Science.gov

Sample records for air formaldehyde concentrations

  1. Assessment of workplace air concentrations of formaldehyde during and before working hours in medical facilities

    PubMed Central

    HIGASHIKUBO, Ichiro; MIYAUCHI, Hiroyuki; YOSHIDA, Satoru; TANAKA, Shinsuke; MATSUOKA, Mitsunori; ARITO, Heihachiro; ARAKI, Akihiro; SHIMIZU, Hidesuke; SAKURAI, Haruhiko

    2017-01-01

    Workplace air concentrations of formaldehyde (FA) in medical facilities where FA and FA-treated organs were stored and handled were measured before and during working hours and assessed by the official method specified by Work Environment Measurement Law. Sixty-percent of the total facilities examined were judged as inappropriately controlled work environment. The concentrations of FA before working hours by spot sampling were found to exceed 0.1 ppm in some facilities, and tended to increase with increasing volume of containers storing FA and FA-treated materials. Regression analysis revealed that logarithmic concentrations of FA during working hours by the Law-specified analytical method were highly correlated with those before working hours by spot sampling, suggesting the importance for appropriate storing methods of FA and FA-treated materials. The concentrations of FA during working hours are considered to be lowered by effective ventilation of FA-contaminated workplace air and appropriate storage of FA and FA-treated materials in plastic containers in the medical facilities. In particular, such improvement by a local exhaust ventilation system and tightly-sealed containment of FA-treated material were urgently needed for the dissecting room where FA-treated cadavers were prepared and handled for a gross anatomy course in a medical school. PMID:28090065

  2. Isotopic composition of formaldehyde in urban air.

    PubMed

    Rice, Andrew L; Quay, Paul

    2009-12-01

    The isotopic composition of atmospheric formaldehyde was measured in air samples collected in urban Seattle, Washington. A recently developed gas chromatography-isotope ratio mass spectrometry analytical technique was used to extract formaldehyde directly from whole air, separate it from other volatile organic compounds, and measure its (13)C/(12)C and D/H ratio. Measurements of formaldehyde concentration were also made concomitant with isotope ratio. Results of the analysis of nine discrete air samples for delta(13)C-HCHO have a relatively small range in isotopic composition (-31 to -25 per thousand versus VPDB [+/-1.3 per thousand]) over a considerable concentration range (0.8-4.4 ppb [+/-15%]). In contrast, analyses of 17 air samples for deltaD-HCHO show a large range (-296 to +210 per thousand versus VSMOW [+/-50 per thousand]) over the concentrations measured (0.5-2.9 ppb). Observations of deltaD are weakly anticorrelated with concentration. Isotopic data are interpreted using both source- and sink-based approaches. Results of delta(13)C-HCHO are similar to those observed previously for a number of nonmethane hydrocarbons in urban environments and variability can be reconciled with a simple sink-based model. The large variability observed in deltaD-HCHO favors a source-based interpretation with HCHO depleted in deuterium from primary sources of HCHO (i.e., combustion) and HCHO enriched in deuterium from secondary photochemical sources (i.e., hydrocarbon oxidation).

  3. Formaldehyde: a candidate toxic air contaminant. Final report

    SciTech Connect

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  4. Formaldehyde concentrations in biology department teaching facilities

    SciTech Connect

    Korky, J.K.; Schwarz, S.R.; Lustigman, B.K.

    1987-05-01

    As students and faculty in the biological sciences can attest, low grade exposure to formaldehyde by skin contact and inhalation during dissection is quite irritating. Health effects noted upon exposure to formaldehyde at concentrations of 0.1 to 5 ppm are burning of the eyes, lacrimation, and general irritation to the upper respiratory passages. Symptoms reported for higher exposures, 10 to 20 ppm, include coughing, tightening of the chest, headache and palpitation of the heart. Long exposures at 50 to 100 ppm or more might result in pulmonary edema, pneumonitis, and even death. There is also concern with regard to potential long term detrimental effects. Formaldehyde has been cited as a possible carcinogen in animals. It is a known mutagen in laboratory experimental systems involving Drosophilia, grasshoppers, flowering plants, fungi and bacteria. Animal testing has led investigators to postulate that the primary damage resulting from formaldehyde exposure may involve DNA synthesis and ribosomal RNA transcription. The National Institute of Occupational Safety and Health Administration (NIOSH) investigators have been studying occupational exposure to formaldehyde for over a decade in a variety of industries. This study was undertaken to assess formaldehyde concentrations in biology department dissecting facilities in the 1982-1983 academic year in order if routine dissection produces levels of formaldehyde which were unsafe according to NIOSH and OSHA standards. Chronic formaldehyde exposure is cause for greater concern than incidental exposure.

  5. Evaluation of a passive air sampler for measuring indoor formaldehyde.

    PubMed

    Kim, Sun-Tae; Yim, Bongbeen; Jeong, Jaeho

    2007-04-01

    A passive air sampler, using 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, was evaluated for the determination of formaldehyde in indoor environments. Chromatography paper cleaned using a 3% hydrogen peroxide solution was experimentally determined as being the optimum absorption filter for the collection of formaldehyde (0.05 microg cm(-2) formaldehyde). From a linear-regression analysis between the mass of formaldehyde time-collected on a passive air sampler and the formaldehyde concentration measured by an active sampler, the sampling rate of the passive air sampler was 1.52 L h(-1). The sampling rate, determined for the passive air sampler in relation to the temperature (19 - 28 degrees C) and the relative humidity (30 - 90%), were 1.56 +/- 0.04 and 1.58 +/- 0.07 L h(-1), respectively. The relationship between the sampling rate and the air velocity was a linear-regression within the observed range. In the case of exposed samplers, the stability of the collected formaldehyde decreased with increasing storage time (decrease of ca. 25% after 22 days); but with the unexposed samplers the stability of the blank remained relatively unchanged for 7 days (decrease of ca. 37% after 22 days). The detection limits for the passive air sampler with an exposure time of 1 day and 7 days were 10.4 and 1.48 microg m(-3), respectively.

  6. Formaldehyde Concentration Dynamics of the International Space Station Cabin Atmosphere

    NASA Technical Reports Server (NTRS)

    Perry, J. L.

    2005-01-01

    Formaldehyde presents a significant challenge to maintaining cabin air quality on board crewed spacecraft. Generation sources include offgassing from a variety of non-metallic materials as well as human metabolism. Because generation sources are pervasive and human health can be affected by continual exposure to low concentrations, toxicology and air quality control engineering experts jointly identified formaldehyde as a key compound to be monitored as part the International Space Station's (ISS) environmental health monitoring and maintenance program. Data acquired from in-flight air quality monitoring methods are the basis for assessing the cabin environment's suitability for long-term habitation and monitoring the performance of passive and active controls that are in place to minimize crew exposure. Formaldehyde concentration trends and dynamics served in the ISS cabin atmosphere are reviewed implications to present and future flight operations discussed.

  7. Air formaldehyde and solvent concentrations during surface coating with acid-curing lacquers and paints in the woodworking and furniture industry.

    PubMed

    Thorud, Syvert; Gjolstad, Merete; Ellingsen, Dag G; Molander, Paal

    2005-06-01

    An investigation of contemporary exposure to formaldehyde and organic solvents has been carried out during surface coating with acid-curing lacquers and paints in the Norwegian woodworking and furniture industry over a period of 3 years. The investigation covered 27 factories of different sizes and with different types of production, and totally 557 parallel formaldehyde and solvent samples were collected. The formaldehyde concentration (geometric mean) was 0.15 ppm (range 0.01-1.48 ppm) with about 10% of the samples exceeding the Norwegian occupational exposure limit of 0.5 ppm. The solvent concentration as additive effect (geometric mean) was 0.13 (range 0.0004-5.08) and about 5% of the samples exceeded the Norwegian occupational exposure limit. The most frequently occurring solvents from acid-curing lacquers were n-butyl acetate, ethanol, ethyl acetate and 1-butanol, which were found in 88-98% of the samples. Toluene, n-butyl acetate and 1-butanol were the only solvents with maximum concentrations exceeding their respective occupational exposure limits. Curtain painting machine operators were exposed to the highest concentrations of both formaldehyde (geometric mean 0.51 ppm, range 0.08-1.48 ppm) and organic solvents (additive effect, geometric mean 1.18, range 0.02-5.08). Other painting application work tasks such as automatic and manual spray-painting, manual painting and dip painting, showed on average considerably lower concentrations of both formaldehyde (geometric means 0.07-0.16 ppm) and organic solvents (additive effect, geometric mean 0.02-0.18). Non-painting work tasks also displayed moderate concentrations of formaldehyde (geometric means 0.11-0.17 ppm) and organic solvents (additive effect, geometric mean 0.04-0.07).

  8. Indoor and outdoor formaldehyde concentrations in homes in residential areas in Greater Cairo.

    PubMed

    Khoder, M I; Shakour, A A; Farag, S A; Abdel Hameed, A A

    2000-04-01

    Indoor and outdoor measurements of formaldehyde were conducted at seven flats located in residential areas in Greater Cairo, during spring and summer seasons 1999. The mean daytime formaldehyde concentrations in kitchens, bedrooms and living rooms were 89, 100 and 100 ppb, respectively, in the seven flats. Significant positive correlations were found between the concentrations of formaldehyde found in these three rooms. On the other hand, no significant differences were found between the mean formaldehyde concentrations in these three rooms. The maximum mean concentration of formaldehyde (147 ppb) was recorded in a new flat, while the minimum concentration (43 ppb) was observed in an old flat. The maximum hourly and daytime concentrations were 350 and 225 ppb, respectively. Air temperature, relative humidity and the age of the flat are factors affecting the emission and concentration of formaldehyde. The maximum indoor and outdoor formaldehyde concentrations were recorded during the summer season. During the spring, 38% of the samples indicated that the concentration of formaldehyde in the seven flats exceeded 0.1 ppm, the American Society of Heating, Refrigerating, and Air Conditioning Engineers' (ASHRAE) standard; in the summer, this figure increased to 53%.

  9. Measurement of formaldehyde in clean air

    SciTech Connect

    Neitzert, V.; Seiler, W.

    1981-01-01

    A method for the measurement of small amounts of formaldehyde in air has been developed. The method is based on the derivatization of HCHO with 2.4-Denetrophenylhydragine, forming 2.4-Dentrophylhydragine, measured with GC-ECD-technique. HCHO is preconcentrated using a cryogenic sampling technique. The detection limit is 0.05 ppbv for a sampling volume of 200 liter. The method has been applied for measurements in continental and marine air masses showing HCHO mixing ratios of 0.4--5.0 ppbv and 0.2--1.0 ppbv, respectively. HCHO mixing ratios show diurnal variations with maximum values during the early afternoon and minimum values during the early morning. In continental air, HCHO mixing ratios are positively correlated with CO and SO/sub 2/, indicating anthropogenic HCHO sources which are estimated to be 6--11 x 10/sup 12/g/year/sup -1/ on a global scale.

  10. Indoor aldehydes concentration and emission rate of formaldehyde in libraries and private reading rooms

    NASA Astrophysics Data System (ADS)

    Kim, Jeonghoon; Kim, Seojin; Lee, Kiyoung; Yoon, Dongwon; Lee, Jiryang; Ju, DaeYoung

    2013-06-01

    Aldehydes are of particularly interest due to their potential adverse impact on human health. Formaldehyde is one of the most abundant indoor pollutants. To improve indoor air quality, identifying and removing the major emission sources of formaldehyde would be desirable. The purposes of this study were to determine aldehyde concentrations in libraries and reading rooms and to identify emission sources of formaldehyde in private reading rooms. Indoor aldehyde concentrations were quantified at 66 facilities, including public libraries, children's libraries, public reading rooms, and private reading rooms, in the Seoul metropolitan area. Emission fluxes of formaldehyde from the surfaces of desks, chairs, floors, walls, and ceilings in 19 private reading rooms were measured using a passive emission colorimetric sensor. Indoor aldehyde (formaldehyde, acetaldehyde, propioaldehyde, benzaldehyde, and hexaldehyde) levels were significantly higher than outdoor levels. Indoor formaldehyde geometric mean concentrations in private reading rooms (119.3 μg m-3) were significantly higher than in public libraries (29.2 μg m-3), children's libraries (29.3 μg m-3), and public reading rooms (40.8 μg m-3). Indoor formaldehyde levels were associated with relative humidity. In private reading rooms, the emission rates from desks (255.5 ± 214.8 μg h-1) and walls (231.7 ± 192.3 μg h-1) were significantly higher than that from chairs (79.6 ± 88.5 μg h-1). Desks (31%) and walls (29%) were the major emission sources of formaldehyde in 14 facilities in which measurements exceeded the indoor standard of 100 μg m-3. The age of interior materials was a significant factor for indoor formaldehyde emission flux. Controlling the emission rates of desks and walls is recommended to improve formaldehyde concentrations in private reading rooms.

  11. Study relating residential formaldehyde concentrations and acute health symptoms in adult women

    SciTech Connect

    Zollinger, T.; Godish, T.

    1986-09-01

    This study consisted of a survey of 180 families who requested formaldehyde sampling of their homes through the local health or state health departments in Indiana in 1980-1985. At the time that the air sample was collected, the residents of the house were interviewed regarding the presence and severity of 22 acute health symptoms suspected to be associated with formaldehyde exposure. Surveyed individuals did not know the concentration of formaldehyde in their home at the time of the interview. For the purpose of this report, analysis was limited to the oldest (typically the only) adult woman in the household who was interviewed on the day that the air sample was taken (n = 163). The level of formaldehyde in the samples ranged from less than 0.010 ppm to 0.750 ppm. Comparisons of the formaldehyde concentrations with the health symptoms indicate that formaldehyde levels above 0.050 ppm did not increase the likelihood of the women to report the presence of any of the acute health symptoms studied. However, formaldehyde levels above 0.100 ppm significantly increased the likelihood of the women to report eye and sinus irritation, difficulty in breathing and sleeping, runny nose, and chest pain.

  12. An automatic monitor of formaldehyde in air by a monitoring tape method.

    PubMed

    Nakano, N; Nagashima, K

    1999-06-01

    An automatic monitor has been developed for measuring formaldehyde in air using a sensitive tape for formaldehyde. It is based on the color change of the tape on reaction with formaldehyde. The porous cellulose tape, containing silica gel as an absorbent and impregnated with the processing solution containing hydroxylamine sulfate, Methyl Yellow (pH indicator; pH 2.9-4.0, red-yellow), glycerin and methanol, was found to be a highly sensitive means of detecting formaldehyde and maintains a stable sensitivity. When the tape was exposed to a sample of air containing formaldehyde, the color of the tape changed from yellow to red. The degree of color change was proportional to the concentration of formaldehyde at a constant sampling time and flow rate, and it could be recorded by measuring the intensity of reflected light (555 nm). The tape could be used to detect down to 0.08 ppm (World Health Organization standard) of formaldehyde with a sampling time of 30 min and a flow rate of 100 mL min-1. Reproducibility tests showed that the relative standard deviation of response (n = 10) was 3.8% for 0.1 ppm formaldehyde. The monitor is simple, specific, capable of unattended operation and is recommended for both laboratory and field operation.

  13. [Observational study of formaldehyde in air, rain and fog water at a site on the Mangdang Mountain of Fujian, China].

    PubMed

    Wang, Xiao-yan; Wang, Hui-xiang; Ma, Yi-yuan

    2010-08-01

    Through 2,4-dinitrophenylhydrazine (DNPH) high-performance liquid chromatography (HPLC) method, the levels of formaldehyde in ambient air, rain and fog samples were measured in Mangdang Mountain, Fujian Province, from March to April 2009. The average concentrations of formaldehyde in ambient air, rain and fog are 4.0 x 10(-10), 2.19 micromol/L and 2.94 micromol/L, respectively. Based on previous researches, this study described formaldehyde hydrolysis and reacting with S(IV) and other chemical reaction processes in liquid phase, explaining the phenomenon that the solubility of formaldehyde in the liquid phase is higher than the theoretical value. On-site measured Henry coefficients (Hme) and the effective Henry coefficients (H*) were derived from concentration of formaldehyde in ambient air, rain and fog samples and references. Comparing Hme and H*, this study found that the measured liquid phase concentrations of formaldehyde are higher than the theoretical concentrations, consistent with the references. The further founding is that Hme/H* in fog is higher than in rain, proving the result of Mangdang Mountain that the concentration of formaldehyde in fog is higher than in rain. Considering the climatic characteristics of Mangdang Mountain in spring, the wet deposition of formaldehyde is an important way in this area.

  14. Indoor formaldehyde concentrations in urban China: Preliminary study of some important influencing factors.

    PubMed

    Huang, Shaodan; Wei, Wenjuan; Weschler, Louise B; Salthammer, Tunga; Kan, Haidong; Bu, Zhongming; Zhang, Yinping

    2017-07-15

    The Huai River and Qingling Mountain divide (H-Q) divide China into north and south with respect to public policies for building construction and operation practises. China's building energy efficiency standard mandates that air exchange rates be 0.5h(-1) north of the H-Q divide and 1h(-1) south of the divide. China's heating policy allows space heating systems only north of the H-Q divide. Consequently, indoor temperature and humidity differ considerably between north and south. A theoretical model using indoor temperature, humidity, and air change rate was developed to predict indoor formaldehyde concentrations. Data for 39 cities were obtained from 42 studies. There was good agreement between the literature and modelling in a theoretical reference room. The United States Environmental Protection Agency (U.S.EPA) model was applied to estimate cancer risk from formaldehyde exposure indoors. The median indoor formaldehyde concentration for renovation ever from 2002 to 2015 in Chinese cities was 125μg/m(3), which is higher than the WHO threshold, 100μg/m(3). The median indoor formaldehyde concentrations in the north were higher than in the south (0.5 times higher for dwellings renovated within the past year and 0.2 times higher for renovation ever), driven by the much higher northern winter concentrations (40-1320%). The U.S.EPA model predicts that the lifetime formaldehyde related cancer risk for people living north of the H-Q divide is 1.2 times greater than for people living south. This can be partly explained by greater indoor exposure to formaldehyde for Chinese living north of the H-Q divide.

  15. Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards

    PubMed Central

    Golden, Robert

    2011-01-01

    Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard. PMID:21635194

  16. The predicted impact of increased formaldehyde emissions from industrial flares on ozone concentrations in Houston, TX.

    NASA Astrophysics Data System (ADS)

    Wang, C. T.; Vizuete, W.

    2015-12-01

    Houston features one of the largest concentrations of the petrochemical industry in all of North America and flares are widely used there as the final treatment process for unwanted volatile organic compounds. These flares have the potential to produce formaldehyde as the result of incomplete combustion. Formaldehyde emissions are an important precursor to producing hydroxyl radicals and thus can impact atmospheric chemistry and the formation of ozone. Formaldehyde emissions from flares, however, are difficult to measure in situ. Recently, alternative measurement techniques have been developed, like open path optical methods, that allow the direct measurement of flare emissions from the facility's fence line (Johansson et al., 2014; Pikelnaya, Flynn, Tsai, & Stutz, 2013). This observational data indicates that the emission rate of formaldehyde from flares is about 10-20 times greater than those found in the regulatory models developed by the Texas Commission on Environmental Quality's (TCEQ). This research will use air quality models to quantify the impact that increased formaldehyde emission from flares will have on Houston ozone concentrations. This study relies on the CAMx model (version 6.1) and emission data developed by Alpine Geophysics LLC (AG) and Climate & Atmospheric Research Associates (CARA) based on the combined databases from TCEQ, U.S. Environmental Protection Agency (EPA), and National Emission Inventory (NEI2008). This model also used meteorology data from the results of WRF-ARW dynamics. The CAMx generated process analysis data will also be used to quantify changes in radical budgets and NOx budgets critical to ozone production.

  17. Formaldehyde quantitation in air samples by thiazolidine derivatization: Factors affecting analysis

    SciTech Connect

    Yasuhara, A.; Shibamoto, T. )

    1989-11-01

    A new method for the determination of trace levels of formaldehyde in air was developed and validated. The method is based on the reaction of formaldehyde with cysteamine to form thiazolidine. Air samples containing trace levels of formaldehyde were prepared from paraformaldehyde. The percent yield of formaldehyde from paraformaldehyde was 85.1 +/- 1.14%. Air samples were bubbled into an aqueous cysteamine trap. Thiazolidine formed from formaldehyde and cysteamine in the trap was determined by gas chromatography with a fused silica capillary column and a nitrogen-phosphorus detector (NPD). The lowest detection level for thiazolidine was 17.2 pg, equivalent to 5.80 pg formaldehyde. The recovery efficiency of trace gas phase formaldehyde in air was greater than 90%. Formaldehyde levels in ambient laboratory air were 48.9-56.2 ppb (v/v).

  18. Formaldehyde

    Integrated Risk Information System (IRIS)

    Formaldehyde ; CASRN 50 - 00 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effec

  19. Air Data - Concentration Map

    EPA Pesticide Factsheets

    Make a map of daily concentrations over several days. The daily air quality can be displayed in terms of the Air Quality Index or in concentration ranges for certain PM species like organic carbon, nitrates, and sulfates.

  20. Formaldehyde emission behavior of building materials: on-site measurements and modeling approach to predict indoor air pollution.

    PubMed

    Bourdin, Delphine; Mocho, Pierre; Desauziers, Valérie; Plaisance, Hervé

    2014-09-15

    The purpose of this paper was to investigate formaldehyde emission behavior of building materials from on-site measurements of air phase concentration at material surface used as input data of a box model to estimate the indoor air pollution of a newly built classroom. The relevance of this approach was explored using CFD modeling. In this box model, the contribution of building materials to indoor air pollution was estimated with two parameters: the convective mass transfer coefficient in the material/air boundary layer and the on-site measurements of gas phase concentration at material surfaces. An experimental method based on an emission test chamber was developed to quantify this convective mass transfer coefficient. The on-site measurement of gas phase concentration at material surface was measured by coupling a home-made sampler to SPME. First results had shown an accurate estimation of indoor formaldehyde concentration in this classroom by using a simple box model.

  1. FIAM-pwp-Formaldehyde Indoor Air Model – Pressed Wood Products

    EPA Pesticide Factsheets

    The Formaldehyde Indoor Air Model-pressed wood products (FIAM-pwp) user guide contains information on the equations and defaults used to estimate exposure from formaldehye emitted from pressed wood products.

  2. Formaldehyde concentrations in workrooms resulting from off-gassing from sandpaper.

    PubMed

    Turner, L K; Warren, K R; Baker, L R; Laing, S J

    1984-07-01

    Formaldehyde was found to off-gas from flint sandpaper that contained an urea-formaldehyde resin as the minor component in a double glue system. Approximately 2000 sheets of sandpaper in a 115 m3 (4050 ft3) ship's storeroom with no mechanical ventilation produced a formaldehyde concentration of at least 4.5 ppm that was uniform throughout the compartment. A contributing factor was elevated compartment temperature due to high ambient temperature and the heating of the ship's steel hull by direct exposure to the sun.

  3. Formaldehyde in remote marine air and rain - Flux measurements and estimates

    NASA Astrophysics Data System (ADS)

    Zafiriou, O. C.; Alford, J.; Herrera, M.; Peltzer, E. T.; Gagosian, R. B.; Liu, S. C.

    1980-05-01

    The tropospheric trace constituent formaldehyde, HCHO, was measured in rain and in the gas phase during the wet season at Enewetak Atoll, a remote marine site in the central equatorial Pacific. Rainwater averaged 8 + or - 2 microgram/kg; the gas phase averaged 0.4 + or 0.2 ppbv (0.5 microgram/cu m). These values, especially the rain, are among the lowest reported to date. The formaldehyde flux to the sea by rainout and washout extrapolates to 0.010 g/sq m per year. The gaseous flux into the sea surface is estimated to be 0.05 g/sq m per year by an air-sea exchange calculation that takes into account enhanced uptake by hydroxide-catalyzed formaldehyde hydration. The measured mixing ratio is close to the 0.18 ppbv prediction of a tropospheric chemistry model calculation. The methane oxidation chain probably is the sole formaldehyde source in the Enewetak area. The total formaldehyde flux as carbon into the ocean is approximately 2% of the estimated total organic carbon from rainout and washout. About 2-4% of the calculated column formaldehyde production is removed from the atmosphere by these processes.

  4. Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Lei, W.; Zavala, M.; de Foy, B.; Volkamer, R.; Molina, M. J.; Molina, L. T.

    2009-04-01

    Formaldehyde (HCHO) is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA) is characterized by high anthropogenic emissions of HCHO (primary HCHO), which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO), lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3) formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only to contribute significantly to the ambient HCHO concentration, but also to enhance the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%; moreover primary HCHO tends to make O3 both production rates and ambient concentration peak half an hour earlier. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early in the morning, peaks at mid-morning and is sustained until early afternoon.

  5. Formaldehyde exposure in nonoccupational environments

    SciTech Connect

    Dally, K.A.; Hanahan, L.P.; Woodbury, M.A.; Kanarek, M.S.

    1981-01-01

    Free formaldehyde may be released from wood products and foam insulation where urea-formaldehyde resins have been used. From January, 1978 to November, 1979, 100 structures were investigated by the Wisconsin Division of Health after receiving complaints of health problems from occupants. Air samples were collected in midget impingers and analyzed for formaldehyde content by the chromotropic acid procedure. Health information was obtained from the occupants via questionnaires. Mean formaldehyde concentrations observed ranged from below the limit of detection to 3.68 ppm. Eye irritation, burning eyes, runny nose, dry or sore throat, headache, and cough were the primary symptoms which were reported by the occupants. Statistically significant associations were seen between formaldehyde levels and age of home/building materials. Observations presented suggest nonoccupational, indoor environmental exposure to formaldehyde is significant and may reach levels which exceed occupational exposure standards.

  6. Developing a Reference Material for Formaldehyde Emissions Testing; Final Report

    EPA Science Inventory

    Exposure to formaldehyde has been shown to produce broad and potentially severe adverse human health effects. With ubiquitous formaldehyde sources in the indoor environment, formaldehyde concentrations in indoor air are usually higher than outdoors, ranging from 10 to 4000 μg/m3....

  7. Hollow latex particles functionalized with chitosan for the removal of formaldehyde from indoor air.

    PubMed

    Nuasaen, Sukanya; Opaprakasit, Pakorn; Tangboriboonrat, Pramuan

    2014-01-30

    Chitosan and polyethyleneimine (PEI) functionalized hollow latex (HL) particles were conveniently fabricated by coating poly(methyl methacrylate-co-divinyl benzene-co-acrylic acid) (P(MMA/DVB/AA)) HL particles with 5 wt% chitosan or 14 wt% PEI. The materials were used as formaldehyde adsorbent, where their adsorbent activity was examined by Fourier Transform Infrared (FTIR) spectroscopy. The nucleophilic addition of amines to carbonyls generated a carbinolamine intermediate with a characteristic band at 1,020 cm(-1) and Schiff base product at 1650 cm(-1), whose intensity increased with prolonged formaldehyde exposure times. The major products observed in HL-chitosan were carbinolamine and Schiff base, whereas a small amount of Schiff base was obtained in HL-PEI particles, confirming a chemical bond formation without re-emission of formaldehyde. Compared to HL-PEI, HL-chitosan possesses higher formaldehyde adsorption efficiency. Besides providing opacity and whiteness, the multilayer HL-chitosan particles can effectively remove indoor air pollutants, i.e., formaldehyde gas, and, hence, would be useful in special coating applications.

  8. A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air

    NASA Astrophysics Data System (ADS)

    Xia, Hui; Hu, Jing; Tang, Jie; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2016-11-01

    A simple colorimetric sensor array based on red-emitting CdTe QDs and green-colored fluorescein that exhibited RGB-type color change was proposed for visual detection of trace formaldehyde. In the presence of formaldehyde, the red fluorescence from CdTe QDs was quenched while the green fluorescein was inert thus as a reference. Through harvesting the varied quenching efficiency of different ligand-capped CdTe QDs by formaldehyde, a simple sensor array can be constructed for both selective detection of formaldehyde with high sensitivity (LOD of 0.08 ppm) and identification of the existence of potential interference from acetaldehyde. The quenching mechanisms of formaldehyde toward different ligand capped CdTe QDs were studied with fluorescence lifetime, zeta potential, and also theoretical calculations. The results from theoretical calculations were in good agreement with the experimental results. The proposed sensor array was successfully explored for visual analysis of formaldehyde in indoor air samples.

  9. 6S Return Samples: Assessment of Air Quality in the International Space Station (ISS) Based on Solid Sorbent Air Sampler (SSAS) and Formaldehyde Monitoring Kit (FMK) Analyses

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of SSAS and FMK analytical results are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the SSAS tubes were 66-76% for 13C-acetone, 85-96% for fluorobenzene, and 73-89% for chlorobenzene. Post-flight flows were far below pre-flight flows and an investigation of the problem revealed that the reduced flow was caused by a leak at the interface of the pump inlet tube and the pump head. This resulted in degradation of pump efficiency. Further investigation showed that the problem occurred before the SSAS was operated on orbit and that use of the post-flight flows yielded consistent and useful results. Recoveries from formaldehyde control badges were 86 to 104%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). The T values will not be reported for these data due to the flow anomaly. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols (including acetone) are also shown for each sample. Octafluoropropane (OFP) is not efficiently trapped by the sorbents used in the SSAS. Because formaldehyde is quantified from sorbent badges, its concentration is also listed separately. These five indices of air quality are summarized.

  10. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined...

  11. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... particleboard is produced or surface-finished, whichever is later, the panels must be dead-stacked or air-tight... with the Standard Test Method for Determining Formaldehyde Levels from Wood Products Under Defined...

  12. A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde

    NASA Technical Reports Server (NTRS)

    Cofer, W. R., III; Edahl, R. A., Jr.

    1986-01-01

    This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g., CH2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH2O at global background levels (about 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH2O, once concentrated, is accomplished using high performance liquid chromatography with ultraviolet photometric detection. The CH2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H2SO4 acidified aqueous solution, is detected as CH2O.

  13. A new technique for collection, concentration and determination of gaseous tropospheric formaldehyde

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Edahl, Robert A.

    This article describes an improved technique for making in situ measurements of gaseous tropospheric formaldehyde (CH 2O). The new technique is based on nebulization/reflux principles that have proved very effective in quantitatively scrubbing water soluble trace gases (e.g. CH 2O) into aqueous mediums, which are subsequently analyzed. Atmospheric formaldehyde extractions and analyses have been performed with the nebulization/reflux concentrator using an acidified dinitrophenylhydrazine solution that indicate that quantitative analysis of CH 2O at global background levels (˜ 0.1 ppbv) is feasible with 20-min extractions. Analysis of CH 2O, once concentrated, is accomplished using high performance liquid chromatography (HPLC) with ultraviolet photometric detection. The CH 2O-hydrazone derivative, produced by the reaction of 2,4-dinitrophenylhydrazine in H 2SO 4 acidified aqueous solution, is detected as CH 2O.

  14. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment.

    PubMed

    Nielsen, Gunnar Damgård; Larsen, Søren Thor; Wolkoff, Peder

    2017-01-01

    In 2010, the World Health Organization (WHO) established an indoor air quality guideline for short- and long-term exposures to formaldehyde (FA) of 0.1 mg/m(3) (0.08 ppm) for all 30-min periods at lifelong exposure. This guideline was supported by studies from 2010 to 2013. Since 2013, new key studies have been published and key cancer cohorts have been updated, which we have evaluated and compared with the WHO guideline. FA is genotoxic, causing DNA adduct formation, and has a clastogenic effect; exposure-response relationships were nonlinear. Relevant genetic polymorphisms were not identified. Normal indoor air FA concentrations do not pass beyond the respiratory epithelium, and therefore FA's direct effects are limited to portal-of-entry effects. However, systemic effects have been observed in rats and mice, which may be due to secondary effects as airway inflammation and (sensory) irritation of eyes and the upper airways, which inter alia decreases respiratory ventilation. Both secondary effects are prevented at the guideline level. Nasopharyngeal cancer and leukaemia were observed inconsistently among studies; new updates of the US National Cancer Institute (NCI) cohort confirmed that the relative risk was not increased with mean FA exposures below 1 ppm and peak exposures below 4 ppm. Hodgkin's lymphoma, not observed in the other studies reviewed and not considered FA dependent, was increased in the NCI cohort at a mean concentration ≥0.6 mg/m(3) and at peak exposures ≥2.5 mg/m(3); both levels are above the WHO guideline. Overall, the credibility of the WHO guideline has not been challenged by new studies.

  15. Report of the Federal Panel on Formaldehyde.

    PubMed Central

    1982-01-01

    The Federal Panel on Formaldehyde concluded that definitive experiments exist which demonstrate the mutagenicity and carcinogenicity of formaldehyde under laboratory conditions. Formaldehyde induces both gene mutations and chromosomal aberrations in a variety of test systems. Inhalation of formaldehyde causes cancer of the nose in rats. The concentrations of formaldehyde in inhaled air that caused nasal cancer in Fisher 344 rats are within the same order of magnitude as those to which humans may be exposed. The data presently available do not permit a direct assessment of the carcinogenicity of formaldehyde to man. Epidemiologic studies on exposed human populations are in progress and may further clarify the situation. Other experimental and human studies on toxic effects such as teratogenicity and reproductive disorders are as yet inadequate for a health risk assessment. The CIIT 24 month study on animal carcinogenicity has not yet been completely evaluated. Additional data are expected on the effects of prolonged exposure to lower doses of formaldehyde and on the possible carcinogenicity of formaldehyde in the mouse. The panel recommends that, for a comprehensive health risk assessment, further experiments be conducted on the effects of other modes of exposure (ingestion and skin penetration), the effects in humans, and on the pharmacokinetics of formaldehyde in man and animals and the possible role for formaldehyde in reproductive and chronic respiratory disorders. It is the conclusion of the panel that formaldehyde should be presumed to pose a carcinogenic risk to humans. PMID:6977445

  16. Characterization of the Sources and Concentrations of Formaldehyde and other volatile organic compounds in four new manufactured houses

    SciTech Connect

    Hodgson, A.T.; Beal, D.; Chandra, S.

    1998-09-01

    The concentrations of formaldehyde, 52 individual volatile organic compounds (VOCs) and total VOCs (TVOC) were measured in four new manufactured houses on three occasions over a period of approximately nine months following completion of their construction. The houses were furnished, but unoccupied, model homes produced by a single U.S. manufacturer. Several of the houses incorporated interior finish materials with lower VOC emissions than standard materials. One house had a modified ventilation system. Ventilation rates were measured concurrently with the collection of air samples. A steady-state mass-balance model was used to calculate the area-specific emission rates of the target compounds and TVOC. The emissions of formaldehyde and VOCs from a specimen of plywood used as the floor sheeting were additionally quantified. The median formaldehyde concentration in the four houses was 37 parts-per-billion ( ppb). The formaldehyde concentrations were all less than the most restrictive guideline for this compound of 50 ppb. The concentrations of many of the target VOCs were low. Thirty-one of the VOCs had median concentrations that were at or below 1 ppb. Seven of the compounds were among the most abundant VOCs in all four houses. These compounds were alpha-pinene, beta-pinene, 3-carene, ethylene glycol, hexanal, 2-butanone, and acetic acid. The concentrations of the aldehydes, hexanal, octanal and nonanal, in the four houses were either near or exceeded their respective odor thresholds. The concentrations of acetic acid increased with time. In the final sampling period, the odor threshold for acetic acid was exceeded in all of the houses. The range of TVOC concentrations in the four houses was 0.8 to 3 mg m{sup -3}, with a median value of 1.6 mg m{sup -3}. These concentrations were somewhat lower than TVOC concentrations previously measured in several new site-built houses, and the median concentration was only about twice the typical value for existing residences

  17. Formaldehyde Exposures in a University Anatomy Laboratory

    NASA Astrophysics Data System (ADS)

    Winkler, Kyle William

    Air sampling studies were conducted within a university anatomical laboratory during the embalmment of a cadaver in order to determine if dangerous concentrations of formaldehyde existed. Three air sampling studies were conducted in the anatomical laboratory on three separate days that a cadaver was being embalmed. Samples were collected and analyzed using the Occupational Safety and Health Administration (OSHA) Sampling and Analytical Methods: Method 52. Each air sampling study sampled for short term exposure limit (STEL) and time weighted mean (TWA) breathing zone formaldehyde concentrations as well as area TWA formaldehyde concentrations. A personal aldehyde monitor was also used in each air sampling study to sample for breathing zone formaldehyde concentrations. Measured TWA mean exposures to formaldehyde ranged from 0.15--1.3 parts per million (ppm), STEL formaldehyde exposures ranged from 0.019--0.64 ppm, and eight-hour TWAs ranged from 0.03 to 3.6 ppm. All 8-hour TWA formaldehyde concentrations sampled in the anatomy laboratory during an embalmment were less than the permissible exposure limit (PEL) required by OSHA.

  18. Evaluation of formaldehyde emission from test panels of urea-formaldehyde foam insulation

    SciTech Connect

    Hawthorne, A.R.; Gammage, R.B.

    1982-01-01

    One important potential source of formaldehyde in the home is urea-formaldehyde foam insulation (UFFI). Measurements of the formaldehyde emission from test panels simulating a section of a house wall were made approximately 16 months after initial foaming. The test panels are approximately 16'' wide and 8' tall with a latex-painted gypsum board interior wall and an exterior wall consisting of cellulose sheathing with aluminum or cedar siding. Nine different commercially available foams were tested. Three types of measurements were conducted. The first type was designed to simulate the conditions in a corner room of a house with an air exchange rate of approximately 0.7 h/sup -1/. Clean air was flowed over the face of the interior wall and the emitted concentration of formaldehyde measured. Based on these measurements, projected room concentrations for the nine UFFI panels ranged from 0.03 to 0.4 ppM with an average of 0.13 +- 0.11 ppM. A second type of measurement was taken of air from within the foamed cavity. Formaldehyde concentrations of several ppM were observed. The final type of experiment simulated a near-zero air exchange rate. The test chambers were sealed and the formaldehyde concentration was allowed to equilibrate. The formaldehyde concentration measured ranged from 2.2 to 6.6 ppM. These concentrations could build up in poorly ventilated air volumes such as inside closets next to walls with UFFI.

  19. USING THE AIR QUALITY MODEL TO ANALYZE THE CONCENTRATIONS OF AIR TOXICS OVER THE CONTINENTAL U.S.

    EPA Science Inventory

    The U.S. Environmental Protection Agency is examining the concentrations and deposition of hazardous air pollutants (HAPs), which include a large number of chemicals, ranging from non reactive (i.e. carbon tetrachloride) to reactive (i.e. formaldehyde), exist in gas, aqueous, and...

  20. Seasonal behavior of carbonyls and source characterization of formaldehyde (HCHO) in ambient air

    NASA Astrophysics Data System (ADS)

    Lui, K. H.; Ho, Steven Sai Hang; Louie, Peter K. K.; Chan, C. S.; Lee, S. C.; Hu, Di; Chan, P. W.; Lee, Jeffrey Chi Wai; Ho, K. F.

    2017-03-01

    Gas-phase formaldehyde (HCHO) is an intermediate and a sensitive indicator for volatile organic compounds (VOCs) oxidation, which drives tropospheric ozone production. Effective photochemical pollution control strategies demand a thorough understanding of photochemical oxidation precursors, making differentiation between sources of primary and secondary generated HCHO inevitable. Spatial and seasonal variations of airborne carbonyls based on two years of measurements (2012-2013), coupled with a correlation-based HCHO source apportionment analysis, were determined for three sampling locations in Hong Kong (denoted HT, TC, and YL). Formaldehyde and acetaldehyde were the two most abundant compounds of the total quantified carbonyls. Pearson's correlation analysis (r > 0.7) implies that formaldehyde and acetaldehyde possibly share similar sources. The total carbonyl concentration trends (HT < TC < YL) reflect location characteristics (urban > rural). A regression analysis further quantifies the relative primary HCHO source contributions at HT (∼13%), TC (∼21%), and YL (∼40%), showing more direct vehicular emissions in urban than rural areas. Relative secondary source contributions at YL (∼36%) and TC (∼31%) resemble each other, implying similar urban source contributions. Relative background source contributions at TC could be due to a closed structure microenvironment that favors the trapping of HCHO. Comparable seasonal differences are observed at all stations. The results of this study will aid in the development of a new regional ozone (O3) control policy, as ambient HCHO can enhance O3 production and also be produced from atmospheric VOCs oxidation (secondary HCHO).

  1. Variable volume loading method: a convenient and rapid method for measuring the initial emittable concentration and partition coefficient of formaldehyde and other aldehydes in building materials.

    PubMed

    Xiong, Jianyin; Yan, Wei; Zhang, Yinping

    2011-12-01

    The initial emittable formaldehyde and VOC concentration in building materials (C(0)) is a key parameter for characterizing and classifying these materials. Various methods have been developed to measure this parameter, but these generally require a long test time. In this paper we develop a convenient and rapid method, the variable volume loading (VVL) method, to simultaneously measure C(0) and the material/air partition coefficient (K). This method has the following features: (a) it requires a relatively short experimental time (less than 24 h for the cases studied); and (b) is convenient for routine measurement. Using this method, we determined C(0) and K of formaldehyde, propanal and hexanal in one kind of medium density fiberboard, and repeated experiments were performed to reduce measurement error. In addition, an extended-C-history method is proposed to determine the diffusion coefficient and the convective mass transfer coefficient. The VVL method is validated by comparing model predicted results based on the determined parameters with experimental data. The determined C(0) of formaldehyde obtained via this method is less than 10% of the total concentration using the perforator method recommended by the Chinese National Standard, suggesting that the total concentration may not be appropriate to predict emission characteristics, nor for material classification.

  2. The effect of clothing care activities on textile formaldehyde content.

    PubMed

    Novick, Rachel M; Nelson, Mindy L; McKinley, Meg A; Anderson, Grace L; Keenan, James J

    2013-01-01

    Textiles are commonly treated with formaldehyde-based residues that may potentially induce allergic contact dermatitis in sensitive individuals. This study examined the initial formaldehyde content in clothing and resulting changes due to care activities. Twenty clothing articles were examined and 17 of them did not have detectable levels of formaldehyde. One shirt contained a formaldehyde concentration of 3172 ppm, and two pairs of pants had formaldehyde concentrations of 1391 ppm and 86 ppm. The two highest results represent formaldehyde levels that are up to 40-fold greater than international textile regulations. The two items with the greatest formaldehyde content were washed and dried in a manner similar to that used by consumers, including hand and machine washing in hot or cold water followed by air or machine drying. The washing and drying procedures reduced formaldehyde levels to between 26 and 72% of untreated controls. Differences in the temperature or type of washing and drying did not result in a clear trend in the subsequent formaldehyde content. In addition, samples were hot ironed, which did not affect the formaldehyde content as significantly. Understanding the formaldehyde content in clothing and its potential reduction through care activities may be useful for manufacturers and formaldehyde-sensitive individuals.

  3. Formaldehyde Gas Sensors: A Review

    PubMed Central

    Chung, Po-Ren; Tzeng, Chun-Ta; Ke, Ming-Tsun; Lee, Chia-Yen

    2013-01-01

    Many methods based on spectrophotometric, fluorometric, piezoresistive, amperometric or conductive measurements have been proposed for detecting the concentration of formaldehyde in air. However, conventional formaldehyde measurement systems are bulky and expensive and require the services of highly-trained operators. Accordingly, the emergence of sophisticated technologies in recent years has prompted the development of many microscale gaseous formaldehyde detection systems. Besides their compact size, such devices have many other advantages over their macroscale counterparts, including a real-time response, a more straightforward operation, lower power consumption, and the potential for low-cost batch production. This paper commences by providing a high level overview of the formaldehyde gas sensing field and then describes some of the more significant real-time sensors presented in the literature over the past 10 years or so. PMID:23549368

  4. Background concentrations of 18 air toxics for North America.

    PubMed

    McCarthy, Michael C; Hafner, Hilary R; Montzka, Stephen A

    2006-01-01

    The U.S. Clean Air Act identifies 188 hazardous air pollutants (HAPs), or "air toxics," associated with adverse human health effects. Of these air toxics, 18 were targeted as the most important in a 10-City Pilot Study conducted in 2001 and 2002 as part of the National Air Toxics Trend Sites Program. In the present analysis, measurements available from monitoring networks in North America were used to estimate boundary layer background concentrations and trends of these 18 HAPs. The background concentrations reported in this study are as much as 85% lower than those reported in recent studies of HAP concentrations. Background concentrations of some volatile organic compounds were analyzed for trends at the 95% confidence level; only carbon tetrachloride (CCI4) and tetrachloroethylene decreased significantly in recent years. Remote background concentrations were compared with the one-in-a-million (i.e., 10(6)) cancer benchmarks to determine the possible causes of health risk in rural and remote areas; benzene, chloroform, formaldehyde, and chromium (Cr) fine particulate were higher than cancer benchmark values. In addition, remote background concentrations were found to contribute between 5% and 99% of median urban concentrations.

  5. A RGB-Type Quantum Dot-based Sensor Array for Sensitive Visual Detection of Trace Formaldehyde in Air

    PubMed Central

    Xia, Hui; Hu, Jing; Tang, Jie; Xu, Kailai; Hou, Xiandeng; Wu, Peng

    2016-01-01

    A simple colorimetric sensor array based on red-emitting CdTe QDs and green-colored fluorescein that exhibited RGB-type color change was proposed for visual detection of trace formaldehyde. In the presence of formaldehyde, the red fluorescence from CdTe QDs was quenched while the green fluorescein was inert thus as a reference. Through harvesting the varied quenching efficiency of different ligand-capped CdTe QDs by formaldehyde, a simple sensor array can be constructed for both selective detection of formaldehyde with high sensitivity (LOD of 0.08 ppm) and identification of the existence of potential interference from acetaldehyde. The quenching mechanisms of formaldehyde toward different ligand capped CdTe QDs were studied with fluorescence lifetime, zeta potential, and also theoretical calculations. The results from theoretical calculations were in good agreement with the experimental results. The proposed sensor array was successfully explored for visual analysis of formaldehyde in indoor air samples. PMID:27830733

  6. Concentrations and decay rates of ozone in indoor air in dependence on building and surface materials.

    PubMed

    Moriske, H J; Ebert, G; Konieczny, L; Menk, G; Schöndube, M

    1998-08-01

    The decay of ozone in indoor air was measured in a closed chamber after contact with different building materials and residential surfaces. The tested materials were: vinyl wall paper, woodchip paper, plywood, latex paint, fitted carpet, and plaster. In the summer of 1996, the entry of ozone from ambient air into indoor air during ventilation and the ozone decay in indoor air, after windows had been closed again, were studied. Measurements were done in a residential house on the outskirts of Berlin. The following results were gained: the chamber measurements showed a decay of ozone after contact with most of the materials put inside the chamber. Higher decay rates have been obtained for wall papers, plywood, fitted carpet and plaster. As described in the literature, ozone is able to react with olefines inside the materials and is able to form formaldehyde and other components. This formation of formaldehyde could also be confirmed in our investigations. Thus, in most cases, the formaldehyde concentrations were lower than the German guideline value of 0.1 ppm. The formation of formaldehyde could be prevented when a special wall paper that was coated with activated carbon was used. In the house, a complete ozone diffusion into indoor air took place during ventilation within 30 min. After closing the windows, the ozone concentrations decreased to the basic level before ventilation within 60-90 min.

  7. Cesium Isotherm Testing with Spherical Resorcinol-Formaldehyde Resin at High Sodium Concentrations

    SciTech Connect

    Russell, Renee L.; Fiskum, Sandra K.; Smoot, Margaret R.; Rinehart, Donald E.

    2016-04-01

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conducted at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..

  8. Lack of bronchomotor response to up to 3 ppm formaldehyde in subjects with asthma

    SciTech Connect

    Sheppard, D.; Eschenbacher, W.L.; Epstein, J.

    1984-10-01

    A study was undertaken to determine whether exposure to concentrations of formaldehyde occasionally encountered in polluted indoor air would cause bronchoconstriction in subjects with mild asthma. In seven subjects the increase in specific airways resistance (SR/sub aw/) caused by inhalation of 1 ppm formaldehyde for 10 min was compared with the response caused by inhalation of formaldehyde-free air. Also, the increase in SR/sub aw/ caused by inhalation of 1 and 3 ppm formaldehyde during moderate exercise for 10 min was compared with the response caused by inhalation of formaldehyde-free air during exercise for 10 min. Inhalation of formaldehyde at rest and during exercise did not cause a signficant increase in SR/aw/ in the subjects. It is concluded that brief exposure to these concentrations of formaldehyde, even in association with moderate exercise, is unlikely by itself to cause significant bronchoconstriction in most subjects with mild asthma.

  9. Formaldehyde exposure affects growth and metabolism of common bean

    SciTech Connect

    Mutters, R.G.; Madore, M. ); Bytnerowicz, A. )

    1993-01-01

    Recent state and federal directives have slated a substantial increase in the use of methanol as an alternative to gasoline in both fleet and private vehicles in the coming decade. The incomplete combustion of methanol produces formaldehyde vapor, and catalytic converter technology that completely oxidizes formaldehyde has yet to be developed. The approach of this study was to use a range of methanol concentrations encompassing levels currently found or that may occur in the future in the ambient air of some heavily polluted areas to test the potential phytotoxicity of formaldehyde. The study had the following objectives: (1) design and build a formaldehyde vapor generator with sufficient capacity for long-term plant fumigations; (2) determine growth response of common bean to formaldehyde; (3) evaluate physiological and biochemical changes of bean plants associated with formaldehyde exposures. 20 refs., 2 figs., 2 tabs.

  10. Experimental investigation of the formaldehyde removal mechanisms in a dynamic botanical filtration system for indoor air purification.

    PubMed

    Wang, Zhiqiang; Pei, Jingjing; Zhang, Jensen S

    2014-09-15

    Botanical filtration has been proved to be effective for indoor gas pollutant removal. To understand the roles of different transport, storage and removal mechanism by a dynamic botanical air filter, a series of experimental investigations were designed and conducted in this paper. Golden Pothos (Epipremnum aureum) plants was selected for test, and its original soil or activated/pebbles root bed was used in different test cases. It was found that flowing air through the root bed with microbes dynamically was essential to obtain meaningful formaldehyde removal efficiency. For static potted plant as normally place in rooms, the clean air delivery rate (CADR), which is often used to quantify the air cleaning ability of portable air cleaners, was only ∼ 5.1m(3)/h per m(2) bed, while when dynamically with air flow through the bed, the CADR increased to ∼ 233 m(3)/h per m(2) bed. The calculated CADR due to microbial activity is ∼ 108 m(3)/h per m(2) bed. Moisture in the root bed also played an important role, both for maintaining a favorable living condition for microbes and for absorbing water-soluble compounds such as formaldehyde. The role of the plant was to introduce and maintain a favorable microbe community which effectively degraded the volatile organic compounds adsorbed or absorbed by the root bed. The presence of the plant increased the removal efficiency by a factor of two based on the results from the bench-scale root bed experiments.

  11. C-history method: rapid measurement of the initial emittable concentration, diffusion and partition coefficients for formaldehyde and VOCs in building materials.

    PubMed

    Xiong, Jianyin; Yao, Yuan; Zhang, Yinping

    2011-04-15

    The initial emittable concentration (C(m,0)), the diffusion coefficient (D(m)), and the material/air partition coefficient (K) are the three characteristic parameters influencing emissions of formaldehyde and volatile organic compounds (VOCs) from building materials or furniture. It is necessary to determine these parameters to understand emission characteristics and how to control them. In this paper we develop a new method, the C-history method for a closed chamber, to measure these three parameters. Compared to the available methods of determining the three parameters described in the literature, our approach has the following salient features: (1) the three parameters can be simultaneously obtained; (2) it is time-saving, generally taking less than 3 days for the cases studied (the available methods tend to need 7-28 days); (3) the maximum relative standard deviations of the measured C(m,0), D(m) and K are 8.5%, 7.7%, and 9.8%, respectively, which are acceptable for engineering applications. The new method was validated by using the characteristic parameters determined in the closed chamber experiment to predict the observed emissions in a ventilated full scale chamber experiment, proving that the approach is reliable and convincing. Our new C-history method should prove useful for rapidly determining the parameters required to predict formaldehyde and VOC emissions from building materials as well as for furniture labeling.

  12. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates

    SciTech Connect

    Dahl, A.R.; Hadley, W.M.

    1983-02-01

    To identify compounds which might be metabolized to formaldehyde in the nasal cavity, 32 potential substrates for cytochrome P-450-dependent monooxygenases were screened with rat nasal and, for comparison, liver microsomes. Tested substrates included 6 nasal decongestants, cocaine, nicotine, 9 essences, 3 potential air pollutants, and 12 solvents. Each test substrate, with the possible exception of the air pollutants, contained one or more N-methyl, O-methyl, or S-methyl groups. Eighteen of the tested materials were metabolized to produce formaldehyde by nasal microsomes. Five substrates, namely, the solvents HMPA and dimethylaniline, cocaine, and the essences dimethyl anthranilate and p-methoxyacetophenone, were metabolized to produce formaldehyde at rates exceeding 1000 pmol/mg microsomal protein/min by nasal microsomes. Eight substrates, including four nasal decongestants, nicotine, and an extract of diesel exhaust particles, were metabolized to produce formaldehyde at rates of 200 to 1000 pmol/mg microsomal protein/min. Five other substrates were metabolized to formaldehyde at detectable rates. The results indicate that a variety of materials which often come in contact with the nasal mucosa can be metabolized to formaldehyde by nasal enzymes. The released formaldehyde may influence the irritancy of inhaled compounds and has been suggested to play a role in the tumorigenicity of some compounds.

  13. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation

    PubMed Central

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-01-01

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6–19.6 g/m3 at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m3 to 19.6 g/m3. A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control. PMID:27025353

  14. Influence of humidity on the initial emittable concentration of formaldehyde and hexaldehyde in building materials: experimental observation and correlation.

    PubMed

    Huang, Shaodan; Xiong, Jianyin; Cai, Chaorui; Xu, Wei; Zhang, Yinping

    2016-03-30

    Humidity is one of the main environmental factors affecting the emission rate and key parameters of formaldehyde and volatile organic compounds (VOCs) from building materials. Meanwhile, the initial emittable concentration (Cm,0) is proved to be the most sensitive key parameter to the emission behaviours. However, there is no report on the relationship between humidity and Cm,0. In this paper, Cm,0 of formaldehyde and hexaldehyde from a type of medium density fiberboard in absolute humidity (AH) range of 4.6-19.6 g/m(3) at 25 °C were tested by virtue of a C-history method. Experimental results indicate that Cm,0 is dramatically dependent on AH, increased by 10 and 2 times for formaldehyde and hexaldehyde when AH rising from 4.6 g/m(3) to 19.6 g/m(3). A linear relationship between the logarithm of Cm,0 and AH is obtained based on the measured results. In addition, a correlation characterizing the association of emission rate and AH is derived. The effectiveness of the correlation is verified with our experimental results as well as data from literature. With the correlations, the Cm,0 or emission rate different from the test AH conditions can be conveniently obtained. This study should be useful for predicting the emission characteristics of humidity changing scenarios and for source control.

  15. Effect of natural compounds on reducing formaldehyde emission from plywood

    NASA Astrophysics Data System (ADS)

    Uchiyama, Shigehisa; Matsushima, Erica; Kitao, Nahoko; Tokunaga, Hiroshi; Ando, Masanori; Otsubo, Yasufumi

    The effects of natural compounds on reducing formaldehyde emission from plywood were investigated. Urea, catechin and vanillin were examined as the natural formaldehyde reducers. The microemission cell, with an internal volume of 35 ml, the maximum exposed test surface area of 177 cm 2 and an air purge flow rate of 50 ml min -1, was used to measure specific emission rate (SER). In the case of no reducer treatment, formaldehyde emission from plywood was fast and SERs were 4.4 mg m -2 h -1 at 30 °C and 15 mg m -2 h -1 at 60 °C. When this plywood was treated with the natural compounds, the SERs of formaldehyde were decreased at all temperatures. In the case of urea treatment, the SERs of formaldehyde decreased to 0.30 mg m -2 h -1 at 30 °C and 0.65 mg m -2 h -1 at 60 °C. When the urea treatment was applied to the inside of kitchen cabinet (made from plywood; 270 cm wide, 60 cm deep, 250 cm high), the concentration of formaldehyde was reduced substantially from 1600 to 130 μg m -3. The reducing effect of formaldehyde continued during the observation period (6 months), with a mean concentration of 100 μg m -3. Reducers in the plywood would react with released formaldehyde. Application of natural compounds such as urea, catechin and vanillin could provide a simple and effective approach for suppressing formaldehyde emission from plywood.

  16. Chromotropic acid-formaldehyde reaction in strongly acidic media. The role of dissolved oxygen and replacement of concentrated sulphuric acid.

    PubMed

    Fagnani, E; Melios, C B; Pezza, L; Pezza, H R

    2003-05-28

    The procedure for formaldehyde analysis recommended by the National Institute for Occupational Safety and Health (NIOSH) is the Chromotropic acid spectrophotometric method, which is the one that uses concentrated sulphuric acid. In the present study the oxidation step associated with the aforementioned method for formaldehyde determination was investigated. Experimental evidence has been obtained indicating that when concentrated H(2)SO(4) (18 mol l(-1)) is used (as in the NIOSH procedure) that acid is the oxidizing agent. On the other hand, oxidation through dissolved oxygen takes place when concentrated H(2)SO(4) is replaced by concentrated hydrochloric (12 mol l(-1)) and phosphoric (14.7 mol l(-1)) acids as well as by diluted H(2)SO(4) (9.4 mol l(-1)). Based on investigations concerning the oxidation step, a modified procedure was devised, in which the use of the potentially hazardous and corrosive concentrated H(2)SO(4) was eliminated and advantageously replaced by a less harmful mixture of HCl and H(2)O(2).

  17. INDOOR AIR CONCENTRATION UNIT CONVERSIONS

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion (VI). Volatile organic chemicals in contaminated soils or groundwater can emit vapors, which can migrate through subsurface soils and may enter the indoor air of overlying buil...

  18. Comparative occupational exposures to formaldehyde released from inhaled wood product dusts versus that in vapor form.

