CO(2) and PM(10) in the hotel rooms were 89% and 22% higher than the present Indoor Air Quality (IAQ) standard of China. The main particle pollutant in the hotel rooms was PM(2.5). Radon and PM(10) levels in some hotel rooms were at much higher concentrations than guideline levels, and thus the potential health risks to tourists and especially to the hotel workers should be of great concern, and measures should be taken to lower inhalation exposure to these air pollutants.

  19. Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators

    SciTech Connect

    Maziasz, Philip J; Shingledecker, John P; Evans, Neal D; Yamamoto, Yukinori; More, Karren Leslie; Trejo, Rosa M; Lara-Curzio, Edgar

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) and ATI Allegheny Ludlum worked together on a collaborative program for about two years to produce a wide range of commercial sheets and foils of the new AL20-25+Nb{trademark} (AL20-25+Nb) stainless alloy for advanced microturbine recuperator applications. There is a need for cost-effective sheets/foils with more performance and reliability at 650-750 C than 347 stainless steel, particularly for larger 200-250 kW microturbines. Phase 1 of this collaborative program produced the sheets and foils needed for manufacturing brazed plated-fin air cells, while Phase 2 provided foils for primary surface air cells, and did experiments on modified processing designed to change the microstructure of sheets and foils for improved creep-resistance. Phase 1 sheets and foils of AL20-25+Nb have much more creep-resistance than 347 steel at 700-750 C, and those foils are slightly stronger than HR120 and HR230. Results for Phase 2 showed nearly double the creep-rupture life of sheets at 750 C/100 MPa, and similar improvements in foils. Creep data show that Phase 2 foils of AL20-25+Nb alloy have creep resistance approaching that of alloy 625 foils. Testing at about 750 C in flowing turbine exhaust gas for 500 h in the ORNL Recuperator Test Facility shows that foils of AL20-25+Nb alloy have oxidation-resistance similar to HR120 alloy, and much better than 347 steel.

  20. Chromic acid anodizing of aluminum foil

    NASA Technical Reports Server (NTRS)

    Dursch, H.

    1988-01-01

    The success of the Space Station graphite/epoxy truss structure depends on its ability to endure long-term exposure to the LEO environment, primarily the effects of atomic oxygen and the temperture cycling resulting from the 94 minute orbit. This report describes the development and evaluation of chromic acid anodized (CAA) aluminum foil as protective coatings for these composite tubes. Included are: development of solar absorptance and thermal emittance properties required of Al foil and development of CAA parameters to achieve these optical properties; developing techniques to CAA 25 ft lengths of Al foil; developing bonding processes for wrapping the Al foil to graphite/epoxy tubes; and atomic oxygen testing of the CAA Al foil. Two specifications were developed and are included in the report: Chromic Acid Anodizing of Aluminum Foil Process Specification and Bonding of Anodized Aluminum Foil to Graphite/Epoxy Tubes. Results show that CAA Al foil provides and excellent protective and thermal control coating for the Space Station truss structure.

  1. Predicted Foil Temperatures in the Brookhaven NSNS Accumulator Ring

    NASA Astrophysics Data System (ADS)

    Duke, J. P.

    1997-05-01

    An investigation has been carried out into the peak equilibrium stripping foil temperatures that could be expected in the 1 GeV NSNS Accumulator Ring proposed by Brookhaven National Laboratory. A Graphite foil is assumed. Computed foil temperature distributions on the foil's surface would be presented, as well as the predicted relationships between foil temperature and quantities such as the average number of recirculated proton hits, linac current, and foil mass per unit area used.

  2. Oxidation Behavior of Germanium- and/or Silicon-Bearing Near-α Titanium Alloys in Air

    NASA Astrophysics Data System (ADS)

    Kitashima, Tomonori; Yamabe-Mitarai, Yoko

    2015-06-01

    The effect of germanium (Ge) and/or silicon (Si) addition on the oxidation behavior of the near-α alloy Ti-5Al-2Sn-4Zr-2Mo was investigated in air at 973 K (700 °C). Ge addition decreased the oxidation resistance because of the formation of a Ge-rich layer in the substrate at the TiO2/substrate interface, enhancing Sn segregation at the interface. In addition, a small amount of Ge dissolved in the external Al2O3 layer. These results reduced the aluminum activity at the interface, suppressed the formation of Al2O3, and increased the diffusivity of oxygen in the oxide scales. The addition of 0.2 and 0.9 wt pct Si was beneficial for improving oxidation resistance. The effect of germanide and silicide precipitates in the matrix on the oxide growth process was also discussed.

  3. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1995-01-01

    This semiannual status report lists specific accomplishments made on the research of the influence of backup bearings and support structure dynamics on the behavior of rotors with active supports. Papers have been presented representing work done on the T-501 engine model; an experimental/simulation study of auxiliary bearing rotordynamics; and a description of a rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects. A finite element model for a foil bearing has been developed. Additional studies of rotor/bearing/housing dynamics are currently being performed as are studies of the effects of sideloading on auxiliary bearing rotordynamics using the magnetic bearing supported rotor model.

  4. Tilted foils polarization at REX-ISOLDE

    NASA Astrophysics Data System (ADS)

    Törnqvist, H.; Sotty, C.; Balabanski, D.; Dhal, A.; Georgiev, G.; Hass, M.; Heinz, A.; Hirayama, Y.; Imai, N.; Johansson, H.; Kowalska, M.; Kusoglu, A.; Nilsson, T.; Stuchbery, A.; Wenander, F.; Yordanov, D. T.

    2013-12-01

    The tilted-foils nuclear-spin polarization method has been evaluated using the REX-ISOLDE linear accelerator at the ISOLDE facility, CERN. A beam of 8Li delivered with an energy of 300 keV/u traversed through one Mylar foil to degrade the beam energy to 200 keV/u and consequently through 10 thin diamond-like carbon foils to polarize the nuclear spin. The attained nuclear spin polarization of 3.6±0.3% was measured with a β-NMR setup.

  5. THRUST BEARING

    DOEpatents

    Heller, P.R.

    1958-09-16

    A thrust bearing suitable for use with a rotor or blower that is to rotate about a vertical axis is descrihed. A centrifagal jack is provided so thnt the device may opernte on one hearing at starting and lower speeds, and transfer the load to another bearing at higher speeds. A low viscosity fluid is used to lubricate the higher speed operation bearing, in connection with broad hearing -surfaces, the ability to withstand great loads, and a relatively high friction loss, as contraated to the lower speed operatio;n bearing which will withstand only light thrust loads but is sufficiently frictionfree to avoid bearing seizure during slow speed or startup operation. An axially aligned shaft pin provides the bearing surface for low rotational speeds, but at higher speed, weights operating against spring tension withdraw nthe shaft pin into the bearing proper and the rotor shaft comes in contact with the large bearing surfaces.

  6. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  7. Stray Electric Field Due to the Carbon Foil Resistance in Hydrogen Beam-Foil-Spectroscopy Measurements

    NASA Astrophysics Data System (ADS)

    Singer, W.; Dehaes, J. C.; Carmeliet, J.

    1980-01-01

    We have measured the linear polarization of the Hβ transition at 486.1 nm excited by passage of a 110 keV proton beam through perpendicular carbon foils. We have observed that the polarization depends upon the beam intensity and on the relative position of the foil and its holder. We have shown that these dependences are linked to the presence of a stray electric field at the immediate vicinity of the foil. The field is due to the potential distribution at the foil surface resulting from the electron radial flow in the high foil electric resistance (about 50 kΩ). It introduces a perturbation which in our case is more important than the temperature effect observed by Gay and Berry (Phys. Rev. A19, 952 (1979)). The field is proportional to the beam current density and is reduced for large foil and beam diameters.

  8. Radioactivity analysis in niobium activation foils

    SciTech Connect

    Mueller, G.E.

    1995-06-01

    The motivation for this study was to measure and analyze the activity of six (6) niobium (Nb) foils (the x-rays from an internal transition in Nb-93m) and apply this information with previously obtained activation foil data. The niobium data was used to determine the epithermal to MeV range for the neutron spectrum and fluence. The foil activation data was re-evaluated in a spectrum analysis code (STAY`SL) to provide new estimates of the exposure at the Los Alamos Spallation Radiation Effect Facility (LASREF). The activity of the niobium foils was measured and analyzed at the University of Missouri-Columbia (UMC) under the direction of Professor William Miller. The spectrum analysis was performed at the University of Missouri-Rolla (UMR) by Professor Gary Mueller.

  9. Journal bearing

    DOEpatents

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  10. Investigation of Energy Harvesting Using Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mivehchi, Amin; Persichetti, Amanda; Dunham, Brandon; Dahl, Jason M.

    2013-11-01

    When harvesting kinetic energy using a flapping foil, the separation of coherent structures in the wake is crucial for determining forces on the body. Applications for utilizing energy harvesting with a flapping foil include powering of local, low power equipment and recharging AUV batteries that use flapping foils for propulsion and maneuvering. In each of these cases, it is critical to accurately predict the physical behavior and location of vortices in relation to the motion of the body in order to maximize energy output. A two-dimensional open source boundary data immersion method (LilyPad) is used for simulating the flapping motion of a foil for energy harvesting in a current. Forced motion of the flapping body indicates theoretical efficiencies for energy harvesting near 43 percent under specific flapping conditions. A simple control scheme based on pressure sensing on the surface of the foil is developed to control pitch of the foil while energy harvesting occurs in the heave direction. The control scheme is tested through real time numerical simulation. Comparisons are made with physical laboratory experiments, demonstrating high efficiencies in energy harvesting.

  11. Grizzly bear

    USGS Publications Warehouse

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  12. Cryostat with Foil and MLI

    SciTech Connect

    Hwang, Peter K.F.; Gung, Chen-yu

    2005-10-06

    Induction cores are used to accelerate heavy ion beam array, which are built around the outer diameter of the cryostat housing the superconducting quadruple array. Compact cryostat is highly desirable to reduce the cost of the induction cores. Recent experiences in fabrication of a cryostat for single beam transport revealed that it is possible to reduce the spacing in the cryostat vacuum jacket by using low-emissivity thermal insulation material instead of conventional MLI. However, it is labor-intensive to install the new type of insulation as compared with using MLI. It is promising to build a cost-effective compact cryostat for quadruple magnet array for heavy ion beam array transport by using low-emissivity material combined with conventional MLI as radiation insulation. A matrix of insulation designs and tests will be performed as the feasibility study and for the selection of the optimal thermal insulation as the Phase I work. The selected mixed insulation will be used to build prototype compact cryostats in the Phase II project, which are aiming for housing quadruple doublet array. In this STTR phase I study, a small cryostat has been designed and built to perform calorimetric characterization of the heat load in a liquid helium vessel insulated with a vacuum layer with a nominal clearance of 3.5 mm. The vacuum clearance resembled that used in the warm-bore beam tube region in a prototype cryostat previously built for the heavy ion beam transport experiment. The vacuum clearance was geometrically restricted with a heater shell with the temperature controlled at near 300 K. Various combinations of radiation and thermal shields were installed in the tight vacuum clearance for heat load measurements. The measured heat loads are reported and compared with previous test result using a compact vacuum layer. Further developments of the thermal insulations used in the present study are discussed. The compact cryostat with foil and MLI insulation may be used in the

  13. Automated searching of Stardust interstellar foils

    NASA Astrophysics Data System (ADS)

    Ogliore, Ryan C.; Floss, Christine; Stadermann, Frank J.; Kearsley, A. T.; Leitner, Jan; Stroud, Rhonda M.; Westphal, Andrew J.

    2012-04-01

    The Al foils lining the aerogel tiles of the Stardust interstellar tray represent approximately 13% of the total collecting area, about 15,300 mm2. Although the flux is poorly constrained, fewer than 100 impacts are expected in all the Al foils on the collector, and most of these are likely to be less than 1 μm in diameter. Secondary electron (SE) images of the foils at a resolution of approximately 50 nm per pixel are being collected during the Stardust Interstellar Preliminary Examination, resulting in more than two million images that will eventually need to be searched for impact craters. The unknown and complicated nature of 3-dimensional interstellar tracks in aerogel necessitated the use of a massively distributed human search to locate only a few interstellar tracks. The 2-dimensional nature of the SE images makes the problem of searching for craters tractable for algorithmic approaches. Using templates of craters from cometary impacts into Stardust foils, we present a computer algorithm for the identification of impact craters in the Stardust interstellar foils using normalized cross-correlation and template matching. We address the speed, sensitivity, and false-positive rate of the algorithm. The search algorithm can be adapted for use in other applications. The program is freely available for download at .

  14. Additional security features for optically variable foils

    NASA Astrophysics Data System (ADS)

    Marshall, Allan C.; Russo, Frank

    1998-04-01

    For thousands of years, man has exploited the attraction and radiance of pure gold to adorn articles of great significance. Today, designers decorate packaging with metallic gold foils to maintain the prestige of luxury items such as perfumes, chocolates, wine and whisky, and to add visible appeal and value to wide range of products. However, today's products do not call for the hand beaten gold leaf of the Ancient Egyptians, instead a rapid production technology exists which makes use of accurately coated thin polymer films and vacuum deposited metallic layers. Stamping Foils Technology is highly versatile since several different layers may be combined into one product, each providing a different function. Not only can a foil bring visual appeal to an article, it can provide physical and chemical resistance properties and also protect an article from human forms of interference, such as counterfeiting, copying or tampering. Stamping foils have proved to be a highly effective vehicle for applying optical devices to items requiring this type of protection. Credit cards, bank notes, personal identification documents and more recently high value packaged items such as software and perfumes are protected by optically variable devices applied using stamping foil technology.

  15. Degrader foils for the CARIBU project

    NASA Astrophysics Data System (ADS)

    Greene, John P.; Savard, Guy; Pardo, Richard C.; Baker, Samuel I.; Levand, Anthony F.; Zabransky, Bruce J.

    2011-11-01

    The Californium Rare Ion Breeder Upgrade (CARIBU) project was conceived to provide neutron rich beams originating from the 3% fission decay branch of a 252Cf source to be accelerated by the Argonne Tandem Linear Accelerator System (ATLAS). This 1Ci 252Cf source will be housed in a movable shielded cask, from which it can be directly transferred into a large helium gas stopper cell. Within the gas stopper, the CARIBU 252Cf source is positioned behind an aluminum degrader foil where the radioactive recoils of interest lose most of their energy before being stopped in the helium gas. To stop recoils over the full fission mass range effectively, three degraders of increasing thickness are required, one to cover the light fission peak and two for the isotopes in the heavy fission peak. The geometry of the source within the gas cell would ideally require a hemispherically shaped degrader foil for uniform energy loss of the fission products. The fabrication of a thin foil of such a shape proved to be exceedingly difficult and, therefore, a compromise "top hat" arrangement was designed. In addition, the ultra-high vacuum (UHV) environment necessary for the gas cell to function properly prevented the use of any epoxy due to vacuum outgassing. Handling, assembling of the foils and mounting must be done under clean room conditions. Details of early attempts at producing these foils as well as handling and mounting will be discussed.

  16. Stainless Steel Foil with Improved Creep-Resistance for Use in Primary Surface Recuperators for Gas Turbine Engines

    SciTech Connect

    Browning, P.F.; Fitzpatrick, M.; Grubb, J.F.; Klug, R.C.; Maziasz, P.J.; Montague, J.P.; Painter, R.A.; Swindeman, R.W.

    1998-10-12

    Primary surface recuperators (PSRs) are compact heat-exchangers made from thin-foil type 347 austenitic stainless steel, which boost the efficiency of land-based gas turbine engines. Solar Turbines uses foil folded into a unique corrugated pattern to maximize the primary surface area for efficient heat transfer between hot exhaust gas on one side, and the compressor discharge air on the other side of the foil. Allegheny-Ludlum produces 0.003 - 0.0035 in. thick foil for a range of current turbine engines using PSRs that operate at up to 660 degrees C. Laboratory-scale processing modification experiments recently have demonstrated that dramatic improvements can be achieved in the creep resistance of such typical 347 stainless steel foils. The modified processing enables fine NbC carbide precipitates to develop during creep at 650-700 degrees C, which provides strength even with a fine grain size. Such improved creep-resistance is necessary for advanced turbine systems that will demand greater materials performance and reliability at higher operating conditions. The next challenges are to better understand the nature of the improved creep resistance in these 347 stainless steel foil, and to achieve similar improvements with scale-up to commercial foil production.

  17. Oxidation resistance of iron and copper foils coated with reduced graphene oxide multilayers.

    PubMed

    Kang, Dongwoo; Kwon, Jee Youn; Cho, Hyun; Sim, Jae-Hyoung; Hwang, Hyun Sick; Kim, Chul Su; Kim, Yong Jung; Ruoff, Rodney S; Shin, Hyeon Suk

    2012-09-25

    Protecting the surface of metals such as Fe and Cu from oxidizing is of great importance due to their widespread use. Here, oxidation resistance of Fe and Cu foils was achieved by coating them with reduced graphene oxide (rG-O) sheets. The rG-O-coated Fe and Cu foils were prepared by transferring rG-O multilayers from a SiO(2) substrate onto them. The oxidation resistance of these rG-O-coated metal foils was investigated by Raman spectroscopy, optical microscopy, and scanning electron microscopy after heat treatment at 200 °C in air for 2 h. The bare metal surfaces were severely oxidized, but the rG-O-coated metal surfaces were protected from oxidation. This simple solution process using rG-O is one advantage of the present study.

  18. Sonofusion: Heat and ^4He Created by Cavitationally Induced Loading of Metal Foils

    NASA Astrophysics Data System (ADS)

    Stringham, Roger

    2003-03-01

    Helium four was produced in a vacuum tight system and measured by mass spectrometry with no measurable accompanying radiation. This fusion product from a piezo driven, acoustic reactor forces deuterons into a metallic foil. We believe the reaction is the result of the adiabatic collapse of transient bubbles in D_2O. The collapse process forms high-density plasma jets that are further z-pinched and then implanted into the foil lattices where the DD fusion takes place. With no evidence of long range radiation, the mc^2 energy was converted to heat. The reactor gases were analyzed at levels as high as 500 ppm of ^4He, which is 100 times that found in air. The SEM, Scanning Electron Microscope, photos of target foil surfaces show evidence of violent activity identified as ejecta sites varying in size from 100 to 10000 nm in diameter. The ^4He, radiation, excess heat, and SEM measurements support the DD fusion explanation.

  19. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  20. Status of Genesis Mo-Pt Foils

    NASA Technical Reports Server (NTRS)

    Nishiizumi, K.; Allton, J. H.; Burnett, D. S.; Butterworth, A. L.; Caffee, M. W.; Clark, B.; Jurewicz, A. J. G.; Komura, K.; Westphal, A. J.; Welten, K. C.

    2005-01-01

    A total of 8,000 sq cm of Mo-coated Pt foils were exposed to solar wind for 884 days by the Genesis mission. Solar wind ions were captured in the surface of the Mo. Our objective is the measurement of long-lived radionuclides, such as Be-10, Al-26, Cl-36, and Mn-53, and short-lived radionuclides, such as Na-22 and Mn-54, in the captured sample of solar wind. The expected flux of these nuclides in the solar wind is 100 atom/sq cm yr or less. The hard landing of the SRC (Sample Return Capsule) at UTTR (Utah Test and Training Range) has resulted in contaminated and crumpled foils. Here we present a status report and revised plan for processing the foils.

  1. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A magnetic bearing for passively suspending a rotatable element subjected to axial and radial thrust forces is disclosed. The magnetic bearing employs a taut wire stretched along the longitudinal axis of the bearing between opposed end pieces and an intermediate magnetic section. The intermediate section is segmented to provide oppositely directed magnetic flux paths between the end pieces and may include either an axially polarized magnets interposed between the segments. The end pieces, separated from the intermediate section by air gaps, control distribution of magnetic flux between the intermediate section segments. Coaxial alignment of the end pieces with the intermediate section minimizes magnetic reluctance in the flux paths endowing the bearing with self-centering characteristics when subjected to radial loads. In an alternative embodiment, pairs of oppositely wound armature coils are concentrically interposed between segments of the intermediate section in concentric arcs adjacent to radially polarized magnets to equip a magnetic bearing as a torsion drive motor. The magnetic suspension bearing disclosed provides long term reliability without maintenance with application to long term space missions such as the VISSR/VAS scanning mirror instrument in the GOES program.

  2. Steel Foil Improves Performance Of Blasting Caps

    NASA Technical Reports Server (NTRS)

    Bement, Laurence J.; Perry, Ronnie; Schimmel, Morry L.

    1990-01-01

    Blasting caps, which commonly include deep-drawn aluminum cups, give significantly higher initiation performance by application of steel foils on output faces. Steel closures 0.005 in. (0.13 mm) thick more effective than aluminum. Caps with directly bonded steel foil produce fragment velocities of 9,300 ft/s (2.8 km/s) with large craters and unpredictable patterns to such degree that no attempts made to initiate explosions. Useful in military and aerospace applications and in specialized industries as mining and exploration for oil.

  3. Method of high-density foil fabrication

    DOEpatents

    Blue, Craig A.; Sikka, Vinod K.; Ohriner, Evan K.

    2003-12-16

    A method for preparing flat foils having a high density includes the steps of mixing a powdered material with a binder to form a green sheet. The green sheet is exposed to a high intensity radiative source adapted to emit radiation of wavelengths corresponding to an absorption spectrum of the powdered material. The surface of the green sheet is heated while a lower sub-surface temperature is maintained. An apparatus for preparing a foil from a green sheet using a radiation source is also disclosed.

  4. Spallation Neutron Source SNS Diamond Stripper Foil Development

    SciTech Connect

    Shaw, Robert W; Plum, Michael A; Wilson, Leslie L; Feigerle, Charles S.; Borden, Michael J.; Irie, Y.; Sugai, I; Takagi, A

    2007-01-01

    Diamond stripping foils are under development for the SNS. Freestanding, flat 300 to 500 {micro}g/cm{sup 2} foils as large as 17 x 25 mm{sup 2} have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 15 {micro}C of protons, approximately 64% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 C of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (640 keV H{sup -}) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

  5. Tight, Flat, Smooth, Ultrathin Metal Foils for Locating Synchrotron Beams

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2007-01-01

    It is often desired to locate a synchrotron x-ray beam precisely in space with minimal disturbance of its spatial profile and spectral content. This can be done by passing the beam through an ultrathin, flat, smooth metal foil having well-defined composition, preferably a single chemical element such as chromium, titanium or aluminum. Localized fluorescence of the foil at characteristic x-ray lines where the x-ray beam passes through the foil serves to locate the beam in two dimensions. Use of two such foils along the beam direction locates the x-ray beam spatially and identifies precisely its direction. The accuracy of determining these parameters depends in part upon high uniformity in the thickness of the foil(s), good planarity, and smoothness of the foil(s). In practice, several manufacturing steps to produce a foil must be carried out with precision. The foil must be produced on a smooth removable substrate in such a way that its thickness (or areal density) is as uniform as possible. The foil must be fastened to a support ring that maintains the foil's surface quality, and it must be then stretched onto a frame that produces the desired mirror flatness. These steps are illustrated and some of the parameters specifying the quality of the resulting foils are identified.

  6. Influence of backup bearings and support structure dynamics on the behavior of rotors with active supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1994-01-01

    Progress over the past year includes the following: A simplified rotor model with a flexible shaft and backup bearings has been developed. A simple rotor model which includes a flexible disk and bearings with clearance has been developed and the dynamics of the model investigated. A rotor model based upon the T-501 engine has been developed which includes backup bearing effects. Parallel simulation runs are being conducted using an ANSYS based finite element model of the T-501. The magnetic bearing test rig is currently floating and dynamics/control tests are being conducted. A paper has been written that documents the work using the T-501 engine model. Work has continued with the simplified model. The finite element model is currently being modified to include the effects of foundation dynamics. A literature search for material on foil bearings has been conducted. A finite element model is being developed for a magnetic bearing in series with a foil backup bearing.

  7. Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    AVCON, Inc. produces advanced magnetic bearing systems for industrial use, offering a unique technological approach based on contract work done at Marshall Space Flight Center and Lewis Research Center. Designed for the turbopump of the Space Shuttle main engine, they are now used in applications such as electric power generation, petroleum refining, machine tool operation and natural gas pipelines. Magnetic bearings support moving machinery without physical contact; AVCON's homopolar approach is a hybrid of permanent and electromagnets which are one-third the weight, smaller and more power- efficient than previous magnetic bearings.

  8. Preliminary design of mesoscale turbocompressor and rotordynamics tests of rotor bearing system

    NASA Astrophysics Data System (ADS)

    Hossain, Md Saddam

    2011-12-01

    A mesoscale turbocompressor spinning above 500,000 RPM is evolutionary technology for micro turbochargers, turbo blowers, turbo compressors, micro-gas turbines, auxiliary power units, etc for automotive, aerospace, and fuel cell industries. Objectives of this work are: (1) to evaluate different air foil bearings designed for the intended applications, and (2) to design & perform CFD analysis of a micro-compressor. CFD analysis of shrouded 3-D micro compressor was conducted using Ansys Bladegen as blade generation tool, ICEM CFD as mesh generation tool, and CFX as main solver for different design and off design cases and also for different number of blades. Comprehensive experimental facilities for testing the turbocompressor system have been also designed and proposed for future work.

  9. Marshall Space Flight Center High Speed Turbopump Bearing Test Rig

    NASA Technical Reports Server (NTRS)

    Gibson, Howard; Moore, Chip; Thom, Robert

    2000-01-01

    The Marshall Space Flight Center has a unique test rig that is used to test and develop rolling element bearings used in high-speed cryogenic turbopumps. The tester is unique in that it uses liquid hydrogen as the coolant for the bearings. This test rig can simulate speeds and loads experienced in the Space Shuttle Main Engine turbopumps. With internal modifications, the tester can be used for evaluating fluid film, hydrostatic, and foil bearing designs. At the present time, the test rig is configured to run two ball bearings or a ball and roller bearing, both with a hydrostatic bearing. The rig is being used to evaluate the lifetimes of hybrid bearings with silicon nitride rolling elements and steel races.

  10. Foil Panel Mirrors for Nonimaging Applications

    NASA Technical Reports Server (NTRS)

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  11. Thermal Sensitive Foils in Physics Experiments

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek; Konecný, Pavel

    2014-01-01

    The paper describes a set of physics demonstration experiments where thermal sensitive foils are used for the detection of the two dimensional distribution of temperature. The method is used for the demonstration of thermal conductivity, temperature change in adiabatic processes, distribution of electromagnetic radiation in a microwave oven and…

  12. Hydrogen and Palladium Foil: Two Classroom Demonstrations

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Mattson, Bruce

    2009-01-01

    In these two classroom demonstrations, students observe the reaction between H[subscript 2] gas and Pd foil. In the first demonstration, hydrogen and palladium combine within one minute at 1 atm and room temperature to yield the non-stoichiometric, interstitial hydride with formula close to the maximum known value, PdH[subscript 0.7]. In the…

  13. 6Li foil thermal neutron detector

    SciTech Connect

    Ianakiev, Kiril D; Swinhoe, Martyn T; Favalli, Andrea; Chung, Kiwhan; Macarthur, Duncan W

    2010-01-01

    In this paper we report on the design of a multilayer thermal neutron detector based on {sup 6}Li reactive foil and thin film plastic scintillators. The {sup 6}Li foils have about twice the intrinsic efficiency of {sup 10}B films and about four times higher light output due to a unique combination of high energy of reaction particles, low self absorption, and low ionization density of tritons. The design configuration provides for double sided readout of the lithium foil resulting in a doubling of the efficiency relative to a classical reactive film detector and generating a pulse height distribution with a valley between neutron and gamma signals similar to {sup 3}He tubes. The tens of microns thickness of plastic scintillator limits the energy deposited by gamma rays, which provides the necessary neutron/gamma discrimination. We used MCNPX to model a multilayer Li foil detector design and compared it with the standard HLNCC-II (18 {sup 3}He tubes operated at 4 atm). The preliminary results of the {sup 6}Li configuration show higher efficiency and one third of the die-away time. These properties, combined with the very short dead time of the plastic scintillator, offer the potential of a very high performance detector.

  14. Indium Foil Serves As Thermally Conductive Gasket

    NASA Technical Reports Server (NTRS)

    Eastman, G. Yale; Dussinger, Peter M.

    1993-01-01

    Indium foil found useful as gasket to increase thermal conductance between bodies clamped together. Deforms to fill imperfections on mating surfaces. Used where maximum temperature in joint less than melting temperature of indium. Because of low melting temperature of indium, most useful in cryogenic applications.

  15. The Fluid Foil: The Seventh Simple Machine

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2012-01-01

    A simple machine does one of two things: create a mechanical advantage (lever) or change the direction of an applied force (pulley). Fluid foils are unique among simple machines because they not only change the direction of an applied force (wheel and axle); they convert fluid energy into mechanical energy (wind and Kaplan turbines) or vice versa,…

  16. Strong field electrodynamics of a thin foil

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Bulanov, Stepan S.; Rykovanov, Sergey G.; Pegoraro, Francesco

    2013-12-15

    Exact solutions describing the nonlinear electrodynamics of a thin double layer foil are presented. These solutions correspond to a broad range of problems of interest for the interaction of high intensity laser pulses with overdense plasmas, such as frequency upshifting, high order harmonic generation, and high energy ion acceleration.

  17. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher

    2010-01-01

    Foil gas bearings are a key technology in many commercial and emerging Oil-Free turbomachinery systems. These bearings are non-linear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness and damping. Previous investigations led to an empirically derived method, a rule-of-thumb, to estimate load capacity. This method has been a valuable tool in system development. The current paper extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced Oil-Free machines operating on foil gas bearings

  18. Stiffness and Damping Coefficient Estimation of Compliant Surface Gas Bearings for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    Della-Corte, Christopher

    2012-01-01

    Foil gas bearings are a key technology in many commercial and emerging oilfree turbomachinery systems. These bearings are nonlinear and have been difficult to analytically model in terms of performance characteristics such as load capacity, power loss, stiffness, and damping. Previous investigations led to an empirically derived method to estimate load capacity. This method has been a valuable tool in system development. The current work extends this tool concept to include rules for stiffness and damping coefficient estimation. It is expected that these rules will further accelerate the development and deployment of advanced oil-free machines operating on foil gas bearings.

  19. Transverse Emittance Reduction with Tapered Foil

    SciTech Connect

    Jiao, Yi; Chao, Alex; Cai, Yunhai; /SLAC

    2011-12-09

    The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of tapered energy-loss foil and analyze the emittance reduction using the concept of eigen emittance. The study shows that, to reduce transverse emittance, one should collimate at least 4% of particles which has either much low energy or large transverse divergence. The multiple coulomb scattering is not trivial, leading to a limited emittance reduction ratio. Small transverse emittances are of essential importance for the accelerator facilities generating free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to J.M. Peterson's work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, and also analyzed the emittance growth from the associated multiple coulomb scattering. However, what Peterson proposed was rather a conceptual than a practical design. In this paper, we build a more complete physical model of the tapered foil based on Ref. [2], including the analysis of the transverse emittance reduction using the concept of eigen emittance and confirming the results by various numerical simulations. The eigen emittance equals to the projected emittance when there is no cross correlation in beam's second order moments matrix [3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line section can be separated. In addition, we can combine the effects of multiple coulomb scattering and transverse energy gradient together in the beam matrix and analyze their net effect. We find that,when applied to an

  20. Identification of water-bearing zones by the use of geophysical logs and borehole television surveys, collected February to September 1997, at the Former Naval Air Warfare Center, Warminster, Bucks County, Pennsylvania

    USGS Publications Warehouse

    Conger, Randall W.

    1998-01-01

    Between February 1997 and September 1997, 10 monitor wells were drilled near the site of the former Naval Air Warfare Center, Warminster, Bucks County, Pa., to monitor water levels and sample ground-water contaminants in the shallow, intermediate, and deep water-bearing zones. The sampling will determine the horizontal and vertical distribution of contaminated ground water migrating from known or suspected contaminant sources. Four wells were drilled north of the property adjacent to Area A, three wells along strike located on Lewis Drive, and three wells directly down dip on Ivyland Road. Well depths range from 69 feet to 300 feet below land surface. Borehole-geophysical logging and television surveys were used to identify water-bearing zones so that appropriate intervals could be screened in each monitor well. Geophysical logs were obtained at the 10 monitor wells. Borehole television surveys were obtained at the four monitor wells adjacent to Area A. Caliper and borehole television surveys were used to locate fractures, inflections on fluidtemperature and fluid-resistivity logs were used to locate possible water-bearing fractures, and heatpulse- flowmeter measurements verified these locations. Natural-gamma logs provided information on stratigraphy. After interpretation of geophysical logs, borehole television surveys, and driller?s logs, all wells were screened such that water-level fluctuations could be monitored and water samples collected from discrete water-bearing zones in each borehole.

  1. Creep behavior of commercial FeCrAl foils: beneficial and detrimental effect of oxidation

    SciTech Connect

    Dryepondt, Sebastien N; Pint, Bruce A; Lara-Curzio, Edgar

    2012-01-01

    Creep tests were performed at 875 and 1050 C on commercially available FeCrAl foils (~50 m, 2 mil thickness) over a wide range of stress and duration to characterize their creep behavior. The oxide scales formed on the creep specimens were analyzed and compared to those that formed on unstressed specimens to assess the effect of stress and strain on oxide growth mechanisms. Below a specific stress threshold, creep rate and lifetime become independent of the applied load and rupture occurs due to the onset of breakaway oxidation. A creep rate model based on the strengthening of the FeCrAl foils due to load-bearing by the thermally-grown alumina scale was observed to be in good agreement with the experimental results.

