Science.gov

Sample records for air france flight

  1. Automation under suspicion--case flight AF-447 Air France.

    PubMed

    Martins, Edgard; Soares, Marcelo

    2012-01-01

    The probes allow the pilot to control the aircraft speed was essential to the balance of the flight. Opinions of experts who claim that "the design of the plane would have exercised a not inconsiderable role in the occurrence of a disaster." These messages revealed a series of important operating errors in a zone of turbulence, "making the plane uncontrollable, leading to a rapid depressurization device, according to these reports. A lawsuit in Toulouse and in Brazil aims to recognition of the liability of Air France and Airbus not insignificant role in the design and operation of the aircraft in the event of catastrophe. Opinions are taken from senior pilots that no commercial aviation training for certain situations abnormal flight that, if realized, could have influenced the pilots of the AF-447 to remove the plane's fatal dive show what experiments performed in simulators for military pilots, who are permanently subject to critical flight situations.

  2. Flight testing air-to-air missiles for flutter

    NASA Technical Reports Server (NTRS)

    Kutschinski, C. R.

    1975-01-01

    The philosophy of the design of air-to-air missiles and hence of flight testing them for flutter differs from that of manned aircraft. Primary emphasis is put on analytical and laboratory evaluation of missile susceptibility to aeroelastic and aero-servo-elastic instabilities and uses flight testing for confirmation of the absence of such instabilities. Flight testing for flutter is accomplished by using specially instrumented programmed missiles, air or ground launched with a booster to reach the extreme flight conditions of tactical use, or by using guided missiles with telemetered performance data. The instrumentation and testing techniques are discussed along with the success of recent flight tests.

  3. Behavioural adaptations to flight into thin air

    PubMed Central

    Weinzierl, Rolf

    2016-01-01

    Soaring raptors can fly at high altitudes of up to 9000 m. The behavioural adjustments to high-altitude flights are largely unknown. We studied thermalling flights of Himalayan vultures (Gyps himalayensis) from 50 to 6500 m above sea level, a twofold range of air densities. To create the necessary lift to support the same weight and maintain soaring flight in thin air birds might modify lift coefficient by biophysical changes, such as wing posture and increasing the power expenditure. Alternatively, they can change their flight characteristics. We show that vultures use the latter and increase circle radius by 35% and airspeed by 21% over their flight altitude range. These simple behavioural adjustments enable vultures to move seamlessly during their annual migrations over the Himalaya without increasing energy output for flight at high elevations. PMID:28120805

  4. Behavioural adaptations to flight into thin air.

    PubMed

    Sherub, Sherub; Bohrer, Gil; Wikelski, Martin; Weinzierl, Rolf

    2016-10-01

    Soaring raptors can fly at high altitudes of up to 9000 m. The behavioural adjustments to high-altitude flights are largely unknown. We studied thermalling flights of Himalayan vultures (Gyps himalayensis) from 50 to 6500 m above sea level, a twofold range of air densities. To create the necessary lift to support the same weight and maintain soaring flight in thin air birds might modify lift coefficient by biophysical changes, such as wing posture and increasing the power expenditure. Alternatively, they can change their flight characteristics. We show that vultures use the latter and increase circle radius by 35% and airspeed by 21% over their flight altitude range. These simple behavioural adjustments enable vultures to move seamlessly during their annual migrations over the Himalaya without increasing energy output for flight at high elevations.

  5. Optical Air Flow Measurements for Flight Tests and Flight Testing Optical Air Flow Meters

    NASA Technical Reports Server (NTRS)

    Jentink, Henk W.; Bogue, Rodney K.

    2005-01-01

    Optical air flow measurements can support the testing of aircraft and can be instrumental to in-flight investigations of the atmosphere or atmospheric phenomena. Furthermore, optical air flow meters potentially contribute as avionics systems to flight safety and as air data systems. The qualification of these instruments for the flight environment is where we encounter the systems in flight testing. An overview is presented of different optical air flow measurement techniques applied in flight and what can be achieved with the techniques for flight test purposes is reviewed. All in-flight optical airflow velocity measurements use light scattering. Light is scattered on both air molecules and aerosols entrained in the air. Basic principles of making optical measurements in flight, some basic optical concepts, electronic concepts, optoelectronic interfaces, and some atmospheric processes associated with natural aerosols are reviewed. Safety aspects in applying the technique are shortly addressed. The different applications of the technique are listed and some typical examples are presented. Recently NASA acquired new data on mountain rotors, mountain induced turbulence, with the ACLAIM system. Rotor position was identified using the lidar system and the potentially hazardous air flow profile was monitored by the ACLAIM system.

  6. Air Traffic Control: Economics of Flight

    NASA Technical Reports Server (NTRS)

    Murphy, James R.

    2004-01-01

    Contents include the following: 1. Commercial flight is a partnership. Airlines. Pilots. Air traffic control. 2. Airline schedules and weather problems can cause delays at the airport. Delays are inevitable in de-regulated industry due to simple economics. 3.Delays can be mitigated. Build more runways/technology. Increase airspace supply. 4. Cost/benefit analysis determine justification.

  7. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  8. Bird flight and airplane flight. [instruments to measure air currents and flight characteristics

    NASA Technical Reports Server (NTRS)

    Magnan, A.

    1980-01-01

    Research was based on a series of mechanical, electrical, and cinematographic instruments developed to measure various features of air current behavior as well as bird and airplane flight. Investigation of rising obstruction and thermal currents led to a theory of bird flight, especially of the gliding and soaring types. It was shown how a knowledge of bird flight can be applied to glider and ultimately motorized aircraft construction. The instruments and methods used in studying stress in airplanes and in comparing the lift to drag ratios of airplanes and birds are described.

  9. Controlled Hypersonic Flight Air Data System and Flight Instrumentation

    DTIC Science & Technology

    2007-06-01

    strongly on the flight envelope, re-entry trajectory and vehicle structure. Flight envelope and re-entry trajectory influence primarily the sensor...6 3.3 Flight Wind angles and basic considerations...determination the Mach number independence principle can however be used to derive simple analytic expressions. 3.3 Flight Wind angles and basic

  10. France.

    PubMed

    1993-02-10

    Taxes on cigarettes in France have been increased by 15 per cent, the first of an overall rise of 30 per cent. Part of the revenue raised will help subsidise motor racing which lost its sponsors following a recent national ban on cigarette advertising. The remainder will go to the social security service.

  11. France

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Every July, the world's best cyclists race more than 3500 km around France, and sometimes the surrounding countries, in the Tour de France. This image from the Moderate resolution Imaging Spectroradiometer (MODIS) shows the varied terrain which challenges the riders. The race started in western France at Futuroscope, and headed toward Brittany. In these mostly flat 'stages' (as each day's race is called) sprinting specialists usually dash for the finish out of the main pack of riders. The race then moved to the Pyrenees mountains, in southern France along the border with Spain. Climbers and the overall favorites shine in the mountains, often gaining 10 minutes or more on their rivals. Only a few days after the Pyrenees climbs the race was again in the mountains. First Mont Ventoux, an extinct volcano in Provence, and then the massive Alps, with altitudes as high as 2,645 meters, challenged the racers. Finally the race headed toward Paris and a July 23rd finish in Paris. Go Lance! To learn more about MODIS, visit the MODIS web. Image by Jacques Descloitres, MODIS Land group, NASA GSFC

  12. Medical liabilities of the French physician passenger during a commercial air flight.

    PubMed

    Dedouit, F; Tournel, G; Barguin, P; Becart-Robert, A; Hedouin, V; Gosset, D

    2007-01-01

    Nearly two billion passengers travel each year on commercial air flights. More elderly people and/or people with a pre-existing condition are taking to the air and with the anticipated growth of air travel, in-flight illnesses and injuries are expected to increase as well. Even if in-flight medical events and deaths are still uncommon, physician passengers are occasionally called upon to render assistance. Although no case law exists as yet in France, physicians who often travel on commercial flights should be aware of the risks they run if they do not respond to the well-known call, 'Is there a doctor on board?', or if they assist a sick passenger. This paper describes in-flight resources available to a physician who is called upon to treat an ill or injured passenger. Two questions concerning the French physician passenger are discussed: What are the liabilities of the physician who does not respond to the call of a medical event aboard an aircraft? What are the liabilities of the physician providing assistance to a sick passenger? The different liabilities and also the legal status of the French physician passenger are examined.

  13. Analysis of flight equipment purchasing practices of representative air carriers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The process through which representative air carriers decide whether or not to purchase flight equipment was investigated as well as their practices and policies in retiring surplus aircraft. An analysis of the flight equipment investment decision process in ten airlines shows that for the airline industry as a whole, the flight equipment investment decision is in a state of transition from a wholly informal process in earliest years to a much more organized and structured process in the future. Individual air carriers are in different stages with respect to the formality and sophistication associated with the flight equipment investment decision.

  14. 10. "TEST STAND 15, AIR FORCE FLIGHT TEST CENTER." ca. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STAND 1-5, AIR FORCE FLIGHT TEST CENTER." ca. 1958. Test Area 1-115. Original is a color print, showing Test Stand 1-5 from below, also showing the superstructure of TS1-4 at left. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA

  15. France.

    PubMed

    1987-09-01

    In 1986, France had a population of 55,493,000, with an annual growth rate of 0.4%. The infant mortality rate stood at 8.2/1000. Of the work force of 23.8 million, 8.3% were engaged in agriculture, 45.2% were in the industry and commerce sector, and 46.5% were engaged in services. The unemployment rate stood at 10.7%. The country's gross domestic product (GDP) was US$724 billion in 1986, with an average annual growth rate of 2.0%, and per capita income averaged $13,046. France has substantial agricultural resources, a diversified modern industrial system, and a highly skilled labor force. Following the return of a socialist majority in government in 1981, several large manufacturing firms were nationalized along with much of the commercial banking sector. Initial socialist policies were stimulative, relying partly on income redistribution and partly on increased government spending. However, the resultant increase in import demand was not offset by an increased demand French exports. In 1983, an economic stabilization plan of reductions in the budget deficit, involving spending cuts, increased taxes, and tighter monetary and credit policies, was successfully implemented. Although current economic policies should promote stronger growth over the medium to long term, trade competitiveness remains weak and high unemployment is a major social problem.

  16. Honeybee flight metabolic rate: does it depend upon air temperature?

    PubMed

    Woods, William A; Heinrich, Bernd; Stevenson, Robert D

    2005-03-01

    Differing conclusions have been reached as to how or whether varying heat production has a thermoregulatory function in flying honeybees Apis mellifera. We investigated the effects of air temperature on flight metabolic rate, water loss, wingbeat frequency, body segment temperatures and behavior of honeybees flying in transparent containment outdoors. For periods of voluntary, uninterrupted, self-sustaining flight, metabolic rate was independent of air temperature between 19 and 37 degrees C. Thorax temperatures (T(th)) were very stable, with a slope of thorax temperature on air temperature of 0.18. Evaporative heat loss increased from 51 mW g(-1) at 25 degrees C to 158 mW g(-1) at 37 degrees C and appeared to account for head and abdomen temperature excess falling sharply over the same air temperature range. As air temperature increased from 19 to 37 degrees C, wingbeat frequency showed a slight but significant increase, and metabolic expenditure per wingbeat showed a corresponding slight but significant decrease. Bees spent an average of 52% of the measurement period in flight, with 19 of 78 bees sustaining uninterrupted voluntary flight for periods of >1 min. The fraction of time spent flying declined as air temperature increased. As the fraction of time spent flying decreased, the slope of metabolic rate on air temperature became more steeply negative, and was significant for bees flying less than 80% of the time. In a separate experiment, there was a significant inverse relationship of metabolic rate and air temperature for bees requiring frequent or constant agitation to remain airborne, but no dependence for bees that flew with little or no agitation; bees were less likely to require agitation during outdoor than indoor measurements. A recent hypothesis explaining differences between studies in the slope of flight metabolic rate on air temperature in terms of differences in metabolic capacity and thorax temperature is supported for honeybees in voluntary

  17. Air Data Report Improves Flight Safety

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Aviation Safety Program in the NASA Aeronautics Research Mission Directorate, which seeks to make aviation safer by developing tools for flight data analysis and interpretation and then by transferring these tools to the aviation industry, sponsored the development of Morning Report software. The software, created at Ames Research Center with the assistance of the Pacific Northwest National Laboratory, seeks to detect atypicalities without any predefined parameters-it spots deviations and highlights them. In 2004, Sagem Avionics Inc. entered a licensing agreement with NASA for the commercialization of the Morning Report software, and also licensed the NASA Aviation Data Integration System (ADIS) tool, which allows for the integration of data from disparate sources into the flight data analysis process. Sagem Avionics incorporated the Morning Report tool into its AGS product, a comprehensive flight operations monitoring system that helps users detect irregular or divergent practices, technical flaws, and problems that might develop when aircraft operate outside of normal procedures. Sagem developed AGS in collaboration with airlines, so that the system takes into account their technical evolutions and needs, and each airline is able to easily perform specific treatments and to build its own flight data analysis system. Further, the AGS is designed to support any aircraft and flight data recorders.

  18. NACA Flight-Path Angle and Air-Speed Recorder

    NASA Technical Reports Server (NTRS)

    Coleman, Donald G

    1926-01-01

    A new trailing bomb-type instrument for photographically recording the flight-path angle and air speed of aircraft in unaccelerated flight is described. The instrument consists essentially of an inclinometer, air-speed meter and a film-drum case. The inclinometer carries an oil-damped pendulum which records optically the flight-path angle upon a rotating motor-driven film drum. The air-speed meter consists of a taut metal diaphragm of high natural frequency which is acted upon by the pressure difference of a Prandtl type Pitot-static tube. The inclinometer record and air-speed record are made optically on the same sensitive film. Two records taken by this instrument are shown.

  19. Optical Air Flow Measurements in Flight

    NASA Technical Reports Server (NTRS)

    Bogue, Rodney K.; Jentink, Henk W.

    2004-01-01

    This document has been written to assist the flight-test engineer and researcher in using optical flow measurements in flight applications. The emphasis is on describing tradeoffs in system design to provide desired measurement performance as currently understood. Optical system components are discussed with examples that illustrate the issues. The document concludes with descriptions of optical measurement systems designed for a variety of applications including aeronautics research, airspeed measurement, and turbulence hazard detection. Theoretical discussion is minimized, but numerous references are provided to supply ample opportunity for the reader to understand the theoretical underpinning of optical concepts.

  20. Comparative measurements of in-flight humidity sensors of the meteo-France Merlin-IV during SCMS experiment

    SciTech Connect

    Nacass, P.L.

    1996-11-01

    One of the French Atmospheric Research Aircraft, the Merlin-IV operated by Meteo-France, is instrumented for the measurement of dynamic and thermodynamic parameters, air motion, radiance, microphysics, physico-chemistry and air pollution. In summer 1995, the Merlin flew from France to USA to participated at the Small Cumulus Microphysics Study (SCMS) near Cape Canaveral, Florida. For this experience, the Merlin was especially equipped with a lot of new sensors measuring liquid and vapor water. In this paper, preliminary results concerning the comparison between standard and experimental hygrometers are presented, detailed and discussed. 21 refs., 5 figs., 1 tab.

  1. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    NASA Technical Reports Server (NTRS)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  2. Volcanic air pollution and mortality in France 1783 1784

    NASA Astrophysics Data System (ADS)

    Grattan, John; Rabartin, Roland; Self, Stephen; Thordarson, Thorvaldur

    2005-05-01

    The impact that volcanic eruptions may have upon environments far from the volcanic source is conventionally assumed to depend on climatic modification by emitted gases. However, recent research has suggested that the damage caused by the direct impact of volcanic gases, mainly H 2SO 4, may be profound. This paper highlights the severity of this mechanism by reference to human sickness and death in France and contiguous with the eruption of the Laki fissure in Iceland in 1783. This work demonstrates the gains which may be made by interdisciplinary teams of researchers and illustrates the valuable knowledge that remains to be revealed by further research in the French historical record. To cite this article: J. Grattan et al., C. R. Geoscience 337 (2005).

  3. The Soviet Response to Korean Air Lines Flight 007.

    DTIC Science & Technology

    1985-06-07

    34 Defense & Foreign 22 . .. .*..- Affairs, November 1983, pp. 3 5-3 8 . 17 Steven J. Cimbala, "Why Did the Soviets Attack the Korean Airliner...135 returning to Alaska while the Korean flight continued on towards Petropavlovsk. Ogarkov commented, "It was natural that the Soviet Air Defense ...unable to do so.S4 When Western newspapers began reporting the Korean Air Lines disaster, several interviews were made with US dignitaries and defense

  4. Virtual flight simulation of a dual rotor micro air vehicle

    NASA Astrophysics Data System (ADS)

    Cai, Hongming

    2015-02-01

    In this paper, a new computational method is developed based on computational fluid dynamics (CFD) coupled with rigid body dynamics (RBD) and flight control law in an in-house programmed source code. The CFD solver is established based on momentum source method, preconditioning method, lower-upper symmetric Gauss-Seidel iteration method, and moving overset grid method. Two-equation shear-stress transport k - ω turbulence model is employed to close the governing equations. Third-order Adams prediction-correction method is used to couple CFD and RBD in the inner iteration. The wing-rock motion of the delta wing is simulated to validate the capability of the computational method for virtual flight simulation. Finally, the developed computational method is employed to simulate the longitudinal virtual flight of a dual rotor micro air vehicle (MAV). Results show that the computational method can simulate the virtual flight of the dual rotor MAV.

  5. Preliminary report on AED deployment on the entire Air France commercial fleet: a joint venture with Paris XII University Training Programme.

    PubMed

    Bertrand, C; Rodriguez Redington, P; Lecarpentier, E; Bellaiche, G; Michel, D; Teiger, E; Morris, W; Le Bourgeois, J P; Barthout, M

    2004-11-01

    The positive effect of early defibrillation on survival from cardiac arrest has been demonstrated. We describe the use of AEDs over 1 year following the training of flight attendants. Air France and the University of Paris XII together designed a 1 year training programme for 14000 flight attendants. The university emergency departments (SAMU) provided 250 instructors. AEDs training and certification was conducted for crew members between November 2001 and November 2002. By January 2003, all aircraft were fully equipped with AEDs. All cases of cardiac arrest that occurred during the study were reviewed comprehensively. Comments from the crew were collected. Twelve cardiac arrests were reported between November 2002 and November 2003 out of 4194 cases of emergency care delivered to passengers. Shock treatment was advised initially in 5/12 cases. The survival rate after in-flight cardiac arrest was 3/12. The survival rate at discharge from hospital following in flight shock was 2/5. No complications arose from the use of AEDs. Training by professionals gave the flight attendants confidence and allowed for the survival of two young passengers. Our study highlights the ability of flight attendants to give better onboard care for the future. The next step is to consolidate the network between in-flight care and the medical dispatch centre in Paris.

  6. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  7. The 1979 Clear Air Turbulence Flight Test Program

    NASA Technical Reports Server (NTRS)

    Weaver, E. A.; Ehernberger, L. J.; Gary, B. L.; Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.

    1981-01-01

    The flight experiments for clear air turbulence (CAT) detection and measurement concepts are described. The test were conducted over the western part of the United States during the winter season of 1979 aboard NASA's Galileo 2 flying laboratory. A carbon dioxide pulsed Doppler lidar and an infrared radiometer were tested for the remote detection and measurement of CAT. Two microwave radiometers were evaluated for their ability to provide encounter warning and altitude avoidance information.

  8. Free flight: air traffic control evolution or revolution

    NASA Astrophysics Data System (ADS)

    Grundmann, Karl

    1996-05-01

    The Federal Aviation Administration (FAA) and industry are moving towards a more flexible, user oriented air traffic control system. The question is: does this point to a natural evolution or revolution in the world of the air traffic controllers? The National Airspace System is by all accounts the safest in the world. How will we sustain this record of performance with increased flexibility and user involvement? How will controllers and pilots react to a new more dynamic paradigm? Is the current state of automation, modeling, and analysis what is needed to make Free Flight a reality? How will the FAA insure that all human factors questions are answered before implementation? How will we quantify the impact of unanswered questions and their influence on safety? These, and many more questions need to be answered to ensure that the benefits promised by Free Flight are realized by all parties. The National Air Traffic Controllers Association supports the new concept. Yet, we are seriously concerned about the actual implementation of Free Flight's various components.

  9. Air concentrations of PBDEs on in-flight airplanes and assessment of flight crew inhalation exposure.

    PubMed

    Allen, Joseph G; Sumner, Ann Louise; Nishioka, Marcia G; Vallarino, Jose; Turner, Douglas J; Saltman, Hannah K; Spengler, John D

    2013-07-01

    To address the knowledge gaps regarding inhalation exposure of flight crew to polybrominated diphenyl ethers (PBDEs) on airplanes, we measured PBDE concentrations in air samples collected in the cabin air at cruising altitudes and used Bayesian Decision Analysis (BDA) to evaluate the likelihood of inhalation exposure to result in the average daily dose (ADD) of a member of the flight crew to exceed EPA Reference Doses (RfDs), accounting for all other aircraft and non-aircraft exposures. A total of 59 air samples were collected from different aircraft and analyzed for four PBDE congeners-BDE 47, 99, 100 and 209 (a subset were also analyzed for BDE 183). For congeners with a published RfD, high estimates of ADD were calculated for all non-aircraft exposure pathways and non-inhalation exposure onboard aircraft; inhalation exposure limits were then derived based on the difference between the RfD and ADDs for all other exposure pathways. The 95th percentile measured concentrations of PBDEs in aircraft air were <1% of the derived inhalation exposure limits. Likelihood probabilities of 95th percentile exposure concentrations >1% of the defined exposure limit were zero for all congeners with published RfDs.

  10. Data link air traffic control and flight deck environments: Experiment in flight crew performance

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy; Mcgann, Alison; Corker, Kevin

    1993-01-01

    This report describes an experiment undertaken in a full mission simulation environment to investigate the performance impact of, and human/system response to, data-linked Air Traffic Control (ATC) and automated flight deck operations. Subjects were twenty pilots (ten crews) from a major United States air carrier. Crews flew the Advanced Concepts Flight Simulator (ACFS), a generic 'glass cockpit' simulator at NASA Ames. The method of data link used was similar to the data link implementation plans for a next-generation aircraft, and included the capability to review ATC messages and directly enter ATC clearance information into the aircraft systems. Each crew flew experimental scenarios, in which data reflecting communication timing, errors and clarifications, and procedures were collected. Results for errors and clarifications revealed an interaction between communication modality (voice v. data link) and communication type (air/ground v. intracrew). Results also revealed that voice crews initiated ATC contact significantly more than data link crews. It was also found that data link crews performed significantly more extraneous activities during the communication task than voice crews. Descriptive data from the use of the review menu indicate the pilot-not-flying accessing the review menu most often, and also suggest diffulty in accessing the target message within the review menu structure. The overall impact of communication modality upon air/ground communication and crew procedures is discussed.

  11. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...

  12. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...

  13. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...

  14. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...

  15. 14 CFR 375.50 - Transit flights; scheduled international air service operations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Transit flights; scheduled international... WITHIN THE UNITED STATES Transit Flights § 375.50 Transit flights; scheduled international air service... to the International Air Services Transit Agreement in transit across the United States may not...

  16. Flight management concepts compatible with air traffic control

    NASA Technical Reports Server (NTRS)

    Morello, S. A.

    1986-01-01

    With the advent of airline deregulation and increased competition, the need for cost efficient airline operations is critical. This paper summarizes past research efforts and planned research thrusts toward the development of compatible flight management and air traffic control systems that promise increased operational effectiveness and efficiency. Potential capacity improvements resulting from a time-based ATC simulation (fast-time) are presented. Advanced display concepts with time guidance and velocity vector information to allow the flight crew to play an important role in the future ATC environment are discussed. Results of parametric sensitivity analyses are also presented that quantify the fuel/cost penalties for idle-thrust mismodeling and wind-modeling errors.

  17. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  18. Spatial variability of hailfalls in France: an analysis of air mass retro-trajectories

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Merino, Andrés; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Fernández-González, Sergio; Gascón, Estíbaliz; García-Ortega, Eduardo

    2014-05-01

    Hail is the main meteorological risk in south-west France, with the strongest hailfalls being concentrated in just a few days. Specifically, this phenomenon occurs most often and with the greatest severity in the Midi-Pyrénées area. Previous studies have revealed the high spatial variability of hailfall in this part of France, even leading to different characteristics being recorded on hailpads that were relatively close together. For this reason, an analysis of the air mass trajectories was carried out at ground level and at altitude, which subsequently led to the formation of the hail recorded by these hailpads. It is already known that in the study zone, the trajectories of the storms usually stretch for long distances and are oriented towards the east, leading to hailstones with diameters in excess of 3 cm, and without any change in direction above 3 km. We analysed different days with hail precipitation where there was at least one stone with a diameter of 3 cm or larger. Using the simulations from these days, an analysis of the backward trajectories of the air masses was carried out. We used the HYSPLIT (Hybrid Single Particle Lagrangian Integrated Trajectory Model) to determine the origin of the air masses, and tracked them toward each of the hailpads that were hit during the day studied. The height of the final points was the height of the impacted hailpads. Similarly, the backward trajectories for different heights were also established. Finally, the results show how storms that affect neighbouring hailpads come from very different air masses; and provide a deeper understanding of the high variability that affects the characteristics of hailfalls. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22).

  19. High performance target measurement flights from Vandenberg Air Force Base

    NASA Astrophysics Data System (ADS)

    Chalfant, C. P.; Rosen, H.; Jerger, J. H.

    A description is presented of a new launch facility which is being prepared for the High Performance Target Measurement (HPTEM) booster at Vandenberg Air Force Base (VAFB). A deactivated Atlas launch complex is currently being modified to allow the rocket to be launched from a semisilo. The underground launch operations building will contain a new control center and instrumentation room. Attention is given to the Multi-Spectral Measurement Program (MSMP), details concerning the launch facility, and a target and flight safety trajectory analysis. Construction and modification of the facility is scheduled to be completed in mid-1983. The first HPTEM launch is planned to occur in April 1984. The HPTEM launch facility can also be utilized to launch Aries I (single stage) and Aries II (two-stage) probes with minor modification.

  20. Estimate of air carrier and air taxi crash frequencies from high altitude en route flight operations

    SciTech Connect

    Sanzo, D.; Kimura, C.Y.; Prassinos, P.G.

    1996-06-03

    In estimating the frequency of an aircraft crashing into a facility, it has been found convenient to break the problem down into two broad categories. One category estimates the aircraft crash frequency due to air traffic from nearby airports, the so-called near-airport environment. The other category estimates the aircraft crash frequency onto facilities due to air traffic from airways, jet routes, and other traffic flying outside the near-airport environment The total aircraft crash frequency is the summation of the crash frequencies from each airport near the facility under evaluation and from all airways, jet routes, and other traffic near the facility of interest. This paper will examine the problems associated with the determining the aircraft crash frequencies onto facilities outside the near-airport environment. This paper will further concentrate on the estimating the risk of aircraft crashes to ground facilities due to high altitude air carrier and air taxi traffic. High altitude air carrier and air taxi traffic will be defined as all air carrier and air taxi flights above 18,000 feet Mean Sea Level (MSL).

  1. Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Castro, V. A.; Ott, C. M.; Pierson, D. L.

    2012-01-01

    The determination of risk from infectious disease during spaceflight missions is composed of several factors including both the concentration and characteristics of the microorganisms to which the crew are exposed. Thus, having a good understanding of the microbial ecology aboard spacecraft provides the necessary information to mitigate health risks to the crew. While preventive measures are taken to minimize the presence of pathogens on spacecraft, medically significant organisms have been isolated from both the Mir and International Space Station (ISS). Historically, the method for isolation and identification of microorganisms from spacecraft environmental samples depended upon their growth on culture media. Unfortunately, only a fraction of the organisms may grow on a specific culture medium, potentially omitting those microorganisms whose nutritional and physical requirements for growth are not met. To address this bias in our understanding of the ISS environment, the Surface, Water, and Air Biocharacterization (SWAB) Flight Experiment was designed to investigate and develop monitoring technology to provide better microbial characterization. For the SWAB flight experiment, we hypothesized that environmental analysis using non-culture-based technologies would reveal microorganisms, allergens, and microbial toxins not previously reported in spacecraft, allowing for a more complete health assessment. Key findings during this experiment included: a) Generally, advanced molecular techniques were able to reveal a few organisms not recovered using culture-based methods; however, there is no indication that current monitoring is "missing" any medically significant bacteria or fungi. b) Molecular techniques have tremendous potential for microbial monitoring, however, sample preparation and data analysis present challenges for spaceflight hardware. c) Analytical results indicate that some molecular techniques, such as denaturing gradient gel electrophoresis (DGGE), can

  2. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    PubMed

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.

  3. SR-71B - in Flight - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This look-down view shows NASA 831, an SR-71B flown by Dryden Flight Research Center, Edwards, California, as it cruises over the Mojave Desert. The photo was from an Air Force refueling tanker taken on a 1997 mission. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used for the Linear Aerospike Rocket Engine, or LASRE Experiment. Another earlier project consisted of a series of flights using the SR-71 as a science camera platform for NASA's Jet Propulsion Laboratory in

  4. Long-term air pollution indicator assessment: example of black smoke in Bordeaux, France.

    PubMed

    Filleul, Laurent; Baldi, Isabelle; Quenel, Philippe; Brochard, Patrick; Tessier, Jean François

    2002-05-01

    The aim of the second phase of the Pollution Atmosphérique et Affections Respiratoires Chroniques (PAARC) study, started in 1974, was to compare the long-term mortality between populations living in areas with different air pollution levels. In Bordeaux (France), four different areas were concerned by the study. The black smoke measures were realized between 1974 and 1981. After 1981, the stations set specifically for the study were not used any more. The purpose of this study was to estimate the evolution of air pollution in those areas between 1982 and 1997 using the measures of 12 Association de Prévention de la Pollution Atmosphérique (APPA) stations located in Bordeaux city but not in the PAARC areas. The method used was divided in three phases: a correlation study between the stations of the different networks, a selection of the pertinent stations and the setting up of indicators using the arithmetic means method. Monthly means concentrations were estimated from January 1982 to December 1997. Models showed a decrease in black smoke levels whatever the area. The difference in level from one area to another, existing between the areas in 1974, was still with predicted values in 1997, but less important. Black smoke mean concentration for 1982-1997 was, respectively, 16.4 and 16.2 microg/m3, in areas 1 and 2. It was a little bit higher in area 3 with 18.9 microg/m3. Area 4 still has the highest level with 26.3 microg/m3. To conclude, this method enabled to assess different air pollution levels at different times in the four areas of the PAARC study in Bordeaux. Those levels could be used to study the impact of the air pollution on long-term mortality on populations living in the areas considered.

  5. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Mike; Munson, Mike; Teate, George

    2006-01-01

    A new testbed for hypersonic flight research is proposed. Known as the Phoenix air-launched small missile (ALSM) flight testbed, it was conceived to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of two unique and very capable flight assets: the United States Navy Phoenix AIM-54 long-range, guided air-to-air missile and the NASA Dryden F-15B testbed airplane. The U.S. Navy retirement of the Phoenix AIM-54 missiles from fleet operation has presented an excellent opportunity for converting this valuable flight asset into a new flight testbed. This cost-effective new platform will fill an existing gap in the test and evaluation of current and future hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform. When launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will be valuable for the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite small-payload air-launched space boosters.

  6. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) and SeaWinds

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image shows Hurricane Frances as captured by instruments onboard two different satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean.

    The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central 'eye'. The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures.

    The power of the SeaWinds scatterometer data set lies in its ability to generate global maps of wind speed and direction, giving us a snapshot of how the atmosphere is circulating. Weather prediction centers, including the Tropical Prediction Center - a branch of NOAA that monitors the creation of ocean-born storms, use scatterometer data to help it 'see' where these storms are brewing so that warnings can be issued and the storms, with often erratic motions, can be tracked.

    While the SeaWinds instrument isn't designed to gather hurricane data, having difficulty seeing the surface in heavy rain, it's data can be used in combination with other data sets to give us an insight into these storms. In

  7. New Air-Launched Small Missile (ALSM) Flight Testbed for Hypersonic Systems

    NASA Technical Reports Server (NTRS)

    Bui, Trong T.; Lux, David P.; Stenger, Michael T.; Munson, Michael J.; Teate, George F.

    2007-01-01

    The Phoenix Air-Launched Small Missile (ALSM) flight testbed was conceived and is proposed to help address the lack of quick-turnaround and cost-effective hypersonic flight research capabilities. The Phoenix ALSM testbed results from utilization of the United States Navy Phoenix AIM-54 (Hughes Aircraft Company, now Raytheon Company, Waltham, Massachusetts) long-range, guided air-to-air missile and the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center (Edwards, California) F-15B (McDonnell Douglas, now the Boeing Company, Chicago, Illinois) testbed airplane. The retirement of the Phoenix AIM-54 missiles from fleet operation has presented an opportunity for converting this flight asset into a new flight testbed. This cost-effective new platform will fill the gap in the test and evaluation of hypersonic systems for flight Mach numbers ranging from 3 to 5. Preliminary studies indicate that the Phoenix missile is a highly capable platform; when launched from a high-performance airplane, the guided Phoenix missile can boost research payloads to low hypersonic Mach numbers, enabling flight research in the supersonic-to-hypersonic transitional flight envelope. Experience gained from developing and operating the Phoenix ALSM testbed will assist the development and operation of future higher-performance ALSM flight testbeds as well as responsive microsatellite-small-payload air-launched space boosters.

  8. Hurricane Frances as Observed by NASA's Spaceborne Atmospheric Infrared Sounder (AIRS) - Total Water

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Born in the Atlantic, Hurricane Frances became a category 4 hurricane on August 31, 2004. Expectations are the hurricane will hit the Space Coast of Florida in Brevard County early Sunday morning.

    This movie is a time-series of maps that show AIRS observations of the total amount of water vapor present in the atmospheric column above each point of the Earth's surface. If all the water vapor in the column were forced to fall as rain, the depth of the resulting puddle on the surface at that point is equal to the value shown on the map. Fifty millimeters (mm) is about 2 inches. The large band of maximum water vapor in the neighborhood of the equator is the Intertropical Convergence Zone (ITCZ), a region of strong convection and powerful thunderstorms.

    This movie shows the total precipitable water vapor from August 23 through September 2, 2004. You can see Hurricane Frances as it moves through the Caribbean toward Florida, and the changes in intensity are visible. The eye has been marked with a red spot. The water vapor encompassed by the hurricane is also the result of the very strong convection which is an integral part of the formation and intensification of tropical storms. If you look at the last frame of the movie in the lower right corner, you can see the emergence of a new tropical storm. Ivan makes its debut in the Atlantic.

    The Atmospheric Infrared Sounder Experiment, with its visible, infrared, and microwave detectors, provides a three-dimensional look at Earth's weather. Working in tandem, the three instruments can make simultaneous observations all the way down to the Earth's surface, even in the presence of heavy clouds. With more than 2,000 channels sensing different regions of the atmosphere, the system creates a global, 3-D map of atmospheric temperature and humidity and provides information on clouds, greenhouse gases, and many other atmospheric phenomena. The AIRS Infrared Sounder Experiment flies onboard NASA's Aqua spacecraft

  9. Time Series Analysis in Flight Flutter Testing at the Air Force Flight Test Center: Concepts and Results

    NASA Technical Reports Server (NTRS)

    Lenz, R. W.; Mckeever, B.

    1976-01-01

    The Air Force Flight Test Center (AFFTC) flight flutter facility is described. Concepts of using a minicomputer-based time series analyzer and a modal analysis software package for flight flutter testing are examined. The results of several evaluations of the software package are given. The reasons for employing a minimum phase concept in analyzing response only signals are discussed. The use of a Laplace algorithm is shown to be effective for the modal analysis of time histories in flutter testing. Sample results from models and flight tests are provided. The limitations inherent in time series analysis methods are discussed, and the need for effective noise reduction techniques is noted. The use of digital time series analysis techniques in flutter testing is shown to be fast, accurate, and cost effective.

  10. Occurrence of currently used pesticides in ambient air of Centre Region (France)

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Colin, Patrice; Yahyaoui, Abderrazak; Petrique, Olivier; Yusà, Vicent; Mellouki, Abdelwahid; Pastor, Agustin

    2010-10-01

    Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m -3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature. The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.

  11. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    PubMed

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders.

  12. Private and Commercial Pilot: Ligher-Than-Air Airship. Flight Test Guide. (Part 61 Revised).

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    The flight test guide assists the applicant and his instructor in preparing for the flight test for the Private or Commercial Pilot Certificate with a Lighter-Than-Air Category and Airship Class Rating under Part 61 (revised) of Federal Aviation Regulations. It contains information and guidance concerning pilot operations, procedures, and…

  13. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  14. Micro air vehicle-motivated computational biomechanics in bio-flights: aerodynamics, flight dynamics and maneuvering stability

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Nakata, Toshiyuki; Gao, Na; Maeda, Masateru; Aono, Hikaru; Shyy, Wei

    2010-12-01

    Aiming at developing an effective tool to unveil key mechanisms in bio-flight as well as to provide guidelines for bio-inspired micro air vehicles (MAVs) design, we propose a comprehensive computational framework, which integrates aerodynamics, flight dynamics, vehicle stability and maneuverability. This framework consists of (1) a Navier-Stokes unsteady aerodynamic model; (2) a linear finite element model for structural dynamics; (3) a fluid-structure interaction (FSI) model for coupled flexible wing aerodynamics aeroelasticity; (4) a free-flying rigid body dynamic (RBD) model utilizing the Newtonian-Euler equations of 6DoF motion; and (5) flight simulator accounting for realistic wing-body morphology, flapping-wing and body kinematics, and a coupling model accounting for the nonlinear 6DoF flight dynamics and stability of insect flapping flight. Results are presented based on hovering aerodynamics with rigid and flexible wings of hawkmoth and fruitfly. The present approach can support systematic analyses of bio- and bio-inspired flight.