    PubMed

    Gosselin, Nathalie H; Brunet, Robert C; Carrier, Gaétan

    2003-05-01

    Particle boards and other wood boards are usually made with formaldehyde-based resins. Woodworkers are thus exposed to formaldehyde in vapor form as well as from airborne dust once it enters their respiratory tract. These workers remain exposed to formaldehyde released from the dust still present in their upper respiratory tract, even after their work shift. In assessing the risk associated with formaldehyde exposure, one needs to consider the relative importance of these two sources of exposure. This study proposes two kinetic models to estimate and compare the exposures. For various exposure scenarios, one model predicts the amount of formaldehyde absorbed from the ambient vapor form and the other predicts the amount absorbed by the respiratory tract upon its release from wood product dust. Model parameters are determined using data from published studies. Based on a daily work shift of 8 hr, with a dust concentration in air of 5 mg/m(3) and a formaldehyde concentration bound to dust of 9 microg/mg, model simulations predict that the amount of absorbed formaldehyde released from wood dust is approximately 1/100 of the amount absorbed from the ambient vapor form at a concentration level of 0.38 mg/m(3) (0.3 ppm). Since the formaldehyde concentration in wood dust used above is much higher than usually observed while the dust and vapor form formaldehyde concentrations are of the order of acceptable upper values, these results indicate that the formaldehyde exposure from wood dust is comparatively negligible.

  19. Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers.

    PubMed

    de Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda; Menné, Torkil; Coenraads, Pieter-Jan

    2009-08-01

    This is one of series of review articles on formaldehyde and formaldehyde-releasers (others: formaldehyde in cosmetics, in clothes and in metalworking fluids and miscellaneous). Thirty-five chemicals were identified as being formaldehyde-releasers. Although a further seven are listed in the literature as formaldehyde-releasers, data are inadequate to consider them as such beyond doubt. Several (nomenclature) mistakes and outdated information are discussed. Formaldehyde and formaldehyde allergy are reviewed: applications, exposure scenarios, legislation, patch testing problems, frequency of sensitization, relevance of positive patch test reactions, clinical pattern of allergic contact dermatitis from formaldehyde, prognosis, threshold for elicitation of allergic contact dermatitis, analytical tests to determine formaldehyde in products and frequency of exposure to formaldehyde and releasers. The frequency of contact allergy to formaldehyde is consistently higher in the USA (8-9%) than in Europe (2-3%). Patch testing with formaldehyde is problematic; the currently used 1% solution may result in both false-positive and false-negative (up to 40%) reactions. Determining the relevance of patch test reactions is often challenging. What concentration of formaldehyde is safe for sensitive patients remains unknown. Levels of 200-300 p.p.m. free formaldehyde in cosmetic products have been shown to induce dermatitis from short-term use on normal skin.

  20. Predictors of Indoor Air Concentrations in Smoking and Non-Smoking Residences

    PubMed Central

    Héroux, Marie-Eve; Clark, Nina; Van Ryswyk, Keith; Mallick, Ranjeeta; Gilbert, Nicolas L.; Harrison, Ian; Rispler, Kathleen; Wang, Daniel; Anastassopoulos, Angelos; Guay, Mireille; MacNeill, Morgan; Wheeler, Amanda J.

    2010-01-01

    Indoor concentrations of air pollutants (benzene, toluene, formaldehyde, acetaldehyde, acrolein, nitrogen dioxide, particulate matter, elemental carbon and ozone) were measured in residences in Regina, Saskatchewan, Canada. Data were collected in 106 homes in winter and 111 homes in summer of 2007, with 71 homes participating in both seasons. In addition, data for relative humidity, temperature, air exchange rates, housing characteristics and occupants’ activities during sampling were collected. Multiple linear regression analysis was used to construct season-specific models for the air pollutants. Where smoking was a major contributor to indoor concentrations, separate models were constructed for all homes and for those homes with no cigarette smoke exposure. The housing characteristics and occupants’ activities investigated in this study explained between 11% and 53% of the variability in indoor air pollutant concentrations, with ventilation, age of home and attached garage being important predictors for many pollutants. PMID:20948949

  1. Optical Detection of Formaldehyde

    NASA Technical Reports Server (NTRS)

    Patty, Kira D.; Gregory, Don A.

    2008-01-01

    The potential for buildup .of formaldehyde in closed space environments poses a direct health hazard to personnel. The National Aeronautic Space Agency (NASA) has established a maximum permitted concentration of 0.04 ppm for 7 to 180 days for all space craft. Early detection is critical to ensure that formaldehyde levels do not accumulate. above these limits. New sensor technologies are needed to enable real time,in situ detection in a compact and reusable form factor. Addressing this need,research into the use of reactive fluorescent dyes which reversibly bind to formaldehyde (liquid or gas) has been conducted to support the development of a formaldehyde.sensor. In the presence of formaldehyde the dyes' characteristic fluorescence peaks shift providing the basis for an optical detection. Dye responses to formaldehyde exposure were characterized; demonstrating the optical detection of formaldehyde in under 10 seconds and down to concentrations of 0.5 ppm. To .incorporate the dye .in.an optical sensor device requires. a means of containing and manipulating the dye. Multiple form factors using two dissimilar sbstrates were considered to determine a suitable configuration. A prototype sensor was demonstrated and considerations for a field able sensor were presented. This research provides a necessary first step toward the development of a compact, reusable; real time optical formaldehyde sensor suitable for use in the U.S. space program,

  2. Electrets to measure ion concentration in air.

    PubMed

    Kotrappa, P

    2005-08-01

    Positive and negative ions are produced in air, mainly due to radon and terrestrial/cosmic radiation sources. Measuring ion concentration in air indirectly provides a measure of these sources. Electrets (electrically charged pieces of Teflon), when exposed in the environment, collect ions of opposite sign leading to a measurable decrease in charge, depending upon the exposure time and ion concentration. This work describes a method of correlating electret discharge rate to the ion concentration as measured by a calibrated ion density meter. Once calibrated, electrets can then be used to measure ion concentration of either sign. The ion concentration in ambient air was measured to be about 200 ions mL(-1), measured over several hours. Both positive and negative ion concentrations were similar. In a typical room, negative ion concentration was about 3,500 ions mL(-1), and, surprisingly, there were no positive ions at all in that room. Being an integrating passive device, the method provides the unique possibility of measuring low or high concentrations of positive or negative ions over extended periods, which is difficult to do with other ion concentration measuring instruments.

  3. A new system to reduce formaldehyde levels improves safety conditions during gross veterinary anatomy learning.

    PubMed

    Nacher, Víctor; Llombart, Cristina; Carretero, Ana; Navarro, Marc; Ysern, Pere; Calero, Sebastián; Fígols, Enric; Ruberte, Jesús

    2007-01-01

    Dissection is a very useful method of learning veterinary anatomy. However, formaldehyde, which is widely used to preserve cadavers, is an irritant, and it has recently been classified as a carcinogen. In 1997, the Instituto Nacional de Seguridad e Higiene en el Trabajo [National Institute of Workplace Security and Hygiene] found that the levels of formaldehyde in our dissection room were above the threshold limit values. Unfortunately, no optimal substitute for formaldehyde is currently available. Therefore, we designed a new ventilation system that combines slow propulsion of fresh air from above the dissection table and rapid aspiration of polluted air from the perimeter. Formaldehyde measurements performed in 2004, after the introduction of this new system into our dissection laboratory, showed a dramatic reduction (about tenfold, or 0.03 ppm). A suitable propelling/aspirating air system successfully reduces the concentration of formaldehyde in the dissection room, significantly improving safety conditions for students, instructors, and technical staff during gross anatomy learning.

  4. Rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers

    SciTech Connect

    Snyder, E.A.; Palmes, E.D.

    1985-06-01

    A rapid air titration method for determining SO/sub 2/ concentration in inhalation chambers has been validated using the pararosaniline-formaldehyde (PRA) method of West and Gaeke. This air-titration (iodate) method is an adaptation of iodometric methods using a starch indicator. Potassium iodate and an excess of potassium iodide are used in the reaction. Sampling is completed in ten minutes or less and concentration is calculated by use of a simple formula. Linear equations were derived over the range of concentrations from 0.5 to 100 ppm SO/sub 2/ for uncorrected iodate bubbler results, data corrected for tandem bubbler concentrations and data corrected for mean iodate bubbler efficiency. Linear correlation with the PRA method over this range was 0.999 for all three sets of data.

  5. The Air Force concentrating photovoltaic array program

    NASA Technical Reports Server (NTRS)

    Geis, Jack W.

    1987-01-01

    A summary is given of Air Force solar concentrator projects beginning with the Rockwell International study program in 1977. The Satellite Materials Hardening Programs (SMATH) explored and developed techniques for hardening planar solar cell array power systems to the combined nuclear and laser radiation threat environments. A portion of program dollars was devoted to developing a preliminary design for a hardened solar concentrator. The results of the Survivable Concentrating Photovoltaic Array (SCOPA) program, and the design, fabrication and flight qualification of a hardened concentrator panel are discussed.

  6. Controlling formaldehyde emissions with MBS scrubbing

    SciTech Connect

    Lundquist, P.R.

    1998-12-31

    Sodium metabisulfite (MBS)-assisted water scrubbing was selected as the most cost-effective and reliable technology for removal of dilute formaldehyde emissions from a resin manufacturing plant. Dilute formaldehyde emission streams (e.g., from process hoods, sample hoods, and other miscellaneous captured sources) required treatment in order to meet the anticipated Maximum Achievable Control Technology (MACT) standards and state air toxic requirements. Other conventional technologies (e.g., thermal oxidation, carbon adsorption, and biofiltration) were considered, but later discarded because they were cost prohibitive or technically impractical. Segregation of dilute volatile organic compound (VOC) and hazardous air pollutant (HAP) emissions from other more concentrated VOC and HAP emissions facilitated the use of technologies tailored to the characteristics of each stream type, and thereby provided significant cost savings. While past experience has shown that simple water scrubbing of dilute formaldehyde emissions would not meet generally accepted treatment performance (90+% control), removals in excess of 95% can be readily achieved with the addition of a reactant like MBS to the scrubbing liquor. MBS in solution reacts with formaldehyde absorbed by the scrubber water to form a bisulfite salt, rendering the reacted formaldehyde non-volatile. The reaction accelerates mass transfer of formaldehyde into the scrubbing liquid, thereby decreasing the size and cost of emission control equipment. Design of such systems should also consider the chemistry of the make-up water (and scrubber water) used in the process. Recirculating water scrubbers can be susceptible to carbonate scaling and other inorganic fouling experienced in similar water treatment systems (e.g., air strippers). The addition of salts to the recirculating scrubber solutions can be controlled to limit potential sulfur dioxide emissions and deposits.

  7. Observations on using inside air concentrations as a predictor of outside air concentrations

    SciTech Connect

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknowns within the structures.

  8. Observations on using inside air concentrations as a predictor of outside air concentrations

    DOE PAGES

    Hawkley, Gavin; Whicker, Jeffrey; Harris, Jason

    2015-04-01

    Here, excavations of radiological material were performed within confined structures with known operational parameters, such as a filtered exhaust system with known filtration efficiency. Given the known efficiency, the assumption could be made that the air concentrations of radioactivity measured outside the structure would be proportional to the air concentrations measured inside the structure. To investigate this assumption, the inside concentration data was compared with the outside concentration data. The correlation of the data suggested that the inside concentrations were not a good predictor of the outside concentrations. This poor correlation was deemed to be a result of operational unknownsmore » within the structures.« less

  9. Scavenging ratios based on inflow air concentrations

    SciTech Connect

    Davis, W.E.; Dana, M.T.; Lee, R.N.; Slinn, W.G.N.; Thorp, J.M.

    1991-07-01

    Scavenging ratios were calculated from field measurements made during April 1985. Event precipitation samples were collected at the surface, but air chemistry measurements in the air mass feeding the precipitation were made from an aircraft. In contrast, ratios calculated in previous studies have used air concentration and precipitation chemistry data from only surface measurements. Average scavenging ratios were calculated for SO{sub 4}{sup 2{minus}}, NO{sub 3}{sup {minus}}, NH{sub 4}{sup +}, total sulfate, total nitrate, and total ammonium for 5 events; the geometric mean of these scavenging ratios were 8.5 {times} 10{sup 5}, 5.6 {times} 10{sup 6}, 4.3 {times} 10{sup 5}, 3.4 {times} 10{sup 5}, 2.4 {times} 10{sup 6}, and 9.7 {times} 10{sup 4}, respectively. These means are similar to but less variable than previous ratios formed using only surface data.

  10. Controlling formaldehyde emissions with boiler ash.

    PubMed

    Cowan, Jennifer; Abu-Daabes, Malyuba; Banerjee, Sujit

    2005-07-01

    Fluidized wood ash reduces formaldehyde in air from about 20 to <1 ppmv. Methanol is removed to a much lower extent. The efficiency of formaldehyde reduction increases with increasing moisture content of the ash. Sorption of formaldehyde to ash can be substantially accounted for by partitioning to the water contained in the ash followed by rate-controlling binding to the ash solids. Adsorption occurs at temperatures of up to 165 degrees C; oxidation predominates thereafter. It is proposed that formaldehyde could be stripped from an air stream in a fluidized bed containing ash, which could then be returned to a boiler to incinerate the formaldehyde.

  11. Assessment of diffusion parameters of new passive samplers using optical chemical sensor for on-site measuring formaldehyde in indoor air: experimental and numerical studies.

    PubMed

    Vignau-Laulhere, Jane; Mocho, Pierre; Plaisance, Hervé; Raulin, Katarzyna; Desauziers, Valérie

    2016-03-01

    New passive samplers using a sensor consisting of a sol-gel matrix entrapping Fluoral-P as sampling media were developed for the determination of formaldehyde in indoor air. The reaction between Fluoral-P and formaldehyde produces a colored compound which is quantified on-site by means of a simple optical reading module. The advantages of this sensor are selectivity, low cost, ppb level limit of detection, and on-site direct measurement. In the development process, it is necessary to determine the sampling rate, a key parameter that cannot be directly assessed in the case of diffusive samplers using optical chemical sensor. In this study, a methodology combining experimental tests and numerical modeling is proposed and applied at five different radial diffusive samplers equipped with the same optical chemical sensor to assess the sampled material flows and sampling rates. These radial diffusive samplers differ in the internal volume of the sampler (18.97 and 6.14 cm(3)), the position of sensor inside the sampler (in front and offset of 1.2 cm above the membrane) and the width of the diffusion slot (1.4 and 5.9 mm). The influences of these three parameters (internal volume, position of sensor inside the sampler, and width of the diffusion slot) were assessed and discussed with regard to the formaldehyde sampling rate and water uptake by sensor (potential interference of measure). Numerical simulations based on Fick's laws are in agreement with the experimental results and provide to estimate the effective diffusion coefficient of formaldehyde through the membrane (3.50 × 10(-6) m(2) s(-1)). Conversion factors between the sensor response, sampled formaldehyde mass and sampling rate were also assessed.

  12. Toxicological Assessment of ISS Air Quality: September 2012 - October 2012 with Formaldehyde Supplement from May-October 2012

    NASA Technical Reports Server (NTRS)

    James, John T.

    2013-01-01

    A summary of the analytical results from 6 grab sample containers (GSCs) and 12 pairs of formaldehyde badges collected on ISS and returned aboard 29S or 31 S is shown in an accompanying table. The average recoveries of the 3 surrogate standards from the GSCs were as follows: C-l3-acetone, 128%; fluorobenzene, 114%; and chlorobenzene, 78%. Recoveries of two lab-control formaldehyde badges averaged 95%.

  13. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements.

    PubMed

    Burkert, A; Müller, D; Rieger, S; Schmidl, G; Triebel, W; Paa, W

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (41 (4) absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  14. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements

    NASA Astrophysics Data System (ADS)

    Burkert, A.; Müller, D.; Rieger, S.; Schmidl, G.; Triebel, W.; Paa, W.

    2015-12-01

    Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (414 absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.

  15. Formaldehyde and acetaldehyde exposure mitigation in US residences: In-home measurements of ventilation control and source control

    SciTech Connect

    Hult, Erin L.; Willem, Henry; Price, Phillip N.; Hotchi, Toshifumi; Russell, Marion L.; Singer, Brett C.

    2014-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h-1, increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED) certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h-1, and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration were 33 μg m-3 and 22 μg m-3 for low-VOC homes and 45 μg m-3 and 30 μg m-3 for conventional.

  16. Formaldehyde and acetaldehyde exposure mitigation in US residences: in-home measurements of ventilation control and source control.

    PubMed

    Hult, E L; Willem, H; Price, P N; Hotchi, T; Russell, M L; Singer, B C

    2015-10-01

    Measurements were taken in new US residences to assess the extent to which ventilation and source control can mitigate formaldehyde exposure. Increasing ventilation consistently lowered indoor formaldehyde concentrations. However, at a reference air exchange rate of 0.35 h(-1), increasing ventilation was up to 60% less effective than would be predicted if the emission rate were constant. This is consistent with formaldehyde emission rates decreasing as air concentrations increase, as observed in chamber studies. In contrast, measurements suggest acetaldehyde emission was independent of ventilation rate. To evaluate the effectiveness of source control, formaldehyde concentrations were measured in Leadership in Energy and Environmental Design (LEED)-certified/Indoor airPLUS homes constructed with materials certified to have low emission rates of volatile organic compounds (VOC). At a reference air exchange rate of 0.35 h(-1), and adjusting for home age, temperature and relative humidity, formaldehyde concentrations in homes built with low-VOC materials were 42% lower on average than in reference new homes with conventional building materials. Without adjustment, concentrations were 27% lower in the low-VOC homes. The mean and standard deviation of formaldehyde concentration was 33 μg/m(3) and 22 μg/m(3) for low-VOC homes and 45 μg/m(3) and 30 μg/m(3) for conventional.

  17. Catalytic process for formaldehyde oxidation

    NASA Technical Reports Server (NTRS)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  18. Long-memory property in air pollutant concentrations

    NASA Astrophysics Data System (ADS)

    Chelani, Asha

    2016-05-01

    In the present paper, long-memory in air pollutant concentrations is reviewed and outcome of the past studies is analyzed to provide the possible mechanism behind temporal evolution of air pollutant concentrations. It is observed that almost all the studies show air pollutant concentrations over time possess persistence up to a certain limit. Self-organized criticality of air pollution, multiplicative process of pollutant concentrations, and uniformity in emission sources leading to self-organized criticality are few of the phenomena behind the persistent property of air pollutant concentrations. The self-organized criticality of air pollution is linked to atmosphere's self-cleansing mechanism. This demonstrates that inspite of increasing anthropogenic emissions, self-organized criticality of air pollution is sustained and has low influence of human interventions. In the future, this property may, however, be perturbed due to continuous air pollution emissions, which may influence the accuracy in predictions.

  19. Formaldehyde and acetaldehyde associated with the use of natural gas as a fuel for light vehicles

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio M.; Arbilla, Graciela

    Data collected from 1998 to 2001 clearly show that formaldehyde levels in ambient air of the city of Rio de Janeiro increased in 2001 (Corrêa et al., 2003, Atmospheric Environment 37, 23-29). In order to continue this study, samples were collected at the same site in the period from 2001 to 2002. In this work, we present the observed trends for formaldehyde and acetaldehyde levels from 1998 to 2002. Mean formaldehyde levels increased from 20 ppb in 1998 to 80 ppb in 2002, while acetaldehyde concentrations remained nearly unchanged. The formaldehyde/acetaldehyde ratio increased from 1.0 to 4.5 in the same period of time. These results may be explained by the increasing use of compressed natural gas by the vehicular fleet, in substitution of ethanol and gasohol (a mixture of gasoline and ethanol, 24% v/v). In order to confirm this hypothesis, some experiments were carried out to estimate the formaldehyde and acetaldehyde emissions from 20 automobiles powered by natural gas. The results showed a mean formaldehyde/acetaldehyde emission ratio of 3.42 for natural gas-fueled vehicles and of 0.24 when the same vehicles are fueled with gasohol. These high levels of formaldehyde may be attributed to the incomplete combustion of methane (80-90% of the natural gas) that is catalytically converted to formaldehyde in the exhaust pipe.

  20. Formaldehyde as a basis for residential ventilation rates

    SciTech Connect

    Sherman, M.H.; Hodgson, A.T.

    2002-04-28

    Traditionally, houses in the U.S. have been ventilated by passive infiltration in combination with active window opening. However in recent years, the construction quality of residential building envelopes has been improved to reduce infiltration, and the use of windows for ventilation also may have decreased due to a number of factors. Thus, there has been increased interest in engineered ventilation systems for residences. The amount of ventilation provided by an engineered system should be set to protect occupants from unhealthy or objectionable exposures to indoor pollutants, while minimizing energy costs for conditioning incoming air. Determining the correct ventilation rate is a complex task, as there are numerous pollutants of potential concern, each having poorly characterized emission rates, and poorly defined acceptable levels of exposure. One ubiquitous pollutant in residences is formaldehyde. The sources of formaldehyde in new houses are reasonably understood, and there is a large body of literature on human health effects. This report examines the use of formaldehyde as a means of determining ventilation rates and uses existing data on emission rates of formaldehyde in new houses to derive recommended levels. Based on current, widely accepted concentration guidelines for formaldehyde, the minimum and guideline ventilation rates for most new houses are 0.28 and 0.5 air changes per hour, respectively.

  1. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea

    PubMed Central

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-01-01

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  2. Occurrence and Concentrations of Toxic VOCs in the Ambient Air of Gumi, an Electronics-Industrial City in Korea.

    PubMed

    Baek, Sung-Ok; Suvarapu, Lakshmi Narayana; Seo, Young-Kyo

    2015-08-05

    This study was carried out to characterize the occurrence and concentrations of a variety of volatile organic compounds (VOCs) including aliphatic, aromatic, halogenated, nitrogenous, and carbonyl compounds, in the ambient air of Gumi City, where a large number of electronics industries are found. Two field monitoring campaigns were conducted for a one year period in 2003/2004 and 2010/2011 at several sampling sites in the city, representing industrial, residential and commercial areas. More than 80 individual compounds were determined in this study, and important compounds were then identified according to their abundance, ubiquity and toxicity. The monitoring data revealed toluene, trichloroethylene and acetaldehyde to be the most significant air toxics in the city, and their major sources were mainly industrial activities. On the other hand, there was no clear evidence of an industrial impact on the concentrations of benzene and formaldehyde in the ambient air of the city. Overall, seasonal variations were not as distinct as locational variations in the VOCs concentrations, whereas the within-day variations showed a typical pattern of urban air pollution, i.e., increase in the morning, decrease in the afternoon, and an increase again in the evening. Considerable decreases in the concentrations of VOCs from 2003 to 2011 were observed. The reductions in the ambient concentrations were confirmed further by the Korean PRTR data in industrial emissions within the city. Significant decreases in the concentrations of benzene and acetaldehyde were also noted, whereas formaldehyde appeared to be almost constant between the both campaigns. The decreased trends in the ambient levels were attributed not only to the stricter regulations for VOCs in Korea, but also to the voluntary agreement of major companies to reduce the use of organic solvents. In addition, a site planning project for an eco-friendly industrial complex is believed to play a contributory role in improving

  3. Air toxics concentrations, source identification, and health risks: An air pollution hot spot in southwest Memphis, TN

    NASA Astrophysics Data System (ADS)

    Jia, Chunrong; Foran, Jeffery

    2013-12-01

    Southwest Memphis is a residential region surrounded by fossil fuel burning, steel, refining, and food processing industries, and considerable mobile sources whose emissions may pose adverse health risks to local residents. This study characterizes cancer and non-cancer risks resulting from exposure to ambient air toxics in southwest Memphis. Air toxics samples were collected at a central location every 6 days from June 5, 2008 to January 8, 2010. Volatile organic compounds (VOCs) were collected in evacuated stainless-steel canisters and aldehydes by DNPH cartridges, and samples were analyzed for 73 target compounds. A total of 60 compounds were detected and 39 were found in over 86% of the samples. Mean concentrations of many compounds were higher than those measured in many industrial communities throughout the U.S. The cumulative cancer risk associated with exposure to 13 carcinogens found in southwest Memphis air was 2.3 × 10-4, four times higher than the national average of 5.0 × 10-5. Three risk drivers were identified: benzene, formaldehyde, and acrylonitrile, which contributed 43%, 19%, and 14% to the cumulative risk, respectively. This is the first field study to confirm acrylonitrile as a potential risk driver. Mobile, secondary, industrial, and background sources contributed 57%, 24%, 14%, and 5% of the risk, respectively. The results of this study indicate that southwest Memphis, a region of significant income, racial, and social disparities, is also a region under significant environmental stress compared with surrounding areas and communities.

  4. Formaldehyde in Insulation: Villain or Innocent Bystander?

    PubMed Central

    Lees, R. E. M.

    1983-01-01

    When urea formaldehyde foam insulation (UFFI) deteriorates, it produces an off-gas mixture whose major constituent is formaldehyde. Most investigative studies of UFFI have concentrated on formaldehyde. Health concerns fall into three groups: irritant characteristics, allergenic capabilities and potential carcinogenicity. Except for the first of these, formaldehyde's hazard potential is not clear. The extent to which formaldehyde may be responsible for UFFI's evil reputation is explored in this paper but the degree to which either substance is a real threat to health still appears to open to debate. PMID:21283296

  5. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  6. Formaldehyde: catalytic oxidation as a promising soft way of elimination.

    PubMed

    Quiroz Torres, Jhon; Royer, Sébastien; Bellat, Jean-Pierre; Giraudon, Jean-Marc; Lamonier, Jean-François

    2013-04-01

    Compared to other molecules such as benzene, toluene, xylene, and chlorinated compounds, the catalytic oxidation of formaldehyde has been studied rarely. However, standards for the emission level of this pollutant will become more restrictive because of its extreme toxicity even at very low concentrations in air. As a consequence, the development of a highly efficient process for its selective elimination is needed. Complete catalytic oxidation of formaldehyde into CO2 and H2 O using noble-metal-based catalysts is a promising method to convert this pollutant at room temperature, making this process energetically attractive from an industrial point of view. However, the development of a less expensive active phase is required for a large-scale industrial development. Nanomaterials based on oxides of manganese are described as the most promising catalysts. The objective of this Minireview is to present promising recent studies on the removal of formaldehyde through heterogeneous catalysis to stimulate future research in this topic.

  7. The effect of formaldehyde and nitrogen-containing compounds on the size and volume of aerosol particles

    NASA Astrophysics Data System (ADS)

    Millage, K.; Galloway, M. M.; De Haan, D. O.

    2012-12-01

    Atmospheric aerosol can interact with clouds in many ways, often resulting in the redistribution or absorption of solar energy or changes in precipitation efficiency. Secondary organic aerosol (SOA) in particular has been linked to climate change and a reduction in the number and size of cloud particles. The reactions of nitrogen containing compounds (primary amines, amino acids and ammonium sulfate) with carbonyl compounds (such as formaldehyde and glycolaldehyde) are potential sources of SOA. Aerosol containing formaldehyde and nitrogen-containing compounds (glycine, methylamine, arginine, or ammonium sulfate) was generated from buffered solutions (pH 5.4) using a nebulizer. The aerosol was then equilibrated into a chamber containing humid air (82-84% RH), and particle sizes were measured using a SMPS system over a period of 1 hour in order to examine how the size and volume of the aerosol particles changed. Formaldehyde concentrations were varied over multiple experiments. Arginine displayed a trend of increasing relative particle size with increasing formaldehyde concentration. Ammonium sulfate and formaldehyde displayed a decrease in relative particle sizes from 0:1 to 2:1 ratios of formaldehyde to ammonium sulfate, but then an increase in relative particle sizes with increasing amounts of formaldehyde. Similarly, glycine and methylamine initially displayed decreasing relative particle sizes, until reaching a 1:1 ratio of each to formaldehyde at which point the relative particle sizes steadily increased. These effects were likely caused by the evaporation of first-generation imine products.

  8. Conversion and toxicity characteristics of formaldehyde in acetoclastic methanogenic sludge.

    PubMed

    Gonzalez-Gil, G; Kleerebezem, R; Lettinga, G

    2002-08-05

    An unadapted mixed methanogenic sludge transformed formaldehyde into methanol and formate. The methanol to formate ratio obtained was 1:1. Formaldehyde conversion proceeded without any lag phase, suggesting the constitutive character of the formaldehyde conversion enzymes involved. Because the rate of formaldehyde conversion declined at increased formaldehyde additions, we hypothesized that some enzymes and/or cofactors might become denatured as a result of the excess of formaldehyde. Furthermore, formaldehyde was found to be toxic to acetoclastic methanogenesis in a dual character. Formaldehyde toxicity was partly reversible because once the formaldehyde concentration was extremely low or virtually removed from the system, the methane production rate was partially recovered. Because the degree of this recovery was not complete, we conclude that formaldehyde toxicity was partly irreversible as well. The irreversible toxicity likely can be attributed to biomass formaldehyde-related decay. Independent of the mode of formaldehyde addition (i.e., slug or continuous), the irreversible toxicity was dependent on the total amount of formaldehyde added to the system. This finding suggests that to treat formaldehyde-containing waste streams, a balance between formaldehyde-related decay and biomass growth should be attained.

  9. Measuring Concentrations of Particulate 140La in the Air

    DOE PAGES

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; ...

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  10. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  11. Versatile microanalytical system with porous polypropylene capillary membrane for calibration gas generation and trace gaseous pollutants sampling applied to the analysis of formaldehyde, formic acid, acetic acid and ammonia in outdoor air.

    PubMed

    Coelho, Lúcia H G; Melchert, Wanessa R; Rocha, Flavio R; Rocha, Fábio R P; Gutz, Ivano G R

    2010-11-15

    The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the μg m(-3) range) and their variations with sampling site and time. In this work, a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE), a quick separation technique that requires nothing more than some nanoliters of sample and, when combined with capacitively coupled contactless conductometric detection (C(4)D), is particularly favorable for ionic species that do not absorb in the UV-vis region, like the target analytes formaldehyde, formic acid, acetic acid and ammonium. The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry's constant such as formaldehyde and carboxylic acids, or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8.3 nL s(-1)), while the sample was aspirated through the annular gap of the concentric tubes at 2.5 mL s(-1). A second unit, in all similar to the CMDS, was operated as a capillary membrane diffusion emitter (CMDE), generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS. The fluids of the system were driven with inexpensive aquarium air pumps, and the collected samples were stored in vials cooled by a Peltier element. Complete protocols were developed for the analysis, in air, of NH(3), CH(3)COOH, HCOOH and, with a derivatization setup, CH(2)O, by associating the CMDS collection with the determination by CE-C(4)D. The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot's reaction. Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction, solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW). All

  12. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    PubMed

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  13. Minanre Gas Concentrators For Air Sampling

    SciTech Connect

    Dr. Seung Ho Hong

    2001-03-01

    The goal of this project was to demonstrate the feasibility of a compact, lightweight, gas-sampling device with rapid-cycle-time characteristics. The highlights of our Phase I work include: (1) Demonstration of a compact gas sampler with integrated heater. This device has an order of magnitude greater adsorption capacity and much faster heating/cooling times than commercial sorbent tubes. (2) Completion of computational fluid dynamics modeling of the gas sampler to determine airflow characteristics for various design options. These modeling efforts guided the development and testing of the Mesochannel Gas Sampler prototype. (3) Testing of the Mesochannel Gas Sampler in parallel with tests of two packed-bed samplers. These tests showed the Mesochannel Gas Sampler represents a substantial improvement compared with the packed-bed approach. Our mesochannel heat-exchanger/adsorber architecture allows very efficient use of adsorbent mass, high adsorbent loadings, and very low pressure drop, which makes possible very high air-sampling rates using a simple, low-power fan. This device is well-suited for collecting samples of trace-level contaminants. The integrated heater, which forms the adsorbent-coated mesochannel walls, allows direct heating of the adsorbent and results in very rapid desorption of the adsorbed species. We believe the Mesochannel Gas Sampler represents a promising technology for the improvement of trace-contaminant detection limits. In our Phase II proposal, we outline several improvements to the gas sampler that will further improve its performance.

  14. Regional Sources of Atmospheric Formaldehyde and Acetaldehyde, and Implications for Atmospheric Modeling

    EPA Science Inventory

    Formaldehyde and acetaldehyde concentrations over the Eastern half of the United States are simulated with a 3-D air quality model to identify the most important chemical precursors under January and July conditions. We find that both aldehydes primarily result from photochemical...

  15. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  16. Formaldehyde in the rainwater in the eastern Mediterranean: occurrence, deposition and contribution to organic carbon budget

    NASA Astrophysics Data System (ADS)

    Economou, C.; Mihalopoulos, N.

    Formaldehyde (HCHO) concentrations have been measured in 66 rain samples during the rainy season (September 1999-May 2000) at Heraklion (25°07'E, 35°20'N; Crete) a coastal urban location in the eastern Mediterranean. HCHO concentrations vary between 0.42 and 11.14 μM, in the range of HCHO levels reported at other locations worldwide. The annual volume-weighted mean (VWM) rainwater HCHO concentration is 3.05 μM and comprised ˜3% of the dissolved organic carbon. Formaldehyde levels in rainwater depend on the air mass origin. The per event deposition of HCHO when air masses originate from NW Europe, Balkans or Turkey is 2-4 times higher than that from Africa or from marine sectors indicating strong influence from anthropogenic sources. The significant correlation of formaldehyde with non-sea-salt sulfate, nitrate and ammonium also indicates a significant anthropogenic component in HCHO levels. Formaldehyde is found to correlate significantly with formate and acetate with a ratio of formate to formaldehyde close to 1. According to our measurements rainwater HCHO and TOC could significantly contribute to the productivity of the eastern Mediterranean seawater. In particular, the rainwater can be an important supplier of the HCHO reservoir in the seawater. In addition the rainwater TOC levels can provide to phytoplankton species up to 32% of the organic carbon needed for new production.

  17. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    DOE PAGES

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; ...

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher inmore » homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.« less

  18. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    PubMed

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  19. Comparison of observed and predicted Kr-85 air concentrations

    SciTech Connect

    Yildiran, M.; Miller, C.W.

    1984-04-25

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plum equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant (SRP), Aiken, South Carolina, have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearsons's correlation between pairs of logarithms of observed and predicted annual-average values was r = 0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. 18 references, 3 figures, 3 tables.

  20. Air concentrations of organochlorine compounds related to wind direction and compared with biota concentration

    SciTech Connect

    Egebaeck, A.L.; Wideqvist, U.; Asplund, L.; Strandell, M.; Alsberg, T.; Litzen, K.; Eriksson, U.; Haeggberg, L.; Zakrisson, S.; Oisson, M.; Bignert, A.

    1995-12-31

    Persistent organic compounds are long-range transported by air. Air samples were collected at two background meteorological stations, one southern at Gotland in the central Baltic and one northern, close to the polar circle. The collection was a part of the Swedish Dioxin Survey Project. Air sampling was carried out from fall 1990 to spring 1991 using a high-volume sampler. Air trajectories suggesting stable weather conditions decided which samples to be analyzed for e.g. PCBs, polychlorinated naphthalenes (PCN), chloroparaffines, HCHs and Toxaphene. The gas-phase concentrations of the seven PCB congeners 28, 52, 101, 118, 138, 153, 180 were in the low pg/m{sup 3} range, while the concentration of the nonortho PCB 77 was about two orders of magnitude lower. High concentrations were usually correlated with SW winds and low concentrations with N to NW winds. Air masses coming from N to both sampling sites, resulted in nearly equal concentrations of the seven PCB congeners. PCNs were found in the gas phase of all samples at the pg/m{sup 3} level (total PCNs). The relative concentrations of the various contaminants were compared between air and four biological matrices collected in the vicinity of the air sampling locations. Cod, Herring and Herring feeding Guillemot from the Baltic and Pike from the northern sampling site were all collected within the Swedish National Monitoring Program.

  1. Health Risk Assessment of Inhalation Exposure to Formaldehyde and Benzene in Newly Remodeled Buildings, Beijing

    PubMed Central

    Huang, Lihui; Mo, Jinhan; Sundell, Jan; Fan, Zhihua; Zhang, Yinping

    2013-01-01

    Objective To assess health risks associated with inhalation exposure to formaldehyde and benzene mainly emitted from building and decoration materials in newly remodeled indoor spaces in Beijing. Methods We tested the formaldehyde and benzene concentrations in indoor air of 410 dwellings and 451 offices remodeled within the past year, in which the occupants had health concerns about indoor air quality. To assess non-carcinogenic health risks, we compared the data to the health guidelines in China and USA, respectively. To assess carcinogenic health risks, we first modeled indoor personal exposure to formaldehyde and benzene using the concentration data, and then estimated the associated cancer risks by multiplying the indoor personal exposure by the Inhalation Unit Risk values (IURs) provided by the U.S. EPA Integrated Risk Information System (U.S. EPA IRIS) and the California Office of Environmental Health Hazard Assessment (OEHHA), respectively. Results (1) The indoor formaldehyde concentrations of 85% dwellings and 67% offices were above the acute Reference Exposure Level (REL) recommended by the OEHHA and the concentrations of all tested buildings were above the chronic REL recommended by the OEHHA; (2) The indoor benzene concentrations of 12% dwellings and 32% offices exceeded the reference concentration (RfC) recommended by the U.S. EPA IRIS; (3) The median cancer risks from indoor exposure to formaldehyde and benzene were 1,150 and 106 per million (based on U.S. EPA IRIS IURs), 531 and 394 per million (based on OEHHA IURs). Conclusions In the tested buildings, formaldehyde exposure may pose acute and chronic non-carcinogenic health risks to the occupants, whereas benzene exposure may pose chronic non-carcinogenic risks to the occupants. Exposure to both compounds is associated with significant carcinogenic risks. Improvement in ventilation, establishment of volatile organic compounds (VOCs) emission labeling systems for decorating and refurbishing materials

  2. Indoor air VOC concentrations in suburban and rural New Jersey.

    PubMed

    Weisel, Clifford P; Alimokhtari, Shahnaz; Sanders, Paul F

    2008-11-15

    Indoor VOC air concentrations of many compounds are higher than outdoor concentrations due to indoor sources. However, most studies have measured residential indoor air in urban centers so the typical indoor air levels in suburban and rural regions have not been well characterized. Indoor VOC air concentrations were measured in 100 homes in suburban and rural areas in NJ to provide background levels for investigations of the impact from subsurface contamination sources. Of the 57 target compounds, 23 were not detected in any of the homes, and 14 compounds were detected in at least 50% of the homes with detection limits of approximately 1 microg/m3. The common compounds identified included aromatic and aliphatic hydrocarbons from mobile sources, halogenated hydrocarbons commonly used in consumer products or from chlorinated drinking water, acetone and 2-butanone emitted from cosmetic products, and Freons. Typical concentrations were in the low microg/m3 range, though values of tens, hundreds or even thousands of microg/m3 were measured in individual homes in which activities related to specific sources of VOCs were reported. Compounds with known similar sources were highly correlated. The levels observed are consistent with concentrations found in the air of urban homes.

  3. Growth of Bacillus methanolicus in 2 M methanol at 50 °C: the effect of high methanol concentration on gene regulation of enzymes involved in formaldehyde detoxification by the ribulose monophosphate pathway.

    PubMed

    Bozdag, Ahmet; Komives, Claire; Flickinger, Michael C

    2015-07-01

    Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.

  4. Seasonal variations of air pollutant concentrations within Krasnoyarsk City.

    PubMed

    Mikhailuta, Sergey V; Taseiko, Olga V; Pitt, Anne; Lezhenin, Anatoly A; Zakharov, Yuri V

    2009-02-01

    This paper examines the significant differences in seasonal variations of criteria pollutant concentrations in various parts of a large urban area. These differences are caused by the microclimatic heterogeneity of the city and show the influence of breeze and orographic-type circulations on urban air pollution. The temperature heterogeneity of Krasnoyarsk territory during the winter leads to an increase of 150% in CO air pollution levels in the central part of city. During the summer the orographical heterogeneity of Krasnoyarsk City leads to increases of up to 400% in air pollution for different areas.

  5. Ozone concentrations in air flowing into New York State

    NASA Astrophysics Data System (ADS)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  6. Mechanistic study on formaldehyde-induced hepatotoxicity.

    PubMed

    Strubelt, O; Younes, M; Pentz, R; Kühnel, W

    1989-01-01

    In isolated, hemoglobin-free perfused livers of fasted rats, formaldehyde at an initial concentration of 10 mmol/l produced toxicity as evidenced by a release of enzymes (GPT, SDH) and of glutathione (mainly GSSG) into the perfusate, an accumulation of calcium in the liver, and a depletion of hepatic glutathione. Formaldehyde also led to an enhanced release of malondialdehyde into the perfusate, indicating peroxidative processes and decreased hepatic oxygen consumption by about 50-70%. The electron microscopic investigation of formaldehyde-exposed livers showed a destruction of the mitochondria (ruptured membranes, loss of the cristae) and some damage of the rough endoplasmic reticulum. Feeding the rats prior to surgery attenuated the hepatotoxic effects of 10 mmol/l formaldehyde. At an initial concentration of 3 mmol/l, formaldehyde did not release enzymes from livers of fed or fasted rats but only from those whose glutathione content had been depleted by treatment with phorone (250 mg/kg ip 2 h earlier). Formaldehyde liberated glucose and lactate from the livers of fed but not from those of fasted rats, indicating anaerobic energy supply in the fed state. The hepatotoxic action of formaldehyde is not due to its metabolism to formate or to the 10% methanol added as a stabilizing agent to the commercially available 37% solution named formalin. In conclusion, by destruction of mitochondria, formaldehyde inhibits aerobic energy supply and thereby presumably produces hepatocellular damage.

  7. Determination of partition and diffusion coefficients of formaldehyde in selected building materials and impact of relative humidity.

    PubMed

    Xu, Jing; Zhang, Jianshun S; Liu, Xiaoyu; Gao, Zhi

    2012-06-01

    The partition and effective diffusion coefficients of formaldehyde were measured for three materials (conventional gypsum wallboard, "green" gypsum wallboard, and "green" carpet) under three relative humidity (RH) conditions (20%, 50%, and 70% RH). The "green" materials contained recycled materials and were friendly to environment. A dynamic dual-chamber test method was used. Results showed that a higher relative humidity led to a larger effective diffusion coefficient for two kinds of wallboards and carpet. The carpet was also found to be very permeable resulting in an effective diffusion coefficient at the same order of magnitude with the formaldehyde diffusion coefficient in air. The partition coefficient (K(ma)) of formaldehyde in conventional wallboard was 1.52 times larger at 50% RH than at 20% RH, whereas it decreased slightly from 50% to 70% RH, presumably due to the combined effects of water solubility of formaldehyde and micro-pore blocking by condensed moisture at the high RH level. The partition coefficient of formaldehyde increased slightly with the increase of relative humidity in "green" wallboard and "green" carpet. At the same relative humidity level, the "green" wallboard had larger partition coefficient and effective diffusion coefficient than the conventional wallboard, presumably due to the micro-pore structure differences between the two materials. The data generated could be used to assess the sorption effects of formaldehyde on building materials and to evaluate its impact on the formaldehyde concentration in buildings.

  8. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  9. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  10. 24 CFR 3280.406 - Air chamber test method for certification and qualification of formaldehyde emission levels.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... HOME CONSTRUCTION AND SAFETY STANDARDS Testing § 3280.406 Air chamber test method for certification and... wrapped until preconditioning is initiated. (2) Panels selected for testing in the air chamber shall not be taken from the top or bottom of the stack. (b) Testing. Testing must be conducted in...

  11. Spectra of concentration of air pollution for turbulent convection

    SciTech Connect

    Patel, S.R.

    1996-12-31

    Very recently the study of formation and destruction of photochemical smog is increasing at both small and large scale. Also the transport of chemical species through the Planetary Boundary Layer (PBL) of the atmosphere is a key of the global change problem and will have to be parameterized more reliably than in the past. Further, in the air pollution modeling, the usual practice of neglecting the concentration correlation in the atmospheric photochemical reaction has recently been recognized as a source of serious error. So, it is important to study the various aspects of the concentration fluctuations (of air pollution) with chemical reaction. A model of the spectrum of concentration of air pollution with chemical reaction has been developed using the models of Hill and Hill and Clifford. The results obtained are applicable for arbitrary Schmidt number. Further, for the case of pure mixing (without chemical reaction) and the concentration replaced by temperature, the form of the spectra obtained here reduces to the form obtained by Hill and Clifford. This study also shows that, in the case of pure mixing, the concentration decays in a natural manner, but if the concentration selected is that of the chemical reactant, then the effect is that the dispersion of the concentration is much more rapid.

  12. Development of a model for radon concentration in indoor air.

    PubMed

    Jelle, Bjørn Petter

    2012-02-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities.

  13. New formaldehyde base disinfectants.

    NASA Technical Reports Server (NTRS)

    Trujillo, R.; Lindell, K. F.

    1973-01-01

    Preparations of formaldehyde in various organic liquids - ethylene glycol, glycerol, and propylene glycol - serve as effective disinfectants towards microbial vegetative cells and spores. This disinfection is a temperature-dependent process and is manifest when these formaldehyde base disinfectants are dissolved in water. The irritating vapors associated with formaldehyde disinfection are not present in either of these new formaldehyde base disinfectants or in aqueous solutions of them.

  14. Influence of relative humidity on VOC concentrations in indoor air.

    PubMed

    Markowicz, Pawel; Larsson, Lennart

    2015-04-01

    Volatile organic compounds (VOCs) may be emitted from surfaces indoors leading to compromised air quality. This study scrutinized the influence of relative humidity (RH) on VOC concentrations in a building that had been subjected to water damage. While air samplings in a damp room at low RH (21-22%) only revealed minor amounts of 2-ethylhexanol (3 μg/m(3)) and 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB, 8 μg/m(3)), measurements performed after a rapid increase of RH (to 58-75%) revealed an increase in VOC concentrations which was 3-fold for 2-ethylhexanol and 2-fold for TXIB. Similar VOC emission patterns were found in laboratory analyses of moisture-affected and laboratory-contaminated building materials. This study demonstrates the importance of monitoring RH when sampling indoor air for VOCs in order to avoid misleading conclusions from the analytical results.

  15. Auditing and assessing air quality in concentrated feeding operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential adverse effects of concentrated animal feeding operations (CAFO) on the environment are a growing concern. The air quality issues of most concerns to CAFO vary, but generally include ammonia, hydrogen sulfide, particulate matter (PM), volatile organic compounds (VOC), green house gase...

  16. Determination of beryllium concentrations in UK ambient air

    NASA Astrophysics Data System (ADS)

    Goddard, Sharon L.; Brown, Richard J. C.; Ghatora, Baljit K.

    2016-12-01

    Air quality monitoring of ambient air is essential to minimise the exposure of the general population to toxic substances such as heavy metals, and thus the health risks associated with them. In the UK, ambient air is already monitored under the UK Heavy Metals Monitoring Network for a number of heavy metals, including nickel (Ni), arsenic (As), cadmium (Cd) and lead (Pb) to ensure compliance with legislative limits. However, the UK Expert Panel on Air Quality Standards (EPAQS) has highlighted a need to limit concentrations of beryllium (Be) in air, which is not currently monitored, because of its toxicity. The aim of this work was to analyse airborne particulate matter (PM) sampled onto filter papers from the UK Heavy Metals Monitoring Network for quantitative, trace level beryllium determination and compare the results to the guideline concentration specified by EPAQS. Samples were prepared by microwave acid digestion in a matrix of 2% sulphuric acid and 14% nitric acid, verified by the use of Certified Reference Materials (CRMs). The digested samples were then analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The filters from the UK Heavy Metals Monitoring Network were tested using this procedure and the average beryllium concentration across the network for the duration of the study period was 7.87 pg m-3. The highest site average concentration was 32.0 pg m-3 at Scunthorpe Low Santon, which is significantly lower than levels that are thought to cause harm. However the highest levels were observed at sites monitoring industrial point sources, indicating that beryllium is being used and emitted, albeit at very low levels, from these point sources. Comparison with other metals concentrations and data from the UK National Atmospheric Emissions Inventory suggests that current emissions of beryllium may be significantly overestimated.

  17. Formaldehyde and hydroperoxides at Mauna Loa Observatory

    SciTech Connect

    Heikes, B.G. )

    1992-11-20

    Hydrogen peroxide, formaldehyde, and a measure of organic hydroperoxides are presented from the Mauna Loa Observatory Photochemistry Experiment (MLOPEX). MLOPEX was conducted from May 1 to June 4, 1988, at the Mauna Loa Observatory on the island of Hawaii. A modified dual-enzyme serial-coil H[sub 2]O[sub 2]/ROOH method was used to quantify these species. A second enzyme method was used to measure CH[sub 2]O. The location and meteorology at the Mauna Loa Observatory site permitted 35 days of measurements to be made in free tropospheric air and in modified marine boundary layer air. Average concentrations of H[sub 2]O[sub 2], ROOH, and CH[sub 2]O were 1050, 140, and 100 pptv in free tropospheric, or down-slope air. In upslope air, or modified marine boundary layer air, average concentrations were 900, 150, and 190 pptv. Maximum concentrations for all three species were experienced during a two day photochemical haze episode and were 3230, 440, and 450 pptv for H[sub 2]O[sub 2], ROOH, and CH[sub 2]O. H[sub 2]O[sub 2] was depleted in air which had recently been processed by cloud or precipitation. The measured concentrations of these three species were comparable to prior measurements in well- aged air, but were lower than previous models have predicted. Part of this discrepancy may be due to the treatment of heterogeneous removal processes, dry and wet deposition, in these models. The measured ratio of ROOH to H[sub 2]O[sub 2] is significantly different than present theory predicts, with ROOH as measured being approximately a factor of 5 too low. 61 refs., 13 figs., 2 tabs.

  18. Evaluation of Ultra-Violet Photocatalytic Oxidation (UVPCO) forIndoor Air Applications: Conversion of Volatile Organic Compounds at LowPart-per-Billion Concentrations

    SciTech Connect

    Hodgson, Alfred T.; Sullivan, Douglas P.; Fisk, William J.

    2005-09-30

    Efficient removal of indoor generated airborne particles and volatile organic compounds (VOCs) in office buildings and other large buildings may allow for a reduction in outdoor air supply rates with concomitant energy savings while still maintaining acceptable indoor air quality in these buildings. Ultra-Violet Photocatalytic Oxidation (UVPCO) air cleaners have the potential to achieve the necessary reductions in indoor VOC concentrations at relatively low cost. In this study, laboratory experiments were conducted with a scaled, prototype UVPCO device designed for use in a duct system. The experimental UVPCO contained two 30 by 30-cm honeycomb monoliths coated with titanium dioxide and 3% by weight tungsten oxide. The monoliths were irradiated with 12 UVC lamps arranged in four banks. The UVPCO was challenged with four mixtures of VOCs typical of mixtures encountered in indoor air. A synthetic office mixture contained 27 VOCs commonly measured in office buildings. A cleaning product mixture contained three cleaning products with high market shares. A building product mixture was created by combining sources including painted wallboard, composite wood products, carpet systems, and vinyl flooring. A fourth mixture contained formaldehyde and acetaldehyde. Steady-state concentrations were produced in a classroom laboratory or a 20-m{sup 3} environmental chamber. Air was drawn through the UVPCO, and single pass conversion efficiencies were measured from replicate air samples collected upstream and downstream of the reactor section. Concentrations of the mixtures were manipulated, with concentrations of individual VOCs mostly maintained below 10 ppb. Device flow rates were varied between 165 and 580 m{sup 3}/h. Production of formaldehyde, acetaldehyde, acetone, formic acid, and acetic acid as reaction products was investigated. Conversion efficiency data were generated for 48 individual VOCs or groups of closely related compounds. Alcohols and glycol ethers were the

  19. Unusual formaldehyde-induced hypersensitivity in two schoolgirls

    SciTech Connect

    Gammage, R.B. ); Hanna, W.T.; Painter, P.B. )

    1990-01-01

    Two schoolgirls developed a syndrome resembling Henoch-Schonlein purpura while attending a recently opened school insulated with urea-formaldehyde foam (UFFI). Skin rashes and swellings were accompanied by bizarre, blue-green discoloration of the skin. Subsequent investigations by county, state and federal authorities, and low measured concentrations of formaldehyde, prompted initial conclusions that in-school formaldehyde exposures were not responsible for the girls' problems. Subsequent controlled exposures to UFFI and formaldehyde while in hospital elicited the whole cascade of symptoms. The chronology of the onset and amplification of systems make it probable that the formaldehyde exposures precipitating the girls' hypersensitivity, occurred in the school. 3 refs.

  20. Energy yields for hydrogen cyanide and formaldehyde syntheses - The HCN and amino acid concentrations in the primitive ocean

    NASA Technical Reports Server (NTRS)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Simulated prebiotic atmospheres containing either CH4, CO, or CO2, in addition to N2, H2O, and variable amounts of H2, were subjected to the spark from a high-frequency Tesla coil, and the energy yields for the syntheses of HCN and H2CO were estimated from periodic (every two days) measurements of the compound concentrations. The mixtures with CH4 were found to yield the highest amounts of HCN, whereas the CO mixtures produced the highest yields of H2CO. These results model atmospheric corona discharges. From the yearly energy yields calculated and the corona discharge available on the earth, the yearly production rate of HCN was estimated; using data on the HCN production rates and the experimental rates of decomposition of amino acids through the submarine vents, the steady state amino acid production rate in the primitive ocean was calculated to be about 10 nmoles/sq cm per year.

  1. Formaldehyde may be found in cosmetic products even when unlabelled

    PubMed Central

    Blaziene, Audra; Chomiciene, Anzelika; Isaksson, Marléne

    2015-01-01

    Concomitant contact allergy to formaldehyde and formaldehyde-releasers remains common among patients with allergic contact dermatitis. Concentration of free formaldehyde in cosmetic products within allowed limits have been shown to induce dermatitis from short-term use on normal skin. The aim of this study was to investigate the formaldehyde content of cosmetic products made in Lithuania. 42 samples were analysed with the chromotropic acid (CA) method for semi-quantitative formaldehyde determination. These included 24 leave-on (e.g., creams, lotions) and 18 rinse-off (e.g., shampoos, soaps) products. Formaldehyde releasers were declared on the labels of 10 products. No formaldehyde releaser was declared on the label of the only face cream investigated, but levels of free formaldehyde with the CA method was >40 mg/ml and when analysed with a high-performance liquid chromatographic method – 532 ppm. According to the EU Cosmetic directive, if the concentration of formaldehyde is above 0.05% a cosmetic product must be labelled “contains formaldehyde“. It could be difficult for patients allergic to formaldehyde to avoid contact with products containing it as its presence cannot be determined from the ingredient labelling with certainty. The CA method is a simple and reliable method for detecting formaldehyde presence in cosmetic products.

  2. Mechanistic study on formaldehyde-induced hepatotoxicity

    SciTech Connect

    Strubelt, O.; Younes, M.; Pentz, R.; Kuehnel, W. )

    1989-01-01

    In isolated, hemoglobin-free perfused livers of fasted rats, formaldehyde at an initial concentration of 10 mmol/l produced toxicity as evidenced by a release of enzymes (GPT, SDH) and of glutathione (mainly GSSG) into the perfusate, an accumulation of calcium in the liver, and a depletion of hepatic glatathione. Formaldehyde also led to an enhanced release of malondialdehyde into the perfusate, indicating peroxidative processes and decreased hepatic oxygen consumption by about 50-70%. The electron microscopic investigation of formaldehyde-exposed livers showed a destruction of the mitochondria (ruptured membranes, loss of the cristae) and some damage of the rough endoplasmic reticulum. Feeding the rats prior to surgery attenuated the hepatotoxic effects of 10 mmol/l formaldehyde. At an initial concentration of 3 mmol/l, formaldehyde did not release enzymes from livers of fed or fasted rats but only from whose glutathione content had been depleted by treatment with phorone (250 mg/kg ip 2 h earlier). Formaldehyde liberated glucose and lactate from the livers of fed but not from those of fasted rats, indicating anaerobic energy supply in the fed state. The hepatotoxic action of formaldehyde is not due to its metabolism to formate or to the 10% methanol added as a stabilizing agent to the commercially available 37% solution named formalin.

  3. Predicting indoor pollutant concentrations, and applications to air quality management

    SciTech Connect

    Lorenzetti, David M.

    2002-10-01

    Because most people spend more than 90% of their time indoors, predicting exposure to airborne pollutants requires models that incorporate the effect of buildings. Buildings affect the exposure of their occupants in a number of ways, both by design (for example, filters in ventilation systems remove particles) and incidentally (for example, sorption on walls can reduce peak concentrations, but prolong exposure to semivolatile organic compounds). Furthermore, building materials and occupant activities can generate pollutants. Indoor air quality depends not only on outdoor air quality, but also on the design, maintenance, and use of the building. For example, ''sick building'' symptoms such as respiratory problems and headaches have been related to the presence of air-conditioning systems, to carpeting, to low ventilation rates, and to high occupant density (1). The physical processes of interest apply even in simple structures such as homes. Indoor air quality models simulate the processes, such as ventilation and filtration, that control pollutant concentrations in a building. Section 2 describes the modeling approach, and the important transport processes in buildings. Because advection usually dominates among the transport processes, Sections 3 and 4 describe methods for predicting airflows. The concluding section summarizes the application of these models.

  4. Estimating the radon concentration in water and indoor air.

    PubMed

    Maged, A F

    2009-05-01

    The paper presents the results of radon concentration measurements in the vicinity of water, indoor air and in contact to building walls. The investigations were carried out using CR-39 track detectors. Samples of ground water flowing out of many springs mostly in Arabian Gulf area except one from Germany have been studied. The results are compared with international recommendations and the values are found to be lower than the recommended value. Measuring the mean indoor radon concentrations in air and in contact to building walls in the dwellings of Kuwait University Campus were found 24.2 +/- 7.7, and 462 +/- 422 Bq m(-3) respectively. These values lead to average effective dose equivalent rates of 1.3 +/- 0.4 and 23 +/- 21 mSv year(-1), respectively.

  5. Variability of air ion concentrations in urban Paris

    NASA Astrophysics Data System (ADS)

    Dos Santos, V. N.; Herrmann, E.; Manninen, H. E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P. P.; Merkel, M.; Wiedensohler, A.; Kulmala, M.; Petäjä, T.; Hämeri, K.