  2. Seismic bearing

    NASA Astrophysics Data System (ADS)

    Power, Dennis

    2009-05-01

    Textron Systems (Textron) has been using geophones for target detection for many years. This sensing capability was utilized for detection and classification purposes only. Recently Textron has been evaluating multiaxis geophones to calculate bearings and track targets more specifically personnel. This capability will not only aid the system in locating personnel in bearing space or cartesian space but also enhance detection and reduce false alarms. Textron has been involved in the testing and evaluation of several sensors at multiple sites. One of the challenges of calculating seismic bearing is an adequate signal to noise ratio. The sensor signal to noise ratio is a function of sensor coupling to the ground, seismic propagation and range to target. The goals of testing at multiple sites are to gain a good understanding of the maximum and minimum ranges for bearing and detection and to exploit that information to tailor sensor system emplacement to achieve desired performance. Test sites include 10A Site Devens, MA, McKenna Airfield Ft. Benning, GA and Yuma Proving Ground Yuma, AZ. Geophone sensors evaluated include a 28 Hz triax spike, a 15 Hz triax spike and a hybrid triax spike consisting of a 10 Hz vertical geophone and two 28 Hz horizontal geophones. The algorithm uses raw seismic data to calculate the bearings. All evaluated sensors have triaxial geophone configuration mounted to a spike housing/fixture. The suite of sensors also compares various types of geophones to evaluate benefits in lower bandwidth. The data products of these tests include raw geophone signals, seismic features, seismic bearings, seismic detection and GPS position truth data. The analyses produce Probability of Detection vs range, bearing accuracy vs range, and seismic feature level vs range. These analysis products are compared across test sites and sensor types.

  3. Influence of Back-Up Bearings and Support Structure Dynamics on the Behavior of Rotors With Active Supports

    NASA Technical Reports Server (NTRS)

    Flowers, George T.

    1996-01-01

    This report presents a synopsis of the research work. Specific accomplishments are itemized below: (1) Experimental facilities have been developed. This includes a magnetic bearing test rig and an auxiliary bearing test rig. In addition, components have been designed, constructed, and tested for use with a rotordynamics test rig located at NASA Lewis Research Center. (2) A study of the rotordynamics of an auxiliary bearing supported T-501 engine model was performed. (3) An experimental/simulation study of auxiliary bearing rotordynamics has been performed. (4) A rotordynamical model for a magnetic bearing supported rotor system, including auxiliary bearing effects has been developed and simulation studies performed.(5) A finite element model for a foil bearing has been developed and studies of a rotor supported by foil bearings have been performed. (6) Two students affiliated with this project have graduated with M.S. degrees.

  4. Optical and electrical performance of commercially manufactured large GEM foils

    NASA Astrophysics Data System (ADS)

    Posik, M.; Surrow, B.

    2015-12-01

    With interest in large area GEM foils increasing and CERN being the only main distributor, keeping up with the demand for GEM foils will be difficult. Thus the commercialization of GEMs is being established by Tech-Etch of Plymouth, MA, USA using single-mask techniques. We report here on the first of a two step quality verification of the commercially produced 10×10 cm2 and 40×40 cm2 GEM foils, which includes characterizing their electrical and geometrical properties. We have found that the Tech-Etch foils display excellent electrical properties, as well as uniform and consistent hole diameters comparable to established foils produced by CERN.

  5. Impact of GEM foil hole geometry on GEM detector gain

    NASA Astrophysics Data System (ADS)

    Karadzhinova, A.; Nolvi, A.; Veenhof, R.; Tuominen, E.; Hæggström, E.; Kassamakov, I.

    2015-12-01

    Detailed 3D imaging of Gas Electron Multiplier (GEM) foil hole geometry was realized. Scanning White Light Interferometry was used to examine six topological parameters of GEM foil holes from both sides of the foil. To study the effect of the hole geometry on detector gain, the ANSYS and Garfield ++ software were employed to simulate the GEM detector gain on the basis of SWLI data. In particular, the effective gain in a GEM foil with equally shaped holes was studied. The real GEM foil holes exhibited a 4% lower effective gain and 6% more electrons produced near the exit electrode of the GEM foil than the design anticipated. Our results indicate that the GEM foil hole geometry affects the gain performance of GEM detectors.

  6. Low energy ignition of HMX using a foil bridge

    SciTech Connect

    Ewick, D.W.

    1986-01-01

    The use of an etched foil bridge to initiate the deflagration of high-density HMX is described. Two foil bridges were evaluated, each having a cross-sectional area approximately equal to that of a 0.0034-in. diameter bridgewire. One foil was 0.11 in. wide and 0.0008 in. thick; the other was 0.022 in. wide and 0.0004 in. thick. The all-fire current for the 0.022-in. wide foil bridge was roughly 15% greater than that of the 0.011-in. wide foil, which in turn was approximately 7% greater than the round wire bridge. The no-fire current for the 0.022-in. wide foil bridge was roughly 26% greater than that of the 0.011-in. wide foil, which in turn was approximately 10% greater than the round wire bridge. 7 refs., 4 figs., 3 tabs.

  7. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, B.J.; Antoniak, Z.I.; Prater, J.T.; DeSteese, J.G.

    1992-03-24

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed. 11 figs.

  8. Composite metal foil and ceramic fabric materials

    DOEpatents

    Webb, Brent J.; Antoniak, Zen I.; Prater, John T.; DeSteese, John G.

    1992-01-01

    The invention comprises new materials useful in a wide variety of terrestrial and space applications. In one aspect, the invention comprises a flexible cloth-like material comprising a layer of flexible woven ceramic fabric bonded with a layer of metallic foil. In another aspect, the invention includes a flexible fluid impermeable barrier comprising a flexible woven ceramic fabric layer having metal wire woven therein. A metallic foil layer is incontinuously welded to the woven metal wire. In yet another aspect, the invention includes a material comprising a layer of flexible woven ceramic fabric bonded with a layer of an organic polymer. In still another aspect, the invention includes a rigid fabric structure comprising a flexible woven ceramic fabric and a resinous support material which has been hardened as the direct result of exposure to ultraviolet light. Inventive methods for producing such material are also disclosed.

  9. FoilSim: Basic Aerodynamics Software Created

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth A.

    1999-01-01

    FoilSim is interactive software that simulates the airflow around various shapes of airfoils. The graphical user interface, which looks more like a video game than a learning tool, captures and holds the students interest. The software is a product of NASA Lewis Research Center s Learning Technologies Project, an educational outreach initiative within the High Performance Computing and Communications Program (HPCCP).This airfoil view panel is a simulated view of a wing being tested in a wind tunnel. As students create new wing shapes by moving slider controls that change parameters, the software calculates their lift. FoilSim also displays plots of pressure or airspeed above and below the airfoil surface.

  10. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    2000-01-01

    An apparatus is provided for a blood pump bearing system within a pump housing to support long-term highspeed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the Ir shaft to support big speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  11. Blood Pump Bearing System

    NASA Technical Reports Server (NTRS)

    Aber, Gregory S. (Inventor)

    1999-01-01

    Methods and apparatus are provided for a blood pump bearing system within a pump housing to support long-term high-speed rotation of a rotor with an impeller blade having a plurality of individual magnets disposed thereon to provide a small radial air gap between the magnets and a stator of less than 0.025 inches. The bearing system may be mounted within a flow straightener, diffuser, or other pump element to support the shaft of a pump rotor. The bearing system includes a zirconia shaft having a radiused end. The radiused end has a first radius selected to be about three times greater than the radius of the zirconia shaft. The radiused end of the zirconia shaft engages a flat sapphire endstone. Due to the relative hardness of these materials a flat is quickly produced during break-in on the zirconia radiused end of precisely the size necessary to support thrust loads whereupon wear substantially ceases. Due to the selection of the first radius, the change in shaft end-play during pump break-in is limited to a total desired end-play of less than about 0.010 inches. Radial loads are supported by an olive hole ring jewel that makes near line contact around the circumference of the shaft to support high speed rotation with little friction. The width of olive hole ring jewel is small to allow heat to conduct through to thereby prevent heat build-up in the bearing. A void defined by the bearing elements may fill with blood that then coagulates within the void. The coagulated blood is then conformed to the shape of the bearing surfaces.

  12. Wave Journal Bearing. Part 1: Analysis

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1995-01-01

    A wave journal bearing concept features a waved inner bearing diameter of the non-rotating bearing side and it is an alternative to the plain journal bearing. The wave journal bearing has a significantly increased load capacity in comparison to the plain journal bearing operating at the same eccentricity. It also offers greater stability than the plain circular bearing under all operating conditions. The wave bearing's design is relatively simple and allows the shaft to rotate in either direction. Three wave bearings are sensitive to the direction of an applied stationary side load. Increasing the number of waves reduces the wave bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the wave bearing design for a specific application. It is concluded that the stiffness of an air journal bearing, due to hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  13. Handheld Reflective Foil Emissometer with 0.007 Absolute Accuracy at 0.05

    NASA Astrophysics Data System (ADS)

    van der Ham, E. W. M.; Ballico, M. J.

    2014-07-01

    The development and performance of a handheld emissometer for the measurement of the emissivity of highly reflective metallic foils used for the insulation of domestic and commercial buildings are described. Reflective roofing insulation based on a thin coating of metal on a more robust substrate is very widely used in hotter climates to reduce the radiant heat transfer between the ceiling and roof in commercial and residential buildings. The required normal emissivity of these foils is generally below 0.05, so stray reflected ambient infrared radiation (IR) makes traditional reflectance-based measurements of emissivity very difficult to achieve with the required accuracy. Many manufacturers apply additional coatings onto the metallic foil to reduce visible glare during installation on a roof, and to provide protection to the thin reflective layer; however, this layer can also substantially increase the IR emissivity. The system as developed at the National Measurement Institute, Australia (NMIA) is based on the principle of measurement of the modulation in thermal infrared radiation, as the sample is thermally modulated by hot and cold air streams. A commercial infrared to band radiation thermometer with a highly specialized stray and reflected radiation shroud attachment is used as the detector system, allowing for convenient handheld field measurements. The performance and accuracy of the system have been compared with NMIA's reference emissometer systems for a number of typical material samples, demonstrating its capability to measure the absolute thermal emissivity of these very highly reflective foils with an uncertainty of better than.

  14. Carbon stripper foils used in the Los Alamos PSR

    SciTech Connect

    Borden, M.J.; Plum, M.A.; Sugai, I.

    1997-12-01

    Carbon stripper foils produced by the modified controlled ACDC arc discharge method (mCADAD) at the Institute for Nuclear Study have been tested and used for high current 800-MeV beam production in the Proton Storage Ring (PSR) since 1993. Two foils approximately 110 {mu}g/cm{sup 2} each are sandwiched together to produce an equivalent 220 {mu}g/cm{sup 2} foil. The foil sandwitch is supported by 4-5 {mu}m diameter carbon filters attached to an aluminum frame. These foils have survived as long as five months during PSR normal beam production of near 70 {mu}A average current on target. Typical life-times of other foils vary from seven to fourteen days with lower on-target average current. Beam loss data also indicate that these foils have slower shrinkage rates than standard foils. Equipment has been assembled and used to produce foils by the mCADAD method at Los Alamos. These foils will be tested during 1997 operation.

  15. CUSHIONED BEARING

    DOEpatents

    Rushing, F.C.

    1960-09-01

    A vibration damping device effective to dampen vibrations occurring at the several critical speeds encountered in the operation of a high-speed centrifuge is described. A self-centering bearing mechanism is used to protect both the centrifuge shaft and the damping mechanism. The damping mechanism comprises spaced-apant, movable, and stationary sleeve members arranged concentrically of a rotating shaft with a fluid maintained between the members. The movable sleeve member is connected to the shaft for radial movement therewith.

  16. Magnetic bearing and motor

    NASA Technical Reports Server (NTRS)

    Studer, Philip A. (Inventor)

    1983-01-01

    A magnetic bearing assembly (10) has an intermediate rotatable section (33) having an outer cylindrical member (30) coaxially suspended by a torsion wire (72) around an axially polarized cylindrical magnet (32). Axial alignment between the pole faces (40-43) of the intermediate section (33) and end surfaces (50-53) of opposed end bells (20, 22) provides a path of least reluctance across intervening air gaps (60-63) for the magnetic flux emanating from magnet (32). Radial dislocation increases the reluctance and creates a radial restoring force. Substitution of radially polarized magnets 107 fixed to a magnetically permeable cylinder (32') and insertion of pairs of armature coil windings (109-112) between the cylinder pair (33') provides an integral magnetic bearing and torsion motor (100) able to provide arcuately limited rotational drive.

  17. Tooling Converts Stock Bearings To Custom Bearings

    NASA Technical Reports Server (NTRS)

    Fleenor, E. N., Jr.

    1983-01-01

    Technique for reworking stock bearings saves time and produces helicopter-rotor bearings ground more precisely. Split tapered ring at one end of threaded bolt expands to hold inside of inner race bearing assembly; nut, at other end of bolt, adjusts amount of spring tension. Piece of hardware grasps bearing firmly without interfering with grinding operation. Operation produces bearing of higher quality than commercially available bearings.

  18. Microfabricated Segmented-Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Qiu, Songgang; Wood, Gary; Kelly, Kevin; McLean, Jeffrey

    2010-01-01

    An involute-foil regenerator was designed, microfabricated, and tested in an oscillating-flow test rig. The concept consists of stacked involute-foil nickel disks (see figure) microfabricated via a lithographic process. Test results yielded a performance of about twice that of the 90-percent random-fiber currently used in small Stirling converters. The segmented nature of the involute- foil in both the axial and radial directions increases the strength of the structure relative to wrapped foils. In addition, relative to random-fiber regenerators, the involute-foil has a reduced pressure drop, and is expected to be less susceptible to the release of metal fragments into the working space, thus increasing reliability. The prototype nickel involute-foil regenerator was adequate for testing in an engine with a 650 C hot-end temperature. This is lower than that required by larger engines, and high-temperature alloys are not suited for the lithographic microfabrication approach.

  19. Method of forming a thin unbacked metal foil

    DOEpatents

    Duchane, David V.; Barthell, Barry L.

    1984-01-01

    In a method of forming a thin (<2 .mu.m) unbacked metal foil having a desired curviplanar shape, a soluble polymeric film, preferably comprising polyvinyl alcohol, is formed on a supporting structure having a shape that defines the desired shape of the foil product. A layer of metal foil is deposited onto one side of the soluble film, preferably by vacuum vapor deposition. The metallized film is then immersed in a suitable solvent to dissolve the film and thereby leave the metal foil as an unbacked metal foil element mounted on the supporting structure. Aluminum foils less than 0.2 .mu.m (2,000 .ANG.) thick and having an areal density of less than 54 .mu.g/cm.sup.2 have been obtained.

  20. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations. PMID:27404616

  1. Effects of Aluminum Foil Packaging on Elemental Analysis of Bone.

    PubMed

    Lewis, Lyniece; Christensen, Angi M

    2016-03-01

    Burned skeletal material is often very fragile and at high risk for fragmentation during packaging and transportation. One method that has been suggested to protect bones in these cases is to carefully wrap them in aluminum foil. Traces of aluminum, however, are known to transfer from foil packaging materials to food products. If such transfer occurs between aluminum foil and bones, it could interfere with subsequent chemical, elemental and isotopic analyses, which are becoming more common in forensic anthropological investigations. This study examined aluminum levels in bones prior to and following the use of aluminum foil packaging and storage for a 6-week period. Results indicate no significant change in the detected levels of aluminum (p > 0.05), even when packaged in compromised foil and exposed to elevated temperatures. Aluminum foil can therefore continue to be recommended as a packaging medium without affecting subsequent chemical examinations.

  2. Foil fabrication and barrier layer application for monolithic fuels

    SciTech Connect

    Moore, Glenn A. Clark, Curtis R.; Jue, J.-F.; Swank, W. David; Haggard, D.C.; Chapple, Michael D.; Burkes, Douglas E.

    2008-07-15

    This presentation provides details of recent UMo fuel developments efforts at the Idaho National Laboratory. Processing of monolithic fuel foil, the friction bonding process, and hot isostatic press (HIP) sample preparation will be presented. Details of the hot rolling, foil annealing, zirconium barrier-layer application to U10Mo fuel foils via the hot-rolling process and application of silicon rich aluminum interfacial-layers via a thermal spray process will be presented. (author)

  3. Optical temperature sensing on flexible polymer foils

    NASA Astrophysics Data System (ADS)

    Sherman, Stanislav; Xiao, Yanfen; Hofmann, Meike; Schmidt, Thomas; Gleissner, Uwe; Zappe, Hans

    2016-04-01

    In contrast to established semiconductor waveguide-based or glass fiber-based integrated optical sensors, polymerbased optical systems offer tunable material properties, such as refractive index or viscosity, and thus provide additional degrees of freedom for sensor design and fabrication. Of particular interest in sensing applications are fully-integrated optical waveguide-based temperature sensors. These typically rely on Bragg gratings which induce a periodic refractive index variation in the waveguide so that a resonant wavelength of the structure is reflected.1,2 With broad-band excitation, a dip in the spectral output of the waveguide is thus generated at a precisely-defined wavelength. This resonant wavelength depends on the refractive index of the waveguide and the grating period, yet both of these quantities are temperature dependent by means of the thermo-optic effect (change in refractive index with temperature) and thermal expansion (change of the grating period with temperature). We show the design and fabrication of polymer waveguide-integrated temperature sensors based on Bragggratings, fabricated by replication technology on flexible PMMA foil substrates. The 175 μm thick foil serves as lower cladding for a polymeric waveguide fabricated from a custom-made UV-crosslinkable co-monomer composition. The fabrication of the grating structure includes a second replication step into a separate PMMA-foil. The dimensions of the Bragg-gratings are determined by simulations to set the bias point into the near infrared wavelength range, which allows Si-based detectors to be used. We present design considerations and performance data for the developed structures. The resulting sensor's signal is linear to temperature changes and shows a sensitivity of -306 nm/K, allowing high resolution temperature measurements.

  4. SNS STRIPPER FOIL FAILURE MODES AND THEIR CURES

    SciTech Connect

    Galambos, John D; Luck, Chris; Plum, Michael A; Shaw, Robert W; Ladd, Peter; Raparia, Deepak; Macek, Robert James; Kim, Sang-Ho; Peters, Charles C; Polsky, Yarom

    2010-01-01

    The diamond stripper foils in use at the Spallation Neutron Source worked successfully with no failures until May 3, 2009, when we started experiencing a rash of foil system failures after increasing the beam power to ~840 kW. The main contributors to the failures are thought to be 1) convoy electrons, stripped from the incoming H beam, that strike the foil bracket and may also reflect back from the electron catcher, and 2) vacuum breakdown from the charge developed on the foil by secondary electron emission. In this paper we will detail these and other failure mechanisms, and describe the improvements we have made to mitigate them.

  5. Ti foil light in the ATA (Advanced Test Accelerator) beam

    SciTech Connect

    Slaughter, D.R.; Chong, Y.P.; Goosman, D.R.; Rule, D.W.; Fiorito, R.B.

    1987-09-01

    An experiment is in progress to characterize the visible light produced when a Ti foil is immersed in the ATA 2 kA, 43 MeV beam. Results obtained to date indicate that the optical condition of the foil surface is a critical determinant of these characteristics, with a very narrow angular distribution obtained when a highly polished and flat foil is used. These data are consistent with the present hypothesis that the light is produced by transition radiation. Incomplete experiments to determine the foil angle dependence of the detected light and its polarization are summarized and remaining experiments are described.

  6. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, Paul T.; Fisher, Robert W.; Hosking, Floyd M.; Zanner, Frank J.

    1996-01-01

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone.

  7. Methods of making metallic glass foil laminate composites

    DOEpatents

    Vianco, P.T.; Fisher, R.W.; Hosking, F.M.; Zanner, F.J.

    1996-08-20

    A process for the fabrication of a rapidly solidified foil laminate composite. An amorphous metallic glass foil is flux treated and coated with solder. Before solidification of the solder the foil is collected on a take-up spool which forms the composite into a solid annular configuration. The resulting composite exhibits high strength, resiliency and favorable magnetic and electrical properties associated with amorphous materials. The composite also exhibits bonding strength between the foil layers which significantly exceeds the bulk strength of the solder alone. 6 figs.

  8. Characterization of U-Mo Foils for AFIP-7

    SciTech Connect

    Edwards, Danny J.; Ermi, Ruby M.; Schemer-Kohrn, Alan L.; Overman, Nicole R.; Henager, Charles H.; Burkes, Douglas; Senor, David J.

    2012-11-07

    Twelve AFIP in-process foil samples, fabricated by either Y-12 or LANL, were shipped from LANL to PNNL for potential characterization using optical and scanning electron microscopy techniques. Of these twelve, nine different conditions were examined to one degree or another using both techniques. For this report a complete description of the results are provided for one archive foil from each source of material, and one unirradiated piece of a foil of each source that was irradiated in the Advanced Test Reactor. Additional data from two other LANL conditions are summarized in very brief form in an appendix. The characterization revealed that all four characterized conditions contained a cold worked microstructure to different degrees. The Y-12 foils exhibited a higher degree of cold working compared to the LANL foils, as evidenced by the highly elongated and obscure U-Mo grain structure present in each foil. The longitudinal orientations for both of the Y-12 foils possesses a highly laminar appearance with such a distorted grain structure that it was very difficult to even offer a range of grain sizes. The U-Mo grain structure of the LANL foils, by comparison, consisted of a more easily discernible grain structure with a mix of equiaxed and elongated grains. Both materials have an inhomogenous grain structure in that all of the characterized foils possess abnormally coarse grains.

  9. Mounting stripper foils on forks for maximum lifetime

    NASA Astrophysics Data System (ADS)

    Jolivet, Connie S.; Stoner, John O.

    2008-06-01

    While research and development continue to produce forms of carbon for longer lasting stripper foils, relatively little attention has been paid to other factors that affect their survival in use. It becomes apparent that the form of carbon is only part of the issue. Specific mounting methods increase the lifetimes of carbon stripper foils. These methods are determined in part by the specific use and carbon type for a foil. With careful handling, appropriate adhesive, and slack mounting, premature breakage can be avoided. Foil lifetimes are then primarily affected by less easily controlled factors such as high-temperature expansion, shrinkage and evaporation.

  10. Apparatus and process for ultrasonic seam welding stainless steel foils

    DOEpatents

    Leigh, Richard W.

    1992-01-01

    An ultrasonic seam welding apparatus having a head which is rotated to form contact, preferably rolling contact, between a metallurgically inert coated surface of the head and an outside foil of a plurality of layered foils or work materials. The head is vibrated at an ultrasonic frequency, preferably along a longitudinal axis of the head. The head is constructed to transmit vibration through a contacting surface of the head into each of the layered foils. The contacting surface of the head is preferably coated with aluminum oxide to prevent the head from becoming welded to layered stainless steel foils.

  11. Method of making porous conductive supports for electrodes. [by electroforming and stacking nickel foils

    NASA Technical Reports Server (NTRS)

    Schaer, G. R. (Inventor)

    1973-01-01

    Porous conductive supports for electrochemical cell electrodes are made by electroforming thin corrugated nickel foil, and by stacking pieces of the corrugated foil alternatively with pieces of thin flat nickel foil. Corrugations in successive corrugated pieces are oriented at different angles. Adjacent pieces of foil are bonded by heating in a hydrogen atmosphere and then cutting the stack in planes perpendicular to the foils.

  12. A Passive Magnetic Bearing Flywheel

    NASA Technical Reports Server (NTRS)

    Siebert, Mark; Ebihara, Ben; Jansen, Ralph; Fusaro, Robert L.; Morales, Wilfredo; Kascak, Albert; Kenny, Andrew

    2002-01-01

    A 100 percent passive magnetic bearing flywheel rig employing no active control components was designed, constructed, and tested. The suspension clothe rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm, which is 65 percent above the first critical speed of 3336 rpm. Operation was not continued beyond this point because of the excessive noise generated by the air impeller and because of inadequate containment in case of failure. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  13. Bearing strength of the lunar soil

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1972-01-01

    A discussion is presented on the bearing strength and bearing load-penetration relations in lunar soil. These were measured in air as a function of bulk density. It was found that the relation between bulk density and the logarithm of the bearing capacity is about linear. Shapes of the load vs penetration curves were observed to be similar to those obtained with particulate material of terrestrial origin.

  14. Actinide Foil Production for MPACT Research

    SciTech Connect

    Beller, Denis

    2012-10-30

    Sensitive fast-neutron detectors are required for use in lead slowing down spectrometry (LSDS), an active interrogation technique for used nuclear fuel assay for Materials Protection, Accounting, and Controls Technologies (MPACT). During the past several years UNLV sponsored a research project at RPI to investigate LSDS; began development of fission chamber detectors for use in LSDS experiments in collaboration with INL, LANL, and Oregon State U.; and participated in a LSDS experiment at LANL. In the LSDS technique, research has demonstrated that these fission chamber detectors must be sensitive to fission energy neutrons but insensitive to thermal-energy neutrons. Because most systems are highly sensitive to large thermal neutron populations due to the well-known large thermal cross section of 235U, even a miniscule amount of this isotope in a fission chamber will overwhelm the small population of higher-energy neutrons. Thus, fast-fission chamber detectors must be fabricated with highly depleted uranium (DU) or ultra-pure thorium (Th), which is about half as efficient as DU. Previous research conducted at RPI demonstrated that the required purity of DU for assay of used nuclear fuel using LSDS is less than 4 ppm 235U, material that until recently was not available in the U.S. In 2009 the PI purchased 3 grams of ultra-depleted uranium (uDU, 99.99998% 238U with just 0.2 ± 0.1 ppm 235U) from VNIIEF in Sarov, Russia. We received the material in the form of U3O8 powder in August of 2009, and verified its purity and depletion in a FY10 MPACT collaboration project. In addition, chemical processing for use in FC R&D was initiated, fission chamber detectors and a scanning alpha-particle spectrometer were developed, and foils were used in a preliminary LSDS experiment at a LANL/LANSCE in Sept. of 2010. The as-received U3O8 powder must be chemically processed to convert it to another chemical form while maintaining its purity, which then must be used to electro-deposit U

  15. Microfog lubrication for aircraft engine bearings

    NASA Technical Reports Server (NTRS)

    Rosenlieb, J. W.

    1976-01-01

    An analysis and system study was performed to provide design information regarding lubricant and coolant flow rates and flow paths for effective utilization of the lubricant and coolant in a once through bearing oil mist (microfog) and coolant air system. Both static and dynamic tests were performed. Static tests were executed to evaluate and calibrate the mist supply system. A total of thirteen dynamic step speed bearing tests were performed using four different lubricants and several different mist and air supply configurations. The most effective configuration consisted of supplying the mist and the major portion of the cooling air axially through the bearing. The results of these tests have shown the feasibility of using a once through oil mist and cooling air system to lubricate and cool a high speed, high temperature aircraft engine mainshaft bearing.

  16. Turbocharger bearing retention and lubrication system

    SciTech Connect

    Gutknecht, D.A.

    1991-12-31

    This patent describes exhausts gas driven turbocharger. It comprises a housing, a shaft within the housing having a longitudinal axis of rotation and a pair of ends, a compressor wheel mounted within the housing on one end of the shaft for rotation therewith, a turbine wheel mounted within the housing on the other end of the shaft for rotation therewith, means for communicating air to the compressor wheel, means for communicating exhaust gas to the turbine wheel to cause the latter to rotate the shaft and the compressor wheel mounted thereon to compress the air communicated to the compressor wheel, and bearing means mounting the shaft for rotation relative to the housing, the bearing means including a bearing outer ring, a bearing inner ring, and ball bearing elements supporting the bearing outer ring on the bearing inner ring, a bearing locating aperture in the bearing outer ring, and an elongated bearing location pin having a longitudinal axis of symmetry extending transversely to the longitudinal axis of the shaft.

  17. Human impacts on bear habitat use

    USGS Publications Warehouse

    Mattson, David J.

    1990-01-01

    : Human effects on bear habitat use are mediated through food biomass changes, bear tolerance of humans and their impacts, and human tolerance of bears. Large-scale changes in bear food biomass have been caused by conversion of wildlands and waterways to intensive human use, and by the introduction of exotic pathogens. Bears consume virtually all human foods that have been established in former wildlands, but bear use has been limited by access. Air pollution has also affected bear food biomass on a small scale and is likely to have major future impacts on bear habitat through climatic warming. Major changes in disturbance cycles and landscape mosaics wrought by humans have further altered temporal and spatial pulses of bear food production. These changes have brought short-term benefits in places, but have also added long-term stresses to most bear populations. Although bears tend to avoid humans, they will also use exotic and native foods in close proximity to humans. Subadult males and adult females are more often impelled to forage closer to humans because of their energetic predicament and because more secure sites are often preempted by adult males. Although male bears are typically responsible for most livestock predation, adult females and subadult males are more likely to be habituated to humans because they tend to forage closer to humans. Elimination of human-habituated bears predictably reduces effective carrying capacity and is more likely to be a factor in preserving bear populations where humans are present in moderate-to-high densities. If humans desire to preserve viable bear populations, they will either have to accept increased risk of injury associated with preserving habituated animals, or continue to crop habituated bears while at the same time preserving large tracts of wildlands free from significant human intrusion.

  18. Insulating effectiveness of self-spacing dimpled foil

    NASA Technical Reports Server (NTRS)

    Bond, J. A.

    1972-01-01

    Experimental data are graphed for determining conductive heat losses of multilayer insulation as function of number of foil layers. Foil was 0.0051 cm thick Nb, 1% Zr refractory alloy, dimpled to 0.0254 cm with approximately 28 dimples/sq cm. Heat losses were determined at 0.1 microtorr between 700 and 1089 K.

  19. ORIC stripping foil positioner for tandem beam injection

    SciTech Connect

    Ludemann, C.A.; Lord, R.S.; Hudson, E.D.; Irwin, F.; Beckers, R.M.; Haynes, D.L.; Casstevens, B.J.; Mosko, S.W.

    1981-01-01

    The Oak Ridge Isochronous Cyclotron (ORIC) is used as an energy booster for heavy ions from a 25 MV tandem accelerator. This operation requires precise placement of a stripping foil in the cyclotron for capture of the injected ions into an acceleration orbit. The mechanical design and control of the foil positioning device are described.

  20. Foil fabrication for the ROMANO event. Revision 1

    SciTech Connect

    Romo, J.G. Jr.; Weed, J.W.; Griggs, G.E.; Brown, T.G.; Tassano, P.L.

    1984-06-13

    The Vacuum Processes Lab (VPL), of LLNL's M.E. Dept. - Material Fabrication Division (MFD), conducted various vacuum related support activities for the ROMANO nuclear physics experiment. This report focuses on the foil fabrication activities carried out between July and November 1983 for the ROMANO event. Other vacuum related activities for ROMANO, such as outgassing tests of materials, are covered in separate documentation. VPL was asked to provide 270 coated Parylene foils for the ROMANO event. However, due to the developmental nature of some of the procedures, approximately 400 coated foils were processed. In addition, VPL interacted with MFD's Plastics Shop to help supply Parylene substrates to other organizations (i.e., LBL and commercial vendors) which had also been asked to provide coated foils for ROMANO. The purposes of this report are (A) to document the processes developed and the techniques used to produce the foils, and (B) to suggest future directions. The report is divided into four sections describing: (1) nuclear target foil fabrication, (2) Parylene substrate preparation and production, (3) calibration foil fabrication, and (4) foil and substrate inspections.

  1. Fluid lubricated bearing construction

    DOEpatents

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  2. Tubular hydrogen permeable metal foil membrane and method of fabrication

    DOEpatents

    Paglieri, Stephen N.; Birdsell, Stephen A.; Barbero, Robert S.; Snow, Ronny C.; Smith, Frank M.

    2006-04-04

    A tubular hydrogen permeable metal membrane and fabrication process comprises obtaining a metal alloy foil having two surfaces, coating the surfaces with a metal or metal alloy catalytic layer to produce a hydrogen permeable metal membrane, sizing the membrane into a sheet with two long edges, wrapping the membrane around an elongated expandable rod with the two long edges aligned and overlapping to facilitate welding of the two together, placing the foil wrapped rod into a surrounding fixture housing with the two aligned and overlapping foil edges accessible through an elongated aperture in the surrounding fixture housing, expanding the elongated expandable rod within the surrounding fixture housing to tighten the foil about the expanded rod, welding the two long overlapping foil edges to one another generating a tubular membrane, and removing the tubular membrane from within the surrounding fixture housing and the expandable rod from with the tubular membrane.

  3. Qualification of diode foil materials for excimer lasers

    NASA Astrophysics Data System (ADS)

    Anderson, R. G.; Shurter, R. P.; Rose, E. A.

    The Aurora facility at Los Alamos National Laboratory uses KrF excimer lasers to produce 248 nm light for inertial confinement fusion applications. Diodes in each amplifier produce relativistic electron beams to pump a Kr-F-Ar gas mixture. A foil is necessary to separate the vacuum diode from the laser gas. High tensile strength, high electron transmission, low ultraviolet reflectivity, and chemical compatibility with fluorine have been identified as requisite foil properties. Several different materials were acquired and tested for use as diode foils. Transmission and fluorine compatibility tests were performed using the Electron Gun Test Facility (EGTF) at Los Alamos. Off-line tests of tensile strength and reflectivity were performed. Titanium foil, which is commonly used as a diode foil, was found to generate solid and gaseous fluoride compounds, some of which are highly reactive in contact with water vapor.

  4. Large-area beryllium metal foils

    NASA Astrophysics Data System (ADS)

    Stoner, J. O., Jr.