  15. Effects of Flight Pay and Commitment on Air Force Pilot Applicants.

    DTIC Science & Technology

    1982-09-01

    sampled group that would accept a com- mitment equal to or less than that shown on the left for each given amount of flight pay and bonus shown at the...EFFECTS OF FLIGHT PAY AND COMMITMENT ON AIR FORCE PILOT APPLICANTS Joel D. Haniford, First Lieutenant, USAF Bobby M. Stone, Major, USAF LSSR 16-82 I...FLIGHT PAY AND COMMITMENT Master’s Thesis ON AIR FORCE PILOT APPLICANTS S. PERFORmINo Oqi. REPORT HUmsERt 7. AUTOR(e.) . CONTRACT OR GRANT NUMBERaI

  16. A simple active controller to suppress helicopter air resonance in hover and forward flight

    NASA Technical Reports Server (NTRS)

    Friedmann, P. P.; Takahashi, M. D.

    1989-01-01

    A coupled rotor/fuselage helicopter analysis with the important effects of blade torsional flexibility, unsteady aerodynamics, and forward flight is presented. This model is used to illustrate the effect of unsteady aerodynamics, forward flight, and torsional flexibility on air resonance. Next, a nominal configuration, which experiences air resonance in forward flight, is selected. A simple multivariable compensator using conventional swashplate inputs and a single body roll rate measurement is then designed. The controller design is based on a linear estimator in conjunction with optimal feedback gains, and the design is done in the frequency domain using the loop-transfer recovery method. The controller is shown to suppress the air resonance instability throughout wide range helicopter loading conditions and forward flight speeds.

  17. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    NASA Technical Reports Server (NTRS)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  18. Reactions of Air Transport Flight Crews to Displays of Weather During Simulated Flight

    NASA Technical Reports Server (NTRS)

    Bliss, James P.; Fallon, Corey; Bustamante, Ernesto; Bailey, William R., III; Anderson, Brittany

    2005-01-01

    Display of information in the cockpit has long been a challenge for aircraft designers. Given the limited space in which to present information, designers have had to be extremely selective about the types and amount of flight related information to present to pilots. The general goal of cockpit display design and implementation is to ensure that displays present information that is timely, useful, and helpful. This suggests that displays should facilitate the management of perceived workload, and should allow maximal situation awareness. The formatting of current and projected weather displays represents a unique challenge. As technologies have been developed to increase the variety and capabilities of weather information available to flight crews, factors such as conflicting weather representations and increased decision importance have increased the likelihood for errors. However, if formatted optimally, it is possible that next generation weather displays could allow for clearer indications of weather trends such as developing or decaying weather patterns. Important issues to address include the integration of weather information sources, flight crew trust of displayed weather information, and the teamed reactivity of flight crews to displays of weather. Past studies of weather display reactivity and formatting have not adequately addressed these issues; in part because experimental stimuli have not approximated the complexity of modern weather displays, and in part because they have not used realistic experimental tasks or participants. The goal of the research reported here was to investigate the influence of onboard and NEXRAD agreement, range to the simulated potential weather event, and the pilot flying on flight crew deviation decisions, perceived workload, and perceived situation awareness. Fifteen pilot-copilot teams were required to fly a simulated route while reacting to weather events presented in two graphical formats on a separate visual display

  19. Ambient air concentration of sulfur dioxide affects flight activity in bees

    SciTech Connect

    Ginevan, M.E.; Lane, D.D.; Greenberg, L.

    1980-10-01

    Three long-term (16 to 29 days) low-level (0.14 to 0.28 ppM) sulfur dioxide fumigations showed that exposure tothis gas has deleterious effects on male sweat bees (Lasioglossum zephrum). Although effects on mortality were equivocal, flight activity was definitely reduced. Because flight is necessary for successful mating behavior, the results suggest that sulfur dioxide air pollution could adversely affect this and doubtless other terrestrial insects.

  20. Air Force Flight Test Center Engineering Logistics Plan Preparation Guide. Technical Information Handbook

    DTIC Science & Technology

    2009-05-01

    Corrupter CNS/ATM Gateway & Air Traffic Services WS HERMES Mapper CLIENT HERMES SERVER Router Hub FANS AVIONICS Shelf POA & VDL2 Flight Simulator ...LINUX) Flight Simulator (Windows) Windows XP Hyper-Term Range ATM Ring AF.MIL Network Figure 1 ACTFAST System Block Diagram 4.1 CNS/ATM Gateway...16 terminal communicates to the Host Computer, which simulates the host aircraft (or ship) mission computer, over the 1553 data bus the same way it

  1. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  2. U.S. Air Force Aircrew Flight Protective Eyewear Program

    DTIC Science & Technology

    2013-02-01

    MIL-DTL-32000), fire-resistant hydraulic fluid (MIL-PRF-46170), petroleum -based hydraulic fluid (MIL-PRF-6083), gasoline (87% octane), motor oil...were abraded 20 cycles (40 strokes). After abrasion, samples were washed with a mild detergent water solution and dried with compressed air. Pass

  3. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    DTIC Science & Technology

    1946-08-01

    The charge-air weight flow was measured during flight by venturi meters installed in the two parallel lines between tileintercooler and car?nmetor...pressure was measured by a shrouded total-head tubo installed on a streamline loom on the right wi~ tip. A swiveling static tube, which was calibrated in a

  4. Air Data Boom System Development for the Max Launch Abort System (MLAS) Flight Experiment

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Cox, Jeff; Bondurant, Robert; Dupont, Ron; ODonnell, Louise; Vellines, Wesley, IV; Johnston, William M.; Cagle, Christopher M.; Schuster, David M.; Elliott, Kenny B.; Newman, John A.; Tyler, Erik D.; Sterling, William J.

    2010-01-01

    In 2007, the NASA Exploration Systems Mission Directorate (ESMD) chartered the NASA Engineering Safety Center (NESC) to demonstrate an alternate launch abort concept as risk mitigation for the Orion project's baseline "tower" design. On July 8, 2009, a full scale and passively, aerodynamically stabilized MLAS launch abort demonstrator was successfully launched from Wallops Flight Facility following nearly two years of development work on the launch abort concept: from a napkin sketch to a flight demonstration of the full-scale flight test vehicle. The MLAS flight test vehicle was instrumented with a suite of aerodynamic sensors. The purpose was to obtain sufficient data to demonstrate that the vehicle demonstrated the behavior predicted by Computational Fluid Dynamics (CFD) analysis and wind tunnel testing. This paper describes development of the Air Data Boom (ADB) component of the aerodynamic sensor suite.

  5. Korean Air Lines Flight 007: Lessons from the Past and Insights for the Future

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Shafto, M. (Technical Monitor)

    2001-01-01

    The majority of the problems pilot encounter when using automated systems center around two factors: (1) the pilot has an incomplete and inadequate model of how the autopilot works; and (2) the displays and flight manuals, provided to the pilot, are inadequate for the task. The tragic accident of Korean Air Lines Flight 007, a Boeing 747 that deviated from its intended flight path, provides a compelling case-study of problems related to pilots' use of automated systems. This paper describes what had happened and exposes two types of human-automation interaction problems: (1) The pilots of KAL were not provided with adequate information about the actual behavior of the autopilot and its mode transition logic; and (2) The autopilot onboard KAL 007 did not provide adequate information to the flight crew about its active and armed modes. Both factors, according to the International Civil Aviation Organization (1993) report on the accident, contributed to the aircraft's lethal navigation error.

  6. Flight tests with a data link used for air traffic control information exchange

    NASA Technical Reports Server (NTRS)

    Knox, Charles E.; Scanlon, Charles H.

    1991-01-01

    Previous studies showed that air traffic control (ATC) message exchange with a data link offers the potential benefits of increased airspace system safety and efficiency. To accomplish these benefits, data link can be used to reduce communication errors and relieve overloaded ATC voice radio frequencies, which hamper efficient message exchange during peak traffic periods. Flight tests with commercial airline pilots as test subjects were conducted in the NASA Transport Systems Research Vehicle Boeing 737 airplane to contrast flight operations that used current voice communications with flight operations that used data link to transmit both strategic and tactical ATC clearances during a typical commercial airflight from takeoff to landing. The results of these tests that used data link as the primary communication source with ATC showed flight crew acceptance, a perceived reduction in crew work load, and a reduction in crew communication errors.

  7. Flight Control of Biomimetic Air Vehicles Using Vibrational Control and Averaging

    NASA Astrophysics Data System (ADS)

    Tahmasian, Sevak; Woolsey, Craig A.

    2016-09-01

    A combination of vibrational inputs and state feedback is applied to control the flight of a biomimetic air vehicle. First, a control strategy is developed for longitudinal flight, using a quasi-steady aerodynamic model and neglecting wing inertial effects. Vertical and forward motion is controlled by modulating the wings' stroke and feather angles, respectively. Stabilizing control parameter values are determined using the time-averaged dynamic model. Simulations of a system resembling a hawkmoth show that the proposed controller can overcome modeling error associated with the wing inertia and small parameter uncertainties when following a prescribed trajectory. After introducing the approach through an application to longitudinal flight, the control strategy is extended to address flight in three-dimensional space.

  8. Relationship between meteorological phenomena and air pollution in an urbanized and industrialized coastal area in northern France

    NASA Astrophysics Data System (ADS)

    Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé

    2016-04-01

    Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase

  9. AirSTAR Hardware and Software Design for Beyond Visual Range Flight Research

    NASA Technical Reports Server (NTRS)

    Laughter, Sean; Cox, David

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Airborne Subscale Transport Aircraft Research (AirSTAR) Unmanned Aerial System (UAS) is a facility developed to study the flight dynamics of vehicles in emergency conditions, in support of aviation safety research. The system was upgraded to have its operational range significantly expanded, going beyond the line of sight of a ground-based pilot. A redesign of the airborne flight hardware was undertaken, as well as significant changes to the software base, in order to provide appropriate autonomous behavior in response to a number of potential failures and hazards. Ground hardware and system monitors were also upgraded to include redundant communication links, including ADS-B based position displays and an independent flight termination system. The design included both custom and commercially available avionics, combined to allow flexibility in flight experiment design while still benefiting from tested configurations in reversionary flight modes. A similar hierarchy was employed in the software architecture, to allow research codes to be tested, with a fallback to more thoroughly validated flight controls. As a remotely piloted facility, ground systems were also developed to ensure the flight modes and system state were communicated to ground operations personnel in real-time. Presented in this paper is a general overview of the concept of operations for beyond visual range flight, and a detailed review of the airborne hardware and software design. This discussion is held in the context of the safety and procedural requirements that drove many of the design decisions for the AirSTAR UAS Beyond Visual Range capability.

  10. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  11. The calibration and flight test performance of the space shuttle orbiter air data system

    NASA Technical Reports Server (NTRS)

    Dean, A. S.; Mena, A. L.

    1983-01-01

    The Space Shuttle air data system (ADS) is used by the guidance, navigation and control system (GN&C) to guide the vehicle to a safe landing. In addition, postflight aerodynamic analysis requires a precise knowledge of flight conditions. Since the orbiter is essentially an unpowered vehicle, the conventional methods of obtaining the ADS calibration were not available; therefore, the calibration was derived using a unique and extensive wind tunnel test program. This test program included subsonic tests with a 0.36-scale orbiter model, transonic and supersonic tests with a smaller 0.2-scale model, and numerous ADS probe-alone tests. The wind tunnel calibration was further refined with subsonic results from the approach and landing test (ALT) program, thus producing the ADS calibration for the orbital flight test (OFT) program. The calibration of the Space Shuttle ADS and its performance during flight are discussed in this paper. A brief description of the system is followed by a discussion of the calibration methodology, and then by a review of the wind tunnel and flight test programs. Finally, the flight results are presented, including an evaluation of the system performance for on-board systems use and a description of the calibration refinements developed to provide the best possible air data for postflight analysis work.

  12. Flight tests of a simple airborne device for predicting clear air turbulence encounters

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Duller, C. E., III; Kuhn, P. M.

    1978-01-01

    An airborne clear-air turbulence detector is being flight-tested on board NASA's C-141 and Learjet aircraft. The device is an infrared (IR) sensor in the water vapor band and is designed to detect changes in vapor concentrations associated with turbulence in shear conditions. Warnings of about 5 min have been demonstrated at flight altitudes from 9.1 to 13.7 km (30,000 to 45,000 ft). Encounter predictions were obtained 80% of the time, and false alarms were given about 6% of the time. Several simple algorithms were studied for use as signal output analyzers and for alert triggering.

  13. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  14. Flight Tests of the DELICAT Airborne LIDAR System for Remote Clear Air Turbulence Detection

    NASA Astrophysics Data System (ADS)

    Vrancken, Patrick; Wirth, Martin; Ehret, Gerhard; Witschas, Benjamin; Veerman, Henk; Tump, Robert; Barny, Hervé; Rondeau, Philippe; Dolfi-Bouteyre, Agnès; Lombard, Laurent

    2016-06-01

    An important aeronautics application of lidar is the airborne remote detection of Clear Air Turbulence which cannot be performed with onboard radar. We report on a DLR-developed lidar system for the remote detection of such turbulent areas in the flight path of an aircraft. The lidar, consisting of a high-power UV laser transmitter and a direct detection system, was installed on a Dutch research aircraft. Flight tests executed in 2013 demonstrated the performance of the lidar system to detect local subtle variations in the molecular backscatter coefficient indicating the turbulence some 10 to 15 km ahead.

  15. A Flight Dynamic Simulation Program in Air-Path Axes Using ACSL (Advanced Continuous Simulation Language).

    DTIC Science & Technology

    1986-06-01

    NO-A±?3 649 A FLIGHT DYNANIC SINULRTION PROGRAM IN AIR-PRTH AXES 11𔃼 USING ACSL (ADVANCED.. (U) AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA) P W...Aeronajutical Restvarch Laboratrmes, ....,. i P.O. Box 4331,M lo re Vic:toria. 3001, Aus trali ."-" Melbourne.-a ’ 𔃾’ -- .-,, : _" • , (C) CMMONWALTH F...of time dependent results . e Tne DERIVATIVE section contains tne aitnd1- of the six degrees look- of freedom flight model. Tr imm inrg o f tnte a ir

  16. Parabolic Flights @ Home. An Unmanned Air Vehicle for Short-Duration Low-Gravity Experiments

    NASA Astrophysics Data System (ADS)

    Hofmeister, Paul Gerke; Blum, Jürgen

    2011-02-01

    We developed an unmanned air vehicle (UAV) suitable for small parabolic-flight experiments. The flight speed of 100 m s - 1 is sufficient for zero-gravity parabolas of 16 s duration. The flight path's length of slightly more than 1 km and 400 m difference in altitude is suitable for ground controlled or supervised flights. Since this fits within the limits set for model aircraft, no additional clearance is required for operation. Our UAV provides a cost-effective platform readily available for low-g experiments, which can be performed locally without major preparation. A payload with a size of up to 0.9 ×0.3 ×0.3 m3 and a mass of ˜5 kg can be exposed to 0 g 0-5 g 0, with g 0 being the gravitational acceleration of the Earth. Flight-duration depends on the desired acceleration level, e.g. 17 s at 0.17 g 0 (lunar surface level) or 21 s at 0.38 g 0 (Martian surface level). The aircraft has a mass of 25 kg (including payload) and a wingspan of 2 m. It is powered by a jet engine with an exhaust speed of 450 m s - 1 providing a thrust of 180 N. The parabolic-flight curves are automated by exploiting the advantages of sophisticated micro-electronics to minimize acceleration errors.

  17. On mathematical modelling of insect flight dynamics in the context of micro air vehicles.

    PubMed

    Zbikowski, Rafał; Ansari, Salman A; Knowles, Kevin

    2006-06-01

    We discuss some aspects of mathematical modelling relevant to the dynamics of insect flight in the context of insect-like flapping-wing micro air vehicles (MAVs). MAVs are small flying vehicles developed to reconnoître in confined spaces. This requires power-efficient, highly-manoeuvrable, low-speed flight with stable hover. All of these attributes are present in insect flight and hence the focus on reproducing the functionality of insect flight by engineering means. Empirical research on insect flight dynamics is limited by experimental difficulties. Force and moment measurements require tethering the animal whose behaviour may then differ from free flight. The measurements are made when the insect actively tries to control its flight, so that its open-loop dynamics cannot be observed. Finally, investigation of the sensory-motor system responsible for flight is even more challenging. Despite these difficulties, much empirical progress has been made recently. Further progress, especially in the context of MAVs, can be achieved by the complementary information derived from appropriate mathematical modelling. The focus here is on a means of computing the data not easily available from experiments and also on making mathematical predictions to suggest new experiments. We consider two aspects of mathematical modelling for insect flight dynamics. The first one is theoretical (computational), as opposed to empirical, generation of the aerodynamic data required for the six-degrees-of-freedom equations of motion. For this purpose we first explain insect wing kinematics and the salient features of the corresponding flow. In this context, we show that aerodynamic modelling is a feasible option for certain flight regimes, focusing on a successful example of modelling hover. Such modelling progresses from the first principles of fluid mechanics, but relies on simplifications justified by the known flow phenomenology and/or geometric and kinematic symmetries. This is relevant

  18. Flight crew fatigue III: North Sea helicopter air transport operations.

    PubMed

    Gander, P H; Barnes, R M; Gregory, K B; Graeber, R C; Connell, L J; Rosekind, M R

    1998-09-01

    We studied 32 helicopter pilots before, during, and after 4-5 d trips from Aberdeen, Scotland, to service North Sea oil rigs. On duty days, subjects awoke 1.5 h earlier than pretrip or posttrip, after having slept nearly an hour less. Subjective fatigue was greater posttrip than pretrip. By the end of trip days, fatigue was greater and mood more negative than by the end of pretrip days. During trips, daily caffeine consumption increased 42%, reports of headache doubled, reports of back pain increased 12-fold, and reports of burning eyes quadrupled. In the cockpits studied, thermal discomfort and high vibration levels were common. Subjective workload during preflight, taxi, climb, and cruise was related to the crewmembers' ratings of the quality of the aircraft systems. During descent and approach, workload was affected by weather at the landing site. During landing, it was influenced by the quality of the landing site and air traffic control. Beginning duty later, and greater attention to aircraft comfort and maintenance, should reduce fatigue in these operations.

  19. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Technical Reports Server (NTRS)

    Mehta, U.

    1995-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  20. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  1. The flight experiment ANITA—a high performance air analyser for manned space cabins

    NASA Astrophysics Data System (ADS)

    Stuffler, T.; Mosebach, H.; Kampf, D.; Honne, A.; Tan, G.

    2004-08-01

    Analysing Interferometer for Ambient Air (ANITA) is a flight experiment as precursor for a permanent continuous trace gas monitoring system on the International Space Station (ISS). For over 10 years, under various ESA contracts the flight experiment was defined, designed, breadboarded and set up. For the safety of the crew, ANITA can detect and quantify quasi on-line and simultaneously 32 trace gases with ppm or sub-ppm detection limits. The self-standing measurement system is based on Fourier Transform Infrared Spectrometer (FTIR) technology. The system represents a versatile air monitor allowing for the first time the detection and monitoring of trace gas dynamics of a spacecraft atmosphere. It is envisaged to accommodate ANITA in a Destiny (US LAB) Express Rack on the ISS. The transportation to the ISS is planned with the first ATV 'Jules Verne'. The options are either the Space Shuttle or the Automated Transfer Vehicle.

  2. Development of an air ground data exchange concept: Flight deck perspective

    NASA Technical Reports Server (NTRS)

    Flathers, G. W., II

    1987-01-01

    The planned modernization of the U.S. National Airspace System (NAS) includes the development and use of a digital data link as a means to exchange information between aircraft and ground-based facilities. This report presents an operationally-oriented concept on how data link could be used for applications related directly to air traffic control. The specific goal is to establish the role that data link could play in the air-ground communications. Due regard is given to the unique characteristics of data link and voice communications, current principles of air traffic control, operational procedures, human factors/man-machine interfaces, and the integration of data link with other air and ground systems. The resulting concept is illustrated in the form of a paper-and-pencil simulation in which data link and voice communications during the course of a hypothetical flight are described.

  3. Decentralized Control of an Unidirectional Air Traffic Flow with Flight Speed Distribution

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoichi; Takeichi, Noboru

    A decentralized control of an air traffic flow is discussed. This study aims to clarify a fundamental strategy for an unidirectional air traffic flow control considering the flight speed distribution. It is assumed that the decentralized control is made based on airborne surveillance systems. The separation control between aircraft is made by turning, and 4 types of route composition are compared; the optimum route only, the optimum route with permissible range, the optimum route with subroutes determined by relative speed of each aircraft, and the optimum route with subroutes defined according to the optimum speed of each aircraft. Through numerical simulations, it is clarified that the route composition with a permissible range makes the air traffic flow safer and more efficient. It is also shown that the route design with multiple subroutes corresponding to speed ranges and the aircraft control using route intent information can considerably improve the safety and workload of the air traffic flow.

  4. Photocopy of aerial photograph, Pacific Air Industries, Flight 123V, June ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Photocopy of aerial photograph, Pacific Air Industries, Flight 123V, June 29, 1960 (University of California, Santa Barbara, Map and Imagery Collection) PORTION OF IRVINE RANCH SHOWING SITE CA-2275-A IN LOWER LEFT QUADRANT AND SITE CA-2275-B IN UPPER RIGHT QUADRANT (see separate photograph index for 2275-B) - Irvine Ranch Agricultural Headquarters, Carillo Tenant House, Southwest of Intersection of San Diego & Santa Ana Freeways, Irvine, Orange County, CA

  5. Relocatable In-Flight Interceptor Communications System Data Terminal #2 at Vandenberg Air Force Base

    DTIC Science & Technology

    2007-10-19

    California , as part of an initial defense of the United States from a limited ballistic missile attack. This included a Relocatable In-Flight...Consultation with the California State Historic Preservation Officer on the potential effects of the Proposed Action to cultural resources indicates that...Ground-Based Interceptor (GBI) launch facilities at Vandenberg Air Force Base (AFB), 11 California (CA), as part of an initial defense of the United

  6. Multi-year levels and trends of non-methane hydrocarbon concentrations observed in ambient air in France

    NASA Astrophysics Data System (ADS)

    Waked, Antoine; Sauvage, Stéphane; Borbon, Agnès; Gauduin, Julie; Pallares, Cyril; Vagnot, Marie-Pierre; Léonardis, Thierry; Locoge, Nadine

    2016-09-01

    Measurements of 31 non-methane hydrocarbons (NMHCs) were carried out at three urban (Paris, 2003-2014, Strasbourg, 2002-2014 and Lyon, 2007-2014) sites in France over the period of a decade. A trend analysis was applied by means of the Mann-Kendall non-parametric test to annual and seasonal mean concentrations in order to point out changes in specific emission sources and to assess the impact of emission controls and reduction strategies. The trends were compared to those from three rural sites (Peyrusse-Vieille, 2002-2013, Tardière, 2003-2013 and Donon, 1997-2007). The results obtained showed a significant yearly decrease in pollutant concentrations over the study period and for the majority of species in the range of -1 to -7% in accordance with the decrease of NMHC emissions in France (-5 to -9%). Concentrations of long-lived species such as ethane and propane which are recognized as tracers of distant sources and natural gas remained constant. Compounds associated with combustion processes such as acetylene, propene, ethylene and benzene showed a significant decline in the range of -2% to -5% yr-1. These trends are consistent with those recently described at urban and background sites in the northern mid-latitudes and with emission inventories. C7-C9 aromatics such as toluene and xylenes as well as C4-C5 alkanes such as isopentane and isobutane also showed a significant decrease in the range of -3% to -7% yr-1. The decreasing trends in terms of % yr-1 observed at these French urban sites were typically higher for acetylene, ethylene and benzene than those reported for French rural sites of the national observatory of Measurement and Evaluation in Rural areas of trans-boundary Air pollution (MERA). The study also highlighted the difficult choice of a long term sampling site representative of the general trends of pollutant concentrations.

  7. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    PubMed

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission.

  8. TASAR Flight Trial 2: Assessment of Air Traffic Controller Acceptability of TASAR Requests

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Enea, Gabriele

    2016-01-01

    In support of the Flight Trial (FT-2) of NASA's prototype of the Traffic Aware Strategic Aircrew Requests (TASAR) concept, observations were conducted at the air traffic facilities to identify and assess the main factors that affect the acceptability of pilot requests by air traffic controllers. Two observers shadowed air traffic controllers at the Atlanta (ZTL) and Jacksonville (ZJX) air traffic control centers as the test flight pilot made pre-scripted requests to invoke acceptability issues and then they interviewed the observed and other controllers voluntarily. Fifty controllers were interviewed with experience ranging from one to thirty-five years. All interviewed controllers were enthusiastic about the technology and accounting for sector boundaries in pilot requests, particularly if pilots can be made aware of high workload situations. All interviewed controllers accept more than fifty percent of pilot requests; forty percent of them reject less than ten percent of requests. The most common reason for rejecting requests is conflicting with traffic followed by violating letters of agreement (LOAs) and negatively impacting neighboring sector workload, major arrival and departure flows and flow restrictions. Thirty-six requests were made during the test, eight of which were rejected due to: the aircraft already handed off to another sector, violating LOA, opposing traffic, intruding into an active special use airspace (SUA), intruding into another center, weather, and unfamiliarity with the requested waypoint. Nine requests were accepted with delay mostly because the controller needed to locate unfamiliar waypoints or to coordinate with other controllers.

  9. High-Altitude Flight Cooling Investigation of a Radial Air-Cooled Engine

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Valerino, Michael F; Bell, E Barton

    1947-01-01

    An investigation of the cooling of an 18-cylinder, twin-row, radial, air-cooled engine in a high-performance pursuit airplane has been conducted for variable engine and flight conditions at altitudes ranging from 5000 to 35,000 feet in order to provide a basis for predicting high-altitude cooling performance from sea-level or low altitude experimental results. The engine cooling data obtained were analyzed by the usual NACA cooling-correlation method wherein cylinder-head and cylinder-barrel temperatures are related to the pertinent engine and cooling-air variables. A theoretical analysis was made of the effect on engine cooling of the change of density of the cooling air across the engine (the compressibility effect), which becomes of increasing importance as altitude is increased. Good agreement was obtained between the results of the theoretical analysis and the experimental data.

  10. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  11. Piloted simulation of one-on-one helicopter air combat at NOE flight levels

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Aiken, E. W.

    1985-01-01

    A piloted simulation designed to examine the effects of terrain proximity and control system design on helicopter performance during one-on-one air combat maneuvering (ACM) is discussed. The NASA Ames vertical motion simulator (VMS) and the computer generated imagery (CGI) systems were modified to allow two aircraft to be independently piloted on a single CGI data base. Engagements were begun with the blue aircraft already in a tail-chase position behind the red, and also with the two aircraft originating from positions unknown to each other. Maneuvering was very aggressive and safety requirements for minimum altitude, separation, and maximum bank angles typical of flight test were not used. Results indicate that the presence of terrain features adds an order of complexiaty to the task performed over clear air ACM and that mix of attitude and rate command-type stability and control augmentation system (SCAS) design may be desirable. The simulation system design, the flight paths flown, and the tactics used were compared favorably by the evaluation pilots to actual flight test experiments.

  12. A flight test design for studying airborne applications of air to ground duplex data link communications

    NASA Astrophysics Data System (ADS)

    Scanlon, Charles H.

    1988-09-01

    The Automatic En Route Air Traffic Control (AERA) and the Advanced Automated System (AAS) of the NAS plan, call for utilization of data links for such items as computer generated flight clearances, enroute minimum safe altitude warnings, sector probes, out of conformance check, automated flight services, and flow management of advisories. A major technical challenge remaining is the integration, flight testing, and validation of data link equipment and procedures in the aircraft cockpit. The flight test organizational chart, was designed to have the airplane side of data link experiments implemented in the NASA Langley Research Center (LaRC) experimental Boeing 737 airplane. This design would enable investigations into implementation of data link equipment and pilot interface, operations, and procedures. The illustrated ground system consists of a work station with links to a national weather database and a data link transceiver system. The data link transceiver system could be a Mode-S transponder, ACARS, AVSAT, or another type of radio system such as the military type HF data link. The airborne system was designed so that a data link transceiver, workstation, and touch panel could be interfaced with an input output processor to the aircraft system bus and thus have communications access to other digital airplane systems.

  13. Free Flight Simulation: An Initial Examination of Air-Ground Integration Issues

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; McGann, Alison; Cashion, Patricia; Dunbar, Melisa; Mackintosh, Margaret; Dulchinos, Victoria; Jordan, Kevin; Remington, Roger (Technical Monitor)

    2000-01-01

    The concept of "free flight" is intended to emphasize more flexibility for operators in the National Airspace System (RTCA, 1995). This may include the potential for aircraft self-separation. The purpose of this simulation was to begin examining some of the communication and procedural issues associated with self-separation in an integrated air-ground environment. Participants were 10 commercial U.S. flight crews who flew the B747-400 simulator and 10 Denver ARTCC controllers who monitored traffic in an ATC simulation. A prototypic airborne alerting logic and flight deck display features were designed to allow for increased traffic and maneuvering information. Eight different scenarios representing different conflict types were developed. The effects of traffic density (high and low) and different traffic convergence angles (obtuse, acute, and right) were assessed. Conflict detection times were found to be lower for the flight crews in low density compared to high density scenarios. For the controllers, an interaction between density and convergence angle was revealed. Analyses on the controller detection times found longer detection times in the obtuse high density compared to obtuse low density, as well as the shortest detection times in the high density acute angle condition. Maneuvering and communication events are summarized, and a discussion of future research issues is provided.

  14. A flight test design for studying airborne applications of air to ground duplex data link communications

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1988-01-01

    The Automatic En Route Air Traffic Control (AERA) and the Advanced Automated System (AAS) of the NAS plan, call for utilization of data links for such items as computer generated flight clearances, enroute minimum safe altitude warnings, sector probes, out of conformance check, automated flight services, and flow management of advisories. A major technical challenge remaining is the integration, flight testing, and validation of data link equipment and procedures in the aircraft cockpit. The flight test organizational chart, was designed to have the airplane side of data link experiments implemented in the NASA Langley Research Center (LaRC) experimental Boeing 737 airplane. This design would enable investigations into implementation of data link equipment and pilot interface, operations, and procedures. The illustrated ground system consists of a work station with links to a national weather database and a data link transceiver system. The data link transceiver system could be a Mode-S transponder, ACARS, AVSAT, or another type of radio system such as the military type HF data link. The airborne system was designed so that a data link transceiver, workstation, and touch panel could be interfaced with an input output processor to the aircraft system bus and thus have communications access to other digital airplane systems.

  15. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  16. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  17. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  18. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  19. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  20. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  1. 14 CFR Special Federal Aviation... - Prohibition Against Certain Flights by Syrian Air Carriers to the United States

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Syrian Air Carriers to the United States Federal Special Federal Aviation Regulation No. 104 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Pt. 91, SFAR No. 104 Special Federal...

  2. Time of flight measurement of speed of sound in air with a computer sound card

    NASA Astrophysics Data System (ADS)

    Aljalal, Abdulaziz

    2014-11-01

    A computer sound card and freely available audio editing software are used to measure accurately the speed of sound in air using the time-of-flight method. In addition to speed of sound measurement, inversion behaviour upon reflection from an open and closed end of a pipe is demonstrated. Also, it is demonstrated that the reflection at an open end of a pipe occurs slightly outside the pipe. The equipment needed is readily available to any student with access to a microphone, loudspeaker and computer.

  3. Flight tests of a clear-air turbulence alerting system. [infrared radiometers

    NASA Technical Reports Server (NTRS)

    Kurkowski, R. L.; Kuhn, P. M.; Stearns, L. P.

    1981-01-01

    The detection of clear-air turbulence (CAT) ahead of an aircraft in real-time by an infrared (IR) radiometer is discussed. It is noted that the alter time and reliability depend on the band-pass of the IR filter used and on the altitude of the aircraft. Results of flights tests indicate that a bandpass of 20 to 40 microns appears optimal for altering the aircraft crew to CAT at times before encounter of 2 to 9 min. Alert time increases with altitude, as the atmospheric absorption determining the horizontal weighting is reduced.

  4. Flight Test of an L(sub 1) Adaptive Controller on the NASA AirSTAR Flight Test Vehicle

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Xargay, Enric; Cao, Chengyu; Hovakimyan, Naira

    2010-01-01

    This paper presents results of a flight test of the L-1 adaptive control architecture designed to directly compensate for significant uncertain cross-coupling in nonlinear systems. The flight test was conducted on the subscale turbine powered Generic Transport Model that is an integral part of the Airborne Subscale Transport Aircraft Research system at the NASA Langley Research Center. The results presented are for piloted tasks performed during the flight test.

  5. Air pollution and children's asthma-related emergency hospital visits in southeastern France.

    PubMed

    Mazenq, Julie; Dubus, Jean-Christophe; Gaudart, Jean; Charpin, Denis; Nougairede, Antoine; Viudes, Gilles; Noel, Guilhem

    2017-04-05

    Children's asthma is multifactorial. Environmental factors like air pollution exposure, meteorological conditions, allergens, and viral infections are strongly implicated. However, place of residence has rarely been investigated in connection with these factors. The primary aim of our study was to measure the impact of particulate matter (PM), assessed close to the children's homes, on asthma-related pediatric emergency hospital visits within the Bouches-du-Rhône area in 2013. In a nested case-control study on 3- to 18-year-old children, each control was randomly matched on the emergency room visit day, regardless of hospital. Each asthmatic child was compared to 15 controls. PM10 and PM2.5, meteorological conditions, pollens, and viral data were linked to ZIP code and analyzed by purpose of emergency visit. A total of 68,897 visits were recorded in children, 1182 concerning asthma. Short-term exposure to PM10 measured near children's homes was associated with excess risk of asthma emergency visits (adjusted odds ratio 1.02 (95% CI 1.01-1.04; p = 0.02)). Male gender, young age, and temperature were other risk factors. Conversely, wind speed was a protective factor.

  6. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  7. A Preliminary Investigation of Supercharging an Air-Cooled Engine in Flight

    NASA Technical Reports Server (NTRS)

    Ware, Marsden; Schey, Oscar W

    1929-01-01

    This report presents the results of preliminary tests made on the effects of supercharging an air-cooled engine under airplane flight conditions. Service training airplanes were used in the investigation equipped with production types of Wright J engines. A N.A.C.A. Roots type supercharger was driven from the rear of the engine. In addition to measuring those quantities that would enable the determination of the climb performance, measurements were made of the cylinder-head temperatures and the carburetor pressures and temperatures. The supercharging equipment was not removed from the airplane when making flights without supercharging, but a by-pass valve, which controlled the amount of supercharging by returning to the atmosphere the surplus air delivered by the supercharger, was left full open. With the supercharger so geared that ground-level pressure could be maintained to 18,500 feet, it was found that the absolute ceiling was increased from 19,400 to 32,600 feet, that the time to climb to 16,00 feet was decreased from 32 to 16 minutes, and that this amount of supercharging apparently did not injure the engine. (author)

  8. CFD based aerodynamic modeling to study flight dynamics of a flapping wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Rege, Alok Ashok

    The demand for small unmanned air vehicles, commonly termed micro air vehicles or MAV's, is rapidly increasing. Driven by applications ranging from civil search-and-rescue missions to military surveillance missions, there is a rising level of interest and investment in better vehicle designs, and miniaturized components are enabling many rapid advances. The need to better understand fundamental aspects of flight for small vehicles has spawned a surge in high quality research in the area of micro air vehicles. These aircraft have a set of constraints which are, in many ways, considerably different from that of traditional aircraft and are often best addressed by a multidisciplinary approach. Fast-response non-linear controls, nano-structures, integrated propulsion and lift mechanisms, highly flexible structures, and low Reynolds aerodynamics are just a few of the important considerations which may be combined in the execution of MAV research. The main objective of this thesis is to derive a consistent nonlinear dynamic model to study the flight dynamics of micro air vehicles with a reasonably accurate representation of aerodynamic forces and moments. The research is divided into two sections. In the first section, derivation of the nonlinear dynamics of flapping wing micro air vehicles is presented. The flapping wing micro air vehicle (MAV) used in this research is modeled as a system of three rigid bodies: a body and two wings. The design is based on an insect called Drosophila Melanogaster, commonly known as fruit-fly. The mass and inertial effects of the wing on the body are neglected for the present work. The nonlinear dynamics is simulated with the aerodynamic data published in the open literature. The flapping frequency is used as the control input. Simulations are run for different cases of wing positions and the chosen parameters are studied for boundedness. Results show a qualitative inconsistency in boundedness for some cases, and demand a better

  9. Short term effects of air pollution on mortality in the city of Lyon, France, 1985-90.

    PubMed Central

    Zmirou, D; Barumandzadeh, T; Balducci, F; Ritter, P; Laham, G; Ghilardi, J P

    1996-01-01

    OBJECTIVE: The short term association between daily mortality and ambient air pollution in the city of Lyon, France (population, 410,000) between 1985 and 1990 was assessed using time series analysis. DESIGN: This study followed the standardised design and statistical analysis (Poisson regression) that characterise the APHEA project. METHODS: Four categories of cause of death were studied: total (minus external causes), respiratory, cardiovascular, and digestive causes (as a control condition). RESULTS: No association was found with any cause of death for nitrogen dioxide (NO2) and ozone (O3), nor, for any pollutant, for digestive conditions. Sulphur dioxide (SO2) and, to a much lesser degree, suspended particles (PM13), were significantly related to mortality from respiratory and cardiovascular conditions. The relative risk (RR) of respiratory deaths associated with a 50 micrograms/m3 increment of mean daily SO2 over the whole period was 1.22 (95% CI 1.05, 1.40); the RR for cardiovascular deaths was 1.54 (1.22, 1.96). The corresponding RRs for PM13 were 1.04 (1.00, 1.09) for respiratory mortality and 1.04 (0.99, 1.10) for cardiovascular deaths. CONCLUSIONS: The effects of particulates were slightly increased during the cold season. When particulates concentrations were greater than 60 micrograms/m3, the joint SO2 effect was increased, suggesting some interaction between the two pollution indicators. These results agree with other studies showing an association between particulate pollution and daily mortality; however, they also suggest the noxious effect of SO2. PMID:8758221

  10. An Analytical Explanation for the X-43A Flush Air Data Sensing System Pressure Mismatch Between Flight and Theory

    NASA Technical Reports Server (NTRS)

    Ellsworth, Joel C.