    2015-12-01

    Air ion concentrations influence new particle formation and consequently the global aerosol as potential cloud condensation nuclei. We aimed to evaluate air ion concentrations and characteristics of new particle formation events (NPF) in the megacity of Paris, France, within the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric Pollution and climate effects, and Integrated tools for assessment and mitigation) project. We measured air ion number size distributions (0.8-42 nm) with an air ion spectrometer and fine particle number concentrations (> 6 nm) with a twin differential mobility particle sizer in an urban site of Paris between 26 June 2009 and 4 October 2010. Air ions were size classified as small (0.8-2 nm), intermediate (2-7 nm), and large (7-20 nm). The median concentrations of small and large ions were 670 and 680 cm-3, respectively, (sum of positive and negative polarities), whereas the median concentration of intermediate ions was only 20 cm-3, as these ions were mostly present during new particle formation bursts, i.e. when gas-to-particle conversion produced fresh aerosol particles from gas phase precursors. During peaks in traffic-related particle number, the concentrations of small and intermediate ions decreased, whereas the concentrations of large ions increased. Seasonal variations affected the ion population differently, with respect to their size and polarity. NPF was observed in 13 % of the days, being most frequent in spring and late summer (April, May, July, and August). The results also suggest that NPF was favoured on the weekends in comparison to workdays, likely due to the lower levels of condensation sinks in the mornings of weekends (CS weekdays 09:00: 18 × 10-3 s-1; CS weekend 09:00: 8 × 10-3 s-1). The median growth rates (GR) of ions during the NPF events varied between 3 and 7 nm h-1, increasing with the ion size and being higher on workdays than on weekends for intermediate and large ions. The median GR of

  6. Air radon concentration decrease in a waste water treatment plant.

    PubMed

    Juste, B; Ortiz, J; Verdú, G; Martorell, S

    2015-06-01

    (222)Rn is a naturally occurring gas created from the decay of (226)Ra. The long-term health risk of breathing radon is lung cancer. One particular place where indoor radon concentrations can exceed national guidelines is in wastewater treatment plants (WWTPs) where treatment processes may contribute to ambient airborne concentrations. The aim of this paper was to study the radon concentration decrease after the application of corrective measures in a Spanish WWTP. According to first measures, air radon concentration exceeded International Commission Radiologica1 Protection (ICRP) normative (recommends intervention between 400 and 1000 Bq m(-3)). Therefore, the WWTP improved mechanical forced ventilation to lower occupational exposure. This measure allowed to increase the administrative controls, since the limitation of workers access to the plant changed from 2 h d(-1) (considering a maximum permissible dose of 20 mSv y(-1) averaged over 5 y) to 7 h d(-1).

  7. Designing, construction, assessment, and efficiency of local exhaust ventilation in controlling crystalline silica dust and particles, and formaldehyde in a foundry industry plant.

    PubMed

    Morteza, Mortezavi Mehrizi; Hossein, Kakooi; Amirhossein, Matin; Naser, Hasheminegad; Gholamhossein, Halvani; Hossein, Fallah

    2013-01-01

    The purpose of the present study was to design and assess the efficiency of a local exhaust ventilation system used in a foundry operation to control inhalable dust and particles, microcrystal particles, and noxious gases and vapours affecting workers during the foundry process. It was designed based on recommendations from the American Conference of Governmental Industrial Hygiene. After designing a local exhaust ventilation system (LEV), we prepared and submitted the implementation plan to the manufacturer. High concentrations of crystalline silica dust and formaldehyde, which are common toxic air pollutants in foundries, were ultimately measured as an indicator for studying the efficiency of this system in controlling inhalable dust and particles as well as other air pollutants. The level of occupational exposure to silica and formaldehyde as major air pollutants was assessed in two modes: first, when the LEV was on, and second, when it was off. Air samples from the exposure area were obtained using a personal sampling pump and analysed using the No. 7601 method for crystal silica and the No. 2541 method for formaldehyde of the National Institute for Occupational Safety and Health (NIOSH). Silica and formaldehyde concentrations were determined by visible absorption spectrophotometry and gas chromatography. The results showed that local exhaust ventilation was successful in preserving the crystal silica particles in the work environment at a level below the NIOSH maximum allowed concentration (0.05 mg m-3). In contrast, formaldehyde exceeded the NIOSH limit (1 ppm or 1.228 mg m-3).

  8. Production of Melamine-Formaldehyde PCM Microcapsules with Ammonia Scavenger used for Residual Formaldehyde Reduction.

    PubMed

    Sumiga, Boštjan; Knez, Emil; Vrtačnik, Margareta; Ferk-Savec, Vesna; Starešinič, Marica; Boh, Bojana

    2011-03-01

    Paraffinic phase change materials (PCM) were microencapsulated by in situ polymerization of melamine-formaldehyde prepolymers. Partly methylated trimethylolmelamine was used as an aminoaldehyde prepolymer for the microcapsule wall, a styrene-maleic acid anhydride copolymer as an emulsifier and modifying agent, and ammonia as a scavenger for reducing residual formaldehyde. For the determination of residual formaldehyde in a ppm concentration range, EDANA and malachite green analytical methods were studied, and the EDANA 210.1-99 was applied for the determination of residual formaldehyde in 25 samples of microcapsules, produced in a 200-L reactor. A linear correlation was observed between the added ammonia scavenger concentration and the reduction of residual formaldehyde concentration. Compared with 0.45% (4500 ppm) formaldehyde in a non-treated microcapsule suspension, with ammonia scavenger concentrations 0.80, 0.90 and 1.35%, the concentration of residual formaldehyde dropped to 0.27, 0.20 and 0.09% (i.e. 2700, 2000 and 900 ppm), respectively. Morphological characterisation of microcapsules by SEM and microcapsule wall permeability measurements by gravimetry / mass loss at an elevated temperature (135 °C) suggested that ammonia positively contributed to the wall elasticity / durability, while microcapsules with no ammonia scavenger added tended to have more brittle walls, and were more prone to cracking.

  9. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: Impact of natural gas appliances on air pollutant concentrations

    SciTech Connect

    Mullen, Nasim A.; Li, Jina; Russell, Marion L.; Spears, Michael; Less, Brennan D.; Singer, Brett C.

    2015-03-17

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX, NO2, formaldehyde, and acetaldehyde over ~6d periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX, NO2 and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, though bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX, NO2 and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde.

  10. Is exposure to formaldehyde in air causally associated with leukemia?—A hypothesis-based weight-of-evidence analysis

    PubMed Central

    Rhomberg, Lorenz R; Bailey, Lisa A; Goodman, Julie E; Hamade, Ali K; Mayfield, David

    2011-01-01

    Recent scientific debate has focused on the potential for inhaled formaldehyde to cause lymphohematopoietic cancers, particularly leukemias, in humans. The concern stems from certain epidemiology studies reporting an association, although particulars of endpoints and dosimetry are inconsistent across studies and several other studies show no such effects. Animal studies generally report neither hematotoxicity nor leukemia associated with formaldehyde inhalation, and hematotoxicity studies in humans are inconsistent. Formaldehyde's reactivity has been thought to preclude systemic exposure following inhalation, and its apparent inability to reach and affect the target tissues attacked by known leukemogens has, heretofore, led to skepticism regarding its potential to cause human lymphohematopoietic cancers. Recently, however, potential modes of action for formaldehyde leukemogenesis have been hypothesized, and it has been suggested that formaldehyde be identified as a known human leukemogen. In this article, we apply our hypothesis-based weight-of-evidence (HBWoE) approach to evaluate the large body of evidence regarding formaldehyde and leukemogenesis, attending to how human, animal, and mode-of-action results inform one another. We trace the logic of inference within and across all studies, and articulate how one could account for the suite of available observations under the various proposed hypotheses. Upon comparison of alternative proposals regarding what causal processes may have led to the array of observations as we see them, we conclude that the case fora causal association is weak and strains biological plausibility. Instead, apparent association between formaldehyde inhalation and leukemia in some human studies is better interpreted as due to chance or confounding. PMID:21635189

  11. Potential health risks from exposure to indoor formaldehyde.

    PubMed

    Lemus, R; Abdelghani, A A; Akers, T G; Horner, W E

    1998-01-01

    An indoor air quality survey was conducted in Southern Louisiana to determine levels of airborne formaldehyde. Gas chromatography analyses of 419 air samples collected from 53 houses revealed levels of formaldehyde ranging from non-detectable to 6.60 mg/m3. Seventy four percent (312/419) of the samples had detectable amounts of airborne formaldehyde. Of the 312 positive samples, approximately 60% exceeded the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) guideline of 0.123 mg/m3. The highest number of samples exceeding the formaldehyde benchmark were collected in winter. It would appear that in some Southern Louisiana houses, a high level of formaldehyde could serve as a potential upper respiratory irritant.

  12. Formaldehyde in pathology departments.

    PubMed Central

    Clark, R P

    1983-01-01

    Toxic effects of formaldehyde in humans are discussed in relation to occupational exposure and tolerance to this agent. Carcinogenic and mutagenic properties of formaldehyde have been reported in animals and this has led to concern about a possible role in human cancer. The current state of affairs is reviewed in the light of a lack of direct evidence linking formaldehyde with cancer in man and in relation to recommended exposure levels. It is important to employ effective means of containment and practical methods for reducing exposure to formaldehyde in pathology departments and post-mortem rooms are described. Images PMID:6223948

  13. BOREAS TGB-7 Ambient Air Herbicide and Organochlorine Concentration Data

    NASA Technical Reports Server (NTRS)

    Waite, Don; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)

    2000-01-01

    The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB)-7 team measured the concentration and flux of several agricultural pesticides in air, rainwater, and dry deposition samples in order to determine the associated yearly deposition rates. This data set contains information on the ambient air concentration of seven herbicides [2,4- dichlorophenoxyacidic_acid (2,4-D), bromoxynil, dicamb, 2-methyl-4-chlorophenoxyacetic acid (MCPA), triallate, trifluralin, and diclop-methyl] known to appear in the atmosphere of the Canadian prairies. Also, the concentration of three herbicides (atrazine, alachlor, and metolachlor), two groups of insecticides (lindane and breakdown products and dichloro-diphenyl-trichloroethane (DDT) and breakdown products), and several polychlorinated biphenyls commonly used in the central United States was measured. All of these chemicals are reported, in the literature, to be transported in the atmosphere. Many have been reported to occur in boreal and arctic food chains. The sampling was carried out from 16-Jun to 13-Aug-1993 and 04-May to 20-Jul-1994 at the BOREAS site in the Prince Albert National Park (Waskesiu). The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884).

  14. A PRINCIPAL COMPONENT ANALYSIS OF THE CLEAN AIR STATUS AND TRENDS NETWORK (CASTNET) AIR CONCENTRATION DATA

    EPA Science Inventory

    The spatial and temporal variability of ambient air concentrations of SO2, SO42-, NO3, HNO3, and NH4+ obtained from EPA's CASTNet was examined using an objective, statistically based technique...

  15. Ambient formaldehyde measurements made at a remote marine boundary layer site during the NAMBLEX campaign - a comparison of data from chromatographic and modified Hantzsch techniques

    NASA Astrophysics Data System (ADS)

    Still, T. J.; Al-Haider, S.; Seakins, P. W.; Sommariva, R.; Stanton, J. C.; Mills, G.; Penkett, S. A.

    2006-07-01

    Ambient formaldehyde concentrations are reported from the North Atlantic Marine Boundary Layer Experiment (NAMBLEX) campaign at Mace Head on the west coast of Eire during August 2002. The results from two techniques, using direct determination via gas chromatography and the Hantzsch technique, show similar trends but a significant off set in concentrations. For westerly air flows characteristic of the marine boundary layer, formaldehyde concentrations from the gas chromatographic and Hantzsch technique ranged from 0.78-1.15 ppb and 0.13-0.43 ppb, respectively. Possible reasons for the discrepancy have been investigated and are discussed, however, no satisfactory explanation has yet been found. In a subsequent laboratory intercomparison the two techniques were in good agreement. The observed concentrations have been compared with previous formaldehyde measurements in the North Atlantic marine boundary layer and with other measurements from the NAMBLEX campaign. The measurements from the Hantzsch technique and the GC results lie at the lower and upper ends respectively of previous measurements. In contrast to some previous measurements, both techniques show distinct diurnal profiles with day maxima and with an amplitude of approximately 0.15 ppb. Strong correlations were observed with ethanal concentrations measured during NAMBLEX and the ratio of ethanal to formaldehyde determined by the gas chromatographic technique is in good agreement with previous measurements. Some simple box modelling has been undertaken to investigate possible sources of formaldehyde. Such models are not able to predict absolute formaldehyde concentrations as they do not include transport processes, but the results show that oxygenated VOCs such as ethanal and methanol are very significant sources of formaldehyde in the air masses reaching Mace Head.

  16. Ambient formaldehyde measurements made at a remote marine boundary layer site during the NAMBLEX campaign a comparison of data from chromatographic and modified Hantzsch techniques

    NASA Astrophysics Data System (ADS)

    Still, T. J.; Al-Haider, S.; Seakins, P. W.; Sommariva, R.; Stanton, J. C.; Mills, G.; Penkett, S. A.

    2005-12-01

    Ambient formaldehyde concentrations are reported from the North Atlantic Marine Boundary Layer Experiment (NAMBLEX) campaign at Mace Head on the west coast of Ireland during August 2002. The results from two techniques, using direct determination via gas chromatography and the Hantzsch technique, show similar trends but a significant off set in concentrations. For westerly air flows characteristic of the marine boundary layer, formaldehyde concentrations from the gas chromatographic and Hantzsch technique ranged from 0.78-1.15 ppb and 0.13-0.43 ppb, respectively. Possible reasons for the discrepancy have been investigated and are discussed, however, no satisfactory explanation has yet been found. In a subsequent intercomparison the two techniques were in good agreement. The observed concentrations have been compared with previous formaldehyde measurements in the North Atlantic marine boundary layer and with other measurements from the NAMBLEX campaign. The measurements from the Hantzsch technique and the GC results lie at the lower and upper ends respectively of previous measurements. In contrast to some previous measurements, both techniques show distinct diurnal profiles with day maxima and with an amplitude of approximately 0.15 ppb. Strong correlations were observed with ethanal concentrations measured during NAMBLEX and the ratio of ethanal to formaldehyde determined by the gas chromatographic technique is in good agreement with previous measurements. Some simple box modelling has been undertaken to investigate possible sources of formaldehyde. Such models are not able to predict absolute formaldehyde concentrations as they do not include transport processes, but the results show that oxygenated VOCs such as ethanal and methanol are very significant sources of formaldehyde in the air masses reaching Mace Head.

  17. Evaluation of air quality zone classification methods based on ambient air concentration exposure.

    PubMed

    Freeman, Brian; McBean, Ed; Gharabaghi, Bahram; Thé, Jesse

    2017-05-01

    Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO2 and 8-hr O3 within a zone that meets the compliance requirements of each method. The first method, the "3 Strike" method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of

  18. [Formaldehyde exposure and multiple chemical sensitivity].

    PubMed

    Kunugita, Naoki

    2003-06-01

    Multiple chemical sensitivity (MCS) is characterized by various somatic symptoms which cannot be explained organically and by sensitivity to extremely low concentrations of chemicals including formaldehyde. In the absence of a widely accepted definition of MCS, contradictory etiological hypotheses and therapeutic suggestions are discussed. Formaldehyde is a flammable, colorless and readily polymerized gas at ambient temperature. It is present in the environment as a result of natural processes and from man-made sources, including motor vehicle exhaust, residues, emissions, or wastes produced during the manufacture of formaldehyde, and cigarette smoke. Formaldehyde exposure is considered to be one of the causes of MCS. This review describes the current knowledge about MCS and preventive measures of the administration.

  19. Formaldehyde: a comparative evaluation of four monitoring methods

    SciTech Connect

    Coyne, L.B.; Cook, R.E.; Mann, J.R.; Bouyoucos, S.; McDonald, O.F.; Baldwin, C.L.

    1985-10-01

    The performances of four formaldehyde monitoring devices were compared in a series of laboratory and field experiments. The devices evaluated included the DuPont C-60 formaldehyde badge, the SKC impregnated charcoal tube, an impinger/polarographic method and the MDA Lion formaldemeter. The major evaluation parameters included: concentration range, effects of humidity, sample storage, air velocity, accuracy, precision, interferences from methanol, styrene, 1,3-butadiene, sulfur dioxide and dimethylamine. Based on favorable performances in the laboratory and field, each device was useful for monitoring formaldehyde in the industrial work environment; however, these devices were not evaluated for residential exposure assessment. The impinger/polarographic method had a sensitivity of 0.06 ppm, based on a 20-liter air sample volume, and accurately determined the short-term excursion limit (STEL). It was useful for area monitoring but was not very practical for time-weighted average (TWA) personal monitoring measurements. The DuPont badge had a sensitivity of 2.8 ppm-hr and accurately and simply determined TWA exposures. It was not sensitive enough to measure STEL exposures, however, and positive interferences resulted if 1,3-butadiene was present. The SKC impregnated charcoal tube measured both TWA and STEL concentrations and had a sensitivity of 0.06 ppm based on a 25-liter air sample volume. Lightweight and simple to use, the MDA Lion formaldemeter had a sensitivity of 0.2 ppm. It had the advantage of giving an instantaneous reading in the field; however, it must be used with caution because it responded to many interferences. The method of choice depended on the type of sampling required, field conditions encountered during sampling and an understanding of the limitations of each monitoring device.

  20. Concentrations of mobile source air pollutants in urban microenvironments.

    PubMed

    Fujita, Eric M; Campbell, David E; Arnott, W Patrick; Johnson, Ted; Ollison, Will

    2014-07-01

    Human exposures to criteria and hazardous air pollutants (HAPs) in urban areas vary greatly due to temporal-spatial variations in emissions, changing meteorology, varying proximity to sources, as well as due to building, vehicle, and other environmental characteristics that influence the amounts of ambient pollutants that penetrate or infiltrate into these microenvironments. Consequently, the exposure estimates derived from central-site ambient measurements are uncertain and tend to underestimate actual exposures. The Exposure Classification Project (ECP) was conducted to measure pollutant concentrations for common urban microenvironments (MEs) for use in evaluating the results of regulatory human exposure models. Nearly 500 sets of measurements were made in three Los Angeles County communities during fall 2008, winter 2009, and summer 2009. MEs included in-vehicle, near-road, outdoor and indoor locations accessible to the general public. Contemporaneous 1- to 15-min average personal breathing zone concentrations of carbon monoxide (CO), carbon dioxide (CO2), volatile organic compounds (VOCs), nitric oxide (NO), nitrogen oxides (NO(x)), particulate matter (< 2.5 microm diameter; PM2.5) mass, ultrafine particle (UFP; < 100 nm diameter) number black carbon (BC), speciated HAPs (e.g, benzene, toluene, ethylbenzene, xylenes [BTEX], 1,3-butadiene), and ozone (O3) were measured continuously. In-vehicle and inside/outside measurements were made in various passenger vehicle types and in public buildings to estimate penetration or infiltration factors. A large fraction of the observed pollutant concentrations for on-road MEs, especially near diesel trucks, was unrelated to ambient measurements at nearby monitors. Comparisons of ME concentrations estimated using the median ME/ambient ratio versus regression slopes and intercepts indicate that the regression approach may be more accurate for on-road MEs. Ranges in the ME/ambient ratios among ME categories were generally

  1. Air Pollution in China: Mapping of Concentrations and Sources

    PubMed Central

    Rohde, Robert A.; Muller, Richard A.

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China’s population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7–2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China. PMID:26291610

  2. Air Pollution in China: Mapping of Concentrations and Sources.

    PubMed

    Rohde, Robert A; Muller, Richard A

    2015-01-01

    China has recently made available hourly air pollution data from over 1500 sites, including airborne particulate matter (PM), SO2, NO2, and O3. We apply Kriging interpolation to four months of data to derive pollution maps for eastern China. Consistent with prior findings, the greatest pollution occurs in the east, but significant levels are widespread across northern and central China and are not limited to major cities or geologic basins. Sources of pollution are widespread, but are particularly intense in a northeast corridor that extends from near Shanghai to north of Beijing. During our analysis period, 92% of the population of China experienced >120 hours of unhealthy air (US EPA standard), and 38% experienced average concentrations that were unhealthy. China's population-weighted average exposure to PM2.5 was 52 μg/m3. The observed air pollution is calculated to contribute to 1.6 million deaths/year in China [0.7-2.2 million deaths/year at 95% confidence], roughly 17% of all deaths in China.

  3. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, Richard W.

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  4. Formaldehyde risk assessment

    EPA Science Inventory

    We would like to comment on the paper by Crump et al. (2008), ‘Sensitivity analysis of biologically motivated model for formaldehyde-induced respiratory cancer in humans’. We are authors of the formaldehyde cancer risk assessment described in Conolly et al. (2003, 2004) that is t...

  5. Formaldehyde in Our Environment.

    ERIC Educational Resources Information Center

    Ojanlatva, Ansa; Weeks, Charlie A.

    During the energy crisis of the early 1970s, there was a drive to conserve energy in every segment of society. Citizens were encouraged to insulate their homes and tighten them up to avoid loss of energy. One of the products to emerge from this crisis was urea formaldehyde foam insulation. (Urea formaldehyde is a well-known agent for preserving…

  6. Melamine-formaldehyde aerogels

    DOEpatents

    Pekala, R.W.

    1992-01-14

    Organic aerogels that are transparent and essentially colorless are prepared from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porosity, ultrafine cell/pore sizes, and optical clarity. 3 figs.

  7. Reproducibility of measurements of trace gas concentrations in expired air.

    PubMed

    Strocchi, A; Ellis, C; Levitt, M D

    1991-07-01

    Measurement of the pulmonary excretion of trace gases has been used as a simple means of assessing metabolic reactions. End alveolar trace gas concentration, rather than excretory rate, is usually measured. However, the reproducibility of this measurement has received little attention. In 17 healthy subjects, duplicate collections of alveolar air were obtained within 1 minute of each other using a commercially available alveolar air sampler. The concentrations of hydrogen, methane, carbon monoxide, and carbon dioxide were measured. When the subject received no instruction on how to expire into the device, a difference of 28% +/- 19% (1SD) was found between duplicate determinations of hydrogen. Instructing the subjects to avoid hyperventilation or to inspire maximally and exhale immediately resulted in only minor reduction in variability. However, a maximal inspiration held for 15 seconds before exhalation reduced the difference to a mean of 9.6% +/- 8.0%, less than half that observed with the other expiratory techniques. Percentage difference of methane measurements with the four different expiratory techniques yielded results comparable to those obtained for hydrogen. In contrast, percentage differences for carbon monoxide measurements were similar for all expiratory techniques. When normalized to a PCO2 of 5%, the variability of hydrogen measurements with the breath-holding technique was reduced to 6.8% +/- 4.7%, a value significantly lower than that obtained with the other expiratory methods. This study suggests that attention to the expiratory technique could improve the accuracy of tests using breath hydrogen measurements.

  8. Microbial Formaldehyde Oxidation

    SciTech Connect

    Timothy J. Donohue

    2004-12-09

    This project analyzed how cells sense and generate energy from formaldehyde oxidation. Formaldehyde is a toxin that is produced naturally, chemically or by metabolism of a wide variety of methyl-containing compounds. Our goals are to identify how cells sense the presence of this toxic compound and determine how they generate energy and nutrients from the oxidation of formaldehyde. This research capitalizes on the role of the Rhodobacter sphaeroides glutathione dependent formaldehyde dehydrogenase (GSH FDH) in a formaldehyde oxidation pathway that is apparently found in a wide variety of microbes, plants and animals. Thus, our findings illustrate what is required for a large variety of cells to metabolize this toxic compound. A second major focus of our research is to determine how cells sense the presence of this toxic compound and control the expression of gene products required for its detoxification.

  9. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  10. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  11. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  12. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air concentration (DAC) values given in appendices A and C of this part shall be used in the control of...

  13. Gypsum Wallboard as a sink for formaldehyde

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its presence in a wide range of consumer products and its adverse health effects. Materials acting as HCHO sinks, such as painted gypsum wallboard, can become emission sources. However, adsorpti...

  14. Problems associated with the use of urea-formaldehyde foam for residential insulation. Part II. The effects of temperature and humidity on free formaldehyde, extractable formaldehyde, formaldehyde emission, and physical characteristics of the foam

    SciTech Connect

    Schutte, W.C.; Cole, R.S.; Frank, C.W.; Long, K.R.

    1981-02-01

    Results of testing with two products of urea-formaldehyde based foams are described. Results of three products have previously been reported. Methods for detection and quantitative determination of formaldehyde, design of the experimental chambers, and the procedures are described. Samples of Product D were monitored for about 29 days and samples of Product E were monitored for 60 days in chambers and results are tabulated for formaldehyde emission. Additional tests performed on the two products are: extractable formaldehyde (high and low temperature conditions); free formaldehyde (high and low temperature conditions); comparison of free formaldehyde concentration; density (high and low temperature conditions); shrinkage (high and low temperature conditions). Control panels were constructed to simulate a wall in a home and observations were made and compared with results of the experimental products.

  15. Catalytic wet air oxidation of high concentration pharmaceutical wastewater.

    PubMed

    Zhan, Wei; Wang, Xiaocong; Li, Daosheng; Ren, Yongzheng; Liu, Dongqi; Kang, Jianxiong

    2013-01-01

    In this study, we investigated the pretreatment of a high concentration pharmaceutical wastewater by catalytic wet air oxidation (CWAO) process. Different experiments were conducted to investigate the effects of the catalyst type, operating temperature, initial system pH, and oxygen partial pressure on the oxidation of the wastewater. Results show that the catalysts prepared by the co-precipitation method have better catalytic activity compared to others. Chemical oxygen demand (COD) conversion increased with the increase in temperature from 160 to 220 °C and decreased with the increase in pH. Moreover, the effect of the oxygen partial pressure on the COD conversion was significant only during the first 20 min of the reaction. Furthermore, the biodegradability of the wastewater improved greatly after CWAO, the ratio of BOD5/COD increased less than 0.1-0.75 when treated at 220 °C (BOD: biochemical oxygen demand).

  16. [Formaldehyde emissions from wooden products and office furniture].

    PubMed

    Pecka, I; Wiglusz, R; Madeja-Grzyb, A; Dziewanowska-Pudliszak, A

    2001-01-01

    The formaldehyde emission from wood-products (particleboards, particleboards veneered with artificial veneer, laminated particleboard, hard fibreboards, plywood) and office furniture was measured with the use of environmental chamber (0.2 m3, 0.6 m3, 1.0 m3 capacity) in the following conditions: temperature 23 degrees C, relative humidity 45%, 1 air exchange/hour and factor loading 1 m2/m3. Formaldehyde was determined by using colorimetric methods. Among the tested products, hard fibreboards, plywood and almost all of the enriched particleboards should not contaminate indoor air with formaldehyde over its threshold limit values. The tested office furniture fulfill of the hygienic requirements.

  17. Microfabricated Formaldehyde Gas Sensors

    PubMed Central

    Flueckiger, Jonas; Ko, Frank K.; Cheung, Karen C.

    2009-01-01

    Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation. PMID:22291561

  18. Ambient formaldehyde source attribution in Houston during TexAQS II and TRAMP

    NASA Astrophysics Data System (ADS)

    Buzcu Guven, Birnur; Olaguer, Eduardo P.

    2011-08-01

    An online data repository known as the Air Research Information Infrastructure (ARII) was used to discriminate large industrial sources of formaldehyde (HCHO) from mobile and secondary formaldehyde sources in Houston. Analysis of continuous online measurements at one urban and two industrial sites obtained during the summer of 2006 enabled us to isolate and evaluate major source factors associated with formaldehyde. The contribution of industrial sources to total atmospheric formaldehyde at the urban Houston site is estimated to be 17%, compared to 23% for mobile sources, 36% secondary formation, and 24% biogenic sources. The potential industrial sources include flares from petrochemical plants and refineries in the Port of Houston. The relative contribution of industrial source factors to ambient HCHO at the urban site increased to about 66% on some mornings, coinciding with the HCHO peak concentration. Secondary formation of HCHO during the day and night resulted from reactions of industrial olefins and other VOCs with OH or ozone. Some peak HCHO concentrations can also be linked to emission events of other VOCs, while a significant portion remains unexplained by the reported events. It is likely, based on the results from the SHARP campaign and our analysis, that some episodic emission events releasing primary HCHO are unreported to the Texas Commission on Environmental Quality (TCEQ).

  19. The 'Formaldehyde Window'

    NASA Astrophysics Data System (ADS)

    Lawton, A. T.

    1981-09-01

    The characteristics obtained by using the absorption line of formaldehyde as a background for a transmitted signal are examined and compared with the Water Hole concept. It is shown that much greater distance may be accessed for a given transmitter power level and that the narrow band characteristics of the formaldehyde line are ideally suited to the transmission of low frequency coded 'calling' signals. It is further shown that two unique harmonic overtones lie above and below the 4830 MHz formaldehyde line, and by using these further aids, a clear and unambiguous interstellar communication system could be established without the background maser noise that would be expected from the use of the Water Hole. It is concluded that the Formaldehyde Window is a viable alternative to the Water Hole concept, with an advantage of being an easily distinguished artifact of intelligence.

  20. Formaldehyde Workshop Agenda

    EPA Pesticide Factsheets

    This is the agenda for the Formaldehyde Workshop hosted by the Office of Research and Development's National Center for Environmental Assessments in cooperation with the IRIS Program. The workshop was held in April 2014

  1. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    EPA Science Inventory

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  2. Degradation of formaldehyde by advanced oxidation processes.

    PubMed

    Guimarães, José Roberto; Farah, Carolina Rittes Turato; Maniero, Milena Guedes; Fadini, Pedro Sérgio

    2012-09-30

    The degradation of formaldehyde in an aqueous solution (400 mg L(-1)) was studied using photolysis, peroxidation and advanced oxidation processes (UV/H(2)O(2), Fenton and photo-Fenton). Photolysis was the only process tested that did not reduce formaldehyde concentration; however, only advanced oxidation processes (AOPs) significantly decreased dissolved organic carbon (DOC). UV/H(2)O(2) and photo-Fenton AOPs were used to degrade formaldehyde at the highest concentrations (1200-12,000 mg L(-1)); the processes were able to reduce CH(2)O by 98% and DOC by 65%. Peroxidation with ultraviolet light (UV/H(2)O(2)) improved the efficiency of treatment of effluent from an anatomy laboratory. The effluent's CH(2)O content was reduced by 91%, DOC by 48%, COD by 46% and BOD by 53% in 420 min of testing.

  3. 10 CFR 835.209 - Concentrations of radioactive material in air.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Concentrations of radioactive material in air. 835.209... External Exposure § 835.209 Concentrations of radioactive material in air. (a) The derived air... exposures to airborne radioactive material. (b) The estimation of internal dose shall be based on...

  4. Long-term, continuous formaldehyde measurements in a rural Mid-Western location

    NASA Astrophysics Data System (ADS)

    Dorris, M. R.; Skog, K.; Keutsch, F. N.

    2014-12-01

    The oxidation of volatile organic compounds (VOCs) leads to the formation of secondary pollutants, such as ozone and secondary organic aerosol. Formaldehyde, which has an atmospheric lifetime of a few hours, is a ubiquitous VOC oxidation product so is widely used as a tracer of local to regional VOC processing. Although formaldehyde measurements are widely used, there are few long-term, high-time resolution measurements available. During the spring of 2013 and summer and fall of 2014, the UW-Madison fiber laser induced fluorescence instrument monitored formaldehyde concentration at the Horicon Wildlife Refuge, which houses Wisconsin's National Core Monitoring and National Air Toxics Trends Station. We will present work that uses the formaldehyde measurements in conjunction with other data available at the Horicon site to evaluate different sources of anthropogenic influence on atmospherically rural areas. Particular attention will be paid to implications for SOA and ozone formation in this biogenically controlled area with regularly changing types and amounts of anthropogenic influence.

  5. A METHOD OF ASSESSING AIR TOXICS CONCENTRATIONS IN URBAN AREAS USING MOBILE PLATFORM MEASUREMENTS

    EPA Science Inventory

    The objective of this paper is to demonstrate an approach to characterize the spatial variability in ambient air concentrations using mobile platform measurements. This approach may be useful for air toxic assessments in Environmental Justice applications, epidemiological studies...

  6. Solid phase microextraction method development for measuring Henry's Law constants of formaldehyde in aqueous solutions

    EPA Science Inventory

    Formaldehyde (HCHO) has been of special concern as an indoor air pollutant because of its existence in a wide range of products and its adverse health effects. The air-water partitioning behavior of volatile organic compounds (VOCs) such as formaldehyde is an important process th...

  7. Porous Nickel Oxide Film Sensor for Formaldehyde

    NASA Astrophysics Data System (ADS)

    Cindemir, U.; Topalian, Z.; Österlund, L.; Granqvist, C. G.; Niklasson, G. A.

    2014-11-01

    Formaldehyde is a volatile organic compound and a harmful indoor pollutant contributing to the "sick building syndrome". We used advanced gas deposition to fabricate highly porous nickel oxide (NiO) thin films for formaldehyde sensing. The films were deposited on Al2O3 substrates with prefabricated comb-structured electrodes and a resistive heater at the opposite face. The morphology and structure of the films were investigated with scanning electron microscopy and X-ray diffraction. Porosity was determined by nitrogen adsorption isotherms with the Brunauer-Emmett-Teller method. Gas sensing measurements were performed to demonstrate the resistive response of the sensors with respect to different concentrations of formaldehyde at 150 °C.

  8. Formaldehyde Surface Distributions and Variability in the Mexico City Basin

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Mohr, C.; Steinbrecher, R.; Ruiz Suarez, L.

    2007-05-01

    Formaldehyde ambient air mole fractions were measured throughout the dry season in March at three different locations in the Mexico City basin. The continuously running instruments were operated at Tenago del Aire, a site located in the Chalco valley in the southern venting area of the basin, at the Intituto Mexicano del Petroleo (IMP) in the northern part of the city and about 30 km north of the city at the campus of the Universidad Tecnològica de Tecamac (UTTEC). The technique used is the Hantzsch technology with a time resolution of 2 minutes and a detection limit of 100 ppt. Daily maxima peaked at 35 ppb formaldehyde in the city and about 15 to 20 ppb at the other sites. During night formaldehyde levels dropped to about 5 ppb or less. It is evident that the observed spatial and temporal variability in near surface formaldehyde distributions is strongly affected by local and regional advection processes.

  9. A mathematical model for the absorption and metabolism of formaldehyde vapour by humans

    SciTech Connect

    Franks, S.J. . E-mail: Susan.Franks@hsl.gov.uk

    2005-08-15

    Epidemiological studies of occupational exposure to formaldehyde gas (HCHO) have suggested possible links between concentration and duration of exposure, and elevated risks of leukaemia and other cancers at sites distant from the site of contact. Formaldehyde is a highly water soluble gas which, when inhaled, reacts rapidly at the site of contact and is quickly metabolised by enzymes in the respiratory tissue. Inhaled formaldehyde is almost entirely absorbed in the respiratory tract and, for formaldehyde induced toxicity to occur at distant sites, HCHO must enter the blood and be transported to systemic tissues via the circulatory system. A mathematical model describing the absorption and removal of inhaled formaldehyde in the nasal tissue is therefore formulated to predict the proportion of formaldehyde entering into the blood. Accounting for the spatial distribution of the formaldehyde concentration and the metabolic activity within the mucosa, the concentration of formaldehyde in the mucus, the epithelium and the blood has been determined and was found to attain a steady-state profile within a few seconds of exposure. The increase of the formaldehyde concentration in the blood was predicted to be insignificant compared with the existing pre-exposure levels in the body, indicating that formaldehyde is rapidly removed in the nasal tissue. The results of the model thus suggest that it is highly unlikely that following inhalation by the nose, formaldehyde itself will cause toxicity at sites other than the initial site of contact in the respiratory tract.

  10. MOF-5 metal-organic framework as sorbent for in-field sampling and preconcentration in combination with thermal desorption GC/MS for determination of atmospheric formaldehyde.

    PubMed

    Gu, Zhi-Yuan; Wang, Gen; Yan, Xiu-Ping

    2010-02-15

    Metal-organic frameworks (MOFs) are one kind of highly porous crystalline materials, which are constructed by metal-containing inorganic nodes and organic linkers. With large surface area and high thermal stability, MOFs have great potential as sorbents for the preconcentration of trace analytes. However, such application of MOFs to the analysis of real samples has not been reported before. Here we report the utilization of MOF-5 as sorbent for in-field sampling and preconcentration of atmospheric formaldehyde before thermal desorption (TD) GC/MS (TD-GC/MS) determination without the need for any chemical derivatization. MOF-5 gave a 53 and 73 times better concentration effect than Tenax TA (organic polymers) and Carbograph 1TD (graphitized carbon black), respectively, for TD-GC/MS determination of formaldehyde. MOF-5 showed good performance for in-field sampling and preconcentration of formaldehyde from air samples with a relative humidity less than 45%. The collected formaldehyde on MOF-5 sorbent was stable for at least 72 h at room temperature before TD-GC/MS analysis. One tube packed with 300 mg of MOF-5 lasted 200 cycles of adsorption/TD without significant loss of collection efficiency. The breakthrough volume of such a tube was 1.2 L of 28.35 mg m(-3) formaldehyde at a sampling flow rate of 100 mL min(-1). The use of MOF-5 for in-field sampling and preconcentration in combination with TD-GC/MS for the determination of formaldehyde offered a linear range covering 3 orders of magnitude, and a detection limit of 0.6 microg m(-3). The precision for six replicate cycles of in-field sampling and preconcentration for TD-GC/MS determination using one 300 mg MOF-5 packed tube ranged from 2.8% to 5.3%. The tube-to-tube reproducibility of three MOF-5 tubes prepared in parallel was 7.7%. The developed method was applied to analysis of local indoor and outdoor air samples for formaldehyde and validated by the standard method TO-11A of the United States Environmental

  11. Brain Formaldehyde is Related to Water Intake behavior.

    PubMed

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-10-01

    A promising strategy for the prevention of Alzheimer's disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease.

  12. Brain Formaldehyde is Related to Water Intake behavior

    PubMed Central

    Li, Ting; Su, Tao; He, Yingge; Lu, Jihui; Mo, Weichuan; Wei, Yan; He, Rongqiao

    2016-01-01

    A promising strategy for the prevention of Alzheimer’s disease (AD) is the identification of age-related changes that place the brain at risk for the disease. Additionally, AD is associated with chronic dehydration, and one of the significant changes that are known to result in metabolic dysfunction is an increase in the endogenous formaldehyde (FA) level. Here, we demonstrate that the levels of uric formaldehyde in AD patients were markedly increased compared with normal controls. The brain formaldehyde levels of wild-type C57 BL/6 mice increased with age, and these increases were followed by decreases in their drinking frequency and water intake. The serum arginine vasopressin (AVP) concentrations were also maintained at a high level in the 10-month-old mice. An intravenous injection of AVP into the tail induced decreases in the drinking frequency and water intake in the mice, and these decreases were associated with increases in brain formaldehyde levels. An ELISA assay revealed that the AVP injection increased both the protein level and the enzymatic activity of semicarbazide-sensitive amine oxidase (SSAO), which is an enzyme that produces formaldehyde. In contrast, the intraperitoneal injection of formaldehyde increased the serum AVP level by increasing the angiotensin II (ANG II) level, and this change was associated with a marked decrease in water intake behavior. These data suggest that the interaction between formaldehyde and AVP affects the water intake behaviors of mice. Furthermore, the highest concentration of formaldehyde in vivo was observed in the morning. Regular water intake is conducive to eliminating endogenous formaldehyde from the human body, particularly when water is consumed in the morning. Establishing good water intake habits not only effectively eliminates excess formaldehyde and other metabolic products but is also expected to yield valuable approaches to reducing the risk of AD prior to the onset of the disease. PMID:27699080

  13. PPM mixtures of formaldehyde in gas cylinders: Stability and analysis

    SciTech Connect

    Wong, K.C.; Miller, S.B.; Patterson, L.M.

    1999-07-01

    Scott Specialty Gases has been successful in producing stable calibration gases of formaldehyde at low concentration. Critical to this success has been the development of a treatment process for high pressure aluminum cylinders. Formaldehyde cylinders having concentrations of 20ppm and 4ppm were found to show only small decline in concentrations over a period of approximately 12 months. Since no NIST traceable formaldehyde standards (or Standard Reference Material) are available, all Scott's formaldehyde cylinders were originally certified by traditional impinger method. This method involves an extremely tedious purification procedure for 2,4-dinitrophenylhydrazine (2,4-DNPH). A modified version of the impinger method has been developed and does not require extensive reagent purification for formaldehyde analysis. Extremely low formaldehyde blanks have been obtained with the modified method. The HPLC conditions in the original method were used for chromatographic separations. The modified method results in a lower analytical uncertainty for the formaldehyde standard mixtures. Consequently, it is possible to discern small differences between analytical results that are important for stability study.

  14. Global Ammonia Concentrations Seen by the 13-years AIRS Measurements

    NASA Astrophysics Data System (ADS)

    Warner, Juying; Wei, Zigang; Larrabee Strow, L.; Dickerson, Russell; Nowak, John; Wang, Yuxuan

    2016-04-01

    Ammonia is an integral part of the nitrogen cycle and is projected to be the largest single contributor to each of acidification, eutrophication and secondary particulate matter in Europe by 2020 (Sutton et al., 2008). The impacts of NH3 also include: aerosol production affecting global radiative forcing, increases in emissions of the greenhouse gases nitrous oxide (N2O) and methane (CH4), and modification of the transport and deposition patterns of SO2 and NOx. Therefore, monitoring NH3 global distribution of sources is vitally important to human health with respect to both air and water quality and climate change. We have developed new daily and global ammonia (NH3) products from AIRS hyperspectral measurements. These products add value to AIRS's existing products that have made significant contributions to weather forecasts, climate studies, and air quality monitoring. With longer than 13 years of data records, these measurements have been used not only for daily monitoring purposes but also for inter-annual variability and short-term trend studies. We will discuss the global NH3 emission sources from biogenic and anthropogenic activities over many emission regions captured by AIRS. We will focus their variability in the last 13 years.

  15. Time variations of 222Rn concentration and air exchange rates in a Hungarian cave.

    PubMed

    Nagy, Hedvig Éva; Szabó, Zsuzsanna; Jordán, Gyozo; Szabó, Csaba; Horváth, Akos; Kiss, Attila

    2012-09-01

    A long-term radon concentration monitoring was carried out in the Pál-völgy cave, Budapest, Hungary, for 1.5 years. Our major goal was to determine the time dependence of the radon concentration in the cave to characterise the air exchange and define the most important environmental parameters that influence the radon concentration inside the cave. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were collected simultaneously. The air's radon concentration in the cave varied between 104 and 7776 Bq m(-3), the annual average value was 1884±85 Bq m(-3). The summer to winter radon concentration ratio was as high as 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, the correlation coefficient (R) was 0.76.

  16. “Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  17. Estimation of the dominant degrees of freedom for air pollutant concentration data: Applications to ozone measurements

    NASA Astrophysics Data System (ADS)

    Li, I.-Fen; Biswas, Pratim; Islam, Shafiqul

    A nonlinear dynamic analysis of air quality data has been performed and applied to a time series of ozone concentration data from the Cincinnati air shed. The analysis helped to identify the nature of the dynamics of the ozone concentrations and determine the number of degrees of freedom or dimensionality of the system. Results indicated that the dimensionality of the system was 3, indicating that there are three dominant variables affecting ozone concentration levels in the Cincinnati air shed. Statistical analysis was performed to infer that NO was correlated to ozone concentration levels.

  18. The concentrations of culturable microorganisms in relation to particulate matter in urban air

    NASA Astrophysics Data System (ADS)

    Haas, D.; Galler, H.; Luxner, J.; Zarfel, G.; Buzina, W.; Friedl, H.; Marth, E.; Habib, J.; Reinthaler, F. F.

    2013-02-01

    The ambient air consists not only of gases but also of bioaerosols and particulate matter. The concentrations of particulate matter in relation to the culturable microorganisms in the urban ambient air and their dependence on air temperature and relative humidity were investigated. The seasonal distribution of particles sizes, the concentrations of aerobic mesophilic bacteria and xerophilic fungi in the air were evaluated. Moreover, the identification of the fungal genera Cladosporium, Aspergillus and Penicillium were conducted. Within one year at 177 days particle and microorganism concentrations in the ambient air were recorded in the city centre of Graz/Austria. The results show that the concentrations of fine particles and coarse particles were the highest in winter and decreased continuously to a minimum in the summer months depending on temperature and air humidity. The concentrations of xerophilic fungi showed no correlation to the different particle concentrations. The spore concentrations of Cladosporium spp. showed the same results of xerophilic fungi whereas the genera Penicillium and Aspergillus increased with the increase of fine particles. The concentrations of mesophilic bacteria were positively correlated with all particle counts. The maximum mesophilic bacteria concentrations were found in the winter months. Further studies are required to evaluate the concentrations of specific microorganisms in the natural environment in relation to the particulate matter.

  19. Formaldehyde levels in traditional and portable classrooms: A pilot investigation

    PubMed Central

    2015-01-01

    This pilot study assessed formaldehyde levels in portable classrooms (PCs) and traditional classrooms (TCs) and explored factors influencing indoor air quality (e.g., carbon dioxide (CO2), temperature, and relative humidity). In a cross-sectional design, we evaluated formaldehyde levels in day and overnight indoor air samples from nine PCs renovated within three years previously and three TCs in a school district in metropolitan Atlanta, Georgia. Formaldehyde levels ranged from 0.0068 to 0.038 ppm. In both type of classrooms, overnight formaldehyde median levels (PCs = 0.018 ppm; TCs = 0.019 ppm) were higher than day formaldehyde median levels (PCs = 0.011 ppm; TCs = 0.016 ppm). CO2 levels measured 470–790 parts per million (ppm) at 7AM and 470–1800 ppm at 4PM. Afternoon medians were higher in TCs (1,400 ppm ) than in PCs (780 ppm). Consistent with previous studies, formaldehyde levels were similar among PCs and TCs. Reducing CO2 levels by improving ventilation is recommended for classrooms. PMID:27197349

  20. Inter-comparison of air pollutant concentrations in different indoor environments in Hong Kong

    NASA Astrophysics Data System (ADS)

    Lee, Shun-Cheng; Guo, Hai; Li, Wai-Ming; Chan, Lo-Yin

    Indoor air quality in selected indoor environments in Hong Kong such as homes, offices, schools, shopping malls and restaurants were investigated. Average CO 2 levels and total bacteria counts in air-conditioned classrooms, shopping malls and restaurants were comparatively higher than those measured in occupied offices and homes. Elevated CO 2 levels exceeding 1000 ppm and total bacteria counts resulted from high occupancy combined with inadequate ventilation. Average PM 10 levels were usually higher indoors than outdoors in homes, shopping malls and restaurants. The highest indoor PM 10 levels were observed at investigated restaurants due to the presence of cigarette smoking and extensive use of gas stoves for cooking. The restaurants and shopping malls investigated had higher formaldehyde levels than other indoor environments when building material, smoking and internal renovation work were present. Volatile organic compounds (VOCs) in both indoor and outdoor environments mainly resulted from vehicle exhaust emissions. It was observed that interior decoration work and the use of industrial solvents in an indoor environment could significantly increase the indoor levels of VOCs.

  1. A method for determination of methyl chloride concentration in air trapped in ice cores.

    PubMed

    Saito, Takuya; Yokouchi, Yoko; Aoki, Shuji; Nakazawa, Takakiyo; Fujii, Yoshiyuki; Watanabe, Okitsugu

    2006-05-01

    A method for measuring the concentration of methyl chloride (CH3Cl) in air trapped in an ice core was developed. The method combines the air extraction by milling the ice core samples under vacuum and the analysis of the extracted air with a cryogenic preconcentration/gas chromatograph/mass spectrometry system. The method was applied to air from Antarctic ice core samples estimated to have been formed in the pre-industrial and/or early industrial periods. The overall precision of the method deduced from duplicate ice core analyses was estimated to be better than +/-20 pptv. The measured CH3Cl concentration of 528+/-26 pptv was similar to the present-day concentration in the remote atmosphere as well as the CH3Cl concentration over the past 300 years obtained from Antarctic firn air and ice core analyses.

  2. AN INDOOR PESTICIDE AIR AND SURFACE CONCENTRATION MODEL

    EPA Science Inventory

    A thorough assessment of human exposure to environmental chemicals requires consideration of all processes in the sequence from source to dose. For assessment of exposure to pesticides following their use indoors, data and models are needed to estimate pesticide concentrations...

  3. Measuring Concentrations of Particulate 140La in the Air

    SciTech Connect

    Okada, Colin E.; Kernan, Warnick; Keillor, Martin; Kirkham, Randy; Sorom, Rich D.; Van Etten, Don M.

    2016-01-01

    This article discusses deployment of air-samplers to measure the concentration of radioactive material in the air during the Full-Scale Radiological Dispersal Device experiments. Positioned 100-600 meters downwind of the release point, the filters were collected immediately and analyzed in a field laboratory. The article discusses quantities for total activity collected on the air filters as well as additional information to compute the average or integrated air concentrations. In the case of a public emergency, this type of information would be important for decision makers and responders.

  4. Formaldehyde: a chemical of concern in the vicinity of MBT plants of municipal solid waste.

    PubMed

    Vilavert, Lolita; Figueras, María J; Schuhmacher, Marta; Nadal, Martí; Domingo, José L

    2014-08-01

    The mechanical-biological treatment (MBT) of municipal solid waste (MSW) has a number of advantages in comparison to other MSW management possibilities. However, adverse health effects related to this practice are not well known yet, as a varied typology of microbiological and chemical agents may be generated and released. In 2010, we initiated an environmental monitoring program to control air levels of volatile organic compounds (VOCs) and microbiological pollutants near an MBT plant in Montcada i Reixac (Catalonia, Spain). In order to assess any temporal and seasonal trends, four 6-monthly campaigns were performed. Important fluctuations were observed in the levels of different biological indicators (total and Gram-negative bacteria, fungi grown at 25 °C and 37 °C, and more specifically, Aspergillus fumigatus). Although overall bioaerosols concentrations were rather low, a certain increase in the mean values of bacteria and fungi was observed in summer. In contrast, higher concentrations of VOCs were found in winter, with the only exception of formaldehyde. Interestingly, although this compound was not detected in one of the sampling campaigns, current airborne levels of formaldehyde were higher than those previously reported in urban areas across Europe. Furthermore, the non-carcinogenic risks (Hazard Quotient), particularly in winter, as well as the cancer risks associated with the inhalation of VOCs, exceeded the threshold values (1 and 10(-5), respectively), reaffirming the need of continuing with the monitoring program, with special emphasis on formaldehyde, a carcinogenic/mutagenic substance.

  5. Mortality and air pollution in Beijing: The long-term relationship

    NASA Astrophysics Data System (ADS)

    Tang, Guiqian; Zhao, Pusheng; Wang, Yinghong; Gao, Wenkang; Cheng, Mengtian; Xin, Jinyuan; Li, Xin; Wang, Yuesi

    2017-02-01

    Since the 1980s, air pollution has become a major problem in northern China. Exposure to the extremely high concentrations of aerosols and trace gases might lead to important human health outcomes, including respiratory, cardiovascular and cerebrovascular diseases and malignant tumours. In this study, we collected data on mortality, visibility and the concentrations of certain air pollutants in Beijing from 1949 to 2011. Our goal was to investigate the mortality trends of different types of diseases and the relationship between mortality and air pollution. Based on the chemical compositions in particles and satellite formaldehyde, we found that mortality due to circulatory diseases was correlated with sulphate, nitrate and formaldehyde, whereas respiratory diseases were correlated with calcium, sulphate and nitrate, and malignant tumours was correlated with ammonium, nitrate and formaldehyde with an 11-year lag. The different responses to different air pollutants for different diseases are primarily a result of energy usage.

  6. Daily and seasonal variations in radon activity concentration in the soil air.

    PubMed

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  7. High Resolution Formaldehyde Photochemistry

    NASA Astrophysics Data System (ADS)

    Ernest, C. T.; Bauer, D.; Hynes, A. J.

    2010-12-01

    Formaldehyde (HCHO) is the most abundant and most important organic carbonyl compound in the atmosphere. The sources of formaldehyde are the oxidation of methane, isoprene, acetone, and other volatile organic compounds (VOCs); fossil fuel combustion; and biomass burning. The dominant loss mechanism for formaldehyde is photolysis which occurs via two pathways: (R1) HCHO + hv → HCO + H (R2) HCHO + hv → H2 + CO The first pathway (R1) is referred to as the radical channel, while the second pathway (R2) is referred to as the molecular channel. The products of both pathways play a significant role in atmospheric chemistry. The CO that is produced in the molecular channel undergoes further oxidation to produce CO2. Under atmospheric conditions, the H atom and formyl radical that are produced in the radical channel undergo rapid reactions with O2 to produce the hydroperoxyl radical (HO2) via (R3) and (R4). (R3) HCO + O2 → HO2 + CO (R4) H + O2 → HO2 Thus, for every photon absorbed, the photolysis of formaldehyde can contribute one CO2 molecule to the global greenhouse budget or two HO2 radicals to the tropospheric HOx (OH + HO2) cycle. The HO2 radicals produced during formaldehyde photolysis have also been implicated in the formation of photochemical smog. The HO2 radicals act as radical chain carriers and convert NO to NO2, which ultimately results in the catalytic production of O3. Constraining the yield of HO2 produced via HCHO photolysis is essential for improving tropospheric chemistry models. In this study, both the absorption cross section and the quantum yield of the radical channel (R1) were measured at high resolution over the tropospherically relevant wavelength range 304-330 nm. For the cross section measurements a narrow linewidth Nd:YAG pumped dye laser was used with a multi-pass cell. Partial pressures of HCHO were kept below 0.3 torr. Simultaneous measurement of OH LIF in a flame allowed absolute calibration of the wavelength scale. Pressure

  8. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The paper discusses the measurment and analysis of the patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board, using small environmental chamber tests. The formaldehyde emissions resulted in sharp increase of chamber air...

  9. CHARACTERIZATION AND REDUCTION OF FORMALDEHYDE EMISSIONS FROM A LOW-VOC LATEX PAINT

    EPA Science Inventory

    The patterns of formaldehyde emission from a low volatile organic compound (VOC) latex paint applied to gypsum board were measured and analyzed by small environmental chamber tests. It was found that the formaldehyde emissions resulted in sharp increase of chamber air formaldehy...

  10. Developing a Reference Material for Diffusion-Controlled Formaldehyde Emissions Testing

    EPA Science Inventory

    Emissions of formaldehyde from building materials can contaminate indoor air and create significant risks to human health. The need to control formaldehyde emissions from indoor materials is made more urgent by the prevailing drive to improve building energy by decreasing ventil...

  11. EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY

    EPA Science Inventory

    EFFECTS OF METAL COMPONENTS IN CONCENTRATED AMBIENT AIR PARTICLES ON PULMONARY INJURY. Yuh-Chin Huang, Jackie Stonehuerner, Jackie Carter, Andrew J. Ghio, Robert B. Devlin. NHEERL, US EPA, RTP, NC.
    The mechanisms for cardiopulmonary morbidity associated with exposure to air po...

  12. Analysis of Mobile Source Air Toxics (MSATS)–Near-Road VOC and CarbonylConcentrations

    EPA Science Inventory

    This presentation examines data from a year-long study of measured near-road mobile source air toxic (MSAT) concentrations and compares these data with modeled 2005 National Air Toxic Assessment (NATA) results. Field study measurements were collected during a field campaign in ...

  13. AGE AND STRAIN INFLUENCES ON LUNG RESPONSES TO CONCENTRATED AIR PARTICULATES (CAPS) IN RODENTS

    EPA Science Inventory

    Asthma, an inflammatory airways disease, is an urgent health problem. Recent epidemiologic studies have demonstrated positive associations between ambient air particulate matter concentrations and daily respiratory morbidity ? including exacerbations of asthma. Of note, elderly i...

  14. Effect of Key Parameters on the Photocatalytic Oxidation of Toluene at Low Concentrations in Air under 254 + 185 nm UV Irradiation

    SciTech Connect

    Quici, Natalia; Vera, Maria L.; Choi, Hyeok; Puma, Gianluca Li; Dionysiou, Dionysios D.; Litter, Marta I.; Destaillats, Hugo

    2009-07-01

    The effect of key experimental parameters on the removal of toluene under 254 + 185 nm irradiation was investigated using a benchtop photocatalytic flow reactor. Toluenewas introduced at low concentrations between 10 and 500 ppbv, typical of indoorenvironments, and reacted on TiO2-coated Raschig rings. Two different TiO2-coated rings were prepared: in one case, by dip-coating using a P25 aqueous suspension and, on the other, using an organic/inorganic sol-gel method that produced thin films of mesoporous anatase. Flow rates in the photoreactor varied between 4 L min-1 and 125 mL min-1, leading to residence times in the range 100 ms< tau< 2 s. For these conditions, toluene removal efficiencies were between 30 and 90percent, indicating that the system did not achieve total conversion in any case. For each air flow rate, the conversion oftoluene was significantly higher when the reactor length was 10 cm, as compared with 5 cm; however, only marginal increases in conversions were achieved in the two reactor lengths at equal residence time and different concentration of toluene, suggesting that that the reactor is effectively behaving as an ideal reactor and that the reaction is first-order in the concentration of toluene. Experiments were carried out between 0 and 66percent relative humidity (RH), the fastest reaction rate being observed at moderately low humidity conditions (10percent RH), with respect to both dry air and higher humidity levels. Formaldehyde was formed as a partial oxidation byproduct at low and at high residence times (240 and 960 ms), although higher formaldehyde molar yields (up to 20percent) were observed at low tau (240 ms) and moderate humidity conditions (10 and 33percent), suggesting that both tau and RH can be optimized toreduce the formation of harmful intermediates. Toluene removal efficiency increased with the TiO2 thickness (i.e., mass) until a maximum value of 500 nm, beyond which the removal efficiency decreased. This should be

  15. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.