    1997-02-01

    To manufacture beryllium filters having diameters up to 82 mm and thicknesses in the range 0.1-1 μm, it was necessary to construct apparatus in which the metal could safely be evaporated, and then to find an acceptable substrate and evaporation procedure. The metal was evaporated resistively from a tantalum dimple boat mounted in a baffled enclosure that could be placed in a conventional vacuum bell jar, obviating the need for a dedicated complete vacuum system. Substrates were 102 mm × 127 mm × 0.05 mm cleaved mica sheets, coated with 0.1 μm of NaCl, then with approximately 50 μg/cm 2 of cellulose nitrate. These were mounted on poly(methyl methacrylate) sheets 3 mm thick that were in turn clamped to a massive aluminum block for thermal stability. Details of the processes for evaporation, float off, and mounting are given, and the resulting foils described.

  5. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    NASA Astrophysics Data System (ADS)

    Vivek, A.; Hansen, S. R.; Daehn, Glenn S.

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  6. High strain rate metalworking with vaporizing foil actuator: control of flyer velocity by varying input energy and foil thickness.

    PubMed

    Vivek, A; Hansen, S R; Daehn, Glenn S

    2014-07-01

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment. PMID:25085167

  7. High strain rate metalworking with vaporizing foil actuator: Control of flyer velocity by varying input energy and foil thickness

    SciTech Connect

    Vivek, A. Hansen, S. R.; Daehn, Glenn S.

    2014-07-15

    Electrically driven rapid vaporization of thin metallic foils can generate a high pressure which can be used to launch flyers at high velocities. Recently, vaporizing foil actuators have been applied toward a variety of impulse-based metal working operations. In order to exercise control over this useful tool, it is imperative that an understanding of the effect of characteristics of the foil actuator on its ability for mechanical impulse generation is developed. Here, foil actuators made out of 0.0508 mm, 0.0762 mm, and 0.127 mm thick AA1145 were used for launching AA2024-T3 sheets of thickness 0.508 mm toward a photonic Doppler velocimeter probe. Launch velocities ranging between 300 m/s and 1100 m/s were observed. In situ measurement of velocity, current, and voltage assisted in understanding the effect of burst current density and deposited electrical energy on average pressure and velocity with foil actuators of various thicknesses. For the pulse generator, geometry, and flyer used here, the 0.0762 mm thick foil was found to be optimal for launching flyers to high velocities over short distances. Experimenting with annealed foil actuators resulted in no change in the temporal evolution of flyer velocity as compared to foil actuators of full hard temper. A physics-based analytical model was developed and found to have reasonable agreement with experiment.

  8. Permanent Magnetic Bearing for Spacecraft Applications

    NASA Technical Reports Server (NTRS)

    Morales, Winfredo; Fusaro, Robert; Kascak, Albert

    2008-01-01

    A permanent, totally passive magnetic bearing rig was designed, constructed, and tested. The suspension of the rotor was provided by two sets of radial permanent magnetic bearings operating in the repulsive mode. The axial support was provided by jewel bearings on both ends of the rotor. The rig was successfully operated to speeds of 5500 rpm using an air impeller. Radial and axial stiffnesses of the permanent magnetic bearings were experimentally measured and then compared to finite element results. The natural damping of the rotor was measured and a damping coefficient was calculated.

  9. Performance of journal bearings with semi-compressible fluids

    NASA Technical Reports Server (NTRS)

    Carpino, M.; Peng, J.-P.

    1991-01-01

    Cryogenic fluids in isothermal rigid surface and foil type journal bearings can sometimes be treated as semicompressible fluids. In these applications, the fluid density is a function of the pressure. At low pressures, the fluids can change from a liquid to a saturated liquid-vapor phase. The performance of a rigid surface journal bearing with an idealized semicompressible fluid is discussed. Pressure solutions are based upon a Reynolds equation which includes the effects of a compressibility via the bulk modulus of the fluid. Results are contrasted with the performance of isothermal constant property incompressible fluids.

  10. Numerical Investigation of Finite Aspect-Ratio Flapping Foils

    NASA Astrophysics Data System (ADS)

    Mittal, R.; Najjar, F.; Bozkurttas, M.

    2003-11-01

    Most wings and fins found in nature tend to be of low aspect-ratio. However, despite this preponderence of low aspect-ratio foils in nature, most experimental and numerical studies in this area of bio-hydrodynamics have focussed on examining infinite aspect-ratio flapping foils. Here we have used numerical simulations to investigate the flow associated with finite aspect-ratio foils. Particular focus of the study is on examining the effect of aspect-ratio on the thrust chracteristics and the wake topology of the foil. The simulations employ a newly developed Cartesian grid method which allows us to simulate flows with complex three-dimensional bodies on fixed Cartesian grids. The simulations indicate that the wake topology of these relatively low aspect-ratio foils is significantly different from that observed for infinite-aspect-ratio foils. The simulations also allow us to assess the advantage/disadvantage that the lower aspect ratio might confer on the performance of a flapping foil. Results from this study will be presented.

  11. Producing Foils From Direct Cast Titanium Alloy Strip

    NASA Technical Reports Server (NTRS)

    Stuart, T. A.; Gaspar, T. A.; Sukonnik, I. M.; Semiatan, S. L.; Batawi, E.; Peters, J. A.; Fraser, H. L.

    1996-01-01

    This research was undertaken to demonstrate the feasibility of producing high-quality, thin-gage, titanium foil from direct cast titanium strip. Melt Overflow Rapid Solidification Technology (MORST) was used to cast several different titanium alloys into 500 microns thick strip, 10 cm wide and up to 3 m long. The strip was then either ground, hot pack rolled or cold rolled, as appropriate, into foil. Gamma titanium aluminide (TiAl) was cast and ground to approximately 100 microns thick foil and alpha-2 titanium aluminide (Ti3AI) was cast and hot pack rolled to approximately 70 microns thick foil. CP Ti, Ti6Al2Sn4Zr2Mo, and Ti22AI23Nb (Orthorhombic), were successfully cast and cold-rolled into good quality foil (less than 125 microns thick). The foils were generally fully dense with smooth surfaces, had fine, uniform microstructures, and demonstrated mechanical properties equivalent to conventionally produced titanium. By eliminating many manufacturing steps, this technology has the potential to produce thin gage, titanium foil with good engineering properties at significantly reduced cost relative to conventional ingot metallurgy processing.

  12. Rolling bearing stiffness in arbitrary direction

    NASA Astrophysics Data System (ADS)

    Luo, Zhusan; Sun, Xinde; Wu, Linfeng

    1992-06-01

    This paper presents a new concept of rolling bearing stiffness in arbitrary direction, which is necessary to the investigation of rotor-bearing dynamics. It includes the axial stiffness and the arbitrary radial stiffness of the rolling bearing. Based on elasticity theory and the geometrical parameters of the bearing, the approximate formulas of the axial stiffness, the arbitrary radial stiffness, and the inner ring displacements are derived. Furthermore, the paper also discusses the effects of the loads, the radial clearance, and the load distribution parameters on the rolling bearing stiffness. In order to verify the model and the computer program, an example of a ball bearing is analyzed in detail. It shows that the model and the program are reliable and the results are consistent with the data supplied by the U.S. Air Force Aeropropulsion Laboratory.

  13. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  14. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  15. Elevated Temperature Tensile Tests on DU–10Mo Rolled Foils

    SciTech Connect

    Schulthess, Jason

    2014-09-01

    Tensile mechanical properties for uranium-10 wt.% molybdenum (U–10Mo) foils are required to support modeling and qualification of new monolithic fuel plate designs. It is expected that depleted uranium-10 wt% Mo (DU–10Mo) mechanical behavior is representative of the low enriched U–10Mo to be used in the actual fuel plates, therefore DU-10Mo was studied to simplify material processing, handling, and testing requirements. In this report, tensile testing of DU-10Mo fuel foils prepared using four different thermomechanical processing treatments were conducted to assess the impact of foil fabrication history on resultant tensile properties.

  16. A novel carbon coating technique for foil bolometers

    NASA Astrophysics Data System (ADS)

    Sheikh, U. A.; Duval, B. P.; Labit, B.; Nespoli, F.

    2016-11-01

    Naked foil bolometers can reflect a significant fraction of incident energy and therefore cannot be used for absolute measurements. This paper outlines a novel coating approach to address this problem by blackening the surface of gold foil bolometers using physical vapour deposition. An experimental bolometer was built containing four standard gold foil bolometers, of which two were coated with 100+ nm of carbon. All bolometers were collimated and observed the same relatively high temperature, ohmically heated plasma. Preliminary results showed 13%-15% more incident power was measured by the coated bolometers and this is expected to be much higher in future TCV detached divertor experiments.

  17. Mechanical properties of micro- and nanocrystalline diamond foils

    PubMed Central

    Lodes, M. A.; Kachold, F. S.; Rosiwal, S. M.

    2015-01-01

    Diamond coating of suitable template materials and subsequent delamination allows for the manufacturing of free-standing diamond foil. The evolution of the microstructure can be influenced by secondary nucleation via control of process conditions in the hot-filament chemical vapour deposition process. Bending tests show extraordinarily high strength (more than 8 GPa), especially for diamond foils with nanocrystalline structure. A detailed fractographic analysis is conducted in order to correlate measured strength values with crack-initiating defects. The size of the failure causing flaw can vary from tens of micrometres to tens of nanometres, depending on the diamond foil microstructure as well as the loading conditions. PMID:25713455

  18. Functional multi-band THz meta-foils

    PubMed Central

    Wu, Jianfeng; Moser, Herbert O.; Xu, Su; Jian, Linke; Banas, Agnieszka; Banas, Krzysztof; Chen, Hongsheng; Bettiol, Andrew A.; Breese, Mark B. H.

    2013-01-01

    In this paper, we present the first experimental demonstration of double- and triple-band negative refraction index meta-foils in the terahertz (THz) region. Multi-band meta-foils constructed by multi-cell S-string resonators in a single structure exhibit simultaneously negative permittivity and negative permeability responses at multiple frequencies. The phenomena are confirmed by numerical simulations and Fourier transform infrared spectroscopy measurements. The flexible, freestanding multi-band meta-foils provide a promising candidate for the development of multi-frequency THz materials and devices. PMID:24346309

  19. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-26

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld. 5 figs.

  20. Method for laser welding ultra-thin metal foils

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method for simultaneously cutting and welding ultra-thin foils having a thickness of less than 0.002 inches wherein two ultra-thin films are stacked and clamped together. A pulsed laser such as of the Neodymium: YAG type is provided and the beam of the laser is directed onto the stacked films to cut a channel through the films. The laser is moved relative to the stacked foils to cut the stacked foils at successive locations and to form a plurality of connected weld beads to form a continuous weld.

  1. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Scholtz, V.; Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-01

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  2. Inactivation of possible microorganism food contaminants on packaging foils using nonthermal plasma and hydrogen peroxide

    SciTech Connect

    Scholtz, V. Khun, J.; Soušková, H.; Čeřovský, M.

    2015-07-15

    The inactivation effect of nonthermal plasma generated in electric discharge burning in air atmosphere with water or hydrogen peroxide aerosol for the application to the microbial decontamination of packaging foils is studied. The microbial inactivation is studied on two bacterial, two yeasts, and two filamentous micromycete species. The inactivation of all contaminating microorganisms becomes on the area of full 8.5 cm in diameter circular sample after short times of several tens of seconds. Described apparatus may present a possible alternative method of microbial decontamination of food packaging material or other thermolabile materials.

  3. Characterization of Electrodeposited Technetium on Gold Foil

    SciTech Connect

    Mausolf, Edward; Poineau, Frederic; Hartmann, Thomas; Droessler, Janelle; Czerwinski, Ken

    2011-11-17

    The reduction and electrodeposition of TcO{sub 4}{sup -} on a smooth gold foil electrode with an exposed area of 0.25 cm{sup 2} was performed in 1 M H{sub 2}SO{sub 4} supporting electrolyte using bulk electrolysis with a constant current density of 1.0 A/cm{sup 2} at a potential of -2.0 V. Significant hydrogen evolution accompanied the formation of Tc deposits. Tc concentrations consisted of 0.01 M and 2 x 10{sup -3} M and were electrodeposited over various times. Deposited fractions of Tc were characterized by powder x-ray diffraction, x-ray absorption fine structure spectroscopy, and scanning electron microscopy with the capability to measure semiquantitative elemental compositions by energy-dispersive x-ray emission spectroscopy. Results indicate the presence of Tc metal on all samples as the primary electrodeposited constituent for all deposition times and Tc concentrations. Thin films of Tc have been observed followed by the formation of beads that are removable by scratching. After 2000, the quantity of Tc removed from solution and deposited was 0.64 mg Tc per cm{sup 2}. The solution, after electrodeposition, showed characteristic absorbances near 500 nm corresponding to hydrolyzed Tc(IV) produced during deposition of Tc metal. No detectable Tc(IV) was deposited to the cathode.

  4. Indium foil with beryllia washer improves transistor heat dissipation

    NASA Technical Reports Server (NTRS)

    Hilliard, J.; John, J. E. A.

    1964-01-01

    Indium foil, used as an interface material in transistor mountings, greatly reduces the thermal resistance of beryllia washers. This method improves the heat dissipation of power transistors in a vacuum environment.

  5. Stratification in Al and Cu foils exploded in vacuum

    SciTech Connect

    Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.; Artyomov, A. P.; Oreshkin, V. I.

    2015-10-15

    An experiment with exploding foils was carried out at a current density of 0.7 × 10{sup 8} A/cm{sup 2} through the foil with a current density rise rate of about 10{sup 15} A/cm{sup 2} s. To record the strata arising during the foil explosions, a two-frame radiographic system was used that allowed tracing the dynamics of strata formation within one shot. The original striation wavelength was 20–26 μm. It was observed that as the energy deposition to a foil stopped, the striation wavelength increased at a rate of ∼(5–9) × 10{sup 3} cm/s. It is supposed that the most probable reason for the stratification is the thermal instability that develops due to an increase in the resistivity of the metal with temperature.

  6. Planar Foil MRT Instability Measurements Using a 1-MA LTD

    NASA Astrophysics Data System (ADS)

    Zier, J. C.; Chalenski, D. A.; Patel, S. G.; French, D. M.; Gilgenbach, R. M.; Gomez, M. R.; Lau, Y. Y.; Steiner, A. M.; Rittersdorf, I. M.; Weis, M. R.; Mazarakis, M. G.; Lopez, M. R.; Cuneo, M. E.

    2011-10-01

    Initial dynamic load experiments were performed on UM's 1-MA linear transformer driver (LTD) facility, MAIZE, to characterize magneto-Rayleigh-Taylor (MRT) instability growth and plasma dynamics on planar-foil plasmas. The loads utilized a double current return plate geometry with a 400 nm-thick Al foil positioned between the return plates. Magnetic pressure accelerated the foil plasma to drive MRT instability that was measured using shadowgraphy. Plasma dynamics were observed to be dominated by an initial expansion phase where both foil interfaces were found to be MRT unstable with 85-105 ns e-folding times. This research was supported by US DoE award number DE-SC0002590, US DoE through SNL award numbers 240985 and 768225 to UM, and from NSF award number PHY 0903340 to UM. JC Zier and SG Patel were supported by NPSC fellowships through SNL.

  7. Study of a gold-foil-based multisphere neutron spectrometer.

    PubMed

    Wang, Z; Hutchinson, J D; Hertel, N E; Burgett, E; Howell, R M

    2008-01-01

    Multisphere neutron spectrometers with active thermal neutron detectors cannot be used in high-intensity radiation fields due to pulse pile-up and dead-time effects. Thus, a multisphere spectrometer using a passive detection system, specifically gold foils, has been investigated in this work. The responses of a gold-foil-based Bonner sphere neutron spectrometer were studied for two different gold-foil holder designs; an aluminium-polyethylene holder and a polyethylene holder. The responses of the two designs were calculated for four incident neutron beam directions, namely, parallel, perpendicular and at +/-45 degrees relative to the flat surface of the foil. It was found that the use of polyethylene holder resulted in a more isotropic response to neutrons for the four incident directions considered. The computed responses were verified by measuring the neutron spectrum of a 252Cf source with known strength.

  8. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  9. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  10. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tin-coated lead foil capsules for wine bottles... Substances Prohibited From Indirect Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on...

  11. Evidence of muonium formation using thin gold foils in vacuum

    NASA Technical Reports Server (NTRS)

    Barnett, B. A.; Chang, C. Y.; Steinberg, P.; Yodh, G. B.; Orr, H. D.; Carroll, J. B.; Eckhause, M.; Kane, J. R.; Spence, C. B.; Hsieh, C. S.

    1977-01-01

    The production of thermal muonium in a vacuum region has been investigated using an array of 200 thin (about 1000 A thick) gold foils exposed to a stopping positive-muon beam. By examining the observed time dependence of the positive-muon decay spectra in various transverse magnetic field, it is estimated that the lower limit of the probability of muonium formation by these gold foils placed in vacuum was 0.28 plus or minus 0.05.

  12. Carbon-Fiber/Epoxy Tube Lined With Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Gernet, Nelson J.; Kerr, Gregory K.

    1995-01-01

    Carbon-fiber/epoxy composite tube lined with welded aluminum foil useful as part of lightweight heat pipe in which working fluid ammonia. Aluminum liner provides impermeability for vacuum seal, to contain ammonia in heat pipe, and to prevent flow of noncondensable gases into heat pipe. Similar composite-material tubes lined with foils also incorporated into radiators, single- and two-phase thermal buses, tanks for storage of cryogenic materials, and other plumbing required to be lightweight.

  13. Determination of (222)Rn absorption properties of polycarbonate foils by liquid scintillation counting. Application to (222)Rn measurements.

    PubMed

    Mitev, K; Cassette, P; Georgiev, S; Dimitrova, I; Sabot, B; Boshkova, T; Tartès, I; Pressyanov, D

    2016-03-01

    This work demonstrates that a Liquid Scintillation Counting (LSC) technique using a Triple to Double Coincidence Ratio counter with extending dead-time is very appropriate for the accurate measurement of (222)Rn activity absorbed in thin polycarbonate foils. It is demonstrated that using a toluene-based LS cocktail, which dissolves polycarbonates, the (222)Rn activity absorbed in thin Makrofol N foil can be determined with a relative standard uncertainty of about 0.7%. A LSC-based application of the methodology for determination of the diffusion length of (222)Rn in thin polycarbonate foils is proposed and the diffusion length of (222)Rn in Makrofol N (38.9±1.3µm) and the partition coefficient of (222)Rn in Makrofol N from air (112±12, at 20°C) and from water (272±17, at 21°C) are determined. Calibration of commercial LS spectrometers for (222)Rn measurements by LSC of thin polycarbonate foils is performed and the minimum detectable activities by this technique are estimated.

  14. FeN foils by nitrogen ion-implantation

    SciTech Connect

    Jiang, Yanfeng; Wang, Jian-Ping; Al Mehedi, Md; Fu, Engang; Wang, Yongqiang

    2014-05-07

    Iron nitride samples in foil shape (free standing, 500 nm in thickness) were prepared by a nitrogen ion-implantation method. To facilitate phase transformation, the samples were bonded on the substrate followed by a post-annealing step. By using two different substrates, single crystal Si and GaAs, structural and magnetic properties of iron nitride foil samples prepared with different nitrogen ion fluences were characterized. α″-Fe{sub 16}N{sub 2} phase in iron nitride foil samples was obtained and confirmed by the proposed approach. A hard magnetic property with coercivity up to 780 Oe was achieved for the FeN foil samples bonded on Si substrate. The feasibility of using nitrogen ion implantation techniques to prepare FeN foil samples up to 500 nm thickness with a stable martensitic phase under high ion fluences has been demonstrated. A possible mechanism was proposed to explain this result. This proposed method could potentially be an alternative route to prepare rare-earth-free FeN bulk magnets by stacking and pressing multiple free-standing thick α″-Fe{sub 16}N{sub 2} foils together.

  15. Globally shed wakes for three distinct retracting foil geometries

    NASA Astrophysics Data System (ADS)

    Steele, Stephanie; Triantafyllou, Michael

    2015-11-01

    In quickly retracting foils at an angle of attack, the boundary layer vorticity along with the added mass energy is immediately and globally shed from the body into the surrounding fluid. The deposited vorticity quickly reforms into lasting vortex structures, which could be used for purposes such as manipulating or exploiting the produced flow structures by additional bodies in the fluid. The globally shed wake thus entrains the added mass energy provided by the initially moving body, reflected by the value of the circulation left in the wake. In studying experimentally as well as numerically this phenomenon, we find that the three different tested geometries leave behind distinct wakes. Retracting a square-ended foil is undesirable because the deposited wake is complicated by three-dimensional ring vorticity effects. Retracting a tapered, streamlined-tipped foil is also undesirable because the shape-changing aspect of the foil geometry actually induces energy recovery back to the retracting foil, leaving a less energetic globally shed wake. Finally, a retracting hollow foil geometry avoids both of these detrimental effects, leaving relatively simple, yet energetic, vortex structures in the wake.

  16. Electrospray ionization with aluminum foil: A versatile mass spectrometric technique.

    PubMed

    Hu, Bin; So, Pui-Kin; Yao, Zhong-Ping

    2014-03-19

    In this study, we developed a novel electrospray ionization (ESI) technique based on household aluminum foil (Al foil) and demonstated the desirable features and applications of this technique. Al foil can be readily cut and folded into desired configuration for effective ionization and for holding sample solution in bulk to allowing acquisition of durable ion signals. The present technique was demonstrated to be applicable in analysis of a wide variety of samples, ranging from pure chemical and biological compounds, e.g., organic compounds and proteins, to complex samples in liquid, semi-solid, and solid states, e.g., beverages, skincare cream, and herbal medicines. The inert, hydrophobic and impermeable surface of Al foil allows convenient and effective on-target extraction of solid samples and on-target sample clean-up, i.e., removal of salts and detergents from proteins and peptides, extending ESI device from usually only for sample loading and ionization to including sample processing. Moreover, Al foil is an excellent heat-conductor and highly heat-tolerant, permitting direct monitoring of thermal reactions, e.g., thermal denaturation of proteins. Overall, the present study showed that Al-foil ESI could be an economical and versatile method that allows a wide range of applications. PMID:24594810

  17. Induction Bonding of Prepreg Tape and Titanium Foil

    NASA Technical Reports Server (NTRS)

    Messier, Bernadette C.; Hinkley, Jeffrey A.; Johnston, Norman J.

    1998-01-01

    Hybrid structural laminates made of titanium foil and carbon fiber reinforced polymer composite offer a potential for improved performance in aircraft structural applications. To obtain information needed for the automated fabrication of hybrid laminates, a series of bench scale tests were conducted of the magnetic induction bonding of titanium foil and thermoplastic prepreg tape. Foil and prepreg specimens were placed in the gap of a toroid magnet mounted in a bench press. Several magnet power supplies were used to study power at levels from 0.5 to 1.75 kW and frequencies from 50 to 120 kHz. Sol-gel surface-treated titanium foil, 0.0125 cm thick, and PIXA/IM7 prepreg tape were used in several lay-up configurations. Data were obtained on wedge peel bond strength, heating rate, and temperature ramp over a range of magnet power levels and frequencies at different "power-on" times for several magnet gap dimensions. These data will be utilized in assessing the potential for automated processing. Peel strengths of foil-tape bonds depended on the maximum temperature reached during heating and on the applied pressure. Maximum peel strengths were achieved at 1.25kW and 8OkHz. Induction heating of the foil appears to be capable of good bonding up to 10 plies of tape. Heat transfer calculations indicate that a 20-40 C temperature difference exists across the tape thickness during heat-up.

  18. Passive magnetic bearing configurations

    DOEpatents

    Post, Richard F.

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  19. Rolling-Element Bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Anderson, W. J.

    1983-01-01

    Rolling element bearings are a precision, yet simple, machine element of great utility. A brief history of rolling element bearings is reviewed and the type of rolling element bearings, their geometry and kinematics, as well as the materials they are made from and the manufacturing processes they involve are described. Unloaded and unlubricated rolling element bearings, loaded but unlubricated rolling element bearings and loaded and lubricated rolling element bearings are considered. The recognition and understanding of elastohydrodynamic lubrication covered, represents one of the major development in rolling element bearings.

  20. Introduction to ball bearings

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    The purpose of a ball bearing is to provide a relative positioning and rotational freedom while transmitting a load between two structures, usually a shaft and a housing. For high rotational speeds (e.g., in gyroscope ball bearings) the purpose can be expanded to include rotational freedom with practically no wear in the bearing. This condition can be achieved by separating the bearing parts with a coherent film of fluid known as an elastohydrodynamic film. This film can be maintained not only when the bearing carries the load on a shaft, but also when the bearing is preloaded to position the shaft to within micro- or nano-inch accuracy and stability. Background information on ball bearings is provided, different types of ball bearings and their geometry and kinematics are defined, bearing materials, manufacturing processes, and separators are discussed. It is assumed, for the purposes of analysis, that the bearing carries no load.

  1. SU-E-T-151: Enhanced Radiation Attenuation with Multi-Layer Foils

    SciTech Connect

    Warmington, L; Watanabe, Y

    2014-06-01

    Purpose: To evaluate the effect of increasing the number of thin high Z foils on the dose enhancement and the overall radiation attenuation with a 24MV photon beam. Methods: DOSXYZnrc was used to perform Monte Carlo simulations of multi-layer lead foil configurations. The foil size was 7cm x 7cm. and the foil thickness was adjusted to give a combined thickness of 1mm. The number of foils used was 4, 6, 8, and 10. The separation between foils was also varied from 3 to 9 mm. The Mohan 24MV energy spectrum was used as a photon source. The field size was 5cm x 5cm and SSD was 100 cm. The phantom size was 16cm × 16cm × 28cm. The number of histories ranged from 1 to 2 billion. The percentage difference of the dose between the medium with foils and the homogeneous water was computed along the beam axis. The minimum dose enhancement and the change of integrated dose between the foils were determined. Results: Increasing the number of foils resulted in a decrease in the minimum dose enhancement. The highest dose region occurred in the last section for the 4 and 6 foil cases, whereas the 8 and 10 foil configurations showed the maximum dose region towards the center of the foil group. Increasing the number of foils increased the total integrated dose between foils. For example, the total integrated dose increase between the first and the last foils with a 3mm foil separation were 34.2, 43.4, 57.4, and 64.7% for 4, 6, 8 and 10 foils, respectively. Conclusion: This work showed the degree of dose enhancement around multiple thin lead foils. The results suggest that the total attenuation of photon beam can be increased by increasing the number of foils with a fixed total foil thickness.

  2. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tin-coated lead foil capsules for wine bottles. 189... lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin layer of tin. Tin-coated lead foil has been used as a capsule (i.e., as...

  3. High efficiency magnetic bearings

    NASA Technical Reports Server (NTRS)

    Studer, Philip A.; Jayaraman, Chaitanya P.; Anand, Davinder K.; Kirk, James A.

    1993-01-01

    Research activities concerning high efficiency permanent magnet plus electromagnet (PM/EM) pancake magnetic bearings at the University of Maryland are reported. A description of the construction and working of the magnetic bearing is provided. Next, parameters needed to describe the bearing are explained. Then, methods developed for the design and testing of magnetic bearings are summarized. Finally, a new magnetic bearing which allows active torque control in the off axes directions is discussed.

  4. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terrence; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM. During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90 percent random fiber currently used in small approx.100 W Stirling space-power convertors-in the Reynolds Number range of interest (50 to 100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6 to 9 percent; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to 1200 C

  5. A Microfabricated Involute-Foil Regenerator for Stirling Engines

    NASA Technical Reports Server (NTRS)

    Tew, Roy; Ibrahim, Mounir; Danila, Daniel; Simon, Terry; Mantell, Susan; Sun, Liyong; Gedeon, David; Kelly, Kevin; McLean, Jeffrey; Wood, Gary; Qiu, Songgang

    2007-01-01

    A segmented involute-foil regenerator has been designed, microfabricated and tested in an oscillating-flow rig with excellent results. During the Phase I effort, several approximations of parallel-plate regenerator geometry were chosen as potential candidates for a new microfabrication concept. Potential manufacturers and processes were surveyed. The selected concept consisted of stacked segmented-involute-foil disks (or annular portions of disks), originally to be microfabricated from stainless-steel via the LiGA (lithography, electroplating, and molding) process and EDM (electric discharge machining). During Phase II, re-planning of the effort led to test plans based on nickel disks, microfabricated via the LiGA process, only. A stack of nickel segmented-involute-foil disks was tested in an oscillating-flow test rig. These test results yielded a performance figure of merit (roughly the ratio of heat transfer to pressure drop) of about twice that of the 90% random fiber currently used in small 100 W Stirling space-power convertors in the Reynolds Number range of interest (50-100). A Phase III effort is now underway to fabricate and test a segmented-involute-foil regenerator in a Stirling convertor. Though funding limitations prevent optimization of the Stirling engine geometry for use with this regenerator, the Sage computer code will be used to help evaluate the engine test results. Previous Sage Stirling model projections have indicated that a segmented-involute-foil regenerator is capable of improving the performance of an optimized involute-foil engine by 6-9%; it is also anticipated that such involute-foil geometries will be more reliable and easier to manufacture with tight-tolerance characteristics, than random-fiber or wire-screen regenerators. Beyond the near-term Phase III regenerator fabrication and engine testing, other goals are (1) fabrication from a material suitable for high temperature Stirling operation (up to 850 C for current engines; up to

  6. Microeconomic analysis of military aircraft bearing restoration

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1976-01-01

    The risk and cost of a bearing restoration by grinding program was analyzed. A microeconomic impact analysis was performed. The annual cost savings to U.S. Army aviation is approximately $950,000.00 for three engines and three transmissions. The capital value over an indefinite life is approximately ten million dollars. The annual cost savings for U.S. Air Force engines is approximately $313,000.00 with a capital value of approximately 3.1 million dollars. The program will result in the government obtaining bearings at lower costs at equivalent reliability. The bearing industry can recover lost profits during a period of reduced demand and higher costs.

  7. Experiments with needle bearings

    NASA Technical Reports Server (NTRS)

    Ferretti, Pericle

    1933-01-01

    Experiments and results are presented in testing needle bearings, especially in comparison with roller bearings. Reduction in coefficient of friction is discussed as well as experimental methods and recording devices.

  8. Investigation of the crater-like microdefects induced by laser shock processing with aluminum foil as absorbent layer

    NASA Astrophysics Data System (ADS)

    Ye, Y. X.; Xuan, T.; Lian, Z. C.; Feng, Y. Y.; Hua, X. J.

    2015-06-01

    This paper reports that 3D crater-like microdefects form on the metal surface when laser shock processing (LSP) is applied. LSP was conducted on pure copper block using the aluminum foil as the absorbent material and water as the confining layer. There existed the bonding material to attach the aluminum foil on the metal target closely. The surface morphologies and metallographs of copper surfaces were characterized with 3D profiler, the optical microscopy (OM) or the scanning electron microscopy (SEM). Temperature increases of metal surface due to LSP were evaluated theoretically. It was found that, when aluminum foil was used as the absorbent material, and if there existed air bubbles in the bonding material, the air temperatures within the bubbles rose rapidly because of the adiabatic compression. So at the locations of the air bubbles, the metal materials melted and micromelting pool formed. Then under the subsequent expanding of the air bubbles, a secondary shock wave was launched against the micromelting pool and produced the crater-like microdefects on the metal surface. The temperature increases due to shock heat and high-speed deformation were not enough to melt the metal target. The temperature increase induced by the adiabatic compression of the air bubbles may also cause the gasification of the metal target. This will also help form the crater-like microdefects. The results of this paper can help to improve the surface quality of a metal target during the application of LSP. In addition, the results provide another method to fabricate 3D crater-like dents on metal surface. This has a potential application in mechanical engineering.

  9. Microstructure Evolution of Alloy 625 Foil and Sheet During Creep at 750oC

    SciTech Connect

    Evans, Neal D; Maziasz, Philip J; Shingledecker, John P; Yamamoto, Yukinori

    2008-12-01

    Creep-rupture tests in air of foils and sheets of the nickel-based superalloy 625 at 750oC and 100 MPa have been conducted, and indicate the additional processing required to achieve foil form reduces creep life compared to thicker-section wrought product forms. Both scanning and transmission electron microscopy were employed to examine as-processed and creep-tested specimens to correlate observed microstructures and creep behavior. Prior to creep testing, the morphology consists of gamma phase with M6C precipitates. This morphology changes during creep to one consisting of orthorhombic delta phase extending across gamma grains, and grain boundaries dominated by the presence of rhombohedral mu phase, delta phase, and a diamond-cubic eta phase. Additionally, temperature ranges of equilibrium phase field stability were calculated using JMatPro. The phases predicted and their compositions generally agree with those observed within the superalloy after creep testing.

  10. Nanowire LEDs grown directly on flexible metal foil

    NASA Astrophysics Data System (ADS)

    May, Brelon J.; Sarwar, A. T. M. Golam; Myers, Roberto C.

    2016-04-01

    Using molecular beam epitaxy, self-assembled AlGaN nanowires are grown directly on Ta and Ti foils. Scanning electron microscopy shows that the nanowires are locally textured with the underlying metallic grains. Photoluminescence spectra of GaN nanowires grown on metal foils are comparable to GaN nanowires grown on single crystal Si wafers. Similarly, photoluminescence lifetimes do not vary significantly between these samples. Operational AlGaN light emitting diodes are grown directly on flexible Ta foil with an electroluminescence peak emission of ˜350 nm and a turn-on voltage of ˜5 V. These results pave the way for roll-to-roll manufacturing of solid state optoelectronics.

  11. Laser shock microforming of aluminum foil with fs laser

    NASA Astrophysics Data System (ADS)

    Ye, Yunxia; Feng, Yayun; Xuan, Ting; Hua, Xijun; Hua, Yinqun

    2014-12-01

    Laser shock microforming of Aluminum(Al) foil through fs laser has been researched in this paper. The influences of confining layer, clamping method and impact times on induced dent depths were investigated experimentally. Microstructure of fs laser shock forming Al foil was observed through Transmission electron microscopy (TEM). Under the condition of tightly clamping, the dent depths increase with impact times and finally tend to saturating. Another new confining layer, the main component of which is polypropylene, was applied and the confining effect of it is better because of its higher impedance. TEM results show that dislocation is one of the main deformation mechanisms of fs laser shock forming Al foil. Specially, most of dislocations exist in the form of short and discrete dislocation lines. Parallel straight dislocation slip line also were observed. We analyzed that these unique dislocation arrangements are due to fs laser-induced ultra high strain rate.