    2010-01-01

    Following the successful Mach 7 flight test of the X-43A, unexpectedly low pressures were measured by the aft set of the onboard Flush Air Data Sensing System s pressure ports. These in-flight aft port readings were significantly lower below Mach 3.5 than was predicted by theory. The same lower readings were also seen in the Mach 10 flight of the X-43A and in wind-tunnel data. The pre-flight predictions were developed based on 2-dimensional wedge flow, which fails to predict some of the significant 3-dimensional flow features in this geometry at lower Mach numbers. Using Volterra s solution to the wave equation as a starting point, a three-dimensional finite wedge approximation to flow over the X-43A forebody is presented. The surface pressures from this approximation compare favorably with the measured wind tunnel and flight data at speeds of Mach 2.5 and 3.

  11. Early Air Force Flight Test Center (AFFTC) experience with Peripheral Vision Horizon Displays (PVHD)

    NASA Technical Reports Server (NTRS)

    Schofield, B. L.

    1984-01-01

    Three separate Air Force Flight Test Center (AFFTC) tests were conducted in 1980 and 1981 on two models of the peripheral vision horizon displays (PVHD) (Malcolm Horizon). A fixed base simulator test was conducted with twenty test pilot subjects using the Flight Simulator Demonstration Model which incorporated a Helium Neon laser as the light bar medium. Two separate flight tests were conducted by the Test Pilot School classes 80A and 80B in a Twin Otter commuter aircraft using the Stage A Model PVHD. The Xenon lighted A Model was tested in its original configuration by class 80A. Class 80B used a modified configuration which incorporated an AFFTC designed and manufactured hood. With the hood, the PVHD projected a thinner, distinct light bar. Only a few general remarks concerning the tests and unrestricted, overall conclusions reached by the author are presented. The conclusions of all three AFFTC evaluations of the PVHD concept were that it has not yet been adequately evaluated. There seems to be a significant learning curve associated with the PVHD and the project pilots for Test Pilot School Class 80B only got a good start on the learning curve. A lengthy learning curve for the PVHD should be anticipated in view of the training period required for the attitude display indicator (ADI). This does seem to point out that the PVHD, in its present form, is simply not as compelling as the natural horizon. It can also be concluded that any attempt at a valid evaluation of the PVHD concept can be done only under instrument meteorological conditions (IMC) or validly simulated IMC conditions. The knee in the learning curve, however, may be reached without full IMC, although it may take much longer to reach.

  12. Expanding AirSTAR Capability for Flight Research in an Existing Avionics Design

    NASA Technical Reports Server (NTRS)

    Laughter, Sean A.

    2012-01-01

    The NASA Airborne Subscale Transport Aircraft Research (AirSTAR) project is an Unmanned Aerial Systems (UAS) test bed for experimental flight control laws and vehicle dynamics research. During its development, the test bed has gone through a number of system permutations, each meant to add functionality to the concept of operations of the system. This enabled the build-up of not only the system itself, but also the support infrastructure and processes necessary to support flight operations. These permutations were grouped into project phases and the move from Phase-III to Phase-IV was marked by a significant increase in research capability and necessary safety systems due to the integration of an Internal Pilot into the control system chain already established for the External Pilot. The major system changes in Phase-IV operations necessitated a new safety and failsafe system to properly integrate both the Internal and External Pilots and to meet acceptable project safety margins. This work involved retrofitting an existing data system into the evolved concept of operations. Moving from the first Phase-IV aircraft to the dynamically scaled aircraft further involved restructuring the system to better guard against electromagnetic interference (EMI), and the entire avionics wiring harness was redesigned in order to facilitate better maintenance and access to onboard electronics. This retrofit and harness re-design will be explored and how it integrates with the evolved Phase-IV operations.

  13. Flexible Wing Base Micro Aerial Vehicles: Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Nechyba, Michael C.; Ettinger, Scott M.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Recently substantial progress has been made towards design building and testifying remotely piloted Micro Air Vehicles (MAVs). This progress in overcoming the aerodynamic obstacles to flight at very small scales has, unfortunately, not been matched by similar progress in autonomous MAV flight. Thus, we propose a robust, vision-based horizon detection algorithm as the first step towards autonomous MAVs. In this paper, we first motivate the use of computer vision for the horizon detection task by examining the flight of birds (biological MAVs) and considering other practical factors. We then describe our vision-based horizon detection algorithm, which has been demonstrated at 30 Hz with over 99.9% correct horizon identification, over terrain that includes roads, buildings large and small, meadows, wooded areas, and a lake. We conclude with some sample horizon detection results and preview a companion paper, where the work discussed here forms the core of a complete autonomous flight stability system.

  14. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory

    PubMed Central

    Pennycuick, C. J.; Åkesson, Susanne; Hedenström, Anders

    2013-01-01

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species’ average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000–250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods. PMID:23804440

  15. Air speeds of migrating birds observed by ornithodolite and compared with predictions from flight theory.

    PubMed

    Pennycuick, C J; Åkesson, Susanne; Hedenström, Anders

    2013-09-06

    We measured the air speeds of 31 bird species, for which we had body mass and wing measurements, migrating along the east coast of Sweden in autumn, using a Vectronix Vector 21 ornithodolite and a Gill WindSonic anemometer. We expected each species' average air speed to exceed its calculated minimum-power speed (Vmp), and to fall below its maximum-range speed (Vmr), but found some exceptions to both limits. To resolve these discrepancies, we first reduced the assumed induced power factor for all species from 1.2 to 0.9, attributing this to splayed and up-turned primary feathers, and then assigned body drag coefficients for different species down to 0.060 for small waders, and up to 0.12 for the mute swan, in the Reynolds number range 25 000-250 000. These results will be used to amend the default values in existing software that estimates fuel consumption in migration, energy heights on arrival and other aspects of flight performance, using classical aeronautical theory. The body drag coefficients are central to range calculations. Although they cannot be measured on dead bird bodies, they could be checked against wind tunnel measurements on living birds, using existing methods.

  16. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  17. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  18. Air travel and pregnancy outcomes: a review of pregnancy regulations and outcomes for passengers, flight attendants, and aviators.

    PubMed

    Magann, Everett F; Chauhan, Suneet P; Dahlke, Joshua D; McKelvey, Samantha S; Watson, Erin M; Morrison, John C

    2010-06-01

    To review flight regulations and gestational complications associated with air travel in pregnant passengers, flight attendants, and aviators. A literature search was undertaken on the relationship of air travel and spontaneous pregnancy losses, intrauterine fetal demise (IUFD), birth weight<10th percentile, preterm delivery, and neonatal intensive care unit admissions. The literature search identified 128 abstracts, of which 9 evaluated air travel and pregnancy outcomes. The risk of a pregnancy loss (spontaneous abortion or IUFD) was greater in flight attendants than controls (odds ratio [OR]: 1.62, 95% confidence interval [CI]: 1.29, 2.04). The risk of preterm birth<37 weeks was greater in passengers than controls (OR: 1.44, 95% CI: 1.07, 1.93). However, the risk of preeclampsia (OR: 0.86, 95% CI: 0.58, 1.27), neonatal intensive care unit admissions (OR: 1.19, 95% CI: 0.78, 1.82), or birth weight<10th percentile (OR: 1.25, 95% CI: 0.62, 2.48) was not increased. Flight attendants did not have an increased risk of preterm birth compared to controls (OR: 1.37, 95% CI: 0.85, 2.22) or delivering infants with birth weight<10th percentile (OR: 1.57, 95% CI: 0.68, 3.74). The risks of spontaneous abortions and other adverse pregnancy outcomes have been poorly studied in a limited number of investigations. An analysis of the available information suggests a greater risk of spontaneous abortions or IUFD in flight attendants, and a greater risk of preterm birth<37 weeks in air passengers. However, the literature on which these findings are based is generally not of high methodologic quality.

  19. Conservation equations and physical models for hypersonic air flows over the aeroassist flight experiment vehicle

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    1989-01-01

    The code development and application program for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA), with emphasis directed toward support of the Aeroassist Flight Experiment (AFE) in the near term and Aeroassisted Space Transfer Vehicle (ASTV) design in the long term is reviewed. LAURA is an upwind-biased, point-implicit relaxation algorithm for obtaining the numerical solution to the governing equations for 3-D, viscous, hypersonic flows in chemical and thermal nonequilibrium. The algorithm is derived using a finite volume formulation in which the inviscid components of flux across cell walls are described with Roe's averaging and Harten's entropy fix with second-order corrections based on Yee's Symmetric Total Variation Diminishing scheme. Because of the point-implicit relaxation strategy, the algorithm remains stable at large Courant numbers without the necessity of solving large, block tri-diagonal systems. A single relaxation step depends only on information from nearest neighbors. Predictions for pressure distributions, surface heating, and aerodynamic coefficients compare well with experimental data for Mach 10 flow over an AFE wind tunnel model. Predictions for the hypersonic flow of air in chemical and thermal nonequilibrium over the full scale AFE configuration obtained on a multi-domain grid are discussed.

  20. Determining a free flight performance surface by mathematical optimization techniques utilizing an air speed indicator, MEMS inertial sensors and a variomete

    NASA Astrophysics Data System (ADS)

    Teskey, Wesley J. E.; Chow, Jacky C. K.

    2010-09-01

    Paragliding is unpowered flight in which pilots rely on their ability to navigate rising currents of air to remain airborne. Paraglider flight performance is an important measure of the capabilities of a particular design of a canopy. Most often, the performance characteristics of a canopy are measured as horizontal velocity vs. vertical velocity for steady state flight in still air. The performance curve created using this approach neglects to take into account the effect which turning has on flight. In contrast, the performance surface created from the research carried out in this paper demonstrates the effect of turning on canopy flight; such a representation of performance is novel to the authors' knowledge. To produce this surface, a flight was conducted in which a paraglider's performance was measured for various steady state velocities and turning rates; the data were then analyzed utilizing mathematical optimization after appropriate calibration corrections were applied.

  1. Airborne Four-Dimensional Flight Management in a Time-based Air Traffic Control Environment

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1991-01-01

    Advanced Air Traffic Control (ATC) systems are being developed which contain time-based (4D) trajectory predictions of aircraft. Airborne flight management systems (FMS) exist or are being developed with similar 4D trajectory generation capabilities. Differences between the ATC generated profiles and those generated by the airborne 4D FMS may introduce system problems. A simulation experiment was conducted to explore integration of a 4D equipped aircraft into a 4D ATC system. The NASA Langley Transport Systems Research Vehicle cockpit simulator was linked in real time to the NASA Ames Descent Advisor ATC simulation for this effort. Candidate procedures for handling 4D equipped aircraft were devised and traffic scenarios established which required time delays absorbed through speed control alone or in combination with path stretching. Dissimilarities in 4D speed strategies between airborne and ATC generated trajectories were tested in these scenarios. The 4D procedures and FMS operation were well received by airline pilot test subjects, who achieved an arrival accuracy at the metering fix of 2.9 seconds standard deviation time error. The amount and nature of the information transmitted during a time clearance were found to be somewhat of a problem using the voice radio communication channel. Dissimilarities between airborne and ATC-generated speed strategies were found to be a problem when the traffic remained on established routes. It was more efficient for 4D equipped aircraft to fly trajectories with similar, though less fuel efficient, speeds which conform to the ATC strategy. Heavy traffic conditions, where time delays forced off-route path stretching, were found to produce a potential operational benefit of the airborne 4D FMS.

  2. Performance of a hydrogen burner to simulate air entering scramjet combustors. [simulation of total temperature, total pressure, and volume fraction of oxygen of air at flight conditions

    NASA Technical Reports Server (NTRS)

    Russin, W. R.

    1974-01-01

    Tests were conducted to determine the performance of a hydrogen burner used to produce a test gas that simulates air entering a scramjet combustor at various flight conditions. The test gas simulates air in that it duplicates the total temperature, total pressure, and the volume fraction of oxygen of air at flight conditions. The main objective of the tests was to determine the performance of the burner as a function of the effective exhaust port area. The conclusions were: (1) pressure oscillations of the chugging type were reduced in amplitude to plus or minus 2 percent of the mean pressure level by proper sizing of hydrogen, oxygen, and air injector flow areas; (2) combustion efficiency remained essentially constant as the exhaust port area was increased by a factor of 3.4; (3) the mean total temperature determined from integrating the exit radial gas property profiles was within plus or minus 5 percent of the theoretical bulk total temperature; (4) the measured exit total temperature profile had a local peak temperature more than 30 percent greater than the theoretical bulk total temperature; and (5) measured heat transfer to the burner liner was 75 percent of that predicted by theory based on a flat radial temperature profile.

  3. Flight Test of Composite Model Reference Adaptive Control (CMRAC) Augmentation Using NASA AirSTAR Infrastructure

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene

    2011-01-01

    This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.

  4. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter

  5. Falling Victim to Wasps in the Air: A Fate Driven by Prey Flight Morphology?

    PubMed Central

    Ballesteros, Yolanda; Polidori, Carlo; Tormos, José; Baños-Picón, Laura; Asís, Josep D.

    2016-01-01

    In prey-predator systems where the interacting individuals are both fliers, the flight performance of both participants heavily influences the probability of success of the predator (the prey is captured) and of the prey (the predator is avoided). While the flight morphology (an estimate of flight performance) of predatory wasps has rarely been addressed as a factor that may contribute to explain prey use, how the flight morphology of potential prey influences the output of predator-prey encounters has not been studied. Here, we hypothesized that flight morphology associated with flight ability (flight muscle mass to body mass ratio (FMR) and body mass to wing area ratio (wing loading, WL)) of Diptera affect their probability of being captured by specialized Diptera-hunting wasps (Bembix merceti and B. zonata), predicting a better manoeuvrability and acceleration capacity achieved by higher FMR and lower WL, and flight speed achieved by higher WL. In addition, wasp species with better flight morphology should be less limited by an advantageous Diptera flight morphology. Overall, the abundance of dipterans in the environment explained an important part of the observed variance in prey capture rate. However, it was not the only factor shaping prey capture. First, higher prey abundance was associated with greater capture rate for one species (B. merceti), although not for the other one. Second, the interaction observed between the environmental dipteran availability and dipteran WL for B. zonata suggests that greater dipteran WL (this probably meaning high cruising speed) decreased the probability of being captured, as long as fly abundance was high in the environment. Third, greater dipteran FMR (which likely means high manoeuvrability and acceleration capacity) helped to reduce predation by B. merceti if, again, dipterans were abundant in the environment. Wasp WL only varied with body mass but not between species, thereby hardly accounting for inter

  6. Viking entry vehicle aerodynamics at m equals 2 in air and some preliminary test data for flight in CO2

    NASA Technical Reports Server (NTRS)

    Sammonds, R. I.; Kruse, R. L.

    1975-01-01

    The static and dynamic aerodynamic characteristics of the Viking entry vehicle were determined experimentally in free flight in air at a Mach number near 2. Preliminary results were also obtained in CO2 at M infinity = 11. The low speed tests in air confirmed a region of dynamic instability previously observed. The instability was greatest at the smallest pitch amplitudes but decreased with increasing amplitude until a limit cycle was reached at about 8 deg. The tests in CO2 indicated increased drag coefficients of 3 percent with respect to those in air. Errors in the drag coefficient of this magnitude would significantly affect the reconstruction of the Martian atmosphere during entry of the Viking spacecraft.

  7. Mesoscale Numerical Investigations of Air Traffic Emissions over the North Atlantic during SONEX Flight 8: A Case Study

    NASA Technical Reports Server (NTRS)

    Bieberbach, George, Jr.; Fuelberg, Henry E.; Thompson, Anne M.; Schmitt, Alf; Hannan, John R.; Gregory, G. L.; Kondo, Yutaka; Knabb, Richard D.; Sachse, G. W.; Talbot, R. W.

    1999-01-01

    Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.

  8. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  9. United States Air Force Unmanned Aircraft Systems Flight Plan 2009-2047

    DTIC Science & Technology

    2009-05-18

    archiving and tagging , and auto tracking. As technologies advance, UAS automation and hypersonic flight will reshape the battlefield of tomorrow...format and then linked with dependent activities. Sets of dependant activities that aggregately achieved a definable step toward the Flight Plan...annual recurring cost would be approximately $25M assuming an individual cap data rate growth to 12.8 Mbps . 2. “Surrogate Satellite” systems: High

  10. One Hundred Years of Flight: USAF Chronology of Significant Air and Space Events, 1903-2002

    DTIC Science & Technology

    2003-01-01

    the first blind solo flight on instruments alone, without even a check pilot aboard. May 21: Amelia Earhart completed the first solo nonstop flight...across the Atlantic Ocean by a woman, flying in a Lockheed Vega from New- foundland to Londonderry, Northern Ireland. August 25: Amelia Earhart became...trip of more than 7,000 miles from Bolling Field, Washington, D.C., to Fairbanks, Alaska, and back. 1935 January 12: Amelia Earhart , flying a Lockheed

  11. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  12. From falling to flying: the path to powered flight of a robotic samara nano air vehicle.

    PubMed

    Ulrich, Evan R; Pines, Darryll J; Humbert, J Sean

    2010-12-01

    This paper details the development of a nano-scale (>15 cm) robotic samara, or winged seed. The design of prototypes inspired by naturally occurring geometries is presented along with a detailed experimental process which elucidates similarities between mechanical and robotic samara flight dynamics. The helical trajectories of a samara in flight were observed to differ in-flight path and descent velocity. The body roll and pitch angular rates for the differing trajectories were observed to be coupled to variations in wing pitch, and thus provide a means of control. Inspired by the flight modalities of the bio-inspired samaras, a robotic device has been created that mimics the autorotative capability of the samara, whilst providing the ability to hover, climb and translate. A high-speed camera-based motion capture system is used to observe the flight dynamics of the mechanical and robotic samara. Similarities in the flight dynamics are compared and discussed as it relates to the design of the robotic samara.

  13. Pointed wings, low wingloading and calm air reduce migratory flight costs in songbirds.

    PubMed

    Bowlin, Melissa S; Wikelski, Martin

    2008-05-14

    Migratory bird, bat and insect species tend to have more pointed wings than non-migrants. Pointed wings and low wingloading, or body mass divided by wing area, are thought to reduce energy consumption during long-distance flight, but these hypotheses have never been directly tested. Furthermore, it is not clear how the atmospheric conditions migrants encounter while aloft affect their energy use; without such information, we cannot accurately predict migratory species' response(s) to climate change. Here, we measured the heart rates of 15 free-flying Swainson's Thrushes (Catharus ustulatus) during migratory flight. Heart rate, and therefore rate of energy expenditure, was positively associated with individual variation in wingtip roundedness and wingloading throughout the flights. During the cruise phase of the flights, heart rate was also positively associated with wind speed but not wind direction, and negatively but not significantly associated with large-scale atmospheric stability. High winds and low atmospheric stability are both indicative of the presence of turbulent eddies, suggesting that birds may be using more energy when atmospheric turbulence is high. We therefore suggest that pointed wingtips, low wingloading and avoidance of high winds and turbulence reduce flight costs for small birds during migration, and that climate change may have the strongest effects on migrants' in-flight energy use if it affects the frequency and/or severity of high winds and atmospheric instability.

  14. Summer air temperature, reconstructions from the last glacial stage based on rodents from the site Taillis-des-Coteaux (Vienne), Western France

    NASA Astrophysics Data System (ADS)

    Royer, Aurélien; Lécuyer, Christophe; Montuire, Sophie; Primault, Jérôme; Fourel, François; Jeannet, Marcel

    2014-09-01

    The oxygen isotope composition of phosphate from tooth enamel of rodents (δ18Op) constitutes a valuable proxy to reconstruct past air temperatures in continental environments. This method has been applied to rodent dental remains from three genera, Arvicola sp., Microtus sp. and Dicrostonyx sp., coming from Taillis-des-Coteaux, Vienne, France. This archaeological site contains an exceptionally preserved sedimentary sequence spanning almost the whole Upper Palaeolithic, including seven stratigraphic layers dated from 35 to 17 cal ka BP. The abundant presence of rodent remains offers the opportunity to quantify the climatic fluctuations coeval of the various stages of human occupation of the site. Differences between δ18Op values of Arvicola sp. and Microtus sp. teeth are interpreted as the result of heterochrony in tooth formation as well as differences in ecology. Mean δ18Op values of Microtus sp. are preferentially used to reconstruct summer air temperatures, which range from 16.0 ± 3.7 to 19.1 ± 3.1°C throughout the sedimentary sequence; however, the highest variability is observed during the last glacial maximum.

  15. The dynamics of the fungal aerospores Alternaria sp. and Cladosporium sp. in Parisian atmospheric air, in France

    NASA Astrophysics Data System (ADS)

    Brezoczki, V. M.

    2016-08-01

    The bioallergens occurring naturally in the atmospheric air are microorganisms, pollen grains, plant seeds, leaf and stem scrap, or their protein molecules. The presence of various airborne fungal spores determines a high allergenic potential for public health. This effect is due to the high number of produced spores, which under favourable meteorological conditions (dry weather and wind) reach the surrounding air. This paper traces the dynamics of two types of fungi, Alternaria sp and Cladosporium sp, fungi which can be found outdoors, in the surrounding air, as well as indoors, inside houses (especially the conidia of Cladosporium sp). The effects of these fungal spores on human health are varies, ranging from seasonal allergies (hay fever, rhinitis, sinusitis etc.) to sever afflictions of the respiratory system, onset of asthma, disfunctionalities of the nervous systems, of the immune system, zymoses etc. The monitoring of the dynamics of the aerospores Alternaria sp and Cladosporium sp was carried out between 2010 and 2013, over a period of 42 weeks during one calendar year, from February to the end of September, in the surrounding air in the French capital, Paris. The regional and global climate and meteorological conditions are directly involved in the occurrence and development of fungi colonies, the transportation and dispersion of fungal spores in the atmospheric air, as well as in the creation of the environment required for the interaction of chemical and biological components in the air. Knowledge of the dynamics of the studied fungal aerospores, coupled with climate and meteorological changes, offers a series of information on the magnitude of the allergenic potential these airborne spores can determine. Legal regulations in this domain set the allergen risk threshold for the Alternaria sp aerospores at 3500 ÷ 7000 spores/m3 air/week, and for the Cladosporium sp aerospores at 56,000 spores/m3 air/week. Besides these regulations there exist a series of

  16. Two lighter than air systems in opposing flight regimes: An unmanned short haul, heavy load transport balloon and a manned, light payload airship

    NASA Technical Reports Server (NTRS)

    Pohl, R. A.

    1975-01-01

    Lighter Than Air vehicles are generally defined or categorized by the shape of the balloon, payload capacity and operational flight regime. Two balloon systems that are classed as being in opposite categories are described. One is a cable guided, helium filled, short haul, heavy load transport Lighter Than Air system with a natural shaped envelope. The other is a manned, aerodynamic shaped airship which utilizes hot air as the buoyancy medium and is in the light payload class. While the airship is in the design/fabrication phase with flight tests scheduled for the latter part of 1974, the transport balloon system has been operational for some eight years.

  17. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1995-01-01

    Hypersonic airbreathing propulsion utilizing scramjets can change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitation of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing computational design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests.

  18. Flight evaluation of the DEEC secondary control air-start capability

    NASA Technical Reports Server (NTRS)

    Johnson, J. B.; Nelson, J.

    1983-01-01

    The air-start capability of a secondary engine control (SEC) was tested for a DEEC-equipped F100 engine and installed in an F-15 airplane. Two air-start schedules were tested. The first was referred to as the group I schedule; the second or revised schedule was the group II start schedule. Using the group I start schedule, an airspeed of 300 knots was required to ensure successful 40- and 25-percent SEC-mode air starts. If N2 were less than 40 percent, a stall would occur when the start bleeds closed 40 sec after initiation of the air start. All JFS-assisted air starts were successful with the group start schedule. For the group II schedule, the time between pressurization and start-bleed closure ranged between 50 and 72 sec depending on altitude. All air starts were successful above 225 knots givin a 75-knot reduction in required airspeed for a successful air start. Spooldown air starts of 40 percent were successful at 200 knots at altitudes up to 10,650 m and at 175 knots at altitudes up to 6100 m. Idle rpm was lower than the desired 65 percent for air starts at higher altitudes and lower airspeeds. All JSF-assisted air starts were successful.

  19. BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2008-03-01

    The overall objective of the BATMAV project is the development of a biologically inspired bat-like Micro-Aerial Vehicle (MAV) with flexible and foldable wings, capable of flapping flight. This first phase of the project focuses particularly on the kinematical analysis of the wing motion in order to build an artificial-muscle-driven actuation system in the future. While flapping flight in MAV has been previously studied and a number of models were realized using light-weight nature-inspired rigid wings, this paper presents a first model for a platform that features bat-inspired wings with a number of flexible joints which allows mimicking the kinematics of the real flyer. The bat was chosen after an extensive analysis of the flight physics of small birds, bats and large insects characterized by superior gust rejection and obstacle avoidance. Typical engineering parameters such as wing loading, wing beat frequency etc. were studied and it was concluded that bats are a suitable platform that can be actuated efficiently using artificial muscles. Also, due to their wing camber variation, they can operate effectively at a large range of speeds and allow remarkably maneuverable flight. In order to understand how to implement the artificial muscles on a bat-like platform, the analysis was followed by a study of bat flight kinematics. Due to their obvious complexity, only a limited number of degrees of freedom (DOF) were selected to characterize the flexible wing's stroke pattern. An extended analysis of flight styles in bats based on the data collected by Norberg and the engineering theory of robotic manipulators resulted in a 2 and 4-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The results of the kinematical model can be used to optimize the lengths and the attachment locations of the wires such that enough lift, thrust and wing stroke are obtained.

  20. Flexible Wing Base Micro Aerial Vehicles: Vision-Guided Flight Stability and Autonomy for Micro Air Vehicles

    NASA Technical Reports Server (NTRS)

    Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.

  1. An adaptive dual-optimal path-planning technique for unmanned air vehicles with application to solar-regenerative high altitude long endurance flight

    NASA Astrophysics Data System (ADS)

    Whitfield, Clifford A.

    2009-12-01

    A multi-objective technique for Unmanned Air Vehicle (UAV) path and trajectory autonomy generation, through task allocation and sensor fusion has been developed. The Dual-Optimal Path-Planning (D-O.P-P.) Technique generates on-line adaptive flight paths for UAVs based on available flight windows and environmental influenced objectives. The environmental influenced optimal condition, known as the driver' determines the condition, within a downstream virtual window of possible vehicle destinations and orientation built from the UAV kinematics. The intermittent results are pursued by a dynamic optimization technique to determine the flight path. This sequential optimization technique is a multi-objective optimization procedure consisting of two goals, without requiring additional information to combine the conflicting objectives into a single-objective. An example case-study and additional applications are developed and the results are discussed; including the application to the field of Solar Regenerative (SR) High Altitude Long Endurance (HALE) UAV flight. Harnessing solar energy has recently been adapted for use on high altitude UAV platforms. An aircraft that uses solar panels and powered by the sun during the day and through the night by SR systems, in principle could sustain flight for weeks or months. The requirements and limitations of solar powered flight were determined. The SR-HALE UAV platform geometry and flight characteristics were selected from an existing aircraft that has demonstrated the capability for sustained flight through flight tests. The goals were to maintain continual Situational Awareness (SA) over a case-study selected Area of Interest (AOI) and existing UAV power and surveillance systems. This was done for still wind and constant wind conditions at altitude along with variations in latitude. The characteristics of solar flux and the dependence on the surface location and orientation were established along with fixed flight maneuvers for

  2. A multimodal micro air vehicle for autonomous flight in near-earth environments

    NASA Astrophysics Data System (ADS)

    Green, William Edward

    Reconnaissance, surveillance, and search-and-rescue missions in near-Earth environments such as caves, forests, and urban areas pose many new challenges to command and control (C2) teams. Of great significance is how to acquire situational awareness when access to the scene is blocked by enemy fire, rubble, or other occlusions. Small bird-sized aerial robots are expendable and can fly over obstacles and through small openings to assist in the acquisition and distribution of intelligence. However, limited flying space and densely populated obstacle fields requires a vehicle that is capable of hovering, but also maneuverable. A secondary flight mode was incorporated into a fixed-wing aircraft to preserve its maneuverability while adding the capability of hovering. An inertial measurement sensor and onboard flight control system were interfaced and used to transition the hybrid prototype from cruise to hover flight and sustain a hover autonomously. Furthermore, the hovering flight mode can be used to maneuver the aircraft through small openings such as doorways. An ultrasonic and infrared sensor suite was designed to follow exterior building walls until an ingress route was detected. Reactive control was then used to traverse the doorway and gather reconnaissance. Entering a dangerous environment to gather intelligence autonomously will provide an invaluable resource to any C2 team. The holistic approach of platform development, sensor suite design, and control serves as the philosophy of this work.

  3. Crew factors in flight operations 2: Psychophysiological responses to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Gander, Philippa H.; Graeber, R. Curtis; Foushee, H. Clayton; Lauber, John K.; Connell, Linda J.

    1994-01-01

    Seventy-four pilots were monitored before, during, and after 3- or 4-day commercial short-haul trip patterns. The trips studied averaged 10.6 hr of duty per day with 4.5 hr of flight time and 5.5 flight segments. The mean rest period lasted 12.5 hr and occurred progressively earlier across successive days. On trip nights, subjects took longer to fall asleep, slept less, woke earlier, and reported lighter, poorer sleep with more awakenings than on pretrip nights. During layovers, subjective fatigue and negative affect were higher, and positive affect and activation lower, than during pretrip, in-flight, or posttrip. Pilots consumed more caffeine, alcohol, and snacks on trip days than either pretrip or posttrip. Increases in heart rate over mid-cruise were observed during descent and landing, and were greater for the pilot flying. Heart-rate increases were greater during takeoff and descent under instrument meteorological conditions (IMC) than under visual meteorological conditions (VMC). The following would be expected to reduce fatigue in short-haul operations: regulating duty hours, as well as flight hours; scheduling rest periods to begin at the same time of day, or progressively later, across the days of a trip; and educating pilots about alternatives to alcohol as a means of relaxing before sleep.

  4. Extracting micro air vehicles aerodynamic forces and coefficients in free flight using visual motion tracking techniques

    NASA Astrophysics Data System (ADS)

    Mettler, B. F.

    2010-09-01

    This paper describes a methodology to extract aerial vehicles’ aerodynamic characteristics from visually tracked trajectory data. The technique is being developed to study the aerodynamics of centimeter-scale aircraft and develop flight simulation models. Centimeter-scale aircraft remains a largely unstudied domain of aerodynamics, for which traditional techniques like wind tunnels and computational fluid dynamics have not yet been fully adapted and validated. The methodology takes advantage of recent progress in commercial, vision-based, motion-tracking systems. This system dispenses from on-board navigation sensors and enables indoor flight testing under controlled atmospheric conditions. Given the configuration of retro-reflective markers affixed onto the aerial vehicle, the vehicle’s six degrees-of-freedom motion can be determined in real time. Under disturbance-free conditions, the aerodynamic forces and moments can be determined from the vehicle’s inertial acceleration, and furthermore, for a fixed-wing vehicle, the aerodynamic angles can be plotted from the vehicle’s kinematics. By combining this information, we can determine the temporal evolution of the aerodynamic coefficients, as they change throughout a trajectory. An attractive feature of this technique is that trajectories are not limited to equilibrium conditions but can include non-equilibrium, maneuvering flight. Whereas in traditional wind-tunnel experiments, the operating conditions are set by the experimenter, here, the aerodynamic conditions are driven by the vehicle’s own dynamics. As a result, this methodology could be useful for characterizing the unsteady aerodynamics effects and their coupling with the aircraft flight dynamics, providing insight into aerodynamic phenomena taking place at centimeter scale flight.

  5. Catastrophic Equatorial Icing Caused the Air France 447 and Malaysian 370 Crashes: Risks of More Such Disasters Are Increased By Global Warming

    NASA Astrophysics Data System (ADS)

    Gibson, C. H.

    2014-12-01

    Dangerous icing conditions near the equator have been observed, and may account for the tragic crashes of Air France 447 in 2009 and Malaysian Airlines 370 in 2014, not pilot error in either case. Six cases of engine failures from icing were reported in 2013 at high altitudes for 747-8 and 787 Dreamliner planes at tropical latitudes (journalofcosmology.com volume 23). Lack of horizontal Coriolis forces accounts for the extreme intermittency of equatorial turbulence and turbulent mixing, Baker and Gibson (1987). Intermittency factors inferred from the available microstructure data sets were much larger than those at higher latitudes, reflecting the wide range of scales of the turbulence cascade from small scales to large in the horizontal direction. Lognormal statistical analysis implies mean values of dissipation rates are likely to be 30,000 times larger than mode values at the equator, compared to only 2000 times larger at midlatitudes. Modern stratified turbulence theory (journalofcosmology.com volume 21) shows turbulent mixing of heat, mass, momentum, and chemical species in natural fluids such as the ocean, atmosphere, and cosmological fluids is dominated by mixing chimneys directed perpendicular to vertical and radial layers of gravitational stratification by the inertial vortex forces that define turbulence. Rarely, thick columns of supercooled steam reach cruising altitudes of jet aircraft. After entering such a column, the plane is doomed.

  6. Predicting Human Error in Air Traffic Control Decision Support Tools and Free Flight Concepts

    NASA Technical Reports Server (NTRS)

    Mogford, Richard; Kopardekar, Parimal

    2001-01-01

    The document is a set of briefing slides summarizing the work the Advanced Air Transportation Technologies (AATT) Project is doing on predicting air traffic controller and airline pilot human error when using new decision support software tools and when involved in testing new air traffic control concepts. Previous work in this area is reviewed as well as research being done jointly with the FAA. Plans for error prediction work in the AATT Project are discussed. The audience is human factors researchers and aviation psychologists from government and industry.

  7. High Flight: History of the U.S. Air Force Academy

    DTIC Science & Technology

    2009-09-01

    Kenneth W. "Celestial under Cover (Academy Planetarium )." The Navigator 17 (1969): 12-13. Brown, O. Differential Utility of an Antecedent Inventory for...Non-Potable System for Irrigation." Public Works 91 (1960): 126-28. "Air Force Academy to Have Planetarium ." Sky & Telescope 15 (1956): 121...34Celestial under Cover (Academy Planetarium )." The Navigator 17 (1969): 12-13. Brown, Andrew J. and Wayne Teng. "How Foundations for the Air Force Academy

  8. Air-Launch TSTO With Subsonic In-Flight Collection-System and Technology Study

    DTIC Science & Technology

    2007-11-02

    glider based on the FDL-7 series of hypersonic gliders developed and tested by A. Draper and M. Buck at the Flight Dynamics Laboratory in the ‘70’s...lot of kilograms and specific weight may be increased by a factor 2 to 2.5. By comparison, collecting at high supersonic / low hypersonic conditions...The vehicle of figure 4.7 is not a winged-cylindrical body configuration like on figure 4.8. It is a very efficient rocket-derived powered hypersonic

  9. Wrist activity monitoring in air crew members: a method for analyzing sleep quality following transmeridian and north-south flights.

    PubMed

    Buck, A; Tobler, I; Borbély, A A

    1989-01-01

    Home base recordings of motor activity during bedtime, and of subjective sleep parameters, were obtained from air crew members before and after the following routes with multiple flight segments: (1) south-north (SN) across 1 time zone; (2) west-east (WE) across 17 time zones; (3) east-west (EW) across 7 time zones. For the EW route, recordings were also obtained during layover. Only after return from the EW route was bedtime motor activity (measured by a wrist-worn ambulatory monitor) enhanced, was the percentage of bedtime immobility periods reduced, and were frequency and duration of self-assessed waking after sleep onset increased. The subjects rated their sleep as less quiet and felt less rested than during baseline. The various parameters gradually reverted toward baseline during the first 4 days at home. Although sleep showed only minor impairments during the EW route, the subjective jet-lag score was high during layover and after return to home base. Ambulatory activity monitoring is a useful method for assessing sleep quality after long-haul flights.

  10. AirSTAR: A UAV Platform for Flight Dynamics and Control System Testing

    NASA Technical Reports Server (NTRS)

    Jordan, Thomas L.; Foster, John V.; Bailey, Roger M.; Belcastro, Christine M.

    2006-01-01

    As part of the NASA Aviation Safety Program at Langley Research Center, a dynamically scaled unmanned aerial vehicle (UAV) and associated ground based control system are being developed to investigate dynamics modeling and control of large transport vehicles in upset conditions. The UAV is a 5.5% (seven foot wingspan), twin turbine, generic transport aircraft with a sophisticated instrumentation and telemetry package. A ground based, real-time control system is located inside an operations vehicle for the research pilot and associated support personnel. The telemetry system supports over 70 channels of data plus video for the downlink and 30 channels for the control uplink. Data rates are in excess of 200 Hz. Dynamic scaling of the UAV, which includes dimensional, weight, inertial, actuation, and control system scaling, is required so that the sub-scale vehicle will realistically simulate the flight characteristics of the full-scale aircraft. This testbed will be utilized to validate modeling methods, flight dynamics characteristics, and control system designs for large transport aircraft, with the end goal being the development of technologies to reduce the fatal accident rate due to loss-of-control.

  11. Advanced Crash Survivable Flight Data Recorder And Accident Information Retrieval System (AIRS).

    DTIC Science & Technology

    1981-08-01

    95 31 NARROW-BAND CONDUCTED EMISSIONS ON THE AIRS 24 VDC POWER RETURN (CE04 TESI ) ......................... 96 32 BROAD-BAND...three layers of vulcanized synthetic rubber containing an intumescent ceramic material and includes a wire mesh reinforcement between the outermost

  12. Hypersonic lateral and directional stability characteristics of aeroassist flight experiment configuration in air and CF4

    NASA Technical Reports Server (NTRS)

    Micol, John R.; Wells, William L.

    1993-01-01

    Hypersonic lateral and directional stability characteristics measured on a 60 deg half-angle elliptical cone, which was raked at an angle of 73 deg from the cone centerline and with an ellipsoid nose (ellipticity equal to 2.0 in the symmetry plane), are presented for angles of attack from -10 to 10 deg. The high normal-shock density ratio of a real gas was simulated by tests at a Mach number of 6 in air and CF4 (density ratio equal to 5.25 and 12.0, respectively). Tests were conducted in air at Mach 6 and 10 and in CF4 at Mach 6 to examine the effects of Mach number, Reynolds number, and normal-shock density ratio. Changes in Mach number from 6 to 10 in air or in Reynolds number by a factor of 4 at Mach 6 had a negligible effect on lateral and directional stability characteristics. Variations in normal-shock density ratio had a measurable effect on lateral and directional aerodynamic coefficients, but no significant effect on lateral and directional stability characteristics. Tests in air and CF4 indicated that the configuration was laterally and directionally stable through the test range of angle of attack.