    PubMed

    Báez, Armando; Padilla, Hugo; García, Rocío; Torres, Ma del Carmen; Rosas, Irma; Belmont, Raúl

    2003-01-20

    Carbonyl compounds in air were measured at two houses, three museums, and two offices. All sites lacked air-conditioning systems. Although indoor and outdoor air was measured simultaneously at each site, the sites themselves were sampled in different dates. Mean concentrations were higher in indoor air. Outdoor means concentrations of acetone were the highest in all sites, ranging from 12 to 60 microg m(-3). In general, formaldehyde and acetaldehyde had similar mean concentrations, ranging from 4 to 32 and 6 to 28 microg m(-3), respectively. Formaldehyde and acetone mean indoor concentrations were the highest, ranging from 11 to 97 and 17 to 89 microg m(-3), respectively, followed by acetaldehyde with 5 to 47 microg m(-3). Formaldehyde and acetaldehyde had the highest mean concentration in the offices where there were smokers. Propionaldehyde and butyraldehyde concentrations did not show definite differences between indoor and outdoor air. In general, the highest outdoor and indoor hourly concentrations were observed from 10:00 to 15:00 h. Mean indoor/outdoor ratios of carbonyls exceeded 1. Formaldehyde and acetaldehyde risks were higher in smoking environments.

  16. Concentrations in air of organobromine, organochlorine and organophosphate flame retardants in Toronto, Canada

    NASA Astrophysics Data System (ADS)

    Shoeib, Mahiba; Ahrens, Lutz; Jantunen, Liisa; Harner, Tom

    2014-12-01

    Concentrations of organobromine (BFRs), organochlorine (CFRs) and organophosphate esters flame retardants and plasticizers (PFRs) in air were monitored for over one year at an urban site in Toronto, Canada during 2010-2011. The mean value for polybrominated diphenyl ethers (BDEs) (gas + particle phase) was 38 pg/m3 with BDE-47 and BDE-99 as the dominant congeners. The mean concentrations in air for ∑non-BDE (BFRs and CFRs), was 9.6 pg/m3 - about four times lower than the BDEs. The brominated FRs: TBP-AE, BTBPE, EH-TBB, BEH-TEBP and the chlorinated syn- and anti-DP were detected frequently, ranging from 87% to 96%. Highest concentrations in air among all flame retardant classes were observed for the Σ-PFRs. The yearly mean concentration in air for ΣPFRs was 2643 pg/m3 with detection frequency higher than 80%. Except for TBP-AE and b- DBE-DBCH, non-BDEs (BFRs, CFRs and PFRs) were mainly associated with the particle phase. BDE concentrations in air were positively correlated with temperature indicating that volatilization from local sources was an important factor controlling levels in air. This correlation did not hold for most BFRs, CFRs and PFRs which were mainly on particles. For these compounds, air concentrations in Toronto are likely related to emissions from point sources and advective inputs. This study highlights the importance of urban air monitoring for FRs. Urban air can be considered a sentinel for detecting changes in the use and application of FRs in commercial products.

  17. Health risks from indoor formaldehyde exposures in northwest weatherized residences

    SciTech Connect

    Mellinger, P.J.; Sever, L.E.

    1986-10-01

    Conflicting opinions on the potential hazards associated with formaldehyde exposure triggered a national workshop to address the toxicological questions concerning the health effects of formaldehyde. Since quantitative human data are not available to derive a dose-response curve for formaldehyde risk assessment, nonhuman data are used. In the case of formaldehyde, data from animals exposed to high concentrations are used to estimate human risk at much lower concentrations. This study presents the several steps that make up a risk assessment and examines any additional data that might alter significantly the risk estimates presented in the 1984 EIS. Rat inhalation chronic bioassay data from a study sponsored by the Chemical Industry Institute of Toxicology (CIIT) have been used to develop a risk equation that was subsequently used by BPA in its EIS. The CIIT data base remains the only acceptable animal data that can support the estimation of a dose-response curve. The development of mathematical models continues with a great deal of energy, and the use of different models is largely responsible for the great variability of the formaldehyde risk estimates. While one can calculate different values for carcinogenic risk associated with formaldehyde exposure than were presented earlier in the BPA EIS, they are not likely to be any better.

  18. Trend and climate signals in seasonal air concentration of organochlorine pesticides over the Great Lakes

    NASA Astrophysics Data System (ADS)

    Gao, Hong; Ma, Jianmin; Cao, Zuohao; Dove, Alice; Zhang, Lisheng

    2010-08-01

    Following worldwide bans or restrictions, the atmospheric level of many organochlorine pesticides (OCPs) over the Great Lakes exhibited a decreasing trend since the 1980s in various environmental compartments. Atmospheric conditions also influence variation and trend of OCPs. In the present study a nonparametric Mann-Kendall test with an additional process to remove the effect of temporal (serial) correlation was used to detect the temporal trend of OCPs in the atmosphere over the Great Lakes region and to examine the statistical significance of the trends. Using extended time series of measured air concentrations over the Great Lakes region from the Integrated Atmospheric Deposition Network, this study also revisits relationships between seasonal mean air concentration of OCPs and major climate variabilities in the Northern Hemisphere. To effectively extract climate signals from the temporal trend of air concentrations, we detrended air concentrations through removing their linear trend, which is driven largely by their respective half-lives in the atmosphere. The interannual variations of the extended time series show a good association with interannual climate variability, notably, the North Atlantic Oscillation (NAO) and the El Niño-Southern Oscillation. This study demonstrates that the stronger climate signals can be extracted from the detrended time series of air concentrations of some legacy OCPs. The detrended concentration time series also help to interpret, in addition to the connection with interannual variation of the NAO, the links between atmospheric concentrations of OCPs and decadal or interdecadal climate change.

  19. Evolution of HTO concentrations in soil, vegetation and air during an experimental chronic HT release

    SciTech Connect

    Davis, P.A.; Galeriu, D.C.; Spencer, F.S.; Amiro, B.D.

    1995-10-01

    A small experimental plot was continuously exposed to elevated levels of HT in air over a 12-day period to study the build up and steady-state concentrations of HTO in the environment. HTO concentrations in soil, vegetation and air all showed similar dynamics, increasing gradually over time with temporary decreases during and following rainfall. The relative magnitudes of the soil, vegetation and air concentrations depended on the height at which the air and vegetation were sampled, the depth at which the soil sample was taken and the soil depth over which the plants drew their transpiration water. The system was at or near steady-state in the last two or three days of the release. When averaged over an eight day interval that included periods of rain, the ratios of HTO concentration in soil, foliage and air moisture to HT concentration in air (measured 20 cm above the ground) were typically 0.0014, 0.0010 and 0.0011 (Bq/mL)/(Bq/m{sup 3}) for a cultivated field. 10 refs., 7 figs.

  20. An assessment of ozone concentrations within and near the Lake Tahoe Air Basin

    NASA Astrophysics Data System (ADS)

    Dolislager, Leon J.; VanCuren, Richard; Pederson, James R.; Lashgari, Ash; McCauley, Eileen

    2012-01-01

    The Lake Tahoe Atmospheric Deposition Study (LTADS) was conducted by the Air Resources Board of the State of California (CARB) primarily to generate refined estimates of the atmospheric deposition of nitrogen, phosphorous, and particulate matter directly to Lake Tahoe, which straddles the border between the states of California and Nevada near Reno, Nevada. The enhanced air quality monitoring during LTADS also included ozone measurements, which yielded additional insights into atmospheric processes and the role of transport in determining ozone concentrations within the Lake Tahoe Air Basin. The Lake Tahoe Air Basin is located generally downwind of air basins with major emissions of ozone precursors (e.g., VOCs, NOx), capable of generating significant ozone concentrations. Furthermore, vegetation on the western slope of the Sierra Nevada contribute biogenic organic compounds to the air mass. Ozone concentrations within the Tahoe Basin infrequently exceed the local 1-h threshold set to protect forest health (0.08 ppm) and the California 8-h ambient air quality standard (0.070 ppm). A concern then is the potential contribution of regional emission sources to the ozone concentrations observed in the Tahoe Basin. The ozone data collected during LTADS helped to better characterize the relative contribution of local and regional pollution sources to ozone air quality within the Tahoe Basin. The data indicate potential 1- or 2-day intact transport on rare occasions but generally the mixing of the atmosphere over the Sierra Nevada disperses the anthropogenic ozone throughout the boundary layer, which is generally more than a kilometer or two deep during the day. The data analysis indicates that emissions from upwind air basins add to the atmospheric burden of ozone concentrations, raising the regional concentrations in the Sierra Nevada. Given the large background and upwind enhancements relative to the ambient air quality standards, the local contribution does not need to

  1. Monoterpene emissions and carbonyl compound air concentrations during the blooming period of rape (Brassica napus).

    PubMed

    Müller, Konrad; Pelzing, Matthias; Gnauk, Thomas; Kappe, Anett; Teichmann, Ulrich; Spindler, Gerald; Haferkorn, Sylvia; Jahn, Yvonne; Herrmann, Hartmut

    2002-12-01

    An increasing percentage of agricultural land in Germany is used for oil seed plants. Hence, rape has become an important agricultural plant (in Saxony 1998: 12% of the farmland) in the recent years. During flowering of rape along with intensive radiation and high temperatures, a higher production and emission of biogenic VOC was observed. The emissions of terpenes were determined and more importantly, high concentrations of organic carbonyl compounds were observed during this field experiment. All measurements of interest have been carried out during two selected days with optimal weather conditions. It is found that the origin or the mechanism of formation of different group of compounds had strong influence on the day to day variation of their concentrations. The emission flux of terpenes from flowering rape plants was determined to be 16-32 microg h(-1) m(-2) (30-60 ng h(-1) per g dry plant-540-11080 ng h(-1) per plant), in total. Limonene, alpha-thujene and sabinene were the most important compounds (about 60% of total terpenes). For limonene and sabinene reference emission rates (Ms) and temperature coefficients were determined: beta(limonene) = 0.108 K(-1) and Ms = 14.57 microg h(-1) m(-2) beta(sabinene) = 0.095 K(-1) and Ms = 5.39 microg h(-1) m(-2). The detected carbonyl compound concentrations were unexpectedly high (maximum formaldehyde concentration was 18.1 ppbv and 3.4 ppbv for butyraldehyde) for an open field. Possible reasons for these concentrations are the combination of primary emission from the plants induced by high temperature and high ozone stress, the secondary formation from biogenically and advected anthropogenically emitted VOC at high radiation intensities and furthered by the low wind speeds at this time.

  2. Determination of Formaldehyde in Cigarette Smoke

    NASA Astrophysics Data System (ADS)

    Wong, Jon W.; Ngim, Kenley K.; Eiserich, Jason P.; Yeo, Helen C. H.; Shibamoto, Takayuki; Mabury, Scott A.

    1997-09-01

    Formaldehdye is considered a hazardous air pollutant with numerous sources that include environmental tobacco smoke (ETS). With the increasing interest regarding ETS and public health the measurement of formaldehyde readily lends itself to a laboratory experiment comparing methods of analysis. This experiment involves the collection, derivatization, extraction, and analysis of formaldehyde from cigarette smoke using two methods. Formaldehyde is extracted from smoke and derivitized with a solution of 2,4-DNPH with subsequent cleanup by solid-phase extraction and analysis of the hydrazone by HPLC with UV detection; additionally a solution of cysteamine yields the corresponding thiazolidine derivative that is liquid/liquid extracted and subsequently analyzed by either GC with NPD or FPD (sulfur mode). Reasonable agreement among the methods was obtained by lab demonstrators with spike recoveries yielding 94.7 + 6.8 (n=5) and 89.2 (n = 4) % for NPD and FPD, respectively while HPLC spiked recoveries were 83.6 + 3.2 (n = 5) %; mean class spike recoveries ranged from 80-100%. Student results (in mg/cigarette) from smoke samples were similar to literature values with 163.2 + 69.2 (n = 7) and 149.4 (n = 7) % for NPD and FPD, respectively; the HPLC result was significantly lower at 45.1 + 23.7(n = 7) with losses presumably due to hydrazone precipitating from the smoke extracted solution. Students particularly benefited from the "real world" nature of the analysis and the experience evaluating disparate methods of determining a common analyte.

  3. CONCENTRATED AMBIENT AIR PARTICLES INDUCE PULMONARY INFLAMMATION IN HEALTHY HUMAN VOLUNTEERS

    EPA Science Inventory


    We tested the hypothesis that exposure of healthy volunteers to concentrated ambient particles (CAPS) is associated with an influx of inflammatory cells into the lower respiratory tract. Thirty-eight volunteers were exposed to either filtered air or particles concentrated fro...

  4. COMPARISON OF MOLD CONCENTRATIONS IN INDOOR AND OUTDOOR AIR SAMPLED SIMULTANEOUSLY AND THEN QUANTIFIED BY MSQPCR

    EPA Science Inventory

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of the 36 mold species in indoor and outdoor air samples that were taken simultaneously for 48 hours in and around 17 homes in Cincinnati, Ohio. The total spore concentrations of 353 per m3...

  5. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air.

    PubMed

    Lyng, Nadja Lynge; Clausen, Per Axel; Lundsgaard, Claus; Andersen, Helle Vibeke

    2016-02-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six temperature levels between 20 and 30 C, i.e. within the normal fluctuation of indoor temperatures, while the air exchange rate was constant. The steady-state air concentrations of seven PCBs were determined at each temperature level. A model based on Clausius-Clapeyron equation, ln(P) = -ΔH/RT + a(0), where changes in steady-state air concentrations in relation to temperature, was tested. The model was valid for PCB-28, PCB-52 and PCB-101; the four other congeners were sporadic or non-detected. For each congener, the model described a large proportion (R(2)>94%) of the variation in indoor air PCB levels. The results showed that one measured concentration of PCB at a known steady-state temperature can be used to predict the steady-state concentrations at other temperatures under circumstances where e.g. direct sunlight does not influence temperatures and the air exchange rate is constant. The model was also tested on field data from a PCB remediation case in an apartment in another contaminated building complex where PCB concentrations and temperature were measured simultaneously and regularly throughout one year. The model fitted relatively well with the regression of measured PCB air concentrations, ln(P) vs. 1/T, at varying temperature between 16.3 and 28.2 °C, even though the measurements were carried out under uncontrolled environmental condition.

  6. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong

    PubMed Central

    Zhang, Jiangshe; Ding, Weifu

    2017-01-01

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R2 increased and root mean square error values decreased respectively. PMID:28125034

  7. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.

    PubMed

    Zhang, Jiangshe; Ding, Weifu

    2017-01-24

    With the development of the economy and society all over the world, most metropolitan cities are experiencing elevated concentrations of ground-level air pollutants. It is urgent to predict and evaluate the concentration of air pollutants for some local environmental or health agencies. Feed-forward artificial neural networks have been widely used in the prediction of air pollutants concentration. However, there are some drawbacks, such as the low convergence rate and the local minimum. The extreme learning machine for single hidden layer feed-forward neural networks tends to provide good generalization performance at an extremely fast learning speed. The major sources of air pollutants in Hong Kong are mobile, stationary, and from trans-boundary sources. We propose predicting the concentration of air pollutants by the use of trained extreme learning machines based on the data obtained from eight air quality parameters in two monitoring stations, including Sham Shui Po and Tap Mun in Hong Kong for six years. The experimental results show that our proposed algorithm performs better on the Hong Kong data both quantitatively and qualitatively. Particularly, our algorithm shows better predictive ability, with R 2 increased and root mean square error values decreased respectively.

  8. Derivation and implementation of an annual limit on intake and a derived air concentration value for uranium mill tailings.

    PubMed

    Reif, R H; Andrews, D W

    1995-06-01

    Monitoring workers and work areas at the Department of Energy Uranium Mill Tailings Remedial Action Project sites is complex because all radionuclides in the 238U and 235U decay chains may be present in an airborne uranium mill tailings matrix. Previous monitoring practices involved isotopic analysis of the air filter to determine the activity of each radionuclide of concern and comparing the results to the specified derived air concentration. The annual limit on intake and derived air concentration values have been derived here for the uranium mill tailings matrix to simplify the procedure for evaluation of air monitoring results and assessment of the need for individual monitoring. Implementation of the derived air concentration for uranium mill tailings involves analyzing air samples for long-lived gross alpha activity and comparing the activity concentration to the derived air concentration. Health physics decisions regarding assessment of airborne concentrations is more cost-effective because isotopic analysis of air samples is not necessary.

  9. A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

    NASA Astrophysics Data System (ADS)

    Yu, Haofei

    , on air quality, pollution exposure, and exposure inequality were explored. Major findings include slightly higher pollutant emissions, with the exception of hydrocarbons, due to the managed lane project. Results also show that ambient concentration contributions from on-road mobile sources are disproportionate to their emissions. Additionally, processes not captured by the CALPUFF model, such as atmospheric formation, contribute substantially to ambient concentration levels of the secondary pollutants such as acetaldehyde and formaldehyde. Exposure inequalities for NOx, 1,3-butadiene, and benzene air pollution were found for black, Hispanic, and low income (annual household income less than $20,000) subgroups at both short-term and long-term temporal scales, which is consistent with previous findings. Exposure disparities among the subgroups are complex, and sometimes reversed for acetaldehyde and formaldehyde, due primarily to their distinct concentration distributions. Compact urban form was found to result in lower average NOx and benzene concentrations, but higher exposure for all pollutants except for NOx when compared to sprawl urban form. Evidence suggests that exposure inequalities differ between sprawl and compact urban forms, and also differ by pollutants, but are generally consistent at both short and long-term temporal scales. In addition, vehicle fleet electrification was found to result in generally lower average pollutant concentrations and exposures, except for NOx. However, the elimination of on-road mobile source emissions does not substantially reduce exposure inequality. Results and findings from this work can be applied to assist transportation infrastructure and urban planning. In addition, method developed here can be applied elsewhere for better characterization of air pollution concentrations, exposure and related inequalities.

  10. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration.

  11. Historical Occupational Trichloroethylene Air Concentrations Based on Inspection Measurements From Shanghai, China

    PubMed Central

    Friesen, Melissa C.; Locke, Sarah J.; Chen, Yu-Cheng; Coble, Joseph B.; Stewart, Patricia A.; Ji, Bu-Tian; Bassig, Bryan; Lu, Wei; Xue, Shouzheng; Chow, Wong-Ho; Lan, Qing; Purdue, Mark P.; Rothman, Nathaniel; Vermeulen, Roel

    2015-01-01

    Purpose: Trichloroethylene (TCE) is a carcinogen that has been linked to kidney cancer and possibly other cancer sites including non-Hodgkin lymphoma. Its use in China has increased since the early 1990s with China’s growing metal, electronic, and telecommunications industries. We examined historical occupational TCE air concentration patterns in a database of TCE inspection measurements collected in Shanghai, China to identify temporal trends and broad contrasts among occupations and industries. Methods: Using a database of 932 short-term, area TCE air inspection measurements collected in Shanghai worksites from 1968 through 2000 (median year 1986), we developed mixed-effects models to evaluate job-, industry-, and time-specific TCE air concentrations. Results: Models of TCE air concentrations from Shanghai work sites predicted that exposures decreased 5–10% per year between 1968 and 2000. Measurements collected near launderers and dry cleaners had the highest predicted geometric means (GM for 1986 = 150–190mg m−3). The majority (53%) of the measurements were collected in metal treatment jobs. In a model restricted to measurements in metal treatment jobs, predicted GMs for 1986 varied 35-fold across industries, from 11mg m−3 in ‘other metal products/repair’ industries to 390mg m–3 in ‘ships/aircrafts’ industries. Conclusions: TCE workplace air concentrations appeared to have dropped over time in Shanghai, China between 1968 and 2000. Understanding differences in TCE concentrations across time, occupations, and industries may assist future epidemiologic studies in China. PMID:25180291

  12. Influence of ozone concentration and temperature on ultra-fine particle and gaseous volatile organic compound formations generated during the ozone-initiated reactions with emitted terpenes from a car air freshener.

    PubMed

    Lamorena, Rheo B; Lee, Woojin

    2008-10-30

    Experiments were conducted to identify the emissions from the car air freshener and to identify the formation of ultra-fine particles and secondary gaseous compounds during the ozone-initiated oxidations with emitted volatile organic compounds (VOCs). The identified primary constituents emitted from the car air freshener in this study were alpha-pinene, beta-pinene, p-cymene, and limonene. Formation of ultra-fine particles (4.4-160 nm) was observed when ozone was injected into the chamber containing emitted monoterpenes from the air freshener. Particle number concentrations, particle mass concentrations, and surface concentrations were measured in time dependent experiments to describe the particle formation and growth within the chamber. The irritating secondary gaseous products formed during the ozone-initiated reactions include formaldehyde, acetaldehyde, acrolein, acetone, and propionaldehyde. Ozone concentration (50 and 100 ppb) and temperature (30 and 40 degrees C) significantly affect the formation of particles and gaseous products during the ozone-initiated reactions. The results obtained in this study provided an insight on the potential exposure of particles and irritating secondary products formed during the ozone-initiated reaction to passengers in confined spaces.

  13. Indoor air polychlorinated biphenyl concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Wilson, Lloyd R; Palmer, Patrick M; Belanger, Erin E; Cayo, Michael R; Durocher, Lorie A; Hwang, Syni-An A; Fitzgerald, Edward F

    2011-10-01

    Indoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Indoor air PCB concentrations in the study area homes were not significantly different than in the comparison area homes. Total PCB concentrations in the study area homes ranged from 0.3 to 114.3 ng/m(3) (median 7.9). For the comparison area homes, concentrations ranged from 0.3 to 233.3 ng/m(3) (median 6.8). No correlations were found between PCB concentrations in indoor and outdoor air, with indoor concentrations generally 20 times higher than outdoor concentrations. Of the home characteristics cataloged, the presence of fluorescent lights was significantly associated with total PCB concentration in the study area only. The indoor PCB concentrations measured in this study are similar to those in other communities with known PCB-contaminated sites and similar to levels reported in other locations from the northeastern United States.

  14. Characterization of VOC and formaldehyde emissions from a wood based panel: results from an inter-laboratory comparison.

    PubMed

    Yrieix, Christophe; Dulaurent, Alina; Laffargue, Caroline; Maupetit, François; Pacary, Tiphaine; Uhde, Erik

    2010-04-01

    Six European laboratories used the emission test chamber method (EN ISO 16000-9) for the determination of VOC and formaldehyde emissions from a wood based panel (particleboard). The tested panel was conditioned without wrapping over 28 d at 23 degrees C and 50% RH before shipping to each participating laboratory. Emission chamber testing was carried out with air sampling after 3 and 28 d. Main VOCs (alpha-pinene, beta-pinene, pentanal, hexanal) and TVOC were analysed according to ISO 16000-6 and main aldehydes (formaldehyde, acetaldehyde, pentanal, hexanal) were specifically analysed according to ISO 16000-3. Results indicated that relative standard deviations of reproducibility after 28 testing days are between 27.5% and 45.5% for VOC concentrations ranging from 5.9 to 38.6 microg m(-3) and between 17.1% and 23.8% for aldehyde concentrations ranging from 5.5 to 57.6 microg m(-3). Formaldehyde results showed standard deviation of only 17.4% for a mean concentration of 57.6 microg m(-3) after 28 testing days. In general, results are similar to recent inter-laboratory comparison studies even if wood based panels can be considered as heterogeneous materials.

  15. A Formaldehyde Exposure Assessment Tool for Occupants of FEMA Temporary Housing Units

    SciTech Connect

    Parthasarathy, Srinandini; Spears, Michael; Maddalena, Randy L.; Russell, Marion L; Apte, Michael G.

    2010-10-01

    The report outlines the methodology used to develop a web-based tool to assess the formaldehyde exposure of the occupants of Federal Emergency Management Administration (FEMA) temporary housing units (THUs) after Hurricanes Katrina and Rita in 2005. Linear regression models were built using available data to retrospectively estimate the indoor temperature and relative humidity, formaldehyde emission factors and concentration, and hence the formaldehyde exposures. The interactive web-tool allows the user to define the inputs to the model to evaluate formaldehyde exposures for different scenarios.

  16. Formaldehyde impairs transepithelial sodium transport

    PubMed Central

    Cui, Yong; Li, Huiming; Wu, Sihui; Zhao, Runzhen; Du, Deyi; Ding, Yan; Nie, Hongguang; Ji, Hong-Long

    2016-01-01

    Unsaturated oxidative formaldehyde is a noxious aldehyde in cigarette smoke that causes edematous acute lung injury. However, the mechanistic effects of formaldehyde on lung fluid transport are still poorly understood. We examined how formaldehyde regulates human epithelial sodium channels (ENaC) in H441 and expressed in Xenopus oocytes and exposed mice in vivo. Our results showed that formaldehyde reduced mouse transalveolar fluid clearance in vivo. Formaldehyde caused a dose-dependent inhibition of amiloride-sensitive short-circuit Na+ currents in H441 monolayers and of αβγ-ENaC channel activity in oocytes. α-ENaC protein was reduced, whereas phosphorylation of the extracellular regulated protein kinases 1 and 2 (ERK1/2) increased significantly post exposure. Moreover, both α- and γ-ENaC transcripts were down-regulated. Reactive oxygen species (ROS) was elevated significantly by formaldehyde in addition to markedly augmented membrane permeability of oocytes. These data suggest that formaldehyde contributes to edematous acute lung injury by reducing transalveolar Na+ transport, through decreased ENaC activity and enhanced membrane depolarization, and by elevating ROS production over long-term exposure. PMID:27762337

  17. Respiratory response to formaldehyde and off-gas of urea formaldehyde foam insulation.

    PubMed Central

    Day, J H; Lees, R E; Clark, R H; Pattee, P L

    1984-01-01

    In 18 subjects, 9 of whom had previously complained of various nonrespiratory adverse effects from the urea formaldehyde foam insulation (UFFI) in their homes, pulmonary function was assessed before and after exposure in a laboratory. On separate occasions formaldehyde, 1 part per million (ppm), and UFFI off-gas yielding a formaldehyde concentration of 1.2 ppm, were delivered to each subject in an environmental chamber for 90 minutes and a fume hood for 30 minutes respectively. None of the measures of pulmonary function used (forced vital capacity, forced expiratory volume in 1 second or maximal midexpiratory flow rate) showed any clinically or statistically significant response to the exposure either immediately after or 8 hours after its beginning. There were no statistically significant differences between the responses of the group that had previously complained of adverse effects and of the group that had not. There was no evidence that either formaldehyde or UFFI off-gas operates as a lower airway allergen or important bronchospastic irritant in this heterogeneous population. Images Fig. 1 PMID:6388780

  18. Field Derived Emission Factors For Formaldehyde and other Volatile Organic Compounds in FEMA Temporary Housing Units

    SciTech Connect

    Parthasarathy, Srinandini; Maddalena, Randy L.; Russell, Marion L.; Apte, Michael G.

    2010-10-01

    Sixteen previously occupied temporary housing units (THUs) were studied to assess emissions of volatile organic compounds. The whole trailer emission factors wereevaluated for 36 VOCs including formaldehyde. Indoor sampling was carried out in the THUs located in Purvis staging yard in Mississippi, USA. Indoor temperature andrelative humidity (RH) were also measured in all the trailers during sampling. Indoor temperatures were varied (increased or decreased) in a selection of THUs using theheating, ventilation and air conditioning (HVAC) systems. Indoor temperatures during sampling ranged from 14o C to 33o C, and relative humidity (RH) varied between 35percentand 74percent. Ventilation rates were increased in some trailers using bathroom fans and vents during some of the sampling events. Ventilation rates measured during some aselection of sampling events varied from 0.14 to 4.3 h-1. Steady state indoor formaldehyde concentrations ranged from 10 mu g-m-3 to 1000 mu g-m-3. The formaldehyde concentrations in the trailers were of toxicological significance. The effects of temperature, humidity and ventilation rates were also studied. A linearregression model was built using log of percentage relative humidity, inverse of temperature (in K-1), and inverse log ACH as continuous independent variables, trailermanufacturer as a categorical independent variable, and log of the chemical emission factors as the dependent variable. The coefficients of inverse temperature, log relativehumidity, log inverse ACH with log emission factor were found to be statistically significant for all the samples at the 95percent confidence level. The regression model wasfound to explain about 84percent of the variation in the dependent variable. Most VOC concentrations measured indoors in the Purvis THUs were mostly found to be belowvalues reported in earlier studies by Maddalena et al.,1,2 Hodgson et al.,3 and Hippelein4. Emissions of TMPB-DIB (a plasticizer found in vinyl products) were found

  19. Concentrations, sources and human health risk of inhalation exposure to air toxics in Edmonton, Canada.

    PubMed

    Bari, Md Aynul; Kindzierski, Warren B

    2017-04-01

    With concern about levels of air pollutants in recent years in the Capital Region of Alberta, an investigation of ambient concentrations, sources and potential human health risk of hazardous air pollutants (HAPs) or air toxics was undertaken in the City of Edmonton over a 5-year period (2009-2013). Mean concentrations of individual HAPs in ambient air including volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and trace metals ranged from 0.04 to 1.73 μg/m(3), 0.01-0.54 ng/m(3), and 0.05-3.58 ng/m(3), respectively. Concentrations of benzene, naphthalene, benzo(a)pyrene (BaP), arsenic, manganese and nickel were far below respective annual Alberta Ambient Air Quality Objectives. Carcinogenic and non-carcinogenic risk of air toxics were also compared with risk levels recommended by regulatory agencies. Positive matrix factorization identified six air toxics sources with traffic as the dominant contributor to total HAPs (4.33 μg/m(3), 42%), followed by background/secondary organic aerosol (SOA) (1.92 μg/m(3), 25%), fossil fuel combustion (0.92 μg/m(3), 11%). On high particulate air pollution event days, local traffic was identified as the major contributor to total HAPs compared to background/SOA and fossil fuel combustion. Carcinogenic risk values of traffic, background/SOA and metals industry emissions were above the USEPA acceptable level (1 × 10(-6)), but below a tolerable risk (1 × 10(-4)) and Alberta benchmark (1 × 10(-5)). These findings offer useful preliminary information about current ambient air toxics levels, dominant sources and their potential risk to public health; and this information can support policy makers in the development of appropriate control strategies if required.

  20. Modeling the Concentrations of On-Road Air Pollutants in Southern California

    PubMed Central

    Li, Lianfa; Wu, Jun; Hudda, Neelakshi; Sioutas, Constantinos; Fruin, Scott A.; Delfino, Ralph J.

    2014-01-01

    High concentrations of air pollutants on roadways, relative to ambient concentrations, contribute significantly to total personal exposure. Estimation of these exposures requires measurements or prediction of roadway concentrations. Our study develops, compares and evaluates linear regression and non-linear generalized additive models (GAMs) to estimate on-road concentrations of four key air pollutants, particle-bound polycyclic aromatic hydrocarbons (PB-PAH), particle number count (PNC), nitrogen oxides (NOx), and particulate matter with diameter <2.5 μm (PM2.5) using traffic, meteorology, and elevation variables. Critical predictors included wind speed and direction for all the pollutants, traffic-related variables for PB-PAH, PNC, and NOx, and air temperatures and relative humidity for PM2.5. GAMs explained 50%, 55%, 46%, and 71% of the variance for log or square-root transformed concentrations of PB-PAH, PNC, NOx, and PM2.5 respectively, an improvement of 5 to over 15% over the linear models. Accounting for temporal autocorrelation in the GAMs further improved the prediction, explaining 57-89% of the variance. We concluded that traffic and meteorological data are good predictors in estimating on-road traffic-related air pollutant concentrations and GAMs perform better for non-linear variables, such as meteorological parameters. PMID:23859442

  1. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality

    NASA Astrophysics Data System (ADS)

    Taylan, Osman

    2017-02-01

    High ozone concentration is an important cause of air pollution mainly due to its role in the greenhouse gas emission. Ozone is produced by photochemical processes which contain nitrogen oxides and volatile organic compounds in the lower atmospheric level. Therefore, monitoring and controlling the quality of air in the urban environment is very important due to the public health care. However, air quality prediction is a highly complex and non-linear process; usually several attributes have to be considered. Artificial intelligent (AI) techniques can be employed to monitor and evaluate the ozone concentration level. The aim of this study is to develop an Adaptive Neuro-Fuzzy inference approach (ANFIS) to determine the influence of peripheral factors on air quality and pollution which is an arising problem due to ozone level in Jeddah city. The concentration of ozone level was considered as a factor to predict the Air Quality (AQ) under the atmospheric conditions. Using Air Quality Standards of Saudi Arabia, ozone concentration level was modelled by employing certain factors such as; nitrogen oxide (NOx), atmospheric pressure, temperature, and relative humidity. Hence, an ANFIS model was developed to observe the ozone concentration level and the model performance was assessed by testing data obtained from the monitoring stations established by the General Authority of Meteorology and Environment Protection of Kingdom of Saudi Arabia. The outcomes of ANFIS model were re-assessed by fuzzy quality charts using quality specification and control limits based on US-EPA air quality standards. The results of present study show that the ANFIS model is a comprehensive approach for the estimation and assessment of ozone level and is a reliable approach to produce more genuine outcomes.

  2. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    SciTech Connect

    Hodgson, A.T.; Faulkner, D.; Sullivan, D.P.; DiBartolomeo, D.L.; Russell, M.L.; Fisk, W.J.

    2002-01-01

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings.

  3. Effects of the Deregulation on the Concentration of the Brazilian Air Transportation Industry

    NASA Technical Reports Server (NTRS)

    Guterres, Marcelo Xavier; Muller, Carlos

    2003-01-01

    This paper addresses the effects of the deregulation of the Brazilian air transportation industry in terms of the concentration of the market. We will show some metrics that are commonly used to study the concentration of the industry. This paper uses the Herfindhal- Hirschman Index. This index tends to zero in the competitive scenario, with a large number of small firms, and to one in case of a monopolistic scenario. The paper analyses the dynamics of the concentration of the Brazilian domestic air transportation market, in order to evaluate the effects of deregulation. We conclude that the Brazilian market presents oligopoly characteristics and aspects in its current structure that maintain the market concentrated in spite of the Deregulation measures adopted by the aeronautical authority. Keywords: Herfindhal-Hirschman Index, concentration, Deregulation

  4. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%.

  5. Relationship between acetaldehyde concentration in mouth air and tongue coating volume

    PubMed Central

    YOKOI, Aya; MARUYAMA, Takayuki; YAMANAKA, Reiko; EKUNI, Daisuke; TOMOFUJI, Takaaki; KASHIWAZAKI, Haruhiko; YAMAZAKI, Yutaka; MORITA, Manabu

    2015-01-01

    Objective Acetaldehyde is the first metabolite of ethanol and is produced in the epithelium by mucosal ALDH, while higher levels are derived from microbial oxidation of ethanol by oral microflora such as Candida species. However, it is uncertain whether acetaldehyde concentration in human breath is related to oral condition or local production of acetaldehyde by oral microflora. The aim of this pilot study was to investigate the relationship between physiological acetaldehyde concentration and oral condition in healthy volunteers. Material and Methods Sixty-five volunteers (51 males and 14 females, aged from 20 to 87 years old) participated in the present study. Acetaldehyde concentration in mouth air was measured using a portable monitor. Oral examination, detection of oral Candida species and assessment of alcohol sensitivity were performed. Results Acetaldehyde concentration [median (25%, 75%)] in mouth air was 170.7 (73.5, 306.3) ppb. Acetaldehyde concentration in participants with a tongue coating status score of 3 was significantly higher than in those with a score of 1 (p<0.017). After removing tongue coating, acetaldehyde concentration decreased significantly (p<0.05). Acetaldehyde concentration was not correlated with other clinical parameters, presence of Candida species, smoking status or alcohol sensitivity. Conclusion Physiological acetaldehyde concentration in mouth air was associated with tongue coating volume. PMID:25760268

  6. Measured phenol concentrations in air and rain water samples collected near a wood preserving facility

    SciTech Connect

    Allen, S.K.; Allen, C.W.

    1995-12-31

    Phenol concentrations were determined in air and rain water samples collected downwind from a coal tar creosote wood preserving facility in Terre Haute, IN. Coal tar creosote is known to contain a large number of constituents and is composed chiefly of polycyclic aromatic hydrocarbons (PAH), phenols, and N-, S-, and O-heterocycles. Phenol was chosen as a marker compound for coal tar creosote emissions because it is present at a large mole fraction in coal tar creosote. Phenol was determined by HPLC with UV-Visible detection. Phenol in collected rain water samples was determined directly by HPLC after acidification and filtration. Phenol concentrations in collected air samples ranged from 4.1 to 15.7 {micro}g/m3 while rain water concentrations ranged from 7.9 to 28.2 {micro}g/L. Using a value for the thermodynamic Henry`s law constant of K{sub H} = 4.5 {times} 10{sup {minus}4} L atm/mole at 20 C for phenol and measured gas-phase phenol concentrations, even higher rain water concentrations would be expected if equilibrium was established. This indicates that the amount of phenol present in the air parcels sampled exceeded the amount that could be scavenged by rain drops under the conditions prevailing at the time of sampling. The values for phenol concentrations reported here are roughly two orders of magnitude higher than results from previous studies where phenol concentrations in air and rain water samples collected in urban areas were reported. It is likely that other more toxic constituents of coal tar creosote are also present at high concentrations in air parcels that receive emissions from wood treatment facilities.

  7. Lead-210 concentration in the air at Mt. Zeppelin, Ny-Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Paatero, Jussi; Hatakka, Juha; Holmén, Kim; Eneroth, Kristina; Viisanen, Yrjö

    High-volume aerosol particle samples have been collected onto glass fibre filters at Ny-Ålesund, Svalbard. The filters have been assayed for 210Pb by measuring the alpha particles of its in-grown daughter nuclide 210Po. The observed 210Pb activity concentrations at Mt. Zeppelin, Ny-Ålesund, Svalbard vary between 11 and 620 μBq/m 3 in 2001. The 25%, 50%, and 75% percentiles of the 210Pb activity concentrations at Mt. Zeppelin are 42, 83, and 220 μBq/m 3. The values are clearly lower than at Sodankylä, northern Finland with corresponding values of 100, 170, and 270 μBq/m 3. The arithmetic mean concentrations in 2001 were 144 and 245 μBq/m 3 at Ny-Ålesund and Sodankylä, respectively. The lowest 210Pb activity concentrations are found during summer both at Svalbard and in Finland. The highest concentrations occur in March-April at Svalbard. This differs from the seasonal behaviour of 210Pb in Finland, where the highest concentrations are usually observed in February-March. This 1-month difference between Svalbard and Finland may be related to the strength of solar radiation and its capability to cause vertical mixing of the air. Air mass back trajectory analysis shows that the lowest concentrations found at Svalbard are associated with air masses coming from the North Atlantic Ocean, Greenland and the Canadian Arctic. The highest concentrations are associated with air masses originating from northern Europe and Siberia, and during winter also in air masses coming from the central Arctic Ocean.

  8. Mitigating factors on air concentrations of radon emanating from different granite samples

    SciTech Connect

    Qari, T.M.; Mamoon, A.M.; Abdul-Fattah, A.F. )

    1991-11-01

    Continuous exposure to increased air concentrations of radon in living areas is to be avoided according to the Environmental Protection Agency (EPA) and several published reports. Radon concentrations in ambient air are influenced by several factors related to the nature of the radon source itself, environmental conditions, and the presence of mitigating factors, if any. In this study, crushed granite samples of different types, particle diameters, and moisture contents were compared in simplified test systems with regard to radon emanation from the samples. The effects of selected mitigating factors, namely, ventilation and different barriers to diffusion of emanated radon were determined.

  9. High Concentrations of Ozone Air Pollution on Mount Everest: Health Implications for Sherpa Communities and Mountaineers.

    PubMed

    Semple, John L; Moore, G W Kent; Koutrakis, Petros; Wolfson, Jack M; Cristofanelli, Paolo; Bonasoni, Paolo

    2016-12-01

    Semple, John L., G.W. Kent Moore, Petros Koutrakis, Jack M. Wolfson, Paolo Cristofanelli, and Paolo Bonasoni. High concentrations of ozone air pollution on Mount Everest: health implications for Sherpa communities and mountaineers. High Alt Med Biol. 17:365-369, 2016.-Introduction: Populations in remote mountain regions are increasingly vulnerable to multiple climate mechanisms that influence levels of air pollution. Few studies have reported on climate-sensitive health outcomes unique to high altitude ecosystems. In this study, we report on the discovery of high-surface ozone concentrations and the potential impact on health outcomes on Mount Everest and the high Himalaya.

  10. Henry's law constant and overall mass transfer coefficient for formaldehyde emission from small water pools under simulated indoor environmental conditions.

    PubMed

    Liu, Xiaoyu; Guo, Zhishi; Roache, Nancy F; Mocka, Corey A; Allen, Matt R; Mason, Mark A

    2015-02-03

    The Henry's law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for formaldehyde aqueous solutions were determined in the concentration range from 0.01% to 1% (w/w) and at different temperatures (23, 40, and 55 °C) by a static headspace extraction method. The aqueous solutions tested included formaldehyde in water, formaldehyde-water with nonionic surfactant Tergitol NP-9, and formaldehyde-water with anionic surfactant sodium dodecyl sulfate. Overall, the measured HLCs ranged from 8.33 × 10(-6) to 1.12 × 10(-4) (gas-concentration/aqueous-concentration, dimensionless). Fourteen small-chamber tests were conducted with formaldehyde solutions in small pools. By applying the measured HLCs, the formaldehyde overall liquid-phase mass transfer coefficients (KOLs) were determined to be in the range of 8.12 × 10(-5) to 2.30 × 10(-4) m/h, and the overall gas-phase mass transfer coefficients were between 2.84 and 13.4 m/h. The influences of the formaldehyde concentration, temperature, agitation rate, and surfactant on HLC and KOL were investigated. This study provides useful data to support source modeling for indoor formaldehyde originating from the use of household products that contain formaldehyde-releasing biocides.

  11. Sensory and chemical characterization of VOC emissions from building products: impact of concentration and air velocity

    NASA Astrophysics Data System (ADS)

    Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P.

    The emissions from five commonly used building products were studied in small-scale test chambers over a period of 50 days. The odor intensity was assessed by a sensory panel and the concentrations of selected volatile organic compounds (VOCs) of concern for the indoor air quality were measured. The building products were three floor coverings: PVC, floor varnish on beechwood parquet and nylon carpet on a latex foam backing; an acrylic sealant, and a waterborne wall paint on gypsum board. The impacts of the VOC concentration in the air and the air velocity over the building products on the odor intensity and on the emission rate of VOCs were studied. The emission from each building product was studied under two or three different area-specific ventilation rates, i.e. different ratios of ventilation rate of the test chamber and building product area in the test chamber. The air velocity over the building product samples was adjusted to different levels between 0.1 and 0.3 m s -1. The origin of the emitted VOCs was assessed in order to distinguish between primary and secondary emissions. The results show that it is reasonable after an initial period of up to 14 days to consider the emission rate of VOCs of primary origin from most building products as being independent of the concentration and of the air velocity. However, if the building product surface is sensitive to oxidative degradation, increased air velocity may result in increased secondary emissions. The odor intensity of the emissions from the building products only decayed modestly over time. Consequently, it is recommended to use building products which have a low impact on the perceived air quality from the moment they are applied. The odor indices (i.e. concentration divided by odor threshold) of primary VOCs decayed markedly faster than the corresponding odor intensities. This indicates that the secondary emissions rather than the primary emissions, are likely to affect the perceived air quality in the

  12. Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran

    NASA Astrophysics Data System (ADS)

    Hazrati, Sadegh; Rostami, Roohollah; Farjaminezhad, Manoochehr; Fazlzadeh, Mehdi

    2016-05-01

    BTEX concentrations in indoor and outdoor air of 50 homes were studied in Ardabil city and their influencing parameters including; heating system, using gas stove and samovar, tobacco smoking, the floors in which the monitored homes were located, and kitchen plan were considered in the study. Risk assessment analysis was carried out with the obtained concentrations based on EPA IRIS reference doses. BTEX compounds were sampled by charcoal tubes and the samples were analyzed by a GC-FID. Concentrations of benzene (15.18 μg/m3 vs. 8.65 μg/m3), toluene (69.70 μg/m3 vs. 40.56 μg/m3), ethylbenzene (12.07 μg/m3 vs. 4.92 μg/m3) and xylene (48.08 μg/m3 vs. 7.44 μg/m3) in indoor air were significantly (p < 0.05) higher than the levels quantified for outdoor air. The obtained concentrations of benzene were considerably higher than the recommended value of 5 μg/m3 established by Iran environmental protection organization. Among the BTEX compounds, benzene (HQ = 0.51) and xylene (HQ = 0.47) had notable hazard quotient and were the main pollutants responsible for high hazard index in the monitored homes (HI = 1.003). The results showed considerably high cancer risk for lifetime exposure to the indoor (125 × 10-6) and outdoor (71 × 10-6) benzene. Indoor benzene concentrations in homes were significantly influenced by type of heating system, story, and natural gas appliances.

  13. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups.

    PubMed

    Pilidis, Georgios A; Karakitsios, Spyros P; Kassomenos, Pavlos A; Kazos, Elias A; Stalikas, Constantine D

    2009-03-01

    In the present study, the results of a measurement campaign aiming to assess cancer risk among two special groups of population: policemen and laboratory technicians exposed to the toxic substances, benzene and formaldehyde are presented. The exposure is compared to general population risk. The results show that policemen working outdoor (traffic regulation, patrol on foot or in vehicles, etc.) are exposed at a significantly higher benzene concentration (3-5 times) than the general population, while the exposure to carbonyls is in general lower. The laboratory technicians appear to be highly exposed to formaldehyde while no significant variation of benzene exposure in comparison to the general population is recorded. The assessment revealed that laboratory technicians and policemen run a 20% and 1% higher cancer risk respectively compared to the general population. Indoor working place air quality is more significant in assessing cancer risk in these two categories of professionals, due to the higher Inhalation Unit Risk (IUR) of formaldehyde compared to benzene. Since the origin of the danger to laboratory technicians is clear (use of chemicals necessary for the experiments), in policemen the presence of carbonyls in indoor air concentrations due to smoking or used materials constitute a danger equal to the exposure to traffic originated air pollutants.

  14. Houseplants, Indoor Air Pollutants, and Allergic Reactions

    NASA Technical Reports Server (NTRS)

    Wolverton, B. C.

    1986-01-01

    The technology of using houseplant leaves for reducing volatile organics inside closed facilities has been demonstrated with formaldehyde and benzene. Philodendrons are among the most effective plants tested to date. Philodendron domesticum had demonstrated the ability to remove formaldehyde from small experimental chambers at a rate of 4.31 micro-g/sq cm leaf surface area with initial starting concentrations of 22 ppm. At initial starting concentrations of 2.3 ppm a formaldehyde removal rate of 0.57 micro-g/sq cm was achieved during a 24 hour test. Aleo vera demonstrated a much higher formaldehyde efficiency removal rate than Philodendron domesticum at low formaldehyde concentrations. During a 24 hour exposure period 5 ppm of formaldehyde were reduced to 0.5 ppm demonstrating a removal efficiency rate of 3.27 micro-g/sq cm. Removal efficiency rates can be expected to decrease with concentration levels because fewer molecules of chemicals come in contact with the leaf surface area. Several centimeters of small washed gravel should be used to cover the surface of pot plants when large numbers of plants are kept in the home. The reason for this is to reduce the exposed area of damp potting soil which encourages the growth of molds (fungi). The leaves of Philodendron domesticum and golden pothos (Scindapsus aureus) have also demonstrated their ability to remove benzene and carbon monoxide from closed chambers. A combination of activated carbon and plant roots have demonstrated the greatest potential for removing large volumes of volatile organics along with smoke and possible radon from closed systems. Although fewer plants are required for this concept a mechanical blower motor must be used to pull or push the air through the carbon-root filter. NASA studies on motor sizes and bioregeneration rates should be completed by 1988.

  15. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    PubMed

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  16. Comparison of mold concentrations quantified by MSQPCR in indoor and outdoor air sampled simultaneously

    SciTech Connect

    Meklin, Teija; Reponen, Tina; McKinstry, Craig A.; Cho, Seung H.; Grinshpun, Sergey A.; Nevalainen, Aino; Vepsalainen, Asko; Haugland, Richard A.; Lemasters, Grace; Vesper, Sephen J.

    2007-08-15

    Mold specific quantitative PCR (MSQPCR) was used to measure the concentrations of 36 mold species in dust and in indoor and in outdoor air samples that were taken simultaneously in 17 homes in Cincinnati with no-known water damage. The total spore concentrations in the indoor (I) and outdoor (O) air samples were statistically significantly different and the concentrations in the three sample types of many of the individual species were significantly different (p < 0.05 based on the Wilcoxon Signed Rank Test). The I/O ratios of the averages or geometric means of the individual species were generally less than 1; but these I/O ratios were quite variable ranging from 0.03 for A. sydowii to 1.2 for Acremonium strictum. There were no significant correlations for the 36 specific mold concentrations between the dust samples and the indoor or outdoor air samples (based on the Spearman’s Rho test). The indoor and outdoor air concentrations of 32 of the species were not correlated. Only Aspergillus penicillioides, C. cladosporioides types 1 and 2 and C. herbarum had sufficient data to estimate a correlation at rho > 0.5 with signicance (p < 0.05) In six of these homes, a previous dust sample had been collected and analyzed 2 years earlier. The ERMI© values for the dust samples taken in the same home two years apart were not significantly different (p=0.22) based on Wilcoxon Signed Rank Test.

  17. [Spatiotemporal distribution of negative air ion concentration in urban area and related affecting factors: a review].

    PubMed

    Huang, Xiang-Hua; Wang, Jian; Zeng, Hong-Da; Chen, Guang-Shui; Zhong, Xian-Fang

    2013-06-01

    Negative air ion (NAI) concentration is an important indicator comprehensively reflecting air quality, and has significance to human beings living environment. This paper summarized the spatiotemporal distribution features of urban NAI concentration, and discussed the causes of these features based on the characteristics of the environmental factors in urban area and their effects on the physical and chemical processes of NAI. The temporal distribution of NAI concentration is mainly controlled by the periodic variation of solar radiation, while the spatial distribution of NAI concentration along the urban-rural gradient is mainly affected by the urban aerosol distribution, underlying surface characters, and urban heat island effect. The high NAI concentration in urban green area is related to the vegetation life activities and soil radiation, while the higher NAI concentration near the water environment is attributed to the water molecules that participate in the generation of NAI through a variety of ways. The other environmental factors can also affect the generation, life span, component, translocation, and distribution of NAI to some extent. To increase the urban green space and atmospheric humidity and to maintain the soil natural attributes of underlying surface could be the effective ways to increase the urban NAI concentration and improve the urban air quality.

  18. Radon daughters' concentration in air and exposure of joggers at the university campus of Bangalore, India.

    PubMed

    Ashok, G V; Nagaiah, N; Shiva Prasad, N G

    2008-09-01

    The concentration of radon daughters in outdoor air was measured continuously from January 2006 to December 2006 near the Department of Physics, Bangalore University campus, Bangalore. The concentration was measured by collecting air samples at a height of 1 m above the ground level on a glass micro fibre filter paper with a known air flow rate. The results show that the radon progeny concentration exhibits distinct seasonal and diurnal variations that are predominantly caused by changes in the temperature gradient at the soil-atmosphere interface. The concentration was found to be high from 20.00 to 8.00 hrs, when the turbulence mixing was minimum and low during the rest of the time. In terms of the monthly concentration, January was found to be the highest with September/August being the lowest. The diurnal variations in the concentrations of radon progeny were found to exhibit positive correlation with the relative humidity and anti-correlation with the atmospheric temperature. From the measured concentration, an attempt was made to establish the annual effective dose to the general public of the region and was found to be 0.085 mSv/a. In addition, an attempt was also made for the first time to study the variation of inhalation dose with respect to the physical activity levels. Results show that in the light of both the effect of chemical pollutants and radiation dose due to inhalation of radon daughters, evening jogging is advisable.

  19. A Short Review on Photocatalytic Degradation of Formaldehyde.

    PubMed

    Tasbihi, Minoo; Bendyna, Joanna K; Notten, Peter H L; Hintzen, H T

    2015-09-01

    Nowadays, it is a great challenge to eliminate toxic and harmful organic pollutants from air and water. This paper reviews the role of TiO2 as a photocatalyst, light source and photoreactor in the particular case of removal of formaldehyde using the photocatalytic reaction by titanium dioxide (TiO2) in aqueous and gaseous systems. The reaction mechanisms of the photocatalytic oxidation of gaseous formaldehyde are given. We also present a detailed review of published articles on photocatalytic degradation of formaldehyde by modified titanium dioxide doped with foreign species such as metal and non-metal components. We point out the most prospective developments of the photocatalyst compositions for the future potential commercial applications.

  20. Visualization of Molecular Orbitals: Formaldehyde

    ERIC Educational Resources Information Center

    Olcott, Richard J.

    1972-01-01

    Describes a computer program that plots a solid" representation of molecular orbital charge density which can be used to analyze wave functions of molecules. Illustrated with diagrams for formaldehyde. (AL)

  1. A Comparison of Statistical Techniques for Combining Modeled and Observed Concentrations to Create High-Resolution Ozone Air Quality Surfaces

    EPA Science Inventory

    Air quality surfaces representing pollutant concentrations across space and time are needed for many applications, including tracking trends and relating air quality to human and ecosystem health. The spatial and temporal characteristics of these surfaces may reveal new informat...

  2. Monitor of the concentration of particles of dense radioactive materials in a stream of air

    DOEpatents

    Yule, Thomas J.

    1979-01-01

    A monitor of the concentration of particles of radioactive materials such as plutonium oxide in diameters as small as 1/2 micron includes in combination a first stage comprising a plurality of virtual impactors, a second stage comprising a further plurality of virtual impactors, a collector for concentrating particulate material, a radiation detector disposed near the collector to respond to radiation from collected material and means for moving a stream of air, possibly containing particulate contaminants, through the apparatus.

  3. Application of hybrid coagulation microfiltration with air backflushing to direct sewage concentration for organic matter recovery.

    PubMed

    Jin, Zhengyu; Gong, Hui; Wang, Kaijun

    2015-01-01

    The idea of sewage concentration is gradually being accepted as a promising and sustainable way of wastewater resource recovery. In this study, Hybrid coagulation microfiltration (HCM) with air backflushing (AB) was investigated to effectively concentrate organic matter. Compared to direct sewage microfiltration, the addition of coagulation process improved the filtration performance with less fouling trends and better concentration efficiency. The use of AB exhibited even better performance within the same 7-h preliminary concentration period by reducing to one tenth of the resistance and collecting around four times as much organic matter into the product concentrate as in direct sewage microfiltration. During 93-h lab-scale continuous concentration by HCM with AB, a product concentrate with the COD concentration over 15,000 mg/L was achieved and around 70% of total influent organic matter could be recovered. Compared to Direct Membrane Filtration (DMF) with Chemically Enhanced Backwash (CEB), HCM with AB achieved better concentration efficiency with higher concentration extent and concentration velocity along with less organic matter mineralization and the more concentrated product despite with lower organic matter retention. HCM with AB could be a promising effective sewage organic matter concentration for resource recovery under optimization.

  4. Performance of the Proposed New Federal Reference Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air, described in EPA regulations at 40 CFR Part 50, Appendix D, is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O

  5. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    EPA Science Inventory

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approx...

  6. Evaluation and Comparison of Chemiluminescence and UV Photometric Methods for Measuring Ozone Concentrations in Ambient Air

    EPA Science Inventory

    The current Federal Reference Method (FRM) for measuring concentrations of ozone in ambient air is based on the dry, gas-phase, chemiluminescence reaction between ethylene (C2H4) and any ozone (O3) that may be p...

  7. Modeling and Impacts of Traffic Emissions on Air Toxics Concentrations near Roadways

    EPA Science Inventory

    The dispersion formulation incorporated in the U.S. Environmental Protection Agency’s AERMOD regulatory dispersion model is used to estimate the contribution of traffic-generated emissions of select VOCs – benzene, 1,3-butadiene, toluene – to ambient air concentrations at downwin...

  8. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    NASA Astrophysics Data System (ADS)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  9. Autism spectrum disorder prevalence and associations with air concentrations of lead, mercury, and arsenic.

    PubMed

    Dickerson, Aisha S; Rahbar, Mohammad H; Bakian, Amanda V; Bilder, Deborah A; Harrington, Rebecca A; Pettygrove, Sydney; Kirby, Russell S; Durkin, Maureen S; Han, Inkyu; Moyé, Lemuel A; Pearson, Deborah A; Wingate, Martha Slay; Zahorodny, Walter M

    2016-07-01

    Lead, mercury, and arsenic are neurotoxicants with known effects on neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder apparent by early childhood. Using data on 4486 children with ASD residing in 2489 census tracts in five sites of the Centers for Disease Control and Prevention's Autism and Developmental Disabilities Monitoring (ADDM) Network, we used multi-level negative binomial models to investigate if ambient lead, mercury, and arsenic concentrations, as measured by the US Environmental Protection Agency National-Scale Air Toxics Assessment (EPA-NATA), were associated with ASD prevalence. In unadjusted analyses, ambient metal concentrations were negatively associated with ASD prevalence. After adjusting for confounding factors, tracts with air concentrations of lead in the highest quartile had significantly higher ASD prevalence than tracts with lead concentrations in the lowest quartile (prevalence ratio (PR) = 1.36; 95 '% CI: 1.18, 1.57). In addition, tracts with mercury concentrations above the 75th percentile (>1.7 ng/m(3)) and arsenic concentrations below the 75th percentile (≤0.13 ng/m(3)) had a significantly higher ASD prevalence (adjusted RR = 1.20; 95 % CI: 1.03, 1.40) compared to tracts with arsenic, lead, and mercury concentrations below the 75th percentile. Our results suggest a possible association between ambient lead concentrations and ASD prevalence and demonstrate that exposure to multiple metals may have synergistic effects on ASD prevalence.

  10. Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers.

    PubMed

    Xie, Peng; Lin, Huichuan; Liu, Yong; Li, Baojun

    2014-10-20

    We present a waveguide coupling approach for planar waveguide solar concentrator. In this approach, total internal reflection (TIR)-based symmetric air prisms are used as couplers to increase the coupler reflectivity and to maximize the optical efficiency. The proposed concentrator consists of a line focusing cylindrical lens array over a planar waveguide. The TIR-based couplers are located at the focal line of each lens to couple the focused sunlight into the waveguide. The optical system was modeled and simulated with a commercial ray tracing software (Zemax). Results show that the system used with optimized TIR-based couplers can achieve 70% optical efficiency at 50 × geometrical concentration ratio, resulting in a flux concentration ratio of 35 without additional secondary concentrator. An acceptance angle of ± 7.5° is achieved in the x-z plane due to the use of cylindrical lens array as the primary concentrator.

  11. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  12. Electro-catalytic oxidation of formaldehyde on copper electrode: a new kinetics model.