  12. Axial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2008-01-01

    Axial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control.

  13. Method and apparatus for tensile testing of metal foil

    NASA Technical Reports Server (NTRS)

    Wade, O. W. (Inventor)

    1976-01-01

    A method for obtaining accurate and reproducible results in the tensile testing of metal foils in tensile testing machines is described. Before the test specimen are placed in the machine, foil side edges are worked until they are parallel and flaw free. The specimen are also aligned between and secured to grip end members. An aligning apparatus employed in the method is comprised of an alignment box with a longitudinal bottom wall and two upright side walls, first and second removable grip end members at each end of the box, and a means for securing the grip end members within the box.

  14. Effect of Smoked Foil Thickness and Location on Detonation Initiation

    NASA Astrophysics Data System (ADS)

    Chung, K. M.; Wen, C. S.

    Smoked foil has been employed to visualize triple point pattern (or cell width), indicating detonation phenomena. However, the aluminum sheet also corresponds to sudden contraction in a smooth tube. It might induce early trigger on detonation initiation and result in a reduction in deflagration-to-detonation transition (DDT) run-up distance. Test results showed the thickness of aluminum sheet of less than 1.3 mm is required to eliminate the effect of smoked foil. A reduction in Xdtt is observed when the thickness of aluminum sheet increases.

  15. Prediction of forming limit strains of thin foils using shim

    NASA Astrophysics Data System (ADS)

    Joshi, Sanket Vivek; Bade, Rohit A.; Narasimhan, K.

    2013-12-01

    Thin foils of metallic alloys find utility in metallic thermal protection systems, such as honeycomb structures. Understanding the formability of these thin foils becomes imperative so as to design accurate tooling and also to ensure mechanical robustness of the honeycomb structures during service. It has been found that, obtaining the precise limit strains of these foils directly using the conventional limiting dome test tooling is difficult, because of the excessive draw in and wrinkling that occurs during the punch travel, resulting in erroneous measurement or prediction of limit strains. To address this issue, the blank over blank stacking methodology was developed, which helped keep the draw-in and wrinkling at negligible and thus acceptable levels. Although the blank over blank stacking methodology offers a way to predict and measure limit strains, the same may not be accurate enough due to the effect the substrate properties may impose on the thin foil. To avoid this effect, a different methodology has been proposed herein, which uses a shim stacked over the blank to avoid draw in of these foil blanks and thus help accurate clamping of the blank between the die and blank holder. It is thus understood that either a critical local or global increase in the thickness of the blank material in and around the draw bead is essential to obtain effective clamping of foil and to avoid draw-in and wrinkling. Although, miniaturized hemispherical dome tests may be beneficial for obtaining limit strains as far as foils are concerned, the methodologies proposed herein provide a route to obtaining the same using available equipment, thus saving resources and time involved in development of new miniaturized testing devices. The forming limit strains of thin foils of IN 718 (inconel) alloy having a thickness of 50μm, C263 (nimonic) alloy having a thickness of 100μm and CP Ti (commercially pure titanium) having a thickness of 200μm have been predicted using this methodology

  16. Bearing puller facilitates removal and replacement of bearing assemblies

    NASA Technical Reports Server (NTRS)

    Schaus, R. B.

    1966-01-01

    Bearing puller removes ball bearing assemblies, which carry the rotor, from turbine type flowmeters. It matches the bearing configuration to facilitate removal of the bearing assemblies from the support members.

  17. Cryogenic Hybrid Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  18. Using Aluminum Foil to Record Structures in Sedimentary Rock.

    ERIC Educational Resources Information Center

    Metz, Robert

    1982-01-01

    Aluminum foil can be used to make impressions of structures preserved in sedimentary rock. The impressions can be projected onto a screen, photographed, or a Plaster of Paris model can be made from them. Impressions of ripple marks, mudcracks, and raindrop impressions are provided in photographs illustrating the technique. (Author/JN)

  19. The Visualization of Infrared Radiation Using Thermal Sensitive Foils

    ERIC Educational Resources Information Center

    Bochnícek, Zdenek

    2013-01-01

    This paper describes a set of demonstration school experiments where infrared radiation is detected using thermal sensitive foils. The possibility of using standard glass lenses for infrared imaging is discussed in detail. It is shown that with optic components made from glass, infrared radiation up to 2.5 µm of wavelength can be detected. The…

  20. Age Differences in Depth of Retrieval: Memory for Foils

    ERIC Educational Resources Information Center

    Jacoby, L.L.; Shimizu, Y.; Velanova, K.; Rhodes, M.G.

    2005-01-01

    Control over memory can be achieved in two ways: by constraining retrieval such that only sought after information comes to mind or, alternatively, by means of post-access monitoring. We used a memory-for-foils paradigm to gain evidence of differences in retrieval constraints. In this paradigm, participants studied words under deep or shallow…

  1. Modified Monkman-Grant relationship for austenitic stainless steel foils

    NASA Astrophysics Data System (ADS)

    Osman Ali, Hassan; Tamin, Mohd Nasir

    2013-02-01

    Characteristics of creep deformation for austenitic stainless steel foils are examined using the modified Monkman-Grant equation. A series of creep tests are conducted on AISI 347 steel foils at 700 °C and different stress levels ranging from 54 to 221 MPa. Results showed that at lower stress levels below 110 MPa, the creep life parameters ɛ, ɛr, tr can be expressed using the modified Monkman-Grant equation with exponent m'= 0.513. This indicates significant deviation of the creep behavior from the first order reaction kinetics theory for creep (m' = 1.0). The true tertiary creep damage in AISI 347 steel foil begins after 65.9% of the creep life of the foil has elapsed at stress levels above 150 MPa. At this high stress levels, Monkman-Grant ductility factor λ' saturates to a value of 1.3 with dislocation-controlled deformation mechanisms operating. At low stress levels, λ' increases drastically (λ'=190 at 54 MPa) when slow diffusion-controlled creep is dominant.

  2. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-09-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  3. Fullurene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2005-03-01

    The paper considers the physical principles of developing the fullerene - oxygen - iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanopartickles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  4. Fullerene-oxygen-iodine laser (FOIL): physical principles

    NASA Astrophysics Data System (ADS)

    Danilov, Oleg B.; Belousova, Inna M.; Mak, Artur A.; Belousov, Vlidilen P.; Grenishin, A. S.; Kiselev, V. M.; Krys'ko, A. V.; Murav'eva, T. D.; Ponomarev, Alexander N.; Sosnov, Eugene N.

    2004-06-01

    The paper considers the physical principles of developing the fullerene-oxygen-iodine laser (FOIL) with optical (sunlight in particular) pumping. Kinetic scheme of such a laser is considered. It is shown that the utmost efficiency of FOIL may exceed 40% of the energy, absorbed by fullerenes. Presented are the experimental results of singlet oxygen generation in liquid media (solutions and suspensions) and in solid-state structures, containing either fullerenes or fullerene-like nanoparticles (FNP). In experiment was shown the possibility of the singlet oxygen transfer to the gaseous phase by means of organizing of the solution (suspension) the boiling as well as of the gasodynamic wave of desorption from the solid-state structures, containing fullerenes or FNP. We present the preliminary experimental results of pulsed generation in optically pumped FOIL with the use of primary photodissociation of iodide for preparation of the atomic iodine in the generation zone. In the experiments on FOIL generation was implemented the principle of spectral separation of optical pumping.

  5. Tribalism as a Foiled Factor of Africa Nation-Building

    ERIC Educational Resources Information Center

    Okogu, J. O.; Umudjere, S. O.

    2016-01-01

    This paper tends to examine tribalism as a foiled factor on Africa nation-building and proffers useful tips to salvaging the Africa land from this deadly social problem. Africans in times past had suffered enormous attacks, injuries, losses, deaths, destruction of properties and human skills and ideas due to the presence of tribalistic views in…

  6. Geometry-function relationship in meta-foils

    NASA Astrophysics Data System (ADS)

    Moser, H. O.; Jian, L. K.; Chen, H. S.; Kalaiselvi, S. M. P.; Virasawmy, S.; Cheng, X. X.; Banas, A.; Banas, K.; Heussler, S. P.; Bahou, M.; Wu, B.-I.; Hua, Wei; Yi, Zhu

    2010-04-01

    Meta-foils are all-metal free-standing electromagnetic metamaterials based on interconnected S-string architecture. They provide a versatile applications' platform. Lacking any substrate or embedding matrix, they feature arrays of parallel upright S-strings with each string longitudinally shifted by half an S compared to its neighbour to form capacitance-inductance loops. Geometric parameters include length a, width b, thickness t, and height h of an S, the gap between adjacent S-strings d, and the periodicity p of the interconnecting lines. Equidistant strings at p=1 form a 1SE meta-foil. Grouped in pairs of gap d, exhibiting a gap dp between pairs, they are named 2SP. Geometric parameters a, b, t, h, d, dp, pS(E or P) and materials' properties like electric conductivity, Young's modulus, thermal expansion coefficient, and heat capacity determine the electromagnetic, mechanical, and thermal properties of meta-foils including the spectral dependence of resonance frequencies, refractive index, transmission, reflection, and bending. We show how the frequency and transmission of left-handed pass-bands depend on a, p, and dp, the pSP geometry exhibiting higher resonance frequency and transmission. Equivalent circuit considerations serve to explain physical reasons. We also demonstrate mechanical behavior versus p and dp justifying the design of a cylindrical hyperlens depending on bent meta-foils.

  7. Validation of calculated self-shielding factors for Rh foils

    NASA Astrophysics Data System (ADS)

    Jaćimović, R.; Trkov, A.; Žerovnik, G.; Snoj, L.; Schillebeeckx, P.

    2010-10-01

    Rhodium foils of about 5 mm diameter were obtained from IRMM. One foil had thickness of 0.006 mm and three were 0.112 mm thick. They were irradiated in the pneumatic transfer system and in the carousel facility of the TRIGA reactor at the Jožef Stefan Institute. The foils were irradiated bare and enclosed in small cadmium boxes (about 2 g weight) of 1 mm thickness to minimise the perturbation of the local neutron flux. They were co-irradiated with 5 mm diameter and 0.2 mm thick Al-Au (0.1%) alloy monitor foils. The resonance self-shielding corrections for the 0.006 and 0.112 mm thick samples were calculated by the Monte Carlo simulation and amount to about 10% and 60%, respectively. The consistency of measurements confirmed the validity of self-shielding factors. Trial estimates of Q0 and k0 factors for the 555.8 keV gamma line of 104Rh were made and amount to 6.65±0.18 and (6.61±0.12)×10 -2, respectively.

  8. Characteristic Differences Between Wire and Foil X-pinches

    NASA Astrophysics Data System (ADS)

    Collins, Gilbert; Valenzuela, Julio; Krasheninnikov, Igor; Beg, Farhat; Wei, Mingsheng

    2015-11-01

    We conducted X-pinch experiments using laser-cut Ni and Cu foils on the 250kA GenASIS current driver at UC San Diego. General Atomics' Laser Micro-Machining (LMM) Center manufactured the X's. To characterize the foil X-pinches, we measured and compared the evolution, emission spectra, yield, and source size of these new arrays to that of comparably massed wire X-pinches on the same driver. Diagnostics included Si PN diodes and diamond PCDs, optical probing, X-ray spectroscopy, an XUV framing camera, a slit-wire camera, and current probes. We used novel structures machined into the crosspoint in an effort to better understand the effects of the initial geometry on the final pinch and to spatially confine the source location. Some designs entirely prohibited pinching. In other designs, when pinching occurred, the sources were comparable to ideal wire shots on GenASIS both in size (at or less than five microns) and X-ray flux (5-10 MW @ 1-10 keV). The data collected here also show considerable differences between successful foil and wire pinches. The X-ray spectra are not identical, and we find that the foil X's produce a single >2.5 keV emission pulse with none of the additional later and longer-lasting hard emission pulses found in wire X-pinches.

  9. Exploding metallic foil fuse modeling at Los Alamos

    SciTech Connect

    Lindemuth, I.R.; Reinovsky, R.E.; Goforth, J.H.

    1989-01-01

    A ''first-principles'' computational model of exploding metallic foil behavior has been developed at Los Alamos. The model couples zero-dimensional magnetohydrodynamics with ohmic heating and electrical circuit equations and uses the Los Alamos SESAME atomic data base computer library to determine the foil material's temperature- and density-dependent pressure, specific energy, and electrical conductivity. The model encompasses many previously successful empirical models and offers plausible physical explanations of phenomena not treated by the empirical models. In addition to addressing the electrical circuit performance of an exploding foil, the model provides information on the temporal evolution of the foil material's density, temperature, pressure, electrical conductivity, and expansion and translational velocities. In this paper, we report the physical insight gained by computational studies of two opening switch concepts being developed for application in an FCG-driven 1-MJ-class imploding plasma z-pinch experiment. The first concept considered is a ''conventional'' electrically exploded fuse, which has been demonstrated to operate at 16 MA driven by the 15-MJ-class FCG to be used in the 1 MJ implosion experiment. The second concept considered is a Type 2 explosively formed fuse (EFF), which has been demonstrated to operate at the 8 MA level by a 1-MJ-class FCG.

  10. Exploding metallic foil fuse modeling at Los Alamos

    NASA Astrophysics Data System (ADS)

    Lindemuth, Irvin R.; Reinovsky, Robert E.; Goforth, James H.

    A first-principles computational model of exploding metallic foil behavior was developed at Los Alamos. The model couples zero-dimensional magnetohydrodynamics with ohmic heating and electrical circuit equations and uses the Los Alamos SESAME atomic data base computer library to determine the foil material's temperature- and density-dependent pressure, specific energy, and electrical conductivity. The model encompasses many previously successful empirical models and offers plausible physical explanations of phenomena not treated by the empirical models. In addition to addressing the electrical circuit performance of an exploding foil, the model provides information on the temporal evolution of the foil material's density, temperature, pressure, electrical conductivity, and expansion and translational velocities. The physical insight gained by computational studies of two opening switch concepts being developed for application in an FCG-driven 1-MJ-class imploding plasma z-pinch experiment are reported. The first concept considered is a conventional electrically exploded fuse, which was demonstrated to operate at 16 MA driven by the 15-MJ-class FCG to be used in the 1 MJ implosion experiment. The second concept considered is a Type 2 explosively formed fuse (EFF), which was demonstrated to operate at the 8 MA level by a 1-MJ-class FCG.

  11. Plastic foils as primary hydrogen standards for nuclear reaction analysis

    NASA Astrophysics Data System (ADS)

    Rudolph, W.; Bauer, C.; Brankoff, K.; Grambole, D.; Grötzschel, R.; Heiser, C.; Herrmann, F.

    1986-04-01

    Plastic materials like polypropylene, polyester (Mylar) and polycarbonate (Lexan or Makrofol E) contain large amounts of hydrogen and their compositions are well known. However, these materials are not stable during ion bombardment. Using the 1H( 15N,αγ) 12C and 1H( 19F, αγ) 16O nuclear resonance reaction at energies EN = 6.50 MeV and EF = 6.83 MeV, respectively, we have investigated the behaviour of plastic foils during 15N and 19F ion bombardment. By means of a rotating sample holder low current densities of 1-2 {nA}/{cm 2} and large irradiated foil areas of up to 10 cm 2 were realized. Under these measuring conditions the γ-ray yields change only slightly and the initial yields, which correspond to the known compositions of the foils, can be determined with good accuracy. In this way the plastic foils can be used as primary standards for hydrogen content calibration. The method was employed to calibrate an a-Si(H) reference target.

  12. Secret in the Margins: Rutherford's Gold Foil Experiment

    ERIC Educational Resources Information Center

    Aydin, Sevgi; Hanuscin, Deborah L.

    2011-01-01

    In this article, the authors describe a lesson that uses the 5E Learning Cycle to help students not only understand the atomic model but also how Ernest Rutherford helped develop it. The lesson uses Rutherford's gold foil experiment to focus on three aspects of the nature of science: the empirical nature of science, the tentativeness of scientific…

  13. Laser-induced structure formation on stretched polymer foils

    SciTech Connect

    Bityurin, Nikita; Arnold, Nikita; Baeuerle, Dieter; Arenholz, Enno

    2007-04-15

    Noncoherent structures that develop during UV laser ablation of stretched semicrystalline polymer foils are a very general phenomenon. A thermodynamic model based on stress relaxation within the modified layer of the polymer surface describes the main features of the observed phenomena, and, in particular, the dependence of the period of structures on laser wavelength, fluence, and number of laser pulses.

  14. 21 CFR 189.301 - Tin-coated lead foil capsules for wine bottles.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tin-coated lead foil capsules for wine bottles... Addition to Human Food Through Food-Contact Surfaces § 189.301 Tin-coated lead foil capsules for wine bottles. (a) Tin-coated lead foil is composed of a lead foil coated on one or both sides with a thin...

  15. Improvements in Fabrication of Elastic Scattering Foils Used to Measure Neutron Yield by the Magnetic Recoil Spectrometer

    DOE PAGES

    Reynolds, H. G.; Schoff, M. E.; Farrell, M. P.; Gatu Johnson, M.; Bionta, R. M.; Frenje, J. A.

    2016-08-01

    The magnetic recoil spectrometer uses a deuterated polyethylene polymer (CD2) foil to measure neutron yield in inertial confinement fusion experiments. Higher neutron yields in recent experiments have resulted in primary signal saturation in the detector CR-39 foils, necessitating the fabrication of thinner CD2 foils than established methods could provide. A novel method of fabricating deuterated polymer foils is described. The resulting foils are thinner, smoother, and more uniform in thickness than the foils produced by previous methods. Here, these new foils have successfully been deployed at the National Ignition Facility, enabling higher neutron yield measurements than previous foils, with nomore » primary signal saturation.« less

  16. Ink-jet printed colorimetric gas sensors on plastic foil

    NASA Astrophysics Data System (ADS)

    Courbat, Jerome; Briand, Danick; de Rooij, Nico F.

    2010-08-01

    An all polymeric colorimetric gas sensor with its associated electronics for ammonia (NH3) detection targeting low-cost and low-power applications is presented. The gas sensitive layer was inkjet printed on a plastic foil. The use of the foil directly as optical waveguide simplified the fabrication, made the device more cost effective and compatible with large scale fabrication techniques, such as roll to roll processes. Concentrations of 500 ppb of NH3 in nitrogen with 50% of RH were measured with a power consumption of about 868 μW in an optical pulsed mode of operation. Such sensors foresee applications in the field of wireless systems, for environmental and safety monitoring. The fabrication of the planar sensor was based on low temperature processing. The waveguide was made of PEN or PET foil and covered with an ammonia sensitive layer deposited by inkjet printing, which offered a proper and localized deposition of the film. The influence of the substrate temperature and its surface pretreatment were investigated to achieve the optimum deposition parameters for the printed fluid. To improve the light coupling from the light source (LED) to the detectors (photodiodes), polymeric micro-mirrors were patterned in an epoxy resin. With the printing of the colorimetric film and additive patterning of polymeric micro-mirrors on plastic foil, a major step was achieved towards the implementation of full plastic selective gas sensors. The combination with printed OLED and PPD would further lead to an integrated all polymeric optical transducer on plastic foil fully compatible with printed electronics processes.

  17. Terahertz radiation generation by nonlinear mixing of two laser beams over a thin foil

    SciTech Connect

    Chauhan, Santosh; Parashar, J.

    2015-07-31

    Terahertz radiation generation via nonlinear mixing of two laser beams incident over a thin metal foil is explored. The lasers exert a ponderomotive force on the electrons of metal foil at beat frequency which lies in the terahertz range. The metal foil acts as antenna, producing terahertz radiations, highly directional in nature.

  18. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  19. Magnetic bearings for a high-performance optical disk buffer

    NASA Technical Reports Server (NTRS)

    Hockney, Richard; Hawkey, Timothy

    1993-01-01

    An optical disk buffer concept can provide gigabit-per-second data rates and terabit capacity through the use of arrays of solid state lasers applied to a stack of erasable/reusable optical disks. The RCA optical disk buffer has evoked interest by NASA for space applications. The porous graphite air bearings in the rotary spindle as well as those used in the linear translation of the read/write head would be replaced by magnetic bearings or mechanical (ball or roller) bearings. Based upon past experience, roller or ball bearings for the translation stages are not feasible. Unsatisfactory, although limited experience exists with ball bearing spindles also. Magnetic bearings, however, appear ideally suited for both applications. The use of magnetic bearings is advantageous in the optical disk buffer because of the absence of physical contact between the rotating and stationary members. This frictionless operation leads to extended life and reduced drag. The manufacturing tolerances that are required to fabricate magnetic bearings would also be relaxed from those required for precision ball and gas bearings. Since magnetic bearings require no lubricant, they are inherently compatible with a space (vacuum) environment. Magnetic bearings also allow the dynamics of the rotor/bearing system to be altered through the use of active control. This provides the potential for reduced vibration, extended regions of stable operation, and more precise control of position.

  20. Ceramic bearings. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-05-01

    The bibliography contains citations concerning the design, fabrication, and evaluation of ceramic bearings. Citations discuss roller, ball, fuel-lubricated, and dry-lubricated bearings. Applications in machinery, automobiles, rails, and air transport are examined. References to surface hardness, wear, and fatigue tests are presented. (Contains a minimum of 125 citations and includes a subject term index and title list.)

  1. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  2. Comparison of predicted and experimental thermal performance of angular-contact ball bearings

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1984-01-01

    Predicted bearing heat generation and bearing temperature were verified by experimental data for ball bearings over a range of sizes, shaft speeds, and lubricant flow rates. The computer program Shaberth requires, as input, a factor which describes the air-oil mixture in the bearing cavity for calculation of the ball drag contribution to bearing heat generation. An equation for this lubricant percent volume in the bearing cavity was derived and appears to be valid over the range of test conditions including bearing bore sizes from 35 to 167 mm and shaft speeds from 1.0 to 3.0 million DN.

  3. Bearing strength of lunar soil.

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1971-01-01

    Bearing load vs penetration curves have been measured on a 1.3 g sample of lunar soil from the scoop of the Surveyor 3 soil mechanics surface sampler, using a circular indentor 2 mm in diameter. Measurements were made in an Earth laboratory, in air. This sample provided a unique opportunity to evaluate earlier, remotely controlled, in-situ measurements of lunar surface bearing properties. Bearing capacity, measured at a penetration equal to the indentor diameter, varied from 0.02-0.04 N/sq cm at bulk densities of 1.15 g/cu cm to 30-100 N/sq cm at 1.9 g/cu cm. Deformation was by compression directly below the indentor at bulk densities below 1.61 g/cu cm, by outward displacement at bulk densities over 1.62 g/cu cm. Preliminary comparison of in-situ remote measurements with those on returned material indicates good agreement if the lunar regolith at Surveyor 3 has a bulk density of 1.6 g/cu cm at 2.5 cm depth.

  4. Bear Spray Safety Program

    USGS Publications Warehouse

    Blome, C.D.; Kuzniar, R.L.

    2009-01-01

    A bear spray safety program for the U.S. Geological Survey (USGS) was officially initiated by the Firearms Safety Committee to address accident prevention and to promote personnel training in bear spray and its transportation, storage, and use for defense against wild animals. Used as part of a system including firearms, or used alone for those who choose not to carry a firearm, bear spray is recognized as an effective tool that can prevent injury in a wild animal attack.

  5. Linear magnetic bearing

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1983-01-01

    A linear magnetic bearing system having electromagnetic vernier flux paths in shunt relation with permanent magnets, so that the vernier flux does not traverse the permanent magnet, is described. Novelty is believed to reside in providing a linear magnetic bearing having electromagnetic flux paths that bypass high reluctance permanent magnets. Particular novelty is believed to reside in providing a linear magnetic bearing with a pair of axially spaced elements having electromagnets for establishing vernier x and y axis control. The magnetic bearing system has possible use in connection with a long life reciprocating cryogenic refrigerator that may be used on the space shuttle.

  6. Bearing restoration by grinding

    NASA Technical Reports Server (NTRS)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  7. Measurements of laser generated soft X-ray emission from irradiated gold foils

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Frank, Y.; Raicher, E.; Fraenkel, M.; Keiter, P. A.; Klein, S. R.; Drake, R. P.; Shvarts, D.

    2016-11-01

    Soft x-ray emission from laser irradiated gold foils was measured at the Omega-60 laser system using the Dante photodiode array. The foils were heated with 2 kJ, 6 ns laser pulses and foil thicknesses were varied between 0.5, 1.0, and 2.0 μm. Initial Dante analysis indicates peak emission temperatures of roughly 100 eV and 80 eV for the 0.5 μm and 1.0 μm thick foils, respectively, with little measurable emission from the 2.0 μm foils.

  8. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, J.C.; Benson, D.K.; Tracy, C.E.

    1996-03-19

    A method is described for welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads. 7 figs.

  9. Simultaneous laser cutting and welding of metal foil to edge of a plate

    DOEpatents

    Pernicka, John C.; Benson, David K.; Tracy, C. Edwin

    1996-01-01

    A method of welding an ultra-thin foil to the edge of a thicker sheet to form a vacuum insulation panel comprising the steps of providing an ultra-thin foil having a thickness less than 0.002, providing a top plate having an edge and a bottom plate having an edge, clamping the foil to the edge of the plate wherein the clamps act as heat sinks to distribute heat through the foil, providing a laser, moving the laser relative to the foil and the plate edges to form overlapping weld beads to weld the foil to the plate edges while simultaneously cutting the foil along the weld line formed by the overlapping beads.

  10. Temperature Measurements at Material Interfaces with Thin-Foil Gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike J.; Chapman, David J.; Proud, William G.

    2009-12-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  11. Temperature measurements at material interfaces with thin-foil gauges

    NASA Astrophysics Data System (ADS)

    Morley, Mike; Chapman, David; Proud, William

    2009-06-01

    Measurements of shock heating are important in determining Equations of State that incorporate entropic effects. The use of thin-foil nickel gauges to measure shock heating in material was proposed by Rosenberg et al. in the 1980s. This research investigates the use of such commercial thin-foil gauges at interfaces between materials of different thermal and shock properties. The technique requires analysis of the resistance changes of the gauge which is a function of both temperature and stress. The response of manganin gauges to shock loading is well understood, and was used to calibrate for the piezoresistive effect in nickel. Results are presented for a variety of well-characterised materials and the applicability of the proposed method discussed.

  12. Reduction of Viologen Bisphosphonate Dihalide with Aluminum Foil

    NASA Astrophysics Data System (ADS)

    Abeta Iyere, Peter

    1996-05-01

    An elegant undergraduate experiment similar to the popular "Iodine Clock Reaction" employs the reduction of methyl viologen by hydroxide ion. A major problem with the hydroxide reduction demonstration is that the mechanism is complicated by the existence of competing reaction pathways. It has been suggested that layered metal viologen phosphonates could be used in the design and construction of molecular materials. The active unit in the reversible photocoloration of these layered materials is the viologen bisphosphonate dihalide (VPX). During our study of these phoshponate systems, we discovered the reduction of viologen bisphosphonate dihalide by aluminum foil, mossy zinc, or magnesium turnings in dilute aqueous hydrofluoric acid solution. When we demonstrated this phenomenon with aluminum foil and VPBr in the classroom, the response of our students was enthusiastic. This demonstration can be used as prelaboratory discussion for an undergraduate kinetic experiment based on the same phenomenon.

  13. CHARACTERIZATION OF MONOLITHIC FUEL FOIL PROPERTIES AND BOND STRENGTH

    SciTech Connect

    D E Burkes; D D Keiser; D M Wachs; J S Larson; M D Chapple

    2007-03-01

    Understanding fuel foil mechanical properties, and fuel / cladding bond quality and strength in monolithic plates is an important area of investigation and quantification. Specifically, what constitutes an acceptable monolithic fuel – cladding bond, how are the properties of the bond measured and determined, and what is the impact of fabrication process or change in parameters on the level of bonding? Currently, non-bond areas are quantified employing ultrasonic determinations that are challenging to interpret and understand in terms of irradiation impact. Thus, determining mechanical properties of the fuel foil and what constitutes fuel / cladding non-bonds is essential to successful qualification of monolithic fuel plates. Capabilities and tests related to determination of these properties have been implemented at the INL and are discussed, along with preliminary results.

  14. Plasma flow switch and foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. R.; Forman, P. R.; Gribble, R. F.; Ladish, J. S.; Oona, H.; Parker, J. V.; Scudder, D. W.; Shlachter, J. S.

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos AGEX (Above Ground Experiments) program. A goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the kinetic energy of a 1 to 10 MJ plasma implosion. The radiation pulse should have a maximum duration of several 10's of nanoseconds and will be used in the study of fusion conditions and material properties. The radiating plasma source will be generated by the thermalization of the kinetic energy of an imploding cylindrical, thin, metallic foil. This paper addresses experiments done on a capacitor bank to develop a switch (plasma flow switch) to switch the bank current into the load at peak current. This allows efficient coupling of bank energy into foil kinetic energy.

  15. Direct drive foil implosion experiments on Pegasus 2

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. F.; Forman, P. R.; Gribble, R. F.; Hockaday, M. Y. P.; Hockaday, R. G.; Ladish, J. S.; Oona, H.; Parker, J. V.

    Pegasus 2 is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos Above Ground Experiments (AGEX) program. The goal of the program is to produce an intense (greater than 100 TW) source of soft x-rays from the thermalization of the KE of a 1 to 10 MJ collapsing plasma source. The radiation pulse should have a maximum duration of several tens of nanoseconds and will be used in the study of fusion conditions and material properties. This paper addresses z-pinch experiments done on a capacitor bank where the radiating plasma source is formed by an imploding annular aluminum foil driven by the J X B forces generated by the current flowing through the foil.

  16. Direct Drive Foil Implosion Experiments on Pegasus II

    NASA Astrophysics Data System (ADS)

    Cochrane, J. C.; Bartsch, R. R.; Benage, J. F.; Forman, P. R.; Gribble, R. F.; Hockaday, M. Y. P.; Hockaday, R. G.; Ladish, L. S.; Oona, H.; Parker, J. V.; Shlachter, J. S.; Wysocki, F. J.

    1994-03-01

    Pegasus II is the upgraded version of Pegasus, a pulsed power machine used in the Los Alamos Above Ground Experiments (AGEX) program. The goal of the program is to produce an intense (>100 TW) source of soft x-rays from the thermalization of the KE of a 1 to 10 MJ collapsing plasma source. The radiation pulse should have a maximum duration of several tens of nanoseconds and will be used in the study of fusion conditions and material properties. This paper addresses z-pinch experiments done on a capacitor bank where the radiating plasma source is formed by an imploding annular aluminum foil driven by the JxB forces generated by the current flowing through the foil.

  17. Silicon Foils Growth by Interface-controlled Crystallization

    NASA Technical Reports Server (NTRS)

    Helmreich, D.

    1984-01-01

    During interface controlled crystallization (ICC) the chance to accelerate the removal of crystallization heat is the basis for high pulling rates of about 100 mm/min. The forced heat flow from the extended crystallization front to a cooling ramp is controlled by a lubricating melt film which also influences the crystallization behavior by suppressing nucleation centers. The basic principles of this full casting technique are presented and the influences of process parameters on the morphology of prepared silicon foils are demonstrated. Three different types of crystalline structure were found in silicon foils grown to ICC technique: dendritic, coarse granular and monocrystalline with (111) 211 orientation. The criteria for their appearance of process variables are discussed.

  18. Arcturus and the Bears

    NASA Astrophysics Data System (ADS)

    Antonello, E.

    2009-08-01

    Arcturus is the brightest star in Bootes. The ancient Greek name Arktouros means Bear Guard. The star, however, is not close to Ursa Maior (Big She-Bear) and Ursa Minor (Little She-Bear), as the name would suggest. This curious discrepancy could be explained by the star proper motion, assuming the name Bear Guard is a remote cultural heritage. The proper motion analysis could allow us to get an insight also into an ancient myth regarding Ursa Maior. Though we cannot explain scientifically such a myth, some interesting suggestions can be obtained about its possible origin, in the context of the present knowledge of the importance of the cult of the bear both during the Palaeolithic times and for several primitive populations of modern times, as shown by the ethnological studies.

  19. Dynamic response and stability of a flapping foil in a dense and viscous fluid

    NASA Astrophysics Data System (ADS)

    Chae, Eun Jung; Akcabay, Deniz Tolga; Young, Yin Lu

    2013-10-01

    It is important to understand and accurately predict the static and dynamic response and stability of flexible hydro/aero lifting bodies to ensure their structural safety, to facilitate the design/optimization of new/existing concepts, and to test the feasibility of using advanced materials. The present study investigates the influence of solid-to-fluid added mass ratio (sqrt{μ _b}) and viscous effects on the fluid-structure interaction (FSI) response and stability of a flapping foil in incompressible and turbulent flows using a recently presented efficient and stable numerical algorithm in time-domain, which couples an unsteady Reynolds Average Navier-Stokes solver with a two degrees-of freedom structural model. The new numerical coupling method is able to stably and accurately simulate the FSI behavior of light foils in dense fluids: a limit which is known to be numerically difficult to study with classical FSI coupling methods. The studied FSI responses include static/dynamic divergence and flutter instabilities, which are compared with inviscid, linear potential theory predictions obtained with both time and frequency domain formulations, as well as with several published experimental data. In general, the results show that the critical reduced flutter velocities and reduced divergence velocities both decrease as sqrt{μ _b} decreases, and are captured with good accuracy using the viscous FSI solver for a wide range of relative mass ratios that are typical to air/hydrofoils. The comparative analyses showed that the classic frequency-domain linear potential theory is severely unconservative for predicting the flutter velocity for cases with sqrt{μ _b}<3: this includes the typical operating conditions of most marine and biomedical lifting devices, where the fluid forces are comparable to the solid forces, and strong nonlinear interactions may develop. In addition, the viscous FSI solver is shown to correctly predict the experimentally reported critical

  20. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  1. Comparison of EXAFS Foil Spectra from Around the World

    SciTech Connect

    Kelly, S. D.; Bare, S. R.; Greenlay, N.; Azevedo, G.; Balasubramanian, M.; Barton, D.; Chattopadhyay, S.; Fakra, S.; Johannessen, B.; Newville, M.; Pena, J.; Pokrovski, G. S; Proux, O.; Priolkar, K.; Ravel, B.; Webb, S. M.