  13. [Risk of deep venous thrombosis during an air flight: prevention and counselling at the counter].

    PubMed

    Zawieja, P; Orecchioni, A-M; Métais, P; Touze, J-É

    2011-09-01

    Worldwide air traffic reaches about 2.3 billion passengers per year. The increasing number of persons at thrombo-embolic risk, together with potentially severe or fatal complications of deep venous thrombosis, suggests community pharmacists can give basic preventive advice to persons identified as at risk.

  14. Advanced Systems for Air and Water Quality Monitoring in Long Duration Human Flight

    NASA Astrophysics Data System (ADS)

    Chutjian, Ara

    2005-03-01

    Any space mission involving extended astronaut travel time must have an accompanying system for monitoring the quality of the onboard air and water. These systems must not only meet the detection criteria for undesirable species, at the detection limits set by NASA and the National Academy of Sciences. They must also meet generic requirements such as having low mass, volume, and power; requiring minimal astronaut assistance, and having minimal need for consumables. We will briefly review the criteria for acceptable air and water contamination levels. We will then review the monitoring methods presently in use, and those being developed. These methods include, for example, GCMS, ion mobility spectrometry, the ``electronic nose,'' infrared absorption, and solid phase extraction with colorimetry.

  15. REAL TIME, ON-LINE CHARACTERIZATION OF DIESEL GENERATOR AIR TOXIC EMISSIONS BY RESONANCE ENHANCED MULTI-PHOTON IONIZATION TIME OF FLIGHT MASS SPECTROMETRY

    EPA Science Inventory

    The laser based resonance, enhanced multi-photon ionization time-of-flight mass spectrometry (REMPI-TOFMS) technique has been applied to the exhaust gas stream of a diesel generator to measure, in real time, concentration levels of aromatic air toxics. Volatile organic compounds ...

  16. Flight Operations Centers: Transforming NextGen Air Traffic Management FOC Study Team Report

    DTIC Science & Technology

    2012-07-01

    Traffic Management FOC Study Team Report 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK...decision processes. The FOC’s role is key to initiating trajectories. The FOC should also play an important role in the Air Traffic Management ...formalize data sharing. Uniform rules for data sharing should be developed that address roles, responsibilities, quality , timing, and

  17. Test results of flight guidance for fuel conservative descents in a time-based metered air traffic environment. [terminal configured vehicle

    NASA Technical Reports Server (NTRS)

    Knox, C. E.; Person, L. H., Jr.

    1981-01-01

    The NASA developed, implemented, and flight tested a flight management algorithm designed to improve the accuracy of delivering an airplane in a fuel-conservative manner to a metering fix at a time designated by air traffic control. This algorithm provides a 3D path with time control (4D) for the TCV B-737 airplane to make an idle-thrust, clean configured (landing gear up, flaps zero, and speed brakes retracted) descent to arrive at the metering fix at a predetermined time, altitude, and airspeed. The descent path is calculated for a constant Mach/airspeed schedule from linear approximations of airplane performance with considerations given for gross weight, wind, and nonstandard pressure and temperature effects. The flight management descent algorithms are described and flight test results are presented.

  18. Optical Air Flow Measurements in Flight (Mesures optiques de l’ecoulement aerodynamique en vol)

    DTIC Science & Technology

    2003-12-01

    Volumes 7-2 7-2 Installation of ALEV 3 System in the Airbus A340 7-2 7-3 Detection Volume Geometry 7-5 7-4 Continuous-Wave Doppler Lidar Brass Board...Demonstrator 7-10 7-7 Folding Mirror Housing on the Electra Test Bed Aircraft 7-12 7-8 Aircraft Normal Acceleration and Lidar Velocity Standard Deviation 7...Characteristics of the Boeing Doppler Lidar Airspeed System 7-4 7-3 Characteristics of Michigan Aerospace Molecular Optical Air Data Sensor (MOADS) 7-7 7-4

  19. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  20. Flow field studies on a micro-air-vehicle-scale cycloidal rotor in forward flight

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jarugumilli, Tejaswi; Benedict, Moble; Lakshminarayan, Vinod K.; Jones, Anya R.; Chopra, Inderjit

    2014-12-01

    This paper examines the flow physics and principles of force production on a cycloidal rotor (cyclorotor) in forward flight. The cyclorotor considered here consists of two blades rotating about a horizontal axis, with cyclic pitch angle variation about the blade quarter-chord. The flow field at the rotor mid-span is analyzed using smoke flow visualization and particle image velocimeV are compared with flow fields predicted using 2D CFD and time-averaged force measurements acquired in an open-jet wind tunnel at three advance ratios. It is shown that the experimental flow field is nearly two dimensional at μ = 0.73 allowing for qualitative comparisons to be made with CFD. The incoming flow velocity decreases in magnitude as the flow passes through the retreating (upper) half of the rotor and is attributed to power extraction by the blades. A significant increase in flow velocity is observed across the advancing (lower) half of the rotor. The aerodynamic analysis demonstrates that the blades accelerate the flow through the lower aft region of the rotor, where they operate in a high dynamic pressure environment. This is consistent with CFD-predicted values of instantaneous aerodynamic forces which reveal that the aft section of the rotor is the primary region of force production. Phase-averaged flow field measurements showed two blade wakes in the flow, formed by each of the two blades. Analysis of the blades at several azimuthal positions revealed two significant blade-wake interactions. The locations of these blade-wake interactions are correlated with force peaks in the CFD-predicted instantaneous blade forces and highlight their importance to the generation of lift and propulsive force of the cyclorotor.

  1. Crash Rates of Scheduled Commuter and Air Carrier Flights Before and After a Regulatory Change

    PubMed Central

    Baker, Susan P.; Groff, Loren; Haaland, Wren; Qiang, Yandong; Rebok, George W.; Li, Guohua

    2010-01-01

    Introduction In 1997, in an effort to reduce the crash rate of scheduled commuter flights, the FAA required aircraft with 10–30 passenger seats to operate under stricter rules. Training and other requirements of 14 CFR Part 121 rules were applied to these midsize commuters, which previously had operated under the less strict Part 135 rules. Published crash rates obscured changes related to aircraft size. This research was undertaken to determine whether the rule change affected crash rates of aircraft with 10–30 passenger seats. Method We determined the number of passenger seats on each Part 135 or Part 121 aircraft that crashed between 1983 and 2007. For aircraft with < 10, 10–30, and > 30 seats, we estimated the numbers of departures and crash rates, adjusting for changes in total departures and numbers of in-service aircraft. Results The Part 135 crash rate tripled in 1997 when commuters with 10–30 seats were excluded, reflecting the administrative change. However, the crash rate of aircraft with 10–30 passenger seats began to decline 4 yr before the rule change; thereafter, their rate was lower than for larger aircraft. The fleet size of aircraft with 10–30 passenger seats increased from 1983 to 1997, then declined as they were replaced with larger aircraft in response to the rule change. Discussion No effect of the rule change on crash rates of 10–30-seat aircraft was apparent. The decline in their crash rates began before the rule change and may have been related to the 1992 requirement for ground proximity warning devices. PMID:19378909

  2. Flight-determined characteristics of an air intake system on an F-111A airplane

    NASA Technical Reports Server (NTRS)

    Hughes, D. L.; Johnson, H. J.

    1972-01-01

    Flow phenomena of the F-111A air intake system were investigated over a large range of Mach number, altitude, and angle of attack. Boundary-layer variations are shown for the fuselage splitter plate and inlet entrance stations. Inlet performance is shown in terms of pressure recovery, airflow, mass-flow ratio, turbulence factor, distortion factor, and power spectral density. The fuselage boundary layer was found to be not completely removed from the upper portion of the splitter plate at all Mach numbers investigated. Inlet boundary-layer ingestion started at approximately Mach 1.6 near the translating spike and cone. Pressure-recovery distribution at the compressor face showed increasing distortion with increasing angle of attack and increasing Mach number. The time-averaged distortion-factor value approached 1300, which is near the distortion tolerance of the engine at Mach numbers above 2.1.

  3. Solving the aerodynamics of fungal flight: how air viscosity slows spore motion.

    PubMed

    Fischer, Mark W F; Stolze-Rybczynski, Jessica L; Davis, Diana J; Cui, Yunluan; Money, Nicholas P

    2010-01-01

    Viscous drag causes the rapid deceleration of fungal spores after high-speed launches and limits discharge distance. Stokes' law posits a linear relationship between drag force and velocity. It provides an excellent fit to experimental measurements of the terminal velocity of free-falling spores and other instances of low Reynolds number motion (Re<1). More complex, non-linear drag models have been devised for movements characterized by higher Re, but their effectiveness for modeling the launch of fast-moving fungal spores has not been tested. In this paper, we use data on spore discharge processes obtained from ultra-high-speed video recordings to evaluate the effects of air viscosity predicted by Stokes' law and a commonly used non-linear drag model. We find that discharge distances predicted from launch speeds by Stokes' model provide a much better match to measured distances than estimates from the more complex drag model. Stokes' model works better over a wide range projectile sizes, launch speeds, and discharge distances, from microscopic mushroom ballistospores discharged at <1 m s(-1) over a distance of <0.1mm (Re<1.0), to macroscopic sporangia of Pilobolus that are launched at >10 m s(-1) and travel as far as 2.5m (Re>100).

  4. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  5. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  6. Violations of Temporary Flight Restrictions and Air Defense Identification Zones: An Analysis of Airspace Violations and Pilot Report Data

    NASA Technical Reports Server (NTRS)

    Zuschlag, Michael

    2005-01-01

    This document provides the results from a study into the apparent factors and causes of violations of restricted airspace, particularly temporary flight restrictions (TFRs) and air defense identification zones (ADIZs). By illuminating the reasons for these violations, this study aims to take the first step towards reducing them. The study assesses the basic characteristics of restricted airspace violations as well as the probable causes and factors contributing to violations. Results from the study imply most violations occur where the restriction has been in place for a significant amount of time prior to the violation. Additionally, the study results imply most violations are not due to the pilot simply being unaware of the airspace at the time of violation. In most violations, pilots are aware of the presence of the restricted airspace but have incorrect information about it, namely, its exact boundaries or procedures for authorized penetration. These results imply that the best means to reduce violations of restricted airspace is to improve the effectiveness of providing pilots the details required to avoid the airspace.

  7. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique

    NASA Astrophysics Data System (ADS)

    Huang, Y. S.; Huang, Y. P.; Huang, K. N.; Young, M. S.

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39°C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  8. A fully-coupled implicit method for thermo-chemical nonequilibrium air at sub-orbital flight speeds

    NASA Technical Reports Server (NTRS)

    Park, Chul; Yoon, Seokkwan

    1989-01-01

    A CFD technique is described in which the finite-rate chemistry in thermal and chemical nonequilibrium air is fully and implicitly coupled with the fluid motion. Developed for use in the suborbital hypersonic flight speed range, the method accounts for nonequilibrium vibrational and electronic excitation and dissociation, but not ionization. The steady-state solution to the resulting system of equations is obtained by using a lower-upper factorization and symmetric Gauss-Seidel sweeping technique through Newton iteration. Inversion of the left-hand-side matrices is replaced by scalar multiplications through the use of the diagonal dominance algorithm. The code, named CENS2H (Compressible-Euler-Navier-Stokes Two-Dimensional Hypersonic), is fully vectorized and requires about 8.8 x 10 to the -5th sec per node point per iteration using a Cray X-MP computer. Converged solutions are obtained after about 2400 iterations. Sample calculations are made for a circular cylinder and a 10 percent airfoil at 5 deg angle of attack. The calculated cylinder flow field agrees with that obtained experimentally. The code predicts a 10 percent change in lift, drag, and pitching moment for the airfoil due to the thermochemical phenomena.

  9. Free-flight Performance of a Rocket-boosted, Air-launched 16-inch-diameter Ram-jet Engine at Mach Numbers up to 2.20

    NASA Technical Reports Server (NTRS)

    Disher, John H; Kohl, Robert C; Jones, Merle L

    1953-01-01

    The investigation of air-launched ram-jet engines has been extended to include a study of models with a nominal design free-stream Mach number of 2.40. These models require auxiliary thrust in order to attain a flight speed at which the ram jet becomes self-accelerating. A rocket-boosting technique for providing this auxiliary thrust is described and time histories of two rocket-boosted ram-jet flights are presented. In one flight, the model attained a maximum Mach number of 2.20 before a fuel system failure resulted in the destruction of the engine. Performance data for this model are presented in terms of thrust and drag coefficients, diffuser pressure recovery, mass-flow ratio, combustion efficiency, specific fuel consumption, and over-all engine efficiency.

  10. A flight management algorithm and guidance for fuel-conservative descents in a time-based metered air traffic environment: Development and flight test results

    NASA Technical Reports Server (NTRS)

    Knox, C. E.

    1984-01-01

    A simple airborne flight management descent algorithm designed to define a flight profile subject to the constraints of using idle thrust, a clean airplane configuration (landing gear up, flaps zero, and speed brakes retracted), and fixed-time end conditions was developed and flight tested in the NASA TSRV B-737 research airplane. The research test flights, conducted in the Denver ARTCC automated time-based metering LFM/PD ATC environment, demonstrated that time guidance and control in the cockpit was acceptable to the pilots and ATC controllers and resulted in arrival of the airplane over the metering fix with standard deviations in airspeed error of 6.5 knots, in altitude error of 23.7 m (77.8 ft), and in arrival time accuracy of 12 sec. These accuracies indicated a good representation of airplane performance and wind modeling. Fuel savings will be obtained on a fleet-wide basis through a reduction of the time error dispersions at the metering fix and on a single-airplane basis by presenting the pilot with guidance for a fuel-efficient descent.

  11. Estimated Drag Coefficients and Wind Structure of Hurricane Frances

    NASA Astrophysics Data System (ADS)

    Zedler, S. E.; Niiler, P. P.; Stammer, D.; Terrill, E.

    2006-12-01

    As part of the Coupled Boundary Layers Air Sea Transfer (CBLAST) experiment, an array of drifters and floats was deployed from an aircraft just ahead of Hurricane Frances during it's passage to the northwest side of the Caribbean Island chain in August, 2004. The ocean and surface air conditions prior to, during, and after Hurricane Frances were documented by multiple sensors. Two independent estimates of the surface wind field suggest different storm structures. NOAA H*WINDS, an objectively analyzed product using a combination of data collected at the reconnaissance flight level, GPS profilers (dropwindsondes), satellites, and other data, suggest a 40km radius of maximum wind. A product based on the radial momentum equation balance using \\ital{in-situ} surface pressure data and wind direction measurements from the CBLAST drifter array suggests that the radius of maximum winds was 15km. We used a regional version of the MITGCM model with closed boundaries and realistic temperature and salinity fields which was forced with these wind field products to determine which wind field leads to circulation and SST structures that are most consistent with observed sea surface temperature fields and float profile data. Best estimates of the surface wind structure are then used to estimate the appropriate drag coefficient corresponding to the maximum velocity. Our results are compared with those obtained previously.

  12. Requirements for regional short-haul air service and the definition of a flight program to determine neighborhood reactions to small transport aircraft

    NASA Technical Reports Server (NTRS)

    Feher, K.; Bollinger, L.; Bowles, J. V.; Waters, M. H.

    1978-01-01

    An evaluation of the current status and future requirements of an intraregional short haul air service is given. A brief definition of the different types of short haul air service is given. This is followed by a historical review of previous attempts to develop short haul air service in high density urban areas and an assessment of the current status. The requirements for intraregional air service, the need for economic and environmental viability and the need for a flight research program are defined. A detailed outline of a research program that would determine urban community reaction to frequent operations of small transport aircraft is also given. Both the operation of such an experiment in a specific region (San Francisco Bay area) and the necessary design modifications of an existing fixed wing aircraft which could be used in the experiment are established. An estimate is made of overall program costs.

  13. Volatile Organic Compounds Identified in Post-Flight Air Analysis of the Multipurpose Logistics Module from International Space Station

    NASA Astrophysics Data System (ADS)

    Peterson, B.; Wheeler, R.

    Bioregenerative systems involve storing and processing waste along with atmospheric management. The MPLM, Multipurpose Logistics Module, is a reusable logistics carrier and primary delivery system used to resupply the International Space Station (ISS) and return Station cargo that requires a pressurized environment. The cylindrical module is approximately 6.4 meters long, 4.6 meters in diameter, and weighs almost 4,082kg. The module provides storage and additional workspace for up to two astronauts when docked to the ISS. It can carry up to 9,072 kg of supplies, science experiments, spare parts and other logistical components for ISS. There is concern for a potentially hazardous condition caused by contamination of the atmosphere in the MPLM upon return from orbit. This would be largely due to unforeseen spills or container leakage. This has led to the need for special care in handling the returned module prior to processing the module for its next flight. Prior to opening the MPLM, atmospheric samples are analyzed for trace volatile organic compounds, VOC's. It is noted that our analyses also reflect the atmosphere in the ISS on that day of closure. With the re turn of STS-108, 12th ISS Flight (UF1), the analysis showed 24 PPM of methane. This corresponds to the high levels on space station during a time period when the air filtration system was shut off. Chemical characterization of atmospheres on the ISS and MPLM provide useful information for concerns with plant growth experiments on ISS. Work with closed plant growth chambers show potential for VOC's to accumulate to toxic levels for plants. The ethylene levels for 4 MPLM analyses over the course on one year were measured at, 0.070, 0.017, 0.012 and 0.007 PPM. Phytochemical such as ethylene are detected with natural plant physiological events such as flowering and as a result of plant damage or from decaying food. A build up of VOC's may contribute to phytotoxic effects for the plant growth experiments or

  14. Final Environmental Assessment for the Beddown and Flight Operations of Unmanned Aircraft Systems at Grand Forks Air Force Base, North Dakota

    DTIC Science & Technology

    2008-08-01

    virescens Green heron S3 In or near woodland borders of streams, oxbows , ponds and lakes . Caprimulgus vociferous Whip-poor-will SH Woods, especially...controlled by the Minneapolis, Salt Lake , and Seattle Air Route Traffic Control Centers (ARTCC). The operating altitude would be at Flight Level (FL) 190...Valley. The Base is situated on the flat, featureless glacial Lake Agassiz Plain, which has a northward and eastward slope of about 1.5 to 2 feet

  15. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms September 10, 1947 to September 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from September 10, 1947 to September 15, 1947, are presented.

  16. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 16, 1947 to August 20, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 16, 1947 to August 20, 1947 are presented.

  17. Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms August 13, 1947 to August 15, 1947 at Clinton County Army Air Field, Ohio

    NASA Technical Reports Server (NTRS)

    Funk, Jack

    1948-01-01

    The gust and draft velocities from records of NACA instruments installed in P-61C airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from August 13, 1947 to August 15, 1947 are presented.

  18. PTR-MS assessment of photocatalytic and sorption-based purification of recirculated cabin air during simulated 7-h flights with high passenger density.

    PubMed

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei; Arnaud, Timothy J; Hansel, Armin; Märk, Tilmann D; Wyon, David P

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefilter; and a two-stage sorption-based air filter (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h flights with 17 occupants. Proton-transfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was efficiently reduced by all three units. The photocatalytic units were found to incompletely oxidize ethanol released by the wet wipes commonly supplied with airline mealsto produce unacceptably high levels of acetaldehyde and formaldehyde.

  19. A Full-Envelope Air Data Calibration and Three-Dimensional Wind Estimation Method Using Global Output-Error Optimization and Flight-Test Techniques

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2012-01-01

    A novel, efficient air data calibration method is proposed for aircraft with limited envelopes. This method uses output-error optimization on three-dimensional inertial velocities to estimate calibration and wind parameters. Calibration parameters are based on assumed calibration models for static pressure, angle of attack, and flank angle. Estimated wind parameters are the north, east, and down components. The only assumptions needed for this method are that the inertial velocities and Euler angles are accurate, the calibration models are correct, and that the steady-state component of wind is constant throughout the maneuver. A two-minute maneuver was designed to excite the aircraft over the range of air data calibration parameters and de-correlate the angle-of-attack bias from the vertical component of wind. Simulation of the X-48B (The Boeing Company, Chicago, Illinois) aircraft was used to validate the method, ultimately using data derived from wind-tunnel testing to simulate the un-calibrated air data measurements. Results from the simulation were accurate and robust to turbulence levels comparable to those observed in flight. Future experiments are planned to evaluate the proposed air data calibration in a flight environment.

  20. Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of the Wings to Flight Dynamics, Stability, and Control

    NASA Astrophysics Data System (ADS)

    Orlowski, Christopher T.

    The flight dynamics, stability, and control of a model flapping wing micro air vehicle are analyzed with a focus on the inertial and mass effects of the wings on the position and Orientation of the body. A multi-body, flight dynamics model is derived from first principles. The multi-body model predicts significant differences in the position and orientation of the flapping wing micro air vehicle, when compared to a flight dynamics model based on the standard aircraft, or six degree of freedom, equations of motion. The strongly coupled, multi-body equations of motion are transformed into first order form using an approximate inverse and appropriate assumptions. Local (naive) averaging of the first order system does not produce an accurate result and a new approximation technique named 'quarter-cycle' averaging is proposed. The technique is effective in reducing the error by at least an order of magnitude for three reference flight conditions. A stability analysis of the local averaged equations of motions, in the vicinity of a hover condition, produces a modal structure consist with the most common vertical takeoff or landing structure and independent stability analyses of the linearized flight dynamics of insect models. The inclusion of the wing effects produces a non-negligible change in the linear stability of a hawkmoth-sized model. The hovering solution is shown, under proper control, to produce a limit cycle. The control input to achieve a limit cycle is different if the flight dynamics model includes the wing effects or does not include the wing effects. Improper control input application will not produce the desired limit cycle effects. A scaling analysis is used to analyze the relative importance of the mass of the wings, based on the quarter-cycle approximation. The conclusion of the scaling analysis is that the linear momentum effects of the wings are always important in terms of the inertial position of the flapping wing micro air vehicle. Above a

  1. Flight-Proven Nano-Satellite Architecture for Hands-On Academic Training at the US Air Force Academy

    NASA Astrophysics Data System (ADS)

    Underwood, Craig I.; Sellers, Lt. Jerry, , Col.; Sweeting, Martin, , Sir

    2002-01-01

    This paper describes the use of "commercial-off-the-shelf" open-architecture satellite sub-systems, based on the flight- proven "SNAP" nanosatellite platform, to provide "hands-on" education and training at the United States Air Force Academy. The UK's first nanosatellite: SNAP-1, designed and built by Surrey Satellite Technology Ltd. (SSTL) and Surrey Space Centre staff - in less than a year - was launched in June 2000. The 6.5 kg spacecraft carries advanced, UK-developed, GPS navigation, computing, propulsion and attitude control technologies, which have been used to demonstrate orbital manoeuvring and full three-axis controlled body stabilisation. SNAP-1's primary payload is a machine vision system which has been used to image the in-orbit deployment of another SSTL-built spacecraft: Tsinghua-1. The highly successful, SNAP-1 mission has also demonstrated how the concept of using a standardised, modular nanosatellite bus can provide the core support units (power system, on-board data-handling and communications systems and standardised payload interface) for a practical nanosatellite to be constructed and flown in a remarkably short time-frame. Surrey's undergraduate and post-graduate students have made a major input to the SNAP concept over the last six years in the context of project work within the Space Centre. Currently, students at the USAF Academy are benefiting from this technology in the context of designing their own nanosatellite - FalconSAT-2. For the FalconSAT-2 project, the approach has been to focus on building up infrastructure, including design and development tools that can serve as a firm foundation to allow the satellite design to evolve steadily over the course of several missions. Specific to this new approach has been a major effort to bound the problem faced by the students. To do this, the program has leveraged the research carried out at the Surrey Space Centre, by "buying into" the SNAP architecture. Through this, the Academy program

  2. The Spirit of France

    DTIC Science & Technology

    1994-01-01

    self - esteem amongst the French, giving France a greater sense of dignity. Charles de Gaulle sought grandeur to unite France and give the people a sense of common purpose. According to de Gaulle, France’s pursuit of its national interests was not narrow and self-serving, but was

  3. Development of a Flight Test Methodology for a U.S. Navy Half-Scale Unmanned Air Vehicle

    DTIC Science & Technology

    1989-03-01

    aircraft longitudinal center of gravity (CG) and were used to help stabilize the aircraft pitch and roll axes during flight testing and to lighten...consisted of an 18-ounce fuel tank, a fuselage mounted fueling connection and a Perry Regulated fuel pump. The fuel tank was mounted on the aircraft ... longitudinal CG so as to minimize CG movement during flight. Because the fuel tank was located approximately 15 inches 8 GYROGYO PITCHl ROLL LEAD TAPE

  4. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  5. Error analysis and assessment of unsteady forces acting on a flapping wing micro air vehicle: free flight versus wind-tunnel experimental methods.

    PubMed

    Caetano, J V; Percin, M; van Oudheusden, B W; Remes, B; de Wagter, C; de Croon, G C H E; de Visser, C C

    2015-08-20

    An accurate knowledge of the unsteady aerodynamic forces acting on a bio-inspired, flapping-wing micro air vehicle (FWMAV) is crucial in the design development and optimization cycle. Two different types of experimental approaches are often used: determination of forces from position data obtained from external optical tracking during free flight, or direct measurements of forces by attaching the FWMAV to a force transducer in a wind-tunnel. This study compares the quality of the forces obtained from both methods as applied to a 17.4 gram FWMAV capable of controlled flight. A comprehensive analysis of various error sources is performed. The effects of different factors, e.g., measurement errors, error propagation, numerical differentiation, filtering frequency selection, and structural eigenmode interference, are assessed. For the forces obtained from free flight experiments it is shown that a data acquisition frequency below 200 Hz and an accuracy in the position measurements lower than ± 0.2 mm may considerably hinder determination of the unsteady forces. In general, the force component parallel to the fuselage determined by the two methods compares well for identical flight conditions; however, a significant difference was observed for the forces along the stroke plane of the wings. This was found to originate from the restrictions applied by the clamp to the dynamic oscillations observed in free flight and from the structural resonance of the clamped FWMAV structure, which generates loads that cannot be distinguished from the external forces. Furthermore, the clamping position was found to have a pronounced influence on the eigenmodes of the structure, and this effect should be taken into account for accurate force measurements.

  6. Surface flow and heating distributions on a cylinder in near wake of Aeroassist Flight Experiment (AFE) configuration at incidence in Mach 10 Air

    NASA Technical Reports Server (NTRS)

    Wells, William L.

    1990-01-01

    Experimental heat transfer distributions and surface streamline directions are presented for a cylinder in the near wake of the Aeroassist Flight Experiment forebody configuration. Tests were conducted in air at a nominal free stream Mach number of 10, with post shock Reynolds numbers based on model base height of 6,450 to 50,770, and angles of attack of 5, 0, -5, and -10 degrees. Heat transfer data were obtained with thin film resistance gage and surface streamline directions by the oil flow technique. Comparisons between measured values and predicted values were made by using a Navier-Stokes computer code.

  7. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  8. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Randriamiarisoa, Hariliva; Sanak, Joseph; Couvert, Pierre; Flamant, Cyrille

    2005-01-01

    Urban aerosol microphysical and optical properties were investigated over the Paris area coupling, for the first time, with dedicated airborne in situ instruments (nephelometer and particle sizers) and active remote sensor (lidar) as well as ground-based in situ instrumentation. The experiment, covering two representative pollution events, was conducted in the framework of the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program. Pollution plumes were observed under local northerly and southerly synoptic wind conditions on 19 and 31 July 2000, respectively. The 19 July (31 July) event was characterized by north-northwesterly (westerly) advection of polluted (clean) air masses originating from Great Britain (the Atlantic Ocean). The aerosol number size distribution appeared to be composed mainly of two modes in the planetary boundary layer (accumulation and nucleation) and three modes in the surface layer (accumulation, nucleation, and coarse). The characteristics of the size distribution (modal radii and geometric dispersion) were remarkably similar on both days and very coherent with the aerosol optical parameters retrieved from lidar and nephelometer measurements. The city of Paris mainly produces aerosols in the nucleation mode (modal radius of ˜0.03 μm) that have little influence on the aerosol optical properties in the visible spectral range. The latter are largely dominated by the scattering properties of aerosols in the accumulation mode (modal radius of ˜0.12 μm). When the incoming air mass is already polluted (clear), the aerosol in the accumulation mode is shown to be essentially hydrophobic (hydrophilic) in the outgoing air mass.

  9. DBD Plasma Actuators for Flow Control in Air Vehicles and Jet Engines - Simulation of Flight Conditions in Test Chambers by Density Matching

    NASA Technical Reports Server (NTRS)

    Ashpis, David E.; Thurman, Douglas R.

    2011-01-01

    Dielectric Barrier Discharge (DBD) Plasma actuators for active flow control in aircraft and jet engines need to be tested in the laboratory to characterize their performance at flight operating conditions. DBD plasma actuators generate a wall-jet electronically by creating weakly ionized plasma, therefore their performance is affected by gas discharge properties, which, in turn, depend on the pressure and temperature at the actuator placement location. Characterization of actuators is initially performed in a laboratory chamber without external flow. The pressure and temperature at the actuator flight operation conditions need to be simultaneously set in the chamber. A simplified approach is desired. It is assumed that the plasma discharge depends only on the gas density, while other temperature effects are assumed to be negligible. Therefore, tests can be performed at room temperature with chamber pressure set to yield the same density as in operating flight conditions. The needed chamber pressures are shown for altitude flight of an air vehicle and for jet engines at sea-level takeoff and altitude cruise conditions. Atmospheric flight conditions are calculated from standard atmosphere with and without shock waves. The engine data was obtained from four generic engine models; 300-, 150-, and 50-passenger (PAX) aircraft engines, and a military jet-fighter engine. The static and total pressure, temperature, and density distributions along the engine were calculated for sea-level takeoff and for altitude cruise conditions. The corresponding chamber pressures needed to test the actuators were calculated. The results show that, to simulate engine component flows at in-flight conditions, plasma actuator should be tested over a wide range of pressures. For the four model engines the range is from 12.4 to 0.03 atm, depending on the placement of the actuator in the engine. For example, if a DBD plasma actuator is to be placed at the compressor exit of a 300 PAX engine, it

  10. Air ambulance flights in northern Norway 2002-2008. Increased number of secondary fixed wing (FW) operations and more use of rotor wing (RW) transports

    PubMed Central

    2011-01-01

    Background Air ambulance service in Norway has been upgraded during the last years. European regulations concerning pilots' working time and new treatment guidelines/strategies have called for more resources. Aims The objective was to describe and analyse the two supplementary air ambulance [fixed wing (FW) and rotor wing (RW)] alternatives' activity during the study period (2002-2008). Furthermore we aimed to compare our findings with reports from other north European regions. Methods A retrospective analysis. The air ambulance fleet's activity according to the electronic patient record database of "Luftambulansetjenesten ANS" (LABAS) was analysed. The subject was the fleet's operations in northern Norway, logistics, and patients handled. Type of flight, distances, frequency, and patients served were the main outcome measures. Results A significant increase (45%) in the use of RW and a shift in FW operations (less primary and more secondary) were revealed. The shift in FW operations reflected the centralisation of several health care services [i.e. percutaneous cardiac intervention (PCI), trauma, and cancer surgery] during the study period. Cardiovascular disease (CVD) and injuries were the main diagnoses and constituted half of all operations. CVD was the most common cause of FW operations and injuries of the RW ones. The number of air ambulance operations was 16 per 1,000 inhabitants. This was more frequent than in other north European regions. Conclusions The use of air ambulances and especially RW was significantly increased during the study period. The change in secondary FW operations reflected centralisation of medical care. When health care services are centralised, air ambulance services must be adjusted to the new settings. PMID:21878107

  11. SR-71 Flight

    NASA Video Gallery

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  12. Flight Test Techniques

    DTIC Science & Technology

    2009-07-01

    Fort Rucker, AL 36362-5276 8. PERFORMING ORGANIZATION REPORT NUMBER TOP 7-4-020 9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES...2 3. REQUIRED TEST CONDITIONS ............................................. 3 3.1...3. REQUIRED TEST CONDITIONS . 3.1 Air Vehicle Flight Test Techniques. Many different flight test techniques are in existence. As technology

  13. Soaring flight in Guinea

    NASA Technical Reports Server (NTRS)

    Idrac, P

    1920-01-01

    The term soaring is applied here to the flight of certain large birds which maneuver in the air without moving their wings. The author explains the methods of his research and here gives approximate figures for the soaring flight of the Egyptian Vulture and the African White backed Vulture. Figures are given in tabular form for relative air speed per foot per second, air velocity per foot per second, lift/drag ratio, and selected coefficients. The author argues that although the figures given were taken from a very limited series of observations, they have nevertheless thrown some light on the use by birds of the internal energy of the air.

  14. Michigan/Air Force Research Laboratory (AFRL) Collaborative Center in Control Science (MACCCS)

    DTIC Science & Technology

    2016-09-01

    efficient aerodynamic heating and thermal protection system model are added to MASIV, a reduced-order model of a generic scramjet-powered hypersonic vehicle...is often the largest source of heating in hypersonic air-breathing vehicles. The thermal protection system consists of passive insulation and active...Transportation (Energy Efficient Transportation Systems 2012), Paris, France, 2012, Accepted. Perpetual Flight on Flow Fields (Girard, Bencatel

  15. Design and stable flight of a 21 g insect-like tailless flapping wing micro air vehicle with angular rates feedback control.

    PubMed

    Phan, Hoang Vu; Kang, Taesam; Park, Hoon Cheol

    2017-04-04

    An insect-like tailless flapping wing micro air vehicle (FW-MAV) without feedback control eventually becomes unstable after takeoff. Flying an insect-like tailless FW-MAV is more challenging than flying a bird-like tailed FW-MAV, due to the difference in control principles. This work introduces the design and controlled flight of an insect-like tailless FW-MAV, named KUBeetle. A combination of four-bar linkage and pulley-string mechanisms was used to develop a lightweight flapping mechanism that could achieve a high flapping amplitude of approximately 190°. Clap-and-flings at dorsal and ventral stroke reversals were implemented to enhance vertical force. In the absence of a control surface at the tail, adjustment of the location of the trailing edges at the wing roots to modulate the rotational angle of the wings was used to generate control moments for the attitude control. Measurements by a 6-axis load cell showed that the control mechanism produced reasonable pitch, roll and yaw moments according to the corresponding control inputs. The control mechanism was integrated with three sub-micro servos to realize the pitch, roll and yaw controls. A simple PD feedback controller was implemented for flight stability with an onboard microcontroller and a gyroscope that sensed the pitch, roll and yaw rates. Several flight tests demonstrated that the tailless KUBeetle could successfully perform a vertical climb, then hover and loiter within a 0.3 m ground radius with small variations in pitch and roll body angles.

  16. Time-of-flight secondary ion mass spectroscopy with bismuth primary ions of clean and air-exposed surfaces of tellurium.

    PubMed

    Trzyna, Malgorzata; Berchenko, Nicolas; Rading, Derk; Cebulski, Jozef

    2014-01-01

    The regularity of Bi(+), Bi(3+) and Bi(3++) primary ions in the time- of-flight secondary ion mass spectroscopy fragment pattern of air oxidized Te and Bi(+) direct-current scan cleaned Te is discussed. The most intensive fragments for a cleaned Te surface are positive and negative Tex and BiTex clusters. The sequence of secondary ion cluster formation is Bi-Te alloying followed by sputtering and ionization. For oxidized Te the chemical composition of the produced TexOy fragments satisfies the relation y=2x for positive fragments and y=2x+1 for negative ones. Experimental findings are in a good agreement with the results predicted by Plog's model for TeO2.

  17. Investigation of two-stage air-cooled turbine suitable for flight at Mach number of 2.5 II : blade design

    NASA Technical Reports Server (NTRS)

    Miser, James W; Stewart, Warner L

    1957-01-01

    A blade design study is presented for a two-stage air-cooled turbine suitable for flight at a Mach number of 2.5 for which velocity diagrams have been previously obtained. The detailed procedure used in the design of the blades is given. In addition, the design blade shapes, surface velocity distributions, inner and outer wall contours, and other design data are presented. Of all the blade rows, the first-stage rotor has the highest solidity, with a value of 2.289 at the mean section. The second-stage stator also had a high mean-section solidity of 1.927, mainly because of its high inlet whirl. The second-stage rotor has the highest value of the suction-surface diffusion parameter, with a value of 0.151. All other blade rows have values for this parameter under 0.100.

  18. Air flight disaster, posttraumatic stress, and postventive rescue and response: the aftermath of the San Diego PSA 182 plane crash recovery operation, 20 years on.

    PubMed

    Davis, J; Stewart, L

    2000-01-01

    San Diego in 1978 was the scene of one of the USA's most tragic and traumatic air flight disasters, when an inbound Boeing 727 collided with a small private Cessna 172. The collision occurred in the vicinity of North Park, a suburb of San Diego. All aircraft occupants were killed or injured and many residents were injured. The wreckage was mainly concentrated in an area about the size of a city block, in a temperature of 100 degrees F or more. The whole experience was unlike anything any of the professionals involved had been prepared for, and beyond anything the civilians involved could have imagined. Many sought out intervention and help and counselling, and this paper examines the implications of the event 20 years on.

  19. Extensive air shower Monte Carlo modeling at the ground and aircraft flight altitude in the South Atlantic Magnetic Anomaly and comparison with neutron measurements

    NASA Astrophysics Data System (ADS)

    Pazianotto, M. T.; Cortés-Giraldo, M. A.; Federico, C. A.; Hubert, G.; Gonçalez, O. L.; Quesada, J. M.; Carlson, B. V.