    PubMed

    Hasanzadeh, Mohammad; Shadjou, Nasrin

    2013-01-01

    Electro-catalytic oxidation of formaldehyde on copper electrode in 100 mM NaOH solution at different concentrations of formaldehyde was studied in the steady state polarization technique. The CV curve shows evidence for two processes occurring at the interface: one is associated with the formaldehyde electro-oxidation leading to formic acid formation on the surface and the other is assigned to the oxidation of formic acid that leads to CO2 evolutions with low yield. Reaction orders for the faradic current on copper electrode have been determined as 0.21 for the higher and 0.76 for the lower concentration of formaldehyde. Reaction orders for CO2 evolution during formaldehyde oxidation are 1.4 times higher in each case. Tafel slopes in the range of 140-160 mV are found. This signifies that the first reaction step involving the formation of adsorbed CO2 is largely determining the overall reaction rate.

  13. Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1.

    PubMed

    Hidalgo, A; Lopategi, A; Prieto, M; Serra, J L; Llama, M J

    2002-02-01

    Rhodococcus erythropolis strain UPV-1 is able to grow on phenol as the only carbon and energy source and to remove formaldehyde completely from both synthetic and industrial wastewater. The rate of formaldehyde removal is independent of either initial biomass or formaldehyde concentration. The presence of viable, intact cells is strictly necessary for this removal to take place. Discontinuous and continuous formaldehyde-feed systems were successfully tested with synthetic wastewater in shaken flasks. Once biodegradation was well established in model synthetic wastewater, a real wastewater sample was obtained from a local phenolic and melamine resin-manufacturing company. Incubation of biomass with this wastewater at subtoxic concentrations of formaldehyde resulted in the complete removal of the pollutant. Parameters, such as chemical oxygen demand and toxicity, were assessed as indicators of wastewater cleanup progress.

  14. Coupled BAS and anoxic USB system to remove urea and formaldehyde from wastewater.

    PubMed

    Campos, J L; Sánchez, M; Mosquera-Corral, A; Méndez, R; Lema, J M

    2003-08-01

    Wastewater containing formaldehyde and urea was treated using a coupled system consisting of a biofilm airlift suspension (BAS) reactor and an anoxic upflow sludge blanket (USB) reactor. The anoxic USB reactor was used to carry out denitrification and urea hydrolysis, while the BAS reactor was used to carry out nitrification. In a first step, individual experiments were carried out to investigate the effects of both compounds on the nitrifying and denitrifying biomass. The BAS reactor was fed with a synthetic medium containing 500 mg N-NH4(+)l(-1) and 100mg N-urea l(-1), that were added continuously to this medium. Neither urea hydrolysis nor inhibition of nitrification was observed. Nitrification efficiency decreased when formaldehyde was fed during shocks at concentrations of 40, 80 and 120 mg C-formaldehyde l(-1). The anoxic USB reactor was fed with a synthetic medium containing nitrate, formaldehyde and urea. Concentrations of formaldehyde in the reactor of 100-120 mg C-formaldehyde l(-1) caused a decrease in the denitrification and urea hydrolysis rates. In a second step, the coupled system was operated at recycling ratios (R) of 3 and 9. Fed C/N ratios of 0.58, 1.0 and 1.5 g C-formaldehyde g(-1) N-NH4(+) were used for every recycling ratio. The maximum nitrogen removal percentages were achieved at a C/N ratio of 1.0 g C-formaldehyde g(-1) N-NH4(+) for both recycling ratios. A fed C/N ratio of 1.5 g C-formaldehyde g(-1) N-NH4(+) caused a decrease in the efficiency of the system with respect to nitrogen removal, due to the presence of formaldehyde in the BAS reactor, which decreased the nitrification. Formaldehyde was completely removed in the BAS reactor and a heterotrophic layer formed around the nitrifying biofilm.

  15. Formaldehyde levels in FEMA-supplied travel trailers, park models, and mobile homes in Louisiana and Mississippi.

    PubMed

    Murphy, M W; Lando, J F; Kieszak, S M; Sutter, M E; Noonan, G P; Brunkard, J M; McGeehin, M A

    2013-04-01

    In 2006, area physicians reported increases in upper respiratory symptoms in patients living in U.S. Federal Emergency Management Agency (FEMA)-supplied trailers following Hurricanes Katrina and Rita. One potential etiology to explain their symptoms included formaldehyde; however, formaldehyde levels in these occupied trailers were unknown. The objectives of our study were to identify formaldehyde levels in occupied trailers and to determine factors or characteristics of occupied trailers that could affect formaldehyde levels. A disproportionate random sample of 519 FEMA-supplied trailers was identified in Louisiana and Mississippi in November 2007. We collected and tested an air sample from each trailer for formaldehyde levels and administered a survey. Formaldehyde levels among all trailers in this study ranged from 3 parts per billion (ppb) to 590 ppb, with a geometric mean (GM) of 77 ppb [95% confidence interval (CI): 70-85; range: 3-590 ppb]. There were statistically significant differences in formaldehyde levels between trailer types (P < 0.01). The GM formaldehyde level was 81 ppb (95% CI: 72-92) among travel trailers (N = 360), 57 ppb (95% CI: 49-65) among mobile homes (N = 57), and 44 ppb (95% CI: 38-53) among park models (N = 44). Among travel trailers, formaldehyde levels varied significantly by brand. While formaldehyde levels varied by trailer type, all types tested had some levels ≥ 100 ppb.

  16. 40 CFR 63.1183 - How do I comply with the formaldehyde standards for existing, new, and reconstructed curing ovens?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The affected production process. (3) How the resin free-formaldehyde content or binder formulation... Hazardous Air Pollutants for Mineral Wool Production Compliance with Standards § 63.1183 How do I comply... may do short-term experimental production runs using resin where the free-formaldehyde content,...

  17. Oxidative Nitration of Styrenes for the Recycling of Low-Concentrated Nitrogen Dioxide in Air.

    PubMed

    Hofmann, Dagmar; de Salas, Cristina; Heinrich, Markus R

    2015-09-21

    The oxidative nitration of styrenes in ethyl acetate represents a metal-free, environmentally friendly, and sustainable technique to recover even low concentrations of NO2 in air. Favorable features are that the product mixture comprising nitroalcohols, nitroketones, and nitro nitrates simplifies at lower concentrations of NO2 . Experiments in a miniplant-type 10 L wet scrubber demonstrated that the recycling technique is well applicable on larger scales at which initial NO2 concentrations of >10 000 ppm were reliably reduced to less than 40 ppm.

  18. Ozone concentration in leaf intercellular air spaces is close to zero

    SciTech Connect

    Laisk, A.; Moldau, H. ); Kull, O. )

    1989-07-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly bu supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma.

  19. Forecasting 7BE concentrations in surface air using time series analysis

    NASA Astrophysics Data System (ADS)

    Bas, María del Carmen; Ortiz, Josefina; Ballesteros, Luisa; Martorell, Sebastián

    2017-04-01

    7Be is a cosmogenic radionuclide widely used as an atmospheric tracer, whose evaluation and forecasting can provide valuable information on changes in the atmospheric behavior. In this study, measurements of 7Be concentrations were made each month during the period 2007-2015 from samples of atmospheric aerosols filtered from the air. The aim was to propose a Seasonal Autoregressive Integrated Moving Average (SARIMA) model to develop an explanatory and predictive model of 7Be air concentrations. The Root Mean Square Error (RMSE) and the Adapted Mean Absolute Percentage Error (AMAPE) were selected to measure forecasting accuracy in identifying the best historical data time window to explain 7Be concentrations. A measure based on the variance of forecast errors was calculated to determine the impact of the model uncertainty on forecasts. We concluded that the SARIMA method is a powerful explanatory and predictive technique for explaining 7Be air concentrations in a longterm series of at least eight years of historical data to forecast 7Be concentration trends up to one year in advance.

  20. Ozone Concentration in Leaf Intercellular Air Spaces Is Close to Zero 1

    PubMed Central

    Laisk, Agu; Kull, Olevi; Moldau, Heino

    1989-01-01

    Transpiration and ozone uptake rates were measured simultaneously in sunflower leaves at different stomatal openings and various ozone concentrations. Ozone uptake rates were proportional to the ozone concentration up to 1500 nanoliters per liter. The leaf gas phase diffusion resistance (stomatal plus boundary layer) to water vapor was calculated and converted to the resistance to ozone multiplying it by the theoretical ratio of diffusion coefficients for water vapor and ozone in air (1.67). The ozone concentration in intercellular air spaces calculated from the ozone uptake rate and diffusion resistance to ozone scattered around zero. The ozone concentration in intercellular air spaces was measured directly by supplying ozone to the leaf from one side and measuring the equilibrium concentration above the other side, and it was found to be zero. The total leaf resistance to ozone was proportional to the gas phase resistance to water vapor with a coefficient of 1.68. It is concluded that ozone enters the leaf by diffusion through the stomata, and is rapidly decomposed in cell walls and plasmalemma. PMID:16666867

  1. Short-term concentration of CO2 in the ambient air of Nagpur city.

    PubMed

    Manuel, Jovita A; Gajghate, D G; Hasan, M Z; Singh, R N

    2002-07-01

    Carbon dioxide concentration is an index of total amount of combustion and natural ventilation in an urban environment and therefore required more careful attention for assessment of CO2 level in air environment. First time, an attempt was made to monitor CO2 levels in Ambient Air of Nagpur during August 2001-December 2001 at Industrial, Commercial and Residential sites. The largest amount of CO2 occurred at night due to darkness which depresses the photosynthesis to its lowest level. The lowest concentration of CO2 was showed in afternoon hours when photosynthesis is at its maximum. The average concentration of CO2 was found to be 361, 366 and 339 ppm at Industrial, Commercial and Industrial sites respectively. This generation of database of ambient CO2 will help to formulate the strategy for prevention of global warming phenomenon.

  2. Relevance of air conditioning for 222Radon concentration in shops of the Savona Province, Italy.

    PubMed

    Panatto, Donatella; Ferrari, Paola; Lai, Piero; Gallelli, Giovanni

    2006-02-15

    Radon (222Rn) concentration was evaluated in shops of the Savona Province, Italy, between summer 2002 and winter 2002-2003. The main characteristics of each shops were recorded through a questionnaire investigating the ventilation rate and factors related to 222Rn precursors in the soil and the construction materials. The main variables that were related to radon concentration were the following: age of the building, level of the shop above ground, season of the year, wind exposure, active windows, and type of heating system. Shops equipped with individual air heating/conditioning systems exhibited radon concentrations that were three times higher than those of shops heated by centralized furnaces. Our data indicate that the level of pollution in the shops was of medium level, with an expected low impact on the salespersons' health. Only in wintertime, the action level of 200 Bq m(-3) for the confined environment was reached in 10 shops equipped with individual air heating/conditioning systems.

  3. An effort to test the embryotoxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells using airborne exposure technique.

    PubMed

    Shen, Shuijie; Yuan, Lingmin; Zeng, Su

    2009-10-01

    Benzene, toluene, xylene, and formaldehyde are well-known indoor air pollutants, especially after house decoration. They are also common pollutants in the working places of the plastic industry, chemical industry, and leather industry. It has been reported that these pollutants cause people to be irritated, sick, experience a headache, and be dizzy. They also have the potential to induce asthma, aplastic anemia, and leukemia, even cause abortion or fetus malformation in humans. In this study, the airborne toxicity of benzene, toluene, xylene, and formaldehyde to murine embryonic stem cells (mES cells) were tested using airborne exposure technique to evaluate the mES cell airborne exposure model on embryotoxicity prediction. Briefly, mES cells were cultured on Transwell inserts and were exposed to an airborne surrounding of test chemicals in a chamber for 1 h at 37 degrees C. Cytotoxicity was determined using the MTT assay after further culture for 18 h at 37 degrees C in normal medium. The airborne IC(50) (50% inhibition concentration) of benzene, toluene, xylene, and formaldehyde derived from the fitted dose-response curves were 17,400 +/- 1290, 16,000 +/- 250, 4680 +/- 500, and 620 +/- 310 ppm, respectively. Formaldehyde was found to be the compound most toxic to mES cells compared to benzene homologues. The toxicity data had good correlation with the in vivo data. The results showed that the mES airborne exposure model may be used to predict embryotoxicity of volatile organic compounds.

  4. Fungal spore concentrations in two haematopoietic stem cell transplantation (HSCT) units containing distinct air control systems.

    PubMed

    Brun, C P; Miron, D; Silla, L M R; Pasqualotto, A C

    2013-04-01

    Invasive fungal diseases have emerged as important causes of morbidity and mortality in haematological patients. In this study air samples were collected in two haematopoietic stem cell transplantation (HSCT) units, in which distinct air-control systems were in place. In hospital 1 no high-efficiency particulate air (HEPA) filter was available whereas in hospital 2 HSCT rooms were equipped with HEPA filters, with positive air pressure in relation to the corridor. A total of 117 samples from rooms, toilets and corridors were obtained during December 2009 to January 2011, using a six-stage Andersen sampler. In both hospitals, the concentration of potentially pathogenic fungi in the air was reduced in patients' rooms compared to corridors (P < 0·0001). Despite the presence of a HEPA filter in hospital 2, rooms in both hospitals showed similar concentrations of potentially pathogenic fungi (P = 0·714). These findings may be explained by the implementation of additional protective measures in hospital 1, emphasizing the importance of such measures in protected environments.

  5. Low-CCN concentration air masses over the eastern North Atlantic: Seasonality, meteorology, and drivers

    NASA Astrophysics Data System (ADS)

    Wood, Robert; Stemmler, Jayson D.; Rémillard, Jasmine; Jefferson, Anne

    2017-01-01

    A 20 month cloud condensation nucleus concentration (NCCN) data set from Graciosa Island (39°N, 28°W) in the remote North Atlantic is used to characterize air masses with low cloud condensation nuclei (CCN) concentrations. Low-CCN events are defined as 6 h periods with mean NCCN<20 cm-3 (0.1% supersaturation). A total of 47 low-CCN events are identified. Surface, satellite, and reanalysis data are used to explore the meteorological and cloud context for low-CCN air masses. Low-CCN events occur in all seasons, but their frequency was 3 times higher in December-May than during June-November. Composites show that many of the low-CCN events had a common meteorological basis that involves southerly low-level flow and rather low wind speeds at Graciosa. Anomalously low pressure is situated to the west of Graciosa during these events, but back trajectories and lagged SLP composites indicate that low-CCN air masses often originate as cold air outbreaks to the north and west of Graciosa. Low-CCN events were associated with low cloud droplet concentrations (Nd) at Graciosa, but liquid water path (LWP) during low-CCN events was not systematically different from that at other times. Satellite Nd and LWP estimates from MODIS collocated with Lagrangian back trajectories show systematically lower Nd and higher LWP several days prior to arrival at Graciosa, consistent with the hypothesis that observed low-CCN air masses are often formed by coalescence scavenging in thick warm clouds, often in cold air outbreaks.

  6. Impact of traffic flows and wind directions on air pollution concentrations in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, Youngkook; Guldmann, Jean-Michel

    2011-05-01

    Vehicle emissions are responsible for a substantial share of urban air pollution concentrations. Various integrated air quality modeling systems have been developed to analyze the consequences of air pollution caused by traffic flows. However, the quantitative relationship between vehicle-kilometers-traveled (VKT) and pollution concentrations while considering wind direction effects has rarely been explored in the context of land-use regression models (LUR). In this research, VKTs occurring within circular buffers around air pollution monitoring stations are simulated, using a traffic assignment model, and weighted by eight wind directions frequencies. The relationships between monitored pollution concentrations and weighted VKTs are estimated using regression analysis. In general, the wind direction weighted VKT variable increases the explanatory power of the models, particularly for nitrogen dioxide and carbon monoxide. The case of ozone is more complex, due to the effects of solar radiation, which appears to overwhelm the effects of wind direction in the afternoon hours. The statistical significance of the weighted VKT variable is high, which makes the models appropriate for impact analysis of traffic flow growth.

  7. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  8. Biomimetic air sampling for detection of low concentrations of molecules and bioagents : LDRD 52744 final report.

    SciTech Connect

    Hughes, Robert Clark

    2003-12-01

    Present methods of air sampling for low concentrations of chemicals like explosives and bioagents involve noisy and power hungry collectors with mechanical parts for moving large volumes of air. However there are biological systems that are capable of detecting very low concentrations of molecules with no mechanical moving parts. An example is the silkworm moth antenna which is a highly branched structure where each of 100 branches contains about 200 sensory 'hairs' which have dimensions of 2 microns wide by 100 microns long. The hairs contain about 3000 pores which is where the gas phase molecules enter the aqueous (lymph) phase for detection. Simulations of diffusion of molecules indicate that this 'forest' of hairs is 'designed' to maximize the extraction of the vapor phase molecules. Since typical molecules lose about 4 decades in diffusion constant upon entering the liquid phase, it is important to allow air diffusion to bring the molecule as close to the 'sensor' as possible. The moth acts on concentrations as low as 1000 molecules per cubic cm. (one part in 1e16). A 3-D collection system of these dimensions could be fabricated by micromachining techniques available at Sandia. This LDRD addresses the issues involved with extracting molecules from air onto micromachined structures and then delivering those molecules to microsensors for detection.

  9. The Impact of Future Emissions Changes on Air Pollution Concentrations and Related Human Health Effects

    NASA Astrophysics Data System (ADS)

    Mikolajczyk, U.; Suppan, P.; Williams, M.

    2015-12-01

    Quantification of potential health benefits of reductions in air pollution on the local scale is becoming increasingly important. The aim of this study is to conduct health impact assessment (HIA) by utilizing regionally and spatially specific data in order to assess the influence of future emission scenarios on human health. In the first stage of this investigation, a modeling study was carried out using the Weather Research and Forecasting (WRF) model coupled with Chemistry to estimate ambient concentrations of air pollutants for the baseline year 2009, and for the future emission scenarios in southern Germany. Anthropogenic emissions for the baseline year 2009 are derived from the emission inventory provided by the Netherlands Organization of Applied Scientific Research (TNO) (Denier van der Gon et al., 2010). For Germany, the TNO emissions were replaced by gridded emission data with a high spatial resolution of 1/64 x 1/64 degrees. Future air quality simulations are carried out under different emission scenarios, which reflect possible energy and climate measures in year 2030. The model set-up included a nesting approach, where three domains with horizontal resolution of 18 km, 6 km and 2 km were defined. The simulation results for the baseline year 2009 are used to quantify present-day health burdens. Concentration-response functions (CRFs) for PM2.5 and NO2 from the WHO Health risks of air Pollution in Europe (HRAPIE) project were applied to population-weighted mean concentrations to estimate relative risks and hence to determine numbers of attributable deaths and associated life-years lost. In the next step, future health impacts of projected concentrations were calculated taking into account different emissions scenarios. The health benefits that we assume with air pollution reductions can be used to provide options for future policy decisions to protect public health.

  10. Thin films exhibiting multicolor changes induced by formaldehyde-responsive release of anionic dyes.

    PubMed

    Denda, Takuya; Mizutani, Ryo; Iijima, Mizuki; Nakahashi, Hitoshi; Yamamoto, Hiroki; Kanekiyo, Yasumasa

    2015-11-01

    A novel methodology for the sensing of formaldehyde that displays a response using distinct and diverse color changes is reported. Through copolymerization of a primary amine monomer with additional co-monomers on a pattern-printed microscope slide, primary amine-containing thin films were obtained. After the absorption of a range of colors of anionic dyes, the thin films were immersed in aqueous formaldehyde solutions. It was demonstrated that the color of the thin films changed depending on the formaldehyde concentration in the solution. As the anionic dyes were released from the thin films at varying formaldehyde concentrations, a set of thin films exhibiting a range of color-change patterns was observed. The response selectivity of the thin films towards carbonyl compounds was examined, and sensitivity in the order of formaldehyde»acetaldehyde>acetone was observed. In addition, the effect of amine structure was examined, and it was found that thin films bearing tertiary amino groups show virtually no formaldehyde response. These observations clearly indicate that the existence of primary amino groups is essential for color changes to be observed, and that the formation of an imine is the crucial step in generating a response against formaldehyde. The formaldehyde-responsive system presented herein is advantageous, as its preparation is relatively simple and does not require complex organic synthesis. In addition, a wide range of anionic dyes is compatible with the system, and can be selected in terms of color, charge, toxicology profile, and cost, for example.

  11. INTERDEPENDENCIES OF MULTI-POLLUTANT CONTROL SIMULATIONS IN AN AIR QUALITY MODEL

    EPA Science Inventory

    In this work, we use the Community Multi-Scale Air Quality (CMAQ) modeling system to examine the effect of several control strategies on simultaneous concentrations of ozone, PM2.5, and three important HAPs: formaldehyde, acetaldehyde and benzene.

  12. Transport of semivolatile organic compounds to the Tibetan Plateau: Monthly resolved air concentrations at Nam Co

    NASA Astrophysics Data System (ADS)

    Xiao, Hang; Kang, Shichang; Zhang, Qianggong; Han, Wenwu; Loewen, Mark; Wong, Fiona; Hung, Hayley; Lei, Ying D.; Wania, Frank

    2010-08-01

    A flow-through sampler was deployed to record the seasonal variability of the atmospheric concentrations of semivolatile organic compounds (SOCs) at a remote research station located close to Nam Co Lake on the Tibetan plateau. Between October 2006 and February 2008, fifteen consecutive one month-long samples, with air volumes ranging from 4,500 to 16,000 m3, were taken and analyzed for polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). Separate analysis of three polyurethane plugs in series in combination with frontal chromatographic theory allows for the correction of the break-through observed for the most volatile SOCs. The concentrations of Σ56PCB in air range from 0.10 to 2.6 pg·m-3 and are among the lowest values ever reported. Levels of OCPs at Nam Co are generally also very low, particularly during wintertime. The concentrations of hexachlorocyclohexanes (HCHs), endosulfans, and various dichlorodiphenyltrichloroethane (DDT) related substances display a distinct seasonal variability consistent with the monsoon. Back-trajectory analysis reveals that higher OCP levels during summer correlate with air mass origin south of the Himalayas. A high α/γ-HCH ratio and a non-racemic composition of α-HCH during July/August suggest that evaporation from Nam Co Lake contributes to the relatively high concentrations of α-HCH (averaging ca. 91 pg·m-3) recorded in the summertime atmosphere.

  13. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    NASA Astrophysics Data System (ADS)

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-10-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations.

  14. Assessment of regional air quality by a concentration-dependent Pollution Permeation Index

    PubMed Central

    Liang, Chun-Sheng; Liu, Huan; He, Ke-Bin; Ma, Yong-Liang

    2016-01-01

    Although air quality monitoring networks have been greatly improved, interpreting their expanding data in both simple and efficient ways remains challenging. Therefore, needed are new analytical methods. We developed such a method based on the comparison of pollutant concentrations between target and circum areas (circum comparison for short), and tested its applications by assessing the air pollution in Jing-Jin-Ji, Yangtze River Delta, Pearl River Delta and Cheng-Yu, China during 2015. We found the circum comparison can instantly judge whether a city is a pollution permeation donor or a pollution permeation receptor by a Pollution Permeation Index (PPI). Furthermore, a PPI-related estimated concentration (original concentration plus halved average concentration difference) can be used to identify some overestimations and underestimations. Besides, it can help explain pollution process (e.g., Beijing’s PM2.5 maybe largely promoted by non-local SO2) though not aiming at it. Moreover, it is applicable to any region, easy-to-handle, and able to boost more new analytical methods. These advantages, despite its disadvantages in considering the whole process jointly influenced by complex physical and chemical factors, demonstrate that the PPI based circum comparison can be efficiently used in assessing air pollution by yielding instructive results, without the absolute need for complex operations. PMID:27731344

  15. Maximum exposure levels for xylene, formaldehyde and acetaldehyde in cars.

    PubMed

    Schupp, Thomas; Bolt, Hermann M; Hengstler, Jan G

    2005-01-31

    Although millions of individuals are exposed to emissions from articles inside cars, relatively little has been published about possible adverse health effects and about exposure levels that can be considered safe or "acceptable". Xylene, formaldehyde and acetaldehyde represent typical examples of relevant volatile organic substances (VOC) released from articles inside cars. Recently, a concept for derivation of maximum exposure levels for volatile organic substances in cars has been published. In the present study we applied this concept to derive maximum exposure levels for xylene, formaldehyde and acetaldehyde and compared the resulting concentrations to exposure levels usually found inside of cars. We derived Short Term Exposure Levels Inside Automotive Vehicles (STELIA) of 29, 0.125 and 15.3 mg/m(3) for xylene, formaldehyde and acetaldehyde, respectively. These STELIAs should not be exceeded during short-term exposures, for instance when starting a car that had been heated up during parking in the sun. Exposure Levels Inside Automotive Vehicles (ELIA, chronic) for chronic exposure to non-genotoxic substances were 8.8, 0.125 and 0.635 mg/m(3) for systemic as well as 17.6, 0.125 and 1.7 mg/m(3) for local exposure to xylene, formaldehyde and acetaldehyde, respectively. Although, it is known that exposure limits for carcinogenic substances should be treated with caution, encouraged by the well documented threshold mechanisms we nevertheless derived ELIAs for Carcinogenic and Mutagenic Substances (ELIA, cm) resulting in 0.125 and 0.635 mg/m(3) for formaldehyde and acetaldehyde. If these ELIAs are matched against average concentrations of xylene, formaldehyde and acetaldehyde found in cars at 23 degrees C (1.22, 0.048 and 0.042 mg/m(3)), there is no reason for concern. With respect to STELIAs and extrapolated concentrations at 65 degrees C (14.7, 1.47 and 1.68 mg/m(3), for xylene, formaldehyde and acetaldehyde, respectively), however, a reduction of the

  16. Synthesis and thermal degradation studies of melamine formaldehyde resins.

    PubMed

    Ullah, Sami; Bustam, M A; Nadeem, M; Naz, M Y; Tan, W L; Shariff, A M

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10.

  17. Synthesis and Thermal Degradation Studies of Melamine Formaldehyde Resins

    PubMed Central

    Ullah, Sami; Bustam, M. A.; Nadeem, M.; Tan, W. L.; Shariff, A. M.

    2014-01-01

    Melamine formaldehyde (MF) resins have been synthesized at different reaction temperature and pH values. Different molar ratios of melamine and formaldehyde were used to synthesize the corresponding resins. The prepared resin samples were characterized by using molecular weight determination viscometry and thermogravimetric analysis (TGA). The maximum percentage of solid content (69.7%) was obtained at pH 8.5 and 75°C temperature. The molecular weight of MF resin was increased with an increase of melamine monomer concentration. The highest residual weight 14.125 wt.% was obtained with sample 10. PMID:25436237

  18. Separation of long RNA by agarose-formaldehyde gel electrophoresis.

    PubMed

    Mansour, Farrah H; Pestov, Dimitri G

    2013-10-01

    We describe a method to facilitate electrophoretic separation of high-molecular-weight RNA species, such as ribosomal RNAs and their precursors, on agarose-formaldehyde gels. Two alternative "pK-matched" buffer systems were substituted for the traditionally used Mops-based conductive medium. The key advantages include shortened run times, a 5-fold reduction in formaldehyde concentration, a significantly improved resolution of long RNAs, and consistency in separation. The new procedure has a streamlined work flow that helps to minimize errors and is broadly applicable to agarose gel electrophoresis of RNA samples and their subsequent analysis by Northern blotting.

  19. Outdoor air PCB concentrations in three communities along the Upper Hudson River, New York.

    PubMed

    Palmer, Patrick M; Belanger, Erin E; Wilson, Lloyd R; Hwang, Syni-An A; Narang, Rajinder S; Gomez, Marta I; Cayo, Michael R; Durocher, Lorie A; Fitzgerald, Edward F

    2008-04-01

    Outdoor air polychlorinated biphenyl (PCB) concentrations were measured in upstate New York as part of a nonoccupational exposure investigation. The adjacent study communities of Hudson Falls and Fort Edward contain numerous sites of current and former PCB contamination, including two capacitor-manufacturing facilities. Outdoor air PCB concentrations in the study municipalities were significantly higher than in the comparison municipality of Glens Falls. Total PCB concentrations in the study area ranged from 0.102 to 4.011 ng/m(3) (median: 0.711 ng/m(3)). For the comparison area, concentrations ranged from 0.080 to 2.366 ng/m(3) (median: 0.431 ng/m(3)). Although our sampling was not designed to identify point sources, the presence of PCB-contaminated sites in the study area likely contributed to this observed difference in concentration. While elevated relative to the comparison area, total PCB concentrations in the study area are lower than those in other communities with known PCB-contaminated sites, and similar to levels reported in other locations from the northeastern United States.

  20. 29 CFR 1910.1048 - Formaldehyde.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and accessways with signs bearing the following information: DANGER FORMALDEHYDE IRRITANT AND... shield is worn, chemical safety goggles are also required if there is a danger of formaldehyde reaching... areas shall have labels and signs containing the following information: DANGER...

  1. Formaldehyde Stress Responses in Bacterial Pathogens

    PubMed Central

    Chen, Nathan H.; Djoko, Karrera Y.; Veyrier, Frédéric J.; McEwan, Alastair G.

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  2. The Mechanism of the Formaldehyde Clock Reaction.

    ERIC Educational Resources Information Center

    Burnett, M. G.

    1982-01-01

    Provides background information and problems with the formaldehyde clock reaction, including comparisons of experimental clock times reported in the literature and conditions for the reliable use of the formaldehyde clock based on a method discussed. (JN)

  3. BIOGENIC SOURCES FOR FORMALDEHYDE AND ACETALDEHYDE DURING SUMMER MONTHS

    EPA Science Inventory

    Photochemical modeling estimated contributions to ambient concentrations of formaldehyde and acetaldehyde from biogenic emissions over the continental United States during January 2001 (Eos Trans. AGU, 83(47), Fall Meet. Suppl., Abstract A52B-0117). Results showed that maximum co...

  4. MODELING AIR TOXICS AND PM 2.5 CONCENTRATION FIELDS AS A MEANS FOR FACILITATING HUMAN EXPOSURE ASSESSMENTS

    EPA Science Inventory

    The capability of the US EPA Models-3/Community Multiscale Air Quality (CMAQ) modeling system is extended to provide gridded ambient air quality concentration fields at fine scales. These fields will drive human exposure to air toxics and fine particulate matter (PM2.5) models...

  5. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, S.; Prévôt, A. S. H.; Baltensperger, U.

    2015-11-01

    Emissions from the marine transport sector are one of the least regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in the EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5 and the dry and wet deposition of nitrogen and sulfur compounds in Europe. Our results suggest that emissions from international shipping affect the air quality in northern and southern Europe differently and their contributions to the air concentrations vary seasonally. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Increased concentrations of the primary particle mass were found only along the shipping routes whereas concentrations of the secondary pollutants were affected over a larger area. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), in the English Channel and the North Sea (30-35 %) while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %) where there were high NH3 land-based emissions. Our model results showed that not only the atmospheric concentrations of pollutants are affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas-phase to the

  6. Formaldehyde exposures from tobacco smoke: a review.

    PubMed Central

    Godish, T

    1989-01-01

    Reports of formaldehyde levels in mainstream, sidestream, and environmental tobacco smoke from nine studies are reviewed. Considerable disparity exists between formaldehyde production rates determined from mainstream-sidestream studies and those reporting levels in environmental tobacco smoke. Tobacco smoke does not appear to increase vapor-phase formaldehyde levels significantly in indoor environments, but formaldehyde exposure in mainstream smoke may pose a risk of upper respiratory system cancer and increase the risk of cancer in smokers. PMID:2665532

  7. Effect of outside air ventilation rate on volatile organic compound concentrations in a call center

    NASA Astrophysics Data System (ADS)

    Hodgson, A. T.; Faulkner, D.; Sullivan, D. P.; DiBartolomeo, D. L.; Russell, M. L.; Fisk, W. J.

    A study of the relationship between outside air ventilation rate and concentrations of volatile organic compounds (VOCs) generated indoors was conducted in a call center office building. The building, with two floors and a total floor area of 4600 m 2, is located in the San Francisco Bay Area, CA. Ventilation rates were manipulated with the building's four air handling units (AHUs). VOC and CO 2 concentrations in the AHU returns were measured on 7 days during a 13-week period. VOC emission factors were determined for individual zones on days when they were operating at near steady-state conditions. The emission factor data were subjected to principal component (PC) analysis to identify groups of co-varying compounds. Potential sources of the PC vectors were ascribed based on information from the literature. The per occupant CO 2 generation rates were 0.0068-0.0092 l s -1. The per occupant isoprene generation rates of 0.2-0.3 mg h -1 were consistent with the value predicted by mass balance from breath concentration and exhalation rate. The relationships between indoor minus outdoor VOC concentrations and ventilation rate were qualitatively examined for eight VOCs. Of these, acetaldehyde and hexanal, which likely were associated with material sources, and decamethylcyclopentasiloxane, associated with personal care products, exhibited general trends of higher concentrations at lower ventilation rates. For other compounds, a clear inverse relationship between VOC concentrations and ventilation was not observed. The net concentration of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate isomers, examples of low-volatility compounds, changed very little with ventilation likely due to sorption and re-emission effects. These results illustrate that the efficacy of ventilation for controlling VOC concentrations can vary considerably depending upon the operation of the building, the pollutant sources and the physical and chemical processes affecting the pollutants. Thus, source

  8. Formaldehyde reactions in dark clouds.

    PubMed

    Sen, A D; Anicich, V G; Federman, S R

    1992-05-20

    The low-pressure reactions of formaldehyde (H2CO) with D+, D2+, D3+, and He+ have been studied by the ion cyclotron resonance technique. These reactions are potential loss processes for formaldehyde in cores of dark interstellar clouds. The deuterated reactants, which are easier to study experimentally, represent direct analogs for protons. Rate coefficients and branching ratios of product channels have been measured. Charge transfer is observed to be the dominant reaction of H2CO with D+, D2+, and He+ ions. Only the D3+ reaction exhibits a proton transfer channel. All reactions proceed at rate coefficients near the collision limit. Proton-deuteron exchange reactions were found to be inefficient processes in the formaldehyde system.

  9. Concentrations in ambient air and emissions of cyclic volatile methylsiloxanes in Zurich, Switzerland.

    PubMed

    Buser, Andreas M; Kierkegaard, Amelie; Bogdal, Christian; MacLeod, Matthew; Scheringer, Martin; Hungerbühler, Konrad

    2013-07-02

    Tens of thousands of tonnes of cyclic volatile methylsiloxanes (cVMS) are used each year globally, which leads to high and continuous cVMS emissions to air. However, field measurements of cVMS in air and empirical information about emission rates to air are still limited. Here we present measurements of decamethylcyclopentasiloxane (D5) and dodecamethylcyclohexasiloxane (D6) in air for Zurich, Switzerland. The measurements were performed in January and February 2011 over a period of eight days and at two sites (city center and background) with a temporal resolution of 6-12 h. Concentrations of D5 and D6 are higher in the center of Zurich and range from 100 to 650 ng m(-3) and from 10 to 79 ng m(-3), respectively. These values are among the highest levels of D5 and D6 reported in the literature. In a second step, we used a multimedia environmental fate model parametrized for the region of Zurich to interpret the levels and time trends in the cVMS concentrations and to back-calculate the emission rates of D5 and D6 from the city of Zurich. The average emission rates obtained for D5 and D6 are 120 kg d(-1) and 14 kg d(-1), respectively, which corresponds to per-capita emissions of 310 mg capita(-1) d(-1) for D5 and 36 mg capita(-1) d(-1) for D6.

  10. Comparing air dispersion model predictions with measured concentrations of VOCs in urban communities.

    PubMed

    Pratt, Gregory C; Wu, Chun Yi; Bock, Don; Adgate, John L; Ramachandran, Gurumurthy; Stock, Thomas H; Morandi, Maria; Sexton, Ken

    2004-04-01

    Air concentrations of nine volatile organic compounds were measured over 48-h periods at 23 locations in three communities in the Minneapolis-St. Paul metropolitan area. Concentrations at the same times and locations were modeled using a standard regulatory air dispersion model (ISCST3). The goal of the study was to evaluate model performance by comparing predictions with measurements using linear regression and estimates of bias. The modeling, done with mobile and area source emissions resolved to the census tract level and characterized as model area sources, represents an improvement over large-scale airtoxics modeling analyses done to date. Despite the resolved spatial scale, the model did not fully capture the spatial resolution in concentrations in an area with a sharp gradient in emissions. In a census tract with a major highway at one end of the tract (i.e., uneven distribution of emissions within the tract), model predictions atthe opposite end of the tract overestimated measured concentrations. This shortcoming was seen for pollutants emitted mainly by mobile sources (benzene, ethylbenzene, toluene, and xylenes). We suggest that major highways would be better characterized as line sources. The model also failed to fully capture the temporal variability in concentrations, which was expected since the emissions inventory comprised annual average values. Based on our evaluation metrics, model performance was best for pollutants emitted mainly from mobile sources and poorest for pollutants emitted mainlyfrom area sources. Important sources of error appeared to be the source characterization (especially location) and emissions quantification. We expect that enhancements in the emissions inventory would give the greatest improvement in results. As anticipated for a Gaussian plume model, performance was dramatically better when compared to measurements that were not matched in space or time. Despite the limitations of our analysis, we found thatthe regulatory

  11. Particulate matter concentrations in residences: an intervention study evaluating stand-alone filters and air conditioners

    PubMed Central

    Batterman, S.; Du, L.; Mentz, G.; Mukherjee, B.; Parker, E.; Godwin, C.; Chin, J.-Y.; O'Toole, A.; Robins, T.; Rowe, Z.; Lewis, T.

    2014-01-01

    This study, a randomized controlled trial, evaluated the effectiveness of free-standing air filters and window air conditioners (ACs) in 126 low-income households of children with asthma. Households were randomized into a control group, a group receiving a free-standing HEPA filter placed in the child's sleeping area, and a group receiving the filter and a window-mounted AC. Indoor air quality (IAQ) was monitored for week-long periods over three to four seasons. High concentrations of particulate matter (PM) and carbon dioxide were frequently seen. When IAQ was monitored, filters reduced PM levels in the child's bedroom by an average of 50%. Filter use varied greatly among households and declined over time, for example, during weeks when pollutants were monitored, filter use was initially high, averaging 84 ± 27%, but dropped to 63 ± 33% in subsequent seasons. In months when households were not visited, use averaged only 34 ± 30%. Filter effectiveness did not vary in homes with central or room ACs. The study shows that measurements over multiple seasons are needed to characterize air quality and filter performance. The effectiveness of interventions using free-standing air filters depends on occupant behavior, and strategies to ensure filter use should be an integral part of interventions. PMID:22145709

  12. Natural ³⁷Ar concentrations in soil air: implications for monitoring underground nuclear explosions.

    PubMed

    Riedmann, Robin A; Purtschert, Roland

    2011-10-15

    For on-site inspections (OSI) under the Comprehensive Nuclear-Test-Ban Treaty (CTBT) measurement of the noble gas ³⁷Ar is considered an important technique. ³⁷Ar is produced underground by neutron activation of Calcium by the reaction ⁴⁰Ca(n,α)³⁷Ar. The naturally occurring equilibrium ³⁷Ar concentration balance in soil air is a function of an exponentially decreasing production rate from cosmic ray neutrons with increasing soil depth, diffusive transport in the soil air, and radioactive decay (T(1/2): 35 days). In this paper for the first time, measurements of natural ³⁷Ar activities in soil air are presented. The highest activities of ~100 mBq m⁻³ air are 2 orders of magnitude larger than in the atmosphere and are found in 1.5-2.5 m depth. At depths > 8 m ³⁷Ar activities are < 20 mBq m⁻³ air. After identifying the main ³⁷Ar production and gas transport factors the expected global activity range distribution of ³⁷Ar in shallow subsoil (0.7 m below the surface) was estimated. In high altitude soils, with large amounts of Calcium and with low gas permeability, ³⁷Ar activities may reach values up to 1 Bq m⁻³.

  13. Determination of radionuclide concentrations in ground level air using the ASS-500 high volume sampler

    SciTech Connect

    Frenzel, E.; Arnold, D.; Wershofen, H.

    1996-06-01

    A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling period 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).

  14. Occupational asthma due to formaldehyde resin dust with and without reaction to formaldehyde gas.

    PubMed

    Lemière, C; Desjardins, A; Cloutier, Y; Drolet, D; Perrault, G; Cartier, A; Malo, J L

    1995-05-01

    We report the cases of three subjects who developed asthma after being exposed to formaldehyde dust or gas. For two subjects, specific bronchial provocation tests with formaldehyde gas did not cause significant bronchoconstriction, whereas exposure to formaldehyde resin dust did. One subject experienced asthmatic reaction after being exposed to formaldehyde resin dust and gas. These findings suggest that the physical and chemical properties of formaldehyde are relevant to its likelihood of causing asthma.

  15. Woodstoves, formaldehyde, and respiratory disease

    SciTech Connect

    Tuthill, R.W.

    1984-12-01

    Telephone interviews were completed in Western Massachusetts in April 1983 for 399 households (91.5 percent) in a random sample of households with elementary school children. Woodstoves were used in 64.7 percent of the homes, but such use was not associated with acute respiratory illness. However, formaldehyde exposure was significantly related, with a risk ratio of 2.4 (95 percent confidence interval 1.7-3.4). New construction/remodeling and new upholstered furniture had additive effects. Neither woodstove use nor formaldehyde exposure were significantly associated with asthma, chronic bronchitis, or allergies.

  16. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    USGS Publications Warehouse

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  17. Measured concentrations of radioactive particles in air in the vicinity of the Anaconda Uranium Mill

    SciTech Connect

    Momeni, M H; Kisieleski, W E

    1980-02-01

    Concentrations of radioactive particles (U-238, Th-230, Ra-226, and Pb-210) in air were measured in the vicinity of the Anaconda Uranium Mill, Bluewater, New Mexico. Airborne particles were collected at three stations for about two-thirds of a year using a continuous collection method at a sampling rate of 10 L/min, and also were measured in monthly composites collected periodically at four stations using high volume air samplers at a sampling rate of 1400 L/min. The ratios of concentrations of each radionuclide to the concentrations of U-238 indicate that the concentrations of the radionuclides are influenced principally by the proximity of the major sources of emission and the direction of the wind. In all cases, the concentration of Pb-210 exceeded that of U-238. The ratio of Pb-210/U-238 was 12.3 and 13.3 for stations dominated by the emissions from the tailings and ore pads, but was only 1.6 for the station dominated by the yellowcake stack emission. The ratio of the radionuclide concentrations measured by the two methods of sample collection was between 0.8 and 1.2 for uranium, radium, and lead at station 104, but was 0.28 to 1.7 for thorium, radium, and lead at stations 101 and 102. The average concentrations calculated from the measurements made in this study suggest that releases from the Anaconda mill were made well within the existing limits of the maximum permissible concentrations for inhalation exposure of the general public.

  18. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde.

    PubMed

    Ridpath, John R; Nakamura, Ayumi; Tano, Keizo; Luke, April M; Sonoda, Eiichiro; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Gillespie, David A F; Sale, Julian E; Yamazoe, Mitsuyoshi; Bishop, Douglas K; Takata, Minoru; Takeda, Shunichi; Watanabe, Masami; Swenberg, James A; Nakamura, Jun

    2007-12-01

    Formaldehyde is an aliphatic monoaldehyde and is a highly reactive environmental human carcinogen. Whereas humans are continuously exposed to exogenous formaldehyde, this reactive aldehyde is a naturally occurring biological compound that is present in human plasma at concentrations ranging from 13 to 97 micromol/L. It has been well documented that DNA-protein crosslinks (DPC) likely play an important role with regard to the genotoxicity and carcinogenicity of formaldehyde. However, little is known about which DNA damage response pathways are essential for cells to counteract formaldehyde. In the present study, we first assessed the DNA damage response to plasma levels of formaldehyde using chicken DT40 cells with targeted mutations in various DNA repair genes. Here, we show that the hypersensitivity to formaldehyde is detected in DT40 mutants deficient in the BRCA/FANC pathway, homologous recombination, or translesion DNA synthesis. In addition, FANCD2-deficient DT40 cells are hypersensitive to acetaldehyde, but not to acrolein, crotonaldehyde, glyoxal, and methylglyoxal. Human cells deficient in FANCC and FANCG are also hypersensitive to plasma levels of formaldehyde. These results indicate that the BRCA/FANC pathway is essential to counteract DPCs caused by aliphatic monoaldehydes. Based on the results obtained in the present study, we are currently proposing that endogenous formaldehyde might have an effect on highly proliferating cells, such as bone marrow cells, as well as an etiology of cancer in Fanconi anemia patients.

  19. Formaldehyde Reactions with Amines and Ammonia: Particle Formation and Product Identification

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Millage, K. D.; Rodriguez, A.; Sedehi, N.; Powelson, M. H.; De Haan, D. O.

    2012-12-01

    Aqueous phase reactions between carbonyls and amines or ammonium salts have recently been implicated in secondary organic aerosol and brown carbon formation processes. Formaldehyde is ubiquitous in the atmosphere, and is present in both the gas and aqueous phases. However, the reactions of formaldehyde in the aqueous phase have not been completely characterized. This study aims to determine the interactions between formaldehyde and amines or ammonium salts present in atmospheric droplets. Bulk phase reactions of formaldehyde with these reactive nitrogen-containing compounds were monitored with ESI-MS and NMR to determine reaction kinetics and for product characterization, while UV-Vis spectroscopy was used to monitor changes in light absorption over time. Hexamethylenetetramine was found to be a major product of the formaldehyde/ammonium sulfate reaction, appearing within minutes of mixing. No products were formed that absorbed light beyond 225 nm. Mono-disperse particles containing mixtures of formaldehyde and ammonium sulfate or an amine were dried and analyzed via SMPS to determine the non-volatile fraction of the reaction products. Similarly, aqueous droplets were dried in a humid atmosphere to determine residual aerosol sizes over time as a function of formaldehyde concentration. This work indicates that formaldehyde plays a key role in aqueous-phase organic processing, as it has been observed to contribute to both an increase and reduction in the diameter and volume of residual aerosol particles.

  20. Effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy under an artificial lighting condition.

    PubMed

    Kitaya, Y; Shibuya, T; Kozai, T; Kubota, C

    1998-01-01

    In order to characterize environmental variables inside a plant canopy under artificial lighting in the CELSS, we investigated the effects of light intensity and air velocity on air temperature, water vapor pressure, and CO2 concentration inside a plant canopy. Under a PPF of 500 micromoles m-2 s-1, air temperature was 2-3 degrees C higher, water vapor pressure was 0.6 kPa higher, and CO2 concentration was 25-35 micromoles mol-1 lower at heights ranging from 0 to 30 mm below the canopy than at a height 60 mm above the canopy. Increasing the PPF increased air temperature and water vapor pressure and decreased CO2 concentration inside the canopy. The air temperature was lower and the CO2 concentration was higher inside the canopy at an air velocity of 0.3 m s-1 than at an air velocity of 0.1 m s-1. The environmental variables inside the canopy under a high light intensity were characterized by higher air temperature, higher vapor pressure, and lower CO2 concentration than those outside the canopy.

  1. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-04-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  2. Air quality in postunification Erfurt, East Germany: associating changes in pollutant concentrations with changes in emissions.

    PubMed Central

    Ebelt, S; Brauer, M; Cyrys, J; Tuch, T; Kreyling, W G; Wichmann, H E; Heinrich, J

    2001-01-01

    The unification of East and West Germany in 1990 resulted in sharp decreases in emissions of major air pollutants. This change in air quality has provided an opportunity for a natural experiment to evaluate the health impacts of air pollution. We evaluated airborne particle size distribution and gaseous co-pollutant data collected in Erfurt, Germany, throughout the 1990s and assessed the extent to which the observed changes are associated with changes in the two major emission sources: coal burning for power production and residential heating, and motor vehicles. Continuous data for sulfur dioxide, total suspended particulates (TSP), nitric oxide, carbon monoxide, and meteorologic parameters were available for 1990-1999, and size-selective particle number and mass concentration measurements were made during winters of 1991 and 1998. We used hourly profiles of pollutants and linear regression analyses, stratified by year, weekday/weekend, and hour, using NO and SO(2) as markers of traffic- and heating-related combustion sources, respectively, to study the patterns of various particle size fractions. Supplementary data on traffic and heating-related sources were gathered to support hypotheses linking these sources with observed changes in ambient air pollution levels. Substantially decreased (19-91%) concentrations were observed for all pollutants, with the exception of particles in the 0.01-0.03 microm size range (representing the smallest ultrafine particles that were measured). The number concentration for these particles increased by 115% between 1991 and 1998. The ratio of these ultrafine particles to TSP also increased by more than 500%, indicating a dramatic change in the size distribution of airborne particles. Analysis of hourly concentration patterns indicated that in 1991, concentrations of SO(2) and larger particle sizes were related to residential heating with coal. These peaks were no longer evident in 1998 due to decreases in coal consumption and

  3. Spatial and temporal distribution of pesticide air concentrations in Canadian agricultural regions

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Tuduri, Ludovic; Harner, Tom; Blanchard, Pierrette; Waite, Don; Poissant, Laurier; Murphy, Clair; Belzer, Wayne; Aulagnier, Fabien; Li, Yi-Fan; Sverko, Ed

    The Canadian Pesticide Air Sampling Campaign was initiated in 2003 to assess atmospheric levels of pesticides, especially currently used pesticides (CUPs) in agricultural regions across Canada. In the first campaign during the spring to summer of 2003, over 40 pesticides were detected. The spatial and temporal distribution of pesticides in the Canadian atmosphere was shown to reflect the pesticide usage in each region. Several herbicides including triallate, bromoxynil, MCPA, 2,4-D, dicamba, trifluralin and ethalfluralin were detected at highest levels at Bratt's Lake, SK in the prairie region. Strong relationships between air concentrations and dry depositions were observed at this site. Although no application occurred in the Canadian Prairies in 2003, high air concentrations of lindane ( γ-hexachlorocyclohexane) were still observed at Bratt's Lake and Hafford, SK. Two fungicides (chlorothalonil and metalaxyl) and two insecticides (endosulfan and carbofuran) were measured at highest levels at Kensington, PEI. Maximum concentrations of chlorpyrifos and metolachlor were found at St. Anicet, QC. The southern Ontario site, Egbert showed highest concentration of alachlor. Malathion was detected at the highest level at the west coast site, Abbotsford, BC. In case of legacy chlorinated insecticides, high concentrations of DDT, DDE and dieldrin were detected in British Columbia while α-HCH and HCB were found to be fairly uniform across the country. Chlordane was detected in Ontario, Québec and Prince Edward Island. This study demonstrates that the sources for the observed atmospheric occurrence of pesticides include local current pesticide application, volatilization of pesticide residues from soil and atmospheric transport. In many instances, these data represent the first measurements for certain pesticides in a given part of Canada.

  4. Modeling of air pollutant concentrations in an industrial region of Turkey.

    PubMed

    Tuygun, Gizem Tuna; Altuğ, Hicran; Elbir, Tolga; Gaga, Eftade E

    2017-02-03

    The hourly SO2 and PM10 concentrations in ambient air of the Kutahya city located at the western part of Turkey have exceeded the air quality limits in winter months since several years. The region has major industrial plants including lignite-fired power plants and open-cast mining activities, residential areas, and traffic sources. To obtain and quantify the sector-wise anthropogenic emissions and spatial distribution of the major pollutants including SO2, NO x , PM10, and CO, a comprehensive emission inventory with 1-km spatial resolution was prepared for the year of 2014, and the AERMOD dispersion model was used to predict ambient air concentrations in a domain of 140 km by 110 km. Validation of the model results was also done referring to in situ routine measurements at two monitoring stations located in the study area. Total emissions of SO2, PM10, NO x , and CO in the study area were calculated as 64,399, 9770, 24,627, and 29,198 tons/year, respectively. The results showed that industrial plants were the largest sources of SO2, NO x , and PM10 emissions, while residential heating and road traffic were the most contributing sectors for CO emissions. Three major power plants in the region with total annual lignite consumption of 10 million tons per year were main sources of high SO2 concentrations, while high PM10 concentrations mainly originated from two major open-cast lignite mines. Major contributors of high NO x and CO concentrations were traffic including highways and urban streets, and residential heating with high lignite consumption in urban areas. Results of the dispersion model run with the emission inventory resulted in partially high index of agreement (0.75) with SO2 measured in the urban station within the modeled area.

  5. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM.

    PubMed

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A

    2016-06-30

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity.

  6. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM

    PubMed Central

    Hussain, Munawar; Kotova, Kira; Lieberzeit, Peter A.

    2016-01-01

    Herein, we report on molecularly imprinted polymers (MIPs) for detecting formaldehyde vapors in air streams. A copolymer thin film consisting of styrene, methacrylic acid, and ethylene glycol dimethacrylate on quartz crystal microbalance (QCM) yielded a detection limit of 500 ppb formaldehyde in dry air. Surprisingly, these MIPs showed specific behavior when tested against a range of volatile organic compounds (VOCs), such as acetaldehyde, methanol, formic acid, and dichloromethane. Despite thus being a suitable receptor in principle, the MIPs were not useful for measurements at 50% humidity due to surface saturation by water. This was overcome by introducing primary amino groups into the polymer via allyl amine and by changing the coating morphology from thin film to nanoparticles. This led to the same limit of detection (500 ppb) and selectivity as before, but at the real-life conditions of 50% relative humidity. PMID:27376287

  7. Predicting soil fumigant air concentrations under regional and diverse agronomic conditions.

    PubMed

    Cryer, Steven A

    2005-01-01

    SOFEA (SOil Fumigant Exposure Assessment system; Dow AgroSciences, Indianapolis, IN) is a new stochastic numerical modeling tool for evaluating and managing human inhalation exposure potential associated with the use of soil fumigants. SOFEA calculates fumigant concentrations in air arising from volatility losses from treated fields for large agricultural regions using multiple transient source terms (treated fields), geographical information systems (GIS) information, agronomic specific variables, user-specified buffer zones, and field reentry intervals. A modified version of the USEPA Industrial Source Complex Short Term model (ISCST3) is used for air dispersion calculations. Weather information, field size, application date, application rate, application type, soil incorporation depth, pesticide degradation rates in air, tarp presence, field retreatment, and other sensitive parameters are varied stochastically using Monte Carlo techniques to mimic region and crop specific agronomic practices. Regional land cover, elevation, and population information can be used to refine source placement (treated fields), dispersion calculations, and risk assessments. This paper describes the technical algorithms of SOFEA and offers comparisons of simulation predictions for the soil fumigant 1,3-dichloropropene (1,3-D) to actual regional air monitoring measurements from Kern, California. Comparison of simulation results to daily air monitoring observations is remarkable over the entire concentration distribution (average percent deviation of 44% and model efficiency of 0.98), especially considering numerous inputs such as meteorological conditions for SOFEA were unavailable and approximated by neighboring regions. Both current and anticipated and/or forecasted fumigant scenarios can be simulated using SOFEA to provide risk managers and product stewards the necessary information to make sound regulatory decisions regarding the use of soil fumigants in agriculture.

  8. Air sampling with solid phase microextraction

    NASA Astrophysics Data System (ADS)

    Martos, Perry Anthony

    There is an increasing need for simple yet accurate air sampling methods. The acceptance of new air sampling methods requires compatibility with conventional chromatographic equipment, and the new methods have to be environmentally friendly, simple to use, yet with equal, or better, detection limits, accuracy and precision than standard methods. Solid phase microextraction (SPME) satisfies the conditions for new air sampling methods. Analyte detection limits, accuracy and precision of analysis with SPME are typically better than with any conventional air sampling methods. Yet, air sampling with SPME requires no pumps, solvents, is re-usable, extremely simple to use, is completely compatible with current chromatographic equipment, and requires a small capital investment. The first SPME fiber coating used in this study was poly(dimethylsiloxane) (PDMS), a hydrophobic liquid film, to sample a large range of airborne hydrocarbons such as benzene and octane. Quantification without an external calibration procedure is possible with this coating. Well understood are the physical and chemical properties of this coating, which are quite similar to those of the siloxane stationary phase used in capillary columns. The log of analyte distribution coefficients for PDMS are linearly related to chromatographic retention indices and to the inverse of temperature. Therefore, the actual chromatogram from the analysis of the PDMS air sampler will yield the calibration parameters which are used to quantify unknown airborne analyte concentrations (ppb v to ppm v range). The second fiber coating used in this study was PDMS/divinyl benzene (PDMS/DVB) onto which o-(2,3,4,5,6- pentafluorobenzyl) hydroxylamine (PFBHA) was adsorbed for the on-fiber derivatization of gaseous formaldehyde (ppb v range), with and without external calibration. The oxime formed from the reaction can be detected with conventional gas chromatographic detectors. Typical grab sampling times were as small as 5 seconds

  9. Benzo(a)pyrene in Europe: Ambient air concentrations, population exposure and health effects.

    PubMed

    Guerreiro, C B B; Horálek, J; de Leeuw, F; Couvidat, F

    2016-07-01

    This study estimated current benzo(a)pyrene (BaP) concentration levels, population exposure and potential health impacts of exposure to ambient air BaP in Europe. These estimates were done by combining the best available information from observations and chemical transport models through the use of spatial interpolation methods. Results show large exceedances of the European target value for BaP in 2012 over large areas, particularly in central-eastern Europe. Results also show large uncertainties in the concentration estimates in regions with a few or no measurement stations. The estimation of the population exposure to BaP concentrations and its health impacts was limited to 60% of the European population, covering only the modelled areas which met the data quality requirement for modelling of BaP concentrations set by the European directive 2004/107/EC. The population exposure estimate shows that 20% of the European population is exposed to BaP background ambient concentrations above the EU target value and only 7% live in areas with concentrations under the estimated acceptable risk level of 0.12 ng m(-3). This exposure leads to an estimated 370 lung cancer incidences per year, for the 60% of the European population included in the estimation. Emissions of BaP have increased in the last decade with the increase in emissions from household combustion of biomass. At the same time, climate mitigation policies are promoting the use of biomass burning for domestic heating. The current study shows that there is a need for more BaP measurements in areas of low measurement density, particularly where high concentrations are expected, e.g. in Romania, Bulgaria, and other Balkan states. Furthermore, this study shows that the health risk posed by PAH exposure calls for better coordination between air quality and climate mitigation policies in Europe.

  10. Criteria and methods for establishing maximum permissible concentrations of air pollution

    PubMed Central

    Rjazanov, V. A.