    2010-07-16

    The EXAFS spectra of Cu and Pd foil from many different beamlines and synchrotrons are compared to address the dependence of the amplitude reduction factor (S{sub 0}{sup 2}) on beamline specific parameters. Even though S{sub 0}{sup 2} is the same parameter as the EXAFS coordination number, the value for S{sub 0}{sup 2} is given little attention, and is often unreported. The S{sub 0}{sup 2} often differs for the same material due to beamline and sample attributes, such that no importance is given to S{sub 0}{sup 2}-values within a general range of 0.7 to 1.1. EXAFS beamlines have evolved such that it should now be feasible to use standard S{sub 0}{sup 2} values for all EXAFS measurements of a specific elemental environment. This would allow for the determination of the imaginary energy (Ei) to account for broadening of the EXAFS signal rather than folding these errors into an effective S{sub 0}{sup 2}-value. To test this concept, we model 11 Cu-foil and 6 Pd-foil EXAFS spectra from around the world to compare the difference in S{sub 0}{sup 2}- and Ei-values.

  2. Structure and mechanical properties of foils made of nanocrystalline beryllium

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Semenov, A. A.; Zabrodin, A. V.; Khmelenin, D. N.; Brylev, D. A.; Lizunov, A. V.; Nebera, A. L.; Morozov, I. A.; Anikin, A. S.; Orekhov, A. S.; Kuskova, A. N.; Mishin, V. V.; Seryogin, A. V.

    2016-07-01

    The phase composition and structural features of (45-90)-μm-thick foils obtained from nanocrystalline beryllium during multistep thermomechanical treatment have been established using electron microscopy, electron diffraction, electron backscattering diffraction, and energy-dispersive analysis. This treatment is shown to lead to the formation of a structure with micrometer- and submicrometer-sized grains. The minimum average size of beryllium grains is 352 nm. The inclusions of beryllium oxide (BeO) of different modifications with tetragonal (sp. gr. P42/ mnm) and hexagonal (sp. gr. P63/ mmc) lattices are partly ground during deformation to a size smaller than 100 nm and are located along beryllium grain boundaries in their volume, significantly hindering migration during treatment. The revealed structural features of foils with submicrometer-sized crystallites provide the thermal stability of their structural state. Beryllium with this structure is a promising material for X-ray instrument engineering and for the production of ultrathin (less than 10 μm) vacuum-dense foils with very high physicomechanical characteristics.

  3. Material Parameters for Creep Rupture of Austenitic Stainless Steel Foils

    NASA Astrophysics Data System (ADS)

    Osman, H.; Borhana, A.; Tamin, M. N.

    2014-08-01

    Creep rupture properties of austenitic stainless steel foil, 347SS, used in compact recuperators have been evaluated at 700 °C in the stress range of 54-221 MPa to establish the baseline behavior for its extended use. Creep curves of the foil show that the primary creep stage is brief and creep life is dominated by tertiary creep deformation with rupture lives in the range of 10-2000 h. Results are compared with properties of bulk specimens tested at 98 and 162 MPa. Thin foil 347SS specimens were found to have higher creep rates and higher rupture ductility than their bulk specimen counterparts. Power law relationship was obtained between the minimum creep rate and the applied stress with stress exponent value, n = 5.7. The value of the stress exponent is indicative of the rate-controlling deformation mechanism associated with dislocation creep. Nucleation of voids mainly occurred at second-phase particles (chromium-rich M23C6 carbides) that are present in the metal matrix by decohesion of the particle-matrix interface. The improvement in strength is attributed to the precipitation of fine niobium carbides in the matrix that act as obstacles to the movement of dislocations.

  4. Aluminium contents in baked meats wrapped in aluminium foil.

    PubMed

    Turhan, Sadettin

    2006-12-01

    In this investigation, the effect of cooking treatments (60min at 150°C, 40min at 200°C, and 20min at 250°C) on aluminium contents of meats (beef, water buffalo, mutton, chicken and turkey) baked in aluminium foil were evaluated. Cooking increased the aluminium concentration of both the white and red meats. The increase was 89-378% in red meats and 76-215% in poultry. The least increase (76-115%) was observed in the samples baked for 60min at 150°C, while the highest increase (153-378%) was in samples baked for 20min at 250°C. It was determined that the fat content of meat in addition to the cooking process affected the migration of aluminium (r(2)=0.83; P<0.01). It was also found that raw chicken and turkey breast meat contained higher amounts of aluminium than the raw chicken and turkey leg meat, respectively. Regarding the suggested provisional tolerable daily intake of 1mg Al/kg body weight per day of the FAO/WHO Expert Committee on Food Additives, there are no evident risks to the health of the consumer from using aluminium foil to cook meats. However, eating meals prepared in aluminium foil may carry a risk to the health by adding to other aluminium sources.

  5. Permeability of stylolite-bearing chalk

    SciTech Connect

    Lind, I.; Nykjaer, O.; Priisholm, S. ); Springer, N.

    1994-11-01

    Permeabilities were measured on core plugs from stylolite-bearing chalk of the Gorm field in the Danish North Sea. Air and liquid permeabilities were measured in directions parallel to and perpendicular to the stylolite surface. Permeability was measured with sleeve pressure equal to in-situ reservoir stress. Permeabilities of plugs with stylolites but without stylolite-associated fractures were equal in the two directions. The permeability is equal to the matrix permeability of non-stylolite-bearing chalk. In contrast, when fractures were associated with the stylolites, permeability was enhanced. The enhancement was most significant in the horizontal direction parallel to the stylolites.

  6. Design and performance of compliant thrust bearing with spiral-groove membranes on resilient supports

    NASA Technical Reports Server (NTRS)

    Licht, L.; Anderson, W. J.; Doroff, S. W.

    1980-01-01

    Novel thrust bearings with spiral-groove flexible membranes mounted on resilient supports were designed and their performance demonstrated. Advantages of surface compliance were combined with the superior load-capacity of the spiral-groove geometry. Loads of 127-150N were supported on an area 42 sq cm, at speeds of 43,000-45,000 rpm and mean clearances of 15-20 microns. Support-worthiness was proved when tested in conjunction with foil journal-bearings and a 19N rotor, excited in a pitching mode by a total unbalance of 43 micron-N.

  7. Cooling system for a bearing of a turbine rotor

    DOEpatents

    Schmidt, Mark Christopher

    2002-01-01

    In a gas turbine, a bore tube assembly radially inwardly of an aft bearing conveys cooling steam to the buckets of the turbine and returns the cooling steam to a return. To cool the bearing and thermally insulate the bearing from the cooling steam paths, a radiation shield is spaced from the bore tube assembly by a dead air gap. Additionally, an air passageway is provided between the radiation shield and the inner surface of an aft shaft forming part of the rotor. Air is supplied from an inlet for flow along the passage and radially outwardly through bores in the aft shaft disk to cool the bearing and insulate it from transfer of heat from the cooling steam.

  8. Good bearings reduce downtime

    SciTech Connect

    Kinney, J.; Foster, J.

    1982-12-01

    Points out that a poorly maintained $100 bearing can hold up the operation of a $1-million conveyor. Of all the moving parts in a coal conveyor system, few cost less or last longer than anti-friction bearings. Most modern conveyor systems are equipped with 2 types of bearings: troughing idlers, spaced at regular intervals to support the conveyor belt as it travels throughout the system, and the adaptermounted spherical roller bearing pillow blocks that are used in the head, tail, bend and takeup pulleys that drive, alter the direction of, or regulate tension in the belt to allow for repairs or splicing. Explains how pillow blocks should handle radial or axial loads, how to mount bearings correctly, and how rings prevent infiltration. Concludes that by making certain that the proper bearing types are built into the system initially, or used as replacements in case of failures, paying close attention to installation procedures and devoting adequate time to maintenance, conveyor system bearings can provide decades of problem-free service.

  9. Vibration Transmission through Bearings with Application to Gearboxes

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2007-01-01

    Cabin noise has become a major concern to manufacturers and users of helicopters. Gear noise is the largest part of this unwanted sound. The crucial noise path is generally considered to be from the gears through the gear-supporting shafts and bearings into the gearbox case, and from there either through the gearbox mounts or the surrounding air to the helicopter cabin. If the noise, that is, the gear and shaft vibration, can be prevented from traveling through the gearbox bearings, then the noise cannot make its way into the helicopter cabin. Thus the vibration-transmitting properties of bearings are of paramount importance. This paper surveys the literature concerning evaluation of properties for the types of bearings used in helicopter gearboxes. A simple model is proposed to evaluate vibration transmission, using measured or calculated bearing stiffness and damping. Less-commonly used types of gearbox bearings (e.g., fluid film) are evaluated for their potential in reducing vibration transmission.

  10. Microstructure and Mechanical Properties of AA1235 Aluminum Foil Stocks Produced Directly from Electrolytic Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yu, Kun; Wen, Li; Yao, Sujuan; Dai, Yilong; Wang, Zhifeng

    2016-02-01

    A new process is developed to obtain high-quality AA1235 aluminum foil stocks and to replace the traditional manufacture process. During the new manufacture process, AA1235 aluminum sheets are twin-roll casted directly through electrolytic aluminum melt (EAM), and subsequently the sheets are processed into aluminum foil stocks by cold rolling and annealing. Microstructure and mechanical properties of the AA1235 aluminum sheets produced through such new process are investigated in each state by optimal microscope, scanning electron microscopy, X-ray diffraction, orientation imaging microscopy, transmission electron microscopy, etc. The results show that compared with the traditional AA1235 aluminum foil stocks produced through re-melted aluminum melt (RAM), the amount of impurities is decreased in the EAM aluminum foil stocks. The EAM aluminum foil stock obtains less β-FeSiAl5 phases, but more α-Fe2SiAl8 phases. The elongation of EAM aluminum foil stocks is improved significantly owing to more cubic orientation. Especially, the elongation value of the EAM aluminum foil stocks is approximately 25 pct higher than that of the RAM aluminum foil stocks. As a result, the EAM aluminum foil stocks are at an advantage in increasing the processing performance for the aluminum foils during subsequent processes.

  11. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  12. Magnetic bearing update

    SciTech Connect

    Fowler, T.K.

    1995-05-25

    Stabilization of whirl instability by floppy, viscous bearing mounts is discussed and required material properties are estimated for the new tilt-whirl mode in eddy-current stabilized magnetic bearings. A relatively low Young`s modules Y {approximately} 10{sup 5} and high viscosity {zeta} {approximately} 10{sup 7} are required (both in MKS units), suggesting the need for careful mounting design. New information on periodic bearings shows that, thus far, Earshaw`s Theorem cannot be defeated by periodicity, despite the author`s earlier claims.

  13. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis

    1994-01-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  14. Thermohydrodynamic analysis of cryogenic liquid turbulent flow fluid film bearings, phase 2

    NASA Astrophysics Data System (ADS)

    Sanandres, Luis

    1994-12-01

    The Phase 2 (1994) Annual Progress Report presents two major report sections describing the thermal analysis of tilting- and flexure-pad hybrid bearings, and the unsteady flow and transient response of a point mass rotor supported on fluid film bearings. A literature review on the subject of two-phase flow in fluid film bearings and part of the proposed work for 1995 are also included. The programs delivered at the end of 1994 are named hydroflext and hydrotran. Both codes are fully compatible with the hydrosealt (1993) program. The new programs retain the same calculating options of hydrosealt plus the added bearing geometries, and unsteady flow and transient forced response. Refer to the hydroflext & hydrotran User's Manual and Tutorial for basic information on the analysis and instructions to run the programs. The Examples Handbook contains the test bearing cases along with comparisons with experimental data or published analytical values. The following major tasks were completed in 1994 (Phase 2): (1) extension of the thermohydrodynamic analysis and development of computer program hydroflext to model various bearing geometries, namely, tilting-pad hydrodynamic journal bearings, flexure-pad cylindrical bearings (hydrostatic and hydrodynamic), and cylindrical pad bearings with a simple elastic matrix (ideal foil bearings); (2) improved thermal model including radial heat transfer through the bearing stator; (3) calculation of the unsteady bulk-flow field in fluid film bearings and the transient response of a point mass rotor supported on bearings; and (4) a literature review on the subject of two-phase flows and homogeneous-mixture flows in thin-film geometries.

  15. Arkansas black bear hunter survey

    USGS Publications Warehouse

    Pharris, Larry D.; Clark, Joseph D.

    1987-01-01

    Questionnaires were mailed to black bear (Ursus americanus) hunters in Arkansas following the 1980-84 bear seasons to determine participation, hunter success, and number of bears observed by hunters. Man-days of hunting to harvest a bear ranged from 148 to 671 and hunter success ranged from 0.4% to 2.2%. With the exception of 1980, number of permits issued, man-days of bear hunting, and bears harvested appear affected by hunting permit cost. 

  16. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, Timothy W.; Lograsso, Thomas A.; Eshelman, Mark A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate.

  17. Process for depositing Cr-bearing layer

    DOEpatents

    Ellis, T.W.; Lograsso, T.A.; Eshelman, M.A.

    1995-05-09

    A method of applying a Cr-bearing layer to a substrate, comprises introducing an organometallic compound, in vapor or solid powder form entrained in a carrier gas to a plasma of an inductively coupled plasma torch or device to thermally decompose the organometallic compound and contacting the plasma and the substrate to be coated so as to deposit the Cr-bearing layer on the substrate. A metallic Cr, Cr alloy or Cr compound such as chromium oxide, nitride and carbide can be provided on the substrate. Typically, the organometallic compound is introduced to an inductively coupled plasma torch that is disposed in ambient air so to thermally decompose the organometallic compound in the plasma. The plasma is directed at the substrate to deposit the Cr-bearing layer or coating on the substrate. 7 figs.

  18. Deformable bearing seat

    NASA Technical Reports Server (NTRS)

    Moreman, O. S., III (Inventor)

    1977-01-01

    A deformable bearing seat is described for seating a bearing assembly in a housing. The seat includes a seating surface in the housing having a first predetermined spheroidal contour when the housing is in an undeformed mode. The seating surface is deformable to a second predetermined spherically contoured surface when the housing is in a deformed mode. The seat is particularly adaptable for application to a rotating blade and mounting ring assembly in a gas turbine engine.

  19. Gear bearing drive

    NASA Technical Reports Server (NTRS)

    Weinberg, Brian (Inventor); Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  20. High speed hybrid bearing comprising a fluid bearing and a rolling bearing convected in series

    NASA Technical Reports Server (NTRS)

    Anderson, W. J. (Inventor)

    1973-01-01

    A description is given of an antifriction bearing and a process by which its fatigue life may be extended. The method involves a rotating shaft supported by a fluid bearing and a rolling element bearing coupled in series. Each bearing turns at a fraction of the rotational speed of the shaft. The fluid bearing is preferably conical, thereby providing thrust and radial load support in a single bearing structure.

  1. Load responsive hydrodynamic bearing

    DOEpatents

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  2. Beam Loss due to Foil Scattering in the SNS Accumulator Ring

    SciTech Connect

    Holmes, Jeffrey A; Plum, Michael A

    2012-01-01

    In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

  3. Pu-ZR Alloy high-temperature activation-measurement foil

    DOEpatents

    McCuaig, Franklin D.

    1977-08-02

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron flux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  4. Pu-Zr alloy for high-temperature foil-type fuel

    DOEpatents

    McCuaig, Franklin D.

    1977-01-01

    A nuclear reactor fuel alloy consists essentially of from slightly greater than 7 to about 4 w/o zirconium, balance plutonium, and is characterized in that the alloy is castable and is rollable to thin foils. A preferred embodiment of about 7 w/o zirconium, balance plutonium, has a melting point substantially above the melting point of plutonium, is rollable to foils as thin as 0.0005 inch thick, and is compatible with cladding material when repeatedly cycled to temperatures above 650.degree. C. Neutron reflux densities across a reactor core can be determined with a high-temperature activation-measurement foil which consists of a fuel alloy foil core sandwiched and sealed between two cladding material jackets, the fuel alloy foil core being a 7 w/o zirconium, plutonium foil which is from 0.005 to 0.0005 inch thick.

  5. Efficient laser-proton acceleration from an insulating foil with an attached small metal disk

    SciTech Connect

    Otani, Kazuto; Tokita, Shigeki; Nishoji, Toshihiko; Inoue, Shunsuke; Hashida, Masaki; Sakabe, Shuji

    2011-10-17

    Efficient proton acceleration by the interaction of an intense femtosecond laser pulse with a solid foil has been demonstrated. An aluminum coating (thickness: 0.2 {mu}m) on a polyethylene (PE) foil was irradiated at 2 x 10{sup 18} W/cm{sup 2} intensity. The protons from the aluminum-disk (diameter: 150 {mu}m to 15 mm) foil were accelerated to much higher energy in comparison with conventional targets such as PE and aluminum-coated PE foils. The fast electron signal along the foil surface was significantly higher from the aluminum-coated PE foil. The laser-proton acceleration appeared to be affected to the size of surrounding conductive material.

  6. Direct observation of spin-like reaction fronts in planar energetic multilayer foils.

    SciTech Connect

    Adams, David Price; Hodges, V. Carter; Jones, Eric D., Jr.; McDonald, Joel Patrick

    2008-10-01

    Propagating reactions in initially planar cobalt/aluminum exothermic multilayer foils have been investigated using high-speed digital photography. Real-time observations of reactions indicate that unsteady (spinlike) reaction propagation leads to the formation of highly periodic surface morphologies with length scales ranging from 1 {micro}m to 1 mm. The characteristics of propagating spinlike reactions and corresponding reacted foil morphologies depend on the bilayer thickness of multilayer foils.

  7. Beam-foil-gas spectroscopy - A technique for studying steady-state non-equilibrium processes.

    NASA Technical Reports Server (NTRS)

    Bickel, W. S.; Veje, E.; Carriveau, G.; Anderson, N.

    1971-01-01

    When a thin foil is inserted in the beam of a beam-gas experiment, the beam particle state populations are driven far from their beam-gas equilibrium values. Downstream from the foil, the 'new beam' and gas species interact to produce a new equilibrium, usually different from the beam-gas equilibrium. Experimental results are presented to demonstrate this effect and to show how relative cross-section measurements can be used to study the beam-foil interaction.

  8. Short-pulse high intensity laser thin foil interaction

    NASA Astrophysics Data System (ADS)

    Audebert, Patrick

    2003-10-01

    The technology of ultrashort pulse laser generation has progressed to the point that optical pulses larger than 10 J, 300 fs duration or shorter are routinely produced. Such pulses can be focused to intensities exceeding 10^18 W/cm^2. With high contrast pulses, these focused intensities can be used to heat solid matter to high temperatures with minimal hydrodynamic expansion, producing an extremely high energy-density state of matter for a short period of time. This high density, high temperature plasma can be studied by x-ray spectroscopy. We have performed experiments on thin foils of different elements under well controlled conditions at the 100 Terawatt laser at LULI to study the characteristics X-ray emission of laser heated solids. To suppress the ASE effect, the laser was frequency doubled. S-polarized light with a peak intensity of 10^19W/cm^2 was used to minimize resonance absorption. To decrease the effect of longitudinal temperature gradients very thin (800 μ) aluminum foil targets were used. We have also studied the effect of radial gradient by limiting the measured x-ray emission zone using 50μ or 100μ pinhole on target. The spectra, in the range 7-8Å, were recorded using a conical crystal spectrometer coupled to a 800 fs resolution streak camera. A Fourier Domain Interferometry (FDI) of the back of the foil was also performed providing a measurement of the hydrodynamic expansion as function of time for each shot. To simulate the experiment, we used the 1D hydrodynamic code FILM with a given set of plasma parameter (ρ, Te) as initial conditions. The X-ray emission was calculated by post processing hydrodynamic results with a collisional-radiative model which uses super-configuration average atomic data. The simulation reproduces the main features of the experimental time resolved spectrum.

  9. Analysis of cartilage-polydioxanone foil composite grafts.

    PubMed

    Kim, James H; Wong, Brian

    2013-12-01

    This study presents an analytical investigation into the mechanical behavior of a cartilage-polydioxanone (PDS) plate composite grafts. Numerical methods are used to provide a first-order, numerical model of the flexural stiffness of a cartilage-PDS graft. Flexural stiffness is a measure of resistance to bending and is inversely related to the amount of deformation a structure may experience when subjected to bending forces. The cartilage-PDS graft was modeled as a single composite beam. Using Bernoulli-Euler beam theory, a closed form equation for the theoretical flexural stiffness of the composite graft was developed. A parametric analysis was performed to see how the flexural properties of the composite model changed with varying thicknesses of PDS foil. The stiffness of the cartilage-PDS composite using 0.15-mm-thick PDS was four times higher than cartilage alone. The composite with a 0.5-mm-thick PDS graft was only 1.7 times stiffer than the composite with the 0.15-mm-thick PDS graft. Although a thicker graft material will yield higher flexural stiffness for the composite, the relationship between composite stiffness and PDS thickness is nonlinear. After a critical point, increments in graft thickness produce gradually smaller improvements in flexural stiffness. The small increase in stiffness when using the thicker PDS foils versus the 0.15 mm PDS foil may not be worth the potential complications (prolonged foreign body reaction, reduction in nutrient diffusion to cartilage) of using thicker artificial grafts. PMID:24327249

  10. Recycling of aluminum foil from post-consumer beverage cartons

    SciTech Connect

    Charlier, P.; Sjoeberg, G.

    1995-12-31

    Recycling of aluminium contained in used aseptic beverage cartons is a difficult task which has nevertheless to be tackled by modern societies. Techniques have earlier been developed by the paper and pulp industry for the recycling of the board fibers from collected post-consumer beverage cartons. A joint technical feasibility study by Graenges and a leading beverage carton producer has dealt with different techniques for handling residues from repulsing facilities. The aluminium obtained can be used as raw material for the production of thin gauge foil, thus closing the recycling loop.

  11. Foil system fatigue load environments for commercial hydrofoil operation

    NASA Technical Reports Server (NTRS)

    Graves, D. L.

    1979-01-01

    The hydrofoil fatigue loads environment in the open sea is examined. The random nature of wave orbital velocities, periods and heights plus boat heading, speed and control system design are considered in the assessment of structural fatigue requirements. Major nonlinear load events such as hull slamming and foil unwetting are included in the fatigue environment. Full scale rough water load tests, field experience plus analytical loads work on the model 929 Jetfoil commercial hydrofoil are discussed. The problem of developing an overall sea environment for design is defined. State of the art analytical approaches are examined.

  12. Promising HE for explosive welding of thin metallic foils

    NASA Astrophysics Data System (ADS)

    Deribas, A. A.; Mikhaylov, A. L.; Titova, N. N.; Zocher, Marvin A.

    2012-03-01

    Experimental results are presented on the development of a high explosive (HE) suitable for the welding of thin metallic foils. The explosive is formed from a mixture of brisant HE (RDX or PETN) and an inert material, namely sodium bicarbonate. Sodium bicarbonate releases a rather large quantity of gas during decomposition, the effects of which are discussed. Measurements of detonation velocity and critical thickness for specific mixture combinations are presented. It is shown that particle size (of the RDX or PETN component) has a significant effect upon detonation velocity and critical thickness. Compositions were developed which have a stable detonation velocity ~2 km/s with a layer thickness ~ 2 mm.

  13. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, Daniel M.; Holt, Joseph B.

    1996-01-01

    A method for synthesizing hard ceramic materials such as carbides, borides nd aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coild as a tape for later use.

  14. Reactive multilayer synthesis of hard ceramic foils and films

    DOEpatents

    Makowiecki, D.M.; Holt, J.B.

    1996-02-13

    A method is disclosed for synthesizing hard ceramic materials such as carbides, borides and aluminides, particularly in the form of coatings provided on another material so as to improve the wear and abrasion performance of machine tools, for example. The method involves the sputter deposition of alternating layers of reactive metals with layers of carbon, boron, or aluminum and the subsequent reaction of the multilayered structure to produce a dense crystalline ceramic. The material can be coated on a substrate or formed as a foil which can be coiled as a tape for later use.

  15. Laser Proton acceleration from mass limited silicon foils

    NASA Astrophysics Data System (ADS)

    Zeil, K.; Kraft, S.; Richter, T.; Metzkes, J.; Bussmann, M.; Schramm, U.; Sauerbrey, R.; Cowan, T. E.; Fuchs, J.; Buffechoux, S.

    2009-11-01

    We present recent studies on laser proton acceleration experiments using mass limited silicon targets. Small micro machined silicon foils with 2 μm thickness and 20x20 μm2 to 100x100μm2 size mounted on very tiny stalks were shot with the 100 TW LULI Laser (long pulse 150 fs) and with the new 150 TW DRACO Laser facility (short pulse 30 fs) of the Research Centre Dresden-Rossendorf. The experiments were carried out using high contrast levels. Proton spectra have been measured with magnetic spectrometers and radio chromic film stacks.

  16. Critical mass experiment using U-235 foils and lucite plates

    SciTech Connect

    Sanchez, R.; Butterfield, K.; Kimpland, R.; Jaegers, P.

    1998-05-01

    The main objective of this experiment was to show how the multiplication of the system increases as moderated material is placed between highly enriched uranium foils. In addition, this experiment served to demonstrate the hand-stacking techniques, and approach to criticality by remote operation. This experiment was designed by Tom McLaughlin in the mid seventies as part of the criticality safety course that is taught at Los Alamos Critical Experiment Facility (LACEF). The W-U-235 ratio for this experiment was 215 which is where the minimum critical mass for this configuration occurs.

  17. Comparison of carbon stripper foils under operational conditions at the Los Alamos proton storage ring

    SciTech Connect

    Spickerman, Thomas; Borden, Michael J; Macek, Robert J; Sugai, Isao

    2008-01-01

    At the 39{sup th} ICFA Advanced Beam Dynamics Workshop HB 2006 and the 23{sup rd} INTDS World Conference we reported on first results of a test of nanocrystalline diamond foils developed at ORNL under operational conditions at the Los Alamos Proton Storage Ring (PSR). We have continued these tests during the 2006 and 2007 run cycles and have been able to compare the diamond foils with the foils that are normally in use in PSR, which were originally developed by Sugai at KEK. We have gathered valuable information regarding foil lifetime, foil related beam losses and electron emission at the foil. Additional insight was gained under unusual beam conditions where the foiIs are subjected to higher temperatures. In the 2007 run cycle we also tested a Diamond-like-Carbon foil developed at TRIUMF. A Hybrid-Boron-Carbon foil, also developed by Sugai, is presently in use with the PSR production beam. We will summarize our experience with these different foil types.

  18. Composite thin-foil bandpass filter for EUV astronomy Titanium-antimony-titanium

    NASA Technical Reports Server (NTRS)

    Jelinsky, P.; Martin, C.; Kimble, R.; Bowyer, S.; Steele, G.

    1983-01-01

    Thin metallic foils of antimony and titanium have been investigated in an attempt to develop an EUV filter with a bandpass from 350 to 550 A. A composite filter has been developed composed of antimony sandwiched between two titanium foils. The transmissions of sample composite foils and of pure titanium foils from 130 to 1216 A are presented. The absorption coefficients of anatimony and titanium and the effect of titanium oxide on the transmission are derived. The composite filter has been found to be quite stable and mechanically rugged. Among other uses, the filter shows substantial promise for EUV astronomy.

  19. Role of induced vortex interaction in a semi-active flapping foil based energy harvester

    NASA Astrophysics Data System (ADS)

    Wu, J.; Chen, Y. L.; Zhao, N.

    2015-09-01

    The role of induced vortex interaction in a semi-active flapping foil based energy harvester is numerically examined in this work. A NACA0015 airfoil, which acts as an energy harvester, is placed in a two-dimensional laminar flow. It performs an imposed pitching motion that subsequently leads to a plunging motion. Two auxiliary smaller foils, which rotate about their centers, are arranged above and below the flapping foil, respectively. As a consequence, the vortex interaction between the flapping foil and the rotating foil is induced. At a Reynolds number of 1100 and the position of the pitching axis at one-third chord, the effects of the distance between two auxiliary foils, the phase difference between the rotating motion and the pitching motion as well as the frequency of pitching motion on the power extraction performance are systematically investigated. It is found that compared to the single flapping foil, the efficiency improvement of overall power extraction for the flapping foil with two auxiliary foils can be achieved. Based on the numerical analysis, it is indicated that the enhanced power extraction, which is caused by the increased lift force, thanks to the induced vortex interaction, directly benefits the efficiency enhancement.

  20. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding.

  1. Goal-directed mechanisms that constrain retrieval predict subsequent memory for new "foil" information.

    PubMed

    Vogelsang, David A; Bonnici, Heidi M; Bergström, Zara M; Ranganath, Charan; Simons, Jon S

    2016-08-01

    To remember a previous event, it is often helpful to use goal-directed control processes to constrain what comes to mind during retrieval. Behavioral studies have demonstrated that incidental learning of new "foil" words in a recognition test is superior if the participant is trying to remember studied items that were semantically encoded compared to items that were non-semantically encoded. Here, we applied subsequent memory analysis to fMRI data to understand the neural mechanisms underlying the "foil effect". Participants encoded information during deep semantic and shallow non-semantic tasks and were tested in a subsequent blocked memory task to examine how orienting retrieval towards different types of information influences the incidental encoding of new words presented as foils during the memory test phase. To assess memory for foils, participants performed a further surprise old/new recognition test involving foil words that were encountered during the previous memory test blocks as well as completely new words. Subsequent memory effects, distinguishing successful versus unsuccessful incidental encoding of foils, were observed in regions that included the left inferior frontal gyrus and posterior parietal cortex. The left inferior frontal gyrus exhibited disproportionately larger subsequent memory effects for semantic than non-semantic foils, and significant overlap in activity during semantic, but not non-semantic, initial encoding and foil encoding. The results suggest that orienting retrieval towards different types of foils involves re-implementing the neurocognitive processes that were involved during initial encoding. PMID:27431039

  2. Microeconomic analysis of military aircraft bearing restoration

    NASA Technical Reports Server (NTRS)

    Hein, G. F.

    1976-01-01

    The risk and cost of a bearing restoration by grinding program was analyzed. A microeconomic impact analysis was performed. The annual cost savings to U.S. Army aviation is approximately $950,000.00 for three engines and three transmissions. The capital value over an indefinite life is approximately ten million dollars. The annual cost savings for U.S. Air Force engines are approximately $313,000.00 with a capital value of approximately 3.1 million dollars.

  3. Climate Drives Polar Bear Origins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  4. Rolling-element bearings. [contact sliding friction study of solid bodies

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1980-01-01

    In contrast to hydrodynamic bearings, which depend for low-friction characteristics on a fluid film between the journal and the bearing surfaces, roller-element bearings employ a number of balls or rollers that roll in an annular space. The paper briefly outlines the advantages and disadvantages of roller-element bearings as compared to hydrodynamic bearings. The discussion covers bearing types, rolling friction, friction losses in rolling bearings, contact stresses, deformations, kinematics (normal and high speeds), bearing dynamics including elastohydrodynamics, load distribution, lubrication (grease, solid oil, oil-air mist), specific dynamic capacity and life, specific static capacity, and fatigue or wearout (elastohydrodynamics, wear). Rolling bearing wear factor as a function of operating environment is plotted and discussed.

  5. Fluid lubricated bearing assembly

    DOEpatents

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  6. Generation of subnanosecond electron beams in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Rybka, D. V.

    2009-11-01

    Optimum conditions for the generation of runaway electron beams with maximum current amplitudes and densities in nanosecond pulsed discharges in air at atmospheric pressure are determined. A supershort avalanche electron beam (SAEB) with a current amplitude of ˜30 A, a current density of ˜20 A/cm2, and a pulse full width at half maximum (FWHM) of ˜100 ps has been observed behind the output foil of an air-filled diode. It is shown that the position of the SAEB current maximum relative to the voltage pulse front exhibits a time shift that varies when the small-size collector is moved over the foil surface.

  7. A simple method for the measurement of reflective foil emissivity

    SciTech Connect

    Ballico, M. J.; Ham, E. W. M. van der

    2013-09-11

    Reflective metal foil is widely used to reduce radiative heat transfer within the roof space of buildings. Such foils are typically mass-produced by vapor-deposition of a thin metallic coating onto a variety of substrates, ranging from plastic-coated reinforced paper to 'bubble-wrap'. Although the emissivity of such surfaces is almost negligible in the thermal infrared, typically less than 0.03, an insufficiently thick metal coating, or organic contamination of the surface, can significantly increase this value. To ensure that the quality of the installed insulation is satisfactory, Australian building code AS/NZS 4201.5:1994 requires a practical agreed method for measurement of the emissivity, and the standard ASTM-E408 is implied. Unfortunately this standard is not a 'primary method' and requires the use of specified expensive apparatus and calibrated reference materials. At NMIA we have developed a simple primary technique, based on an apparatus to thermally modulate the sample and record the apparent modulation in infra-red radiance with commercially available radiation thermometers. The method achieves an absolute accuracy in the emissivity of approximately 0.004 (k=2). This paper theoretically analyses the equivalence between the thermal emissivity measured in this manner, the effective thermal emissivity in application, and the apparent emissivity measured in accordance with ASTM-E408.