    2017-02-01

    Modeling cosmic-ray-induced particle fluxes in the atmosphere is very important for developing many applications in aeronautics, space weather and on ground experimental arrangements. There is a lack of measurements and modeling at flight altitude and on ground in the South Atlantic Magnetic Anomaly. In this work we have developed an application based on the Geant4 toolkit called gPartAt that is aimed at the analysis of extensive air shower particle spectra. Another application has been developed using the MCNPX code with the same approach in order to evaluate the models and nuclear data libraries used in each application. Moreover, measurements were performed to determine the ambient dose equivalent rate of neutrons at flight altitude in different regions and dates in the Brazilian airspace; these results were also compared with the simulations. The results from simulations of the neutron spectra at ground level were also compared to data from a neutron spectrometer in operation since February 2015 at the Pico dos Dias Observatory in Brazil, at 1864 m above sea level, as part of a collaboration between the Institute for Advanced Studies (IEAv) and the French Aerospace Lab (ONERA). This measuring station is being operated with support from the National Astrophysics Laboratory (LNA). The modeling approaches were also compared to the AtmoRad computational platform, QARM, EXPACS codes and with measurements of the neutron spectrum taken in 2009 at the Pico dos Dias Observatory.

  20. Foreign technology summary of flight crucial flight control systems

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.

    1984-01-01

    A survey of foreign technology in flight crucial flight controls is being conducted to provide a data base for planning future research and technology programs. Only Free World countries were surveyed, and the primary emphasis was on Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The information was collected from open literature, personal communications, and a tour of several companies, government organizations, and research laboratories in the United Kingdom, France, and the Federal Republic of Germany. A summary of the survey results to date is presented.

  1. Flight Test Result for the Ground-Based Radio Navigation System Sensor with an Unmanned Air Vehicle

    PubMed Central

    Jang, Jaegyu; Ahn, Woo-Guen; Seo, Seungwoo; Lee, Jang Yong; Park, Jun-Pyo

    2015-01-01

    The Ground-based Radio Navigation System (GRNS) is an alternative/backup navigation system based on time synchronized pseudolites. It has been studied for some years due to the potential vulnerability issue of satellite navigation systems (e.g., GPS or Galileo). In the framework of our study, a periodic pulsed sequence was used instead of the randomized pulse sequence recommended as the RTCM (radio technical commission for maritime services) SC (special committee)-104 pseudolite signal, as a randomized pulse sequence with a long dwell time is not suitable for applications requiring high dynamics. This paper introduces a mathematical model of the post-correlation output in a navigation sensor, showing that the aliasing caused by the additional frequency term of a periodic pulsed signal leads to a false lock (i.e., Doppler frequency bias) during the signal acquisition process or in the carrier tracking loop of the navigation sensor. We suggest algorithms to resolve the frequency false lock issue in this paper, relying on the use of a multi-correlator. A flight test with an unmanned helicopter was conducted to verify the implemented navigation sensor. The results of this analysis show that there were no false locks during the flight test and that outliers stem from bad dilution of precision (DOP) or fluctuations in the received signal quality. PMID:26569251

  2. Determination of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multi Photon Ionization - Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA?s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as a pro...

  3. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    EPA Science Inventory

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  4. Noise generated by a flight weight, air flow control valve in a vertical takeoff and landing aircraft thrust vectoring system

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G.

    1989-01-01

    Tests were conducted in the NASA Lewis Research Center's Powered Lift Facility to experimentally evaluate the noise generated by a flight weight, 12 in. butterfly valve installed in a proposed vertical takeoff and landing thrust vectoring system. Fluctuating pressure measurements were made in the circular duct upstream and downstream of the valve. This data report presents the results of these tests. The maximum overall sound pressure level is generated in the duct downstream of the valve and reached a value of 180 dB at a valve pressure ratio of 2.8. At the higher valve pressure ratios the spectra downstream of the valve is broad banded with its maximum at 1000 Hz.

  5. Hurricanes Frances and Ivan

    Atmospheric Science Data Center

    2014-05-15

    article title:  Cloud Height Maps for Hurricanes Frances and Ivan     ... predict the intensity and amount of rainfall associated with hurricanes still requires improvement, especially on the 24 to 48 hour ...

  6. YF-17 in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Northrop Aviation YF-17 technology demonstrator aircraft in flight during a 1976 flight research program at NASA's Dryden Flight Research Center, Edwards, California. From May 27 to July 14, 1976, the Dryden Flight Research Center, Edwards, California, flew the Northrop Aviation YF-17 technology demonstrator to test the high-performance U.S. Air Force fighter at transonic speeds. The objectives of the seven-week flight test program included the study of maneuverability of this aircraft at transonic speeds and the collection of in-flight pressure data from around the afterbody of the aircraft to improve wind-tunnel predictions for future fighter aircraft. Also studied were stability and control and buffeting at high angles of attack as well as handling qualities at high load factors. Another objective of this program was to familiarize center pilots with the operation of advanced high-performance fighter aircraft. During the seven-week program, all seven of the center's test pilots were able to fly the aircraft with Gary Krier serving as project pilot. In general the pilots reported no trouble adapting to the aircraft and reported that it was easy to fly. There were no familiarization flights. All 25 research flights were full-data flights. They obtained data on afterbody pressures, vertical-fin dynamic loads, agility, pilot physiology, and infrared signatures. Average flight time was 45 minutes, although two flights involving in-flight refueling lasted approximately one hour longer than usual. Dryden Project Manager Roy Bryant considered the program a success. Center pilots felt that the aircraft was generations ahead of then current active military aircraft. Originally built for the Air Force's lightweight fighter program, the YF-17 Cobra left Dryden to support the Northrop/Navy F-18 Program. The F-18 Hornet evolved from the YF-17.

  7. Crew factors in flight operations. Part 3: The operational significance of exposure to short-haul air transport operations

    NASA Technical Reports Server (NTRS)

    Foushee, H. C.; Lauber, J. K.; Baetge, M. M.; Acomb, D. B.

    1986-01-01

    Excessive flightcrew fatigue has potentially serious safety consequences. Laboratory studies have implicated fatigue as a causal factor associated with varying levels of performance deterioration depending on the amount of fatigue and the type of measure utilized in assessing performance. These studies have been of limited utility because of the difficulty of relating laboratory task performance to the demands associated with the operation of a complex aircraft. The performance of 20 volunteer twin-jet transport crews is examined in a full-mission simulator scenario that included most aspects of an actual line operation. The scenario included both routine flight operations and an unexpected mechanical abnormality which resulted in a high level of crew workload. Half of the crews flew the simulation within two to three hours after completing a three-day, high-density, short-haul duty cycle (Post-Duty condition). The other half flew the scenario after a minimum of three days off duty (Pre-Duty) condition). The results revealed that, not surprisingly, Post-Duty crews were significantly more fatigued than Pre-Duty crews. However, a somewhat counter-intuitive pattern of results emerged on the crew performancemeasures. In general, the performance of Post-Duty crews was significantly better than that of Pre-Duty crews, as rated by an expert observer on a number of dimensions relevant to flight safety. Analyses of the flightcrew communication patterns revealed that Post-Duty crews communicated significantly more overall, suggesting, as has previous research, that communication is a good predictor of overall crew performance.

  8. France in Black Africa,

    DTIC Science & Technology

    1989-01-01

    disease and the lack of support from the metropole (mother 4 France Acquires and Adninisters an Empire country), French rule over the small...as socially 9 France in Black Africa undesirable in an officer corps still dominated by the aristocracy; they were apt to be republicans, anticler- ics ...the interior. Endemic tropical diseases like yellow fever and malaria claimed a high proportion of Europeans who attempted to live in this region up to

  9. Performance Expectations for Future Moderate Resolution Visible and Infrared Space Instruments Based on AIRS and MODIS In-Flight Experience

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Broberg, Steven E.; Aumann, Hartmut H.; Baron, Richard L.

    2004-01-01

    Lessons learned from the Atmospheric Infrared Sounder (AIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) projects highlight areas where further technology development is needed to address future land, ocean and atmospheric measurement needs. Although not established as requirements at this time, it is anticipated that scientists will expect improvements in the areas of spatial, spectral, radiometric, polarimetric, temporal and calibration performance for future sensors. This paper addresses each of these performance areas and provides lessons learned from MODIS and AIRS. We also present expectations in performance of the system based on information from NASA Instrument Incubator Program and industry reports. Tradeoffs are presented vs orbit altitude (LEO, ME0 and GEO) and provide a 'systems' perspective to future measurement concepts.

  10. CO2 isotope analyses using large air samples collected on intercontinental flights by the CARIBIC Boeing 767.

    PubMed

    Assonov, S S; Brenninkmeijer, C A M; Koeppel, C; Röckmann, T

    2009-03-01

    Analytical details for 13C and 18O isotope analyses of atmospheric CO2 in large air samples are given. The large air samples of nominally 300 L were collected during the passenger aircraft-based atmospheric chemistry research project CARIBIC and analyzed for a large number of trace gases and isotopic composition. In the laboratory, an ultra-pure and high efficiency extraction system and high-quality isotope ratio mass spectrometry were used. Because direct comparison with other laboratories was practically impossible, the extraction and measurement procedures were tested in considerable detail. Extracted CO2 was measured twice vs. two different working reference CO2 gases of different isotopic composition. The two data sets agree well and their distributions can be used to evaluate analytical errors due to isotope measurement, ion corrections, internal calibration consistency, etc. The calibration itself is based on NBS-19 and also verified using isotope analyses on pure CO2 gases (NIST Reference Materials (RMs) and NARCIS CO2 gases). The major problem encountered could be attributed to CO2-water exchange in the air sampling cylinders. This exchange decreased over the years. To exclude artefacts due to such isotopic exchange, the data were filtered to reject negative delta18O(CO2) values. Examples of the results are given.

  11. Spatial and temporal variability of CO2 fluxes at the sediment-air interface in a tidal flat of a temperate lagoon (Arcachon Bay, France)

    NASA Astrophysics Data System (ADS)

    Migné, Aline; Davoult, Dominique; Spilmont, Nicolas; Ouisse, Vincent; Boucher, Guy

    2016-03-01

    This study aimed to explore the spatial and temporal variability of benthic metabolism in a temperate mesotidal lagoon. This was achieved by measuring fluxes of CO2 in static chambers during emersion, both under light and dark conditions. Three sample sites were selected according to their tidal level (upper or mid), their sediment type (sand or mud) and the presence/absence of the seagrass Zostera noltei. The three sites were investigated at three seasons (end of winter, spring and beginning of autumn). At each site and each season, three benthic chambers were used simultaneously in successive incubations over the emersion period. The sediment chlorophyll-a content varied seasonally in the upper sands (reaching 283 mg.m- 2 in spring) but not in the mid muds (averaging 142 mg m- 2 in bare muds and 186 mg m- 2 in muds covered by seagrass). The maximum sediment CO2-uptake under light was 9.89 mmol m- 2 h- 1 in the mid-bare muds, in early autumn. The maximum sediment CO2-release under darkness was 6.97 mmol m- 2 h- 1 in the mid muds covered by seagrass, in spring. Both CO2-fluxes measured in the light and in the dark increased over periods of emersion. This increase, not related to light nor temperature variations, could be explained by changes in the amount and chemistry of pore water during the air exposure of sediments. The benthic trophic state index, based on the maximum light CO2-flux versus maximum dark CO2-flux ratio, assigned to each site at each season indicated that the sediments were net autotrophic in spring in upper sands and in mid muds covered by seagrass and highly autotrophic in other cases. The most autotrophic sediments were the mid-level bare muds whatever the season. The relevance of this index is discussed compared to carbon annual budget.

  12. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  13. The flight of Archaeopteryx.

    PubMed

    Chatterjee, Sankar; Templin, R Jack

    2003-01-01

    The origin of avian flight is often equated with the phylogeny, ecology, and flying ability of the primitive Jurassic bird, Archaeopteryx. Debate persists about whether it was a terrestrial cursor or a tree dweller. Despite broad acceptance of its arboreal life style from anatomical, phylogenetic, and ecological evidence, a new version of the cursorial model was proposed recently asserting that a running Archaeopteryx could take off from the ground using thrust and sustain flight in the air. However, Archaeopteryx lacked both the powerful flight muscles and complex wing movements necessary for ground takeoff. Here we describe a flight simulation model, which suggests that for Archaeopteryx, takeoff from a perch would have been more efficient and cost-effective than from the ground. Archaeopteryx may have made short flights between trees, utilizing a novel method of phugoid gliding.

  14. Cold wake of Hurricane Frances

    NASA Astrophysics Data System (ADS)

    D'Asaro, Eric A.; Sanford, Thomas B.; Niiler, P. Peter; Terrill, Eric J.

    2007-08-01

    An array of instruments air-deployed ahead of Hurricane Frances measured the three-dimensional, time dependent response of the ocean to this strong (60 ms-1) storm. Sea surface temperature cooled by up to 2.2°C with the greatest cooling occurring in a 50-km-wide band centered 60-85 km to the right of the track. The cooling was almost entirely due to vertical mixing, not air-sea heat fluxes. Currents of up to 1.6 ms-1 and thermocline displacements of up to 50 m dispersed as near-inertial internal waves. The heat in excess of 26°C, decreased behind the storm due primarily to horizontal advection of heat away from the storm track, with a small contribution from mixing across the 26°C isotherm. SST cooling under the storm core (0.4°C) produced a 16% decrease in air-sea heat flux implying an approximately 5 ms-1 reduction in peak winds

  15. ACAT Ground Collision Avoidance Flight Tests Over

    NASA Video Gallery

    NASA's Dryden Flight Research Center has concluded flight tests of an Automatic Ground Collision Avoidance System (Auto GCAS) under the joint U.S. Air Force/NASA F-16D Automatic Collision Avoidance...

  16. Freeing France: The Allies, the Resistance, and the JEDBURGHs

    DTIC Science & Technology

    2008-01-01

    Lendemains Qui Déchantent: Le Parti Communiste Français À La Libération ([Paris, France]: Presses de la Fondation nationale des sciences politiques ...Province À La Liberation: Les Commissaires De La République, 1943-1946, Travaux Et Recherches De Science Politique ; 32. Paris: Fondation Nationale...des Sciences Politiques , 1975. 180 Kriegsmarine headquarters in Berlin, in actual practice, commanded their air and naval forces in France so not

  17. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.

    PubMed

    Percin, M; van Oudheusden, B W; de Croon, G C H E; Remes, B

    2016-05-19

    The study investigates the aerodynamic performance and the relation between wing deformation and unsteady force generation of a flapping-wing micro air vehicle in hovering flight configuration. Different experiments were performed where fluid forces were acquired with a force sensor, while the three-dimensional wing deformation was measured with a stereo-vision system. In these measurements, time-resolved power consumption and flapping-wing kinematics were also obtained under both in-air and in-vacuum conditions. Comparison of the results for different flapping frequencies reveals different wing kinematics and deformation characteristics. The high flapping frequency case produces higher forces throughout the complete flapping cycle. Moreover, a phase difference occurs in the variation of the forces, such that the low flapping frequency case precedes the high frequency case. A similar phase lag is observed in the temporal evolution of the wing deformation characteristics, suggesting that there is a direct link between the two phenomena. A considerable camber formation occurs during stroke reversals, which is mainly determined by the stiffener orientation. The wing with the thinner surface membrane displays very similar characteristics to the baseline wing, which implies the dominance of the stiffeners in terms of providing rigidity to the wing. Wing span has a significant effect on the aerodynamic efficiency such that increasing the span length by 4 cm results in a 6% enhancement in the cycle-averaged X-force to power consumption ratio compared to the standard DelFly II wings with a span length of 28 cm.

  18. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  19. English Teaching Profile: France.

    ERIC Educational Resources Information Center

    British Council, London (England). English Language and Literature Div.

    This review of the status of English language instruction in France provides an overview of the role of English in the society in general and outlines the status of English in the educational system at the elementary, secondary, higher, and vocational levels. The following topics are covered: instruction in English for special purposes, the…

  20. France. [CME Country Reports].

    ERIC Educational Resources Information Center

    Council of Europe, Strasbourg (France). Documentation Center for Education in Europe.

    In France, the 1882 Compulsory Education Act includes both French and foreign children. Since then, the need to go further than this general principle of non-discrimination and to undertake specific action for immigrants, both adults and children, has been recognized. Since 1970, the Ministry of Education has been directly responsible for this…

  1. Urban Sociology in France.

    ERIC Educational Resources Information Center

    Amiot, Michel

    1986-01-01

    Divides the history of urban sociology in France into three periods: (1) functionalism, which lasted from 1910 until the 1960s, (2) neo-Marxist socioeconomics lasting from 1968 until 1979, and (3) anthropological approach which is still dominant. Reviews theoretical perspectives and research characteristic of each period. (JDH)

  2. Technological Elites in France.

    ERIC Educational Resources Information Center

    Trilling, Leon

    1988-01-01

    Compares the training and activity of scientists and engineers in France and the United States. Describes the French higher education system including the features and curriculum design of the "grandes ecoles." Discusses the differences in the role of government to research and development between the two nations. (YP)

  3. [Psychosocial rehabilitation in France].

    PubMed

    Vidon, Gilles

    2015-01-01

    For a long time in France, readaptation and reinsertion have been considered separately. While readaptation focuses on the way the patient "adapts again", reintegration looks at the place of the readaptation, the society or the group. Today, psychosocial rehabilitation encompasses both of these notions by taking into account the medical and social aspects.

  4. [Anesthesiologists in France].

    PubMed

    Mizuno, Ju; Hanaoka, Kazuo; Merckx, Paul; Bonneville, Claire Tae; Kavafyan, Juliette; Mantz, Jean

    2007-03-01

    We review some anesthesiologist's curriculum and demographic characteristics in France to the community of Japanese anesthesiologists. To become a certified anesthesiologist and an intensive care physician currently requires six years' medical education, passing national medical examination, and five years' special training as an intern of anesthesiology and intensive care. This educational course was started in 1984. There are 7942 certified anesthesiologists in France in 1999. The average age is 45.9 years and the ratio of female is 35.3%. Approximately two thirds of certified anesthesiologists are working in public institutions. 89% is full-time workers. More than half of certified anesthesiologists actually participate in daily intensive care practice. The number of certified anesthesiologists has been increasing gradually totaling 10,062 persons in 2005. The number of certified anesthesiologists per ten thousands general population is 1.7 persons and the corresponding ratio to all medical doctors is 4.8%. Working hours and holidays are regulated by the French Labour Law. The anaesthesiologist often works in a team with a nurse anaesthetist. The number of certified anesthesiologists in France is larger than that in Japan. Management of anesthesia in France seems to have an advantage in manpower.

  5. Technical Evaluation Report on the Guidance and Control Panel Symposium on Fault Tolerant Design Concepts for Highly Integrated Flight Critical Guidance and Control Systems (49th) Held in Toulouse, France on 10-13 October 1989

    DTIC Science & Technology

    1990-05-01

    critical concepts for low-level tactical operation with autonomous , accurate target acquisition ; the discussion is based on the close Air Support...Further discussions are the topics of paper n’ 53. On-board expert system to support aircraft diagnostics and vehicule management system to support...and environment monitoring. Session IV Paper 41 . A HIGHLY RELIABLE, AUTONOMOUS DATA COMMUNICATION SUBSYSTEM FOR AN ADVANCED INFORMATION PROCESSING

  6. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... pilot in command, a flight engineer, or a flight navigator, as applicable, in operations under this part... recurrent training, that are required to serve as a pilot in command, flight engineer, or flight...

  7. X-29 flight maneuvers

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Two X-29 aircraft, featuring one of the most unusual designs in aviation history, were flown at the NASA Dryden Flight Research Center, Edwards, Calif., as technology demonstrators to investigate a host of advanced concepts and technologies. This 30-second clip of air-to-air footage shows the X-29 as it makes hard left and right aileron turns followed up with a few barrel rolls.

  8. FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FLIGHT LINE, LOOKING TOWARD FLIGHT LINE FIRE STATION (BUILDING 2748)CENTER AND AIRCRAFT MAINTENANCE DOCKS (BUILDINGS 2741 AND 2766)LEFT. VIEW TO NORTH - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  9. [Primary care in France].

    PubMed

    Sánchez-Sagrado, T

    2016-01-01

    The poor planning of health care professionals in Spain has led to an exodus of doctors leaving the country. France is one of the chosen countries for Spanish doctors to develop their professional career. The French health care system belongs to the Bismarck model. In this model, health care system is financed jointly by workers and employers through payroll deduction. The right to health care is linked to the job, and provision of services is done by sickness-funds controlled by the Government. Primary care in France is quite different from Spanish primary care. General practitioners are independent workers who have the right to set up a practice anywhere in France. This lack of regulation has generated a great problem of "medical desertification" with problems of health care access and inequalities in health. French doctors do not want to work in rural areas or outside cities because "they are not value for money". Medical salary is linked to professional activity. The role of doctors is to give punctual care. Team work team does not exist, and coordination between primary and secondary care is lacking. Access to diagnostic tests, hospitals and specialists is unlimited. Duplicity of services, adverse events and inefficiencies are the norm. Patients can freely choose their doctor, and they have a co-payment for visits and hospital care settings. Two years training is required to become a general practitioner. After that, continuing medical education is compulsory, but it is not regulated. Although the French medical Health System was named by the WHO in 2000 as the best health care system in the world, is it not that good. While primary care in Spain has room for improvement, there is a long way for France to be like Spain.

  10. 77 FR 74355 - Approval of Air Quality Implementation Plans; California; San Joaquin Valley; Attainment Plan for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-14

    ..., 2012. FOR FURTHER INFORMATION CONTACT: Frances Wicher, Air Planning Office (AIR-2), U.S. Environmental Protection Agency, Region 9, (415) 972- 3957, wicher.frances@epa.gov . SUPPLEMENTARY INFORMATION:...

  11. Society of U.S. Air Force Surgeons’ 2010 State of the Flight Surgeon Survey: The Medical Treatment Facility Commander’s Perspective

    DTIC Science & Technology

    2010-08-01

    Do Flight Surgeons Fulfill Expectations of MDG/CCs? ..................................... 6 4 MDG/CCs’ Opinion of Clinical, Communication ...Clinical, Communication , and Leadership Skills of RAM Graduates...8 6 MDG/CCs’ Opinion of Clinical, Communication , and Leadership Skills of SGP or Sq/CC Flight Surgeons

  12. Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics

    PubMed Central

    Ortega-Jimenez, Victor M.; Sapir, Nir; Wolf, Marta; Variano, Evan A.; Dudley, Robert

    2014-01-01

    Animal fliers frequently move through a variety of perturbed flows during their daily aerial routines. However, the extent to which these perturbations influence flight control and energetic expenditure is essentially unknown. Here, we evaluate the kinematic and metabolic consequences of flight within variably sized vortex shedding flows using five Anna's hummingbirds feeding from an artificial flower in steady control flow and within vortex wakes produced behind vertical cylinders. Tests were conducted at three horizontal airspeeds (3, 6 and 9 m s−1) and using three different wake-generating cylinders (with diameters equal to 38, 77 and 173% of birds' wing length). Only minimal effects on wing and body kinematics were demonstrated for flight behind the smallest cylinder, whereas flight behind the medium-sized cylinder resulted in significant increases in the variances of wingbeat frequency, and variances of body orientation, especially at higher airspeeds. Metabolic rate was, however, unchanged relative to that of unperturbed flight. Hummingbirds flying within the vortex street behind the largest cylinder exhibited highest increases in variances of wingbeat frequency, and of body roll, pitch and yaw amplitudes at all measured airspeeds. Impressively, metabolic rate under this last condition increased by up to 25% compared with control flights. Cylinder wakes sufficiently large to interact with both wings can thus strongly affect stability in flight, eliciting compensatory kinematic changes with a consequent increase in flight metabolic costs. Our findings suggest that vortical flows frequently encountered by aerial taxa in diverse environments may impose substantial energetic costs. PMID:24671978

  13. Into turbulent air: size-dependent effects of von Kármán vortex streets on hummingbird flight kinematics and energetics.

    PubMed

    Ortega-Jimenez, Victor M; Sapir, Nir; Wolf, Marta; Variano, Evan A; Dudley, Robert

    2014-05-22

    Animal fliers frequently move through a variety of perturbed flows during their daily aerial routines. However, the extent to which these perturbations influence flight control and energetic expenditure is essentially unknown. Here, we evaluate the kinematic and metabolic consequences of flight within variably sized vortex shedding flows using five Anna's hummingbirds feeding from an artificial flower in steady control flow and within vortex wakes produced behind vertical cylinders. Tests were conducted at three horizontal airspeeds (3, 6 and 9 m s(-1)) and using three different wake-generating cylinders (with diameters equal to 38, 77 and 173% of birds' wing length). Only minimal effects on wing and body kinematics were demonstrated for flight behind the smallest cylinder, whereas flight behind the medium-sized cylinder resulted in significant increases in the variances of wingbeat frequency, and variances of body orientation, especially at higher airspeeds. Metabolic rate was, however, unchanged relative to that of unperturbed flight. Hummingbirds flying within the vortex street behind the largest cylinder exhibited highest increases in variances of wingbeat frequency, and of body roll, pitch and yaw amplitudes at all measured airspeeds. Impressively, metabolic rate under this last condition increased by up to 25% compared with control flights. Cylinder wakes sufficiently large to interact with both wings can thus strongly affect stability in flight, eliciting compensatory kinematic changes with a consequent increase in flight metabolic costs. Our findings suggest that vortical flows frequently encountered by aerial taxa in diverse environments may impose substantial energetic costs.

  14. Enhanced Flight Termination System Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2007-01-01

    This paper discusses the methodology, requirements, tests, and implementation plan for the live demonstration of the Enhanced Flight Termination System (EFTS) using a missile program at two locations in Florida: Eglin Air Force Base (AFB) and Tyndall AFB. The demonstration included the integration of EFTS Flight Termination Receivers (FTRs) onto the missile and the integration of EFTS-program-developed transmitter assets with the mission control system at Eglin and Tyndall AFBs. The initial test stages included ground testing and captive-carry flights, followed by a launch in which EFTS was designated as the primary flight termination system for the launch.

  15. Electronic Nose Functionality for Breath Gas Analysis during Parabolic Flight

    NASA Astrophysics Data System (ADS)

    Dolch, Michael E.; Hummel, Thomas; Fetter, Viktor; Helwig, Andreas; Lenic, Joachim; Moukhamedieva, Lana; Tsarkow, Dimitrij; Chouker, Alexander; Schelling, Gustav

    2017-02-01

    The presence of humans in space represents a constant threat for their health and safety. Environmental factors such as living in a closed confinement, as well as exposure to microgravity and radiation, are associated with significant changes in bone metabolism, muscular atrophy, and altered immune response, which has impacts on human performance and possibly results in severe illness. Thus, maintaining and monitoring of crew health status has the highest priority to ensure whole mission success. With manned deep space missions to moon or mars appearing at the horizon where short-term repatriation back to earth is impossible the availability of appropriate diagnostic platforms for crew health status is urgently needed. In response to this need, the present experiment evaluated the functionality and practicability of a metal oxide based sensor system (eNose) together with a newly developed breath gas collecting device under the condition of altering acceleration. Parabolic flights were performed with an Airbus A300 ZeroG at Bordeaux, France. Ambient air and exhaled breath of five healthy volunteers was analyzed during steady state flight and parabolic flight maneuvres. All volunteers completed the study, the breath gas collecting device valves worked appropriately, and breathing through the collecting device was easy and did not induce discomfort. During breath gas measurements, significant changes in metal oxide sensors, mainly sensitive to aromatic and sulphur containing compounds, were observed with alternating conditions of acceleration. Similarly, metal oxide sensors showed significant changes in all sensors during ambient air measurements. The eNose as well as the newly developed breath gas collecting device, showed appropriate functionality and practicability during alternating conditions of acceleration which is a prerequisite for the intended use of the eNose aboard the International Space Station (ISS) for breath gas analysis and crew health status

  16. 14 CFR 93.323 - Flight plans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Standards District Office Grand Canyon National Park Special Flight Rules Area Procedures Manual” which is... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial...

  17. 14 CFR 93.323 - Flight plans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Standards District Office Grand Canyon National Park Special Flight Rules Area Procedures Manual” which is... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial...

  18. 14 CFR 93.323 - Flight plans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Standards District Office Grand Canyon National Park Special Flight Rules Area Procedures Manual” which is... AND GENERAL OPERATING RULES SPECIAL AIR TRAFFIC RULES Special Flight Rules in the Vicinity of Grand Canyon National Park, AZ § 93.323 Flight plans. Each certificate holder conducting a commercial...

  19. Possible application of the Environmental Relative Moldiness Index in France: A pilot study in Brittany

    EPA Science Inventory

    Our goal was to determine if the US Environmental Relative Moldiness Index (ERMI) scale might have application in France. Twenty homes in Brittany, north western region of France were classified by inspection as “Moldy” or “Non-Moldy”. Dust and air samples were collected (MiTest ...

  20. European security and France

    SciTech Connect

    deRose, A.

    1985-01-01

    A French authority on security argues for new European initiatives in the face of the ''danger represented by Soviet military power deployed in support of an imperialistic ideology.'' His proposals, including the strengthening of conventional forces without abandoning the option of the first use of nuclear weapons, are meant to give substance to President Mitterrand's declaration in 1983: ''The European nations now need to realize that their defense is also their responsibility....'' A part of the increasingly important debate in France over defense policy in Europe.

  1. Medical assistance during commercial airline flights: analysis of 11 years experience of the Paris Emergency Medical Service (SAMU) between 1989 and 1999.

    PubMed

    Szmajer, M; Rodriguez, P; Sauval, P; Charetteur, M P; Derossi, A; Carli, P

    2001-08-01

    Emergencies arising during commercial airline flights may have serious consequences. We report the experience of the Paris Emergency Medical Service (SAMU) in providing in-flight assistance to Air France between 1989 and 1999. During this period medical advice was sought 380 times during the carriage of about 350 million passengers. Analysis of the patient files suggests that serious emergencies were rare and that cardiopulmonary resuscitation was required only exceptionally. However the relative frequency of cardiac and neurological emergencies in our analysis supports the necessity of carrying adequate medical equipment and of having direct access to expert medical advice. The results suggest the requirement for a rigorous prospective epidemiological study of in-flight emergencies to evaluate the effectiveness of current practice and possible modifications of equipment and protocols for patient management.

  2. Flight. Science Series Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    Frensch, Helen

    The activities in this book are designed to reinforce the elementary concepts of flight. General background information, suggested activities, questions for discussion, and answers are provided. Twenty-eight reproducible worksheets are contained in this guide. Topics include: hot air balloons, the physics of flight, air resistance, airplane…

  3. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  4. Battle of France WWII

    NASA Astrophysics Data System (ADS)

    Gadhath, Arpitha Rao

    The purpose of this thesis is to build an interactive Geographical Information System (GIS) tool, relating to the series of events that occurred during the Battle of France World War II. The tool gives us an insight about the countries involved in the battle, their allies and their strategies. This tool was created to use it as a one stop source of information regarding all the important battles that took place, which lead to the fall of France. The tool brings together the maps of all the countries involved. Integrated with each map is the data relevant to that map. The data for each country includes the place of attack, the strategies used during the attack, and the kind of warfare. The tool also makes use of HTML files to give all the information, along with the images from the time of the war and a footage which explains everything about the particular battle. The tool was build using JAVA, along with the use of MOJO (Map Objects Java Objects) to develop Maps of each of the countries. MOJO is developed by ESRI (Environmental Science Research Institute) which makes it easier to add data to the maps. It also makes highlighting important information easier making use of pop-up windows, charts and infographics. HTML files were designed making use of the open-source template developed by Bootstrap. The tool is built in such a way that the interface is simple and easy for the user to use and understand.

  5. Legionnaires' disease in France.

    PubMed

    Campèse, C; Descours, G; Lepoutre, A; Beraud, L; Maine, C; Che, D; Jarraud, S

    2015-03-01

    The aim of this review was to describe the current knowledge of Legionnaires' disease (LD) illustrated by the epidemiological situation in France in 2013. LD is a severe pneumonia commonly caused by Legionella pneumophila serogroup 1. The diagnosis is usually based on the urinary antigen test. This rapid method reduces the delay between clinical suspicion and initiation of an appropriate treatment. However, the availability of a clinical strain is important to improve knowledge of circulating bacteria, to document case clusters, and to identify the sources of contamination. The source of contamination is unknown in most cases. The main contamination sources generating aerosols are water network systems and cooling towers. Thanks to the strengthening of clinical and environmental monitoring and to several guidelines, no epidemic has been reported in France since 2006. Despite these efforts, the number of LD cases has not decreased in recent years. It is essential that applied research continue to better understand the spatial and temporal dynamics of the disease and its characteristics (impact of environmental factors, sources of exposure, strains, host, etc.). Fundamental knowledge has been greatly improved (pathogenesis, immune mechanisms, etc.). The results of this research should help define new strategies for the diagnosis, prevention, and control to decrease the number of LD cases diagnosed every year.

  6. Measurements of stratospheric trace gases by a balloon-borne infrared spectrometer in France

    NASA Astrophysics Data System (ADS)

    Jarisch, M.; Offermann, D.; Riese, M.; Wuebbels, D. J.

    1997-09-01

    A helium cooled balloon-borne infrared spectrometer was launched twice from Aire sur l'Adour (France; 44°N, 0°E) on 23 September 1983 and 4 May 1986. The experiment used the limb scan technique to measure mixing ratios of the stratospheric trace gases H2O, O3, N2O, NO2, CH4, HNO3 and N2O5 prior to, during, and after sunrise. The first flight was performed as part of the international MAP/Globus (Middle Atmosphere Program/Global Budget of Stratospheric Trace Constituents) campaign. The height profiles obtained during both flights are presented and compared here with data from other experiments. The ozone measurements are compared with in situ measurements taken by electrochemical Brewer/Mast sondes. N2O5 mixing ratios were deduced from predawn measurements. A maximum value of 1.6 ppbv was obtained for a tangent height of 33.7 km. The N2O5 height profile is found to be in good agreement with observations obtained by other experiments, indicating little latitudinal variation at sunrise. The height profile appears to be representative of an atmosphere with background aerosol levels.

  7. International Reports on Literacy Research: Argentina, Mexico, France

    ERIC Educational Resources Information Center

    Malloy, Jacquelynn A., Comp.; Mallozzi, Christine, Comp.

    2007-01-01

    This is a compilation of reports on international literacy research. The report includes 3 separate reports on Argentina, Mexico, and France. In the first report, Melina Porto reports on a new implementation of a teacher-education program currently underway in the province of Buenos Aires, Argentina, under the leadership of teacher-researcher…

  8. Flight evaluation: Ohio University omega receiver base

    NASA Technical Reports Server (NTRS)

    Chamberlin, K. A.; Lilley, R. W.; Salter, R. J.

    1974-01-01

    A flight evaluation is presented of the Ohio University Omega Receiver Base, developed under the NASA Tri-University Program in Air Transportation, to provide a vehicle for the transfer of flight-test data to NASA and to other participants in the Tri-University program. Chart recordings of flight data are given, along with chronological listings of significant events which occurred during the flight. Digital data was prepared in data-processing card form for distribution. Data include phase measurements from all eight Omega time-slots for the duration of the flight, plus event marks which serve to correlate the phase data with flight-path documentation.

  9. Women in physics in France

    SciTech Connect

    Pierron-Bohnes, Véronique

    2015-12-31

    We present six associations and entities working in France on issues of women in physics: the Women and Physics Commission, French Physical Society; Women in Nuclear (WiN) France; Women and Science Association; Mission for the Place of Women at CNRS; Parity, Diversity, and Women Network, CEA; and the Network of University Equality-Diversity Representatives.

  10. France acts on electronic cigarettes.

    PubMed

    Cahn, Zachary

    2013-11-01

    France is deciding how to regulate electronic cigarettes. I first consider the French approach and how it contrasts with other attempts at electronic cigarette regulation globally. Next, I critique the individual elements of the French proposal. The overall approach taken by France is a positive development, but banning indoor use appears unnecessary and banning advertising may be counterproductive.

  11. Final Environmental Assessment (EA) for Modification of Airspace Units R-3008A/B/C from Visual Flight Rules (VFR) to VFR-Instrument Flight Rules (IFR) at Moody Air Force Base, Georgia

    DTIC Science & Technology

    2015-09-30

    3-6 Table 3-2. Recent Bird Strike History for Moody AFB Aircraft (2004 to 2013)a...APE Area of Potential Effects ATC air traffic control ATIS Automated Terminal Information Service BASH bird /wildlife-aircraft strike hazard BGEPA...Bald and Golden Eagle Protection Act BWC bird watch condition C.F.R. Code of Federal Regulations CAA Clean Air Act CEQ Council on Environmental

  12. Becoming a flight surgeon.

    PubMed

    Gallé-Tessonneau, J R

    1988-12-01

    This text is the inaugural lesson given by the Professor of Aeronautic Psychiatry and starts the training period for new flight surgeons in the French Air Force. Introducing the French Air Force Medicine Training Session, the author speaks about the psychological aspects in aviation medicine. Three points of pilots' psychology are developed: 1) the pilot's body as the source of intense sensations and as an object of important value; 2) the libidinal, narcissistic, and defensive aspects of the pilot's spirit; and 3) the pilot's environment with its characteristic relationships. These facts influence the medical approach and modify the physician-pilot relationship. The flight surgeon must pay attention and get ready for this specific practice.

  13. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... rating required to serve as a pilot in command, a flight engineer, or a flight navigator, as applicable... engineer, or flight navigator, as applicable, in operations under this part; (3) Has...

  14. 14 CFR 121.412 - Qualifications: Flight instructors (airplane) and flight instructors (simulator).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... rating required to serve as a pilot in command, a flight engineer, or a flight navigator, as applicable... engineer, or flight navigator, as applicable, in operations under this part; (3) Has...

  15. Hypersonic Flight: Time To Go Operational

    DTIC Science & Technology

    2013-02-14

    AIR WAR COLLEGE AIR UNIVERSITY HYPERSONIC FLIGHT: TIME TO GO OPERATIONAL by Robert A. Dietrick, Lt Col, USAF A Research Report...threats are increasing and could jeopardize the ability of the US Air Force to effectively conduct global strike by 2032. Scramjet powered hypersonic ...flight could be a key capability by reducing time to strike and increasing survivability. Historically, the key challenges preventing hypersonic

  16. Digital Flight Control System Redundancy Study

    DTIC Science & Technology

    1974-07-01

    microseconds to transfer the data to a memory location on DMA, 2 274 4P4 275 or to an accumulator if under program control. While it is possible, in principle ...March, 1973, to May, 1974, by the Flight Systems Division of The Bendix Corporation, Teterboro, New Jersey under Air Force Contract No. 333615-73-C...3035 AFFDL. The work was administered under the direction of the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio, 45433, by

  17. Validation of Flight Critical Control Systems

    DTIC Science & Technology

    1991-12-01

    Operations and Control System ADIRS Air Data & Inertial Reference Systems AFB Air Force Base AFTI Advanced Fighter Technology Integration AGARD Advisory...redundancy is employed at the aircraft effector plane. The objective is to generate forces and moments about some control axis, in the case of failure of...Flight Control System", Proceedings of the United States Air Force Academy Advanced Flight Controls Symposium, 198 1. 2-13 2 fFlapper, J.A., and

  18. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  19. [Nurse anesthetist in France].