    1965-01-01

    The article describes experience in the USSR in establishing standards for air pollution control. The author emphasizes that health considerations must be the main criterion in deciding permissible concentrations, which constitute the “hygienic” standards ultimately to be achieved. Economic and technological reasons may dictate temporary “sanitary” standards, which modify the requirements for a limited period. “Technological” standards relate to the economic and technological consequences of air pollution and do not concern health. The maximum permissible concentrations of toxic substances used in toxicology and industrial hygiene are not sufficiently stringent for general use, and control standards are therefore based on the results of tests carried out on animals and human subjects. Tests on animals show that certain concentrations of toxic substances cause functional changes (e.g., in higher nervous activity, cholinesterase activity, and excretion of coproporphyrin) as well as a number of protective adaptational reactions. The results are used to establish maximum permissible concentrations of pollutants within a 24-hour period. Tests on human volunteers provide a basis for determining the maximum average concentrations at a given time. Reactions to odorous substances give the olfactory threshold and the level of concentration causing respiratory and visual reflexes, as well as subsensory effects such as changes in light sensitivity and in the activity of the cerebral cortex. Morbidity statistics also provide evidence of harmful pollution, but cannot serve as a basis for establishing maximum permissible concentrations, which should aim not only at preventing illness but also at avoiding pathological and adaptational reactions. PMID:14315711

  11. Effects of Indoor Air Pollutants on Atopic Dermatitis

    PubMed Central

    Kim, JaKyoung; Kim, HyungJin; Lim, DaeHyun; Lee, Young-Kyu; Kim, Jeong Hee

    2016-01-01

    The increasing prevalence of atopic dermatitis (AD) is associated with variations in indoor environments. In Korea, many inner walls of homes are covered with wallpaper: such walls emit indoor air pollutants, including volatile organic compounds (VOCs) and formaldehyde. This randomized, double-blind study investigated the effects of wallpaper on indoor air quality and AD. Thirty-one children (aged three to eight years) with moderate AD were assigned to environmentally-friendly (EF) and polyvinyl chloride (PVC) wallpaper groups. Indoor air concentrations of VOCs, natural VOCs (NVOCs), formaldehyde, and total suspended bacteria were measured before and two (W2) and eight weeks (W8) after wallpapering. Scoring Atopic Dermatitis (SCORAD) evaluations and blood tests were performed during the same period. The EF wallpaper and PVC wallpaper groups showed similar trends in the changes in total VOCs (TVOC) and formaldehyde content in the indoor air. However, the EF wallpaper group showed more improvement on the SCORAD at W2 and W8 than the PVC wallpaper group. The SCORAD index was positively correlated with several indoor air pollutants. Further, the SCORAD index and NVOC % were negatively correlated. Improved SCORAD index and effects of wallpapering on indoor air quality improvements occurred within a short period of time in both groups. We believe that NVOCs in indoor air after EF wallpapering have a beneficial effect on health. PMID:27941696

  12. Formaldehyde monitor for automobile exhausts

    NASA Technical Reports Server (NTRS)

    Easley, W. C.

    1973-01-01

    Device makes use of microwave spectral absorption in low-Q resonant Stark cell, and indications are that ultimate sensitivity of instrument is within 100 parts per billion of formaldehyde. Microwave source is very small and requires only six-volt dc bias for operation. Coarse tuning is accomplished mechanically and fine tuning by adjusting dc-bias voltage.

  13. Nitrogen potential recovery and concentration of ammonia from swine manure using electrodialysis coupled with air stripping.

    PubMed

    Ippersiel, D; Mondor, M; Lamarche, F; Tremblay, F; Dubreuil, J; Masse, L

    2012-03-01

    The practice of intensive animal production in certain areas has resulted in excessive manure production for the available regional land base. Consequently, there is a need to develop treatment technologies to recover the valuable nutrients that manure contains so that the resulting product can be transported and used as fertilizer on agricultural land. The project presented here used electrodialysis in a dilution/concentration configuration to transfer the manure ammonia in the diluate solution by electromigration to an adjacent solution separated by an ion-exchange membrane under the driving force of an electrical potential. Then, air stripping from the electrodialysis-obtained concentrate solution without pH modification was used to isolate the ammonia in an acidic solution. An optimal process operating voltage of 17.5 V was first determined on the basis of current efficiency and total energy consumption. During the process, the swine manure pH varied from 8.5 to 8.2, values favourable for NH(4)(+) electromigration. Total ammonia nitrogen reached 21,352 mg/L in the concentrate solution, representing approximately seven times the concentration in the swine manure. Further increases in concentration were limited by water transfer from the diluate solution due to electroosmosis and osmosis. Applying vacuum to the concentrate reservoir was found to be more efficient than direct concentrate solution aeration for NH(3) recuperation in the acid trap, given that the ammonia recuperated under vacuum represented 14.5% of the theoretical value of the NH(3) present in the concentrate solution as compared to 6.2% for aeration. However, an excessively low concentrate solution pH (8.6-8.3) limited NH(3)volatilization toward the acid trap. These results suggest that the concentrate solution pH needs to be raised to promote the volatile NH(3) form of total ammonia nitrogen.

  14. Combining regression analysis and air quality modelling to predict benzene concentration levels

    NASA Astrophysics Data System (ADS)

    Vlachokostas, Ch.; Achillas, Ch.; Chourdakis, E.; Moussiopoulos, N.

    2011-05-01

    State of the art epidemiological research has found consistent associations between traffic-related air pollution and various outcomes, such as respiratory symptoms and premature mortality. However, many urban areas are characterised by the absence of the necessary monitoring infrastructure, especially for benzene (C 6H 6), which is a known human carcinogen. The use of environmental statistics combined with air quality modelling can be of vital importance in order to assess air quality levels of traffic-related pollutants in an urban area in the case where there are no available measurements. This paper aims at developing and presenting a reliable approach, in order to forecast C 6H 6 levels in urban environments, demonstrated for Thessaloniki, Greece. Multiple stepwise regression analysis is used and a strong statistical relationship is detected between C 6H 6 and CO. The adopted regression model is validated in order to depict its applicability and representativeness. The presented results demonstrate that the adopted approach is capable of capturing C 6H 6 concentration trends and should be considered as complementary to air quality monitoring.

  15. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.

  16. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    PubMed

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  17. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  18. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates

    PubMed Central

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended. PMID:25670023

  19. Effect of geocoding errors on traffic-related air pollutant exposure and concentration estimates.

    PubMed

    Ganguly, Rajiv; Batterman, Stuart; Isakov, Vlad; Snyder, Michelle; Breen, Michael; Brakefield-Caldwell, Wilma

    2015-01-01

    Exposure to traffic-related air pollutants is highest very near roads, and thus exposure estimates are sensitive to positional errors. This study evaluates positional and PM2.5 concentration errors that result from the use of automated geocoding methods and from linearized approximations of roads in link-based emission inventories. Two automated geocoders (Bing Map and ArcGIS) along with handheld GPS instruments were used to geocode 160 home locations of children enrolled in an air pollution study investigating effects of traffic-related pollutants in Detroit, Michigan. The average and maximum positional errors using the automated geocoders were 35 and 196 m, respectively. Comparing road edge and road centerline, differences in house-to-highway distances averaged 23 m and reached 82 m. These differences were attributable to road curvature, road width and the presence of ramps, factors that should be considered in proximity measures used either directly as an exposure metric or as inputs to dispersion or other models. Effects of positional errors for the 160 homes on PM2.5 concentrations resulting from traffic-related emissions were predicted using a detailed road network and the RLINE dispersion model. Concentration errors averaged only 9%, but maximum errors reached 54% for annual averages and 87% for maximum 24-h averages. Whereas most geocoding errors appear modest in magnitude, 5% to 20% of residences are expected to have positional errors exceeding 100 m. Such errors can substantially alter exposure estimates near roads because of the dramatic spatial gradients of traffic-related pollutant concentrations. To ensure the accuracy of exposure estimates for traffic-related air pollutants, especially near roads, confirmation of geocoordinates is recommended.

  20. VOCs Emissions from Multiple Wood Pellet Types and Concentrations in Indoor Air

    PubMed Central

    Soto-Garcia, Lydia; Ashley, William J.; Bregg, Sandar; Walier, Drew; LeBouf, Ryan; Hopke, Philip K.; Rossner, Alan

    2016-01-01

    Wood pellet storage safety is an important aspect for implementing woody biomass as a renewable energy source. When wood pellets are stored indoors in large quantities (tons) in poorly ventilated spaces in buildings, such as in basements, off-gassing of volatile organic compounds (VOCs) can significantly affect indoor air quality. To determine the emission rates and potential impact of VOC emissions, a series of laboratory and field measurements were conducted using softwood, hardwood, and blended wood pellets manufactured in New York. Evacuated canisters were used to collect air samples from the headspace of drums containing pellets and then in basements and pellet storage areas of homes and small businesses. Multiple peaks were identified during GC/MS and GC/FID analysis, and four primary VOCs were characterized and quantified: methanol, pentane, pentanal, and hexanal. Laboratory results show that total VOCs (TVOCs) concentrations for softwood (SW) were statistically (p < 0.02) higher than blended or hardwood (HW) (SW: 412 ± 25; blended: 203 ± 4; HW: 99 ± 8, ppb). The emission rate from HW was the fastest, followed by blended and SW, respectively. Emissions rates were found to range from 10−1 to 10−5 units, depending upon environmental factors. Field measurements resulted in airborne concentrations ranging from 67 ± 8 to 5000 ± 3000 ppb of TVOCs and 12 to 1500 ppb of aldehydes, with higher concentrations found in a basement with a large fabric bag storage unit after fresh pellet delivery and lower concentrations for aged pellets. These results suggest that large fabric bag storage units resulted in a substantial release of VOCs into the building air. Occupants of the buildings tested discussed concerns about odor and sensory irritation when new pellets were delivered. The sensory response was likely due to the aldehydes. PMID:27022205

  1. Cleaning Products and Air Fresheners: Emissions and ResultingConcentrations of Glycol Ethers and Terpenoids

    SciTech Connect

    Singer, Brett C.; Destaillat, Hugo; Hodgson, Alfred T.; Nazaroff,William W.

    2005-08-01

    Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m{sup 3} room ventilated at {approx}0.5 h{sup -1}. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 {micro}g m{sup -3} for individual terpenoids, including {alpha}-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and {alpha}-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or dlimonene were 300-6000 {micro}g m{sup -3} after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, {approx}25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were {approx}35-70% with towels retained, 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and {beta}-citronellol were emitted at 35-180 mg d{sup -1} over three days while air concentrations averaged 30-160 {micro}g m{sup -3}.

  2. Novel silicone-based polymer containing active methylene designed for the removal of indoor formaldehyde.

    PubMed

    Niu, Song; Yan, Hongxia

    2015-04-28

    Indoor air pollution is caused inevitably due to complicated home decoration, in which formaldehyde is one of the most typical pollutants. It will be a convenient, economical and effective strategy to remove indoor formaldehyde if imparting a feature of formaldehyde removal to decorative coatings. We have successfully explored a novel silicone-based polymer containing active methylene used as a formaldehyde absorbent in coatings via a straightforward transesterification process using inexpensive and easily available chemicals. The polymer has been characterized by (13)C NMR, FTIR, GC and GPC. Formaldehyde removal capacity of the coating films containing different contents of the polymer has been investigated. The results indicated that coatings incorporating 4wt% of the polymer could make the coating films exhibit significant improvement on formaldehyde removal including purificatory performance (>85%) and durability of purificatory effect (>60%), compared to those consisting of absorbents without any silicon, and improve yellowing resistance performance, while other properties, such as gloss, adhesion, pencil hardness, flexibility and impact resistance, were kept almost unaffected. The chemical absorption process of the silicone-based polymer filled in interior decorative coatings is demonstrated as a promising technology to purify indoor formaldehyde and thus can reduce the harm to individuals.

  3. Occupational exposure to formaldehyde, hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells

    PubMed Central

    Zhang, Luoping; Tang, Xiaojiang; Rothman, Nathaniel; Vermeulen, Roel; Ji, Zhiying; Shen, Min; Qiu, Chuangyi; Guo, Weihong; Liu, Songwang; Reiss, Boris; Laura Beane, Freeman; Ge, Yichen; Hubbard, Alan E.; Hua, Ming; Blair, Aaron; Galvan, Noe; Ruan, Xiaolin; Alter, Blanche P.; Xin, Kerry X.; Li, Senhua; Moore, Lee E.; Kim, Sungkyoon; Xie, Yuxuan; Hayes, Richard B.; Azuma, Mariko; Hauptmann, Michael; Xiong, Jun; Stewart, Patricia; Li, Laiyu; Rappaport, Stephen M.; Huang, Hanlin; Fraumeni, Joseph F.; Smith, Martyn T.; Lan, Qing

    2010-01-01

    There are concerns about the health effects of formaldehyde exposure, including carcinogenicity, in light of elevated indoor air levels in new homes and occupational exposures experienced by workers in health care, embalming, manufacturing and other industries. Epidemiological studies suggest that formaldehyde exposure is associated with an increased risk of leukemia. However, the biological plausibility of these findings has been questioned because limited information is available on formaldehyde’s ability to disrupt hematopoietic function. Our objective was to determine if formaldehyde exposure disrupts hematopoietic function and produces leukemia-related chromosome changes in exposed humans. We examined the ability of formaldehyde to disrupt hematopoiesis in a study of 94 workers in China (43 exposed to formaldehyde and 51 frequency-matched controls) by measuring complete blood counts and peripheral stem/progenitor cell colony formation. Further, myeloid progenitor cells, the target for leukemogenesis, were cultured from the workers to quantify the level of leukemia-specific chromosome changes, including monosomy 7 and trisomy 8, in metaphase spreads of these cells. Among exposed workers, peripheral blood cell counts were significantly lowered in a manner consistent with toxic effects on the bone marrow and leukemia-specific chromosome changes were significantly elevated in myeloid blood progenitor cells. These findings suggest that formaldehyde exposure can have an adverse impact on the hematopoietic system and that leukemia induction by formaldehyde is biologically plausible, which heightens concerns about its leukemogenic potential from occupational and environmental exposures. PMID:20056626

  4. Derivation and implementation of an annual limit on intake and a derived air concentration value for uranium mill tailings

    SciTech Connect

    Reif, R.H.; Andrews, D.W.

    1995-06-01

    Monitoring workers and work areas at the Department of Energy Uranium Mill Tailings Remedial Action Project sites is complex because all radionuclides in the {sup 238}U and {sup 235}U decay chains may be present in an airborne uranium mill tillings matrix. Previous monitoring practices involved isotopic analysis of the air filter to determine the activity of each radionuclide of concern and comparing the results to the specified derived air concentration. The annual limit on intake and derived air concentration values have been derived here for the uranium mill tailings matrix to simplify the procedure for evaluation of air monitoring results and assessment of the need for individual monitoring. Implementation of the derived air concentration for uranium mill tailings involves analyzing air samples for long-lived gross alpha activity and comparing the activity concentration to the derived air concentration. Health physics decisions regarding assessment of airborne concentrations is more cost-effective because isotopic analysis of air samples is not necessary. 12 refs., 2 tabs.

  5. Reduction of radon progeny concentration by means of an air cleaner. Report no. MRL 90-143(TR)

    SciTech Connect

    Bigu, J.; Edwardson, E.

    1990-01-01

    There are a variety of airborne radionuclides found in working and living environments which at sufficiently elevated concentration levels can pose a potential hazard to human health. This report describes the use of a device which operates on a 'hybrid' technique consisting of air filtration, electrostatic deposition, and turbulent air mixing to reduce the concentration levels of Rn222 progeny levels in air. Experiments were carried out in Rn222/Rn222 progeny atmospheres when the air cleaner was operating and when it was turned off.

  6. Elevated concentrations of endotoxin in indoor air due to cigarette smoking.

    PubMed

    Sebastian, Aleksandra; Pehrson, Christina; Larsson, Lennart

    2006-05-01

    Exposure to environmental tobacco smoke (ETS) is an important worldwide public health issue. The present study demonstrates that cigarette smoke can be a major source of endotoxin (lipopolysaccharide, LPS) in indoor environments. Gas-chromatography/mass-spectrometry was used to determine 3-hydroxy fatty acids as markers of endotoxin in air-borne house dust in homes of smokers and non-smokers. Air concentrations of endotoxin were 4-63 times higher in rooms of smoking students than in identical rooms of non-smoking students. The fact that cigarette smoke contains large amounts of endotoxin may partly explain the high prevalence of respiratory disorders among smokers and may also draw attention to a hitherto neglected risk factor of ETS.

  7. Determination of lead, cations, and anions concentration in indoor and outdoor air at the primary schools in Kuala Lumpur.

    PubMed

    Awang, Normah; Jamaluddin, Farhana

    2014-01-01

    This study was carried out to determine the concentration of lead (Pb), anions, and cations at six primary schools located around Kuala Lumpur. Low volume sampler (MiniVol PM10) was used to collect the suspended particulates in indoor and outdoor air. Results showed that the concentration of Pb in indoor air was in the range of 5.18 ± 1.08 μg/g-7.01 ± 0.08 μg/g. All the concentrations of Pb in indoor air were higher than in outdoor air at all sampling stations. The concentrations of cations and anions were higher in outdoor air than in indoor air. The concentration of Ca(2+) (39.51 ± 5.01 mg/g-65.13 ± 9.42 mg/g) was the highest because the cation existed naturally in soil dusts, while the concentrations of NO3 (-) and SO4 (2-) were higher in outdoor air because there were more sources of exposure for anions in outdoor air, such as highly congested traffic and motor vehicles emissions. In comparison, the concentration of NO3 (-) (29.72 ± 0.31 μg/g-32.00 ± 0.75 μg/g) was slightly higher than SO4 (2-). The concentrations of most of the parameters in this study, such as Mg(2+), Ca(2+), NO3 (-), SO4 (2-), and Pb(2+), were higher in outdoor air than in indoor air at all sampling stations.

  8. Modeling VOC emissions and air concentrations from the Exxon Valdez oil spill

    SciTech Connect

    Hanna, S.R. ); Drivas, P.J. )

    1993-03-01

    During the two-week period following the Exxon Valdez oil spill in March 1989 in Prince William Sound, Alaska, toxic volatile organic compounds (VOCs) evaporated from the surface of the oil spill and were transported and dispersed throughout the region. To estimate the air concentrations of these VOCs, emissions and dispersion modeling was conducted for each hour during the first two weeks of the spill. A multicomponent evaporative emissions model was developed and applied to the oil spill; the model considered the evaporation of 15 specific compounds, including benzene and toluene. Both mass transfer from the surface of the spill and diffusion through the oil layer were considered in the emissions model. Maximum emissions of toluene were calculated to equal about 20,000 kg/hr, or about 5 g/m[sup 2] hr, at a time of eight hours after the initial oil spill. Meteorological data were acquired from sources and used to estimate hourly-averaged wind velocity over the spill. Air concentrations of specific components were calculated using the ATDL area source diffusion model and the Offshore and Coastal Dispersion (OCD) model. Maximum hourly-averaged concentrations were predicted not to exceed 10 ppmv for any compound. 24 refs., 6 figs., 4 tabs.

  9. 40 CFR Appendix B to Subpart Nnn... - Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 12 2014-07-01 2014-07-01 false Free Formaldehyde Analysis of Insulation Resins by Hydroxylamine Hydrochloride B Appendix B to Subpart NNN of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR...

  10. CONTINUOUS FORMALDEHYDE MEASUREMENT SYSTEM BASED ON MODIFIED FOURIER TRANSFORM INFRARED SPECTROSCOPY

    EPA Science Inventory

    EPA is developing advanced open-path and cell-based optical techniques for time-resolved measurement of priority hazardous air pollutants such as formaldehyde (HCHO). Due to its high National Air Toxics Assessment risk factor, there is increasing interest in continuous measuremen...

  11. Ag-Modified In₂O₃/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance.

    PubMed

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-08-14

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10-30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications.

  12. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Jinlong; Yunus, Rizwangul; Li, Jinge; Li, Peilin; Zhang, Pengyi; Kim, Jeonghyun

    2015-12-01

    Removal of low-level formaldehyde (HCHO) is of great interest for indoor air quality improvement. Supported materials especially those with low air pressure drop are of necessity for air purification. Manganese oxides (MnOx) was in situ deposited on the surface of fibers of a non-woven fabric made of polyethylene terephthalate (PET). As-synthesized MnOx/PET were characterized by SEM, XRD, TEM, ATR-FTIR and XPS analysis. The growth of MnOx layer on PET is thought to start with partial hydrolysis of PET, followed by surface oxidation by KMnO4 and then surface-deposition of MnOx particles from the bulk phase. The MnOx particles assembled with nanosheets were uniformly coated on the PET fibers. MnOx/PET showed good activity for HCHO decomposition at room temperature which followed the Mars-van Krevelen mechanism. The removal of HCHO was kept over 94% after 10 h continuous reaction under the conditions of inlet HCHO concentration ∼0.6 mg/m3, space velocity ∼17,000 h-1 and relative humidity∼50%. This research provides a facile method to deposit active MnOx onto polymers with low air resistance, and composite MnOx/PET material is promising for indoor air purification.

  13. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    PubMed

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p < 0.05), whose primary source in indoor air is resuspended soil from outdoors. In the second rural community, our estimated metal concentrations in air were comparable to active air sampling measurements taken previously. This passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  14. Particulate matter concentration in ambient air and its effects on lung functions among residents in the National Capital Region, India.

    PubMed

    Kesavachandran, C; Pangtey, B S; Bihari, V; Fareed, M; Pathak, M K; Srivastava, A K; Mathur, N

    2013-02-01

    The World Health Organization has estimated that air pollution is responsible for 1.4 % of all deaths and 0.8 % of disability-adjusted life years. NOIDA, located at the National Capital Region, India, was declared as one of the critically air-polluted areas by the Central Pollution Control Board of the Government of India. Studies on the relationship of reduction in lung functions of residents living in areas with higher concentrations of particulate matter (PM) in ambient air were inconclusive since the subjects of most of the studies are hospital admission cases. Very few studies, including one from India, have shown the relationship of PM concentration and its effects of lung functions in the same location. Hence, a cross-sectional study was undertaken to study the effect of particulate matter concentration in ambient air on the lung functions of residents living in a critically air-polluted area in India. PM concentrations in ambient air (PM(1,) PM(2.5)) were monitored at residential locations and identified locations with higher (NOIDA) and lower concentrations (Gurgaon). Lung function tests (FEV(1), PEFR) were conducted using a spirometer in 757 residents. Both air monitoring and lung function tests were conducted on the same day. Significant negative linear relationship exists between higher concentrations of PM(1) with reduced FEV(1) and increased concentrations of PM(2.5) with reduced PEFR and FEV(1). The study shows that reductions in lung functions (PEFR and FEV(1)) can be attributed to higher particulate matter concentrations in ambient air. Decline in airflow obstruction in subjects exposed to high PM concentrations can be attributed to the fibrogenic response and associated airway wall remodeling. The study suggests the intervention of policy makers and stake holders to take necessary steps to reduce the emissions of PM concentrations, especially PM(1,) PM(2.5), which can lead to serious respiratory health concerns in residents.

  15. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe

    NASA Astrophysics Data System (ADS)

    Aksoyoglu, Sebnem; Baltensperger, Urs; Prévôt, André S. H.

    2016-02-01

    Emissions from the marine transport sector are one of the least-regulated anthropogenic emission sources and contribute significantly to air pollution. Although strict limits were introduced recently for the maximum sulfur content in marine fuels in the SECAs (sulfur emission control areas) and in EU ports, sulfur emissions outside the SECAs and emissions of other components in all European maritime areas have continued to increase in the last two decades. We have used the air quality model CAMx (Comprehensive Air Quality Model with Extensions) with and without ship emissions for the year 2006 to determine the effects of international shipping on the annual as well as seasonal concentrations of ozone, primary and secondary components of PM2.5, and the dry and wet deposition of nitrogen and sulfur compounds in Europe. The largest changes in pollutant concentrations due to ship emissions were predicted for summer. Concentrations of particulate sulfate increased due to ship emissions in the Mediterranean (up to 60 %), the English Channel and the North Sea (30-35 %), while increases in particulate nitrate levels were found especially in the north, around the Benelux area (20 %), where there were high NH3 land-based emissions. Our model results showed that not only are the atmospheric concentrations of pollutants affected by ship emissions, but also depositions of nitrogen and sulfur compounds increase significantly along the shipping routes. NOx emissions from the ships, especially in the English Channel and the North Sea, cause a decrease in the dry deposition of reduced nitrogen at source regions by moving it from the gas phase to the particle phase which then contributes to an increase in the wet deposition at coastal areas with higher precipitation. In the western Mediterranean region, on the other hand, model results show an increase in the deposition of oxidized nitrogen (mostly HNO3) due to the ship traffic. Dry deposition of SO2 seems to be significant along

  16. Formaldehyde and TVOC emission behavior of laminate flooring by structure of laminate flooring and heating condition.

    PubMed

    An, Jae-Yoon; Kim, Sumin; Kim, Hyun-Joong

    2011-03-15

    Formaldehyde was measured with a desiccator, a 20 L chamber and the FLEC method. The formaldehyde emission rate from laminate was the highest at 32 °C using the desiccator, which then decreased with time. The formaldehyde emission using the 20 L small chamber and FLEC showed a similar tendency. There was a strong correlation between the formaldehyde and total volatile organic compounds (TVOCs) with both types of floorings using the two different methods. The formaldehyde emission rate and TVOC results were higher when tested using the FLEC method than with the 20 L small chamber method. The emission rate was affected by the joint edge length in laminate flooring. Toluene, ethylbenzene and xylene were the main VOCs emitted from laminate flooring, and there were more unidentified VOCs emitted than identified VOCs. The samples heated with a floor heating system emitted more formaldehyde than those heated using an air circulation system due to the temperature difference between the bottom panel and flooring. The TVOC emission level of the samples was higher when an air circulation system was used than when a floor heating system was used due to the high ventilation rate.

  17. Patch testing for allergic contact dermatitis to cigarettes: smoked/unsmoked components and formaldehyde factors.

    PubMed

    Carew, Benjamin; Muir, Jim

    2014-08-01

    A patient with hand dermatitis reported that switching her smoking hand resulted in reduced symptoms. When allergy to cigarettes is suspected the literature supports standard allergy testing as well as testing the individual components of cigarettes. Initial standard patch testing revealed an allergy to formaldehyde and the formaldehyde releasing agent, quaternium-15. The patient did not react to her usual roll-your-own cigarette components but reacted to the smoked filter paper of a particular brand of cigarette she frequently borrowed from a friend. Possible explanations include either a variation of ingredients between cigarettes that alters the formaldehyde concentration or another unidentified allergen in the branded cigarette causing allergic contact dermatitis.

  18. Air pollutant concentrations near three Texas roadways, Part I: Ultrafine particles

    NASA Astrophysics Data System (ADS)

    Zhu, Yifang; Pudota, Jayanth; Collins, Donald; Allen, David; Clements, Andrea; DenBleyker, Allison; Fraser, Matt; Jia, Yuling; McDonald-Buller, Elena; Michel, Edward

    Vehicular emitted air pollutant concentrations were studied near three types of roadways in Austin, Texas: (1) State Highway 71 (SH-71), a heavily traveled arterial highway dominated by passenger vehicles; (2) Interstate 35 (I-35), a limited access highway north of Austin in Georgetown; and (3) Farm to Market Road 973 (FM-973), a heavily traveled surface roadway dominated by truck traffic. Air pollutants examined include carbon monoxide (CO), oxides of nitrogen (NO x), and carbonyl species in the gas-phase. In the particle phase, ultrafine particle (UFP) concentrations (diameter < 100 nm), fine particulate matter (PM 2.5, diameter < 2.5 μm) mass and carbon content and several particle-bound organics were examined. All roadways had an upwind stationary sampling location, one or two fixed downwind sample locations and a mobile monitoring platform that characterized pollutant concentrations fall-off with increased distance from the roadways. Data reported in this paper focus on UFP while other pollutants and near-roadway chemical processes are examined in a companion paper. Traffic volume, especially heavy-duty traffic, wind speed, and proximity to the road were found to be the most important factors determining UFP concentrations near the roadways. Since wind directions were not consistent during the sampling periods, distances along wind trajectories from the roadway to the sampling points were used to study the decay characteristics of UFPs. Under perpendicular wind conditions, for all studied roadway types, particle number concentrations increased dramatically moving from the upwind side to the downwind side. The elevated particle number concentrations decay exponentially with increasing distances from the roadway with sharp concentration gradients observed within 100-150 m, similar to previously reported studies. A single exponential decay curve was found to fit the data collected from all three roadways very well under perpendicular wind conditions. No

  19. Estimation of air concentrations and profiles for polychlorinated dibenzo-p-dioxins and dibenzofurans from calculated vegetation-air partition coefficients

    SciTech Connect

    Kjeller, L.O.; Rappe, C.; Jones, K.C.

    1995-12-31

    Air concentrations of vapor and particulate phase polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) are predicted by use of calculated plant-air partition coefficients. The plant-air interaction is reduced to an octanol-air distribution at equilibrium. Partition coefficients are deduced from the fugacity approach and calculated from congener group average data of solubility, vapor pressure and octanol-water partition coefficient. Calculated partition coefficients were used for prediction of the PCDD/F levels and congener profile in air from archived herbage collected pre- and post-1940. Before 1940 the air had a fly ash or combustion derived PCDD/F composition. After 1940 Hp and OCDD/F are superimposed on the combustion pattern, reflection of their release from the extensive use of polychlorinated compounds, notably penta chlorophenol, but also related compounds.

  20. Concentrations of polybrominated diphenyl ethers (PBDEs) in matched samples of human milk, dust and indoor air.

    PubMed

    Toms, Leisa-Maree L; Hearn, Laurence; Kennedy, Karen; Harden, Fiona; Bartkow, Michael; Temme, Christian; Mueller, Jochen F

    2009-08-01

    Polybrominated diphenyl ethers (PBDEs) are lipophilic, persistent pollutants found worldwide in environmental and human samples. Exposure pathways for PBDEs remain unclear but may include food, air and dust. The aim of this study was to conduct an integrated assessment of PBDE exposure and human body burden using 10 matched samples of human milk, indoor air and dust collected in 2007-2008 in Brisbane, Australia. In addition, temporal analysis was investigated comparing the results of the current study with PBDE concentrations in human milk collected in 2002-2003 from the same region. PBDEs were detected in all matrices and the median concentrations of BDEs -47 and -209 in human milk, air and dust were: 4.2 and 0.3 ng/g lipid; 25 and 7.8 pg/m(3); and 56 and 291 ng/g dust, respectively. Significant correlations were observed between the concentrations of BDE-99 in air and human milk (r=0.661, p=0.038) and BDE-153 in dust and BDE-183 in human milk (r=0.697, p=0.025). These correlations do not suggest causal relationships - there is no hypothesis that can be offered to explain why BDE-153 in dust and BDE-183 in milk are correlated. The fact that so few correlations were found in the data could be a function of the small sample size, or because additional factors, such as sources of exposure not considered or measured in the study, might be important in explaining exposure to PBDEs. There was a slight decrease in PBDE concentrations from 2002-2003 to 2007-2008 but this may be due to sampling and analytical differences. Overall, average PBDE concentrations from these individual samples were similar to results from pooled human milk collected in Brisbane in 2002-2003 indicating that pooling may be an efficient, cost-effective strategy of assessing PBDE concentrations on a population basis. The results of this study were used to estimate an infant's daily PBDE intake via inhalation, dust ingestion and human milk consumption. Differences in PBDE intake of individual

  1. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. A novel derivatization-free method of formaldehyde and propylene glycol determination in hydrogels by liquid chromatography with refractometric detection.

    PubMed

    Isakau, Henadz; Robert, Marielle; Shingel, Kirill I

    2009-04-05

    The paper describes the development and validation of a new derivatization-free liquid chromatography method for simultaneous determination of propylene glycol and formaldehyde in the formulations containing formaldehyde-releasing preservative. Highly swollen hydrogel made of poly(ethylene glycol)-protein conjugates was taken as a model formulation for integration of the propylene glycol and the diazolydinyl urea as formaldehyde releaser. The method is shown to be simple and selective and, more importantly, allows determining an existing level of formaldehyde at the moment of analysis instead of all available formaldehyde that might be released during chemical derivatization. After liquid extraction the propylene glycol (PG) and formaldehyde (FA) amounts are determined chromatographically on a Shodex SH 1011 ligand-exchange column using 0.01 M sulfuric acid mobile phase, a flow rate of 1.0 ml/min and RI detection. The assay is validated showing good linearity, precision, and accuracy. The limits of detection of formaldehyde and propylene glycol in the analyzed solutions were estimated to be 25 ng and 87 ng, respectively. This analytical assay is considered useful for product stability studies and in developing new formaldehyde releaser-containing formulations where the concentration of formaldehyde is a presumable subject of labeling requirements. This method can also provide a rapid and convenient alternative to gas chromatography method of propylene glycol quantification.

  4. LINKING AIR TOXIC CONCENTRATIONS FROM CMAQ TO THE HAPEM5 EXPOSURE MODEL AT NEIGHORHOOD SCALES FOR THE PHILADELPHIA AREA

    EPA Science Inventory

    This paper provides a preliminary demonstration of the EPA neighborhood scale modeling paradigm for air toxics by linking concentration from the Community Multi-scale Air Quality (CMAQ) modeling system to the fifth version of the Hazardous Pollutant Exposure Model (HAPEM5). For ...

  5. Test of CAP88-PC's Predicted Concentrations of Tritium in Air at Lawrence Livermore National Laboratory

    SciTech Connect

    Peterson, S R

    2003-11-06

    Based on annual tritium release rates from the five sources of tritium at Lawrence Livermore National Laboratory and the Tritium Research Laboratory at Sandia National Laboratory, the regulatory dispersion and dose model, CAP88-PC, was used to predict tritium concentrations in air at perimeter and offsite air surveillance monitoring locations for 1986 through 2001. These predictions were compared with mean annual measured concentrations, based on biweekly sampling. Deterministic predictions were compared with deterministic observations using predicted-to-observed ratios. In addition, the uncertainty on observations and predictions was assessed: when the uncertainty bounds of the observations overlapped with the uncertainty bounds of the predictions, the predictions were assumed to agree with the observations with high probability. Deterministically, 54% of all predictions were higher than the observations, and 96% fell within a factor of three. Accounting for uncertainty, 75% of all predictions agreed with the observations; 87% of the predictions either matched or exceeded the observations. Predictions equaled or exceeded observations at those sampling locations towards which the wind blows most frequently, except those in the hills. Under-predictions were seen at locations towards which the wind blows infrequently when released tritium was from elevated sources. When a high fraction of tritium was from area (diffuse) sources, predictions matched observations.

  6. Vertical profile of tritium concentration in air during a chronic atmospheric HT release.

    PubMed

    Noguchi, Hiroshi; Yokoyama, Sumi

    2003-03-01

    The vertical profiles of tritium gas and tritiated water concentrations in air, which would have an influence on the assessment of tritium doses as well as on the environmental monitoring of tritium, were measured in a chronic tritium gas release experiment performed in Canada in 1994. While both of the profiles were rather uniform during the day because of atmospheric mixing, large gradients of the profiles were observed at night. The gradient coefficients of the profiles were derived from the measurements. Correlations were analyzed between the gradient coefficients and meteorological conditions: solar radiation, wind speed, and turbulent diffusivity. It was found that the solar radiation was highly correlated with the gradient coefficients of tritium gas and tritiated water profiles and that the wind speed and turbulent diffusivity showed weaker correlations with those of tritiated water profiles. A one-dimensional tritium transport model was developed to analyze the vertical diffusion of tritiated water re-emitted from the ground into the atmosphere. The model consists of processes of tritium gas deposition to soil including oxidation into tritiated water, reemission of tritiated water, dilution of tritiated water in soil by rain, and vertical diffusion of tritiated water in the atmosphere. The model accurately represents the accumulation of tritiated water in soil water and the time variations and vertical profiles of tritiated water concentrations in air.

  7. Portable Cathode-Air Vapor-Feed Electrochemical Medical Oxygen Concentrator (OC)

    NASA Technical Reports Server (NTRS)

    Balasubramanian, Ashwin

    2015-01-01

    Missions on the International Space Station and future space exploration will present significant challenges to crew health care capabilities, particularly in the efficient utilization of onboard oxygen resources. Exploration vehicles will require lightweight, compact, and portable oxygen concentrators that can provide medical-grade oxygen from the ambient cabin air. Current pressure-swing adsorption OCs are heavy and bulky, require significant start-up periods, operate in narrow temperature ranges, and require a liquid water feed. Lynntech, Inc., has developed an electrochemical OC that operates with a cathode-air vapor feed, eliminating the need for a bulky onboard water supply. Lynntech's OC is smaller and lighter than conventional pressure-swing OCs, is capable of instant start-up, and operates over a temperature range of 5-80 C. Accomplished through a unique nanocomposite proton exchange membrane and catalyst technology, the unit delivers 4 standard liters per minute of humidified oxygen at 60 percent concentration. The technology enables both ambient-pressure operating devices for portable applications and pressurized (up to 3,600 psi) OC devices for stationary applications.

  8. Determination of formaldehyde in Romanian cosmetic products using coupled GC/MS system after SPME extraction

    NASA Astrophysics Data System (ADS)

    Feher, I.; Schmutzer, G.; Voica, C.; Moldovan, Z.

    2013-11-01

    In this study we have made a quick review of some Romanian cosmetic products (shampoo, conditioner, face wash) in order to determine the formaldehyde content as well as other substances called "formaldehyde releasers". The process was performed based on solid-phase microextraction (SPME) followed by gas chromatography/mass spectrometry technique. Prior to SPME extraction we used a derivation step of formaldehyde using pentafluorophenyl hydrazine. The obtained product was adsorbed on SPME devices, then injected and desorbed into the GC/MS injection port. The concentration of formaldehyde (as derived compound) was calculated using calibration curve, having a regression coefficient of 0.9938. The performance parameters of the method were calculated using samples of standard concentration. The method proved to be sensitive, having a quantification limit (LOQ) of 0.15 μg/g.

  9. Influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of persistent organic pollutants

    SciTech Connect

    Dachs, J.; Eisenreich, S.J.; Hoff, R.M.

    2000-03-15

    The influence of eutrophication on the biogeochemical cycles of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) is largely unknown. In this paper, the application of a dynamic air-water-phytoplankton exchange model to Lake Ontario is used as a framework to study the influence of eutrophication on air-water exchange, vertical fluxes, and phytoplankton concentrations of POPs. The results of these simulations demonstrate that air-water exchange controls phytoplankton concentrations in remote aquatic environments with little influence from land-based sources of pollutants and supports levels in even historically contaminated systems. Furthermore, eutrophication or high biomass leads to a disequilibrium between the gas and dissolved phase, enhanced air-water exchange, and vertical sinking fluxes of PCBs. Increasing biomass also depletes the water concentrations leading to lower than equilibrium PCB concentrations in phytoplankton. Implications to future trends in PCB pollution in Lake Ontario are also discussed.

  10. Estimating PM 10 air concentrations from dust storms in Iraq, Kuwait and Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Draxler, Roland R.; Gillette, Dale A.; Kirkpatrick, Jeffrey S.; Heller, Jack

    A model for the emission of PM 10 dust has been constructed using the concept of a threshold friction velocity which is dependent on surface roughness. Surface roughness in turn was correlated with geomorphology or soil properties for Kuwait, Iraq, part of Syria, Saudi Arabia, the United Arab Emirates and Oman. The PM 10 emission algorithm was incorporated into a Lagrangian transport and dispersion model. PM 10 air concentrations were computed from August 1990 through August 1991. The model predicted about the right number of dust events over Kuwait (events occur 18% of the time). The model results agreed quantitatively with measurements at four locations in Saudi Arabia and one in Kuwait for one major dust event (>1000 μg/m 3). However, for smaller scale dust events (200-1000 μg/m 3), especially at the coastal sampling locations, the model substantially over-predicted the air concentrations. Part of the over-prediction was attributed to the entrainment of dust-free air by the sea breeze, a flow feature not represented by the large-scale gridded meteorological data fields used in the model computation. Another part of the over-prediction was the model's strong sensitivity to threshold friction velocity and the surface soil texture coefficient (the soil emission factor), and the difficulty in accurately representing these parameters in the model. A comparison of the model predicted PM 10 spatial pattern with the TOMS satellite aerosol index (AI) yielded a spatial pattern covering a major portion of Saudi Arabia that was quite similar to the observed AI pattern.

  11. 78 FR 51696 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... Environmental protection, Composite wood products, Formaldehyde, Reporting and recordkeeping, Third-party... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... Formaldehyde Standards for Composite Wood Products; Extension of Comment Period AGENCY:...

  12. Influence of nitromethane concentration on ignition energy and explosion parameters in gaseous nitromethane/air mixtures.

    PubMed

    Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun

    2011-01-30

    The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%.

  13. The MTBE air concentrations in the cabin of automobiles while fueling.

    PubMed

    Vayghani, S A; Weisel, C

    1999-01-01

    Methyl tertiary-butyl ether (MTBE) is the most commonly used oxygenated compound added to gasoline to reduce ambient carbon monoxide levels. Complaints about perceived MTBE exposures and adverse health symptoms have been registered in several states, including New Jersey (NJ). Fueling automobiles is the activity thought to cause the highest environmental MTBE exposures. The current study was conducted to determine the MTBE concentrations inside automobile cabins during fueling, which represents the peak exposure that can occur at full service gasoline service stations, such as those that exist in NJ. Air samples were collected at service stations located on the NJ and PA turnpikes from March 1996 to July 1997 during which the MTBE content in gasoline varied. A bimodal distribution of MTBE concentrations was found in the cabin of the cars while fueling. The median MTBE, benzene and toluene in cabin concentrations were 100, 5.5 and 18 ppb, respectively, with the upper concentrations of the distribution exceeding 1 ppm for MTBE and 0.1 ppm for benzene and toluene. The highest in cabin concentrations occurred in a car that had a malfunctioning vapor recovery system and in a series of cars sampled on an unusually warm, calm winter day when the fuel volatility was high, the evaporation maximal and the dispersion by wind minimal. The in-cabin concentrations were typically higher when the car window was opened during the entire fueling process. Thus, exposure to MTBE during fueling can be reduced by properly maintaining the integrity of the fuel system and keeping the windows closed during fueling.

  14. Evaluating the impact of ambient benzene vapor concentrations on product water from Condensation Water From Air technology.

    PubMed

    Kinder, Katherine M; Gellasch, Christopher A; Dusenbury, James S; Timmes, Thomas C; Hughes, Thomas M

    2017-07-15

    Globally, drinking water resources are diminishing in both quantity and quality. This situation has renewed interest in Condensation Water From Air (CWFA) technology, which utilizes water vapor in the air to produce water for both potable and non-potable purposes. However, there are currently insufficient data available to determine the relationship between air contaminants and the rate at which they are transferred from the air into CWFA untreated product water. This study implemented a novel experimental method utilizing an environmental test chamber to evaluate how air quality and temperature affects CWFA untreated product water quality in order to collect data that will inform the type of water treatment required to protect human health. This study found that temperature and benzene air concentration affected the untreated product water from a CWFA system. Benzene vapor concentrations representing a polluted outdoor environment resulted in benzene product water concentrations between 15% and 23% of the USEPA drinking water limit of 5μg/l. In contrast, product water benzene concentrations representing an indoor industrial environment were between 1.4 and 2.4 times higher than the drinking water limit. Lower condenser coil temperatures were correlated with an increased concentration of benzene in the product water. Environmental health professionals and engineers can integrate the results of this assessment to predict benzene concentrations in the product water and take appropriate health protective measures.

  15. Allergic contact dermatitis from formaldehyde textile resins.

    PubMed

    Reich, Hilary C; Warshaw, Erin M

    2010-01-01

    Formaldehyde-based resins have been used to create permanent-press finishes on fabrics since the 1920s. These resins have been shown to be potent sensitizers in some patients, leading to allergic contact dermatitis. This review summarizes the history of formaldehyde textile resin use, the diagnosis and management of allergic contact dermatitis from these resins, and current regulation of formaldehyde resins in textiles.

  16. Gaseous reference standards of formaldehyde from trioxane.

    PubMed

    Brewer, Paul J; di Meane, Elena Amico; Vargha, Gergely M; Brown, Richard J C; Milton, Martin J T

    2013-04-15

    We have developed a dynamic reference standard of gaseous formaldehyde based on diffusion of the sublimate of trioxane and thermal conversion to formaldehyde in the gas phase. We have also produced a gravimetric standard for formaldehyde in a nitrogen matrix, also by thermal conversion of the sublimate of trioxane. Analysis of the gravimetric standard with respect to the dynamic standard has confirmed the comparability of the static and dynamic gravimetric values.

  17. Spatial variability in levels of benzene, formaldehyde, and total benzene, toluene, ethylbenzene and xylenes in New York City: a land-use regression study

    PubMed Central

    2012-01-01

    Background Hazardous air pollutant exposures are common in urban areas contributing to increased risk of cancer and other adverse health outcomes. While recent analyses indicate that New York City residents experience significantly higher cancer risks attributable to hazardous air pollutant exposures than the United States as a whole, limited data exist to assess intra-urban variability in air toxics exposures. Methods To assess intra-urban spatial variability in exposures to common hazardous air pollutants, street-level air sampling for volatile organic compounds and aldehydes was conducted at 70 sites throughout New York City during the spring of 2011. Land-use regression models were developed using a subset of 59 sites and validated against the remaining 11 sites to describe the relationship between concentrations of benzene, total BTEX (benzene, toluene, ethylbenzene, xylenes) and formaldehyde to indicators of local sources, adjusting for temporal variation. Results Total BTEX levels exhibited the most spatial variability, followed by benzene and formaldehyde (coefficient of variation of temporally adjusted measurements of 0.57, 0.35, 0.22, respectively). Total roadway length within 100 m, traffic signal density within 400 m of monitoring sites, and an indicator of temporal variation explained 65% of the total variability in benzene while 70% of the total variability in BTEX was accounted for by traffic signal density within 450 m, density of permitted solvent-use industries within 500 m, and an indicator of temporal variation. Measures of temporal variation, traffic signal density within 400 m, road length within 100 m, and interior building area within 100 m (indicator of heating fuel combustion) predicted 83% of the total variability of formaldehyde. The models built with the modeling subset were found to predict concentrations well, predicting 62% to 68% of monitored values at validation sites. Conclusions Traffic and point source emissions

  18. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  19. Diagnostic significance of nitric oxide concentrations in exhaled air from the airways in allergic rhinitis patients

    PubMed Central

    Krzych-Fałta, Edyta; Samoliński, Bolesław K; Zalewska, Marta

    2016-01-01

    Introduction The effect of nitric oxide (NO) on the human body is very important due its physiological regulation of the following functions of airways: modulation of ciliary movement and maintenance of sterility in sinuses. Aim To evaluate the diagnostic significance of NO concentrations in exhaled air from the upper and lower airways in patients diagnosed with allergic rhinitis (AR). Material and methods The subjects included in the study were a group of 30 people diagnosed with sensitivity to environmental allergens and a control group consisting of 30 healthy subjects. The measurement of NO in the air exhaled from the lower and upper airways was performed using an on-line method by means of Restricted Exhaled Breath (REB), as well as using the measurement procedure (chemiluminescence) set out in the guidelines prepared in 2005 by the American Thoracic Society and the European Respiratory Society. Results In the late phase of the allergic reaction, higher values of the level of exhaled NO concentration from the lower airways were observed in the groups of subjects up to the threshold values of 25.17 ppb in the group of subjects with year-round allergic rhinitis and 21.78 ppb in the group with diagnosed seasonal allergic rhinitis. The difference in the concentration of NO exhaled from the lungs between the test group and the control group in the 4th h of the test was statistically significant (p = 0.045). Conclusions Exhaled NO should be considered as a marker of airway inflammation. It plays an important role in the differential diagnosis of allergy. PMID:27279816

  20. Model-predicted concentrations of toxic air pollutants in the Minneapolis/St. Paul Metropolitan Area

    SciTech Connect

    McCourtney, M.; Pratt, G.; Wu, C.Y.

    1998-12-31

    The availability of sophisticated emission inventory methods, air dispersion models and personal computers has opened the door to developing more comprehensive studies of air concentrations of various pollutants. As part of a grant from the US Environmental Protection Agency, a current emission inventory and the Industrial Source Complex short-term dispersion model, version 3 (ISCST3) were used to estimate the ambient concentrations of several toxic compounds throughout the Minneapolis/St. Paul Metropolitan Area. A detailed emission inventory was developed of point, area and mobile sources in seven contiguous metropolitan counties that account for approximately half the population of Minnesota. Of specific interest were those sources that emit at least one of the eight Volatile Organic Compounds (VOCs): benzene, 1,3-butadiene, carbon tetrachloride, chloroform, methyl chloride, styrene, tetrachloroethylene and toluene. Emission rates were calculated for 69 industrial point sources; mobile sources, including on-road vehicles and non-road vehicles (such as aircraft, locomotives, commercial marine, agricultural, recreational, and lawn and garden equipment); and area sources, which consisted of dry cleaners, architectural surface coatings, commercial/consumer solvent products, residential fossil fuel combustion, automobile refinishing, residential wood burning, public-owned treatment works, landfills and gas stations. The ISCST3 model was used to estimate the 24-hour and annual average concentrations of the selected pollutants throughout the Minneapolis/St. Paul Metropolitan Area. Three sets of receptors were developed: a fine receptor grid with 500 meter spacing in the urban core, a coarse receptor grid with 5000 meter spacing covering the metropolitan area, and discrete receptors located 100 meters in each of four directions around each point source.

  1. 78 FR 34795 - Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... June 10, 2013 Part IV Environmental Protection Agency 40 CFR Part 770 Formaldehyde; Third-Party Certification Framework for the Formaldehyde Standards for Composite Wood Products; Formaldehyde Emissions Standards for Composite Wood Products; Proposed Rules #0;#0;Federal Register / Vol. 78 , No. 111 /...

  2. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    SciTech Connect

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    We previously reported that gas-phase byproducts of incomplete oxidation were generated when a prototype ultraviolet photocatalytic oxidation (UVPCO) air cleaner was operated in the laboratory with indoor-relevant mixtures of VOCs at realistic concentrations. Under these conditions, there was net production of formaldehyde and acetaldehyde, two important indoor air toxicants. Here, we further explore the issue of byproduct generation. Using the same UVPCO air cleaner, we conducted experiments to identify common VOCs that lead to the production of formaldehyde and acetaldehyde and to quantify their production rates. We sought to reduce the production of formaldehyde and acetaldehyde to acceptable levels by employing different chemisorbent scrubbers downstream of the UVPCO device. Additionally, we made preliminary measurements to estimate the capacity and expected lifetime of the chemisorbent media. For most experiments, the system was operated at 680-780 m{sup 3}/h (400-460 cfm). A set of experiments was conducted with common VOCs introduced into the UVPCO device individually and in mixture. Compound conversion efficiencies and the production of formaldehyde and acetaldehyde were determined by comparison of compound concentrations upstream and downstream of the reactor. There was general agreement between compound conversions efficiencies determined individually and in the mixture. This suggests that competition among compounds for active sites on the photocatalyst surface will not limit the performance of the UVPCO device when the total VOC concentration is low. A possible exception was the very volatile alcohols, for which there were some indications of competitive adsorption. The results also showed that formaldehyde was produced from many commonly encountered VOCs, while acetaldehyde was generated by specific VOCs, particularly ethanol. The implication is that formaldehyde concentrations are likely to increase when an effective UVPCO air cleaner is used in

  3. Atmospheric concentrations of current-use pesticides across south-central Ontario using monthly-resolved passive air samplers

    NASA Astrophysics Data System (ADS)

    Gouin, T.; Shoeib, M.; Harner, T.

    In this study passive air samplers (PAS) were deployed on a monthly basis at a number of sites along a south-north transect, extending 700 km north from Toronto, Ontario, characterizing an urban-agricultural-forested gradient, to investigate the spatial and temporal trends of current-use pesticides (CUPs), between spring 2003 and spring 2004. The most frequently detected CUPs were chlorpyrifos, dacthal, trifluralin, and α-endosulfan. Highest air concentrations of chlorpyrifos were observed in May, whereas α-endosulfan and dacthal peaked in July and August, reflecting differences in usage patterns. At the agricultural site, representing the source region of CUPs, chlorpyrifos air concentrations (pg m -3) varied from 2700 to 3.2 and α-endulsulfan from 1600 to 19. The most frequently detected legacy pesticides were the hexachlorocylcohexanes (α-HCH and γ-HCH). For the forested sites, located on the Precambrian Shield, a region with limited agricultural activity, seasonal differences were less pronounced and air concentrations were observed to be much lower. For instance, air concentrations (pg m -3) of chlorpyrifos and α-endosulfan ranged from 7.6 to 0.3 and 50 to 2.0, respectively. By combining PAS data with trajectory air shed maps it is demonstrated that potential source-receptor relationships can be assessed. Air shed maps produced in this study indicate a potential of increased deposition of CUPs to Lake Erie and Lake Ontario.

  4. The concentration-response relation between air pollution and daily deaths.

    PubMed Central

    Schwartz, J; Ballester, F; Saez, M; Pérez-Hoyos, S; Bellido, J; Cambra, K; Arribas, F; Cañada, A; Pérez-Boillos, M J; Sunyer, J

    2001-01-01

    Studies on three continents have reported associations between various measures of airborne particles and daily deaths. Sulfur dioxide has also been associated with daily deaths, particularly in Europe. Questions remain about the shape of those associations, particularly whether there are thresholds at low levels. We examined the association of daily concentrations of black smoke and SO(2) with daily deaths in eight Spanish cities (Barcelona, Bilbao, Castellón, Gijón, Oviedo, Valencia, Vitoria, and Zaragoza) with different climates and different environmental and social characteristics. We used nonparametric smoothing to estimate the shape of the concentration-response curve in each city and combined those results using a metasmoothing technique developed by Schwartz and Zanobetti. We extended their method to incorporate random variance components. Black smoke had a nearly linear association with daily deaths, with no evidence of a threshold. A 10 microg/m(3) increase in black smoke was associated with a 0.88% increase in daily deaths (95% confidence interval, 0.56%-1.20%). SO(2) had a less plausible association: Daily deaths increased at very low concentrations, but leveled off and then decreased at higher concentrations. These findings held in both one- and two-pollutant models and held whether we optimized our weather and seasonal model in each city or used the same smoothing parameters in each city. We conclude that the association with particle levels is more convincing than for SO(2), and without a threshold. Linear models provide an adequate estimation of the effect of particulate air pollution on mortality at low to moderate concentrations. PMID:11675264

  5. Indirect determination of O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate in air at low concentrations.

    PubMed

    Fowler, W K; Smith, J E

    1989-09-08

    This paper describes an indirect method for the quantification of the toxic military agent O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate (VX) in the vapor state in air or other similar gases at ng/m3 levels. The method begins with the passage of a gaseous sample through a filter impregnated with silver fluoride to convert the VX vapor to ethyl methylphosphonofluoridate. The latter compound is then trapped on a bed of Chromosorb 106, transferred to a smaller bed of the same sorbent, and desorbed thermally into a gas chromatograph equipped with a flame-photometric detector. The method is comparable in sensitivity to the principal alternative method, which is based on cholinesterase inhibition, and it is less subject to interference from common organic solvents and other cholinesterase inhibitors. The detection limit was found to be limited by, and therefore dependent on, the nature and extent of any background substances that produced a significant chromatographic signal or response at the retention time of the analyte. In the absence of such substances, the instrument provided a response to 0.19 ng of VX that was thirty times larger than the peak-to-peak noise amplitude on the chromatographic base line. Moreover, the method bias (i.e., 100% minus the percent VX recovery) was found to depend on VX concentration, with estimates of agent recovery ranging from 83% at a VX concentration of 0.67 ng/m3 to 104% at a concentration of 0.084 ng/m3. The relative standard deviation varied with VX concentration and with the nature of the test that was performed to estimate it. It ranged from 2.1% in one VX vapor-challenge test to 17% in an experiment involving spiked sampling tubes, and it was generally lower at the higher VX test concentrations.

  6. Factors Affecting Indoor Air Concentrations of Volatile Organic Compounds at a Site of Subsurface Gasoline Contamination

    SciTech Connect

    Fischer, M.L.; Bentley, A.J.; Dunkin, K.A.; Hodgson, A.T.; Nazaroff, W.W.; Sextro, R.G.; Daisey, J.M.

    1995-11-01

    We report a field study of soil gas transport of volatile organic compounds (VOCs) into a slab-on-grade building found at a site contaminated with gasoline. Although the high VOC concentrations (30-60 g m{sup -3}) measured in the soil gas at depths of 0.7 m below the building suggest a potential for high levels of indoor VOC, the measured indoor air concentrations were lower than those in the soil gas by approximately six orders of magnitude ({approx} 0.03 mg m{sup -3}). This large ratio is explained by (1) the expected dilution of soil gas entering the building via ambient building ventilation (a factor of {approx}1000), and (2) an unexpectedly sharp gradient in soil gas VOC concentration between the depths of 0.1 and 0.7 m (a factor of {approx}1000). Measurements of the soil physical and biological characteristics indicate that a partial physical barrier to vertical transport in combination with microbial degradation provides a likely explanation for this gradient. These factors are likely to be important to varying degrees at other sites.

  7. Analysis of indoor concentrations of benzene using an air-quality model.

    PubMed

    Bouhamra, W S; Elkilani, A S; Raheem, M Y

    2000-01-01

    We performed measurements to determine indoor benzene levels in 26 residential houses in Kuwait, located in zones of different activity levels. Pumped (or active) sampling was conducted via use of 12 sampling tubes over a period of 24 hr for both indoor and outdoor concentrations simultaneously. Time-average indoor concentration varied linearly with time-average outdoor concentration in accordance with a mass-balance-based indoor air-quality model in which source and sink terms were incorporated. We used regression analysis to determine benzene adsorption rates, which appear in the removal and source terms of the model. The removal rate parameter varied between 0.12/hr and 2.16/hr, whereas source term parameter varied between 0.60 mg/hr and 76.07 mg/hr. Houses were then divided into three groups according to their benzene source strengths (i.e., < 1.0 mg/hr, 1-10 mg/hr, and 10-50 mg/hr). Qualitatively, these levels depended on the characteristics of occupants (e.g., smoking and gas cooker use, number of cars, and parking area) and location of the building.