  8. Hydrodynamics of a biologically inspired tandem flapping foil configuration

    NASA Astrophysics Data System (ADS)

    Akhtar, Imran; Mittal, Rajat; Lauder, George V.; Drucker, Elliot

    2007-05-01

    Numerical simulations have been used to analyze the effect that vortices, shed from one flapping foil, have on the thrust of another flapping foil placed directly downstream. The simulations attempt to model the dorsal-tail fin interaction observed in a swimming bluegill sunfish. The simulations have been carried out using a Cartesian grid method that allows us to simulate flows with complex moving boundaries on stationary Cartesian grids. The simulations indicate that vortex shedding from the upstream (dorsal) fin is indeed capable of increasing the thrust of the downstream (tail) fin significantly. Vortex structures shed by the upstream dorsal fin increase the effective angle-of-attack of the flow seen by the tail fin and initiate the formation of a strong leading edge stall vortex on the downstream fin. This stall vortex convects down the surface of the tail and the low pressure associated with this vortex increases the thrust on the downstream tail fin. However, this thrust augmentation is found to be quite sensitive to the phase relationship between the two flapping fins. The numerical simulations allows us to examine in detail, the underlying physical mechanism for this thrust augmentation.

  9. Magnetic bearings for spacecraft

    NASA Technical Reports Server (NTRS)

    Studer, P. A.

    1972-01-01

    Magnetic bearings have been successfully applied to motorized rotor systems in the multi-kilogram range, at speeds up to 1200 radians per second. These engineering models also indicated the need for continued development in specific areas to make them feasible for spacecraft applications. Significant power reductions have recently been attained. A unique magnetic circuit, combining permanent magnets with electromagnetic control, has a bidirectional forcing capability with improved current sensitivity. The multi-dimensional nature of contact-free rotor support is discussed. Stable continuous radial suspension is provided by a rotationally symmetric permanent magnet circuit. Two bearings, on a common shaft, counteract the normal instability perpendicular to the rotational axis. The axial direction is servoed to prevent contact. A new bearing technology and a new field of application for magnetics is foreseen.

  10. Radial Halbach Magnetic Bearings

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.; Gallo, Christopher A.; Thompson, William K.

    2009-01-01

    Radial Halbach magnetic bearings have been investigated as part of an effort to develop increasingly reliable noncontact bearings for future high-speed rotary machines that may be used in such applications as aircraft, industrial, and land-vehicle power systems and in some medical and scientific instrumentation systems. Radial Halbach magnetic bearings are based on the same principle as that of axial Halbach magnetic bearings, differing in geometry as the names of these two types of bearings suggest. Both radial and axial Halbach magnetic bearings are passive in the sense that unlike most other magnetic bearings that have been developed in recent years, they effect stable magnetic levitation without need for complex active control. Axial Halbach magnetic bearings were described in Axial Halbach Magnetic Bearings (LEW-18066-1), NASA Tech Briefs, Vol. 32, No. 7 (July 2008), page 85. In the remainder of this article, the description of the principle of operation from the cited prior article is recapitulated and updated to incorporate the present radial geometry. In simplest terms, the basic principle of levitation in an axial or radial Halbach magnetic bearing is that of the repulsive electromagnetic force between (1) a moving permanent magnet and (2) an electric current induced in a stationary electrical conductor by the motion of the magnetic field. An axial or radial Halbach bearing includes multiple permanent magnets arranged in a Halbach array ("Halbach array" is defined below) in a rotor and multiple conductors in the form of wire coils in a stator, all arranged so the rotary motion produces an axial or radial repulsion that is sufficient to levitate the rotor. A basic Halbach array (see Figure 1) consists of a row of permanent magnets, each oriented so that its magnetic field is at a right angle to that of the adjacent magnet, and the right-angle turns are sequenced so as to maximize the magnitude of the magnetic flux density on one side of the row while

  11. Partial tooth gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  12. The correlation between wake transition and propulsive efficiency of a flapping foil: A numerical study

    NASA Astrophysics Data System (ADS)

    Deng, Jian; Sun, Liping; Teng, Lubao; Pan, Dingyi; Shao, Xueming

    2016-09-01

    We study numerically the propulsive wakes produced by a flapping foil. Both pure pitching and pure heaving motions are considered, respectively, at a fixed Reynolds number of Re = 1700. As the major innovation of this paper, we find an interesting coincidence that the efficiency maximum agrees well with the 2D-3D transition boundary, by plotting the contours of propulsive efficiency in the frequency-amplitude parametric space and comparing to the transition boundaries. Although there is a lack of direct 3D simulations, it is reasonable to conjecture that the propulsive efficiency increases with Strouhal number until the wake transits from a 2D state to a 3D state. By comparing between the pure pitching motion and the pure heaving motion, we find that the 2D-3D transition occurs earlier for the pure heaving foil than that of the pure pitching foil. Consequently, the efficiency for the pure heaving foil peaks more closely to the wake deflection boundary than that of the pure pitching foil. Furthermore, since we have drawn the maps on the same parametric space with the same Reynolds number, it is possible to make a direct comparison in the propulsive efficiency between a pure pitching foil and a pure heaving foil. We note that the maximum efficiency for a pure pitching foil is 15.6%, and that of a pure heaving foil is 17%, indicating that the pure heaving foil has a slightly better propulsive performance than that of the pure pitching foil for the currently studied Reynolds number.

  13. Modular gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gearing system using modular gear bearing components. Each component is composed of a core, one or more modules attached to the core and two or more fastening modules rigidly attaching the modules to the core. The modules, which are attached to the core, may consist of gears, rollers or gear bearing components. The core orientation affects the orientation of the modules attached to the core. This is achieved via the keying arrangement of the core and the component modules that attach to the core. Such an arrangement will also facilitate the phase tuning of gear modules with respect to the core and other gear modules attached to the core.

  14. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... Register (74 FR 14956, 4-2-2009) and the application has been processed pursuant to the FTZ Act and the... (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the aluminum foil liner...

  15. The research of interaction of the capillary discharge with metal foils

    NASA Astrophysics Data System (ADS)

    Kirko, D. L.; Egorov, I. D.

    2016-09-01

    The properties of capillary discharge under its interaction with various metal foils are analysed. Spectral composition of capillary discharge jet is investigated. Upon jet interaction with metal foils, plasma domains occur. The properties of glowing plasma domains, which occur in a constant magnetic field, are analysed. The possible internal structure of plasma domains is analysed.

  16. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    DOE PAGES

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected bymore » the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.« less

  17. Effects of the foil flatness on irradiation performance of U10Mo monolithic mini-plates

    SciTech Connect

    Ozaltun, Hakan; Medvedev, Pavel G.; Rabin, Barry H.

    2015-09-03

    Monolithic plate-type fuels comprise of a high density, low enrichment, U10Mo fuel foil encapsulated in a cladding material. This concept generates several fabrication challenges such as flatness, centering or thickness variation. There are concerns, if these parameters have implications on overall performance. To investigate these inquiries, the effects of the foil flatness were studied. For this, a representative plate was simulated for an ideal case. The simulations were repeated for additional cases with various foil curvatures to evaluate the effects on the irradiation performance. The results revealed that the stresses and strains induced by fabrication process are not affected by the flatness of the foil. Furthermore, fabrication stresses in the foil are relieved relatively fast in the reactor. The effects of the foil flatness on peak irradiation stressstrains are minimal. There is a slight increase in temperature for the case with maximum curvature. The major impact is on the displacement characteristics. Furthermore, while the case with a flat foil produces a symmetrical swelling, if the foil is curved, more swelling occurs on the thin-cladding side and the plate bows during irradiation.

  18. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  19. Optical transition radiation from a thin carbon foil: a beam profile monitor for the SLC

    SciTech Connect

    Jenkins, E.W.

    1983-11-01

    This memo considers placement of an ultra thin carbon foil into the SLC beam. Transition radiation light would be emitted from the surface of the foil. The optical spot from the foil could be viewed with a microscope objective lens and registered with an image detector. Multiple scattering for the foil thicknesses necessary will not affect the beam emittance. Calculations show that a thin carbon foil can withstand the electron beam if the electron beam is larger than 10 ..mu..m in size. There are many possible radiation mechanisms from a foil - bremsstrahlung, black body temperature radiation, Cerenkov light, scintillation light, and transition radiation. Transition radiation is apparently dominant. It is proposed to use thin carbon foils, 75 to 150 A thick. Calculations indicate that 5 x 10/sup 10/ beam electrons will radiate a useable number of optical photons. Specifically with 150 A foils the fractional yield of useful optical photons is 10/sup -3/ photons per incident electron 5 x 10/sup +7/ optical photons imaged upon an image plane. Spread these photons over a 32 x 32 pixel CCD and one has the readout system of a monitor.

  20. Composite Bear Canister

    NASA Technical Reports Server (NTRS)

    Chung, W. Richard; Jara, Steve; Suffel, Susan

    2003-01-01

    To many national park campers and mountain climbers saving their foods in a safe and unbreakable storage container without worrying being attacked by a bear is a challenging task. In some parks, the park rangers have mandated that park visitors rent a bear canister for their food storage. Commercially available bear canisters are made of ABS plastic, weigh 2.8 pounds, and have a 180 cubic inch capacity for food storage. A new design with similar capacity was conducted in this study to reduce its weight and make it a stiffer and stronger canister. Two prototypes incorporating carbon prepreg with and without honeycomb constructions were manufactured using hand lay-up and vacuum bag forming techniques. A 6061-T6-aluminum ring was machined to dimensions in order to reinforce the opening area of the canister. Physical properties (weight and volume) along with mechanical properties (flexural strength and specific allowable moment) of the newly fabricated canisters are compared against the commercial ones. The composite canister weighs only 56% of the ABS one can withstand 9 times of the force greater. The advantages and limitations of using composite bear canisters will be discussed in the presentation.

  1. Hybrid superconductor magnet bearings

    SciTech Connect

    Chu, W.

    1995-04-01

    Hybrid superconductor magnet bearings (HSMB`s) utilize high temperature superconductors (HTS`s) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS`s, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, the authors present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  2. Magnetic Bearings For Turbopumps

    NASA Technical Reports Server (NTRS)

    Meeks, Crawford R.; Mendez, Antonio J.

    1995-01-01

    Report presents study of feasibility of magnetic bearings in turbopumps. Liquid-oxygen turbopump in space shuttle main engine selected for study. Other potential applications include manned and unmanned spacecraft, gas turbines for commercial and military aircraft, turbomachinery for petro-chemical and gas operations, suspension systems for precise machinery, and precise pointing and tracking systems.

  3. History of ball bearings

    NASA Technical Reports Server (NTRS)

    Dowson, D.; Hamrock, B. J.

    1981-01-01

    The familiar precision rolling-element bearings of the twentieth century are products of exacting technology and sophisticated science. Their very effectiveness and basic simplicity of form may discourage further interest in their history and development. Yet the full story covers a large portion of recorded history and surprising evidence of an early recognition of the advantages of rolling motion over sliding action and progress toward the development of rolling-element bearings. The development of rolling-element bearings is followed from the earliest civilizations to the end of the eighteenth century. The influence of general technological developments, particularly those concerned with the movement of large building blocks, road transportation, instruments, water-raising equipment, and windmills are discussed, together with the emergence of studies of the nature of rolling friction and the impact of economic factors. By 1800 the essential features of ball and rolling-element bearings had emerged and it only remained for precision manufacture and mass production to confirm the value of these fascinating machine elements.

  4. The Teddy Bears' Disc.

    ERIC Educational Resources Information Center

    Laurillard, Diana

    1985-01-01

    Reports an evaluation of the Teddy Bear disc, an interactive videodisc developed at the Open University for a second-level course in metallurgy and materials technology. Findings from observation of students utilizing the videodisc are reviewed; successful design features and design problems are considered; and development costs are outlined. (MBR)

  5. Hybrid superconductor magnet bearings

    NASA Technical Reports Server (NTRS)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  6. Magnetically leviated superconducting bearing

    DOEpatents

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  7. Optimal Synchronizability of Bearings

    NASA Astrophysics Data System (ADS)

    Araújo, N. A. M.; Seybold, H.; Baram, R. M.; Herrmann, H. J.; Andrade, J. S., Jr.

    2013-02-01

    Bearings are mechanical dissipative systems that, when perturbed, relax toward a synchronized (bearing) state. Here we find that bearings can be perceived as physical realizations of complex networks of oscillators with asymmetrically weighted couplings. Accordingly, these networks can exhibit optimal synchronization properties through fine-tuning of the local interaction strength as a function of node degree [Motter, Zhou, and Kurths, Phys. Rev. E 71, 016116 (2005)PLEEE81539-3755]. We show that, in analogy, the synchronizability of bearings can be maximized by counterbalancing the number of contacts and the inertia of their constituting rotor disks through the mass-radius relation, m˜rα, with an optimal exponent α=α× which converges to unity for a large number of rotors. Under this condition, and regardless of the presence of a long-tailed distribution of disk radii composing the mechanical system, the average participation per disk is maximized and the energy dissipation rate is homogeneously distributed among elementary rotors.

  8. Magnetic-Bearing Test Fixture

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.; Poole, William L.

    1991-01-01

    Microcomputer-controlled magnetic-bearing test fixture used to develop approaches to design of controls for magnetic bearing actuators designed and constructed. Includes load cells connected to bar, in turn, connected through screw positioners to geared drive motors. Position of equivalent suspended element sensed by position sensors and controlled by drive motors. Provides control of gap in magnetic bearing and of current in electromagnet coil. Measurements made include magnetic-bearing gaps, magnetic flux in bearing gaps, and bearing forces. Approaches to linearization and control developed by use of fixture applicable to wide range of small-gap suspension systems.

  9. Lubricant effects on bearing life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1986-01-01

    Lubricant considerations for rolling-element bearings have within the last two decades taken on added importance in the design and operation of mechanical systems. The phenomenon which limits the useful life of bearings is rolling-element or surface pitting fatigue. The elastohydrodynamic (EHD) film thickness which separates the ball or roller surface from those of the raceways of the bearing directly affects bearing life. Chemical additives added to the lubricant can also significantly affect bearings life and reliability. The interaction of these physical and chemical effects is important to the design engineer and user of these systems. Design methods and lubricant selection for rolling-element bearings are presented and discussed.

  10. Foil assisted replica molding for fabrication of microfluidic devices and their application in vitro.

    PubMed

    Micheal, Issac J; Vidyasagar, Aditya J; Bokara, Kiran Kumar; Mekala, Naveen Kumar; Asthana, Amit; Rao, Ch Mohan

    2014-10-01

    We present a simple, rapid, benchtop, Foil Assisted Rapid Molding (FARM) method for the fabrication of microfluidic devices. This novel technique involves the use of aluminium foil, pen and an X-Y plotter to create semi-circular or plano-concave, shallow microchannels. It is an easy do-it-yourself (DIY) technique for creating a microfluidic device in three simple steps: (1) create a channel design using the CAD software, (2) plot the patterns on aluminium foil and (3) use the reverse of the engraved foil as a mold to create microfluidic devices. In this report, we present a detailed study of the proposed method by varying a range of parameters such as foil thickness, tip material, and tip sizes and by investigating their effect on the creation of channels with varying geometry. Furthermore, we demonstrated the cytocompatibility of these devices in vitro. PMID:25102283

  11. Application of aluminum and titanium foils in low-energy wide-aperture electron accelerators

    NASA Astrophysics Data System (ADS)

    Bodakin, L. V.; Gusakov, A. I.; Komarov, O. V.; Kosogorov, S. L.; Motovilov, S. A.; Uspenskii, N. A.

    2016-09-01

    We have reported on the results of theoretical and experimental investigations of characteristics of aluminum and titanium foils used in devices to extract electron beams from wide-aperture low-energy accelerators with a high current density. The mechanical properties of foils at different temperatures and the electron beam transmission and absorption coefficients have been compared. The results of analyzing the dependences of the efficiency of the electron beam extraction from accelerators on the type of the electron-optical system, material, and thickness of the foil for various sizes of extraction windows and the same type of the slot support grids have been presented. We have proposed an analytic model for calculating the temperature of the foil in the unit cell of the support grid. The electron transmittance and absorbance, as well as the temperature regimes of the foils, have been calculated using different methods.

  12. Effects of injection beam parameters and foil scattering for CSNS/RCS

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Yang; Wang, Sheng; Qiu, Jing; Wang, Na; Xu, Shou-Yan

    2013-06-01

    The China Spallation Neutron Source (CSNS) uses H- stripping and phase space painting method to fill a large ring acceptance with a small emittance linac beam. The dependence of the painting beam on the injection beam parameters was studied for the Rapid Cycling Synchrotron (RCS). The simulation study was done for injection with different momentum spreads, different rms emittances of the injection beam, and different matching conditions. Then, the beam loss, 99% and rms emittances were obtained, and the optimized injection beam parameters were given. The interaction between H- beam and stripping foil was studied, and the effect of foil scattering was simulated. The stripping efficiency was calculated and the suitable thickness of stripping foil was obtained. In addition, the energy deposition on the foil and the beam loss due to the foil scattering were also studied.

  13. Characterization of the Fine Component of Comet Wild 2: Analysis of 11 Stardust Craters from Foil C2010W

    NASA Astrophysics Data System (ADS)

    Haas, B. A.; Croat, T. K.; Floss, C.

    2016-08-01

    NASA's Stardust mission returned cometary material from comet Wild 2 in Al foil collectors. We report on SEM-EDX and Auger elemental analysis as well as FIB-TEM analysis performed on 11 craters from foil C2010W.

  14. Some composite bearing and seal materials for gas turbine applications: A review

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.

    1989-01-01

    A review is made of the selection and tribological testing of materials for high-temperature bearings and seals. The goal is to achieve good tribological properties over a wide range of temperatures because bearings and seals must be functional from low temperature start-up conditions on up to the maximum temperatures encountered during engine operation. Plasma sprayed composite coatings with favorable tribological properties from 25 to 900 C are discussed. The performance of these coatings in simple tribological bench tests is described. Examples are also given of their performance in high-speed sliding contact seals and as Stirling cylinder liner materials, and as back up lubricants for compliant foil gas bearings.

  15. Vortex-wake interactions of a flapping foil that models animal swimming and flight.

    PubMed

    Lentink, David; Muijres, Florian T; Donker-Duyvis, Frits J; van Leeuwen, Johan L

    2008-01-01

    The fluid dynamics of many swimming and flying animals involves the generation and shedding of vortices into the wake. Here we studied the dynamics of similar vortices shed by a simple two-dimensional flapping foil in a soap-film tunnel. The flapping foil models an animal wing, fin or tail in forward locomotion. The vortical flow induced by the foil is correlated to (the resulting) thickness variations in the soap film. We visualized these thickness variations through light diffraction and recorded it with a digital high speed camera. This set-up enabled us to study the influence of foil kinematics on vortex-wake interactions. We varied the dimensionless wavelength of the foil (lambda*=4-24) at a constant dimensionless flapping amplitude (A*=1.5) and geometric angle of attack amplitude (A(alpha,geo)=15 degrees ). The corresponding Reynolds number was of the order of 1000. Such values are relevant for animal swimming and flight. We found that a significant leading edge vortex (LEV) was generated by the foil at low dimensionless wavelengths (lambda*<10). The LEV separated from the foil for all dimensionless wavelengths. The relative time (compared with the flapping period) that the unstable LEV stayed above the flapping foil increased for decreasing dimensionless wavelengths. As the dimensionless wavelength decreased, the wake dynamics evolved from a wavy von Kármán-like vortex wake shed along the sinusoidal path of the foil into a wake densely packed with large interacting vortices. We found that strongly interacting vortices could change the wake topology abruptly. This occurred when vortices were close enough to merge or tear each other apart. Our experiments show that relatively small changes in the kinematics of a flapping foil can alter the topology of the vortex wake drastically.

  16. Magnetic acceleration of aluminum foils for shock wave experiments

    NASA Astrophysics Data System (ADS)

    Neff, Stephan; Martinez, David; Plechaty, Christopher; Stein, Sandra; Presura, Radu

    2010-06-01

    Scaled experiments studying the interaction of shock waves with inhomogeneous background media are essential for understanding many astrophysical phenomena, since they can be used to test analytical theories and simulation codes. We are currently developing such experiments at the Nevada Terawatt Facility. We are using a pulsed power generator (1 MA peak current) to accelerate thin aluminum flyer plates. By impacting these foils on low-density foam targets, we will be able to carry out scaled experiments. We have demonstrated velocities of up to 8 km/s for 50 μm thick aluminum flyers, and are planning to further increase the flyer velocities. We have also carried out first impact tests with transparent polycarbonate targets. Several improvements for our setup are currently in planning, and these improvements will enable us to design scaled experiments for our facility.

  17. Secondary electron emission in antiproton—carbon-foil collisions

    NASA Astrophysics Data System (ADS)

    Komaki, K.; Yamazaki, Y.; Kuroki, K.; Andersen, L. H.; Horsdal-Pedersen, E.; Hvelplund, P.; Knudsen, H.; Møller, S. P.; Uggerhøj, E.; Elsener, K.

    1991-04-01

    Energy spectra of electrons emitted in the forward direction by antiproton and proton bombardments on carbon foil targets were measured in the incident energy region from 500 to 750 keV. In the spectra for antiproton impact, no sharp anticusp, which is expected in place of the cusp in the case of the proton impact, is recognized and a small bump is found at 50 eV below the cusp energy. The spectral profile in the equivelocity region, including smearing out of the anticusp, together with the energy and intensity of the bump, is consistent with a theoretical prediction for wake-riding electrons based on the classical trajectory Monte Carlo method.

  18. An Innovative Method for Manufacturing Gamma-TiAl Foil

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Saqib, Mohammad; Alexa, Joel A.

    2003-01-01

    The manufacture and entrance into service of thin gage gamma-TiAl product has been hampered by the inherent low room temperature ductility of the material. In the present study a new approach was explored for the efficient manufacture of gamma-TiAl foil with improved ductility. The objective was to produce a very clean material (low interstitial content) with a highly refined, homogeneous microstructure placed in a fully lamellar condition. The processing route involved the use of RF plasma spray deposition of pre-alloyed powders, followed by consolidation via vacuum hot pressing and heat treatment. The approach took advantage of a deposition process which included no electrodes, no binders and high cooling rates. Results and discussion of the work performed to date are presented.

  19. Visualization of terahertz surface waves propagation on metal foils

    PubMed Central

    Wang, Xinke; Wang, Sen; Sun, Wenfeng; Feng, Shengfei; Han, Peng; Yan, Haitao; Ye, Jiasheng; Zhang, Yan

    2016-01-01

    Exploitation of surface plasmonic devices (SPDs) in the terahertz (THz) band is always beneficial for broadening the application potential of THz technologies. To clarify features of SPDs, a practical characterization means is essential for accurately observing the complex field distribution of a THz surface wave (TSW). Here, a THz digital holographic imaging system is employed to coherently exhibit temporal variations and spectral properties of TSWs activated by a rectangular or semicircular slit structure on metal foils. Advantages of the imaging system are comprehensively elucidated, including the exclusive measurement of TSWs and fall-off of the time consumption. Numerical simulations of experimental procedures further verify the imaging measurement accuracy. It can be anticipated that this imaging system will provide a versatile tool for analyzing the performance and principle of SPDs. PMID:26729652

  20. Flow structures in the wake of heaving and pitching foils

    NASA Astrophysics Data System (ADS)

    Najdzin, Derek; Pardo, Enrique; Leftwich, Megan C.; Bardet, Philippe M.

    2012-11-01

    A 10-bar mechanism drives a cambering hydrofoil in an oscillatory heaving and pitching motion that replicates the flapping motion of a dolphin tail. The mechanism sits on a force-balance with six strain gages that together measure the forces and moments experienced by the fin during an oscillation. Planar Laser-Induced Fluorescence is used to image the flow structures created downstream of the cambering fin for a range of Reynolds and Strouhal numbers. The images are taken in the mid-plane, parallel to the bottom of the water tunnel. These results are compared to a rigid foil at matching conditions to investigate the role of camber changes during the flapping cycle.

  1. Performance and lifetime of solar mirror foils in space

    SciTech Connect

    Fink, D.; Biersack, J.P.; Staedele, M.

    1985-01-01

    The results of a Monte Carlo computer analysis of the long term effects of space radiation on the surfaces of giant orbiting mirrors are presented. The mirrors, thin surfaced and made of substances like, e.g., Mylar and Hostephan, which are polymers, would reflect solar radiation to earth and be of a size equivalent to that of the area they would illumine. Possible applications are the warming of cities, melting of icebergs in shipping lanes and the illumination of solar power plants. Attention was focused on the changes produced in the reflective surface by solar wind particle bombardment. It was found that an Al covering at least 0.1 mm thick would be needed for protection. Nevertheless, the surface would be destroyed by blistering and foil carbonization within 10 yr and would then require replacement. 12 references.

  2. Conical foil x-ray mirrors: performance and projections.

    PubMed

    Serlemitsos, P J

    1988-04-15

    For the past decade, we have been developing at Goddard conical grazing incidence mirrors in an effort to increase the sensitivity and resolution of astronomical observations in the iron K spectral band around 7 keV. Tightly packed conical foils give us the option of trading some imaging capability for light weight, large throughput, and low cost, all crucial requirements at the higher energies where grazing angles become very small. Nearing the completion of the broad band x-ray telescope for NASA's SHEAL II mission, we have decided important design and fabrication issues including reflector substrate material and supports and most techniques for reflector preparation, mirror assembly, and alignment. We will review the design, fabrication, status, and performance of our present mirrors. Future applications along with prospects for improved spatial resolution for these mirrors will be discussed. PMID:20531595

  3. Gas permeability through thin-foil x-ray filters

    NASA Astrophysics Data System (ADS)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  4. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect

    Mark K. Gee Zia Mirza

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to

  5. Magnetic bearing. [for supplying magnetic fluxes

    NASA Technical Reports Server (NTRS)

    Studer, P. A. (Inventor)

    1975-01-01

    A magnetic bearing is described which includes a pair of coaxial, toroidal, and permanent magnets having axially directed poles. Like poles of the permanent magnets are adjacent to each other, whereby the permanent magnets have a tendency to be urged apart along the common axis. An electromagnet is wound coaxially with the permanent magnets in such a manner that the poles are axially directed. Between the poles of each permanent magnet there is a low magnetic reluctance circuit including two series air gaps. Between the poles of the electromagnet a low reluctance path including only one air gap of each of the low magnetic reluctance circuits is provided. The low reluctance path for the electromagnet includes a ring axially translatable relative to the permanent magnets. The ring forms opposite faces of the air gaps in the magnetic circuits for each permanent magnet.

  6. Vygotsky and the Three Bears

    ERIC Educational Resources Information Center

    Kulczewski, Peggy

    2004-01-01

    Peggy Kulczewski, a kindergarten classroom teacher, remembers the day when students enjoyed a story she told them from the book "The Three Bears". The students' discussion about comparison of the bears was very helpful to the whole group.

  7. Magnetic bearings grow more attractive

    NASA Astrophysics Data System (ADS)

    1993-10-01

    Advances in materials and electronics have enabled designers to devise simpler, smaller magnetic bearings. As a result, costs have dropped, widening the applications for these very-low-friction devices. Avcon (Advanced Controls Technology) has patented a permanent-magnet bias actively controlled bearing. Here high-energy rare earth permanent-magnet materials supply the basic bearing load levitation, while servo-driven electromagnets generate stabilization and centering forces for motion contol. Previous heavy-duty magnetic bearings used electromagnets entirely for suspension and control, which led to large bearings and control systems with higher power requirements. Avcon has developed several types of permanent-magnet bias bearings. The simplest is the radial repulsion bearing. Avcon's homopolar permanent-magnet bias active bearing is the most versatile of the company's designs.

  8. Transmission filter for the extreme ultraviolet spectral region composed of a thin Saran (C2H2Cl2) foil

    NASA Astrophysics Data System (ADS)

    Seely, John F.; Shirey, L.; Kingman, A.

    1989-05-01

    Saran foils of 4000-A thickness have been fabricated and used as transmission filters in the extreme ultraviolet spectral region. The transmittances of the Saran foils were determined for the 20-620-A wavelength region. The foils transmitted radiation with wavelengths between the L absorption edge of chlorine at 61.4 and about 120 A.

  9. Centrifugally decoupling touchdown bearings

    DOEpatents

    Post, Richard F

    2014-06-24

    Centrifugally decoupling mechanical bearing systems provide thin tensioned metallic ribbons contained in a support structure. This assembly rotates around a stationary shaft being centered at low speeds by the action of the metal ribbons. Tension springs are connected on one end to the ribbons and on the other end to the support structure. The ribbons pass through slots in the inner ring of the support structure. The spring preloading thus insures contact (or near-contact) between the ribbons and the shaft at rotation speeds below the transition speed. Above this speed, however, the centrifugal force on the ribbons produces a tensile force on them that exceeds the spring tensile force so that the ribbons curve outward, effectively decoupling them from mechanical contact with the shaft. They still remain, however, in position to act as a touchdown bearing in case of abnormally high transverse accelerations.

  10. Passive magnetic bearing system

    SciTech Connect

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  11. Frictionless Bearing Uses Permanent Magnets

    NASA Technical Reports Server (NTRS)

    1965-01-01

    The purpose of this innovation was to develop a frictionless bearing for high speed, light load applications. The device involves the incorporation of permanent magnets in the bearing design. The repulsion of like magnetic poles provides concentric support of the inner member so that no metallic contact occurs between the bearing surfaces.

  12. Rotating plug bearing and seal

    DOEpatents

    Wade, Elman E.

    1977-01-01

    A bearing and seal structure for nuclear reactors utilizing rotating plugs above the nuclear reactor vessel. The structure permits lubrication of bearings and seals of the rotating plugs without risk of the lubricant draining into the reactor vessel below. The structure permits lubrication by utilizing a rotating outer race bearing.

  13. Stacked magnet superconducting bearing

    SciTech Connect

    Rigney, T.K. II; Saville, M.P.

    1993-06-15

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines.

  14. Magnetic translator bearings

    NASA Technical Reports Server (NTRS)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  15. Carbon/graphene foils: a critical subsystem for plasma instruments in space

    NASA Astrophysics Data System (ADS)

    Allegrini, F.; Ebert, R. W.; Fuselier, S. A.; Bedworth, P.; Sinton, S.

    2015-12-01

    Thin carbon foils play a critical role in the time-of-flight (TOF) and charge conversion subsystems used in many of the plasma sensors developed for space. These instruments take advantage of properties of the particle-foil interaction: charge conversion of neutral atoms and/or secondary electron emission. This interaction also creates several adverse effects for the projectile exiting the foil, such as angular scattering and energy straggling, that usually act to reduce the sensitivity and overall performance of an instrument. The magnitude of these effects varies with the incident angle, energy, and mass of the incoming projectile and the foil thickness. The thinnest foils flown typically have a nominal thickness (as specified by the manufacturer) of ~0.5 - 1 µg cm-2. In this presentation, we will summarize several studies that have quantified the properties of ions exiting the thin carbon foil and discuss recent work on graphene foils, a promising new technology that may be capable of mitigating the undesirable effects associated with these interactions.

  16. Heat transfer measurements in fully turbulent flows: basic investigations with an advanced thin foil triple sensor

    NASA Astrophysics Data System (ADS)

    Mocikat, H.; Herwig, H.

    2008-07-01

    In a former article in this journal a double layer hot film with two 10 μm nickel foils, separated by a 25 μm polyimide foil was introduced as a multi-purpose sensor. Each foil can be operated as a (calibrated) temperature sensor in its passive mode by imposing an electric current small enough to avoid heating by dissipation of electrical energy. Alternatively, however, each foil can also serve as a heater in an active mode with electric currents high enough to cause Joule heating. This double foil sensor can be used as a conventional heat flux sensor in its passive mode when mounted on an externally heated surface. In fully turbulent flows it alternatively can be operated in an active mode on a cold, i.e. not externally heated surface. Then, by heating the upper foil, a local heat transfer is initiated from which the local heat transfer coefficient h can be determined, once the lower foil is heated to the same temperature as the upper one, thus acting as a counter-heater. For further investigations with respect to the underlying sensor concept a triple sensor has been built which consists of three double layer film sensors very close to each other. Various aspects of heat transfer measurements in active modes can be addressed by this sensor.

  17. Gas Electron Multiplier foil holes: a study of mechanical and deformation effects

    NASA Astrophysics Data System (ADS)

    Benussi, L.; Bianco, S.; Saviano, G.; Muhammad, S.; Piccolo, D.; Suhaj, A.; Sharma, A.; Caponero, M.; Passamonti, L.; Pierluigi, D.; Russo, A.; Lalli, A.; Valente, M.; Ferrini, M.; Langeslag, S. A. E.; Sgobba, S.; Aviles, I.; Magnani, A.; Vai, I.

    2016-08-01

    The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data.

  18. Mechanical design and vibro-acoustic testing of ultrathin carbon foils for a spacecraft instrument

    SciTech Connect

    Bernardin, John D; Baca, Allen G

    2009-01-01

    IBEX-Hi is an electrostatic analyzer spacecraft instrument designed to measure the energy and flux distribution of energetic neutral atoms (ENAs) emanating from the interaction zone between the Earth's solar system and the Milky Way galaxy. A key element to this electro-optic instrument is an array of fourteen carbon foils that are used to ionize the ENAs. The foils are comprised of an ultrathin (50-100 {angstrom} thick) layer of carbon suspended across the surface of an electroformed Nickel wire screen, which in turn is held taught by a metal frame holder. The electro formed orthogonal screen has square wire elements, 12.7 {micro}m thick, with a pitch of 131.1 wires/cm. Each foil holder has an open aperture approximately 5 cm by 2.5 cm. Designing and implementing foil holders with such a large surface area has not been attempted for spaceflight in the past and has proven to be extremely challenging. The delicate carbon foils are subject to fatigue failure from the large acoustic and vibration loads that they will be exposed to during launch of the spacecraft. This paper describes the evolution of the foil holder design from previous space instrument applications to a flight-like IBEX-Hi prototype. Vibro-acoustic qualification tests of the IBEX-Hi prototype instrument and the resulting failure of several foils are summarized. This is followed by a discussion of iterative foil holder design modifications and laser vibrometer modal testing to support future fatigue failure analyses, along with additional acoustic testing of the IBEX-Hi prototype instrument. The results of these design and testing activities are merged and the resulting flight-like foil holder assembly is proposed.