    PubMed

    Mizuno, Ju; Yann, Douchy; De Almeida, Sylvie; Deckert, Christine; Gauss, Tobias; Bonneville, Claire Tae; Merckx, Paul; Mantz, Jean

    2006-12-01

    We present the system of nurse anesthetist (Infirmier Anesthésiste Diplômé d'Etat: IADE) in France to the community of Japanese anesthesiologists. This French system with 70 years' history is older than the Japan Society of Anesthesiologists itself. There are 7000 nurse anesthetists in France now and the number of nurse anesthetists increases by 450-500 each year. Training to become a nurse anesthetist requires at least two years' experience as a general nurse and the general nurse must pass an examination after two years' special training in an anesthetistic nurse school to acquire the national certification. The nurse anesthetist's profession is regulated by French law. They work in a team with certified anesthesiologists. They can perform many kinds of anesthetic tasks including tracheal intubation and insertion of arterial catheter under the responsibility and supervision of certified anesthesiologists. The nurse anesthetists are not allowed to perform spinal, epidural, conduction and local anesthesia, although they can maintain these anesthesia and control these methods, e.g., by injecting local anesthetic agents through epidural catheter, following a specified prescription. The nurse anesthetists are not allowed to insert central venous and pulmonary artery catheters, although they can manage them. They are allowed to administer inhalation anesthetic agents, and inject venous anesthetic agents, muscle relaxants, their antagonists, and opioids by their own initiatives, but the decision for the use of catecholamine and emergency drugs is reserved to certified anesthesiologists. The nurse anesthetists perform other tasks preparing and checking anesthetic agents and equipment such as anesthetic machine, monitor, and defibrillator everyday, and sometimes use autologous blood recovery systems. The relationship between the certified anesthesiologist and the nurse anesthetist is marked by mutual respect, confidence and cooperation at each step of the anesthetic

  20. NASA's Shuttle Carrier Aircraft 911's Final Flight

    NASA Video Gallery

    NASA 911, one of NASA's two modified Boeing 747 space shuttle carrier aircraft, flew its final flight Feb. 8, a short hop from NASA's Dryden Flight Research Center at Edwards Air Force Base to the ...

  1. Spacewedge #1 in Flight

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A Spacewedge subscale model, built to help develop potential autonomous recovery systems for spacecraft as well as methods for delivering large Army cargo loads to precision landings, maneuvers through the air under its steerable parafoil during 1992 flight testing. From October 1991 to December 1996, NASA Ames-Dryden Flight Research Facility (after 1994, the Dryden Flight Research Center, Edwards, California) conducted a research program know as the Spacecraft Autoland Project. This Project was designed to determine the feasibility of the autonomous recovery of a spacecraft using a ram-air parafoil system for the final stages of flight, including a precision landing. The Johnson Space Center and the U.S. Army participated in various phases of the program. The Charles Stark Draper Laboratory developed the software for Wedge 3 under contract to the Army. Four generic spacecraft (each called a Spacewedge or simply a Wedge) were built; the last one was built to test the feasibility of a parafoil for delivering Army cargoes. Technology developed during this program has applications for future spacecraft recovery systems, such as the X-38 Crew Return Vehicle demonstrator. The Spacewedge program demonstrated precision flare and landing into the wind at a predetermined location. The program showed that a flexible, deployable system using autonomous navigation and landing was a viable and practical way to recover spacecraft. NASA researchers conducted flight tests of the Spacewedge at three sites near Dryden, a hillside near Tehachapi, the Rogers Dry Lakebed at Edwards Air Force Base, and the California City Airport Drop Zone. During the first phase of testing 36 flights were made. Phase II consisted of 45 flights using a smaller parafoil. A third Phase of 34 flights was conducted primarily by the Army and resulted in the development of an Army guidance system for precision offset cargo delivery. The wedge used during the Army phase was not called a Spacewedge but simply a

  2. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  3. Perseus Post-flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown

  4. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    developed as part of NASA's Small High-Altitude Science Aircraft (SHASA) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the

  5. The "Casa" of Sevres, France.

    ERIC Educational Resources Information Center

    Waltuch, Margot

    1996-01-01

    Discusses the author's teaching experiences during the 1930s at "La Maison des Enfants," a Montessori school in Sevres, France. Provides photographs and descriptions of the school day, outdoor activities, gardening, cooking and eating, practical activities, and creative activities. (MDM)

  6. Perseus in Flight

    NASA Technical Reports Server (NTRS)

    1991-01-01

    ) program, which later evolved into the ERAST project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the

  7. XV-15 in flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The XV-15 Tilt-Rotor aircraft was designed by Bell Aircraft, Niagara Falls, New York, in the mid-1970's under a contract with NASA and the U.S. Army. It was capable of taking off and landing vertically like a helicopter and of flying horizontally when its 'prop rotors' were rotated forward and downward. NASA Ames Research Center, Mountain View, California, and the Army Air Mobility Laboratory cooperated in a program to obtain two of the aircraft for flight research. The first aircraft arrived at Ames on March 23, 1978. After wind-tunnel testing in the Ames 40-by-80-foot wind tunnel, the aircraft began its contractor flight tests at Ames on April 23, 1979. Bell, Army, and U.S. Marine pilots flew it on 140 separate missions over the next year before turning the aircraft over to Ames. That center, in turn, chose to perform the initial flight research at the Dryden Flight Research Center, Edwards, California, where aircraft Number 2 began flight research with Dryden pilots on October 3, 1980, followed by aircraft Number 1 (previously the wind-tunnel model) the following year. Service pilots continued to fly the aircraft, including missions at Fort Huachuca, Arizona, and aboard the Navy USS Tripoli. Ames pilots also flew the XV-15 extensively during its lengthy period of flight research. The Ames flight research team finally returned aircraft Number 2 to Bell Helicopter in April 1994. The successful flight research with the XV-15, spearheaded by the team at Ames, led to the military V-22 Osprey and to the possibility of using tilt-rotor aircraft as a solution to the problem of crowded airports and highways. The XV-15 weighed 9,076 pounds empty and measured slightly more than 46 feet in length. The distance from the ground to the top of the tail was nearly 13 feet, and the span of its forward-swept wings was about 32 feet. It featured two three-bladed rotors, each measuring 25 feet in diameter. This movie clip runs about 49 seconds showing the XV-15 aircraft turning and

  8. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  9. YF-12 in flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An

  10. Flight Investigation of the Cooling Characteristics of a Two-Row Radial Engine Installation. 2 - Cooling-Air Pressure Recovery and Pressure Distribution

    DTIC Science & Technology

    1946-07-01

    I 1 n ^ £ Ä ̂ N i - 1 \\ ̂ =J r i > 0 • W Air flo 8 7 1 »H pN ;> ^ fefe * r^ IS & ̂ s I 6 y ^r 5 y. < 1 ** >—< £r... fefe |^S? 2 4 6 8 10 12 14 10 18 Cylinder, front row (a) Cyl inder-head pressure». Air flow j^bb£=L£W —ik

  11. In-flight Medical Emergencies

    PubMed Central

    Chandra, Amit; Conry, Shauna

    2013-01-01

    Introduction: Research and data regarding in-flight medical emergencies during commercial air travel are lacking. Although volunteer medical professionals are often called upon to assist, there are no guidelines or best practices to guide their actions. This paper reviews the literature quantifying and categorizing in-flight medical incidents, discusses the unique challenges posed by the in-flight environment, evaluates the legal aspects of volunteering to provide care, and suggests an approach to managing specific conditions at 30,000 feet. Methods: We conducted a MEDLINE search using search terms relevant to aviation medical emergencies and flight physiology. The reference lists of selected articles were reviewed to identify additional studies. Results: While incidence studies were limited by data availability, syncope, gastrointestinal upset, and respiratory complaints were among the most common medical events reported. Chest pain and cardiovascular events were commonly associated with flight diversion. Conclusion: When in-flight medical emergencies occur, volunteer physicians should have knowledge about the most common in-flight medical incidents, know what is available in on-board emergency medical kits, coordinate their therapy with the flight crew and remote resources, and provide care within their scope of practice. PMID:24106549

  12. Advanced Metallic Air Vehicle Structure Program

    DTIC Science & Technology

    1976-08-01

    Patterson Air Force Base , Ohio 45433. AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND Best...Available Copy WRIGHT-PATTERSON AIR FORCE BASE , OHIO 45433 THIS DOCUMENT CONTAINED C) BLANK PAGES THAT HAVE 0 3 BEEN DELETED 9 NOTICES When Government...December 1975. Other requests for this document must be referred to Air Force Flight Dynamics Laboratory (FB-A), Wright-Patterson Air Force Base , Ohio

  13. Flight Termination Criteria

    NASA Astrophysics Data System (ADS)

    Haber, Jerold M.; Larson, Erik

    2013-09-01

    The first line of defense in protecting the public against the threat of injury from a failing space booster is the flight termination system. Consequently, these systems must be highly reliable and the criteria for flight termination must be carefully formulated. Criteria must be developed based on observable data that allows adequate time for the data to be assessed and a flight termination action to be triggered. Criteria should be set so that 1) the chance a good vehicle will be terminated is small, 2) the chance of failing to terminate an errant vehicle before it can hazard population centers or valuable assets is minimal, and 3) there is assurance that the combination of the planned trajectory and mission rules do not induce excessive risks to land based populations, air lanes, and shipping lanes should the vehicle need to be terminated [1].This paper provides an overview of the approaches to developing and implement flight termination criteria and a tool for understanding risk implications of proposed criteria.

  14. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  15. F-104 in flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    F-104G N826NA during a 1993 flight over the Mojave desert, outfitted with an experiment pylon under the center fuselage and wing racks. The F-104 was originally designed by Kelly Johnson of the Lockheed Skunk Works as a day fighter. The aircraft soon proved ideal for both research and training. For instance, a modified F-104 tested the reaction control jets for the X-15. The F-104's short wings and low lift to drag ratio made it ideal to simulate the X-15 landing profile, which the F-104s often undertook before X-15 flights in order to acquaint pilots with the rocket plane's landing characteristics. This training role continued with the lifting bodies. NASA F-104s were also used for high-speed research after the X-1E was retired. Finally, the F-104s were also used as chase planes for research missions. The F-104G was a late model designed as a fighter bomber for low-level strike missions. It was built for use by the West German Air Force and other foreign governments. N826NA accomplished a wide-range of research activities, including tests of the Space Shuttle's Thermal Protection System (TPS) tiles. The aircraft made 1,415 flights before being retired. It is now on display at the Dryden Flight Research Center.

  16. Flight Simulation.

    DTIC Science & Technology

    1986-09-01

    PROCEEDINGS No.408 Flight Simulation DTIC !ELECTE NOVO505s ’ D -J DISTRIBUTION AND AVAILABILITY I I •k i nimy fle-"-- THE MISSION OF AGARI) The mission of...recherche. Ie d ~veloppement et lentrainement. Les objectifs du symposium de la commmission m~canique de vol de L’AGARD 6taient de fournir une description...tttbution Availjbiily CcodeS AvailI a.- d or Dist Spe~cial FLIGHT MECHANICS PANEL OFFICERS Chairman: Dr Ing. P.Hamcl Deputy Chairman: Dr Ing. A.Filisetti

  17. Origin and prevention of airport malaria in France.

    PubMed

    Guillet, P; Germain, M C; Giacomini, T; Chandre, F; Akogbeto, M; Faye, O; Kone, A; Manga, L; Mouchet, J

    1998-09-01

    Since 1969, 63 cases of airport malaria have been reported in Western Europe, 24 of which occurred in France. Most were due to Plasmodium falciparum. In 1994, 7 cases occurred in and around Roissy Charles de Gaulle airport (CDG), showing 4 types of contamination: among employees working on airstrips or opening containers, among residents living near the airport, among people living at some distance from the airport after a secondary transport of vectors, and by vectors transported in luggage. In-flight or stop-over infection is not considered as airport malaria. The infective anophelines originated from airports where malaria transmission occurs, mostly in subsaharan Africa. A tentative list is given taking into account aerial traffic with France. Surveys in the airports of Dakar (Senegal), Cotonou (Benin), Abidjan (Cote d'Ivoire) and Yaoundé (Cameroun) found potential vectors in all of these from July to September. After 1994, the Contrôle Sanitaire aux Frontières (CSF) in charge at CDG concentrated its efforts on the flights at risk, as well as information and sensitization of airline companies, which resulted in 73% and 87% of the flights at risk being properly disinsected in 1995 and 1996. Despite pyrethroid resistance in Anopheles gambiae s.s. in West Africa, the efficacy of aircraft spraying with permethrin aerosols is still acceptable. However, surveillance of resistance should be improved and search for nonpyrethroid insecticides suitable for aircraft strongly encouraged.

  18. 14 CFR 91.151 - Fuel requirements for flight in VFR conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Fuel requirements for flight in VFR... TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules Visual Flight Rules § 91.151 Fuel requirements for flight in VFR conditions. (a) No person...

  19. Flight test results of an automatic support system on board a YF-12A airplane. [for jet engine inlet air control

    NASA Technical Reports Server (NTRS)

    Love, J. E.

    1974-01-01

    An automatic support system concept that isolated faults in an existing nonavionics subsystem was flight tested up to a Mach number of 3. The adaptation of the automated support concept to an existing system (the jet engine automatic inlet control system) caused most of the problems one would expect to encounter in other applications. These problems and their solutions are discussed. Criteria for integrating automatic support into the initial design of new subsystems are included in the paper. Cost effectiveness resulted from both the low maintenance of the automated system and the man-hour saving resulting from the real time diagnosis of the monitored subsystem.

  20. Validation of DSMC results for chemically nonequilibrium air flows against measurements of the electron number density in RAM-C II flight experiment

    SciTech Connect

    Shevyrin, Alexander A.; Vashchenkov, Pavel V.; Bondar, Yevgeniy A.; Ivanov, Mikhail S.

    2014-12-09

    An ionized flow around the RAM C-II vehicle in the range of altitudes from 73 to 81 km is studied by the Direct Simulation Monte Carlo (DSMC) method with three models of chemical reactions. It is demonstrated that vibration favoring in reactions of dissociation of neutral molecules affects significantly the predicted values of plasma density in the shock layer, and good agreement between the results of experiments and DSMC computations can be achieved in terms of the plasma density as a function of the flight altitude.

  1. Flight Test Experiments Foreseen for USV

    DTIC Science & Technology

    2005-10-01

    RTO-EN-AVT-130 Russo, G. (2007) Flight Test Experiments Foreseen for USV. In Flig Educational Notes RTO-EN-AVT-130, Paper 12 . Neuilly-sur-Seine...Manager CH Project Manager 12 - 1 ht Experiments for Hypersonic Vehicle Development (pp. 12 -1 – 12 -38). France: RTO. Available from: http... 12 . DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES See also ADM002057., The

  2. SR-71 Blackbird Refueling in Flight

    NASA Video Gallery

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  3. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Glascoff, W. G., III

    The textbook provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of properties of the atmosphere. How different…

  4. Theory of Aircraft Flight. Aerospace Education II.

    ERIC Educational Resources Information Center

    Elmer, James D.

    This revised textbook, one in the Aerospace Education II series, provides answers to many questions related to airplanes and properties of air flight. The first chapter provides a description of aerodynamic forces and deals with concepts such as acceleration, velocity, and forces of flight. The second chapter is devoted to the discussion of…

  5. High Flight. Aerospace Activities, K-12.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Education, Oklahoma City.

    Following discussions of Oklahoma aerospace history and the history of flight, interdisciplinary aerospace activities are presented. Each activity includes title, concept fostered, purpose, list of materials needed, and procedure(s). Topics include planets, the solar system, rockets, airplanes, air travel, space exploration, principles of flight,…

  6. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  7. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  8. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  9. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  10. 14 CFR 121.387 - Flight engineer.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight engineer. 121.387 Section 121.387 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Airman and Crewmember Requirements § 121.387 Flight engineer....

  11. National Emission Standards for Hazardous Air Pollutants (NESHAP) Memorandum of Agreement (MOA) Between NASA Headquarters and MSFC (Marshall Space Flight Center) for NASA Principal Center for Review of Clean Air Regulations

    NASA Technical Reports Server (NTRS)

    Caruso, Salvadore V.; Clark-Ingram, Marceia A.

    2000-01-01

    This paper presents a memorandum of agreement on Clean Air Regulations. NASA headquarters (code JE and code M) has asked MSFC to serve as principle center for review of Clean Air Act (CAA) regulations. The purpose of the principle center is to provide centralized support to NASA headquarters for the management and leadership of NASA's CAA regulation review process and to identify the potential impact of proposed CAA reguations on NASA program hardware and supporting facilities. The materials and processes utilized in the manufacture of NASA's programmatic hardware contain HAPs (Hazardous Air Pollutants), VOCs (Volatile Organic Compounds), and ODC (Ozone Depleting Chemicals). This paper is presented in viewgraph form.

  12. Beginning of Viniculture in France

    NASA Technical Reports Server (NTRS)

    McGovern, Patrick E.; Luley, Benjamin P.; Rovira, Nuria; Mirzoian, Armen; Callahan, Michael P.; Smith, Karen F.; Hall, Gretchen R.; Davidson, Theodore; Henkin, Joshua M.

    2013-01-01

    Chemical analyses of ancient organic compounds absorbed into the pottery fabrics of imported Etruscan amphoras (ca. 500-475 B.C.) and into a limestone pressing platform (ca. 425-400 B.C.) at the ancient coastal port site of Lattara in southern France provide the earliest biomolecular archaeological evidence for grape wine and viniculture from this country, which is crucial to the later history of wine in Europe and the rest of the world. The data support the hypothesis that export of wine by ship from Etruria in central Italy to southern Mediterranean France fueled an ever-growing market and interest in wine there, which, in turn, as evidenced by the winepress, led to transplantation of the Eurasian grapevine and the beginning of a Celtic industry in France. Herbal and pine resin additives to the Etruscan wine point to the medicinal role of wine in antiquity, as well as a means of preserving it during marine transport.

  13. Beginning of viniculture in France.

    PubMed

    McGovern, Patrick E; Luley, Benjamin P; Rovira, Nuria; Mirzoian, Armen; Callahan, Michael P; Smith, Karen E; Hall, Gretchen R; Davidson, Theodore; Henkin, Joshua M

    2013-06-18

    Chemical analyses of ancient organic compounds absorbed into the pottery fabrics of imported Etruscan amphoras (ca. 500-475 B.C.) and into a limestone pressing platform (ca. 425-400 B.C.) at the ancient coastal port site of Lattara in southern France provide the earliest biomolecular archaeological evidence for grape wine and viniculture from this country, which is crucial to the later history of wine in Europe and the rest of the world. The data support the hypothesis that export of wine by ship from Etruria in central Italy to southern Mediterranean France fueled an ever-growing market and interest in wine there, which, in turn, as evidenced by the winepress, led to transplantation of the Eurasian grapevine and the beginning of a Celtic industry in France. Herbal and pine resin additives to the Etruscan wine point to the medicinal role of wine in antiquity, as well as a means of preserving it during marine transport.

  14. Commander Naval Air Forces (CNAF) Flight Hour Program: Budgeting and Execution Response to the Implementation of the Fleet Response Plan and OP-20 Pricing Model Changes

    DTIC Science & Technology

    2005-06-01

    explanations. If over spending is severe, the manager 69 Pappalardo , Joe, "Keeping Up the Fleet," National Defense, January 2005, http...Air Forces Pacific (CNAP) FHP Underfunding. Masters Thesis. Naval Postgraduate School, Monterey, California, December 1998. 69 Pappalardo , Joe

  15. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  16. F-16XL ship #1 (#849) takes off for first flight of the Digital Flight Control System (DFCS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The F-16XL #1 (NASA 849) takes off for the first flight of the Digital Flight Control System (DFCS) on December 16, 1997. Like most first flight, the DFCS required months of preparations. During July 1997, crews worked on the engine, cockpit, canopy, seat, and instrumentation. By late August, the aircraft began combined systems tests and a flight readiness review. Although the Air Force Safety Review Board (AFSRB)- a group that provided double checks on all flight operations - approved the program in late November 1997, a problem with the aircraft flight computer delayed the functional check flight until mid-December.

  17. Theoretical nitric oxide production incidental to autoignition and combustion of several fuels homogeneously dispersed in air under some typical hypersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1974-01-01

    A reaction package of 100 chemical reactions and attendant reaction rate constants defined for the autoignition and combustion of four carbonaceous fuels, CH4, CH3OH, C2H6, and C2H5OH. Definition of the package was made primarily by means of comparison between trial calculations and experimental data for the autoignition of CH4. Autoignition and combustion of each of these four fuels was calculated under three sets of conditions realistic for hypersonic flight applications, for comparison to hydrogen fuel, particularly with respect to formation of nitric oxide. Results show that, for all of the fuels including hydrogen, if NO production is a significant problem, compromise must be made between approaching equilibrium heat release and approaching equilibrium NO concentration.

  18. Weather Requirements and Procedures for Step 1: High Altitude Long Endurance (HALE) Unmanned Aircraft System (UAS) Flight Operations in the National Air Space (NAS)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This cover sheet is for version 2 of the weather requirements document along with Appendix A. The purpose of the requirements document was to identify and to list the weather functional requirements needed to achieve the Access 5 vision of "operating High Altitude, Long Endurance (HALE) Unmanned Aircraft Systems (UAS) routinely, safely, and reliably in the National Airspace System (NAS) for Step 1." A discussion of the Federal Aviation Administration (FAA) references and related policies, procedures, and standards is provided as basis for the recommendations supported within this document. Additional procedures and reference documentation related to weather functional requirements is also provided for background. The functional requirements and related information are to be proposed to the FAA and various standards organizations for consideration and approval. The appendix was designed to show that sources of flight weather information are readily available to UAS pilots conducting missions in the NAS. All weather information for this presentation was obtained from the public internet.

  19. Pyemotes ventricosus Dermatitis, Southeastern France

    PubMed Central

    Blanc-Amrane, Véronique; Bahadoran, Philippe; Caumes, Eric; Marty, Pierre; Lazar, Mariléna; Boissy, Christian; Desruelles, François; Izri, Arezki; Ortonne, Jean-Paul; Counillon, Evelyne; Chosidow, Olivier; Delaunay, Pascal

    2008-01-01

    We investigated 42 patients who had unusual pruritic dermatitis associated with a specific clinical sign (comet sign) in 23 houses in southeastern France from May through September 2007. Pyemotes ventricosus, a parasite of the furniture beetle Anobium punctatum, was the cause of this condition. PMID:18976564

  20. 14 CFR 91.153 - VFR flight plan: Information required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false VFR flight plan: Information required. 91.153 Section 91.153 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules...

  1. 14 CFR 91.515 - Flight altitude rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Flight altitude rules. 91.515 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Large and Turbine-Powered Multiengine Airplanes and Fractional Ownership Program Aircraft § 91.515 Flight altitude rules....

  2. [Forward medical air evacuation].

    PubMed

    Czerniak, Erik; Le Dorze, Patrick Causse; Hersan, Olivier; Pohl, Jean-Baptiste; Angot, Emmanuel

    2014-09-01

    The medical chain which assures the treatment of casualties from the theatre of operations back to France comprises several links connected by medical air transport. Whether it is tactical or strategic, it forms an integral part of the treatment pathway and offers casualties the best possible conditions for medical treatment with a high degree of safety, speed and traceability.

  3. Integrated Resilient Aircraft Control Project Full Scale Flight Validation

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2009-01-01

    Objective: Provide validation of adaptive control law concepts through full scale flight evaluation. Technical Approach: a) Engage failure mode - destabilizing or frozen surface. b) Perform formation flight and air-to-air tracking tasks. Evaluate adaptive algorithm: a) Stability metrics. b) Model following metrics. Full scale flight testing provides an ability to validate different adaptive flight control approaches. Full scale flight testing adds credence to NASA's research efforts. A sustained research effort is required to remove the road blocks and provide adaptive control as a viable design solution for increased aircraft resilience.

  4. Air traffic management evaluation tool

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar (Inventor); Sheth, Kapil S. (Inventor); Chatterji, Gano Broto (Inventor); Bilimoria, Karl D. (Inventor); Grabbe, Shon (Inventor); Schipper, John F. (Inventor)

    2012-01-01

    Methods for evaluating and implementing air traffic management tools and approaches for managing and avoiding an air traffic incident before the incident occurs. A first system receives parameters for flight plan configurations (e.g., initial fuel carried, flight route, flight route segments followed, flight altitude for a given flight route segment, aircraft velocity for each flight route segment, flight route ascent rate, flight route descent route, flight departure site, flight departure time, flight arrival time, flight destination site and/or alternate flight destination site), flight plan schedule, expected weather along each flight route segment, aircraft specifics, airspace (altitude) bounds for each flight route segment, navigational aids available. The invention provides flight plan routing and direct routing or wind optimal routing, using great circle navigation and spherical Earth geometry. The invention provides for aircraft dynamics effects, such as wind effects at each altitude, altitude changes, airspeed changes and aircraft turns to provide predictions of aircraft trajectory (and, optionally, aircraft fuel use). A second system provides several aviation applications using the first system. Several classes of potential incidents are analyzed and averted, by appropriate change en route of one or more parameters in the flight plan configuration, as provided by a conflict detection and resolution module and/or traffic flow management modules. These applications include conflict detection and resolution, miles-in trail or minutes-in-trail aircraft separation, flight arrival management, flight re-routing, weather prediction and analysis and interpolation of weather variables based upon sparse measurements. The invention combines these features to provide an aircraft monitoring system and an aircraft user system that interact and negotiate changes with each other.

  5. Flight Simulation of Taketombo Based on Computational Fluid Dynamics and Computational Flight Dynamics

    NASA Astrophysics Data System (ADS)

    Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki

    In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.

  6. An investigation of the loads on the vertical tail of a jet-bomber airplane resulting from flight through rough air

    NASA Technical Reports Server (NTRS)

    Funk, Jack; Rhyne, Richard H

    1956-01-01

    Vertical-tail loads were measured in turbulent air on a four-engine jet bomber. Results showed large load oscillations which were lightly damped. Comparison of experimental results with discrete-load calculations indicated that discrete-gust calculations underestimated the loads by 30 to 40 percent and gave no indication of the low damping. Power spectral analysis, on the other hand, indicated the general frequency characteristics and gave a somewhat better estimate of the peak-load distributions. The present results strongly suggest that discrete-gust calculation for gust loads on vertical tails may seriously underestimate the gust loads for airplanes having lightly damped lateral oscillations.

  7. [In-flight emergencies].

    PubMed

    Jessen, Knud

    2005-10-17

    It is estimated that at least one billion passengers travel by air every year. It is predicted that this number will double in the future, including an increasing number of aged passengers. It is further estimated that for every ten million passengers, 225 acute in-flight incidents and one death will occur. Modern commercial aircraft impose certain physical and physiological stresses on passengers, due mainly to the lowered barometric pressure in the cabin during cruising. The top five in-flight incidents are vasovagal, cardiac, pulmonary, and gastrointestinal attacks and minor traumas and burns. Travel by air is, however, safe and can be tolerated by most people. Each aircraft is equipped with emergency oxygen and medical kits, the crew is trained in advanced first aid, and a link to a ground-based medical centre often exists. Ill and elderly people can have their journey specifically prepared for by communication between their physician and the medical service of the particular company, providing the best opportunity for a smooth journey.

  8. Liability and Insurance for Suborbital Flights

    NASA Astrophysics Data System (ADS)

    Masson-Zwaan, T.

    2012-01-01

    This paper analyzes and compares liability and liability insurance in the fields of aviation and spaceflight in order to propose solutions for a liability regime and insurance options for suborbital flights. Suborbital flights can be said to take place in the grey zone between air and space, between air law and space law, as well as between aviation insurance and space insurance. In terms of liability, the paper discusses air law and space law provisions in the fields of second and third party liability for damage to passengers and 'innocent bystanders' respectively, touching upon international treaties, national law and EU law, and on insurance to cover those risks. Although the insurance market is currently not ready to provide tailor-made products for operators of suborbital flights, it is expected to adapt rapidly once such flights will become reality. A hybrid approach will provide the best solution in the medium term.

  9. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr Renee

    2015-01-01

    Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project, sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  10. The NASA Sharp Flight Experiment

    NASA Technical Reports Server (NTRS)

    Rasky, Daniel J.; Salute, Joan; Kolodziej, Paul; Bull, Jeffrey

    1998-01-01

    The Slender Hypersonic Aerothermodynamic Research Program (SHARP) was initiated by NASA Ames, and executed in partnership with Sandia National Laboratory and the US Air Force, to demonstrate sharp, passive leading edge designs for hypersonic vehicles, incorporating new ultra-high temperature ceramics (UHTC's). These new ceramic composites have been undergoing development, characterization and ground testing at NASA Ames for the last nine years. This paper will describe the background, flight objectives, design and pertinent flight results of SHARP, and some of the potential implications for future hypersonic vehicle designs.

  11. Enabling Electric Propulsion for Flight

    NASA Technical Reports Server (NTRS)

    Ginn, Starr

    2014-01-01

    Description of current ARMD projects; Team Seedling project AFRC and LaRC 31ft distributed electric propulsion wing on truck bed up 75 miles per hour for coefficient of lift validation. Convergent Aeronautic Solutions project (new ARMD reorg), sub-project Convergent Electric Propulsion Technologies AFRC, LaRC and GRC, re-winging a 4 passenger Tecnam aircraft with a 31ft distributed electric propulsion wing. Advanced Air Transport Technologies (Fixed Wing), Hybrid Electric Research Theme, developing a series hybrid ironbird and flight sim to study integration and performance challenges in preparation for a 1-2 MW flight project.

  12. Advanced concepts flight simulation facility.

    PubMed

    Chappell, S L; Sexton, G A

    1986-12-01

    The cockpit environment is changing rapidly. New technology allows airborne computerised information, flight automation and data transfer with the ground. By 1995, not only will the pilot's task have changed, but also the tools for doing that task. To provide knowledge and direction for these changes, the National Aeronautics and Space Administration (NASA) and the Lockheed-Georgia Company have completed three identical Advanced Concepts Flight Simulation Facilities. Many advanced features have been incorporated into the simulators - e g, cathode ray tube (CRT) displays of flight and systems information operated via touch-screen or voice, print-outs of clearances, cockpit traffic displays, current databases containing navigational charts, weather and flight plan information, and fuel-efficient autopilot control from take-off to touchdown. More importantly, this cockpit is a versatile test bed for studying displays, controls, procedures and crew management in a full-mission context. The facility also has an air traffic control simulation, with radio and data communications, and an outside visual scene with variable weather conditions. These provide a veridical flight environment to evaluate accurately advanced concepts in flight stations.

  13. "Franklin: Science, Politics and France"

    NASA Astrophysics Data System (ADS)

    McClellan, James E., III

    2003-04-01

    This presentation traces Benjamin Franklin's career as a "civic scientist" in Old-Regime France. It outlines the initial - and not always positive - reception of Franklin's work on electricity by the community of French scientists in the 1750s. It sketches Franklin's subsequent elevation into the pantheon of French Enlightenment heros, and it details his work as a "civic scientist" while American envoy to France in the 1770s and 1780s, notably his service on the government-sponsored commissions that repudiated the scientific and medical claims of Franz Anton Mesmer. This presentation concludes by examining a few features of Franklin's career that are not completely congruent with our notion of what a "civic scientist" might be, a contrast that is intended to illuminate both Franklin and the concept of "civic scientist."

  14. [End of life in France].

    PubMed

    Vacheron, André

    2013-01-01

    Two major changes in end-of-life management have occured in recent decades: first, because of the increase in life expectancy and the resulting aging of the population, most deaths now involve old or very old people; second, more than two-thirds of deaths occur in a hospital or an institution. Our fellow citizens are afraid of suffering and death. They wish for a peaceful death, as rapid as possible and, in recent surveys, say they favour euthanasia. Yet euthanasia is illegal in France and in most other Western countries (with the exception of the Benelux nations). Palliative care ensures dignity in death, without anxiety of suffering, and is expanding rapidly in France. Léonetti's law of 22 April 2005 ensures the protection of the weakest, who should never be considered unworthy of life, yet is poorly known to the public and even to physicians. It now needs to be applied in practice.

  15. Human coronavirus NL63, France.

    PubMed

    Vabret, Astrid; Mourez, Thomas; Dina, Julia; van der Hoek, Lia; Gouarin, Stéphanie; Petitjean, Joëlle; Brouard, Jacques; Freymuth, François

    2005-08-01

    The human coronavirus NL63 (HCoV-NL63) was first identified in The Netherlands, and its circulation in France has not been investigated. We studied HCoV-NL63 infection in hospitalized children diagnosed with respiratory tract infections. From November 2002 to April 2003, we evaluated 300 respiratory specimens for HCoV-NL63. Of the 300 samples, 28 (9.3%) were positive for HCoV-NL63. The highest prevalence was found in February (18%). The main symptoms were fever (61%), rhinitis (39%), bronchiolitis (39%), digestive problems (33%), otitis (28%), pharyngitis (22%), and conjunctivitis (17%). A fragment of the spike protein gene was sequenced to determine the variety of circulating HCoV-NL63. Phylogenetic analysis indicated that strains with different genetic markers cocirculate in France.

  16. Propulsion Flight-Test Fixture

    NASA Technical Reports Server (NTRS)

    Palumbo, Nate; Vachon, M. Jake; Richwine, Dave; Moes, Tim; Creech, Gray

    2003-01-01

    NASA Dryden Flight Research Center s new Propulsion Flight Test Fixture (PFTF), designed in house, is an airborne engine-testing facility that enables engineers to gather flight data on small experimental engines. Without the PFTF, it would be necessary to obtain such data from traditional wind tunnels, ground test stands, or laboratory test rigs. Traditionally, flight testing is reserved for the last phase of engine development. Generally, engines that embody new propulsion concepts are not put into flight environments until their designs are mature: in such cases, either vehicles are designed around the engines or else the engines are mounted in or on missiles. However, a captive carry capability of the PFTF makes it possible to test engines that feature air-breathing designs (for example, designs based on the rocket-based combined cycle) economically in subscale experiments. The discovery of unknowns made evident through flight tests provides valuable information to engine designers early in development, before key design decisions are made, thereby potentially affording large benefits in the long term. This is especially true in the transonic region of flight (from mach 0.9 to around 1.2), where it can be difficult to obtain data from wind tunnels and computational fluid dynamics. In January 2002, flight-envelope expansion to verify the design and capabilities of the PFTF was completed. The PFTF was flown on a specially equipped supersonic F-15B research testbed airplane, mounted on the airplane at a center-line attachment fixture, as shown in Figure 1. NASA s F-15B testbed has been used for several years as a flight-research platform. Equipped with extensive research air-data, video, and other instrumentation systems, the airplane carries externally mounted test articles. Traditionally, the majority of test articles flown have been mounted at the centerline tank-attachment fixture, which is a hard-point (essentially, a standardized weapon-mounting fixture

  17. Miracle Flights

    MedlinePlus

    ... care by providing financial assistance to low income children for commercial air travel to obtain special medical care; to promote awareness of our services through targeted outreach programs; to enlist the help of community-minded people through strategic calls to ... Privacy Policy | Cookie Policy | ...

  18. Current Hypersonic and Space Vehicle Flight Test and Instrumentation

    DTIC Science & Technology

    2015-06-22

    412TW-PA-15264 CURRENT HYPERSONIC AND SPACE VEHICLE FLIGHT TEST AND INSTRUMENTATION John J. Spravka* and Timothy R. Jorris† AIR FORCE TEST...DATES COVERED (From - To) 22 – 26 July 2015 4. TITLE AND SUBTITLE Current Hypersonic and Space Vehicle Flight Test and Instrumentation...utility can be leveraged by a wide range of flight test programs. 15. SUBJECT TERMS Hypersonic, flight test, instrumentation, space access, space

  19. Advanced Command Destruct System (ACDS) Enhanced Flight Termination System (EFTS)

    NASA Technical Reports Server (NTRS)

    Tow, David K.

    2011-01-01

    This presentation provides information on the development, integration, and operational usage of the Enhanced Flight Termination System (EFTS) at NASA Dryden Flight Research Center and Air Force Flight Test Center. The presentation will describe the efforts completed to certify the system and acquire approval for operational usage, the efforts to integrate the system into the NASA Dryden existing flight termination infrastructure, and the operational support of aircraft with EFTS at Edwards AFB.

  20. [Epidemiology of burns in France].

    PubMed

    Latarjet, Jacques; Ravat, François

    2012-01-01

    As with most traumas, the epidemiology of the "burn" health-event has long been neglected by public health doctors and rarely considered by burns specialists. There were therefore few verified data and many approximations and preconceived ideas. The gathering of information recently undertaken in France enables the reliability of the data to be improved and the diagnostic and demographic elements relating to hospitalised patients with burns to be established.

  1. History of infrared optronics in France

    NASA Astrophysics Data System (ADS)

    Fouilloy, J. P.; Siriex, Michel B.