  8. Comparison between active (pumped) and passive (diffusive) sampling methods for formaldehyde in pathology and histology laboratories

    PubMed Central

    Lee, Eun Gyung; Magrm, Rana; Kusti, Mohannad; Kashon, Michael L.; Guffey, Steven; Costas, Michelle M.; Boykin, Carie J.; Harper, Martin

    2016-01-01

    This study was to determine occupational exposures to formaldehyde and to compare concentrations of formaldehyde obtained by active and passive sampling methods. In one pathology and one histology laboratories, exposure measurements were collected with sets of active air samplers (Supelco LpDNPH tubes) and passive badges (ChemDisk Aldehyde Monitor 571). Sixty-six sample pairs (49 personal and 17 area) were collected and analyzed by NIOSH NMAM 2016 for active samples and OSHA Method 1007 (using the manufacturer’s updated uptake rate) for passive samples. All active and passive 8-hour time-weighted average (TWA) measurements showed compliance with the OSHA permissible exposure limit (PEL-0.75 ppm) except for one passive measurement, whereas 78% for the active and 88% for the passive samples exceeded the NIOSH recommended exposure limit (REL-0.016 ppm). Overall, 73% of the passive samples showed higher concentrations than the active samples and a statistical test indicated disagreement between two methods for all data and for data without outliers. The OSHA Method cautions that passive samplers should not be used for sampling situations involving formalin solutions because of low concentration estimates in the presence of reaction products of formaldehyde and methanol (a formalin additive). However, this situation was not observed, perhaps because the formalin solutions used in these laboratories included much less methanol (3%) than those tested in the OSHA Method (up to 15%). The passive samplers in general overestimated concentrations compared to the active method, which is prudent for demonstrating compliance with an occupational exposure limit, but occasional large differences may be a result of collecting aerosolized droplets or splashes on the face of the samplers. In the situations examined in this study the passive sampler generally produces higher results than the active sampler so that a body of results from passive samplers demonstrating compliance with

  9. Effect of plateout, air motion and dust removal on radon decay product concentration in a simulated residence.

    PubMed

    Rudnick, S N; Hinds, W C; Maher, E F; First, M W

    1983-08-01

    The effectiveness of increased air motion and dust removal in reducing radon decay product concentration in residences subject to radon intrusion was evaluated in a 78-m3 room under steady-state conditions for air infiltration rates between 0.2 and 0.9 air changes per hour. Room-size, portable electrostatic precipitators and high-efficiency fibrous filters were tested as typical residential air cleaning devices; a portable box fan and a ceiling fan were employed as typical residential air movers. Reductions in working levels of 40-90% were found. The fate of radon decay products, with and without mixing fans, was determined by direct measurement. When mixing fans were used, most of the nonairborne potential alpha-energy was plated out on the room surfaces; less than 10% was deposited on the fan blades or housing. Results were compared to a mathematical model based on well-mixed room air, and good agreement was obtained.

  10. Effects of trans-Eurasian transport of air pollutants on surface ozone concentrations over Western China

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyuan; Liu, Junfeng; Mauzerall, Denise L.; Emmons, Louisa K.; Walters, Stacy; Horowitz, Larry W.; Tao, Shu

    2014-11-01

    Due to a lack of industrialization in Western China, surface air there was, until recently, believed to be relatively unpolluted. However, recent measurements and modeling studies have found high levels of ozone (O3) there. Based on the state-of-the-science global chemical transport model MOZART-4, we identify the origin, pathway, and mechanism of trans-Eurasian transport of air pollutants to Western China in 2000. MOZART-4 generally simulates well the observed surface O3 over inland areas of China. Simulations find surface ozone concentrations over Western China on average to be about 10 ppbv higher than Eastern China. Using sensitivity studies, we find that anthropogenic emissions from all Eurasian regions except China contribute 10-15 ppbv surface O3 over Western China, superimposed upon a 35-40 ppbv natural background. Transport from European anthropogenic sources to Northwestern China results in 2-6 ppbv O3 enhancements in spring and summer. Indian anthropogenic sources strongly influence O3 over the Tibetan Plateau during the summer monsoon. Transport of O3 originating from emissions in the Middle East occasionally reach Western China and increase surface ozone there by about 1-4 ppbv. These influences are of similar magnitude as trans-Pacific and transatlantic transport of O3 and its precursors, indicating the significance of trans-Eurasian ozone transport in hemispheric transport of air pollution. Our study further indicates that mitigation of anthropogenic emissions from Europe, the Indian subcontinent, and the Middle East could benefit public health and agricultural productivity in Western China.

  11. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath

    SciTech Connect

    Wallace, L.; Pellizzari, E.; Hartwell, T.; Zelon, H.; Sparacino, C.; Perritt, R.; Whitmore, R.

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  12. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath.

    PubMed

    Wallace, L; Pellizzari, E; Hartwell, T; Zelon, H; Sparacino, C; Perritt, R; Whitmore, R

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  13. [Confrontation of knowledge on alcohol concentration in blood and in exhaled air].

    PubMed

    Bauer, Miroslav; Bauerová, Jiřina; Šikuta, Ján; Šidlo, Jozef

    2015-01-01

    The authors of the paper give a brief historical overview of the development of experimental alcohology in the former Czechoslovakia. Enhanced attention is paid to tests of work quality control of toxicological laboratories. Information on results of control tests of blood samples using the method of gas chromatography in Slovakia and within a world-wide study "Eurotox 1990" is presented. There are pointed out the pitfalls related to objective evaluation of the analysis results interpreting alcohol concentration in biological materials and the associated need to eliminate a negative influence of the human factor. The authors recommend performing analyses of alcohol in biological materials only at accredited workplaces and in the case of samples storage to secure a mandatory inhibition of phosphorylation process. There are analysed the reasons of numerical differences of analyses while taking evidence of alcohol in blood and in exhaled air. The authors confirm analysis accuracy using the method of gas chromatography along with breath analysers of exhaled air. They highlight the need for making the analysis results more objective also through confrontation with the results of clinical examination and with examined circumstances. The authors suggest a method of elimination of the human factor, the most frequently responsible for inaccuracy, to a tolerable level (safety factor) and the need of sample analysis by two methods independent of each other or the need of analysis of two biological materials.

  14. A critical review of reported air concentrations of organic compounds in aircraft cabins.

    PubMed

    Nagda, N L; Rector, H E

    2003-09-01

    This paper presents a review and assessment of aircraft cabin air quality studies with measured levels of volatile and semivolatile organic compounds (VOCs and SVOCs). VOC and SVOC concentrations reported for aircraft cabins are compared with those reported for residential and office buildings and for passenger compartments of other types of transportation. An assessment of measurement technologies and quality assurance procedures is included. The six studies reviewed in the paper range in coverage from two to about 30 flights per study. None of the monitored flights included any unusual or episodic events that could affect cabin air quality. Most studies have used scientifically sound methods for measurements. Study results indicate that under routine aircraft operations, contaminant levels in aircraft cabins are similar to those in residential and office buildings, with two exceptions: (1). levels of ethanol and acetone, indicators of bioeffluents and chemicals from consumer products are higher in aircraft than in home or office environments, and (2). levels of certain chlorinated hydrocarbons and fuel-related contaminants are higher in residential/office buildings than in aircraft. Similarly, ethanol and acetone levels are higher in aircraft than in other transportation modes but the levels of some pollutants, such as m-/p-xylenes, tend to be lower in aircraft.

  15. Validation of minicams for measuring concentrations of chemical agent in environmental air

    SciTech Connect

    Menton, R.G.; Hayes, T.L.; Chou, Y.L.; Hobson, D.W.

    1993-05-13

    Environmental monitoring for chemical agents is necessary to ensure that notification and appropriate action will be taken in the, event that there is a release exceeding control limits of such agents into the workplace outside of engineering controls. Prior to implementing new analytical procedures for environmental monitoring, precision and accuracy (PA) tests are conducted to ensure that an agent monitoring system performs according to specified accuracy, precision, and sensitivity requirements. This testing not only establishes the accuracy and precision of the method, but also determines what factors can affect the method's performance. Performance measures that are particularly important in agent monitoring include the Detection Limit (DL), Decision Limit (DC), Found Action Level (FAL), and the Target Action Level (TAL). PA experiments were performed at Battelle's Medical Research and Evaluation Facility (MREF) to validate the use of the miniature chemical agent monitoring system (MINICAMs) for measuring environmental air concentrations of sulfur mustard (HD). This presentation discusses the experimental and statistical approaches for characterizing the performance of MINICAMS for measuring HD in air.

  16. Thiomethylation of ketones by sulphide-alkaline solutions and formaldehyde

    SciTech Connect

    Ulendeyeva, A.D.; Samigullin, I.I.; Nasteka, V.I.

    1993-12-31

    An investigation has been made of the thiomethylation of ketones by formaldehyde with mercaptides, sodium sulphide and their mixture. It is possible to regenerate 78-100 rel.% of the sulphide-alkaline solutions under mild conditions (20-50{degrees}C, atmospheric pressure) without feeding a catalyst, with the simultaneous production of ketosulphide concentrate - a less toxic product with properties of practical benefit. 7 refs., 2 figs., 2 tabs.

  17. EXTRAN: A computer code for estimating concentrations of toxic substances at control room air intakes

    SciTech Connect

    Ramsdell, J.V.

    1991-03-01

    This report presents the NRC staff with a tool for assessing the potential effects of accidental releases of radioactive materials and toxic substances on habitability of nuclear facility control rooms. The tool is a computer code that estimates concentrations at nuclear facility control room air intakes given information about the release and the environmental conditions. The name of the computer code is EXTRAN. EXTRAN combines procedures for estimating the amount of airborne material, a Gaussian puff dispersion model, and the most recent algorithms for estimating diffusion coefficients in building wakes. It is a modular computer code, written in FORTRAN-77, that runs on personal computers. It uses a math coprocessor, if present, but does not require one. Code output may be directed to a printer or disk files. 25 refs., 8 figs., 4 tabs.

  18. Measurements of soot, OH, and PAH concentrations in turbulent ethylene/air jet flames

    SciTech Connect

    Lee, Seong-Young; Turns, Stephen R.; Santoro, Robert J.

    2009-12-15

    This paper presents results from an investigation of soot formation in turbulent, non-premixed, C{sub 2}H{sub 4}/air jet flames. Tests were conducted using a H{sub 2}-piloted burner with fuel issuing from a 2.18 mm i.d. tube into quiescent ambient air. A range of test conditions was studied using the initial jet velocity (16.2-94.1 m/s) as a parameter. Fuel-jet Reynolds numbers ranged from 4000 to 23,200. Planar laser-induced incandescence (LII) was employed to determine soot volume fractions, and laser-induced fluorescence (LIF) was used to measure relative hydroxyl radical (OH) concentrations and polycyclic aromatic hydrocarbons (PAHs) concentrations. Extensive information on the structure of the soot and OH fields was obtained from two-dimensional imaging experiments. Quantitative measurements were obtained by employing the LII and LIF techniques independently. Imaging results for soot, OH, and PAH show the existence of three soot formation/oxidation regions: a rapid soot growth region, in which OH and soot particles lie in distinctly different radial locations; a mixing-dominated region controlled by large-scale motion; and a soot-oxidation region in which the OH and soot fields overlap spatially, resulting in the rapid oxidation of soot particles. Detailed quantitative analyzes of soot volume fractions and OH and soot zone thicknesses were performed along with the temperature measurement using the N{sub 2}-CARS system. Measurements of OH and soot zone thicknesses show that the soot zone thickness increases linearly with axial distance in the soot formation region, whereas the OH zone thickness is nearly constant in this region. The OH zone thickness then rapidly increases with downstream distance and approximately doubles in the soot-oxidation region. Probability density functions also were obtained for soot volume fractions and OH concentrations. These probability density functions clearly define the spatial relationships among the OH, PAH concentrations, the

  19. Chemodiversity of a Scots pine stand and implications for terpene air concentrations

    NASA Astrophysics Data System (ADS)

    Bäck, J.; Aalto, J.; Henriksson, M.; Hakola, H.; He, Q.; Boy, M.

    2012-02-01

    Atmospheric chemistry in background areas is strongly influenced by natural vegetation. Coniferous forests are known to produce large quantities of volatile vapors, especially terpenes. These compounds are reactive in the atmosphere, and contribute to the formation and growth of atmospheric new particles. Our aim was to analyze the variability of mono- and sesquiterpene emissions between Scots pine trees, in order to clarify the potential errors caused by using emission data obtained from only a few trees in atmospheric chemistry models. We also aimed at testing if stand history and seed origin has an influence on the chemotypic diversity. The inherited, chemotypic variability in mono- and sesquiterpene emission was studied in a seemingly homogeneous 48 yr-old stand in Southern Finland, where two areas differing in their stand regeneration history could be distinguished. Sampling was conducted in August 2009. Terpene concentrations in the air had been measured at the same site for seven years prior to branch sampling for chemotypes. Two main compounds, α-pinene and Δ3-carene formed together 40-97% of the monoterpene proportions in both the branch emissions and in the air concentrations. The data showed a bimodal distribution in emission composition, in particular in Δ3-carene emission within the studied population. 10% of the trees emitted mainly α-pinene and no Δ3-carene at all, whereas 20% of the trees where characterized as high Δ3-carene emitters (Δ3-carene forming >80% of total emitted monoterpene spectrum). An intermediate group of trees emitted equal amounts of both α-pinene and Δ3-carene. The emission pattern of trees at the area established using seeding as the artificial regeneration method differed from the naturally regenerated or planted trees, being mainly high Δ3-carene emitters. Some differences were also seen in e.g. camphene and limonene emissions between chemotypes, but sesquiterpene emissions did not differ significantly between trees

  20. A modeling framework for characterizing near-road air pollutant concentration at community scales.

    PubMed

    Chang, Shih Ying; Vizuete, William; Valencia, Alejandro; Naess, Brian; Isakov, Vlad; Palma, Ted; Breen, Michael; Arunachalam, Saravanan

    2015-12-15

    In this study, we combine information from transportation network, traffic emissions, and dispersion model to develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial resolution. A Research LINE source dispersion model (R-LINE) is used to model multiple TRAPs from roadways at Census-block level for two U.S. regions. We used a novel Space/Time Ordinary Kriging (STOK) approach that uses data from monitoring networks to provide urban background concentrations. To reduce the computational burden, we developed and applied the METeorologically-weighted Averaging for Risk and Exposure (METARE) approach with R-LINE, where a set of selected meteorological data and annual average daily traffic (AADT) are used to obtain annual averages. Compared with explicit modeling, using METARE reduces CPU-time by 88-fold (46.8h versus 32min), while still retaining accuracy of exposure estimates. We show two examples in the Piedmont region in North Carolina (~105,000 receptors) and Portland, Maine (~7000 receptors) to characterize near-road air quality. Concentrations for NOx, PM2.5, and benzene in Portland drop by over 40% within 200m away from the roadway. The concentration drop in North Carolina is less than that in Portland, as previously shown in an observation-based study, showing the robustness of our approach. Heavy-duty diesel vehicles (HDDV) contribute over 55% of NOx and PM2.5 near interstate highways, while light-duty gasoline vehicles (LDGV) contribute over 50% of benzene to urban areas where multiple roadways intersect. Normalized mean error (NME) between explicit modeling and METARE in Portland ranges from 12.6 to 14.5% and normalized mean bias (NMB) ranges from -12.9 to -11.2%. When considering a static emission rate (i.e. the emission does not have temporal variability), both NME and NMB improved (10.5% and -9.5%). Modeled concentrations in Detroit, Michigan at an array of near-road monitors are within a factor of 2

  1. Antibody production in rats after long-term exposure to formaldehyde

    SciTech Connect

    Holmstroem, M.R.; Rynnel-Dagoeoe, B.Wi.; Wilhelmsson, B. )

    1989-09-01

    Sprague-Dawley rats were vaccinated with pneumococcal polysaccharide antigens and tetanus toxoid to evaluate the immunologic effects of long-term formaldehyde exposure. The antibody response to vaccination was measured 3 to 4 weeks later by enzyme-linked immunosorbent assay. An IgG response to pneumococcal polysaccharides and to tetanus toxoid was found in both the formaldehyde-exposed group and a control group of rats not exposed to formaldehyde. The IgM response to tetanus toxoid was significant in both groups but neither group showed a significant IgM response to pneumococcal polysaccharides. There were thus no signs of impaired B-cell function in rats exposed to a high concentration (12.6 ppm) of formaldehyde for nearly 2 years.

  2. Soil air CO2 concentration as an integrative parameter of soil structure

    NASA Astrophysics Data System (ADS)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  3. Using long-term air monitoring of semi-volatile organic compounds to evaluate the uncertainty in polyurethane-disk passive sampler-derived air concentrations.

    PubMed

    Holt, Eva; Bohlin-Nizzetto, Pernilla; Borůvková, Jana; Harner, Tom; Kalina, Jiří; Melymuk, Lisa; Klánová, Jana

    2017-01-01

    Much effort has been made to standardise sampling procedures, laboratory analysis, data analysis, etc. for semi volatile organic contaminants (SVOCs). Yet there are some unresolved issues in regards to comparing measurements from one of the most commonly used passive samplers (PAS), the polyurethane foam (PUF) disk PAS (PUF-PAS), between monitoring networks or different studies. One such issue is that there is no universal means to derive a sampling rate (Rs) or to calculate air concentrations (Cair) from PUF-PAS measurements for SVOCs. Cair was calculated from PUF-PAS measurements from a long-term monitoring program at a site in central Europe applying current understanding of passive sampling theory coupled with a consideration for the sampling of particle associated compounds. Cair were assessed against concurrent active air sampler (AAS) measurements. Use of "site-based/sampler-specific" variables: Rs, calculated using a site calibration, provided similar results for most gas-phase SVOCs to air concentrations derived using "default" values (commonly accepted Rs). Individual monthly PUF-PAS-derived air concentrations for the majority of the target compounds were significantly different (Wilcoxon signed-rank (WSR) test; p < 0.05) to AAS regardless of the input values (site/sampler based or default) used to calculate them. However, annual average PUF-PAS-derived air concentrations were within the same order of magnitude as AAS measurements except for the particle-phase polycyclic aromatic hydrocarbons (PAHs). Underestimation of PUF-derived air concentrations for particle-phase PAHs was attributed to a potential overestimation of the particle infiltration into the PUF-PAS chamber and underestimation of the particle bound fraction of PAHs.

  4. Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland

    NASA Astrophysics Data System (ADS)

    Werner, Małgorzata; Kryza, Maciej; Skjøth, Carsten Ambelas; Wałaszek, Kinga; Dore, Anthony J.; Ojrzyńska, Hanna; Kapłon, Jan

    2017-02-01

    We have implemented the WRF-Chem model version 3.5 over Poland to quantify the direct and indirect feedback effects of aerosols on simulated meteorology and aerosol concentrations. Observations were compared with results from three simulations at high spatial resolutions of 5 × 5 km: (1) BASE—without any aerosol feedback effects; (2) DIR—with direct aerosol-radiative effects (3) INDIR—with direct and indirect aerosol-radiative effects. We study the overall effect during January 2011 as well as selected episodes of the highest differences in PM10 concentrations between the three simulations. For the DIR simulation, the decrease in monthly mean incoming solar radiation (SWDOWN) appears for the entire study area. It changes geographically, from about -8.0 to -2.0 W m-2, respectively for the southern and northern parts of the country. The highest changes do not correspond to the highest PM10 concentration. Due to the solar radiation changes, the surface mean monthly temperature (T2) decreases for 96 % of the area of Poland, but not more than 1.0 °C. Monthly mean PBLH changes by more than ±5 m for 53 % of the domain. Locally the differences in PBLH between the DIR and BASE are higher than ± 20 m. Due to the direct effect, for 84 % of the domain, the mean monthly PM10 concentrations increase by up to 1.9 µg m-3. For the INDIR simulation the spatial distribution of changes in incoming solar radiation as well as air temperature is similar to the DIR simulation. The decrease of SWDOWN is noticed for the entire domain and for 23 % of the domain is higher than -5.0 W m-2. The absolute differences of PBLH are slightly higher for INDIR than DIR but similarly distributed spatially. For daily episodes, the differences between the simulations are higher, both for meteorology and PM10 concentrations, and the pattern of changes is usually more complex. The results indicate the potential importance of the aerosol feedback effects on modelled meteorology and PM10

  5. Formaldehyde, aspartame, and migraines: a possible connection.

    PubMed

    Jacob, Sharon E; Stechschulte, Sarah

    2008-01-01

    Aspartame is a widely used artificial sweetener that has been linked to pediatric and adolescent migraines. Upon ingestion, aspartame is broken, converted, and oxidized into formaldehyde in various tissues. We present the first case series of aspartame-associated migraines related to clinically relevant positive reactions to formaldehyde on patch testing.

  6. Air flow and concentration fields at urban road intersections for improved understanding of personal exposure.

    PubMed

    Tiwary, Abhishek; Robins, Alan; Namdeo, Anil; Bell, Margaret

    2011-07-01

    This paper reviews the state of knowledge on modelling air flow and concentration fields at road intersections. The first part covers the available literature from the past two decades on experimental (both field and wind tunnel) and modelling activities in order to provide insight into the physical basis of flow behaviour at a typical cross-street intersection. This is followed by a review of associated investigations of the impact of traffic-generated localised turbulence on the concentration fields due to emissions from vehicles. There is a discussion on the role of adequate characterisation of vehicle-induced turbulence in making predictions using hybrid models, combining the merits of conventional approaches with information obtained from more detailed modelling. This concludes that, despite advancements in computational techniques, there are crucial knowledge gaps affecting the parameterisations used in current models for individual exposure. This is specifically relevant to the growing impetus on walking and cycling activities on urban roads in the context of current drives for sustainable transport and healthy living. Due to inherently longer travel times involved during such trips, compared to automotive transport, pedestrians and cyclists are subjected to higher levels of exposure to emissions. Current modelling tools seem to under-predict this exposure because of limitations in their design and in the empirical parameters employed.

  7. Low pCO2 Air-Polarized CO2 Concentrator Development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H.

    1997-01-01

    Life Systems completed a Ground-based Space Station Experiment Development Study Program which verifies through testing the performance and applicability of the electrochemical Air-Polarized Carbon Dioxide Concentrator (APC) process technology for space missions requiring low (i.e., less than 3 mm Hg) CO2 partial pressure (pCO2) in the cabin atmosphere. Required test hardware was developed and testing was accomplished at an approximate one-person capacity CO2 removal level. Initially, two five-cell electrochemical modules using flight-like 0.5 sq ft cell hardware were tested individually, following by their testing at the integrated APC system level. Testing verified previously projected performance and established a database for sizing of APC systems. A four person capacity APC system was sized and compared with four candidate CO2 removal systems. At its weight of 252 lb, a volume of 7 cu ft and a power consumption of 566 W while operating at 2.2 mm Hg pCO2, the APC was surpassed only by an Electrochemical Depolarized CO2 Concentrator (EDC) (operating with H2), when compared on a total equivalent basis.

  8. Assessment of Air Quality in the International Space Station (ISS) and Space Shuttle Based on Samples Returned Aboard STS-110 (ISS-8A) in April 2002

    NASA Technical Reports Server (NTRS)

    James, John T.

    2002-01-01

    The toxicological assessment of grab sample canisters (GSCs) returned aboard STS-110 is reported. Analytical methods have not changed from earlier reports, and surrogate standard recoveries from the GSCs were 77-121%, with one exception. Pressure tracking indicated no leaks in the canisters. Recoveries from lab and trip controls for formaldehyde analyses ranged from 87 to 96%. The two general criteria used to assess air quality are the total-non-methane-volatile organic hydrocarbons (NMVOCs) and the total T-value (minus the CO2 and formaldehyde contributions). Because of the inertness of Freon 218 (octafluoropropane, OFP), its contribution to the NMVOC is subtracted and tabulated separately. Control of atmospheric alcohols is important to the water recovery system engineers, hence total alcohols are also shown for each sample. Because formaldehyde is quantified from sorbent badges, its concentration is listed separately. These five indices of air quality are summarized.

  9. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model

    SciTech Connect

    Hamby, D.M.; Bauer, L.R.

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates. 11 refs., 1 fig., 3 tabs.

  10. The vegetation-to-air concentration ratio in a specific activity atmospheric tritium model.

    PubMed

    Hamby, D M; Bauer, L R

    1994-03-01

    Specific activity models are frequently used to estimate the concentration of tritium oxide in vegetation. In such models, a single value represents the ratio (R) of the specific activity of tritium oxide in vegetation to the specific activity of atmospheric tritium oxide. Federal agencies such as the Nuclear Regulatory Commission and the Environmental Protection Agency have not established a consensus default for R. Literature on this topic suggests that a site-specific distribution of R should be developed when feasible. In this study, a distribution of R is established for the Savannah River Site. Environmental tritium concentrations in air and vegetation measured on and around the Savannah River Site over a 9-y period form the basis for the analysis. For dose assessments of chronic atmospheric tritium releases at the Savannah River Site, R is best parameterized by a normal distribution with a mean of 0.54 and one standard deviation of 0.10. The Nuclear Regulatory Commission default for R is approximately equal to the Savannah River Site site-specific estimate. Based on the results, the default value for R recognized by the Environmental Protection Agency overestimates tritium concentrations in vegetation and, therefore, doses from foodstuff consumption pathways at humid sites. For the Savannah River Site, the magnitude of the error is on the order of a factor of 2. This consideration may be important if an estimated dose approaches an as-low-as-reasonably-achievable or regulatory threshold. Conversely, without the benefit of site-specific data, ingestion doses may be underestimated in regions with dry climates.

  11. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada

    USGS Publications Warehouse

    Weiss-Penzias, Peter S.; Gay, David A.; Brigham, Mark E.; Parsons, Matthew T.; Gustin, Mae S.; ter Shure, Arnout

    2016-01-01

    This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997–2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007–2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008–2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998–2007) producing a significantly negative trend (− 1.5 ± 0.2% year− 1) and the recent time period (2008–2013) displaying a flat slope (− 0.3 ± 0.1% year− 1, not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.

  12. Reduced-Rank Spatio-Temporal Modeling of Air Pollution Concentrations in the Multi-Ethnic Study of Atherosclerosis and Air Pollution1

    PubMed Central

    Olives, Casey; Sheppard, Lianne; Lindström, Johan; Sampson, Paul D.; Kaufman, Joel D.; Szpiro, Adam A.

    2016-01-01

    There is growing evidence in the epidemiologic literature of the relationship between air pollution and adverse health outcomes. Prediction of individual air pollution exposure in the Environmental Protection Agency (EPA) funded Multi-Ethnic Study of Atheroscelerosis and Air Pollution (MESA Air) study relies on a flexible spatio-temporal prediction model that integrates land-use regression with kriging to account for spatial dependence in pollutant concentrations. Temporal variability is captured using temporal trends estimated via modified singular value decomposition and temporally varying spatial residuals. This model utilizes monitoring data from existing regulatory networks and supplementary MESA Air monitoring data to predict concentrations for individual cohort members. In general, spatio-temporal models are limited in their efficacy for large data sets due to computational intractability. We develop reduced-rank versions of the MESA Air spatio-temporal model. To do so, we apply low-rank kriging to account for spatial variation in the mean process and discuss the limitations of this approach. As an alternative, we represent spatial variation using thin plate regression splines. We compare the performance of the outlined models using EPA and MESA Air monitoring data for predicting concentrations of oxides of nitrogen (NOx)—a pollutant of primary interest in MESA Air—in the Los Angeles metropolitan area via cross-validated R2. Our findings suggest that use of reduced-rank models can improve computational efficiency in certain cases. Low-rank kriging and thin plate regression splines were competitive across the formulations considered, although TPRS appeared to be more robust in some settings. PMID:27014398

  13. Concentration, temperature, and density in a hydrogen-air flame by excimer-induced Raman scattering

    NASA Technical Reports Server (NTRS)

    Wehrmeyer, Joseph A.; Bowling, John M.; Pitz, Robert W.

    1988-01-01

    Single-pulse, vibrational Raman scattering (VRS) is an attractive laser diagnostic for the study of supersonic hydrogen-air combustion. The VRS technique gives a complete thermodynamic description of the gas mixture at a point in the reacting flow. Single-pulse, vibrational Raman scattering can simultaneously provide independent measurements of density, temperature, and concentration of each major species (H2, H2O, O2 and N2) in a hydrogen/air turbulent combustor. Also the pressure can be calculated using the ideal gas law. However, single-pulse VRS systems in current use for measurement of turbulent combustion have a number of shortcomings when applied to supersonic flows: (1) slow repetition rate (1 to 5 Hz), (2) poor spatial resolution (0.5x0.3x0.3 cu mm), and (3) marginal time resolution. Most of these shortcomings are due to the use of visible wavelength flash-lamp pumped dye lasers. The advent of UV excimer laser allows the possibility of dramatic improvements in the single-pulse, vibrational Raman scattering. The excimer based VRS probe will greatly improve repetition rate (100 to 500 Hz), spatial resolution (0.1x0.1x0.1 cu mm) and time resolution (30ns). These improvements result from the lower divergence of the UV excimer, higher repetition rate, and the increased Raman cross-sections (15 to 20 times higher) at ultra-violet (UV) wavelengths. With this increased capability, single-pulse vibrational Raman scattering promises to be an ideal non-intrusive probe for the study of hypersonic propulsion flows.

  14. Formaldehyde Absorption toward W51

    SciTech Connect

    Kogut, A.; Smoot, G.F.; Bennett, C.L.; Petuchowski, S.J.

    1988-04-01

    We have measured formaldehyde (H{sub 2}CO) absorption toward the HII region complex W51A (G49.5-0.4) in the 6 cm and 2 cm wavelength rotational transitions with angular resolution of approximately 4 inch. The continuum HII region shows a large, previously undetected shell structure 5.5 pc along the major axis. We observe no H{sub 2}CO emission in regions of low continuum intensity. The absorption, converted to optical depth, shows a higher degree of clumping than previous maps at lower resolution. The good S/N of the maps allows accurate estimation of the complicated line profiles, showing some of the absorbing clouds to be quite patchy. We list the properties of the opacity spectra for a number of positions both in the clumps and in the more diffuse regions of the absorbing clouds, and derive column densities for the 1{sub 11} and 2{sub 12} rotational levels of ortho-formaldehyde.

  15. Intercomparison of Formaldehyde Measurements during BEACHON ROCS 2010

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Digangi, J. P.; Schnitzhofer, R.; Herdlinger-Blatt, I. S.; Karl, T.; Graus, M.; Turnipseed, A.; Keutsch, F. N.; Hansel, A.; Beachon-Rocs Science Team

    2011-12-01

    The BEACHON (Biosphere-hydrosphere-atmosphere-interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen) long term research initiative was established to shed light on sources, sinks and the atmospheric fate of organic aerosol and precursor gases. The BEACHON-Rocky mountain Organic Carbon Study (BEACHON-ROCS) focused on the biosphere-atmosphere exchange of reactive organic gases in a rural coniferous forest northwest of Colorado Springs, CO, during August 2010. Formaldehyde (HCHO) is an important tracer of VOC oxidation as it is formed during atmospheric oxidation of biogenic VOCs such as isoprene and other terpenes. Here we present measurements of formaldehyde conducted by two independent instruments, the Madison Fiber Laser Induced Flourescence (FILIF) Instrument and a Proton Transfer Reaction Time of Flight mass spectrometer (PTR-TOF-MS). Both instruments simultaneously measured HCHO concentrations at high temporal resolution potentially allowing for eddy covariance flux calculations. The comparison between FILIF and PTR-TOF-MS suggests generally good agreement.

  16. Formaldehyde and acetaldehyde emissions from residential wood combustion in Portugal

    NASA Astrophysics Data System (ADS)

    Cerqueira, Mário; Gomes, Luís; Tarelho, Luís; Pio, Casimiro

    2013-06-01

    A series of experiments were conducted to characterize formaldehyde and acetaldehyde emissions from residential combustion of common wood species growing in Portugal. Five types of wood were investigated: maritime pine (Pinus pinaster), eucalyptus (Eucalyptus globulus), cork oak (Quercus suber), holm oak (Quercus rotundifolia) and pyrenean oak (Quercus pyrenaica). Laboratory experiments were performed with a typical wood stove used for domestic heating in Portugal and operating under realistic home conditions. Aldehydes were sampled from diluted combustion flue gas using silica cartridges coated with 2,4-dinitrophenylhydrazine and analyzed by high performance liquid chromatography with diode array detection. The average formaldehyde to acetaldehyde concentration ratio (molar basis) in the stove flue gas was in the range of 2.1-2.9. Among the tested wood types, pyrenean oak produced the highest emissions for both formaldehyde and acetaldehyde: 1772 ± 649 and 1110 ± 454 mg kg-1 biomass burned (dry basis), respectively. By contrast, maritime pine produced the lowest emissions: 653 ± 151 and 371 ± 162 mg kg-1 biomass (dry basis) burned, respectively. Aldehydes were sampled separately during distinct periods of the holm oak wood combustion cycles. Significant variations in the flue gas concentrations were found, with higher values measured during the devolatilization stage than in the flaming and smoldering stages.

  17. Indoor air quality study of forty east Tennessee homes

    SciTech Connect

    Hawthorne, A.R.; Gammage, R.B.; Dudney, C.S.; Hingerty, B.E.; Schuresko, D.D.; Parzyck, D.C.; Womack, D.R.; Morris, S.A.; Westley, R.R.; White, D.A.

    1984-12-01

    Over a one-year period, measurements of indoor air pollutants (CO/sub x/, NO/sub x/, formaldehyde, volatile organics, particulates, and radon) were made in 40 homes in East Tennessee. The houses were of various ages with different types of insulation and heating. Over one-half of the houses exceeded the ASHRAE indoor ceiling guideline of 0.1 ppM for formaldehyde on at least one occasion. Over the duration of the study, older houses averaged 0.04 ppM of formaldehyde while houses less than 5 years old averaged 0.08 ppM (P < 0.01). The highest concentration of formaldehyde measured was 0.4 ppM in a new home. Diurnal and seasonal fluctuations in levels of formaldehyde in some homes were as much as twofold and tenfold, respectively. The highest levels of formaldehyde were usually recorded during summer months. The concentration in indoor air of various organics was at least tenfold higher than in outdoor air. Carbon monoxide and nitrgen oxides were usually <2 and <0.02 ppM, respectively, except when gas stoves or kerosene space heaters were operating, or when a car was running in the garage. In 30% of the houses, the annual indoor guideline for radon, 4 pCi/L, was exceeded. The mean radon level in houses built on the ridgelines was 4.4 pCi/L, while houses located in the valleys had a mean level of 1.7 pCi/L (P < 0.01). The factor having the most impact on infiltration was operation of the central duct fan of the heating, ventilation, and air conditioning system. The mean rate of air exchange increased from 0.39 to 0.74 h/sup -1/ when the duct fan was operated (measurements prior to December 1982). This report presents the study design and implementation, describes the monitoring protocols, and provides a complete set of the data collected during the project. 25 references, 29 figures, 42 tables.

  18. Low-Dose Formaldehyde Delays DNA Damage Recognition and DNA Excision Repair in Human Cells

    PubMed Central

    Luch, Andreas; Frey, Flurina C. Clement; Meier, Regula; Fei, Jia; Naegeli, Hanspeter

    2014-01-01

    Objective Formaldehyde is still widely employed as a universal crosslinking agent, preservative and disinfectant, despite its proven carcinogenicity in occupationally exposed workers. Therefore, it is of paramount importance to understand the possible impact of low-dose formaldehyde exposures in the general population. Due to the concomitant occurrence of multiple indoor and outdoor toxicants, we tested how formaldehyde, at micromolar concentrations, interferes with general DNA damage recognition and excision processes that remove some of the most frequently inflicted DNA lesions. Methodology/Principal Findings The overall mobility of the DNA damage sensors UV-DDB (ultraviolet-damaged DNA-binding) and XPC (xeroderma pigmentosum group C) was analyzed by assessing real-time protein dynamics in the nucleus of cultured human cells exposed to non-cytotoxic (<100 μM) formaldehyde concentrations. The DNA lesion-specific recruitment of these damage sensors was tested by monitoring their accumulation at local irradiation spots. DNA repair activity was determined in host-cell reactivation assays and, more directly, by measuring the excision of DNA lesions from chromosomes. Taken together, these assays demonstrated that formaldehyde obstructs the rapid nuclear trafficking of DNA damage sensors and, consequently, slows down their relocation to DNA damage sites thus delaying the excision repair of target lesions. A concentration-dependent effect relationship established a threshold concentration of as low as 25 micromolar for the inhibition of DNA excision repair. Conclusions/Significance A main implication of the retarded repair activity is that low-dose formaldehyde may exert an adjuvant role in carcinogenesis by impeding the excision of multiple mutagenic base lesions. In view of this generally disruptive effect on DNA repair, we propose that formaldehyde exposures in the general population should be further decreased to help reducing cancer risks. PMID:24722772

  19. Influences of ambient air PM₂.₅ concentration and meteorological condition on the indoor PM₂.₅ concentrations in a residential apartment in Beijing using a new approach.

    PubMed

    Han, Yang; Qi, Meng; Chen, Yilin; Shen, Huizhong; Liu, Jing; Huang, Ye; Chen, Han; Liu, Wenxin; Wang, Xilong; Liu, Junfeng; Xing, Baoshan; Tao, Shu

    2015-10-01

    PM2.5 concentrations in a typical residential apartment in Beijing and immediately outside of the building were measured simultaneously during heating and non-heating periods. The objective was to quantitatively explore the relationship between indoor and outdoor PM2.5 concentrations. A statistical method for predicting indoor PM2.5 concentrations was proposed. Ambient PM2.5 concentrations were strongly affected by meteorological conditions, especially wind directions. A bimodal distribution was identified during the heating season due to the frequent and rapid transition between severe pollution events and clean days. Indoor PM2.5 concentrations were significantly correlated with outdoor PM2.5 concentrations but with 1-2 h delay, and the differences can be explained by ambient meteorological features, such as temperature, humidity, and wind direction. These results indicate the potential to incorporate indoor exposure features to the regional air quality model framework and to more accurately estimate the epidemiological relationship between human mortality and air pollution exposure.

  20. Minimum detectable activity concentration in direct alpha spectrometry from outdoor air samples: continuous monitoring versus separate sampling and counting.

    PubMed

    Pöllänen, R; Siiskonen, T

    2006-02-01

    Rapid method for identifying the presence of alpha particle emitting radionuclides in outdoor air is of paramount importance should a nuclear or radiological incident occur. Minimum detectable activity concentrations of U, U, Pu, and Pu in outdoor air are calculated for two direct alpha spectrometry methods: continuous air monitoring is compared with separate sampling and subsequent alpha particle counting in a vacuum chamber. The radon progeny activity concentration typical for outdoor air and the effects for the alpha particle spectra caused by the properties of the filter and the aerosol particles are taken into account using measurements and Monte Carlo simulations. Continuous air monitoring is a faster method for identifying the presence of (trans)uranium elements when their activity concentration is considerably higher than the typical detection limit. Separate sampling and counting in a vacuum chamber is a more sensitive method when concentrations are close to the detection limit and when the duration of the sampling-counting cycle is greater than approximately 2 h. The method may serve as a tool for rapid field measurements.

  1. Volatile methyl siloxanes (VMS) concentrations in outdoor air of several Catalan urban areas

    NASA Astrophysics Data System (ADS)

    Gallego, E.; Perales, J. F.; Roca, F. J.; Guardino, X.; Gadea, E.

    2017-04-01

    Volatile methyl siloxanes (VMS) were evaluated in ten Catalan urban areas with different industrial impacts, such as petrochemical industry, electrical and mechanical equipment, metallurgical and chemical industries, municipal solid waste treatment plant and cement and food industries, during 2013-2015. 24 h samples were taken with LCMA-UPC pump samplers specially designed in our laboratory, with a flow range of 70 ml min-1. A sorbent-based sampling method, successfully developed to collect a wide-range of VOC, was used. The analysis was performed by automatic thermal desorption coupled with capillary gas chromatography/mass spectrometry detector. The presented methodology allows the evaluation of VMS together with a wide range of other VOC, increasing the number of compounds that can be determined in outdoor air quality assessment of urban areas. This aspect is especially relevant as a restriction of several VMS (D4 and D5) in consumer products has been made by the European Chemicals Agency and US EPA is evaluating to include D4 in the Toxic Substances Control Act, regarding the concern of the possible effects of these compounds in human health and the environment. ΣVMS concentrations (L2-L5, D3-D6 and trimethylsilanol) varied between 0.3 ± 0.2 μg m-3 and 18 ± 12 μg m-3, determined in a hotspot area. Observed VMS concentrations were generally of the same order of magnitude than the previously determined in Barcelona, Chicago and Zurich urban areas, but higher than the published from suburban sites and Arctic locations. Cyclic siloxanes concentrations were up to two-three orders of magnitude higher than those of linear siloxanes, accounting for average contributions to the total concentrations of 97 ± 6% for all samples except for the hotspot area, where cyclic VMS accounted for 99.9 ± 0.1%. D5 was the most abundant siloxane in 5 sampling points; however, differing from the generally observed in previous studies, D3 was the most abundant compound in the

  2. Liquid products from oxidative thermal treatment of oil sludge with different oxygen concentrations of air.

    PubMed

    Shie, J L; Chang, C Y; Lin, J P; Le, D J; Wu, C H

    2001-01-01

    Oxidative thermal treatment of oil sludge with different oxygen concentrations of air by using a dynamic thermogravimetric (TG) reaction system is investigated. The experimental conditions employed are: gas flow rate of 50 cm3/min (value at 298 K) for 300 mg dry waste, a constant heating rate of 5.2 K/min, the oxygen concentrations in air of 1.09, 8.62 and 20.95 vol. % O2, and the temperature (T) range of 378-873 K. From the experimental results, the residual mass fractions (M) are about 78.95, 28.49, 8.77 and 4.13 wt. % at the oxidative T of 563, 713, 763 and 873 K for the case with 20.95 vol. % O2, respectively. The values of M with 8.62 and 1.09 vol. % O2 at T of 873 K are 4.87 and 9.44 wt. %, respectively. The distillation characteristics of the oil portion of liquid products (condensates of gas at 298 K) from the oxidative thermal treatment of oil sludge with 20.95 vol. % O2 at T of 378-873 K is close to those of commercial gasoline. Nevertheless, the liquid product contains a large amount of water. The distillation characteristics of the oil portions of liquid products with 8.62 and 1.09 vol. % O2 at T of 378-873 K are close to those of diesel and fuel oils, respectively. The oil quality with 8.62 vol. % O2 is better than that with 1.09 vol. % O2. However, the liquid product with 8.62 vol. % O2 still contains a large amount of water; nonetheless, that with 1.09 vol. % O2 is with negligible water. Compared with the oil product of nitrogen pyrolysis, the oil quality with 1.09 vol. % O2 is better. Certainly, low oxygen conditions (i.e. 1.09 vol. % O2) not only accelerate the thermal reaction of oil sludge, but also at the same time avoid or reduce the production of water. Further, from the analysis of benzene (B), ethylbenzene (E), toluene (T) and iso-xylene (X) concentrations of the oil portion of liquid products, the BETX concentrations of oil with 20.95 vol. % O2 are higher than those with 8.62 and 1.09 vol. % O2. The yields of liquid products with 20.95, 8

  3. Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring.

    PubMed

    Kudo, Hiroyuki; Suzuki, Yuki; Gessei, Tomoko; Takahashi, Daishi; Arakawa, Takahiro; Mitsubayashi, Kohji

    2010-10-15

    An ultrahigh-sensitive fiber-optic biochemical gas sensor (bio-sniffer) for continuous monitoring of indoor formaldehyde was constructed and tested. The bio-sniffer measures gaseous formaldehyde as fluorescence of nicotinamide adenine dinucleotide (NADH), which is the product of formaldehyde dehydrogenase (FALDH) reaction. The bio-sniffer device was constructed by attaching a flow cell with a FALDH immobilized membrane onto a fiber-optic NADH measurement system. The NADH measurement system utilizes an ultraviolet-light emitting diode (UV-LED) with peak emission of 335 nm as an excitation light source. The excitation light was introduced to an optical fiber probe, and fluorescence emission of neighboring NADH, which was produced by applying formaldehyde vapor to the FALDH membrane, was concentrically measured with a photomultiplier tube. Assessment of the bio-sniffer was carried out using a standard gas generator. Response, calibration range and selectivity to other chemical substances were investigated. Circulating phosphate buffer, which contained NAD+, available for continuous monitoring of formaldehyde vapor. The calibration range of the bio-sniffer was 2.5 ppb to 10 ppm, which covers the guideline value of the World Health Organization (80 ppb). High selectivity to other gaseous substances due to specific activity of FALDH was also confirmed. Considering its high sensitivity, a possible application of the bio-sniffer is continuous indoor formaldehyde monitoring to provide healthy residential atmosphere.

  4. Formaldehyde removal by common indoor plant species and various growing media

    NASA Astrophysics Data System (ADS)

    Aydogan, Ahu; Montoya, Lupita D.

    2011-05-01

    Three porous materials (growstone, expanded clay and activated carbon) were evaluated as hydroponic growing media and for their individual ability to remove the indoor volatile organic compound formaldehyde under three conditions: growing medium alone, dry medium in a pot, and wet medium in a pot. The total percent-reduction of formaldehyde by each growing media was evaluated over a 10-h period. In all cases, activated carbon achieved the highest removal under the three conditions studied with average percent reductions measured at about 98%. Four common interior plants: Hedera helix (English ivy), Chrysanthemum morifolium (pot mum), Dieffenbachia compacta (dump cane) and Epipremnum aureum (golden pathos) growing in growstone were then tested for their ability to remove formaldehyde. The removal capacity of the aerial plant parts (AP), the root zone (RZ) and the entire plant (EP) growing in growstone were determined by exposing the relevant parts to gaseous formaldehyde (˜2000 μg m -3) in a closed chamber over a 24-h period. The removal efficiency between species and plant parts were compared by determining the time interval required to decrease about 2/3 of the total formaldehyde concentration reduction, T 2/3. The T 2/3 measured were 23, 30, 34 and 56 min for EP of C. morifolium, E. aureum, D. compacta and H. helix, respectively. The formaldehyde removal by the root zone was found to be more rapid than the removal by the aerial plant parts.

  5. Detailed industrial hygiene survey formaldehyde production, Celanese Chemical Company, Inc. , Bishop, Texas

    SciTech Connect

    Dunn, D.W.; Johnson, M.L.; Holmes, L.; Hedley, W.H.; Barrett, G.J.

    1983-11-01

    A survey to assess techniques to control occupational exposure to formaldehyde (50000) and methanol (67561) was conducted at the Celanese Chemical Company (SIC-2819) formaldehyde production unit at Bishop, Texas, in October 1982. Occupational exposure to formaldehyde was expected to be low since the production process was isolated and enclosed, except for the process sample, and the loading and discharge points. Other control measures included water scrubbers on the formaldehyde storage tanks, enclosed ventilation systems, natural ventilation, and the use of personal protective equipment. The results of analysis of the formaldehyde samples were considered unreliable and were discarded. Breathing zone samples of methanol showed generally low concentrations. It was noted that since methanol was produced at the facility and the necessity of unloading trucks or rail cars was eliminated, a major source of methanol exposure was eliminated. The authors conclude that the workers are not overexposed to methanol on a short or long term basis. Due to the lack of analytical data, no conclusions concerning formaldehyde exposure could be drawn; however, engineering controls appear to be effective.

  6. Assessing the impact of the forthcoming decrease in diesel exhaust particulate matter emissions on air quality: implications for black carbon concentrations in ambient air

    NASA Astrophysics Data System (ADS)

    González, Y.; Rodríguez, S.; Cuevas, E.; Ramos, R.; Abreu-Afonso, J.; Baldasano, J. M.

    2009-04-01

    Forthcoming regulations (e.g. EURO 5 and EURO 6) are planned to reduce particulate matter emissions (PM) in the exhaust of forthcoming vehicles. In this study we assess the impact of such reduction in the diesel PM exhaust emissions on the urban ambient air PM concentrations. This has been done by studying the relationship between black carbon (BC) and carbon monoxide (CO) in urban ambient air and in the exhaust of current and forthcoming vehicles. The slope of the BC-vs-CO linear relationship is mainly affected by the percentage (%) of diesel automobiles in the urban vehicles fleet. This slope is a better indicator of the diesel PM emissions than bulk BC concentrations in urban ambient air. BC-vs-CO slopes within the range 1-3 and 7-14 ngBC/µgCO are typically observed in urban areas with low (<25%) and high (≥50%) proportions of diesel-fuel consumption for on road transportation, respectively. The entry into force of forthcoming regulations will decrease the BC-vs-CO slope in urban ambient air from about 10 to 5 ngBC/µgCO in the next decade, according to calculations based on the current data on diesel vehicles in urban fleets in Spanish cities. However, this will not necessary prompt a significant decrease in the urban BC concentrations if road traffic volume follows the increasing trend of the last decade. The results of this study shows that the analysis of the BC-vs-CO slope trend in ambient air is an useful tool for understanding the involvement "of the changes in the vehicle exhaust emissions rates" and "of the changes in the road traffic volume" in the BC and PMx trends in urban ambient air.

  7. Introduction to Indoor Air Quality

    MedlinePlus

    ... Building materials and furnishings as diverse as: Deteriorated asbestos-containing insulation Newly installed flooring, upholstery or carpet ... more about indoor air pollutants and sources of: Asbestos Biological Pollutants Carbon Monoxide (CO) Formaldehyde/Pressed Wood ...

  8. Effect of the implosion and demolition of a hospital building on the concentration of fungi in the air.

    PubMed

    Barreiros, Gloria; Akiti, Tiyomi; Magalhães, Ana Cristina Gouveia; Nouér, Simone A; Nucci, Marcio

    2015-12-01

    Building renovations increase the concentration of Aspergillus conidia in the air. In 2010, one wing of the hospital building was imploded due to structural problems. To evaluate the impact of building implosion on the concentration of fungi in the air, the demolition was performed in two phases: mechanical demolition of 30 m of the building, followed by implosion of the wing. Patients at high risk for aspergillosis were placed in protected wards. Air sampling was performed during mechanical demolition, on the day of implosion and after implosion. Total and specific fungal concentrations were compared in the different areas and periods of sampling, using the anova test. The incidence of IA in the year before and after implosion was calculated. The mean concentration of Aspergillus increased during mechanical demolition and on the day of implosion. However, in the most protected areas, there was no significant difference in the concentration of fungi. The incidence of invasive aspergillosis (cases per 1000 admissions) was 0.9 in the 12 months before, 0.4 during, and 0.5 in the 12 months after mechanical demolition (P > 0.05). Continuous monitoring of the quality of air and effective infection control measures are important to minimize the impact of building demolition.

  9. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    NASA Astrophysics Data System (ADS)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  10. IRIS Toxicological Review of Formaldehyde (Inhalation) ...

    EPA Pesticide Factsheets

    UPDATE EPA is currently revising its Integrated Risk Information System (IRIS) assessment of formaldehyde to address the 2011 NAS peer review recommendations. This assessment addresses both noncancer and cancer human health effects that are relevant to assessing the risks from chronic inhalation exposure to formaldehyde. To facilitate discussion of several scientific issues pertinent to the assessment, EPA convened a state-of-the-science workshop on April 30 and May 1, 2014. This workshop focused on the following three themes: Evidence pertaining to the influence of formaldehyde that is produced endogenously (by the body during normal biological processes) on the toxicity of inhaled formaldehyde, and implications for the health assessment; Mechanistic evidence relevant to formaldehyde inhalation exposure and lymphohematopoietic cancers (leukemia and lymphomas); and Epidemiological research examining the potential association between formaldehyde exposure and lymphohematopoietic cancers (leukemia and lymphomas). June 2010: EPA is conducting an independent expert peer review by the National Academy of Sciences and public comment of the scientific basis supporting the human health hazard and dose-response assessment of Formaldehyde-Inhalation that when finalized will appear on the Integrated Risk Information System (IRIS) database. This draft IRIS health assessment addresses both noncancer and cancer human health effects that may result from chronic inhal

  11. BTEX air concentrations and self-reported common health problems in gasoline sellers from Cotonou, Benin.

    PubMed

    Tohon, Honesty Gbèdolo; Fayomi, Benjamin; Valcke, Mathieu; Coppieters, Yves; Bouland, Catherine

    2015-01-01

    To examine the relation between BTEX exposure levels and common self-reported health problems in 140 gasoline sellers in Cotonou, Benin, a questionnaire documenting their socioeconomic status and their health problems was used, whereas 18 of them went through semi-directed qualitative individual interviews and 17 had air samples taken on their workplace for BTEX analysis. Median concentrations for BTEX were significantly lower on official (range of medians: 54-207 μg/m³, n = 9) vs unofficial (148-1449 μg/m³, n = 8) gasoline-selling sites (p < 0.05). Self-reported health problems were less frequently reported in sellers from unofficial vs official selling sites (p < 0.05), because, as suggested by the semi-directed interviews, of their fear of losing their important, but illegal, source of income. Concluding, this study has combined quantitative and qualitative methodological approaches to account for the complex socioeconomic and environmental conditions of the investigated sellers, leading to their, in some cases, preoccupying BTEX exposure.

  12. Imaging DOAS detection of primary formaldehyde and sulfur dioxide emissions from petrochemical flares

    NASA Astrophysics Data System (ADS)

    Pikelnaya, Olga; Flynn, James H.; Tsai, Catalina; Stutz, Jochen

    2013-08-01

    areas with a high number of petrochemical facilities are often struggling to meet current and future air quality standards. The Houston-Galveston area, for example, continues to be in noncompliance with the U.S. federal air quality standard of ozone, despite significant progress in mitigating air pollution. In recent years, the magnitude and role of primary emissions of ozone-forming chemicals, and in particular formaldehyde, from flares in petrochemical facilities have been discussed as a potential factor contributing to ozone formation. However, no direct observations of flare emissions of formaldehyde have thus far been reported. Here we present observations of formaldehyde and sulfur dioxide emissions from petrochemical flares in the Houston-Galveston area during the 2009 Formaldehyde and Olefin from Large Industrial Sources campaign using a new imaging differential optical absorption spectrometer (I-DOAS). Formaldehyde emissions from burning flares were observed directly above the flare stack and ranged from 0.2 to 8.5 kg/h. Unlit flares were found not to emit formaldehyde. SO2 emission rates from a burning acid gas flare ranged between 2 and 4 kg/h. None of the sampled flares coemitted HCHO and SO2. Comparison of the emission fluxes measured by the I-DOAS instrument with those from emission inventories and with fluxes calculated from plumes detected by the long-path DOAS over downtown Houston shows that the flares observed by the I-DOAS were relatively small. While burning flares clearly emit HCHO, a larger observational database is needed to assess the importance of flare emissions for ozone formation.

  13. Modeling the uptake of neutral organic chemicals on XAD passive air samplers under variable temperatures, external wind speeds and ambient air concentrations (PAS-SIM).

    PubMed

    Armitage, James M; Hayward, Stephen J; Wania, Frank

    2013-01-01

    The main objective of this study was to evaluate the performance and demonstrate the utility of a fugacity-based model of XAD passive air samplers (XAD-PAS) designed to simulate the uptake of neutral organic chemicals under variable temperatures, external wind speeds and ambient air concentrations. The model (PAS-SIM) simulates the transport of the chemical across the air-side boundary layer and within the sampler medium, which is segmented into a user-defined number of thin layers. Model performance was evaluated using data for polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) from a field calibration study (i.e., active and XAD-PAS data) conducted in Egbert, Ontario, Canada. With some exceptions, modeled PAS uptake curves are in good agreement with the empirical PAS data. The results are highly encouraging, given the uncertainty in the active air sampler data used as input and other uncertainties related to model parametrization (e.g., sampler-air partition coefficients, the influence of wind speed on sampling rates). The study supports the further development and evaluation of the PAS-SIM model as a diagnostic (e.g., to aid interpretation of calibration studies and monitoring data) and prognostic (e.g., to inform design of future passive air sampling campaigns) tool.

  14. Volatile organic compounds (VOC), formaldehyde and nitrogen dioxide (NO2) in schools in Johor Bahru, Malaysia: Associations with rhinitis, ocular, throat and dermal symptoms, headache and fatigue.

    PubMed

    Norbäck, Dan; Hashim, Jamal Hisham; Hashim, Zailina; Ali, Faridah

    2017-03-15

    This paper studied associations between volatile organic compounds (VOC), formaldehyde, nitrogen dioxide (NO2) and carbon dioxide (CO2) in schools in Malaysia and rhinitis, ocular, nasal and dermal symptoms, headache and fatigue among students. Pupils from eight randomly selected junior high schools in Johor Bahru, Malaysia (N=462), participated (96%). VOC, formaldehyde and NO2 were measured by diffusion sampling (one week) and VOC also by pumped air sampling during class. Associations were calculated by multi-level logistic regression adjusting for personal factors, the home environment and microbial compounds in the school dust. The prevalence of weekly rhinitis, ocular, throat and dermal symptoms were 18.8%, 11.6%, 15.6%, and 11.1%, respectively. Totally 20.6% had weekly headache and 22.1% fatigue. Indoor CO2 were low (range 380-690 ppm). Indoor median NO2 and formaldehyde concentrations over one week were 23μg/m(3) and 2.0μg/m(3), respectively. Median indoor concentration of toluene, ethylbenzene, xylene, and limonene over one week were 12.3, 1.6, 78.4 and 3.4μg/m(3), respectively. For benzaldehyde, the mean indoor concentration was 2.0μg/m(3) (median<1μg/m(3)). Median indoor levels during class of benzene and cyclohexane were 4.6 and 3.7μg/m(3), respectively. NO2 was associated with ocular symptoms (p<0.001) and fatigue (p=0.01). Formaldehyde was associated with ocular (p=0.004), throat symptoms (p=0.006) and fatigue (p=0.001). Xylene was associated with fatigue (p<0.001) and benzaldehyde was associated with headache (p=0.03). In conclusion, xylene, benzaldehyde, formaldehyde and NO2 in schools can be risk factors for ocular and throat symptoms and fatigue among students in Malaysia. The indoor and outdoor levels of benzene were often higher than the EU standard of 5μg/m(3).