  19. The bear that never was

    USGS Publications Warehouse

    Smith, T.S.; Amstrup, Steven C.; Herrero, Stephen

    2005-01-01

    From campfire stories to sensational books detailing gory attacks, Alaska's bears have long been maligned as deadly marauders capable of acquiring a taste for human flesh. Tall tales make for good storytelling but force bad reputations on the bears. When myth is compared to fact, the three North American's leading bear experts show that Alaska's three bear species are not the huge, unpredictable monsters they often are made out to be. Here, Smith, Amstrup, and Herrero examine the conventional wisdom people often hear regarding bears in the Great Land.

  20. Bearing, gearing, and lubrication technology

    NASA Technical Reports Server (NTRS)

    Anderson, W. J.

    1978-01-01

    Results of selected NASA research programs on rolling-element and fluid-film bearings, gears, and elastohydrodynamic lubrication are reported. Advances in rolling-element bearing material technology, which have resulted in a significant improvement in fatigue life, and which make possible new applications for rolling bearings, are discussed. Research on whirl-resistant, fluid-film bearings, suitable for very high-speed applications, is discussed. An improved method for predicting gear pitting life is reported. An improved formula for calculating the thickness of elastohydrodynamic films (the existence of which help to define the operating regime of concentrated contact mechanisms such as bearings, gears, and cams) is described.

  1. Bearing for liquid metal pump

    DOEpatents

    Dickinson, Robert J.; Wasko, John; Pennell, William E.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance.

  2. Anti-backlash gear bearings

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor)

    2009-01-01

    A gear bearing having a first gear and a second gear, each having a plurality of teeth. Each gear operates on two non-parallel surfaces of the opposing gear teeth to perform both gear and bearing functions simultaneously. The gears are moving at substantially the same speed at their contact points. The gears may be roller gear bearings or phase-shifted gear bearings, and may be arranged in a planet/sun system or used as a transmission. One preferred embodiment discloses and describes an anti-backlash feature to counter ''dead zones'' in the gear bearing movement.

  3. Hybrid Bearing Prognostic Test Rig

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Certo, Joseph M.; Handschuh, Robert F.; Dimofte, Florin

    2005-01-01

    The NASA Glenn Research Center has developed a new Hybrid Bearing Prognostic Test Rig to evaluate the performance of sensors and algorithms in predicting failures of rolling element bearings for aeronautics and space applications. The failure progression of both conventional and hybrid (ceramic rolling elements, metal races) bearings can be tested from fault initiation to total failure. The effects of different lubricants on bearing life can also be evaluated. Test conditions monitored and recorded during the test include load, oil temperature, vibration, and oil debris. New diagnostic research instrumentation will also be evaluated for hybrid bearing damage detection. This paper summarizes the capabilities of this new test rig.

  4. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    NASA Astrophysics Data System (ADS)

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-01

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  5. Shock compression response of highly reactive Ni + Al multilayered thin foils

    NASA Astrophysics Data System (ADS)

    Kelly, Sean C.; Thadhani, Naresh N.

    2016-03-01

    The shock-compression response of Ni + Al multilayered thin foils is investigated using laser-accelerated thin-foil plate-impact experiments over the pressure range of 2 to 11 GPa. The foils contain alternating Ni and Al layers (parallel but not flat) of nominally 50 nm bilayer spacing. The goal is to determine the equation of state and shock-induced reactivity of these highly reactive fully dense thin-foil materials. The laser-accelerated thin-foil impact set-up involved combined use of photon-doppler-velocimetry to monitor the acceleration and impact velocity of an aluminum flyer, and VISAR interferometry was used to monitor the back free-surface velocity of the impacted Ni + Al multilayered target. The shock-compression response of the Ni + Al target foils was determined using experimentally measured parameters and impedance matching approach, with error bars identified considering systematic and experimental errors. Meso-scale CTH shock simulations were performed using real imported microstructures of the cross-sections of the multilayered Ni + Al foils to compute the Hugoniot response (assuming no reaction) for correlation with their experimentally determined equation of state. It was observed that at particle velocities below ˜150 m/s, the experimentally determined equation of state trend matches the CTH-predicted inert response and is consistent with the observed unreacted state of the recovered Ni + Al target foils from this velocity regime. At higher particle velocities, the experimentally determined equation of state deviates from the CTH-predicted inert response. A complete and self-sustained reaction is also seen in targets recovered from experiments performed at these higher particle velocities. The deviation in the measured equation of state, to higher shock speeds and expanded volumes, combined with the observation of complete reaction in the recovered multilayered foils, confirmed via microstructure characterization, is indicative of the occurrence

  6. Interaction of solar wind ions with thin carbon foils: Calibration of time-of-flight spectrometers

    NASA Astrophysics Data System (ADS)

    Gonin, M.; Buergi, Alfred; Oetliker, M.; Bochsler, P.

    1992-11-01

    With the KAFKA (German acronym for carbon foils collisions analyzer) experiment, charge exchange, energy loss and angular scattering of solar wind ions in thin (1 to 10 microg/sq cm) carbon foils, are studied. Such foils are extensively used in time of flight mass spectrometry. So far, the properties of H, He, B, C, N, O, F, Ne, Na, Mg, Al, Si, S, Cl, Ar, K, Ti, Fe, and Ni and in the 0.5 to 5 keV/u energy range have been investigated.

  7. Formation and evolution of tweed structures on high-purity aluminum polycrystalline foils under cyclic tension

    SciTech Connect

    Kuznetsov, P. V.; Vlasov, I. V.; Sklyarova, E. A.; Smekalina, T. V.

    2015-10-27

    Peculiarities of formation and evolution of tweed structures on the surface of high-purity aluminum polycrystalline foils under cyclic tension were studied using an atom force microscope and a white light interferometer. Tweed structures of micron and submicron sizes were found on the foils at different number of cycles. In the range of 42,000 < N < 95,000 cycles destruction of tweed patterns is observed, which leads to their disappearance from the surface of the foils. Formation of tweed structures of various scales is discussed in terms of the Grinfeld instability.

  8. FULL SIZE U-10MO MONOLITHIC FUEL FOIL AND FUEL PLATE FABRICATION-TECHNOLOGY DEVELOPMENT

    SciTech Connect

    G. A. Moore; J-F Jue; B. H. Rabin; M. J. Nilles

    2010-03-01

    Full-size U10Mo foils are being developed for use in high density LEU monolithic fuel plates. The application of a zirconium barrier layer too the foil is applied using a hot co-rolling process. Aluminum clad fuel plates are fabricated using Hot Isostatic Pressing (HIP) or a Friction Bonding (FB) process. An overview is provided of ongoing technology development activities, including: the co-rolling process, foil shearing/slitting and polishing, cladding bonding processes, plate forming, plate-assembly swaging, and fuel plate characterization. Characterization techniques being employed include, Ultrasonic Testing (UT), radiography, and microscopy.

  9. Development of thin foils for use in generating neutral particle beams

    SciTech Connect

    Aaron, W.S.; Zevenbergen, L.A.; Adair, H.L.; Culpepper, C.A.; McCulla, W.H.; Nolan, T.A.; Hughes, M.R.

    1986-01-01

    The Isotope Research Materials Laboratory (IRML) was requested to prepare large-area, ultrathin aluminum and carbon foils for use in beam neutralization experiments. There were two major parts to this request. The first was to immediately provide a number of 5-cm-dia foils 5 to 20 ..mu..g/cm/sup 2/ thick for use in experiments at the Fusion Materials Irradiation Test (FMIT) facility and at Argonne National Laboratory (ANL). The second, longer-term request was to develop methods to prepare 25-cm x 25-cm, 10-..mu..g/cm/sup 2/ aluminum neutralizer foils. Both parts of the request have been successfully met.

  10. Eddy current probe with foil sensor mounted on flexible probe tip and method of use

    DOEpatents

    Viertl, John R. M.; Lee, Martin K.

    2001-01-01

    A pair of copper coils are embedded in the foil strip. A first coil of the pair generates an electromagnetic field that induces eddy currents on the surface, and the second coil carries a current influenced by the eddy currents on the surface. The currents in the second coil are analyzed to obtain information on the surface eddy currents. An eddy current probe has a metal housing having a tip that is covered by a flexible conductive foil strip. The foil strip is mounted on a deformable nose at the probe tip so that the strip and coils will conform to the surface to which they are applied.

  11. Suppression of instability by double ablation in tungsten doped polyvinyl alcohol foils

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Leshma; Chaurasia, S.

    2012-07-01

    In Inertial fusion Energy (IFE) research stable acceleration of fusion targets is a significant problem due to hydrodynamic instabilities. This paper presents the results of the experiments done to investigate the effects of doping 20% of Tungsten (W) (by weight) in Polyvinyl Alcohol (PVA) polymer foils for suppression of instability during laser ablative acceleration. A 20J, 1.060μm, 900ps, Nd: Glass laser system with a focusable intensity of 3 to 9.6×1013W/cm2 was used in the experiment. It is observed that the doped PVA targets yielded stable and enhanced foil acceleration as compared to the undoped PVA foils.

  12. Life cycle Analysis of Aluminum Foil Packaging Material.

    PubMed

    El Sebaie, Olfat; Ahmed, Manal; Hussein, Ahmed; El Sharkawy, Fahmay; Samy, Manal

    2006-01-01

    A fundamental tent of life cycle analysis (LCA) is that every material product must become a waste. To choose the greener products, it is necessary to take into account their environmental impacts from cradle to grave. LCA is the tool used to measure environmental improvements. Aluminum (Al) is the third most common element found in the earth's crust, after oxygen and silicon. Al packaging foil was chosen as the material for the study with its life cycle perspective at Alexandria. The Al packaging produced from virgin and recycled Al was investigated through life cycle stages in these two production processes; primary and secondary. The aim of this study is to evaluate the environmental impact of aluminum packaging process by using life cycle analysis of its product from two different starting raw materials (virgin and recycled aluminum). The input and output materials, energy, water, natural gas consumptions, and solid waste uses in the foil industry had been analyzed in order to identify those with significant contribution to the total environmental impacts. From the survey done on the two life cycles, it was found that in environmental terms, the most important emissions from the primary process are the emission of CO(2) and perfluorocarbon (PFC) gases, which produce the greenhouse effect, and SO(2) as well as the emission of fluorides and polyaromatic hydrocarbons (PAH compounds), which are toxic to humans and the environment. On over all material balance, it was found that the ingot shares by 45% of the feed to the casthouse furnaces at Egyptian Copper Work (ECW), net production of the casthouse is 43.76% and the yield of rotary dross furnace (RDF) is 28.8%. The net production of the foil unit represents 35% of the total input to the unit. By comparing the two life cycles, it is obvious that, for water consumption, 93.5% is used in the primary cycle, while 6.5% is used in the secondary cycle. For electricity consumption, 99.3% is used in the primary cycle

  13. Bearing construction for refrigeration compresssor

    DOEpatents

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  14. Bearing construction for refrigeration compressor

    SciTech Connect

    Middleton, M.G.; Nelson, R.T.

    1988-01-12

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings. 4 figs.

  15. Damping Bearings In High-Speed Turbomachines

    NASA Technical Reports Server (NTRS)

    Von Pragenau, George L.

    1994-01-01

    Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).

  16. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Tim; Thom, R. L.

    1999-01-01

    For many years chlorofluorocarbon (CFC) based solvents, such as CFC-113 and 1,1,1, trichloroethane (TCA), were used as bearing cleaning solvents for space mechanism bearings. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change requiring the use of ODC-free cleaners for precision bearing cleaning. With this change the question arises; what effect if any do these new cleaners have on long term bearing life? The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0 x 10(exp -6) torr) at a temperature of 90 C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing, the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition, the bearings were visually examined and analyzed using an optical microscope.

  17. Swozzle based burner tube premixer including inlet air conditioner for low emissions combustion

    DOEpatents

    Tuthill, Richard Sterling; Bechtel, II, William Theodore; Benoit, Jeffrey Arthur; Black, Stephen Hugh; Bland, Robert James; DeLeonardo, Guy Wayne; Meyer, Stefan Martin; Taura, Joseph Charles; Battaglioli, John Luigi

    2002-01-01

    A burner for use in a combustion system of a heavy-duty industrial gas turbine includes a fuel/air premixer having an air inlet, a fuel inlet, and an annular mixing passage. The fuel/air premixer mixes fuel and air into a uniform mixture for injection into a combustor reaction zone. The burner also includes an inlet flow conditioner disposed at the air inlet of the fuel/air premixer for controlling a radial and circumferential distribution of incoming air. The pattern of perforations in the inlet flow conditioner is designed such that a uniform air flow distribution is produced at the swirler inlet annulus in both the radial and circumference directions. The premixer includes a swozzle assembly having a series of preferably air foil shaped turning vanes that impart swirl to the airflow entering via the inlet flow conditioner. Each air foil contains internal fuel flow passages that introduce natural gas fuel into the air stream via fuel metering holes that pass through the walls of the air foil shaped turning vanes. By injecting fuel in this manner, an aerodynamically clean flow field is maintained throughout the premixer. By injecting fuel via two separate passages, the fuel/air mixture strength distribution can be controlled in the radial direction to obtain optimum radial concentration profiles for control of emissions, lean blow outs, and combustion driven dynamic pressure activity as machine and combustor load are varied.

  18. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. PMID:25775930

  19. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    PubMed

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach.

  20. Wind tunnel evaluation of air-foil performance using simulated ice shapes

    NASA Technical Reports Server (NTRS)

    Bragg, M. B.; Zaguli, R. J.; Gregorek, G. M.

    1982-01-01

    A two-phase wind tunnel test was conducted in the 6 by 9 foot Icing Research Tunnel (IRT) at NASA Lewis Research Center to evaluate the effect of ice on the performance of a full scale general aviation wing. In the first IRT tests, rime and glaze shapes were carefully documented as functions of angle of attack and free stream conditions. Next, simulated ice shapes were constructed for two rime and two glaze shapes and used in the second IRT tunnel entry. The ice shapes and the clean airfoil were tapped to obtain surface pressures and a probe used to measure the wake characteristics. These data were recorded and processed, on-line, with a minicomputer/digital data acquisition system. The effect of both rime and glaze ice on the pressure distribution, Cl, Cd, and Cm are presented.

  1. What is the Best Insulator: Air, Styrofoam, Foil, or Cotton? Grades 3-5.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    Contrary to what many students think, heat flows from hot to cold. Working in groups of 3-4, students investigate the properties of insulators in attempts to keep a cup of water from freezing and, once it is frozen, to keep it from melting. This activity requires a 4.5-hour time period for completion. (Author/SOE)

  2. Gold-bearing skarns

    USGS Publications Warehouse

    Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.

    1991-01-01

    In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.

  3. Linear magnetic bearings

    NASA Technical Reports Server (NTRS)

    Goldowskiy, M. P.

    1984-01-01

    A self regulating, nonfrictional, active magnetic bearing is disclosed which has an elongated cylindrical housing for containing a shaft type armature with quadrature positioned shaft position sensors and equidistantly positioned electromagnets located at one end of the housing. Each set of sensors is responsive to orthogonal displacement of the armature and is used to generate control signals to energize the electromagnets to center the armature. A bumper magnet assembly is located at one end of the housing for dampening any undesired axial movement of the armature or to axially move the armature either continuously or fixedly.

  4. Lead-free bearing alloys for engine applications

    NASA Astrophysics Data System (ADS)

    Ratke, Lorenz; Ågren, John; Ludwig, Andreas; Tonn, Babette; Gránásy, László; Mathiesen, Ragnvald; Arnberg, Lars; Anger, Gerd; Reifenhäuser, Bernd; Lauer, Michael; Garen, Rune; Gust, Edgar

    2005-10-01

    Recent developments to reduce the fuel consumption, emission and air pollution, size and weight of engines for automotive, truck, ship propulsion and electrical power generation lead to temperature and load conditions within the engines that cannot be borne by conventional bearings. Presently, only costly multilayer bearings with electroplated or sputtered surface coatings can cope with the load/speed combinations required. Ecological considerations in recent years led to a ban by the European Commission on the use of lead in cars a problem for the standard bronze-lead bearing material. This MAP project is therefore developing an aluminium-based lead-free bearing material with sufficient hardness, wear and friction properties and good corrosion resistance. Only alloys made of components immiscible in the molten state can meet the demanding requirements. Space experimentation plays a crucial role in optimising the cast microstructure for such applications.

  5. In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foils

    PubMed Central

    2016-01-01

    The dynamics of graphene growth on polycrystalline Pt foils during chemical vapor deposition (CVD) are investigated using in situ scanning electron microscopy and complementary structural characterization of the catalyst with electron backscatter diffraction. A general growth model is outlined that considers precursor dissociation, mass transport, and attachment to the edge of a growing domain. We thereby analyze graphene growth dynamics at different length scales and reveal that the rate-limiting step varies throughout the process and across different regions of the catalyst surface, including different facets of an individual graphene domain. The facets that define the domain shapes lie normal to slow growth directions, which are determined by the interfacial mobility when attachment to domain edges is rate-limiting, as well as anisotropy in surface diffusion as diffusion becomes rate-limiting. Our observations and analysis thus reveal that the structure of CVD graphene films is intimately linked to that of the underlying polycrystalline catalyst, with both interfacial mobility and diffusional anisotropy depending on the presence of step edges and grain boundaries. The growth model developed serves as a general framework for understanding and optimizing the growth of 2D materials on polycrystalline catalysts. PMID:27576749

  6. Silicon oxide permeation barrier coating of PET bottles and foils

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Deilmann, Michael; Awakowicz, Peter

    2009-10-01

    Modern packaging materials such as polyethylene terephthalate (PET) have displaced established materials in many areas of food and beverage packaging. Plastic packing materials offer are various advantages concerning production and handling. PET bottles for instance are non-breakable and lightweight compared to glass and metal containers. However, PET offers poor barrier properties against gas permeation. Therefore, the shelf live of packaged food is reduced. Permeation of gases can be reduced by depositing transparent plasma polymerized silicon oxide (SiOx) barrier coatings. A microwave (2.45 GHz) driven low pressure plasma reactor is developed based on a modified Plasmaline antenna to treat PET foils or bottles. To increase the barrier properties of the coatings furthermore a RF substrate bias (13.56 MHz) is applied. The composition of the coatings is analyzed by means of Fourier transform infrared (FTIR) spectroscopy regarding carbon and hydrogen content. Influence of gas phase composition and substrate bias on chemical composition of the coatings is discussed. A strong relation between barrier properties and film composition is found: good oxygen barriers are observed as carbon content is reduced and films become quartz-like. Regarding oxygen permeation a barrier improvement factor (BIF) of 70 is achieved.

  7. Thin foil planar radiometers: application for designing contactless ? sensors

    NASA Astrophysics Data System (ADS)

    Gaviot, E.; Godts, P.; Guths, S.; Leclercq, D.

    1996-04-01

    This paper is devoted to describing a new sensor allowing one to measure the net radiant flux exchanged by the wall surface it is mounted on. The device is constructed by mounting a thermopile-type radiometer on a larger thin metallic foil support. When the emissivity of the paint covering the support is the same as that of the wall surface on which the sensor is applied, a direct reading (positive or negative emf) of the radiant flux (absorbed or emitted) by the wall surface is given, whatever the convective losses. The calibration is carried out in a simple and useful apparatus designed to produce a prescribed total radiant exchange between two metallic plates at different temperatures and is estimated to be accurate to within two per cent. Simplicity and ruggedness make the radiometer appropriate for direct measurement of heat exchanged between surfaces heated up to 500 K. Notable applications include use as a traditional total hemispheric radiometer and a contactless temperature difference sensor.

  8. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  9. Optical fiber sensors embedded in flexible polymer foils

    NASA Astrophysics Data System (ADS)

    van Hoe, Bram; van Steenberge, Geert; Bosman, Erwin; Missinne, Jeroen; Geernaert, Thomas; Berghmans, Francis; Webb, David; van Daele, Peter

    2010-04-01

    In traditional electrical sensing applications, multiplexing and interconnecting the different sensing elements is a major challenge. Recently, many optical alternatives have been investigated including optical fiber sensors of which the sensing elements consist of fiber Bragg gratings. Different sensing points can be integrated in one optical fiber solving the interconnection problem and avoiding any electromagnetical interference (EMI). Many new sensing applications also require flexible or stretchable sensing foils which can be attached to or wrapped around irregularly shaped objects such as robot fingers and car bumpers or which can even be applied in biomedical applications where a sensor is fixed on a human body. The use of these optical sensors however always implies the use of a light-source, detectors and electronic circuitry to be coupled and integrated with these sensors. The coupling of these fibers with these light sources and detectors is a critical packaging problem and as it is well-known the costs for packaging, especially with optoelectronic components and fiber alignment issues are huge. The end goal of this embedded sensor is to create a flexible optical sensor integrated with (opto)electronic modules and control circuitry. To obtain this flexibility, one can embed the optical sensors and the driving optoelectronics in a stretchable polymer host material. In this article different embedding techniques for optical fiber sensors are described and characterized. Initial tests based on standard manufacturing processes such as molding and laser structuring are reported as well as a more advanced embedding technique based on soft lithography processing.

  10. Laboratory soft x-ray source with foil target

    NASA Astrophysics Data System (ADS)

    Stephan, Karl-Heinz; Braeuninger, Heinrich W.

    1993-02-01

    We have developed a comparatively small soft x-ray source for application in our test facilities, which are used at present to support the developments of the astrophysical space projects XMM and AXAF. The instrument comprises a commercially available color television tube for generation of the electron beam, which is focused on exchangeable metal films serving as targets. The x rays are taken off after having transversed the foil target and have a sufficient spectral purity with regard to the experimental requirements. The maximum electric operating parameters correspond to an emission current of 100 (mu) A generated by a filament heating power of 6.6 watt at an accelerating voltage of 25 kV. The technical advantages of the instrument are lightweight construction, no water cooling, small size electric supply, cost efficient manufacturing, small sized focus, and quick access to the desired characteristic spectral line by exchange of a complete tube. We describe the measurements on the local x-ray intensity profile of the focus, the spectral features of the beam, and present the resulting performance data. A special development could be used as calibration sources in x-ray telescopes.

  11. Low Power Magnetic Bearing Design for High Speed Rotating Machinery

    NASA Technical Reports Server (NTRS)

    Allaire, P. E.; Maslen, E. H.; Humphris, R. R.; Sortore, C. K.; Studer, P. A.

    1992-01-01

    Magnetic suspension technology has advanced to the point of being able to offer a number of advantages to a variety of applications in the rotating machinery and aerospace fields. One strong advantage is the decrease in power consumption. The design and construction of a set of permanent magnet biased, actively controlled magnetic bearing for a flexible rotor are presented. Both permanent magnets and electromagnets are used in a configuration which effectively provides the necessary fluxes in the appropriate air gaps, while simultaneously keeping the undesirable destabilizing forces to a minimum. The design includes two radial bearings and a thrust bearing. The theoretical development behind the design is briefly discussed. Experimental performance results for a set of operating prototype bearings is presented. The results include measurements of load capacity, bearing stiffness and damping, and the dynamic response of the rotor. With few exceptions, the experimental results matched very well with the predicted performance. The power consumption of these bearings was found to be significantly reduced from that for a comparable set of all electromagnetic bearings.

  12. Low power magnetic bearing design for high speed rotating machinery

    NASA Astrophysics Data System (ADS)

    Allaire, P. E.; Maslen, E. H.; Humphris, R. R.; Sortore, C. K.; Studer, P. A.

    1992-05-01

    Magnetic suspension technology has advanced to the point of being able to offer a number of advantages to a variety of applications in the rotating machinery and aerospace fields. One strong advantage is the decrease in power consumption. The design and construction of a set of permanent magnet biased, actively controlled magnetic bearing for a flexible rotor are presented. Both permanent magnets and electromagnets are used in a configuration which effectively provides the necessary fluxes in the appropriate air gaps, while simultaneously keeping the undesirable destabilizing forces to a minimum. The design includes two radial bearings and a thrust bearing. The theoretical development behind the design is briefly discussed. Experimental performance results for a set of operating prototype bearings is presented. The results include measurements of load capacity, bearing stiffness and damping, and the dynamic response of the rotor. With few exceptions, the experimental results matched very well with the predicted performance. The power consumption of these bearings was found to be significantly reduced from that for a comparable set of all electromagnetic bearings.

  13. Aerospace applications of magnetic bearings

    NASA Astrophysics Data System (ADS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-05-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  14. Aerospace applications of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Downer, James; Goldie, James; Gondhalekar, Vijay; Hockney, Richard

    1994-01-01

    Magnetic bearings have traditionally been considered for use in aerospace applications only where performance advantages have been the primary, if not only, consideration. Conventional wisdom has been that magnetic bearings have certain performance advantages which must be traded off against increased weight, volume, electric power consumption, and system complexity. These perceptions have hampered the use of magnetic bearings in many aerospace applications because weight, volume, and power are almost always primary considerations. This paper will review progress on several active aerospace magnetic bearings programs at SatCon Technology Corporation. The magnetic bearing programs at SatCon cover a broad spectrum of applications including: a magnetically-suspended spacecraft integrated power and attitude control system (IPACS), a magnetically-suspended momentum wheel, magnetic bearings for the gas generator rotor of a turboshaft engine, a vibration-attenuating magnetic bearing system for an airborne telescope, and magnetic bearings for the compressor of a space-rated heat pump system. The emphasis of these programs is to develop magnetic bearing technologies to the point where magnetic bearings can be truly useful, reliable, and well tested components for the aerospace community.

  15. Polarization and collision-induced coherence in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.; Church, D. A.

    1974-01-01

    Monatomic systems were excited by the beam-foil method in order to re-examine the possibility that a particular magnetic substate was preferentially populated. O II, Ar II and He I levels were used. The results reveal that: (1) with a tilted foil substantial polarization (up to 15%) may be achieved, (2) the polarization is due to the foil, (3) the foil induces coherence among Zeeman substates with the appearance of quantum beats among these substates and that their coherence is due to the externally applied magnetic field perpendicular to the beam direction, and (4) the angular momentum of the emitted photon is perpendicular to the ion velocity. The possibility for detecting separate effects of alignment and polarization is noted.

  16. Process for forming a nickel foil with controlled and predetermined permeability to hydrogen

    DOEpatents

    Engelhaupt, Darell E.

    1981-09-22

    The present invention provides a novel process for forming a nickel foil having a controlled and predetermined hydrogen permeability. This process includes the steps of passing a nickel plating bath through a suitable cation exchange resin to provide a purified nickel plating bath free of copper and gold cations, immersing a nickel anode and a suitable cathode in the purified nickel plating bath containing a selected concentration of an organic sulfonic acid such as a napthalene-trisulfonic acid, electrodepositing a nickel layer having the thickness of a foil onto the cathode, and separating the nickel layer from the cathode to provide a nickel foil. The anode is a readily-corrodible nickel anode. The present invention also provides a novel nickel foil having a greater hydrogen permeability than palladium at room temperature.

  17. LANL Experience Rolling Zr-Clad LEU-10Mo Foils for AFIP-7

    SciTech Connect

    Hammon, Duncan L.; Clarke, Kester D.; Alexander, David J.; Kennedy, Patrick K.; Edwards, Randall L.; Duffield, Andrew N.; Dombrowski, David E.

    2015-05-29

    The cleaning, canning, rolling and final trimming of Low Enriched Uranium-10 wt. pct. Molybdenum (LEU-10Mo) foils for ATR (Advanced Test Reactor) fuel plates to be used in the AFIP-7 (ATR Full Size Plate In Center Flux Trap Position) experiments are summarized. Six Zr-clad foils were produced from two LEU-10Mo castings supplied to Los Alamos National Laboratory (LANL) by Y-12 National Security Complex. Details of cleaning and canning procedures are provided. Hot- and cold-rolling results are presented, including rolling schedules, images of foils in-process, metallography and local compositions of regions of interest, and details of final foil dimensions and process yield. This report was compiled from the slides for the presentation of the same name given by Duncan Hammon on May 12, 2011 at the AFIP-7 Lessons Learned meeting in Salt Lake City, UT, with Los Alamos National Laboratory document number LA-UR 11-02898.

  18. Self-propelled swimming of a flexible plunging foil near a solid wall.

    PubMed

    Dai, Longzhen; He, Guowei; Zhang, Xing

    2016-01-01

    Numerical simulations are conducted to investigate the influences of a solid wall on the self-propelled swimming of a flexible plunging foil. It is found that the presence of a solid wall enhances the cruising speed, with the cost of increasing input power. Rigid foil can achieve high percentage increase in cruising speed when swimming near a solid wall, but the propulsive efficiency may be reduced. Foils with some flexibility can enjoy the enhancements in both cruising speed and propulsive efficiency. Another advantage of the flexible foils in near-wall swimming is that smaller averaged lateral forces are produced. The effects of wall confinement on the wake structure and the vortex dynamics are also studied in this paper. The results obtained in this study shed some light on the unsteady wall effect experienced by aquatic animals and also inform the design of bio-mimetic underwater vehicles which are capable of exploiting the wall effect. PMID:27377880

  19. 78 FR 28577 - Notification of Proposed Production Activity, LLFlex, LLC, Subzone 29J (Foil Backed Paperboard...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... (duty-free) for the foreign status input (converter foil, duty rate 5.8%). Customs duties also could..., U.S. Department of Commerce, 1401 Constitution Avenue NW., Washington, DC 20230-0002, and in...

  20. Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils

    NASA Astrophysics Data System (ADS)

    Dong, H.; Mittal, R.; Najjar, F. M.

    2006-11-01

    Numerical simulations are used to investigate the effect of aspect ratio on the wake topology and hydrodynamic performance of thin ellipsoidal flapping foils. The study is motivated by the quest to understand the hydrodynamics of fish pectoral fins. The simulations employ an immersed boundary method that allows us to simulate flows with complex moving boundaries on fixed Cartesian grids. A detailed analysis of the vortex topology shows that the wake of low-aspect-ratio flapping foils is dominated by two sets of interconnected vortex loops that evolve into distinct vortex rings as they convect downstream. The flow downstream of these flapping foils is characterized by two oblique jets and the implications of this characteristic on the hydrodynamic performance are examined. Simulations are also used to examine the thrust and propulsive efficiency of these foils over a range of Strouhal and Reynolds numbers as well as pitch-bias angles.

  1. Characterization and anticorrosion properties of carbon nanotubes directly synthesized on Ni foil using ethanol

    NASA Astrophysics Data System (ADS)

    Jeong, Namjo; Jwa, Eunjin; Kim, Chansoo; Hwang, Kyo Sik; Park, Soon-cheol; Jang, Moon Suk

    2016-07-01

    In this work, we describe the direct growth of carbon nanofilaments by the catalytic decomposition of ethanol on untreated polycrystalline Ni foil. Our work focuses on the effects of synthesis conditions on the growth of the carbon nanofilaments and their growth mechanism. Direct growth of carbon nanotubes (CNTs) is more favorable on lower-purity Ni foil. The highest yield was obtained at approximately 750 °C. The average diameter of the CNTs was approximately 20-30 nm. Raman spectra revealed that the increase of H2 concentration in the carrier gas and synthesis temperature induced the growth of better-graphitized CNTs. Additionally, we investigated the anticorrosion properties of as-prepared products under simulated seawater conditions. The corrosion rate of the CNT/Ni foil system was maximally 50-60 times slower than that of the as-received Ni foil, indicating that the CNT coating may be a good candidate for corrosion inhibition.

  2. Method of using deuterium-cluster foils for an intense pulsed neutron source

    DOEpatents

    Miley, George H.; Yang, Xiaoling

    2013-09-03

    A method is provided for producing neutrons, comprising: providing a converter foil comprising deuterium clusters; focusing a laser on the foil with power and energy sufficient to cause deuteron ions to separate from the foil; and striking a surface of a target with the deuteron ions from the converter foil with energy sufficient to cause neutron production by a reaction selected from the group consisting of D-D fusion, D-T fusion, D-metal nuclear spallation, and p-metal. A further method is provided for assembling a plurality of target assemblies for a target injector to be used in the previously mentioned manner. A further method is provided for producing neutrons, comprising: splitting a laser beam into a first beam and a second beam; striking a first surface of a target with the first beam, and an opposite second surface of the target with the second beam with energy sufficient to cause neutron production.

  3. Reduction in bearing size due to superconductors in magnetic bearings

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Lewis, Paul; Dill, James F.

    1991-01-01

    A design concept that reduces the size of magnetic bearings is assessed. The small size will enable magnetic bearings to fit into limited available bearing volume of cryogenic machinery. The design concept, called SUPERC, uses (high Tc) superconductors or high-purity aluminum conductors in windings instead of copper. The relatively high-current density of these conductors reduces the slot radial thickness for windings, which reduces the size of the bearings. MTI developed a sizing program called SUPERC that translates the high-current density of these conductors into smaller sized bearings. This program was used to size a superconducting bearing to carry a 500 lb. load. The sizes of magnetic bearings needed by various design concepts are as follows: SUPERC design concept = 3.75 in.; magnet-bias design concept = 5.25 in.; and all electromagnet design concept = 7.0 in. These results indicate that the SUPERC design concept can significantly reduce the size of the bearing. This reduction, in turn, reduces the weight and yields a lighter bearing. Since the superconductors have inherently near-zero resistance, they are also expected to save power needed for operation considerably.