    1995-09-01

    In France, the real start of work on the applications of infrared radiations occurred around 1947 - 1948. During many years, technological research was performed in the field of detectors, optical material, modulation techniques, and a lot of measurements were made in order to acquire a better knowledge of the propagation medium and radiation of IR sources, namely those of jet engines. The birth of industrial infrared activities in France started with the Franco-German missile guidance programs: Milan, HOT, Roland and the French air to air missile seeker programs: R530, MAGIC. At these early stages of IR technologies development, it was a great technical adventure for both the governmental agencies and industry to develop: detector technology with PbS and InSb, detector cooling for 3 - 5 micrometer wavelength range, optical material transparent in the infrared, opto mechanical design, signal processing and related electronic technologies. Etablissement Jean Turck and SAT were the pioneers associated with Aerospatiale, Matra and under contracts from the French Ministry of Defence (DGA). In the 60s, the need arose to enhance night vision capability of equipment in service with the French Army. TRT was chosen by DGA to develop the first thermal imagers: LUTHER 1, 2, and 3 with an increasing number of detectors and image frequency rate. This period was also the era in which the SAT detector made rapid advance. After basic work done in the CNRS and with the support of DGA, SAT became the world leader of MCT photovoltaic detector working in the 8 to 12 micron waveband. From 1979, TRT and SAT were given the responsibility for the joint development and production of the first generation French thermal imaging modular system so-called SMT. Now, THOMSON TTD Optronique takes over the opto-electronics activities of TRT. Laser based systems were also studied for military application using YAG type laser and CO2 laser: Laboratoire de Marcousis, CILAS, THOMSON CSF and SAT have

  2. F-18 SRA in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is using this early-model F-18 Hornet as a flying research platform to evaluate a number of emerging technologies in aircraft control and information systems. The Systems Research Aircraft, a pre-production two-seat version of the twin-engine tactical fighter aircraft, has been extensively modified for its research role. Among projects flown on the plane are experiments to evaluate fiber optics for flight-critical control systems, advanced air data acquisition systems, and electrically-powered flight control actuators which do not require connection to the aircraft central hydraulic system. The new technologies could lead to lighter and more efficient aircraft designs with higher performance and greater safety.

  3. Readiness for First Crewed Flight

    NASA Technical Reports Server (NTRS)

    Schaible, Dawn M.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to develop a generic framework for evaluating whether any given program has sufficiently complete and balanced plans in place to allow crewmembers to fly safely on a human spaceflight system for the first time (i.e., first crewed flight). The NESC assembled a small team which included experts with experience developing robotic and human spaceflight and aviation systems through first crewed test flight and into operational capability. The NESC team conducted a historical review of the steps leading up to the first crewed flights of Mercury through the Space Shuttle. Benchmarking was also conducted with the United States (U.S.) Air Force and U.S. Navy. This report contains documentation of that review.

  4. Re-Examination of Mixed Media Communication: The Impact of Voice, Data Link, and Mixed Air Traffic Control Environments on the Flight Deck

    NASA Technical Reports Server (NTRS)

    Dunbar, Melisa; McGann, Alison; Mackintosh, Margaret-Anne; Lozito, Sandra; Ashford, Rose (Technical Monitor)

    2001-01-01

    A simulation in the B747-400 was conducted at NASA Ames Research Center that compared how crews handled voice and data link air traffic control (ATC) messages in a single medium versus a mixed voice and data link ATC environment The interval between ATC messages was also varied to examine the influence of time pressure in voice, data link, and mixed ATC environments. For messages sent via voice, transaction times were lengthened in the mixed media environment for closely spaced messages. The type of environment did not affect data link times. However, messages times were lengthened in both single and mixed-modality environments under time pressure. Closely spaced messages also increased the number of requests for clarification for voice messages in the mixed environment and review menu use for data link messages. Results indicated that when time pressure is introduced, the mix of voice and data link does not necessarily capitalize on the advantages of both media. These findings emphasize the need to develop procedures for managing communication in mixed voice and data link environments.

  5. X-1 in flight

    NASA Technical Reports Server (NTRS)

    1947-01-01

    The Bell Aircraft Corporation X-1-1 (#46-062) in flight. The shock wave pattern in the exhaust plume is visible. The X-1 series aircraft were air-launched from a modified Boeing B-29 or a B-50 Superfortress bombers. The X-1-1 was painted a bright orange by Bell Aircraft. It was thought that the aircraft would be more visable to those doing the tracking during a flight. When NACA received the airplanes they were painted white, which was an easier color to find in the skies over Muroc Air Field in California. This particular craft was nicknamed 'Glamorous Glennis' by Chuck Yeager in honor of his wife, and is now on permanent display in the Smithsonian Institution's National Air and Space Museum in Washington, DC. There were five versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Sonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all

  6. Green Flight Challenge

    NASA Video Gallery

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  7. F-18 SRA during flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This bright blue-and-white twin-jet aircraft may look like an ordinary F/A-18 Hornet fighter, but inside its a different bird. Currently being flown by NASA's Dryden Flight Research Center, Edwards, California, in a multi-year, joint NASA/DOD/industry program, the former Navy fighter has been modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. One of the more than 20 experiments being tested aboard the SRA F-18 is an advanced air data sensing system which uses a group of pressure taps flush-mounted on the forward fuselage to measure both altitude and wind speed and direction--critical data for flight control and research investigations. The Real-Time Flush Air Data Sensing system concept is being evaluated for possible use on the X-33 resuable space-launch vehicle. The primary goal of the SRA program is to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.

  8. Atmospheric reentry flight test of winged space vehicle

    NASA Astrophysics Data System (ADS)

    Inatani, Yoshifumi; Akiba, Ryojiro; Hinada, Motoki; Nagatomo, Makoto

    A summary of the atmospheric reentry flight experiment of winged space vehicle is presented. The test was conducted and carried out by the Institute of Space and Astronautical Science (ISAS) in Feb. 1992 in Kagoshima Space Center. It is the first Japanese atmospheric reentry flight of the controlled lifting vehicle. A prime objective of the flight is to demonstrate a high speed atmospheric entry flight capability and high-angle-of-attack flight capability in terms of aerodynamics, flight dynamics and flight control of these kind of vehicles. The launch of the winged vehicle was made by balloon and solid propellant rocket booster which was also the first trial in Japan. The vehicle accomplishes the lfight from space-equivalent condition to the atmospheric flight condition where reaction control system (RCS) attitude stabilization and aerodynamic control was used, respectively. In the flight, the vehicle's attitude was measured by both an inertial measurement unit (IMU) and an air data sensor (ADS) which were employed into an auto-pilot flight control loop. After completion of the entry transient flight, the vehicle experienced unexpected instability during the atmospheric decelerating flight; however, it recovered the attitude orientation and completed the transonic flight after that. The latest analysis shows that it is due to the ADS measurement error and the flight control gain scheduling; what happened was all understood. Some details of the test and the brief summary of the current status of the post flight analysis are presented.

  9. F-16 AFTI in flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This 27-second movie clip shows the F-16 Advanced Fighter Technology Integration aircraft in formation flight with another F-16. Note the lower forward-mounted canards just behind the engine intake, which in a dogfight, would be used for 'selective fuselage pointing' to quickly acquire and target the opponent. The AFTI (Advanced Fighter Technology Integration) /F-16 program has been a joint NASA/USAF effort evaluating advanced digital flight controls, automated maneuvering, voice-activated controls, sensors, and close-air support attack systems on a modified F-16. Research and test results could be applied to existing or future aircraft. Originally conceived as a program to explore flight control technology as well as various maneuvering concepts, this program has flown at Edwards Air Force Base continuously from 1982 through the late 1990s (as of this writing). This flight research aircraft was one of the original six F-16A airplanes that since has been modified extensively and repeatedly to study the feasibility of advanced technologies. For instance, it has demonstrated the operational value of voice command and automated ground collision avoidance systems, an automated maneuvering system for all aspects of air and ground combat, an automated threat avoidance and terrain following system, and a night vision helmet with a dual forward-looking infrared capability that was pointed by movement of the pilot's head. All of these systems served to reduce the pilot's workload in the demanding and dangerous role of close-air support. These systems would help ensure that a pilot was more effective in his first pass over a low-level target in a battle area. One of the most important technology spinoffs from the AFTI program has been the incorporation of an Enhanced Ground Proximity Warning System (EGPWS) on all commercial airliner traffic. This system has been accepted industry, as well as world-wide, and is currently being installed on all commercial aircraft.

  10. Flight Awareness Collaboration Tool Development

    NASA Technical Reports Server (NTRS)

    Mogford, Richard

    2016-01-01

    This is a PowerPoint presentation covering airline operations center (AOC) research. It reviews a dispatcher decision support tool called the Flight Awareness Collaboration Tool (FACT). FACT gathers information about winter weather onto one screen and includes predictive abilities. FACT should prove to be useful for airline dispatchers and airport personnel when they manage winter storms and their effect on air traffic. This material is very similar to other previously approved presentations.

  11. X-43C Flight Demonstrator Project Overview

    NASA Technical Reports Server (NTRS)

    Moses, Paul L.

    2003-01-01

    The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.

  12. NASA's Flight Opportunities Program

    NASA Video Gallery

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  13. France: Nukes Stuck between NATO and EU

    DTIC Science & Technology

    2013-03-01

    an enhancement of France’s profile within European defense and deterrence would fulfill the fondest Gaullist aspirations for France as a world power...Thus, ultimately, this thesis argues that although France may aspire to take center stage in European nuclear defense, it is in no practical or...the Gaullist aspirations for France as a world power and for European defense autonomy. On the other hand, practical limits—economic, political, and

  14. [Access to medicines in France].

    PubMed

    Bouvenot, Gilles; Bouvenot, Julien

    2009-03-01

    In France the total cost of medicinal products reimbursed by health insurers in 2007 was over 25 thousand million euros, and access to new drugs is neither restricted nor rationed, despite the unfavorable economic situation. In 2007 and 2008 the Transparency Commission (TC) of the French National Authority for Health (Haute Autorité de Santé) approved the reimbursement of 97% of new drugs and new indications for existing products, within 90 days on average. The 3% of medicinal products that were not approved did not represent therapeutic advances and could be considered to be of dubious utility. If evaluation of new drugs is to be an independent process, then HAS must not only be independent of the decision-maker, funding bodies and commercial firms, but must also be a purely medical and technical organization. This implies removing all financial consideration from the picture, including the size of the target population that may qualify for a new treatment. This system could be further improved by creating special procedures to promote funding for innovations outside the marketing authorization system, thereby providing patients with faster access to the drugs they need; these procedures would include temporary authorisation, temporary treatment protocols, and a special-case function for treatment of chronic and rare conditions. Currently, new treatments produced by the pharmaceutical industry are paid for by national funding bodies and, from this point of view, it is difficult to argue that drug innovation is under-supported in France. On the other hand, it is well known that France has long been the largest consumer of medicinal drugs, both in Europe and worldwide. Two behavioral patterns partially explain this situation: one is a tendency to believe that drugs are the answer to all health concerns, and the other is a preference for new, more expensive drugs, even though "never" is not necessarily "better".

  15. CFB boiler at Gardanne (France)

    SciTech Connect

    Jaud, P.; Jacquet, L.; Delot, P.; Bayle, F.

    1995-06-01

    Among the new Clean Coal Technologies, {open_quotes}Circulating Fluidized Bed{close_quotes} is one of the most promising. Today, the largest project in commissioning`s the 250 MWe Provence CFB boiler, located near MARSEILLE in the south of France. At such a size, the CFB technique has now reached a capacity corresponding to thermal power plants operated by utilities. This new unit is a very important step towards larger size i.e. 400 MWe and greater. The SO{sub 2} emissions of this CFB boiler are guaranteed to be less than 400 mg / Nm{sup 3} at 6% O{sub 2} with the ratio of Ca/S lower than 3 while total sulfur in local coal used can reach 3.68 %. The purpose of the Provence project was to replace the existing pulverized coal boiler unit 4, commissioned in 1967, of the Provence power plant, with a new CFB boiler while reusing most of the existing equipment. The new boiler has been ordered from GEC ALSTHOM STEIN INDUSTREE (GASI) by Electricite de France (EDF) on behalf of the SOPROLIF consortium. Architect Engineering and construction management was performed by EDF jointly with Charbonnages de France (CdF: the French Coal Board). The 250 MWe CFB boiler is of the superheat-reheat type. The first firing of the boiler is due in April 1995. The poster session will describe the progress in the construction of the plant and provides technical details of the new boiler and auxiliaries.

  16. [Health and politics in France].

    PubMed

    Tabuteau, Didier

    2012-06-01

    Health is a dual notion. It is individual, singular and intimate. It is also collective, statistical and political. The modern problematic of health relies upon a balance of complex relations between individual and collective acceptances of the notion. You can try to outline the evolutions and the main concepts through a quadruple approach: health and politics, health and its professionals, health and society and in the end, health and the State. The relationships between health and politics in France are affected by the historical delay of France in public health, namely because of a structural weakness of the administrative organization of public health. Nevertheless France developed a dense and well organized care system and a universal social protection against the disease. The creation of the health professions in France was marked by a historical opposition between the doctors and the state which led to a failure of hygienist medicine and a fundamental misunderstanding on health insurance. Medical domination led to the organization of a system based on professional dichotomy and the delegation of the regulation skills to the health care professionals. The role of health issues in the French society was deeply renewed by the development of the medical and epidemiological knowledge. This resulted in a new political responsibility in the management of health risks but also in the confirmation of the patients' rights and the role of their associations in the health systems operations and the piloting of public policies. In this environment, the state has recently and progressively confirmed its dominating role in the health sector. A public hospital service was created In the 60's and 70's, then in the 80's there were recurrent interventions in order to control health spendings and eventually in the 90's health safety devices were set up. More recently, a process of health policies institutionalization confirmed this evolution. In the future, health issues should

  17. Cibola flight experiment

    SciTech Connect

    Roussel-Dupre, D.; Caffrey, M. P.

    2004-01-01

    Los Alamos National Laboratory is building the Cibola Flight Experiment (CFE), a reconfigurable processor payload intended for a Low Earth Orbit system. It will survey portions of the VHF and UHF radio spectra. The experiment uses networks of reprogrammable, Field Programmable Gate Arrays (FPGAs) to process the received signals for ionospheric and lightning studies. The objective is to validate the on-orbit use of commercial, reconfigurable FPGA technology utilizing several different single-event upset mitigation schemes. It will also detect and measure impulsive events that occur in a complex background. Surrey Satellite Technology, Ltd (SSTL) is building the small host satellite, CFESat, based upon SSTL's disaster monitoring constellation (DMC) and Topsat mission satellite designs. The CFESat satellite will be launched by the Space Test Program in September 2006 on the US Air Force Evolved Expendable Launch Vehicle (EELV) using the EELV's Secondary Payload Adapter (ESPA) that allows up to six small satellites to be launched as 'piggyback' passengers with larger spacecraft.

  18. Future Flight Central

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA 'Future Flight Central,' the world's first full-scale virtual airport control tower, opened December 13, 1999 at NASA Ames Research Center, Moffett Field, California. Constructed at a cost of $10 million, the two story facility was jointly funded by NASA and the Federal Aviation Administration (FAA). The facility is designed to test ways to solve potential air and ground traffic problems at commercial airports under realistic airport conditions and configurations. The facility provides an opportunity for airlines and airports to mitigate passenger delays by fine tuning airport hub operations, gate management, ramp movement procedures, and various other airport improvements. Twelve rear projection screens provide a seamless 360 degree high- resolution view of the airport or other screens being depicted. The imaging system, powered by supercomputers, provides a realistic view of weather conditions, enviromental and seasonal effects and the movement of up to 200 active aircraft and ground vehicles.

  19. SR-71 flight

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The movie clip shown here runs about 13 seconds and shows an air-to-air shot of the front of the SR-71 aircraft and a head-on view of it coming in for a landing. Two SR-71A aircraft on loan from the U.S. Air Force have been used for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California, since 1991. One of them was later returned to the Air Force. A third SR-71 on loan from the Air Force is an SR-71B used for training but not for flight research. Developed for the U.S. Air Force as reconnaissance aircraft more than 30 years ago, SR-71 aircraft are still the world's fastest and highest-flying production aircraft. These aircraft can fly more than 2200 miles per hour (Mach 3+ or more than three times the speed of sound) and at altitudes of over 85,000 feet. This operating environment makes the aircraft excellent platforms to carry out research and experiments in a variety of areas--aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic-boom characterization. Data from the SR-71 high-speed research program may be used to aid designers of future supersonic or hypersonic aircraft and propulsion systems, including a possible high-speed civil transport. The SR-71 program at Dryden has been part of the NASA overall high-speed aeronautical research program, and projects have involved other NASA research centers, other government agencies, universities, and commercial firms. One of the first major experiments to be flown in the NASA SR-71 program was a laser air-data collection system. This system used laser light instead of air pressure to produce airspeed and attitude reference data such as angle of attack and angle of sideslip. These data are normally obtained with small tubes and vanes extending into the air stream, or from tubes with flush openings on the aircraft outer skin. The flights provided information on the presence of

  20. The Ocean Boundary Layer beneath Hurricane Frances

    NASA Astrophysics Data System (ADS)

    Dasaro, E. A.; Sanford, T. B.; Terrill, E.; Price, J.

    2006-12-01

    The upper ocean beneath the peak winds of Hurricane Frances (57 m/s) was measured using several varieties of air-deployed floats as part of CBLAST. A multilayer structure was observed as the boundary layer deepened from 20m to 120m in about 12 hours. Bubbles generated by breaking waves create a 10m thick surface layer with a density anomaly, due to the bubbles, of about 1 kg/m3. This acts to lubricate the near surface layer. A turbulent boundary layer extends beneath this to about 40 m depth. This is characterized by large turbulent eddies spanning the boundary layer. A stratified boundary layer grows beneath this reaching 120m depth. This is characterized by a gradient Richardson number of 1/4, which is maintained by strong inertial currents generated by the hurricane, and smaller turbulent eddies driven by the shear instead of the wind and waves. There is little evidence of mixing beneath this layer. Heat budgets reveal the boundary layer to be nearly one dimensional through much of the deepening, with horizontal and vertical heat advection becoming important only after the storm had passed. Turbulent kinetic energy measurements support the idea of reduced surface drag at high wind speeds. The PWP model correctly predicts the degree of mixed layer deepening if the surface drag is reduced at high wind speed. Overall, the greatest uncertainty in understanding the ocean boundary layer at these extreme wind speeds is a characterization of the near- surface processes which govern the air-sea fluxes and surface wave properties.

  1. Tritium release experiment in France, presentation, organization and realization

    SciTech Connect

    Paillard, P.; Clerc, H.; Calando, J.P.; Gros, R.; Hircq, B.

    1988-09-01

    In October 1986 an experimental release of 256 TBq of tritium was performed in FRANCE; this experiment formed part of general studies agreed by the European Communities concerning the safety of future fusion reactors. The main objectives related to the analysis of HT HTO conversion in air and soil and the assessment of models. The organization and execution of the experiment was under the responsibility of the French Commissariat for Atomic Energy (CEA). The major experimental parameters such as site, weather conditions, activity are presented as well as the administrative aspects and appropriate logistics.

  2. X-1 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1949-01-01

    The first of the rocket-powered research aircraft, the X-1 (originally designated the XS-1), was a bullet-shaped airplane that was built by the Bell Aircraft Company for the US Air Force and the National Advisory Committee for Aeronautics (NACA). The mission of the X-1 was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier'. The first of the three X-1s was glide-tested at Pinecastle Field, FL, in early 1946. The first powered flight of the X-1 was made on Dec. 9, 1946, at Muroc Army Air Field (later redesignated Edwards Air Force Base) with Chalmers Goodlin, a Bell test pilot,at the controls. On Oct. 14, 1947, with USAF Captain Charles 'Chuck' Yeager as pilot, the aircraft flew faster than the speed of sound for the first time. Captain Yeager ignited the four-chambered XLR-11 rocket engines after being air-launched from under the bomb bay of a B-29 at 21,000 ft. The 6,000-lb thrust ethyl alcohol/liquid oxygen burning rockets, built by Reaction Motors, Inc., pushed him up to a speed of 700 mph in level flight. Captain Yeager was also the pilot when the X-1 reached its maximum speed of 957 mph. Another USAF pilot. Lt. Col. Frank Everest, Jr., was credited with taking the X-1 to its maximum altitude of 71,902 ft. Eighteen pilots in all flew the X-1s. The number three plane was destroyed in a fire before evermaking any powered flights. A single-place monoplane, the X-1 was 31 ft long, 10 ft high, and had a wingspan of 29 ft. It weighed 4,900 lb and carried 8,200 lb of fuel. It had a flush cockpit with a side entrance and no ejection seat. The following movie runs about 20 seconds, and shows several air-to-air views of X-1 Number 2 and its modified B-50 mothership. It begins with different angles of the X-1 in-flight while mated to the B-50's bomb bay, and ends showing the air-launch. The X-1 drops below the B-50, then accelerates away as the rockets ignite.

  3. Definition of the 2005 flight deck environment

    NASA Technical Reports Server (NTRS)

    Alter, K. W.; Regal, D. M.

    1992-01-01

    A detailed description of the functional requirements necessary to complete any normal commercial flight or to handle any plausible abnormal situation is provided. This analysis is enhanced with an examination of possible future developments and constraints in the areas of air traffic organization and flight deck technologies (including new devices and procedures) which may influence the design of 2005 flight decks. This study includes a discussion on the importance of a systematic approach to identifying and solving flight deck information management issues, and a description of how the present work can be utilized as part of this approach. While the intent of this study was to investigate issues surrounding information management in 2005-era supersonic commercial transports, this document may be applicable to any research endeavor related to future flight deck system design in either supersonic or subsonic airplane development.

  4. L(sub 1) Adaptive Flight Control System: Flight Evaluation and Technology Transition

    NASA Technical Reports Server (NTRS)

    Xargay, Enric; Hovakimyan, Naira; Dobrokhodov, Vladimir; Kaminer, Isaac; Gregory, Irene M.; Cao, Chengyu

    2010-01-01

    Certification of adaptive control technologies for both manned and unmanned aircraft represent a major challenge for current Verification and Validation techniques. A (missing) key step towards flight certification of adaptive flight control systems is the definition and development of analysis tools and methods to support Verification and Validation for nonlinear systems, similar to the procedures currently used for linear systems. In this paper, we describe and demonstrate the advantages of L(sub l) adaptive control architectures for closing some of the gaps in certification of adaptive flight control systems, which may facilitate the transition of adaptive control into military and commercial aerospace applications. As illustrative examples, we present the results of a piloted simulation evaluation on the NASA AirSTAR flight test vehicle, and results of an extensive flight test program conducted by the Naval Postgraduate School to demonstrate the advantages of L(sub l) adaptive control as a verifiable robust adaptive flight control system.

  5. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  6. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  7. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  8. HIFiRE-5 Flight Vehicle Design

    NASA Technical Reports Server (NTRS)

    Kimmel, Roger L.; Adamczak, David; Berger, Karen; Choudhari, Meelan

    2010-01-01

    The Hypersonic International Flight Research Experimentation (HIFiRE) program is a hypersonic flight test program executed by the Air Force Research Laboratories (AFRL) and Australian Defence Science and Technology Organization (DSTO). HIFiRE flight 5 is devoted to measuring transition on a three-dimensional body. This paper summarizes payload configuration, trajectory, vehicle stability limits and roughness tolerances. Results show that the proposed configuration is suitable for testing transition on a three-dimensional body. Transition is predicted to occur within the test window, and a design has been developed that will allow the vehicle to be manufactured within prescribed roughness tolerances

  9. Flying qualities criteria and flight control design

    NASA Technical Reports Server (NTRS)

    Berry, D. T.

    1981-01-01

    Despite the application of sophisticated design methodology, newly introduced aircraft continue to suffer from basic flying qualities deficiencies. Two recent meetings, the DOD/NASA Workshop on Highly Augmented Aircraft Criteria and the NASA Dryden Flight Research Center/Air Force Flight Test Center/AIAA Pilot Induced Oscillation Workshop, addressed this problem. An overview of these meetings is provided from the point of view of the relationship between flying qualities criteria and flight control system design. Among the items discussed are flying qualities criteria development, the role of simulation, and communication between flying qualities specialists and control system designers.

  10. Development of a Free-Flight Simulation Infrastructure

    NASA Technical Reports Server (NTRS)

    Miles, Eric S.; Wing, David J.; Davis, Paul C.

    1999-01-01

    In anticipation of a projected rise in demand for air transportation, NASA and the FAA are researching new air-traffic-management (ATM) concepts that fall under the paradigm known broadly as ":free flight". This paper documents the software development and engineering efforts in progress by Seagull Technology, to develop a free-flight simulation (FFSIM) that is intended to help NASA researchers test mature-state concepts for free flight, otherwise referred to in this paper as distributed air / ground traffic management (DAG TM). Under development is a distributed, human-in-the-loop simulation tool that is comprehensive in its consideration of current and envisioned communication, navigation and surveillance (CNS) components, and will allow evaluation of critical air and ground traffic management technologies from an overall systems perspective. The FFSIM infrastructure is designed to incorporate all three major components of the ATM triad: aircraft flight decks, air traffic control (ATC), and (eventually) airline operational control (AOC) centers.

  11. Periodicities of hail precipitation in France

    NASA Astrophysics Data System (ADS)

    Hermida, Lucía; Sánchez, José Luis; Berthet, Claude; Dessens, Jean; López, Laura; Hierro, Rodrigo; Wu, Xueke; García-Ortega, Eduardo

    2013-04-01

    The wavelet analysis is a powerful tool appropriated for studying multiscale and non-stationary processes that occur in finite spatial and temporal domains. Its development began with Morlet and, since then, the wavelet transform (WT) has had better applications in Geophysics. However, the characterization of hail precipitation is not exempt from difficulty, since it deals with phenomenon on a small scale, with elevated spatial and temporal variation. The extreme variability of the frequency and distribution of hail is attributed, among other things, to the same process of its formation. The conditions that influence hail formation span from air masses climatology to lower-scale factors such as orography, wind fields, concentration of ice nuclei or temperature. This last factor is important both from a point of view of convective activity as well as its influence in the height of the freezing point. Thus, it would be possible to do comparative analysis between time series of temperature and diverse hail variables; or, rather, to try to establish a relationship between periodicities found and phenomenon such as ENSO (El Niño, Southern Oscillation) or NAO (North-Atlantic Oscillation). France is one of the European countries that is most affected by hail precipitation. Previous climatic studies have been done with the objective of characterizing the long-term variability of distinct variables of this hydrometeor that is present in the time series. These measurements are obtained using networks of hailpads distributed in French territory and managed by ANELFA. Berthet et al. (2011) observed the annual hail frequency in France, finding successions of three years with high values followed by three years of low values; this being calculated as the number of hailfalls per year divided by the number of hailpad stations that were in use during said year. In the present paper, a wavelet analysis was carried out with the objective of detecting the possible existence of

  12. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Reminiscent of the lifting body research flights conducted more than 30 years earlier, NASA's B-52 mothership lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket booster casings. It also

  13. X-38 - First Flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In a scene reminiscent of the lifting body research flights conducted more than 30 years earlier, this photo shows a close-up view of NASA's B-52 mothership as it lifts off carrying a new generation of lifting body research vehicle--the X-38. The X-38 was designed to help develop an emergency crew return vehicle for the International Space Station. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the

  14. Flight projects overview

    NASA Technical Reports Server (NTRS)

    Levine, Jack

    1988-01-01

    Information is given in viewgraph form on the activities of the Flight Projects Division of NASA's Office of Aeronautics and Space Technology. Information is given on space research and technology strategy, current space flight experiments, the Long Duration Exposure Facility, the Orbiter Experiment Program, the Lidar In-Space Technology Experiment, the Ion Auxiliary Propulsion System, the Arcjet Flight Experiment, the Telerobotic Intelligent Interface Flight Experiment, the Cryogenic Fluid Management Flight Experiment, the Industry/University In-Space Flight Experiments, and the Aeroassist Flight Experiment.

  15. The hybrid bio-inspired aerial vehicle: Concept and SIMSCAPE flight simulation.

    PubMed

    Tao Zhang; Su, Steven; Nguyen, Hung T

    2016-08-01

    This paper introduces a Silver Gull-inspired hybrid aerial vehicle, the Super Sydney Silver Gull (SSSG), which is able to vary its structure, under different manoeuvre requirements, to implement three flight modes: the flapping wing flight, the fixed wing flight, and the quadcopter flight (the rotary wing flight of Unmanned Air Vehicle). Specifically, through proper mechanism design and flight mode transition, the SSSG can imitate the Silver Gull's flight gesture during flapping flight, save power consuming by switching to the fixed wing flight mode during long-range cruising, and hover at targeted area when transferring to quadcopter flight mode. Based on the aerodynamic models, the Simscape, a product of MathWorks, is used to simulate and analyse the performance of the SSSG's flight modes. The entity simulation results indicate that the created SSSG's 3D model is feasible and ready to be manufactured for further flight tests.

  16. HIDEC F-15 adaptive engine control system flight test results

    NASA Technical Reports Server (NTRS)

    Smolka, James W.

    1987-01-01

    NASA-Ames' Highly Integrated Digital Electronic Control (HIDEC) flight test program aims to develop fully integrated airframe, propulsion, and flight control systems. The HIDEC F-15 adaptive engine control system flight test program has demonstrated that significant performance improvements are obtainable through the retention of stall-free engine operation throughout the aircraft flight and maneuver envelopes. The greatest thrust increase was projected for the medium-to-high altitude flight regime at subsonic speed which is of such importance to air combat. Adaptive engine control systems such as the HIDEC F-15's can be used to upgrade the performance of existing aircraft without resort to expensive reengining programs.

  17. JetStar in flight

    NASA Technical Reports Server (NTRS)

    1981-01-01

    This 18-second movie clip shows the NASA Dryden Lockheed C-140 JetStar in flight with its pylon-mounted air-turbine-drive system used to gather information on the acoustic characteristics of subscale advanced design propellers. Data was gathered through 28 flush-mounted microphones on the skin of the aircraft. From 1976 to 1987 the NASA Lewis Research Center, Cleveland, Ohio -- today known as the Glenn Research Center -- engaged in research and development of an advanced turboprop concept in partnership with Hamilton Standard, Windsor Locks, Connecticut, the largest manufacturer of propellers in the United States. The Advanced Turboprop Project took its impetus from the energy crisis of the early 1970's and sought to produce swept propeller blades that would increase efficiency and reduce noise. As the project progressed, Pratt & Whitney, Allison Gas Turbine Division of General Motors, General Electric, Gulfstream, Rohr Industries, Boeing, Lockheed, and McDonnell Douglas, among others, also took part. NASA Lewis did the much of the ground research and marshaled the resources of these and other members of the aeronautical community. The team came to include the NASA Ames Research Center, Langley Research Center, and the Ames-Dryden Flight Research Facility (before and after that time, the Dryden Flight Research Center). Together, they brought the propeller to the flight research stage, and the team that worked on the project won the coveted Collier Trophy for its efforts in 1987. To test the acoustics of the propeller the team developed, it mounted propeller models on a C-140 JetStar aircraft fuselage at NASA Dryden. The JetStar was modified with the installation of an air-turbine-drive system. The drive motor, with a test propeller, was mounted on a pylon atop the JetStar. The JetStar was equipped with an array of 28 microphones flush-mounted in the fuselage of the aircraft beneath the propeller. Microphones mounted on the wings and on an accompanying Learjet chase

  18. [Surgical glove use in France].

    PubMed

    Caillot, J L

    2005-01-01

    Since the end of the 19th century, surgeons have used gloves to prevent infectious complications to the patient. The AIDS epidemic of the 1980's sparked the use of universal precautions to protect the surgeon from infection and vice-versa. The interface between surgeon and patient is in effect a two-way street. Surgical techniques must be modified and barrier protection optimized to minimize these risks. A single layer glove is a fragile barrier to blood exposure; unrecognized glove perforations may lead to unrecognized and prolonged exposure. Double gloving, though far from being a widespread practice in France, seems to be the best protection from pathogen exposure. Glove powder and latex allergies have their own inherent risks to both surgeon and patient in the form of latex allergies and adhesive peritonitis. New institutional protocols will be necesssary in order to make powder-free non-latex gloves available to French surgeons.

  19. An Overview of Flight Test Results for a Formation Flight Autopilot

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.; Ryan, Jack; Allen, Michael J.; Jacobson, Steven R.

    2002-01-01

    The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft. Performance also has been demonstrated using single- and multiple-axis inputs such as step commands and frequency sweeps. This report briefly describes the experimental formation flight systems employed and discusses the navigation, guidance, and control algorithms that have been flight-tested. An overview of the flight test results of the formation autopilot during steady-state tracking and maneuvering flight is presented.

  20. Introduction of SARS in France, March–April, 2003

    PubMed Central

    van der Werf, Sylvie; Bonmarin, Isabelle; Levy-Bruhl, Daniel; Yazdanpanah, Yazdan; Hoen, Bruno; Emmanuelli, Julien; Lesens, Olivier; Dupon, Michel; Natali, François; Michelet, Christian; Reynes, Jacques; Guery, Benoit; Larsen, Christine; Semaille, Caroline; Mouton, Yves; Christmann, Daniel; André, Michel; Escriou, Nicolas; Burguière, Anna; Manuguerra, Jean-Claude; Coignard, Bruno; Lepoutre, Agnés; Meffre, Christine; Bitar, Dounia; Decludt, Bénédicte; Capek, Isabelle; Antona, Denise; Che, Didier; Herida, Magid; Infuso, Andréa; Saura, Christine; Brücker, Gilles; Hubert, Bruno; LeGoff, Dominique; Scheidegger, Suzanne

    2004-01-01

    We describe severe acute respiratory syndrome (SARS) in France. Patients meeting the World Health Organization definition of a suspected case underwent a clinical, radiologic, and biologic assessment at the closest university-affiliated infectious disease ward. Suspected cases were immediately reported to the Institut de Veille Sanitaire. Probable case-patients were isolated, their contacts quarantined at home, and were followed for 10 days after exposure. Five probable cases occurred from March through April 2003; four were confirmed as SARS coronavirus by reverse transcription–polymerase chain reaction, serologic testing, or both. The index case-patient (patient A), who had worked in the French hospital of Hanoi, Vietnam, was the most probable source of transmission for the three other confirmed cases; two had been exposed to patient A while on the Hanoi-Paris flight of March 22–23. Timely detection, isolation of probable cases, and quarantine of their contacts appear to have been effective in preventing the secondary spread of SARS in France. PMID:15030682

  1. Introduction of SARS in France, March-April, 2003.

    PubMed

    Desenclos, Jean-Claude; van der Werf, Sylvie; Bonmarin, Isabelle; Levy-Bruhl, Daniel; Yazdanpanah, Yazdan; Hoen, Bruno; Emmanuelli, Julien; Lesens, Olivier; Dupon, Michel; Natali, François; Michelet, Christian; Reynes, Jacques; Guery, Benoit; Larsen, Christine; Semaille, Caroline; Mouton, Daniel; André, Michel; Escriou, Nicolas; Burguière, Anna; Manuguerra, Jean-Claude; Coignard, Bruno; Lepoutre, Agnés; Meffre, Christine; Bitar, Dounia; Decludt, Bénédicte; Capek, Isabelle; Antona, Denise; Che, Didier; Herida, Magid; Infuso, Andréa; Sauri, Christine; Brücker, Gilles; Hubert, Bruno; LeGoff, Dominique; Scheidegger, Suzanne

    2004-02-01

    We describe severe acute respiratory syndrome (SARS) in France. Patients meeting the World Health Organization definition of a suspected case underwent a clinical, radiologic, and biologic assessment at the closest university-affiliated infectious disease ward. Suspected cases were immediately reported to the Institut de Veille Sanitaire. Probable case-patients were isolated, their contacts quarantined at home, and were followed for 10 days after exposure. Five probable cases occurred from March through April 2003; four were confirmed as SARS coronavirus by reverse transcription-polymerase chain reaction, serologic testing, or both. The index case-patient (patient A), who had worked in the French hospital of Hanoi, Vietnam, was the most probable source of transmission for the three other confirmed cases; two had been exposed to patient A while on the Hanoi-Paris flight of March 22-23. Timely detection, isolation of probable case-patients, and quarantine of their contacts appear to have been effective in preventing the secondary spread of SARS in France.

  2. In-flight turbulence benefits soaring birds

    USGS Publications Warehouse

    Mallon, Julie M; Bildstein, Keith L.; Katzner, Todd E.

    2015-01-01

    Birds use atmospheric updrafts to subsidize soaring flight. We observed highly variable soaring flight by Black Vultures (Coragyps atratus) and Turkey Vultures (Cathartes aura) in Virginia, USA, that was inconsistent with published descriptions of terrestrial avian flight. Birds engaging in this behavior regularly deviated vertically and horizontally from linear flight paths. We observed the soaring flight behavior of these 2 species to understand why they soar in this manner and when this behavior occurs. Vultures used this type of soaring mainly at low altitudes (<50 m), along forest edges, and when conditions were poor for thermal development. Because of the tortuous nature of this flight, we describe it as “contorted soaring.” The primary air movement suitable to subsidize flight at this altitude and under these atmospheric conditions is small-scale, shear-induced turbulence, which our results suggest can be an important resource for soaring birds because it permits continuous subsidized flight when other types of updraft are not available.

  3. F-18 SRA during flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, is seen here during a recent research flight. The former Navy aircraft is being flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments being flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for position measurement sensors as well as operational experience in handling optical sensor systems. Other experiments being flown on this testbed aircraft include electronically-controlled control surface actuators, flush air data collection systems, 'smart' skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  4. SOFIA: flight planning and execution

    NASA Astrophysics Data System (ADS)

    Leppik, K.

    2016-09-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a 2.5-m telescope mounted inside of a Boeing 747SP. Planning and executing astronomical observations from an aircraft moving at 500 miles per hour has its own unique challenges and advantages. Scheduling and optimizing an entire year of science observations is a balancing act with target availability, instrument availability, and operational constraints. A SOFIA flight is well choreographed, and successfully executing observations on SOFIA requires many systems and people to work together- from the telescope assembly compensating for the continual vibration and movement of the plane in order to accurately point the telescope, the expertise of the telescope operators to prepare the telescope for use by the instrument operators, aircraft operations ensuring that the aircraft is ready for flight, and the mission systems control computers keeping track of all the data. In this paper we will discuss what it takes to plan a SOFIA flight, and what we do once we're in the air. We will share a typical science flight, as well as more challenging and unique observations that require SOFIA being in the right place at the right time.

  5. Scaling Flight Tests of Unmanned Air Vehicles

    DTIC Science & Technology

    2006-09-01

    historical perspective, the concept of scaling goes back to 1638, when Galileo first introduced “scaling” and “physics” in his treatise Disclosures...Vertical Field of View,VFOV (degrees):5.16897 103 Bibliography 1. G. Galilei , Disclosure and Mathematic Demonstrations Concerning Two Sciences

  6. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  7. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL.... When any information indicates that barometric pressure on the route of flight currently exceeds...