  15. Weekday/Weekend Differences in Ambient Concentrations of Primary and Secondary Air Pollutants

    NASA Astrophysics Data System (ADS)

    Blanchard, C. L.

    2004-12-01

    We evaluated the differences between mean day-of-week ambient concentrations of ozone precursors, ozone, and other secondary species using 1998-2003 ambient air-pollutant data from monitoring sites in 23 states in New England, the Midwest, the mid-Atlantic, and isolated urban areas in the western and southern U.S. For CO, NO, and NOx, we examined different times and averaging intervals: hourly (6 am and noon), three-hour averages (6-9 am, 9 am-12 noon, 12 noon-3 pm), and nine-hour daytime averages (6 am-3 pm). The median decreases at 6 am and noon bracketed the median daytime (6 am to 3 pm) decreases and closely represented the decreases occurring for the 3-hour averaging times 6 am-9 am and 12 noon-3 pm. In all areas and at both 6 am and noon, substantial declines in ambient concentrations of NO, NO2, and NOx occurred on weekends. Relative to Wednesdays, the median declines in 6 am Sunday ambient NO and NOx levels were 70.6 percent (interquartile [IQ] range 60.3-77.9 percent) and 57.5 percent (IQ range 47.2-63.4 percent), respectively; the median declines of 6 am Saturday NO and NOx levels were 52.7 percent (IQ range 40.8 to 61.8) and 40.1 percent (IQ range 33.0 to 48.1), respectively (204 sites with NO, NO2, and/or NOx). Most decreases were statistically significant (e.g., 173 NO sites, 170 with lower 6 am concentrations on Sundays than on Wednesdays, 153 statistically significant [p<0.01] decreases). The median decreases in ambient CO concentrations were smaller than those for NO and NOx. Relative to Wednesdays, the median declines in 6 am ambient CO levels at 227 monitors were 41.5 percent (IQ range 30.6 to 53.0) on Sundays and 28.1 percent (IQ range 20.7 to 36.6) on Saturdays. Most decreases were statistically significant (e.g., 227 sites, 220 with lower 6 am concentrations on Sundays than on Wednesdays, 202 statistically significant [p<0.01] decreases). For PAMS hydrocarbon data, day-of-week means were determined for the 9 am-3 pm ambient concentrations of

  16. Optimal Modeling of Urban Ambient Air Ozone Concentration Based on Its Precursors' Concentrations and Temperature, Employing Genetic Programming and Genetic Algorithm.

    PubMed

    Mousavi, Seyed Mahmoud; Husseinzadeh, Danial; Alikhani, Sadegh

    2014-04-01

    Efficient models are required to predict the optimum values of ozone concentration in different levels of its precursors' concentrations and temperatures. A novel model based on the application of a genetic programming (GP) optimization is presented in this article. Ozone precursors' concentrations and run time average temperature have been chosen as model's parameters. Generalization performances of two different homemade models based on genetic programming and genetic algorithm (GA), which can be used for calculating theoretical ozone concentration, are compared with conventional semi-empirical model performance. Experimental data of Mashhad city ambient air have been employed to investigate the prediction ability of properly trained GP, GA, and conventional semi-empirical models. It is clearly demonstrated that the in-house algorithm which is used for the model based on GP, provides better generalization performance over the model optimized with GA and the conventional semi-empirical ones. The proposed model is found accurate enough and can be used for urban air ozone concentration prediction.

  17. [Examination related to revised test method for determination of formaldehyde, regulated by the law for the control of household products containing harmful substances].

    PubMed

    Ikarashi, Yoshiaki; Kaniwa, Masa-aki; Tsuchiya, Toshie

    2003-01-01

    In Japan, the amount of formaldehyde in textile products was regulated by the low for the control of household products containing harmful substances. Formaldehyde was determined by measuring the optical density of acetylacetone derivative of formaldehyde extracted from textiles. The household products low stated that the increase in the optical density of color development of the extract from the textile products for babies or infants within 24 months after birth should not be more than 0.05. Collaborative study decided the amount of formaldehyde equivalent to the increase in absorbance described above, and the amount was 16 ppm. There are some reports that formaldehyde causes an allergic reaction even at a very low concentration, so continuous regulation for formaldehyde in the textiles was desirable using this level of amount. We developed HPLC method for the determination of formaldehyde in textile products. Formaldehyde was determined by the direct injection of acetylacetone derivative of samples into the system equipped with ODS column and UV-VIS detector (detection wavelength 413 nm) using the mixture of acetonitrile and water as mobile phase. The linearity was obtained between a peak area or height and the concentrations of formaldehyde solution in the range of 0.0625-2 micrograms/ml. The regulation level was sufficiently detected by the present HPLC method. We recommended that the HPLC test was adopted as a reexamination method for the products may violate the regulation as well as a dimedone test.

  18. Background concentrations of individual and total volatile organic compounds in residential indoor air of Schleswig-Holstein, Germany.

    PubMed

    Hippelein, Martin

    2004-09-01

    During a monitoring campaign concentrations of volatile organic compounds (VOCs) were measured in indoor air of 79 dwellings where occupants had not complained about health problems or unpleasant odour. Parameters monitored were the individual concentration of 68 VOCs and the total concentration of all VOCs inside the room. VOCs adsorbed by Tenax TA were then analysed by means of thermal desorption, gas chromatography and mass spectrometry. The analytical procedure and quantification was done according to the recommendation of the ECA-IAQ Working Group 13 which gave a definition of the total volatile organic compound (TVOC) concentration. Using this recommendation TVOC-concentrations ranged between 33 and 1600 microg m(-3) with a median of 289 microg m(-3). Compounds found in every sample and with the highest concentrations were 2-propanol, alpha-pinene and toluene. Save for a few samples, all concentrations measured have been a factor 2 to 10 lower, compared to data from similar studies. Only a few terpenes and aldehydes were found exceeding published reference data or odour threshold concentrations. However, it has been found that sampling and analysing methods do have a considerable impact on the results, making direct comparisons of studies somewhat questionable. 47% of all samples revealed concentrations exceeding the threshold value of 300 microg TVOC m(-3) set by the German Federal Environmental Agency as a target for indoor air quality. Using the TVOC concentration as defined in the ECA-IAQ methodology is instrumental in assessing exposure to VOCs and identifying sources of VOCs. The background concentrations determined in this study can be used to discuss and interpret target values for individual and total volatile organic compounds in indoor air.

  19. Seasonal variability of tritium and ion concentrations in rain at Kumamoto, Japan and back-trajectory analysis of air mass

    SciTech Connect

    Momoshima, N.; Sugihara, S.; Toyoshima, T.; Nagao, Y.; Takahashi, M.; Nakamura, Y.

    2008-07-15

    Tritium and major ion concentrations in rain were analyzed in Kumamoto (Japan)) between 2001 and 2006 to examine present tritium concentration and seasonal variation. The average tritium concentration was 0.36 {+-} 0.19 Bq/L (n=104) and higher tritium concentrations were observed in spring than the other seasons. Among the ions, non-sea-salt (nss) SO{sub 4}{sup 2}'- showed higher concentration in winter while other ions did not show marked increase in winter. Based on the back-trajectory analyses of air masses, the increase in tritium concentrations in spring arises from downward movement of naturally produced tritium from stratosphere to troposphere, while the increase of the nss-SO{sub 4}{sup 2-} concentrations in winter is due to long range transport of pollutants from China to Japan. (authors)

  20. Reduced European emissions of S and N--effects on air concentrations, deposition and soil water chemistry in Swedish forests.

    PubMed

    Pihl Karlsson, Gunilla; Akselsson, Cecilia; Hellsten, Sofie; Karlsson, Per Erik

    2011-12-01

    Changes in sulphur and nitrogen pollution in Swedish forests have been assessed in relation to European emission reductions, based on measurements in the Swedish Throughfall Monitoring Network. Measurements were analysed over 20 years with a focus on the 12-year period 1996 to 2008. Air concentrations of SO(2) and NO(2), have decreased. The SO(4)-deposition has decreased in parallel with the European emission reductions. Soil water SO(4)-concentrations have decreased at most sites but the pH, ANC and inorganic Al-concentrations indicated acidification recovery only at some of the sites. No changes in the bulk deposition of inorganic nitrogen could be demonstrated. Elevated NO(3)-concentrations in the soil water occurred at irregular occasions at some southern sites. Despite considerable air pollution emission reductions in Europe, acidification recovery in Swedish forests soils is slow. Nitrogen deposition to Swedish forests continues at elevated levels that may lead to leaching of nitrate to surface waters.

  1. Urea formaldehyde foam: a dangerous insulation

    SciTech Connect

    Keough, C.

    1980-12-01

    Insulating a home with urea formaldehyde foam can lead to severe health problems due to poisoning from formaldehyde gas. Respiratory problems, allergies, memory loss, and mental problems can result from exposure to foam insulation fumes. Research is now under way at the Chemical Industry Inst., Univ. of Washington, and other institutions to learn more about the health effects of formaldehyde foam and to develop possible remedies to these problems. Several states are either banning or controlling the use of this type of home insulation.

  2. Hexapole transmission spectrum of formaldehyde oxide

    NASA Astrophysics Data System (ADS)

    Roeterdink, W. G.; Bulthuis, J.; Lee, E. P. F.; Ding, D.; Taatjes, C. A.

    2014-04-01

    In this theoretical study we explore the feasibility to obtain molecular properties of the Criegee intermediate formaldehyde oxide (CH2OO) with hexapole state selection. Ab-initio calculations yielding the rotational constants and dipole moments of formaldehyde oxide are used as input for the simulations. Subsequently the hexapole focusing spectra are simulated for the low field seeking states. The focusing curves are sensitive to the details of the dipole moment, suggesting that the hexapole can be a useful tool to study the molecular properties of formaldehyde oxide, or potentially to select CH2OO for molecular beam scattering or photodissociation measurements.

  3. Background Indoor Air Concentrations of Volatile Organic Compounds in North American Residences (1990 – 2005): A Compilation of Statistics for Assessing Vapor Intrusion

    EPA Pesticide Factsheets

    This technical report presents a summary of indoor air studies that measured background concentrations of VOCs in the indoor air of thousands of North American residences and an evaluation and compilation of their reported statistical information.

  4. Contributions of vehicular emissions and secondary formation to nitrous acid concentrations in ambient urban air in Tokyo in the winter.

    PubMed

    Nakashima, Yoshihiro; Sadanaga, Yasuhiro; Saito, Shinji; Hoshi, Junya; Ueno, Hiroyuki

    2017-03-15

    Nitrous acid (HONO) plays an important role in the formation of OH radicals, which are involved in photochemical oxidation. HONO concentrations in ambient air at urban sites have previously been measured, but very few studies have been performed in central Tokyo. In this study, HONO concentrations in ambient air in southeast central Tokyo (near Tokyo Bay) in winter were determined by incoherent cavity enhanced absorption spectroscopy. The O3, NO, NO2, and SO2 concentrations were simultaneously determined. The NO concentrations were used to classify the parts of the study period into types I (high pollution), II (medium pollution), and III (low pollution). The maximum HONO concentrations in the type I, II, and III periods were 7.1, 4.5, and 3.0ppbv, respectively. These concentrations were comparable to concentrations previously found in other Asian megacities. The mean HONO concentration varied diurnally, and HONO was depleted between 00:00 and 03:00 each day. The sampling site is surrounded by roads with high traffic loads, but vehicular emissions were estimated to contribute <10% of the HONO concentrations. Two positive and negative relative humidity dependences of the HONO to NO2 ratio were confirmed, implying the existence of the two different secondary formation process of HONO. The NO2 to HONO conversion rates at night in the type I, II, and III periods were 6.3×10(-3), 7.6×10(-3), and 4.2×10(-3)h(-1), respectively.

  5. Safe decontamination of hospital autopsy rooms and ventilation system by formaldehyde generation.

    PubMed

    Coldiron, V R; Janssen, H E

    1984-02-01

    Space decontamination was required prior to the onset of a remodeling project in the autopsy suite of a large university-hospital complex. The National Institutes of Health procedure using formaldehyde gas as a disinfectant was modified to decontaminate not only the three autopsy rooms but also the exhaust ductwork and the three associated air incinerators. Modifications included an automated formaldehyde gas generator, a smoke test procedure for leaks, and an exhausting technique. This procedure proved to be successful and has the advantage of including the safety features necessary to conduct such a potentially hazardous decontamination in an occupied hospital.

  6. Air contaminants in a submarine equipped with air independent propulsion.

    PubMed

    Persson, Ola; Ostberg, Christina; Pagels, Joakim; Sebastian, Aleksandra

    2006-11-01

    The Swedish Navy has operated submarines equipped with air independent propulsion for two decades. This type of submarine can stay submerged for periods far longer than other non-nuclear submarines are capable of. The air quality during longer periods of submersion has so far not been thoroughly investigated. This study presents results for a number of air quality parameters obtained during more than one week of continuous submerged operation. The measured parameters are pressure, temperature, relative humidity, oxygen, carbon dioxide, hydrogen, formaldehyde and other volatile organic compounds, ozone, nitrogen dioxide, particulate matter and microbiological contaminants. The measurements of airborne particles demonstrate that air pollutants typically occur at a low baseline level due to high air exchange rates and efficient air-cleaning devices. However, short-lived peaks with comparatively high concentrations occur, several of the sources for these have been identified. The concentrations of the pollutants measured in this study do not indicate a build-up of hazardous compounds during eight days of submersion. It is reasonable to assume that a substantial build-up of the investigated contaminants is not likely if the submersion period is prolonged several times, which is the case for modern submarines equipped with air independent propulsion.

  7. A brief review of control measures for indoor formaldehyde

    SciTech Connect

    Matthews, T.G.

    1988-01-01

    Indoor environments contain a variety of consumer and construction products that emit formaldehyde (CH/sub 2/O) vapor. The strongest CH/sub 2/O emitters are typically particleboard underlayment and industrial particleboard, hardwood plywood paneling, urea-formaldehyde foam insulation, and medium density fiberboard, all of which contain urea-formaldehyde (UF) resins. The contribution of individual products to indoor CH/sub 2/O levels depends on several parameters, including the quantity and age of the product, building ventilation rate, presence of permeation barriers, temperature (T), relative humidity (RH), and CH/sub 2/O vapor concentration resulting from all of the CH/sub 2/O emitters (1,3-8). Combustion sources (e.g., kerosene heaters, gas stoves and cigarettes), carpet and carpet padding, resilient flooring (e.g., linoleum), gypsum board, non-apparel and apparel textiles, ceiling tiles, fibrous glass insulation and softwood plywood subflooring are generally weak emitters that do not contribute significantly to steady-state, indoor CH/sub 2/O levels. Control measures exist to reduce CH/sub 2/O emissions from consumer and construction products during their manufacturer and in post-installation applications. This note summarized the effectiveness of the following subset of post-installation control measures: product aging, installations of permeation barriers (i.e., flooring) and increased building ventilation. 14 refs.

  8. Wintertime PM 2.5 concentrations during persistent, multi-day cold-air pools in a mountain valley

    NASA Astrophysics Data System (ADS)

    Silcox, Geoffrey D.; Kelly, Kerry E.; Crosman, Erik T.; Whiteman, C. David; Allen, Bruce L.

    2012-01-01

    In January and February 2011, PM 2.5 concentrations in residential and nonresidential areas of Salt Lake City, Utah, were elevated during days with persistent multi-day stable layers or cold-air pools (CAPs). Under most conditions the PM 2.5 concentrations and atmospheric stability increased with time during these events, so that the highest PM 2.5 concentrations were observed in long-lived CAPs. PM 2.5 concentrations were generally observed to decrease with increasing elevation and were linearly related to the pre-sunrise valley heat deficit, an instantaneous measure of atmospheric stability. Decreases of up to 30 percent were observed as elevation increased from 1300 to 1600 m. During the CAP episode of 23-30 January, concentrations of PM 2.5 increased roughly linearly with time at all elevations at the rate of about 6 μg (m 3 day) -1. Higher elevation sites also experienced more rapid influxes of clean air during the mix-out of a CAP on 16 January, although short-lived episodes of higher concentrations occurred at times when polluted air was carried upslope from the residual CAP that persisted at lower elevations.

  9. Comparison of background levels of culturable fungal spore concentrations in indoor and outdoor air in southeastern Austria

    NASA Astrophysics Data System (ADS)

    Haas, D.; Habib, J.; Luxner, J.; Galler, H.; Zarfel, G.; Schlacher, R.; Friedl, H.; Reinthaler, F. F.

    2014-12-01

    Background concentrations of airborne fungi are indispensable criteria for an assessment of fungal concentrations indoors and in the ambient air. The goal of this study was to define the natural background values of culturable fungal spore concentrations as reference values for the assessment of moldy buildings. The concentrations of culturable fungi were determined outdoors as well as indoors in 185 dwellings without visible mold, obvious moisture problems or musty odor. Samples were collected using the MAS-100® microbiological air sampler. The study shows a characteristic seasonal influence on the background levels of Cladosporium, Penicillium and Aspergillus. Cladosporium sp. had a strong outdoor presence, whereas Aspergillus sp. and Penicillium sp. were typical indoor fungi. For the region of Styria, the median outdoor concentrations are between 100 and 940 cfu/m³ for culturable xerophilic fungi in the course of the year. Indoors, median background levels are between 180 and 420 cfu/m³ for xerophilic fungi. The I/O ratios of the airborne fungal spore concentrations were between 0.2 and 2.0. For the assessment of indoor and outdoor air samples the dominant genera Cladosporium, Penicillium and Aspergillus should receive special consideration.

  10. Methods for detecting and estimating population threshold concentrations for air pollution-related mortality with exposure measurement error

    SciTech Connect

    Cakmak, S.; Burnett, R.T.; Krewski, D.

    1999-06-01

    The association between daily fluctuations in ambient particulate matter and daily variations in nonaccidental mortality have been extensively investigated. Although it is now widely recognized that such an association exists, the form of the concentration-response model is still in question. Linear, no threshold and linear threshold models have been most commonly examined. In this paper the authors considered methods to detect and estimate threshold concentrations using time series data of daily mortality rates and air pollution concentrations. Because exposure is measured with error, they also considered the influence of measurement error in distinguishing between these two completing model specifications. The methods were illustrated on a 15-year daily time series of nonaccidental mortality and particulate air pollution data in Toronto, Canada. Nonparametric smoothed representations of the association between mortality and air pollution were adequate to graphically distinguish between these two forms. Weighted nonlinear regression methods for relative risk models were adequate to give nearly unbiased estimates of threshold concentrations even under conditions of extreme exposure measurement error. The uncertainty in the threshold estimates increased with the degree of exposure error. Regression models incorporating threshold concentrations could be clearly distinguished from linear relative risk models in the presence of exposure measurement error. The assumption of a linear model given that a threshold model was the correct form usually resulted in overestimates in the number of averted premature deaths, except for low threshold concentrations and large measurement error.

  11. Ag-Modified In2O3/ZnO Nanobundles with High Formaldehyde Gas-Sensing Performance

    PubMed Central

    Fang, Fang; Bai, Lu; Song, Dongsheng; Yang, Hongping; Sun, Xiaoming; Sun, Hongyu; Zhu, Jing

    2015-01-01

    Ag-modified In2O3/ZnO bundles with micro/nano porous structures have been designed and synthesized with by hydrothermal method continuing with dehydration process. Each bundle consists of nanoparticles, where nanogaps of 10–30 nm are present between the nanoparticles, leading to a porous structure. This porous structure brings high surface area and fast gas diffusion, enhancing the gas sensitivity. Consequently, the HCHO gas-sensing performance of the Ag-modified In2O3/ZnO bundles have been tested, with the formaldehyde-detection limit of 100 ppb (parts per billion) and the response and recover times as short as 6 s and 3 s, respectively, at 300 °C and the detection limit of 100 ppb, response time of 12 s and recover times of 6 s at 100 °C. The HCHO sensing detect limitation matches the health standard limitation on the concentration of formaldehyde for indoor air. Moreover, the strategy to synthesize the nanobundles is just two-step heating and easy to scale up. Therefore, the Ag-modified In2O3/ZnO bundles are ready for industrialization and practical applications. PMID:26287205

  12. Evaluation of Ultra-Violet Photocatalytic Oxidation for Indoor AirApplications

    SciTech Connect

    Hodgson, A.T.; Sullivan, D.P.; Fisk, W.J.

    2006-02-01

    Acceptable indoor air quality in office buildings may be achieved with less energy by combining effective air cleaning systems for volatile organic compounds (VOCs) with particle filtration then by relying solely on ventilation. For such applications, ultraviolet photocatalytic oxidation (UVPCO) systems are being developed for VOC destruction. An experimental evaluation of a UVPCO system is reported. The evaluation was unique in that it employed complex mixtures of VOCs commonly found in office buildings at realistically low concentrations. VOC conversion efficiencies varied over a broad range, usually exceeded 20%, and were as high as {approx}80%. Conversion efficiency generally diminished with increased air flow rate. Significant amounts of formaldehyde and acetaldehyde were produced due to incomplete mineralization. The results indicate that formaldehyde and acetaldehyde production rates may need to be reduced before such UVPCO systems can be deployed safely in occupied buildings.

  13. Can formaldehyde column densities be used to estimate near-surface ozone in urban areas?

    NASA Astrophysics Data System (ADS)

    Schroeder, Jason

    2016-04-01

    Understanding pollutant exposure for populations in urban areas requires air quality monitoring at a finer scale than can be reasonably provided by surface networks. Satellite measurements of short-lived trace gases could potentially help shape our understanding of the distribution of near-surface ozone throughout entire regions, thus aiding the development of more effective mitigation strategies. In this work, the extensive vertical profiling performed by aircraft in support of NASA's DISCOVER-AQ field campaign is used to examine the relationship between formaldehyde column measurements and near-surface ozone. At large spatial and temporal scales, a fairly strong relationship exists between column formaldehyde and near-surface ozone, but this relationship often weakens at smaller spatial and temporal scales. The cause of these small-scale discrepancies was determined to be an artifact of the difference in lifetimes between ozone and formaldehyde. While ozone has a long lifetime (multiple days) and tends to accumulate throughout the day, formaldehyde has a very short lifetime (a couple hours) and tends to reflect the local hydrocarbon oxidation environment. In Maryland, where biogenic emissions dominate the hydrocarbon mix, a stronger correlation between ozone and formaldehyde was seen than in Texas, where anthropogenic emissions dominated the hydrocarbon mix. This is because in Maryland, while ozone was accumulating throughout the day, formaldehyde was also increasing in conjunction with changes in biogenic emissions. When data are segregated spatially and averaged over the duration of each campaign, a clear trend can be seen between column formaldehyde and surface ozone measurements. While not useful for day-to-day monitoring, this could be useful for long-term exposure estimates and could help facilitate the re-distribution of surface monitoring sites.

  14. [Air negative charge ion concentration and its relationships with meteorological factors in different ecological functional zones of Hefei City].

    PubMed

    Wei, Chaoling; Wang, Jingtao; Jiang, Yuelin; Zhang, Qingguo

    2006-11-01

    Air negative charge ion concentration (ANCIC) has a close relationship with air quality. The observations on the ANCIC, sunlight intensity, air temperature, and air relative humidity in different ecological functional zones of Hefei City from 2003 to 2004 showed that the diurnal change pattern of ANCIC was of single peak in sightseeing and habitation zones, dual peak in industrial zone, and complicated in commercial zone. Different ecological functional zones had different appearance time of their daily ANCIC extremum. The diurnal fluctuation of ANCIC was in the order of commercial zone > industrial zone > habitation zone and sightseeing zone. The annual change pattern of ANCIC in these zones was similar, being the highest in summer and lowest in winter, and the mean annual ANCIC was 819, 340, 149 and 126 ions x cm(-3), respectively. The most important meteorological factor affecting the ANCIC in Hefei City was air relative humidity, followed by sunlight intensity and air temperature. There was an exponential relationship between ANCIC and air relative humidity.

  15. LOCATING NEARBY SOURCES OF AIR POLLUTION BY NONPARAMETRIC REGRESSION OF ATMOSPHERIC CONCENTRATIONS ON WIND DIRECTION. (R826238)

    EPA Science Inventory

    The relationship of the concentration of air pollutants to wind direction has been determined by nonparametric regression using a Gaussian kernel. The results are smooth curves with error bars that allow for the accurate determination of the wind direction where the concentrat...

  16. IN VITRO EFFECTS OF PARTICULATE MATTER ON AIRWAY EPITHELIAL CELLS ISOLATED FROM CONCENTRATED AIR PARTICLES-EXPOSED SPONTANEOUS HYPERTENSIVE RATS

    EPA Science Inventory

    In vitro effects of particulate matter on airway epithelial cells isolated from concentrated air particles-exposed spontaneous hypertensive rats

    Ines Pagan, Urmila Kodavanti, Paul Evansky, Daniel L Costa and Janice A Dye. U.S. Environmental Protection Agency, ORD, National...

  17. INDOOR AIR CONCENTRATIONS OF ORGANOCHLORINE, ORGANOPHOSPHATE AND PYRETHROID PESTICIDES IN THE US: FOUR STUDIES, SIX STATES AND TWENTY YEARS

    EPA Science Inventory

    Pesticides used to control indoor pests have transitioned across the chemicals classes of organochlorine, organophosphate, and pyrethroid compounds from the 1980's to the present. This work summarizes the pesticide concentrations measured from the indoor air of homes from four st...

  18. Effect of poverty on the relationship between personal exposures and ambient concentrations of air pollutants in Ho Chi Minh City

    NASA Astrophysics Data System (ADS)

    Mehta, Sumi; Sbihi, Hind; Dinh, Tuan Nguyen; Xuan, Dan Vu; Le Thi Thanh, Loan; Thanh, Canh Truong; Le Truong, Giang; Cohen, Aaron; Brauer, Michael

    2014-10-01

    Socioeconomic factors often affect the distribution of exposure to air pollution. The relationships between health, air pollution, and poverty potentially have important public health and policy implications, especially in areas of Asia where air pollution levels are high and income disparity is large. The objective of the study was to characterize the levels, determinants of exposure, and relationships between children personal exposures and ambient concentrations of multiple air pollutants amongst different socioeconomic segments of the population of Ho Chi Minh City, Vietnam. Using repeated (N = 9) measures personal exposure monitoring and determinants of exposure modeling, we compared daily average PM2.5, PM10, PM2.5 absorbance and NO2 concentrations measured at ambient monitoring sites to measures of personal exposures for (N = 64) caregivers of young children from high and low socioeconomic groups in two districts (urban and peri-urban), across two seasons. Personal exposures for both PM sizes were significantly higher among the poor compared to non-poor participants in each district. Absolute levels of personal exposures were under-represented by ambient monitors with median individual longitudinal correlations between personal exposures and ambient concentrations of 0.4 for NO2, 0.6 for PM2.5 and PM10 and 0.7 for absorbance. Exposures of the non-poor were more highly correlated with ambient concentrations for both PM size fractions and absorbance while those for NO2 were not significantly affected by socioeconomic position. Determinants of exposure modeling indicated the importance of ventilation quality, time spent in the kitchen, air conditioner use and season as important determinant of exposure that are not fully captured by the differences in socioeconomic position. Our results underscore the need to evaluate how socioeconomic position affects exposure to air pollution. Here, differential exposure to major sources of pollution, further influenced by

  19. Henry’s Law Constant and Overall Mass Transfer Coefficient for Formaldehyde Emission from Small Water Pools under Simulated Indoor Environmental Conditions

    EPA Science Inventory

    The Henry’s law constant (HLC) and the overall mass transfer coefficient are both important parameters for modeling formaldehyde emissions from aqueous solutions. In this work, the apparent HLCs for aqueous formaldehyde solutions were determined in the concentration range from 0....

  20. Air concentrations and wet deposition of major inorganic ions at five non-urban sites in China, 2001-2003

    NASA Astrophysics Data System (ADS)

    Aas, Wenche; Shao, Min; Jin, Lei; Larssen, Thorjørn; Zhao, Dawei; Xiang, Renjun; Zhang, Jinhong; Xiao, Jinsong; Duan, Lei

    Air and precipitation measurements at five sites were undertaken from 2001 to 2003 in four different provinces in China, as part of the acid rain monitoring program IMPACTS. The sites were located in Tie Shan Ping (TSP) in Chongqing, Cai Jia Tang (CJT) in Hunan, Lei Gong Shan (LGS) and Liu Chong Guan (LCG) in Guizhou and Li Xi He (LXH) in Guangdong. The site characteristics are quite varied with TSP and LCG located relatively near big cites while the three others are situated in more regionally representative areas. The distances to urban centres are reflected in the air pollution concentrations, with annual average concentrations of SO 2 ranging from 0.5 to above 40 μg S m -3. The main components in the airborne particles are (NH 4) 2SO 4 and CaSO 4. Reduced nitrogen has a considerably higher concentration level than oxidised nitrogen, reflecting the high ammonia emissions from agriculture. The gas/particle ratio for the nitrogen compounds is about 1:1 at all the three intensive measurement sites, while for sulphur it varies from 2.5 to 0.5 depending on the distance to the emission sources. As in air, the predominant ions in precipitation are sulphate, calcium and ammonium. The volume weighted annual concentration of sulphate ranges from about 70 μeq l -1 at the most rural site (LGS) to about 200 μeq l -1 at TSP and LCG. The calcium concentration ranges from 25 to 250 μeq l -1, while the total nitrogen concentration is between 30 and 150 μeq l -1; ammonium is generally twice as high as nitrate. China's acid rain research has traditionally been focused on urban sites, but these measurements show a significant influence of long range transported air pollutants to rural areas in China. The concentration levels are significantly higher than seen in most other parts of the world.

  1. Evaluation of background soil and air polychlorinated biphenyl (PCB) concentrations on a hill at the outskirts of a metropolitan city.

    PubMed

    Kuzu, S Levent; Saral, Arslan; Güneş, Gülten; Karadeniz, Aykut

    2016-07-01

    Air and soil sampling was conducted inside a forested area for 22 months. The sampling location is situated to the north of a metropolitan city. Average atmospheric gas and particle concentrations were found to be 180 and 28 pg m(-3) respectively, while that of soil phase was detected to be 3.2 ng g(-1) on dry matter, The congener pairs of PCB#4-10 had the highest contribution to each medium. TEQ concentration was 0.10 pg m(-3), 0.07 pg m(-3), 21.92 pg g(-1), for gas, particle and soil phases, respectively. PCB#126 and PCB#169 contributed to over 99% of the entire TEQ concentrations for each medium. Local sources were investigated by conditional probability function (CPF) and soil/air fugacity. Landfilling area and medical waste incinerator, located to the 8 km northeast, contributed to ambient concentrations, especially in terms of dioxin-like congeners. The industrial settlement (called Dilovasi being to the east southeast of 60 km distant) contributed from southeast direction. Further sources were identified by potential source contribution function (PSCF). Sources at close proximity had high contribution. Air mass transportation from Aliaga industrial region (being to the southwest of 300 km distant) moderately contributed to ambient concentrations. Low molecular weight congeners were released from soil body. 5-CBs and 6-CBs were close to equilibrium state between soil/air interfaces. PCB#171 was close to equilibrium and PCB#180 was likely to evaporate from soil, which constitute 7-CBs. PCB#199, representing 8-CBs deposited to soil. 9-CB (PCB#207) was in equilibrium between soil and air phases.

  2. Biochemical properties of rat liver mitochondrial aldehyde dehydrogenase with respect to oxidation of formaldehyde.

    PubMed

    Cinti, D L; Keyes, S R; Lemelin, M A; Denk, H; Schenkman, J B

    1976-03-25

    The oxidation of formaldehyde by rat liver mitochondria in the presence of 50 mM phosphate was enhanced 2-fold by exogenous NAD+. Absolute requirement of NAD+ for formaldehyde oxidation was demonstrated by depleting the mitochondria of their NAD+ content (4.6 nmol/mg of protein), followed by reincorporation of the NAD+ into the depleted mitochondria. Aldehyde (formaldehyde) dehydrogenase activity was completely abolished in the depleted mitochondria, but the enzyme activity was restored to control levels following reincorporation of the pyridine nucleotide. Phosphate stimulation of formaldehyde oxidation could not be explained fully by the phosphate-induced swelling which enhances membrane permeability to NAD+, since stimulation of the enzyme activity by increased phosphate concentrations was still observed in the absence of exogenous NAD+. The Km for formaldehyde oxidation by the mitochondria was found to be 0.38 nM, a value similar to that obtained with varying concentrations of NAD+; both Vmax values were very similar, giving a value of 70 to 80 nmol/min/mg of protein. The pH optimum for the mitochondrial enzyme was 8.0. Inhibition of the enzyme activity by anaerobiosis was apparently due to the inability of the respiratory chain to oxidize the generated NADH. The inhibition of mitochondrial formaldehyde oxidation by succinate was found to be due to a lowering of the NAD+ level in the mitochondria. Succinate also inhibited acetaldehyde oxidation by the mitochondria. Malonate, a competitive inhibitor of succinic dehydrogenase, blocked the inhibitory effect of succinate. The respiratory chain inhibitors, rotenone, and antimycin A plus succinate, strongly inhibited formaldehyde oxidation by apparently the same mechanism, although the crude enzyme preparation (freed from the membrane) was slightly sensitive to rotenone. The mitochondria were subfractionated, and 85% of the enzyme activity was found in the inner membrane fraction (mitoplast). Furthermore, separation

  3. Analysis of mobile source air toxics (MSATs)–Near-Road VOC and carbonyl concentrations

    EPA Science Inventory

    Exposures to mobile source air toxics (MSATs) have been associated with numerous adverse health effects. While thousands of air toxic compounds are emitted from mobile sources, a subset of compounds are considered high priority due to their significant contribution to cancer and...

  4. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  5. Contribution of formaldehyde to respiratory cancer.

    PubMed Central

    Nelson, N; Levine, R J; Albert, R E; Blair, A E; Griesemer, R A; Landrigan, P J; Stayner, L T; Swenberg, J A

    1986-01-01

    This article reviews the available data on the carcinogenicity of formaldehyde from experimental and epidemiologic studies and makes recommendations for further research. Two definitive chronic inhalation bioassays on rodents have demonstrated that formaldehyde produces nasal cancer in rats and mice at 14 ppm and in rats at 6 ppm, which is within the domain of present permissible human exposure (8-hr time-weighted average of 3 ppm, a 5 ppm ceiling, and a 10 ppm short-term exposure limit). Biochemical and physiologic studies in rats have shown that inhaled formaldehyde can depress respiration, inhibit mucociliary clearance, stimulate cell proliferation, and crosslink DNA and protein in the nasal mucosa. No deaths from nasal cancer have been reported in epidemiologic studies of cohorts exposed to formaldehyde, but three case-control studies suggest the possibility of increased risk. Although excesses of lung cancer deaths have been observed in some studies at industrial plants with formaldehyde exposure, uncertainties in interpretation limit the evaluation of these findings. Excess cancers of the brain and of lymphatic and hematopoietic tissues have been reported in certain studies of industrial groups and in most studies of formaldehyde-exposed professionals, but whether these excesses are related to formaldehyde exposure is not known. Several properties of formaldehyde pose unique problems for future research: the mechanisms responsible for its nonlinear response; its probable mechanism of carcinogenic action as a cross-linking agent; its formation in tissues as a normal metabolite; its possible action as a promoter and/or a cocarcinogen; and the importance of glutathione as a host defense at low exposure. PMID:3830109

  6. The synthesis of ethylene glycol from formaldehyde

    NASA Astrophysics Data System (ADS)

    Korneeva, G. A.; Loktev, S. M.

    1989-01-01

    The literature and patent data on the hydroformylation of formaldehyde to glycolaldehyde — an intermediate in the synthesis of ethylene glycol — are surveyed. The principal types of catalytic systems based on rhodium and cobalt carbonyl complexes and the characteristic features of the reaction are examined and compared with the hydroformylation of olefins. The reaction mechanism is discussed in the light of the reactions of the formaldehyde complexes of transition metals. The bibliography includes 116 references.

  7. Effect of the fuel/air mixture concentration distribution on the dynamics of a low-emission combustor

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. D.; Bulysova, L. A.; Berne, A. L.

    2016-12-01

    An investigation of the low-emission premixed combustion in a conventional combustor is presented. The main problem encountered is the pressure fluctuations induced under certain operating conditions of the combustor. Low-emission operation of the combustor was studied numerically and experimentally. The effect of the concentration distribution at the outlet from the mixing zone on the position and macrostructure of the flame and the combustion stability was investigated at various excess air factors corresponding various GTU loads. It is demonstrated that, for a given excess air factor, there exists the concentration profile such that the interaction of the flame front with dominating flow structures results in excitation of the low-frequency combustion instability. The factors responsible for high-amplitude pressure fluctuations are examined. It is shown that the combustion stability can be estimated using a calculated criterion. Its direct relationship with pressure fluctuation amplitudes is described. The effect of the air pressure in a combustor on the flame macrostructure and the combustion stability was studied. It is shown that an increase in the combustor pressure has no considerable effect on the processes in the combustor. However, a change in the chemical reaction rates affects the stable combustion boundary. In this case, the combustion stability is achieved with higher nonuniformity of the fuel-air mixture entering the combustion zone. The experimental boundaries of stable combustion envelope at an air pressure of 350 and 1500 kPa are presented.

  8. Report on the consensus workshop on formaldehyde

    SciTech Connect

    Gough, M.; Hart, R.; Karrh, B.W.; Koestner, A.; Neal, R.; Parkinson, D.; Perera, F.; Powell, K.E.; Rosenkranz, S.

    1984-01-01

    The Consensus Workshop on Formaldehyde consisted of bringing together scientists from academia, government, industry and public interest groups to address some important toxicological questions concerning the health effects of formaldehyde. The participants in the workshop, the Executive Panel which coordinated the meeting, and the questions posed, all were chosen through a broadly based nomination process in order to achieve as comprehensive a consensus as possible. The subcommittees considered the toxicological problems associated with formaldehyde in the areas of exposure, epidemiology, carcinogenicity/histology/genotoxicity, immunology/sensitization/irritation, structure activity/biochemistry metabolism, reproduction/teratology, behavior/neurotoxicity/psychology and risk estimation. Some questions considered included the possible human carcinogenicity of formaldehyde, as well as other human health effects, and the interpretation of pathology induced by formaldehyde. These reports, plus introductory material on the procedures used in setting up the Consensus Workshop are presented here. Additionally, there is included a listing of the data base that was made available to the panel chairmen prior to the meeting and was readily accessible to the participants during their deliberations in the meeting. This data base, since it was computerized, was also capable of being searched for important terms. These materials were supplemented by information brought by the panelists. The workshop has defined the consensus concerning a number of major points in formaldehyde toxicology and has identified a number of major deficits in understanding which are important guides to future research. 264 references.

  9. Report on the Consensus Workshop on Formaldehyde.

    PubMed Central

    1984-01-01

    The Consensus Workshop on Formaldehyde consisted of bringing together scientists from academia, government, industry and public interest groups to address some important toxicological questions concerning the health effects of formaldehyde. The participants in the workshop, the Executive Panel which coordinated the meeting, and the questions posed, all were chosen through a broadly based nomination process in order to achieve as comprehensive a consensus as possible. The subcommittees considered the toxicological problems associated with formaldehyde in the areas of exposure, epidemiology, carcinogenicity/histology/genotoxicity, immunology/sensitization/irritation, structure activity/biochemistry/metabolism, reproduction/teratology, behavior/neurotoxicity/psychology and risk estimation. Some questions considered included the possible human carcinogenicity of formaldehyde, as well as other human health effects, and the interpretation of pathology induced by formaldehyde. These reports, plus introductory material on the procedures used in setting up the Consensus Workshop are presented here. Additionally, there is included a listing of the data base that was made available to the panel chairmen prior to the meeting and was readily accessible to the participants during their deliberations in the meeting. This data base, since it was computerized, was also capable of being searched for important terms. These materials were supplemented by information brought by the panelists. The workshop has defined the consensus concerning a number of major points in formaldehyde toxicology and has identified a number of major deficits in understanding which are important guides to future research. PMID:6525992

  10. Passive-sampler derived air concentrations of persistent organic pollutants on a north-south transect in Chile.

    PubMed

    Pozo, Karla; Harner, Tom; Shoeib, Mahiba; Urrutia, Roberto; Barra, Ricardo; Parra, Oscar; Focardi, Silvano

    2004-12-15

    Passive air samplers consisting of polyurethane foam (PUF) disks, were deployed in six locations in Chile along a north-south transect to investigate gas-phase concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs). The study provides new information on air concentrations of these persistent organic pollutants (POPs) which is lacking in this region. It also provides insight into potential sources and long-range transport (LRT). The samplers were deployed for a 2-month period in five remote sites and one site in the city of Concepción. Mean concentrations (pg m(-3)) for sigmaPCB were 4.7 +/- 2.7 at remote sites and 53 +/- 13 in Concepción. PCB levels at remote sites were related to proximity to urban source regions and/or air back trajectories. With the exception of endosulfan I, mean concentrations (pg m(-3)) of OCPs at background sites were consistently low: 5.4 +/- 1.4 for alpha-HCH, 7.0 +/- 1.1 for gamma-HCH, 2.5 +/- 0.5 for TC, 2.5 +/- 0.6 for CC, 1.9 +/- 1.2 for dieldrin, and less than 3.5 for toxaphene. Endosulfan I showed a decreasing concentration gradient from 99 to 3.5 pg m(-3) from the north to south of Chile. Concentrations of OCPs in the Concepción City were generally 10-20 times higher than at the background sites suggesting continued usage and/or re-emission from past use. For instance, at remote sites, the alpha/gamma ratio (0.76) was typical of background air, while the ratio in Concepción (0.12) was consistent with fresh use of gamma-HCH. Levels of sigmaPBDEs were below the detection limit of 6 pg m(-3) at all sites.

  11. Development of formaldehyde sensing element using porous glass impregnated with beta-diketone.

    PubMed

    Maruo, Yasuko Yamada; Nakamura, Jiro; Uchiyama, Masahiro

    2008-02-15

    We have developed a sensor element for detecting formaldehyde. The sensor element is made of porous glass impregnated with both beta-diketone and ammonium ions. We used three kinds of beta-diketone; acetylacetone, 1-phenyl-1,3-butanedione, and 1,3-diphenyl-1,3-propanedione. The three kinds of sensor element, which are initially colorless, turn yellow after exposure to formaldehyde, and absorption with a peak wavelength of 407-424nm appears. There is a linear relationship between the 407-424nm absorbance of the sensor element after exposure to formaldehyde, and the formaldehyde concentration. The sensor element also works cumulatively, and the absorbance changes of the three kinds of sensor elements are acetylacetone>1-phenyl-1,3-butanedione>1,3-diphenyl-1,3-propanedione, when exposed to the same concentration of formaldehyde in the atmosphere. We also found that both the formation and decomposition reactions of lutidine derivative (yellow dye) occur on the acetylacetone element at 20 degrees C, and the kinetic constant of the former is 100,000 times larger than that of the latter. On the other hand, only the formation reaction occurs on the 1-phenyl-1,3-butanedione element at 20 degrees C. Therefore, the acetylacetone element would be suitable for short-term measurements and the 1-phenyl-1,3-butanedione would be suitable for long-term measurements.

  12. Evaluation of possible health risk associated with occupational exposure to formaldehyde

    NASA Astrophysics Data System (ADS)

    Vargova, Maria; Janota, Stanislav; Karelova, Jarmila; Barancokova, Maria; Sulcova, Margita

    1993-03-01

    Widespread us of formaldehyde in a variety of applications is known to result in appreciable exposure of workers and large segments of the general population. Because of possible genotoxic and immunotoxic effects, we investigated the health condition of people occupationally exposed to formaldehyde in a plant in which woodsplinter materials are manufactured. The concentration of formaldehyde in the workplace was greater than the average and peak concentrations of formaldehyde in Czechoslovakia (0.5 mg/m3 and 1 mg/m3 respectively). Selected parameters of genotoxicity (cytogenetic analysis, nucleolus test) and immunotoxocity (serum immunoglobulin G, A, M; complement C3, C4; alpha-1-anti-trypsine, alpha-2 macroglobulin, ceruloplasmin, transferrin, prealbumin, orosomucoid levels) were determined. The results of the evaluation of mitotic indices and the blastogen transformation point to an effect of the exposure to formaldehyde on r-RNA synthesis inhibition and lymphocyte maturation decrease. The frequency of aberrant cells in the peripheral blood lymphocytes was increased in both, exposed and control group and was above 1.2 - 2% of aberrant cells observed in the normal population in Czechoslovakia. There was no significant differences in the values of natural immunity and specific humoral immunity. Significant differences were observed in the values of mitogen-induced proliferation of lymphocytes between the exposed and the matching and background control groups. These changes are considered to be sensitive indicators of the potential effects on the integrity of a more important immunologic function.

  13. Concentrations and determinants of gaseous aldehydes in 162 homes in Strasbourg (France)

    NASA Astrophysics Data System (ADS)

    Marchand, C.; Le Calvé, S.; Mirabel, Ph.; Glasser, N.; Casset, A.; Schneider, N.; de Blay, F.

    Aldehydes concentrations were measured in 162 homes in the Strasbourg area (East of France) in the context of a case/control study pairing asthmatic and non-asthmatic people. The surveyed people have completed a questionnaire aiming to characterize the indoor homes and the people life practices. Gaseous aldehyde levels were quantified by a conventional DNHP-derivatization method followed by HPLC/UV. Formaldehyde, acetaldehyde and hexanal were the main encountered aldehydes with mean concentrations of 32.2±14.6, 14.3±9.7 and 8.6±8.1 μg m -3, respectively, while propionaldehyde and benzaldehyde concentrations were usually <3 μg m -3. The aldehydes concentrations simultaneously measured in both bedroom and living room were not significantly different except for formaldehyde and were correlated between them meaning that indoor air was quite homogenous in homes. Combination of information collected in our questionnaires and statistical analysis was used to investigate indoor aldehydes determinants. Even if formaldehyde sources are theoretically well identified, they are multiple so that it was difficult to determine the main parameters influencing its concentrations in domestic environment. Higher hexanal concentrations were related to new coatings such as painting, wallpapers and laminate floorings. Hexanal concentration decreased with both coating and furniture ages so that this compound may be considered as a tracer of these emissions.

  14. Relationships between ozone photolysis rates and peroxy radical concentrations in clean marine air over the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Penkett, S. A.; Monks, P. S.; Carpenter, L. J.; Clemitshaw, K. C.; Ayers, G. P.; Gillett, R. W.; Galbally, I. E.; Meyer, C. P.

    1997-06-01

    Measurements of the sum of inorganic and organic peroxy radicals (RO2) and photolysis rate coefficients J(NO2) and J(O1D) have been made at Cape Grim, Tasmania in the course of a comprehensive experiment which studied photochemistry in the unpolluted marine boundary layer. The SOAPEX (Southern Ocean Atmospheric Photochemistry Experiment) campaign included measurements of ozone, peroxides, nitrogen oxides, water vapor, and many other parameters. This first full length paper concerned with the experiment focuses on the types of relationships observed between peroxy radicals and J(NO2), J(O1D) and √[J(O1D)] in different air masses in which ozone is either produced or destroyed by photochemistry. It was found that in baseline air with ozone loss, RO2 was proportional to √[J(O1D)], whereas in more polluted air RO2 was proportional to J(O1D). Simple algorithms were derived to explain these relationships and also to calculate the concentrations of OH radicals in baseline air from the instantaneous RO2 concentrations. The signal to noise ratio of the peroxy radical measurements was up to 10 for 1-min values and much higher than in other previous deployments of the instrument in the northern hemisphere, leading to the confident determination of the relationships between RO2 and J(O1D) in different conditions. The absolute concentration Of RO2 determined in these experiments is in some doubt, but this does not affect our conclusions concerned either with the behavior of peroxy radicals with changing light levels or with the concentrations of OH calculated from RO2. The results provide confidence that the level of understanding of the photochemistry of ozone leading to the production of peroxide via recombination of peroxy radicals in clean air environments is well advanced.

  15. Cardiovascular Effects in Adults with Metabolic Syndrome Exposed to Concentrated Ultrafine Air Pollution Particles

    EPA Science Inventory

    RATIONALE: Epidemiologic studies report associations between ambient air pollution particulate matter (PM) and various indices of cardiopulmonary morbidity and mortality. A leading hypothesis contends that smaller ultrafine (UF) particles induce a greater physiologic response bec...

  16. ASSESSING THE COMPARABILITY OF AMMONIUM, NITRATE AND SULFATE CONCENTRATIONS MEASURED BY THREE AIR QUALITY MONITORING NETWORKS

    EPA Science Inventory

    Airborne fine particulate matter across the United States is monitored by different networks, the three prevalent ones presently being the Clean Air Status and Trend Network (CASTNet), the Interagency Monitoring of PROtected Visual Environment Network (IMPROVE) and the Speciati...

  17. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  18. REVIEW OF CONCENTRATION STANDARDS AND GUIDELINES FOR FUNGI IN INDOOR AIR

    EPA Science Inventory

    The paper reviews and compares existing guidelines for indoor airborne fungi, discusses limitations of existing guidelines, and identifies research needs that should contribute to the development of realistic and useful guidelines for these important air pollutants. (NOTE: Exposu...

  19. Radon ((222)Rn) concentration in indoor air near the coal mining area of Nui Beo, North of Vietnam.

    PubMed

    Nhan, Dang Duc; Fernando, Carvalho P; Thu Ha, Nguyen Thi; Long, Nguyen Quang; Thuan, Dao Dinh; Fonseca, Heloisa

    2012-08-01

    Concentrations of radioactive radon gas ((222)Rn) were measured using passive monitors based on LR115 solid state track detectors during June-July 2010 in indoor air of dwellings in the Nui Beo coal mining area, mostly in Cam Pha and Ha Long coastal towns, Quang Ninh province, in the North of Vietnam. Global results of (222)Rn concentrations indoors varied from ≤6 to 145 Bq m(-3) averaging 46 ± 26 Bq m(-3) (n = 37), with a median value of 47 Bq m(-3). This was similar to outdoor (222)Rn concentrations in the region, averaging 43 ± 19 Bq m(-3) (n = 10), with a median value of 44 Bq m(-3). Indoor (222)Rn concentrations in the coastal town dwellings only were in average lower although not significantly different from indoor (222)Rn concentrations measured at the coal storage field near the harbor, 67 ± 4 Bq m(-3) (n = 3). Furthermore, there was no significant difference in the average (222)Rn concentration in indoor air measured in the coastal towns region and those at the touristic Tuan Chau Island located about 45 km south of the coal mine, in the Ha Long Bay. The indoor (222)Rn concentration in a floating house at the Bai Tu Long Bay, and assumed as the best estimate of the baseline (222)Rn in surface air, was 27 ± 3 Bq m(-3) (n = 3). Indoor average concentration of (222)Rn in dwellings at the Ha Noi city, inland and outside the coal mining area, was determined at 30 Bq m(-3). These results suggest that (222)Rn exhalation from the ground at the Nui Beo coal mining area may have contributed to generally increase (222)Rn concentration in the surface air of that region up to 1.7 times above the baseline value measured at the Bai Tu Long Bay and Ha Noi. The average indoor concentration of (222)Rn in Cam Pha-Ha Long area is about one-third of the value of the so-called Action Level set up by the US EPA of 148 Bq m(-3). Results suggest that there is no significant public health risk from (222)Rn exposure in the study region.

  20. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD.

  1. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  2. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-09-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm} aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5(O3) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and -0.02 ± 0.01 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3, respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality

  3. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    NASA Astrophysics Data System (ADS)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2013-02-01

    Increases in surface ozone (O3) and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860) to present (2000) and the global present-day (2000) premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year) have increased by 8 ± 0.16 μg m-3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations), respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O35) to change by +7.5 ± 0.19 μg m-3 (+25 ± 0.30 ppbv), +0.4 ± 0.17 μg m-3 (+0.5 ± 0.28 ppbv), and 0.04 ± 0.24 μg m-3 (+4.3 ± 0.33 ppbv), respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2-1.8) million cardiopulmonary mortalities and 95 (95% CI, 44-144) thousand lung cancer mortalities annually and changes in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their

  4. Application of an adjoint neighborhood-scale chemistry transport model to the attribution of primary formaldehyde at Lynchburg Ferry during TexAQS II

    NASA Astrophysics Data System (ADS)

    Olaguer, Eduardo P.

    2013-05-01

    During the 2006 Second Texas Air Quality Study (TexAQS II) field study, ambient mixing ratios of formaldehyde (HCHO) up to 52 ppbv were observed at Lynchburg Ferry in the Houston Ship Channel on the morning of 27 September 2006. These elevated mixing ratios coincided with a flare event during a sequential planned shutdown of a petrochemical facility ~8 km from the monitoring site. An adjoint version of the Houston Advanced Research Center (HARC) neighborhood air quality model was used to perform 4-D variational inverse modeling of industrial emissions of HCHO and other ozone precursors based on Lynchburg Ferry observations. The simulation employed a horizontal domain size and grid resolution of 8 km × 8 km and 400 m, and was conducted for a 1.5 h period (8-9:30 A.M.) during which the highest HCHO concentrations were recorded. The event emissions of ethene and propene computed by the inverse model are consistent with the largest estimated emissions for the facility in question derived from the Solar Occultation Flux technique during TexAQS II. Moreover, the computed peak flare emissions of HCHO during the shutdown event were around 282 kg/h, which is less than but comparable in magnitude to the largest area-wide total (primary plus secondary) formaldehyde flux from the Houston Ship Channel measured by Differential Optical Absorption Spectroscopy during TexAQS II. The estimated flare event emissions of primary formaldehyde are roughly 50 times larger than HCHO emissions from flares used in routine operations, as inferred from remote sensing and/or real-time in situ measurements during the 2009 SHARP campaign.

  5. Research review: Indoor air quality control techniques

    SciTech Connect

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs.

  6. Formaldehyde As A Tracer of Photooxidation In The Troposphere: The Format Project.

    NASA Astrophysics Data System (ADS)

    Braathen, G.; Pundt, I.; Junkermann, W.; Wittrock, F.; Prevot, A.; Sundet, J.; Mellqvist, J.; Larsen, B.; Neininger, B.; Astorga-Llorens, C.

    Scientific objectives and approach Formaldehyde is a good indicator for photochemical smog. It is therefore important that we are able to measure this compound in an accurate way. The single most im- portant objective of the FORMAT project is to improve the measurement techniques that are used to measure this compound. More specifically the objectives are: 1. To intercompare the various techniques for measurement of atmospheric formalde- hyde, 2. To obtain a better knowledge of the concentrations and distribution of formaldehyde in the troposphere over Europe and globally, 3. To validate satellite measurements (GOME, SCIAMACHY) of formaldehyde, 4. To compare measured and modelled formaldehyde, 5. To use this improved knowledge to strengthen the capability of atmospheric chem- istry models to calculate formaldehyde and thereby predict smog episodes in Europe, 6. To use global models together with satellite measurements to obtain a better knowl- edge of the global distribution and role of HCHO as a tracer of fossil fuel and biomass burning, 7. To assess the socio-economic impact of knowledge gained through the project Expected impacts The project will lead to a better overview of the formaldehyde distribution both re- gionally in the Po valley (chosen as a typical polluted area) and on a global scale through analysis of satellite data. This will again give us better insight in the extent of fossil fuel and biomass burning, both in Europe and globally. The various methods for measuring formaldehyde will be intercompared, and it is the aim to arrive at a better agreement between the various techniques. Atmospheric chemistry models will be compared to field measurements. It is the aim that the tools used to warn authorities and the public in the case of smog episodes will be improved.

  7. [Method for evaluating the concentration of alpha radiation potential energy of thorium Rn-220 in the air].

    PubMed

    Swiatnicki, G; Domański, T

    1978-01-01

    The paper presents assumptions and a description of an improved method for measuring the potential energy of radon decay products in the air. The method is based on the detection of alpha radiation emitted by ThC', in properly selected time intervals after the process of air filtration, i.e. collecting thoron decay products on the filter has been finished. The method has been worked out for various duration of filtration, i.e. 1--15 min, with measuring time intervals from 10 to 180 min. The method obtained is fit for the measurements of concentrations in a wide range of variation. Radioactivity of the deposit is being calculated on the basis of comparative measurements of 239Pu source of known activity. The sensitivity of the method for the most sensitive range is 0.84 . 10(4) MeV/litre per 1 liter of air filtered.

  8. Exploratory study of air quality in elementary schools, Coimbra, Portugal

    PubMed Central

    Ferreira, Ana Maria Conceição; Cardoso, Salvador Massano

    2013-01-01

    OBJECTIVE To analyze the air quality in elementary schools and their structural and functional conditions. METHODS Air quality in 51 elementary schools (81 classrooms) in the city of Coimbra, Portugal, both inside and outside of the rooms was evaluated during the four seasons, from 2010 to 2011. Temperature (T°), relative humidity (Hr), concentrations of carbon monoxide (CO), carbon dioxide (CO2), ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), compounds were evaluated, as were volatile organics (VOC), formaldehyde and particulate matter (PM10), from November 2010 to February 2011 (autumn/winter) and March 2011 to June 2011 (spring/summer). A grid characterizing the structural and functional conditions of the schools was created. The statistical Student t test for paired samples and the Wilcoxon t test were applied. RESULTS In 47 schools, the average CO2concentrations were above the maximum reference concentration (984 ppm) mentioned in Portuguese legislation. The maximum concentration values found inside the rooms were critical, especially in the fall/winter (5,320 ppm). In some schools the average concentrations of VOC and PM10within the maximum concentration exceeded the reference legislated. The values (risk) of CO, formaldehyde, NO2, SO2and O3detected were not relevant. CONCLUSIONS There was a higher concentration of pollutants inside the rooms compared with outside. Inadequate ventilation is associated with high CO2concentration in the classroom. PMID:24626544

  9. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    PubMed

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  10. Reformulated and alternative fuels: modeled impacts on regional air quality with special emphasis on surface ozone concentration.

    PubMed

    Schell, Benedikt; Ackermann, Ingmar J; Hass, Heinz

    2002-07-15

    The comprehensive European Air Pollution and Dispersion model system was used to estimate the impacts of the usage of reformulated and alternative fuels on regional air quality with special emphasis on surface ozone concentrations. A severe western European summer smog episode in July 1994 has been used as a reference, and the model predictions have been evaluated for this episode. A forecast simulation for the year 2005 (TREND) has been performed, including the future emission development based on the current legis