  4. Effect of Bearing Cleaning on Long Term Bearing Life

    NASA Technical Reports Server (NTRS)

    Jett, Timothy Raymond; Thom, Robert L.

    1998-01-01

    For many years chlorofluorocarbon (CFC ) based solvents, such as Freon and 1,1,1, Trichloroethane (TCA), were used as bearing cleaning solvents for space mechanisms. The 1995 ban on the production of ozone depleting chemicals (ODC) such as CFCs caused a change to new ODC-free cleaners for the precision bearing cleaning. With this change the question arises what effect if any do these new cleaners have on long term bearing life. The purpose of this study was to evaluate this effect. A one year test using 60 small electrical motors (two bearings per motor) was conducted in a high vacuum environment (2.0* 10(exp -6) torr) at a temperature of 90C. Prior to testing the bearings were cleaned with one of four cleaners. These cleaners included two aqueous based cleaners, a CFC based cleaner and supercritical carbon dioxide. Three space compatible greases were tested. After testing the mass of each lubricated bearing was measured both pre and post test. Along with mass loss measurements a profilometer trace of each bearing was taken to measure post test wear of the bearings. In addition the bearings were visually examined and analyzed using an optical microscope.

  5. Coherence and its application in the beam-foil light source

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Bashkin, S.

    1974-01-01

    The beam-foil light source is shown to be very useful in spectroscopic work. Not only the lifetimes of highly excited, multiply charged atoms can be measured in a straightforward way, but also the fine-structure and hyperfine-structure separations and the Lande factors can be obtained due to the fact that the coherent excitations are created in the impulsive beam-foil collision. The theories suggested to explain the origin of coherence are presently incomplete.

  6. Study of the polarization mechanism of beam-foil interaction ions using the channeling effect*

    SciTech Connect

    TANG Jia-yong; GE Qi-yun; LU Fu-quan; SUN Chang-nian; WENG Tai-meng; YANG Jian-jun; YE hui; YANG Fu-jia

    1986-01-01

    In order to provide experimental evidence for the controversial polarization mechanism of the beam-foil ions, He/sup +/ ions with energy of 1 MeV have been used to pass through a single crystal gold foil along the <110> direction and random direction; the Stokes parameters of the HeII 4686 A 4f ..-->.. 3d transition have been accurately measured.

  7. A review of progress and challenges in flapping foil power generation

    NASA Astrophysics Data System (ADS)

    Young, John; Lai, Joseph C. S.; Platzer, Max F.

    2014-05-01

    Power may be extracted from a flowing fluid in a variety of ways. Turbines using one or more oscillating foils are under increasingly active investigation, as an alternative to rotary wind turbines and river, oceanic and tidal current water turbines, although industrial development is at a very nascent stage. Such flapping foil turbines promise some key potential advantages, including lower foil velocities (and hence lower noise and wildlife impact), and more effective small-scale and shallow water operation. The role of a number of parameters is investigated, including foil kinematics (modes, frequencies, amplitudes and time histories of motion), foil and system geometry (shape, configuration and structural flexibility), and flow physics effects (Reynolds number and turbulence, shear flows and ground effect). Details of the kinematics are shown to have the single largest influence on power output and efficiency (measured as the ratio of power output to that available and accessible in the fluid stream). The highest levels of power and efficiency are associated with very large foil pitch angles (upwards of 70°) and angles of attack (30-40°), such that the flow is massively separated for much of the flapping cycle, in contrast to rotary turbines which rely on attached flow over as much of the rotor disk as possible. This leads to leading edge vortices comparable in size to the foil chord, and the evolution and interaction of these vortices with the foil as it moves play a central role in determining performance. The other parameters also influence the vortex behaviour, but in general to a lesser degree. Numerous gaps in the research literature and outstanding issues are highlighted.

  8. Preparation and investigation of diamond-like carbon stripper foils by filtered cathodic vacuum arc

    NASA Astrophysics Data System (ADS)

    Fan, Qiwen; Du, Yinghui; Zhang, Rong; Xu, Guoji

    2013-04-01

    Thin diamond-like carbon (DLC) stripper foils ˜5 μg/cm2 in thickness were produced and evaluated as heavy-ion strippers for the Beijing HI-13 Tandem Accelerator. The DLC layers ˜4 μg/cm2 in thickness were produced by the filtered cathodic vacuum arc technology onto glass slides coated with betaine-saccharose as releasing agent, which were previously covered with evaporated carbon layers ˜1 μg/cm2 in thickness by the controlled ac arc-discharge method. Irradiation lifetimes of the DLC stripper foils were tested using the heavy-ion beams at the terminal of the Beijing HI-13 Tandem Accelerator, and compared with those of the standard carbon stripper foils made by the combined dc and ac arc-discharge method. The measurements indicate that the DLC stripper foils outlast the standard combined dc and ac arc-discharge carbon stripper foils by a factor of at least 13 and 4for the 197Au- (˜9 MeV, ˜1 μA) and 63Cu- (˜9 MeV, ˜1 μA) ion beams, respectively. The structure and properties of the DLC foils deposited onto silicon substrates by the filtered cathodic vacuum arc technology were also evaluated and analyzed by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. The scanning electron microscopy images show that the DLC foils contain hardly droplets through the double 90° filters. The X-ray photoelectron spectrum indicates that sp3 bonds of the DLC foils exceed 70%. The integral intensity ratio of the D peak to the G peak (ID/IG) measured by the Raman spectroscopy is0.78.

  9. Co-Rolled U10Mo/Zirconium-Barrier-Layer Monolithic Fuel Foil Fabrication Process

    SciTech Connect

    G. A. Moore; M. C. Marshall

    2010-01-01

    Integral to the current UMo fuel foil processing scheme being developed at Idaho National Laboratory (INL) is the incorporation of a zirconium barrier layer for the purpose of controlling UMo-Al interdiffusion at the fuel-meat/cladding interface. A hot “co-rolling” process is employed to establish a ~25-µm-thick zirconium barrier layer on each face of the ~0.3-mm-thick U10Mo fuel foil.

  10. Modeling the transmission of beta rays through thin foils in planar geometry.

    PubMed

    Stanga, D; De Felice, P; Keightley, J; Capogni, M; Ionescu, E

    2016-01-01

    This paper is concerned with the modeling of the transmission of beta rays through thin foils in planar geometry based on the plane source concept, using Monte Carlo simulation of electron transport and least squares fitting. Applications of modeling results for calculating the efficiency of large-area beta sources, transmission coefficient of beta rays through thin foils and the beta detection efficiency of large-area detectors used in surface contamination measurements are also presented. PMID:26524407

  11. Thin silicon foils produced by epoxy-induced spalling of silicon for high efficiency solar cells

    SciTech Connect

    Martini, R.; Kepa, J.; Stesmans, A.; Debucquoy, M.; Depauw, V.; Gonzalez, M.; Gordon, I.; Poortmans, J.

    2014-10-27

    We report on the drastic improvement of the quality of thin silicon foils produced by epoxy-induced spalling. In the past, researchers have proposed to fabricate silicon foils by spalling silicon substrates with different stress-inducing materials to manufacture thin silicon solar cells. However, the reported values of effective minority carrier lifetime of the fabricated foils remained always limited to ∼100 μs or below. In this work, we investigate epoxy-induced exfoliated foils by electron spin resonance to analyze the limiting factors of the minority carrier lifetime. These measurements highlight the presence of disordered dangling bonds and dislocation-like defects generated by the exfoliation process. A solution to remove these defects compatible with the process flow to fabricate solar cells is proposed. After etching off less than 1 μm of material, the lifetime of the foil increases by more than a factor of 4.5, reaching a value of 461 μs. This corresponds to a lower limit of the diffusion length of more than 7 times the foil thickness. Regions with different lifetime correlate well with the roughness of the crack surface which suggests that the lifetime is now limited by the quality of the passivation of rough surfaces. The reported values of the minority carrier lifetime show a potential for high efficiency (>22%) thin silicon solar cells.

  12. Active-matrix organic light-emitting diode displays on flexible metal foil substrates

    NASA Astrophysics Data System (ADS)

    Chuang, Ta-Ko

    This dissertation presents the research efforts that deal with the development of polysilicon thin film transistors (TFTs) on stainless-steel-foil substrates, the implementation of high-resolution flexible active-matrix backplanes, and the integration of the flexible polysilicon TFT backplanes with polymer light-emitting diodes. This research investigated the preparation of the steel foil substrates, the fabrication of flexible polysilicon TFT backplanes and polymer light emitting diodes (PLEDs), and the encapsulation of the flexible Active Matrix Polymer Light Emitting Diode displays. The first successful integration of polysilicon TFT backplane with PLEDs onto light-weight, robust, and flexible stainless-steel-foil substrates is presented. A top-emitting, monochrome active-matrix polymer light-emitting diode (AM-PLED) display, having the VGA (640x480) format and a 230 dpi resolution, is demonstrated for the first time on flexible stainless-steel-foil substrates. This work validates the compatibility of the polysilicon technology for high-resolution flexible AM-PLED displays. Furthermore, this work shows that a variety of other large-area microelectronics could also be implemented onto flexible metal foils, benefiting by the metal oil dimensional stability and ability to withstand high process temperature. In conclusion, the polysilicon TFT technology combining with metal-foil substrates opens up a new road for flexible displays as well as large-area flexible electronic applications.

  13. Stripper foil failure modes and cures at the Spallation Neutron Source

    SciTech Connect

    Cousineau, Sarah M; Galambos, John D; Kim, Sang-Ho; Ladd, Peter; Luck, Chris; Peters, Charles C; Polsky, Yarom; Shaw, Robert W; Raparia, Deepak; Macek, Robert James; Plum, Michael A

    2011-01-01

    The Spallation Neutron Source comprises a 1 GeV, 1.4 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the $H^0$ excited states created during the $H^-$ charge exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming $H^-$ beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  14. Stripper foil failure modes and cures at the Oak Rdige Spallation Neutron Source

    SciTech Connect

    Plum, M.A.; Raparia, D.; Cousineau, S.M.; Galambos, J.; Kim, S.H.; Ladd, P.; Luck, C.F.; Peters, C.C.; Polsky, Y.; Shaw, R.W.; Macek, R.J.

    2011-03-28

    The Oak Ridge Spallation Neutron Source comprises a 1 GeV, 1.5 MW linear accelerator followed by an accumulator ring and a liquid mercury target. To manage the beam loss caused by the H{sup 0} excited states created during the H{sup -} charge-exchange injection into the accumulator ring, the stripper foil is located inside one of the chicane dipoles. This has some interesting consequences that were not fully appreciated until the beam power reached about 840 kW. One consequence was sudden failure of the stripper foil system due to convoy electrons stripped from the incoming H{sup -} beam, which circled around to strike the foil bracket and cause bracket failure. Another consequence is that convoy electrons can reflect back up from the electron catcher and strike the foil and bracket. An additional contributor to foil system failure is vacuum breakdown due to the charge developed on the foil by secondary electron emission. In this paper we detail these and other interesting failure mechanisms and describe the improvements we have made to mitigate them.

  15. Deformation Behaviors of HIPped Foil Compared with Those of Sheet Titanium Alloys

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1999-01-01

    Micromechanics-based modeling of composite material behaviors requires an accurate assessment of the constituent properties and behaviors. For the specific case of continuous-fiber-reinforced metal matrix composites (MMC's) manufactured from a foil/fiber/foil process, much emphasis has been placed on characterizing foil-based matrix materials that have been fabricated in the same way as the composite. Such materials are believed to yield mechanical properties and behaviors that are representative of the matrix constituent within the composite (in situ matrix). Therefore, these materials are desired for micromechanics modeling input. Unfortunately, such foils are extremely expensive to fabricate and procure because of the labor-intensive rolling process needed to produce them. As a potential solution to this problem that would maintain appropriately representative in situ properties, the matrix constituent could be characterized with sheet-based materials, which are considerably less expensive to manufacture than foils, are more readily procured, and result in fewer plies to obtain a desired panel thickness. The critical question is, however, does the consolidated sheet material exhibit the same properties and behaviors as do the consolidated foils? Researchers at NASA Lewis Research Center's Life Prediction Branch completed a detailed experimental investigation to answer this question for three titanium alloys commonly used in metal matrix composite form.

  16. Fabrication of ultra-thin nanostructured bimetallic foils by Accumulative Roll Bonding and Asymmetric Rolling

    PubMed Central

    Yu, Hailiang; Lu, Cheng; Tieu, A. Kiet; Godbole, Ajit; Su, Lihong; Sun, Yong; Liu, Mao; Tang, Delin; Kong, Charlie

    2013-01-01

    This paper reports a new technique that combines the features of Accumulative Roll Bonding (ARB) and Asymmetric Rolling (AR). This technique has been developed to enable production of ultra-thin bimetallic foils. Initially, 1.5 mm thick AA1050 and AA6061 foils were roll-bonded using ARB at 200°C, with 50% reduction. The resulting 1.5 mm bimetallic foil was subsequently thinned to 0.04 mm through four AR passes at room temperature. The speed ratio between the upper and lower AR rolls was 1:1.3. The tensile strength of the bimetallic foil was seen to increase with reduction in thickness. The ductility of the foil was seen to reduce upon decreasing the foil thickness from 1.5 mm to 0.14 mm, but increase upon further reduction in thickness from 0.14 mm to 0.04 mm. The grain size was about 140 nm for the AA6061 layer and 235 nm for the AA1050 layer, after the third AR pass. PMID:23918002

  17. Development of a twin-flapping-foils unit to generate hydroelectric power from a water current

    NASA Astrophysics Data System (ADS)

    Abiru, H.; Yoshitake, A.; Nishi, M.

    2014-03-01

    Most of the conventional hydraulic turbines have been used for those sites having the static head larger than around 1 m. To extensively utilize not only large hydro-power but small one, which is one of renewable energy resources, development of an energy conversion system being operable under an extremely low head stream is crucial. A twin-flapping-foils unit which works based on the lift acting on the flapping foils in a stream is proposed. The foils oscillate in the transverse direction of the flow due to the lift. The pitching motion of the foils is caused by their own transverse movement through the mechanism consisting of crankshafts and con-rods. In the unit, each foil is supported vertically with a shaft in a manner of a cantilever so that no other parts need to be submerged in a water current. An experimental model with symmetric foils of 100 mm chord and 300 mm span was designed to generate average power output of 10 W at a flow velocity of 1 m/s. Through the tests carried out in the circulating water channel, the performance of the unit was verified to satisfy the design specifications. Further, the demonstration tests by using an irrigation stream performed for over a half year clarified the performance equivalent to that in the in-door water channel and the durability to a certain extent, and showed the applicability to the practical use of lighting a LED street lamp during night even at this scale model.

  18. Robust and intelligent bearing estimation

    DOEpatents

    Claassen, John P.

    2000-01-01

    A method of bearing estimation comprising quadrature digital filtering of event observations, constructing a plurality of observation matrices each centered on a time-frequency interval, determining for each observation matrix a parameter such as degree of polarization, linearity of particle motion, degree of dyadicy, or signal-to-noise ratio, choosing observation matrices most likely to produce a set of best available bearing estimates, and estimating a bearing for each observation matrix of the chosen set.

  19. Rotordynamics and Design Methods of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1999-01-01

    The feasibility of supporting a turbocharger rotor on air foil bearings is investigated based upon predicted rotordynamic stability, load accommodations, and stress considerations. It is demonstrated that foil bearings offer a plausible replacement for oil-lubricated bearings in diesel truck turbochargers. Also, two different rotor configurations are analyzed and the design is chosen which best optimizes the desired performance characteristics. The method of designing machinery for foil bearing use and the assumptions made are discussed.

  20. The polar bear phenomena

    SciTech Connect

    Maw, P.K. ); Lane, M.T.

    1990-02-01

    Results from measuring the thermal profile of polar bear pelts, reflectiveness of the pelts, and total thermal conversion data lead to the conclusion that the pelts from an ultra-efficient thermal diode for solar-thermal conversion. The transfer of the thermal energy from the surface of the fur to the skin where it is absorbed cannot be thermal, and therefore must be radiative. This process must have an efficiency of better than 90:0090 percent to account for measured values. The radiative transfer process is not known at present. To understand it, a detailed knowledge of the microscopic parameters of the pelts must be obtained. This is the current thrust of the polar solar research. If the process can be understood and synthesized,it will provide a major breakthrough in the area of solar-thermal energy conversion.

  1. Superconducting levitating bearing

    NASA Technical Reports Server (NTRS)

    Moon, Francis C. (Inventor)

    1996-01-01

    A superconducting bearing assembly includes a coil field source that may be superconducting and a superconducting structure. The coil field source assembly and superconducting structure are positioned so as to enable relative rotary movement therebetween. The structure and coil field source are brought to a supercooled temperature before a power supply induces a current in the coil field source. A Meissner-like effect is thereby obtained and little or no penetration of the field lines is seen in the superconducting structure. Also, the field that can be obtained from the superconducting coil is 2-8 times higher than that of permanent magnets. Since the magnetic pressure is proportioned to the square of the field, magnetic pressures from 4 to 64 times higher are achieved.

  2. Dynamical features of the wake behind a pitching foil.

    PubMed

    Deng, Jian; Sun, Liping; Shao, Xueming

    2015-12-01

    As an extension of the previous study on the three-dimensional transition of the wake behind a pitching foil [Deng and Caulfield, Phys. Rev. E 91, 043017 (2015)], this investigation draws a comprehensive map on the pitching frequency-amplitude phase space. First, by fixing the Reynolds number at Re=1700 and varying the pitching frequency and amplitude, we identify three key dynamical features of the wake: first, the transition from Bénard-von Kármán (BvK) vortex streets to reverse BvK vortex streets, and second, the symmetry breaking of this reverse BvK wake leading to a deflected wake, and a further transition from two-dimensional (2D) wakes to three-dimensional (3D) wakes. The transition boundary between the 2D and 3D wakes lies top right of the wake deflection boundary, implying a correlation between the wake deflection and the 2D to 3D wake transition, confirming that this transition occurs after the wake deflection. This paper supports the previous extensive numerical studies under two-dimensional assumption at low Reynolds number, since it is indeed two dimensional except for the cases at very high pitching frequencies or large amplitudes. Furthermore, by three-dimensional direct numerical simulations (DNSs), we confirm the previous statement about the physical realizability of the short wavelength mode at β=30 (or λ(z)=0.21) for Re=1500. By comparing the three-dimensional vortical structures by DNSs with that from the reconstruction of Floquet modes, we find a good consistency between them, both exhibiting clear streamwise structures in the wake. PMID:26764810

  3. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  4. Thermal conductivity of hydrate-bearing sediments

    USGS Publications Warehouse

    Cortes, D.D.; Martin, A.I.; Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate-saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate-bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces. Copyright 2009 by the American Geophysical Union.

  5. Novel Integrated Radial and Axial Magnetic Bearing

    NASA Technical Reports Server (NTRS)

    Blumenstock, Kenneth A.; Brown, Gary L.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    Typically, fully active magnetically suspended systems require one axial and two radial magnetic bearings. Combining radial and axial functions into a single device allows for more compact and elegant packaging. Furthermore, in the case of high-speed devices such as energy storage flywheels, it is beneficial to minimize shaft length to keep rotor mode frequencies as high as possible. Attempts have been made to combine radial and axial functionality, but with certain drawbacks. One approach requires magnetic control flux to flow through a bias magnet reducing control effectiveness, thus resulting in increased resistive losses. This approach also requires axial force producing magnetic flux to flow in a direction into the rotor laminate that is undesirable for minimizing eddy-current losses resulting in rotational losses. Another approach applies a conical rotor shape to what otherwise would be a radial heteropolar magnetic bearing configuration. However, positional non-linear effects are introduced with this scheme and the same windings are used for bias, radial, and axial control adding complexity to the controller and electronics. For this approach, the amount of axial capability must be limited. It would be desirable for an integrated radial and axial magnetic bearing to have the following characteristics, separate inputs for radial and axial control for electronics and control simplicity, all magnetic control fluxes should only flow through their respective air gaps and should not flow through any bias magnets for minimal resistive losses, be of a homopolar design to minimize rotational losses, position related non-linear effects should be minimized, and dependent upon the design parameters, be able to achieve any radial/axial force or power ratio as desired. The integrated radial and axial magnetic bearing described in this paper exhibits all these characteristics. Magnetic circuit design, design equations, and analysis results will be presented.

  6. Wind driven air pump

    SciTech Connect

    Beisel, V.A.

    1983-05-31

    An improved pump for lifting water from an underground source utilizes a wind motor for driving an oil-less air compressor eliminating oil contamination of ground water which is forced to the surface. The wind motor is movable to face the wind by means of a novel swivel assembly which also eliminates the formation and freezing of condensate within the airline from the compressor. The propeller blades of the wind motor and the tail section are formed from a pair of opposed convex air foil shaped surfaces which provide the propeller blades and the tail section with fast sensitivity to slight changes in wind direction and speed. A novel well tower for supporting the wind motor and compressor and for lifting the water from the underground source is an optional modification which requires no welding and eliminates the problem of condensate freezing in the airline going to the well. The wind driven air pump disclosed is lightweight, can be easily installed, is relatively inexpensive to produce and is virtually maintenance-free and capable of operating in winds exceeding 100 miles per hour.

  7. Service Lives Of Restored Bearings

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1988-01-01

    Rebuilt units last almost as long as new ones. Report describes theoretical and experiemental studies of lifetimes of restored ball and cylindrical-roller bearings. Results of this and related studies have implications of economy and safety in modern high-speed machinery, especially in aircraft industry, where inspection and rejection or replacing of bearings are new standard practice.

  8. Permanent-Magnet Meissner Bearing

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.

    1994-01-01

    Permanent-magnet meissner bearing features inherently stable, self-centering conical configuration. Bearing made stiffer or less stiff by selection of magnets, springs, and spring adjustments. Cylindrical permanent magnets with axial magnetization stacked coaxially on rotor with alternating polarity. Typically, rare-earth magnets used. Magnets machined and fitted together to form conical outer surface.

  9. High-Performance Ball Bearing

    NASA Technical Reports Server (NTRS)

    Bursey, Roger W., Jr.; Haluck, David A.; Olinger, John B.; Owen, Samuel S.; Poole, William E.

    1995-01-01

    High-performance bearing features strong, lightweight, self-lubricating cage with self-lubricating liners in ball apertures. Designed to operate at high speed (tens of thousands of revolutions per minute) in cryogenic environment like liquid-oxygen or liquid-hydrogen turbopump. Includes inner race, outer race, and cage keeping bearing balls equally spaced.

  10. Prediction and characterization of heat-affected zone formation due to neighboring nickel-aluminum multilayer foil reaction

    SciTech Connect

    Adams, David P.; Hirschfeld, Deidre A.; Hooper, Ryan J.; Manuel, Michelle V.

    2015-09-01

    Reactive multilayer foils have the potential to be used as local high intensity heat sources for a variety of applications. Much of the past research effort concerning these materials have focused on understanding the structure-property relationships of the foils that govern the energy released during a reaction. To enhance the ability of researchers to more rapidly develop technologies based on reactive multilayer foils, a deeper and more predictive understanding of the relationship between the heat released from the foil and microstructural evolution in the neighboring materials is needed. This work describes the development of a numerical model for the purpose of evaluating new foil-substrate combinations for screening and optimization. The model is experimentally validated using a commercially available Ni-Al multilayer foils and different alloys.

  11. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  12. Nonlinear control of magnetic bearings

    NASA Technical Reports Server (NTRS)

    Pradeep, A. K.; Gurumoorthy, R.

    1994-01-01

    In this paper we present a variety of nonlinear controllers for the magnetic bearing that ensure both stability and robustness. We utilize techniques of discontinuous control to design novel control laws for the magnetic bearing. We present in particular sliding mode controllers, time optimal controllers, winding algorithm based controllers, nested switching controllers, fractional controllers, and synchronous switching controllers for the magnetic bearing. We show existence of solutions to systems governed by discontinuous control laws, and prove stability and robustness of the chosen control laws in a rigorous setting. We design sliding mode observers for the magnetic bearing and prove the convergence of the state estimates to their true values. We present simulation results of the performance of the magnetic bearing subject to the aforementioned control laws, and conclude with comments on design.

  13. Geophagy by yellowstone grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.; Green, G.I.; Swalley, R.

    1999-01-01

    We documented 12 sites in the Yellowstone ecosystem where grizzly bears (Ursus arctos horribilis) had purposefully consumed soil (an activity known as geophagy). We also documented soil in numerous grizzly bear feces. Geophagy primarily occurred at sites barren of vegetation where surficial geology had been modified by geothermal activity. There was no evidence of ungulate use at most sites. Purposeful consumption of soil by bears peaked first from March to May and again from August to October, synchronous with peaks in consumption of ungulate meat and mushrooms. Geophageous soils were distinguished from ungulate mineral licks and soils in general by exceptionally high concentrations of potassium (K) and high concentrations of magnesium (Mg) and sulphur (S). Our results do not support the hypotheses that bears were consuming soil to detoxify secondary compounds in grazed foliage, as postulated for primates, or to supplement dietary sodium, as known for ungulates. Our results suggest that grizzly bears could have been consuming soil as an anti-diarrheal.

  14. Optical and electrical properties of ZnO nanowires grown on aluminium foil by non-catalytic thermal evaporation

    NASA Astrophysics Data System (ADS)

    Umar, Ahmad; Kim, Byoung-Kye; Kim, Ju-Jin; Hahn, Y. B.

    2007-05-01

    Well-crystallized ZnO nanowires were grown in large quantity on aluminium foil, by a non-catalytic thermal evaporation method using metallic zinc powder in the presence of oxygen at low temperature. Detailed structural and optical characterizations confirmed that the as-grown nanowires were highly crystalline, possessed a wurtzite hexagonal phase, had grown along the c-axis direction and exhibited excellent optical properties. The electrical characteristics of an individual nanowire were observed in air and vacuum by fabricating field-effect transistor (FET) devices. The transistors turned on typically between -5 and 0 V in ambient air. However, a large threshold voltage (Vth) shift, ~5 V, towards negative gate bias was observed in high vacuum. The shift of Vth is believed to be related to the charge transfer from the ZnO nanowire surface to the physically adsorbed OH or oxygen. Moreover, the fabricated FETs show a high conductivity ON/OFF ratio of about ~102 with ultraviolet (UV) light and hence provide an effective way to use these devices in nanoscale UV detectors and optoelectronic switches.

  15. Effects of bearing cleaning and lube environment on bearing performance

    NASA Technical Reports Server (NTRS)

    Ward, Peter C.

    1995-01-01

    Running torque data of SR6 ball bearings are presented for different temperatures and speeds. The data are discussed in contrast to generally used torque prediction models and point out the need to obtain empirical data in critical applications. Also, the effects of changing bearing washing techniques from old, universally used CFC-based systems to CFC-free aqueous/alkaline solutions are discussed. Data on wettability, torque and lubricant life using SR3 ball bearings are presented. In general, performance is improved using the new aqueous washing techniques.

  16. Nanodiamond Foils for H- Stripping to Support the Spallation Neutron Source (SNS) and Related Applications

    SciTech Connect

    Vispute, R D; Ermer, Henry K; Sinsky, Phillip; Seiser, Andrew; Shaw, Robert W; Wilson, Leslie L; Harris, Gary; Piazza, Fabrice

    2013-01-01

    Thin diamond foils are needed in many particle accelerator experiments regarding nuclear and atomic physics, as well as in some interdisciplinary research. Particularly, nanodiamond texture is attractive for this purpose as it possesses a unique combination of diamond properties such as high thermal conductivity, mechanical strength and high radiation hardness; therefore, it is a potential material for energetic ion beam stripper foils. At the ORNL Spallation Neutron Source (SNS), the installed set of foils must be able to survive a nominal five-month operation period, without the need for unscheduled costly shutdowns and repairs. Thus, a single nanodiamond foil about the size of a postage stamp is critical to the entire operation of SNS and similar sources in U.S. laboratories and around the world. We are investigating nanocrystalline, polycrystalline and their admixture films fabricated using a hot filament chemical vapor deposition (HFCVD) system for H- stripping to support the SNS at Oak Ridge National Laboratory. Here we discuss optimization of process variables such as substrate temperature, process gas ratio of H2/Ar/CH4, substrate to filament distance, filament temperature, carburization conditions, and filament geometry to achieve high purity diamond foils on patterned silicon substrates with manageable intrinsic and thermal stresses so that they can be released as free standing foils without curling. An in situ laser reflectance interferometry tool (LRI) is used for monitoring the growth characteristics of the diamond thin film materials. The optimization process has yielded free standing foils with no pinholes. The sp3/sp2 bonds are controlled to optimize electrical resistivity to reduce the possibility of surface charging of the foils. The integrated LRI and HFCVD process provides real time information on the growth of films and can quickly illustrate growth features and control over film thickness. The results are discussed in the light of development

  17. Strengthening effect of Cr 2O 3 thermally grown on alloy 617 foils at high temperature

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Li, F. X.; Ko, G. D.; Kang, K. J.

    2010-10-01

    Alloy 617 has been selected for the intermediate heat exchanger (IHX) of the very high temperature gas-cooled reactor (VHTR) for the economic production of electricity and hydrogen. In this work, the strengthening effects of Cr 2O 3 thermally grown on alloy 617 foils at 800 and 900 °C were investigated. A micro-tensile test system was used for in situ measurement of tensile strain in the foils and superficial thermally-grown Cr 2O 3. Each foil was heated until the thermally-grown Cr 2O 3 reached a predetermined thickness; then, a load was applied to measure the tensile response. As the Cr 2O 3 layer thickened on the surface of the metal foils, the strengths and stiffnesses of the foils were enhanced. We assumed that there was no interaction between the substrate and the superficial chromia, and the strength of Cr 2O 3 itself was measured. At 800 °C, the Cr 2O 3 was brittle and the strength was governed by crack initiation. At 900 °C, the Cr 2O 3 was much more ductile, and strain hardening was observed for even the smallest thickness. The strength was maintained even after crack initiation was observed on the surface.

  18. Investigations on electroluminescent tapes and foils in relation to their applications in automotive

    NASA Astrophysics Data System (ADS)

    Plotog, Ioan

    2015-02-01

    The electroluminescent (EL) tapes or foils having barrier films for an additional level of protection against the toughest environments conditions, offer a large area of applications. The EL lights, due to their characteristics, began to be used not only in the entertainment industry, but also for automotive and aerospace applications. In the paper, the investigations regarding EL foils technical performances in relation to their applications as light sources in automotive ambient light were presented. The experiments were designed based on the results of EL foils electrical properties previous investigations done in laboratory conditions, taking into account the range of automotive ambient temperatures for sinusoidal alternative supply voltage. The measurements for different temperatures were done by keeping the EL foils into electronic controlled oven that ensures the dark enclosure offering conditions to use a lux-meter in order to measure and maintain under control light emission intensity. The experiments results define the EL foils characteristics as load in automotive ambient temperatures condition, assuring so the data for optimal design of a dedicated inverter.

  19. Initial Tests of Commercially Manufactured Large GEM Foils and EIC Triple-GEM Detector Design

    NASA Astrophysics Data System (ADS)

    Kraishan, Amani

    2015-10-01

    Tracking detectors exist in many different varieties and operate on different physical principles, depending on the type of particle that has to be tracked, on the desired spatial resolution, and on the area that has to be covered. Gas electron multiplier (GEM) detectors, operating on the principle of electron amplification in gases, provide good spatial resolution for charged particles and can be built with large sensitive areas. Currently CERN is the only main distributor of large area GEM foils, and will be hard pressed to keep up with the increasing demand. To help satisfy the GEM foil demand, the commercialization of large area GEM foils via the single mask process has been established by Tech-Etch of Plymouth, MA, USA. Here we present our initial quality assurance tests of the foil's electrical and geometrical properties for sizes up to 40 X 40 cm2. Using our electrical and optical measurement setup, we also measured 10 X 10 cm2 GEMs produced by CERN and compare it with the Tech-Etch foils. Furthermore, we will present initial R&D design work done toward building a potential triple-GEM tracking detector to be used at a future experiment at an Electron-Ion Collider (EIC) facility.

  20. Energy Loss of High Intensity Focused Proton Beams Penetrating Metal Foils

    NASA Astrophysics Data System (ADS)

    McGuffey, C.; Qiao, B.; Kim, J.; Beg, F. N.; Wei, M. S.; Evans, M.; Fitzsimmons, P.; Stephens, R. B.; Chen, S. N.; Fuchs, J.; Nilson, P. M.; Canning, D.; Mastrosimone, D.; Foord, M. E.

    2014-10-01

    Shortpulse-laser-driven intense ion beams are appealing for applications in probing and creating high energy density plasmas. Such a beam isochorically heats and rapidly ionizes any target it enters into warm dense matter with uncertain transport and stopping properties. Here we present experimental measurements taken with the 1.25 kJ, 10 ps OMEGA EP BL shortpulse laser of the proton and carbon spectra after passing through metal foils. The laser irradiated spherically curved C targets with intensity 4×1018 W/cm2, producing proton beams with 3 MeV slope temperature and a sharp low energy cutoff at 5 MeV which has not been observed on lower energy, shorter pulse intense lasers. The beam either diverged freely or was focused to estimated 1016 p +/cm2 ps by a surrounding structure before entering the metal foils (Al or Ag and a Cu tracer layer). The proton and ion spectra were altered by the foil depending on material and whether or not the beam was focused. Transverse proton radiography probed the target with ps temporal and 10 micron spatial resolution, indicating an electrostatic field on the foil may also have affected the beam. We present complementary particle-in-cell simulations of the beam generation and transport to the foils. This work was supported by the DOE/NNSA National Laser User Facility program, Contract DE-SC0001265.