  8. Estimating Atmospheric Turbulence From Flight Records

    NASA Technical Reports Server (NTRS)

    Wingrove, R. C.; Bach, R. E., Jr.; Schultz, T. A.

    1991-01-01

    Method for estimation of atmospheric turbulence encountered by airplanes utilizes wealth of data captured by multichannel digital flight-data recorders and air-traffic-control radar. Developed as part of continuing effort to understand how airplanes respond to such potentially hazardous phenomena as: clear-air turbulence generated by destabilized wind-shear layers above mountains and thunderstorms, and microbursts (intense downdrafts striking ground), associated with thunderstorms. Reconstructed wind fields used to predict and avoid future hazards.

  9. The PermaFRANCE network

    NASA Astrophysics Data System (ADS)

    Schoeneich, Philippe

    2010-05-01

    A French long term monitoring network of permafrost and frost related processes, named PermaFRANCE, is being built since two years. It will represent the French contribution to the Alpine wide PermaNET network. The PermaFRANCE network will focus not only on permafrost, but on all frost related phenomena at different altitudinal levels, including both thermal monitoring and process observation and monitoring : 1) continuous and discontinuous permafrost in rock walls : - thermal monitoring is mainly performed at the Aiguille du Midi (Mont Blanc massif) and includes rock surface temperature (RST) and temperature profils in medium depth boreholes (10 m) ; - inventory and observation of rockfall activity in high mountain rock walls : this action concerns the whole Mont Blanc area and is based on a hitorical inventory and an observation of current activity based on a network of observers and contributors ; 2) discontinuous permafrost is surficial deposits and flat bedrock : - thermal monitoring is performed on five rockglacier sites and includes ground surface temperature (GST) and annual BTS campaigns on some sites. Two medium depth boreholes (15 m) have been made in 2009 on one site, and equipped for thermal profile monitoring. A deep borehole (100 m) will be made in 2010 at 45° N latitude ; - geophysical monitoring is performed on 4 sites : repeated vertical electrical soundings exist for some sites since 20 years, and have been complemented since 2007 by eletrical resistivity tomography (ERT) and refraction seismics ; - surficial displacements of rockglaciers : surficial displacements are measured either by classical geodesy or by DGPS on 6 rockglaciers ; 3) sporadic permafrost at middle altitudes : - an inventory of cold scree slopes and biological investigations on soil and tree growth (dendrogeomorphology) have already been achieved ; - a thermal monitoring should be initiated on selected sites in 2010 ; 4) seasonal frost and frost/thaw cycles at middle and low

  10. Overall view of tower and adjacent aircraft shelters on flight ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Overall view of tower and adjacent aircraft shelters on flight line. View to east. - Plattsburgh Air Force Base, Security Guard Tower, Florida Street at Aircraft Shelters Area, Plattsburgh, Clinton County, NY

  11. 48 CFR 252.228-7001 - Ground and flight risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... installed equipment, accessories, and power plants, while the aircraft is in the open or in motion. The term.../instruction entitled “Contractor's Flight and Ground Operations” (Air Force Instruction 10-220,...

  12. DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF ELECTRONICS TEST AREA, FLIGHT KITS FACILITY, ROOM NO. 1N12, FACING WEST - Cape Canaveral Air Force Station, Launch Complex 39, Vehicle Assembly Building, VAB Road, East of Kennedy Parkway North, Cape Canaveral, Brevard County, FL

  13. Space-X Launches Falcon 9 on Demonstration Flight

    NASA Video Gallery

    SpaceX's Falcon 9 rocket and Dragon spacecraft launched from Launch Complex 40 at Cape Canaveral Air Force Station at 10:43 a.m. EST on Wednesday, Dec. 8. This is first demonstration flight for NAS...

  14. GENERAL VIEW OF FLIGHT LINE BUILDINGS. FROM LEFT TO RIGHT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF FLIGHT LINE BUILDINGS. FROM LEFT TO RIGHT, JET ENGINE TEST CELL BUILDING (BUILDING 2820), MAINTENANCE DOCK, FLIGHT SYSTEM (BUILDING 2818)" AND MAINTENANCE DOCK (BUILDING 2793). VIEW TO SOUTHEAST - Plattsburgh Air Force Base, U.S. Route 9, Plattsburgh, Clinton County, NY

  15. 14 CFR 417.223 - Flight hazard area analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to control the risk to the public from debris impact hazards. The risk management requirements of... debris resulting from normal flight events and events resulting from any potential malfunction; (3) Regions of sea and air potentially exposed to debris from normal flight events, including planned...

  16. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    project. The Perseus Proof-Of-Concept aircraft first flew in November 1991 and made three low-altitude flights within a month to validate the Perseus aerodynamic model and flight control systems. Next came the redesigned Perseus A, which incorporated a closed-cycle combustion system that mixed oxygen carried aboard the aircraft with engine exhaust to compensate for the thin air at high altitudes. The Perseus A was towed into the air by a ground vehicle and its engine started after it became airborne. Prior to landing, the engine was stopped, the propeller locked in horizontal position, and the Perseus A glided to a landing on its unique bicycle-type landing gear. Two Perseus A aircraft were built and made 21 flights in 1993-1994. One of the Perseus A aircraft reached over 50,000 feet in altitude on its third test flight. Although one of the Perseus A aircraft was destroyed in a crash after a vertical gyroscope failed in flight, the other aircraft completed its test program and remains on display at Aurora's facility in Manassas. Perseus B first flew Oct. 7, 1994, and made two flights in 1996 before being damaged in a hard landing on the dry lakebed after a propeller shaft failure. After a number of improvements and upgrades-including extending the original 58.5-foot wingspan to 71.5 feet to enhance high-altitude performance--the Perseus B returned to Dryden in the spring of 1998 for a series of four flights. Thereafter, a series of modifications were made including external fuel pods on the wing that more than doubled the fuel capacity to 100 gallons. Engine power was increased by more than 20 percent by boosting the turbocharger output. Fuel consumption was reduced with fuel control modifications and a leaner fuel-air mixture that did not compromise power. The aircraft again crashed on Oct. 1, 1999, near Barstow, California, suffering moderate damage to the aircraft but no property damage, fire, or injuries in the area of the crash. Perseus B is flown remotely by a pilot

  17. 'Mighty Eagle' Takes Flight

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  18. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  19. Lockheed Electra - aerial view in flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This shot shows the National Science Foundation Lockheed Electra in a climbing right-hand turn; the video clip runs 14 seconds in length. On Mar. 24, 1998, an L-188 Electra aircraft owned by the National Science Foundation, Arlington, Virginia, and operated by the National Center for Atmospheric Research, Boulder, Colorado, flew near Boulder with an Airborne Coherent LiDAR (Light Detection and Ranging) for Advanced In-flight Measurement. This aircraft was on its first flight to test its ability to detect previously invisible forms of clear air turbulence. Coherent Technologies Inc., Lafayette, Colorado, built the LiDAR device for the NASA Dryden Flight Research Center, Edwards, California. NASA Dryden participated in the effort as part of the NASA Aviation Safety Program, for which the lead center was Langley Research Center, Hampton, Virginia. Results of the test indicated that the device did successfully detect the clear air turbulence.

  20. TDWR information on the flight deck

    NASA Technical Reports Server (NTRS)

    Hinton, Dave

    1991-01-01

    TDWR information on the flight deck is presented in the form of view-graphs. The following subject areas are covered: air/ground wind shear information integration research; wind shear detection/warning and avoidance system; initial experiment; and future plans.

  1. System safety education focused on flight safety

    NASA Technical Reports Server (NTRS)

    Holt, E.

    1971-01-01

    The measures necessary for achieving higher levels of system safety are analyzed with an eye toward maintaining the combat capability of the Air Force. Several education courses were provided for personnel involved in safety management. Data include: (1) Flight Safety Officer Course, (2) Advanced Safety Program Management, (3) Fundamentals of System Safety, and (4) Quantitative Methods of Safety Analysis.

  2. Training Interventions for Reducing Flight Mishaps

    DTIC Science & Technology

    2008-12-01

    data recorders, and (e) line operations safety audits ( LOSA ), Each illuminates a different aspect of flight operations. Helmreich, Wilhelm, Klinect, and...Merritt, (2001) studied threats to safcty and the nature of errors in three airlines using LOSAs . Striking differences were observed among these air

  3. [The occupational physician in France].

    PubMed

    Matsuda, Shinya

    2013-10-01

    The French Labor law defines the role and its allocation criteria of the occupational physician (OP) the same as in Japan. In France, occupational medicine is one of the medical specialties. The OP resident must follow the 4 years clinical training before certification. After having finished their residency, they are entitled to work for the occupational health service office of a company or company association (in the case of small and medium sized companies). The most important characteristics of the French system is that they cover all workers regardless of company size. The main role of the OP is prevention of work related diseases and accidents. They are not allowed to do clinical services except for emergency cases. Their main activities are health examinations, health education, patrol and advice for better working condition. Formerly, it was rather difficult to attract the medical students for OP resident course because of its prevention oriented characteristics. A growing concern about the importance of health management at the work site, however, has changed the situation. Now, the number of candidates for OP resident course is increasing. Their task has expanded to cover mental health and other life style related diseases. The 2011 modification of law redefines the role of the OP as a director of an occupational health service office who has a total responsibility of multidisciplinary services. The French and Japanese occupational health systems have many of similarities. A comparative study by researchers of UOEH is expected to yield useful information.

  4. [Smoking in women in France].

    PubMed

    Hill, C

    1999-10-01

    Surveillance of smoking behavior and study of consequences of smoking on the health of the French population, and particularly the female population, is a public health priority. The amount of tobacco consumed can be determined from sales figures and from surveys. Globally, tobacco sales increased through 1985. According to the available surveys, the proportion of regular smokers has varied little as smoking rate has decreased in men and increased in women. The decrease occurred in all age groups for men and increased only in the 25-49 year age group for women. Smoking is the cause of 60,000 deaths per year in France, 57,000 in the male population and 3,000 in the female population. Despite reinforced legislation (The Veil and Evin laws) which is unfortunately poorly applied, tobacco consumption has not decreased greatly. Funding levels for anti-smoking campaigns are totally insignificant compared with the efforts of the tobacco industry to promote their products. However, the beneficial health effect of stopping smoking is truly great since the risk depends much more on the duration of smoking than on the number of daily cigarettes. In addition, the delay between the cause and consequence is long, the consequences of the increase in tobacco smoking among young women over the last 20 years will not become visible until 20 to 40 years from now. One could wonder why so little effort has been put into anti-smoking campaigns despite the readily available data clearly warranting their promotion.

  5. [Cannabis in France, new insights].

    PubMed

    Costentin, Jean

    2014-03-01

    France holds the record for cannabis use in Europe, especially among adolescents. This drug of abuse is thus mainly used during a very sensitive period of brain development, education, vehicle driving and development of life projects. In addition, synthetic derivatives of tetrahydrocannabinol (THC), which are more noxious than cannabis itself are now appearing on the market. Traficking and cultivation for personnal use have intensified; products proposed for sale are richer in THC; and some methods of consumption (e-cigarettes, vaporizers, water pipes) increase the supply of THC to the lungs and thence to the body and brain. It is in this context that attempts are being made to legalize this drug of abuse. Other attempts are made to disguise it as a medication. Meanwhile, the list of its psychic as well as physical damages grows longer, with some very severe cases of major injuries. This evolution takes place in spite of numerous warnings expressed by the French Academy of Medicine. Subsequently, it is prompted to carefully and vigorously denounce these events. This will be the aim of this thematic session.

  6. 14 CFR 91.138 - Temporary flight restrictions in national disaster areas in the State of Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Temporary flight restrictions in national... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.138 Temporary flight restrictions in national...

  7. Prototype Conflict Alerting Logic for Free Flight

    NASA Technical Reports Server (NTRS)

    Yang, Lee C.; Kuchar, James K.

    1997-01-01

    This paper discusses the development of a prototype alerting system for a conceptual Free Flight environment. The concept assumes that datalink between aircraft is available and that conflicts are primarily resolved on the flight deck. Four alert stages are generated depending on the likelihood of a conflict. If the conflict is not resolved by the flight crews, Air Traffic Control is notified to take over separation authority. The alerting logic is based on probabilistic analysis through modeling of aircraft sensor and trajectory uncertainties. Monte Carlo simulations were used over a range of encounter situations to determine conflict probability. The four alert stages were then defined based on probability of conflict and on the number of avoidance maneuvers available to the flight crew. Preliminary results from numerical evaluations and from a piloted simulator study at NASA Ames Research Center are summarized.

  8. 75 FR 16839 - Sorbitol From France

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Sorbitol From France AGENCY: United States International Trade Commission. ACTION: Revised schedule for the subject review. DATES: Effective Date: Date of Commission approval. FOR...

  9. Demoiselles and Drafts from Italy and France.

    ERIC Educational Resources Information Center

    Picard, M. Dane

    1988-01-01

    Recounts the adventures of a journey taken through France and Italy. Makes an analogy of this trip to that of the one Charles Dickens took in 1844. Describes silicified horizons of the southern Paris Basin, moraines, outcrops, and "Hoodoos." (RT)

  10. Women's Employment in France: Protection or Equality.

    ERIC Educational Resources Information Center

    Devaud, Marcelle; Levy, Martine

    1980-01-01

    Reviews the origin and evolution of special protection laws in France for employed women, describes those measures that still exist, and explains what employers, unions, and the authorities think of them. Discusses pregnancy, family responsibilities, and technological progress. (CT)

  11. AFTI/F-16 in flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Overhead photograph of the AFTI F-16 painted in a non-standard gray finish, taken during a research flight in 1989. The two sensor pods are visible on the fuselage just forward of the wings and one of the two chin canards can be seen as a light-colored triangle ahead of one of the pods. A Sidewinder air-to-air missile is mounted on each wing tip. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total

  12. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  13. [Smoking and electronic cigarettes in France].

    PubMed

    Berlin, Ivan

    2016-12-01

    France is one of the developed countries where the prevalence of tobacco use is the highest. The reduction of incidence and prevalence of tobacco use in the near future would considerably decrease tobacco associated mortality and morbidity. The electronic cigarette, a consumer product that delivers pharmacologically active substances, is used by several millions of persons in France. The benefit-risk ratio of electronic cigarette use is unknown, as of today.

  14. The Route Analysis Based On Flight Plan

    NASA Astrophysics Data System (ADS)

    Feriyanto, Nur; Saleh, Chairul; Fauzi, Achmad; Rachman Dzakiyullah, Nur; Riza Iwaputra, Kahfi

    2016-02-01

    Economic development effects use of air transportation since the business process in every aspect was increased. Many people these days was prefer using airplane because it can save time and money. This situation also effects flight routes, many airlines offer new routes to deal with competition. Managing flight routes is one of the problems that must be faced in order to find the efficient and effective routes. This paper investigates the best routes based on flight performance by determining the amount of block fuel for the Jakarta-Denpasar flight route. Moreover, in this work compares a two kinds of aircraft and tracks by calculating flight distance, flight time and block fuel. The result shows Jakarta-Denpasar in the Track II has effective and efficient block fuel that can be performed by Airbus 320-200 aircraft. This study can contribute to practice in making an effective decision, especially helping executive management of company due to selecting appropriate aircraft and the track in the flight plan based on the block fuel consumption for business operation.

  15. Transpiration cooling in hypersonic flight

    NASA Technical Reports Server (NTRS)

    Tavella, Domingo; Roberts, Leonard

    1989-01-01

    A preliminary numerical study of transpiration cooling applied to a hypersonic configuration is presented. Air transpiration is applied to the NASA all-body configuration flying at an altitude of 30500 m with a Mach number of 10.3. It was found that the amount of heat disposal by convection is determined primarily by the local geometry of the aircraft for moderate rates of transpiration. This property implies that different areas of the aircraft where transpiration occurs interact weakly with each other. A methodology for quick assessments of the transpiration requirements for a given flight configuration is presented.

  16. Advanced flight software reconfiguraton

    NASA Technical Reports Server (NTRS)

    Porcher, Bryan

    1991-01-01

    Information is given in viewgraph form on advanced flight software reconfiguration. Reconfiguration is defined as identifying mission and configuration specific requirements, controlling mission and configuration specific data, binding this information to the flight software code to perform specific missions, and the release and distribution of the flight software. The objectives are to develop, demonstrate, and validate advanced software reconfiguration tools and techniques; to demonstrate reconfiguration approaches on Space Station Freedom (SSF) onboard systems displays; and to interactively test onboard systems displays, flight software, and flight data.

  17. A USA Commercial Flight Track Database for Upper Tropospheric Aircraft Emission Studies

    NASA Technical Reports Server (NTRS)

    Garber, Donald P.; Minnis, Patrick; Costulis, Kay P.

    2003-01-01

    A new air traffic database over the contiguous United States of America (USA) has been developed from a commercially available real-time product for 2001-2003 for all non-military flights above 25,000 ft. Both individual flight tracks and gridded spatially integrated flight legs are available. On average, approximately 24,000 high-altitude flights were recorded each day. The diurnal cycle of air traffic over the USA is characterized by a broad daytime maximum with a 0130-LT minimum and a mean day-night air traffic ratio of 2.4. Each week, the air traffic typically peaks on Thursday and drops to a low Saturday with a range of 18%. Flight density is greatest during late summer and least during winter. The database records the disruption of air traffic after the air traffic shutdown during September 2001. The dataset should be valuable for realistically simulating the atmospheric effects of aircraft in the upper troposphere.

  18. Free Flight Rotorcraft Flight Test Vehicle Technology Development

    NASA Technical Reports Server (NTRS)

    Hodges, W. Todd; Walker, Gregory W.

    1994-01-01

    A rotary wing, unmanned air vehicle (UAV) is being developed as a research tool at the NASA Langley Research Center by the U.S. Army and NASA. This development program is intended to provide the rotorcraft research community an intermediate step between rotorcraft wind tunnel testing and full scale manned flight testing. The technologies under development for this vehicle are: adaptive electronic flight control systems incorporating artificial intelligence (AI) techniques, small-light weight sophisticated sensors, advanced telepresence-telerobotics systems and rotary wing UAV operational procedures. This paper briefly describes the system's requirements and the techniques used to integrate the various technologies to meet these requirements. The paper also discusses the status of the development effort. In addition to the original aeromechanics research mission, the technology development effort has generated a great deal of interest in the UAV community for related spin-off applications, as briefly described at the end of the paper. In some cases the technologies under development in the free flight program are critical to the ability to perform some applications.

  19. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  20. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  1. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  2. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  3. 14 CFR 91.139 - Emergency air traffic rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Emergency air traffic rules. 91.139 Section...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General § 91.139 Emergency air traffic rules. (a) This section prescribes a process for utilizing Notices to...

  4. [Epidemiology of nephrolithiasis in France].

    PubMed

    Daudon, M

    2005-12-01

    Nephrolithiasis is a frequent disease that affects about 10% of people in western countries. The prevalence of calcium oxalate stones has been constantly increasing during the past fifty years in France as well as in other industrialized countries. Stone composition varies depending to gender and age of patients and also underlines the role of other risk factors and associated pathologies such as body mass index and diabetes mellitus. The decrease in struvite frequency in female patients is the result of a significantly improved diagnostic and treatment of urinary tract infections by urea-splitting bacteria. In contrast, the increasing occurrence of weddellite calculi in stone forming women aged more than 50 years could be the consequence of post-menopausal therapy. A high prevalence of uric acid was found in overweight and obese stone formers and in diabetic ones as well. Another important finding was the increased occurrence with time of calcium oxalate stones formed from papillary Randall's plaques, especially in young patients. Nutritional risk factors for stone disease are well known: they include excessive consumption of animal proteins, sodium chloride and rapidly absorbed glucides, and insufficient dietary intake of fruits and potassium-rich vegetables, which provide an alkaline load. As a consequence, an excessive production of hydrogen ions may induce several urinary disorders including low urine pH, high urine calcium and uric acid excretion and low urine citrate excretion. Excess in calorie intake, high chocolate consumption inducing hyperoxaluria and low water intake are other factors, which favour excessive urine concentration of solutes. Restoring the dietary balance is the first advice to prevent stone recurrence. However, the striking increase of some types of calculi, such as calcium oxalate stones developed from Randall's plaque, should alert to peculiar lithogenetic risk factors and suggests that specific advices should be given to prevent stone

  5. Isotopic evidence of pollutant lead sources in Northwestern France

    NASA Astrophysics Data System (ADS)

    Véron, Alain; Flament, Pascal; Bertho, Marie Laure; Alleman, Laurent; Flegal, Russell; Hamelin, Bruno

    Ratios of stable lead isotopes ( 204Pb, 206Pb, 207Pb, 208Pb) are used to characterize both spatial and temporal variations in anthropogenic emissions of industrial lead aerosols to the atmosphere of northwestern France. Differences in isotopic compositions of aerosols collected from a rural area (Wimereux) in the Nord-Pas de Calais region along the English Channel in 1982-1983 ( 206Pb/ 207Pb=1.108±0.005) and 1994 ( 206Pb/ 207Pb=1.148±0.003) are paralleled by similar variations in urban aerosols within France during the same period (e.g., 206Pb/ 207Pb=1.115±0.008 from 1981-1989 and 1.143±0.006 from 1992-1995). These results correlate well with recent findings in the Mediterranean basin (Alleman, 1997) where this radiogenicity increase is clearly associated with industrial sources other than leaded gasoline that has remained relatively constant during its phasing out ( 206Pb/ 207Pb=1.08-1.11). Here we used archived data, air mass trajectories and aerosol diameters combined with isotopic signatures to confirm this trend at a regional scale. Indeed, the main industrial signatures from lead smelting ( 206Pb/ 207Pb=1.133±0.001) and steel metallurgy ( 206Pb/ 207Pb=1.196±0.015) in northwestern France appear more radiogenic than that of leaded gasoline. The shift in isotopic compositions also conform with the systematic change in the mean size (diameter) of aerosols at Wimereux, which ranged from 0.30 to 0.61 μm in 1982-1984 and from 0.70 to 0.89 μm in 1994.

  6. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  7. 14 CFR 121.523 - Flight time limitations: Crew of three or more pilots and additional airmen as required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS AND OPERATORS FOR... operations may schedule an airman for flight deck duty as a flight engineer, or navigator in a crew of...

  8. 14 CFR 91.159 - VFR cruising altitude or flight level.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false VFR cruising altitude or flight level. 91.159 Section 91.159 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules...

  9. 75 FR 42599 - Posting of Flight Delay Data on Web Sites

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-22

    ... Office of the Secretary 14 CFR Part 234 RIN No. 2105-AE02 Posting of Flight Delay Data on Web Sites... amending the time period for uploading flight performance information to a reporting air carrier's Web site... scheduled passenger revenues) load flight performance data onto their Web sites on Saturday, July 24,...

  10. 14 CFR 91.858 - Special flight authorizations for non-revenue Stage 2 operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Special flight authorizations for non..., DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Operating Noise Limits § 91.858 Special flight authorizations for non-revenue Stage 2...

  11. 76 FR 52231 - Restrictions on Operators Employing Former Flight Standards Service Aviation Safety Inspectors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-22

    ...] RIN 2120-AJ36 Restrictions on Operators Employing Former Flight Standards Service Aviation Safety... preceding 2-year period directly served as, or was directly responsible for the oversight of, a Flight... with promoting the safe flight of civil aircraft in air commerce by prescribing regulations and...

  12. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  13. Enhanced Flight Termination System (EFTS): Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2008-01-01

    The Enhanced Flight Termination System (EFTS) program was initiated and propelled due to the inadvertent terminations of Global Hawk and the Strategic Target System and the NASA Inspector General's assessment letter and recommendations regarding the exploration of low-cost, lightweight space COMSEC for FTS. Additionally, the standard analog and high alphabet systems most commonly used in FTS are secure, but not encrypted. A study group was initiated to select and document a robust, affordable, reliable technology that provides encrypted FTS capability. A flight demonstration was conducted to gain experience using EFTS in an operational environment, provide confidence in the use of the EFTS components, integrate EFTS into an existing range infrastructure to demonstrate the scalability of system components, to provide a command controller that generated the EFTS waveform using an existing range infrastructure, and to provide a report documenting the results of the demonstration. The primary goal of the demonstration was to obtain operational experience with EFTS. Areas of operational experience include: mission planning, pre-flight configuration and testing, mission monitoring and recording, vehicle termination, developing mission procedures. and post mission data reduction and other post mission activities. An Advanced Medium-Range Air-to-Air Missile (AMRAAM) was selected to support the EFTS demonstration due to interest in future use of EFTS by the AMRAAM program, familiarity of EFTS by range personnel, and the availability of existing operational environment to support EFTS testing with available program funding. For demonstration purposes, the AMRAAM was successfully terminated using an EFTS receiver and successfully demonstrating EFTS. The EFTS monitoring software with spectrum analyzer and digital graphical display of aircraft, missile, and target were also demonstrated.

  14. The ASAC Flight Segment and Network Cost Models

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  15. HiMAT in flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The HiMAT (Highly Maneuverable Aircraft Technology) subscale research vehicle, seen here during a research flight, was flown by the NASA Dryden Flight Research Center, Edwards, California, from mid 1979 to January 1983. The aircraft demonstrated advanced fighter technologies that have been used in the development of many modern high performance military aircraft. Two vehicles were used in the research program conducted jointly by NASA and the Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio. The two vehicles, flown a total of 26 times, provided data on the use of composites, aeroelastic tailoring, close-coupled canards and winglets. They investigated the interaction of these then-new technologies upon each other. About one-half the size of a standard manned fighter and powered by a small jet engine, the HiMAT vehicles were launched from NASA's B-52 carrier aircraft at an altitude of about 45,000 feet. They were flown remotely by a NASA research pilot from a ground station with the aid of a television camera mounted in the HiMAT cockpits. Technologies tested on the HiMAT vehicles appearing later on other aircraft include the extensive use of composites common now on military and commercial aircraft; rear-mounted wing and forward canard configuration used very successfully on the X-29 research aircraft flown at Dryden; and winglets, now used on many private and commercial aircraft to lessen wingtip drag and enhance fuel savings.

  16. Fluid mechanics of microscale flight

    NASA Astrophysics Data System (ADS)

    Hennighausen, Konstantinos

    2001-12-01

    Recent advancements in nanotechnology, materials, manufacturing, and electronic sensors have raised interest in building increasingly small micro air vehicles (MAVs). These aircraft are presently built and flown with wingspans on the order of ten centimeters. Future MAVs, with wingspans below one centimeter, have wide ranging applications in remote sensing. The aerodynamics of present and future MAVs cannot be analysed using the classical techniques developed for conventional aircraft. Their flight, like that of insects, involves strong viscous and unsteady effects. Computational fluid dynamics (CFD) has become an integral tool in the design of modern aircraft. In this dissertation, CFD tools are created to facilitate the analysis and design of MAVs. After examining the relevant physics and mechanism of microscale flight, a palette of tools is developed. First, two approaches to generating grids around a moving, deforming body are explored. These techniques, utilizing three dimensional Bézier hyperpatches and non-uniform rational B-splines, are applied to prototype MAV shapes. A numerical method is developed to integrate the compressible Navier-Stokes equations on a deforming grid, utilizing upwinded differences and a finite volume approach. These tools are then utilized to design and simulate the flow about a prototype MAV. The resulting flow patterns are examined, and suggest that these tools are appropriate means by which to study microscale flight.

  17. NATO SET-093 joint field experiment at Bourges, France

    NASA Astrophysics Data System (ADS)

    Marty, C.; Bruel, F.; Prieur, D.; Naz, P.; Miller, L. S.

    2009-05-01

    This paper describes the NATO Task Group SET-093/RTG53/MSE (referred to as TG-53 in this report) Acoustic Detection of Weapons Firing Joint Field Experiment II conducted at the Etablissement Technique de Bourges (ETBS), Bourges, France, during 16 to 27 June 2008. This field experiment is a follow-on to the NATO TG-53 Acoustic Detection of Weapons Firing Joint Field Experiment I conducted at the Yuma Proving Grounds (YPG), Yuma, Arizona, USA, during 31 October to 4 November 2005 [1]. The objectives of the joint experiment were: (i) to collect acoustic signatures of direct and indirect firings from weapons' such as small arms, mortars, artillery, rockets, and C4 explosives, (ii) to analyze the propagation effects of grassy, wooded, and urban terrains, (iii) to share signatures collected from a variety of acoustic sensors, on the ground and in the air, distributed over a wide area, and (iv) to demonstrate the interoperability of disparate sensors developed by the various nations involved. The participating NATO countries , including France, the Netherlands, the United Kingdom, Canada, and the United States of America, and Israel as well as part of the Mediterranean dialogue countries, deployed nearly 90 sensors and sensor systems over the test range area.

  18. Importance of body rotation during the flight of a butterfly.

    PubMed

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  19. HIFIRE Flight 2 Overview and Status Update 2011

    NASA Technical Reports Server (NTRS)

    Jackson, Kevin R.; Gruber, Mark R.; Buccellato, Salvatore

    2011-01-01

    A collaborative international effort, the Hypersonic International Flight Research Experimentation (HIFiRE) Program aims to study basic hypersonic phenomena through flight experimentation. HIFiRE Flight 2 teams the United States Air Force Research Lab (AFRL), NASA, and the Australian Defence Science and Technology Organisation (DSTO). Flight 2 will develop an alternative test technique for acquiring high enthalpy scramjet flight test data, allowing exploration of accelerating hydrocarbon-fueled scramjet performance and dual-to-scram mode transition up to and beyond Mach 8 flight. The generic scramjet flowpath is research quality and the test fuel is a simple surrogate for an endothermically cracked liquid hydrocarbon fuel. HIFiRE Flight 2 will be a first of its kind in contribution to scramjets. The HIFiRE program builds upon the HyShot and HYCAUSE programs and aims to leverage the low-cost flight test technique developed in those programs. It will explore suppressed trajectories of a sounding rocket propelled test article and their utility in studying ramjet-scramjet mode transition and flame extinction limits research. This paper describes the overall scramjet flight test experiment mission goals and objectives, flight test approach and strategy, ground test and analysis summary, development status and project schedule. A successful launch and operation will present to the scramjet community valuable flight test data in addition to a new tool, and vehicle, with which to explore high enthalpy scramjet technologies.

  20. Insect flight on fluid interfaces: a chaotic interfacial oscillator

    NASA Astrophysics Data System (ADS)

    Mukundarajan, Haripriya; Prakash, Manu

    2013-11-01

    Flight is critical to the dominance of insect species on our planet, with about 98 percent of insect species having wings. How complex flight control systems developed in insects is unknown, and arboreal or aquatic origins have been hypothesized. We examine the biomechanics of aquatic origins of flight. We recently reported discovery of a novel mode of ``2D flight'' in Galerucella beetles, which skim along an air-water interface using flapping wing flight. This unique flight mode is characterized by a balance between capillary forces from the interface and biomechanical forces exerted by the flapping wings. Complex interactions on the fluid interface form capillary wave trains behind the insect, and produce vertical oscillations at the surface due to non-linear forces arising from deformation of the fluid meniscus. We present both experimental observations of 2D flight kinematics and a dynamic model explaining the observed phenomena. Careful examination of this interaction predicts the chaotic nature of interfacial flight and takeoff from the interface into airborne flight. The role of wingbeat frequency, stroke plane angle and body angle in determining transition between interfacial and fully airborne flight is highlighted, shedding light on the aquatic theory of flight evolution.

  1. Importance of body rotation during the flight of a butterfly

    NASA Astrophysics Data System (ADS)

    Fei, Yueh-Han John; Yang, Jing-Tang

    2016-03-01

    In nature the body motion of a butterfly is clearly observed to involve periodic rotation and varied flight modes. The maneuvers of a butterfly in flight are unique. Based on the flight motion of butterflies (Kallima inachus) recorded in free flight, a numerical model of a butterfly is created to study how its flight relates to body pose; the body motion in a simulation is prescribed and tested with varied initial body angle and rotational amplitude. A butterfly rotates its body to control the direction of the vortex rings generated during flapping flight; the flight modes are found to be closely related to the body motion of a butterfly. When the initial body angle increases, the forward displacement decreases, but the upward displacement increases within a stroke. With increased rotational amplitudes, the jet flows generated by a butterfly eject more downward and further enhance the generation of upward force, according to which a butterfly executes a vertical jump at the end of the downstroke. During this jumping stage, the air relative to the butterfly is moving downward; the butterfly pitches up its body to be parallel to the flow and to decrease the projected area so as to avoid further downward force generated. Our results indicate the importance of the body motion of a butterfly in flight. The inspiration of flight controlled with body motion from the flight of a butterfly might yield an alternative way to control future flight vehicles.

  2. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  3. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  4. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  5. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  6. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  7. AFTI/F-16 in banked flight

    NASA Technical Reports Server (NTRS)

    1989-01-01

    This photo depicts the AFTI F-16 in the configuration used midway through the program. The sensor pods were added to the fuselage, but the chin canards remained in place. Painted in non-standard gray tones, it carried Sidewinder air-to-air missles on its wingtips. During the 1980s and 1990s, NASA and the U.S. Air Force participated in a joint program to integrate and demonstrate new avionics technologies to improve close air support capabilities in next-generation aircraft. The testbed aircraft, seen here in flight over the desert at NASA's Dryden Flight Research Center, Edwards, California, was called the Advanced Fighter Technology Integration (AFTI) F-16. The tests demonstrated technologies to improve navigation and the pilot's ability to find and destroy enemy ground targets day or night, including adverse weather. The aircraft--an F-16A Fighting Falcon (Serial #75-0750)--underwent numerous modifications. A relatively low-cost testbed, it evaluated the feasability of advanced, intergrated-sensor, avionics, and flight control technologies. During the first phase of the AFTI/F-16 program, which began in 1983, the aircraft demonstrated voice-actuated commands, helmet-mounted sights, flat turns, and selective fuselage pointing using forward-mounted canards and a triplex digital flight control computer system. The second phase of research, which began in the summer of 1991, demonstrated advanced technologies and capabilities to find and destroy ground targets day or night, and in adverse weather while using maneuverability and speed at low altitude. This phase was known as the close air support and battlefield air interdiction (CAS/BAI) phase. Finally, the aircraft was used to assess the Automatic Ground Collision Avoidance System (Auto - GCAS), a joint project with the Swedish Government. For these tests, the pilot flew the aircraft directly toward the ground, simulating a total loss of control. The GCAS was designed to take command in such emergencies and bring

  8. Air Travel Health Tips

    MedlinePlus

    ... improved health Before your flightOne key to air travel is to prepare ahead of time. If you are carrying on a bag, make ... need to change if your eating and sleeping times will change at your destination.If you have diabetes or epilepsy, you should travel with your ID card. For instance, the American ...

  9. Pilot in Command: An Illustration of Autonomous Flight Management

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ponthieux, Joseph G.

    2004-01-01

    Several years of NASA research have produced the concept for air traffic management called "Distributed Air/Ground Traffic Management," a major operational advancement that should significantly increase the capacity of the National Airspace System. A key component, "Autonomous Flight Management," introduces a new class of aircraft operations in which pilots are authorized to freely maneuver and execute optimal trajectories independent from air traffic controllers. These aircraft operators would benefit from significant increases in flexibility to optimize all flight operations and from avoiding most of the delays associated with ground-controlled operations. Responsibilities for aircraft separation and arrival flow conformance are transferred to the flight deck, and the pilots use computerized decision-support tools to accomplish these tasks. A research prototype of these tools called the "Autonomous Operations Planner" is being developed at the NASA Langley Research Center. This 14-minute video illustrates Autonomous Flight Management from the airline pilot's perspective.

  10. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    NASA Technical Reports Server (NTRS)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  11. Establishing Lagrangian Connections between Observations within Air Masses Crossing the Atlantic during the ICARTT Experiment

    NASA Technical Reports Server (NTRS)

    Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.; Schlager, H.; Atlas, E.; Blake, D.; Coe, H.; Cohen, R. C.; Crosier, J.; Flocke, F.; Holloway, J. S.; Hopkins, J. R.; Huber, G.; McQuaid, J.; Purvis, R.; Rappengluck, B.; Ryerson, T. B.; Sachse, G. W.

    2006-01-01

    The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.

  12. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    NASA Technical Reports Server (NTRS)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  13. Upper-Stage Flight Experiment

    NASA Technical Reports Server (NTRS)

    Anderson, W. E.; Boxwell, R.; Crockett, D. V.; Ross, R.; Lewis, T.; McNeal, C.; Verdarame, K.

    1999-01-01

    For propulsion applications that require that the propellants are storable for long periods, have a high density impulse, and are environmentally clean and non-toxic, the best choice is a combination of high-concentration hydrogen peroxide (High Test Peroxide, or HTP) and a liquid hydrocarbon (LHC) fuel. The HTP/LHC combination is suitable for low-cost launch vehicles, space taxi and space maneuvering vehicles, and kick stages. Orbital Sciences Corporation is under contract with the NASA Marshall Space Flight Center in cooperation with the Air Force Research Lab to design, develop and demonstrate a new low-cost liquid upper stage based on HTP and JP-8. The Upper Stage Flight Experiment (USFE) focuses on key technologies necessary to demonstrate the operation of an inherently simple propulsion system with an innovative, state-of-the-art structure. Two key low-cost vehicle elements will be demonstrated - a 10,000 lbf thrust engine and an integrated composite tank structure. The suborbital flight test of the USFE is scheduled for 2001. Preceding the flight tests are two major series of ground tests at NASA Stennis Space Center and a subscale tank development program to identify compatible composite materials and to verify their compatibility over long periods of time. The ground tests include a thrust chamber development test series and an integrated stage test. This paper summarizes the results from the first phase of the thrust chamber development tests and the results to date from the tank material compatibility tests. Engine and tank configurations that meet the goals of the program are described.

  14. One Hundred Years of Powered Flight

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This year, Centennial of Flight celebrations across the United States are marking the tremendous achievement of the Wright brothers successful, powered, heavier-than-air flight on December 17, 1903. The vision and persistence of these two men pioneered the way for explorers, inventors, and innovators to take aeronautics from the beaches of Kitty Hawk, North Carolina, to the outer reaches of the solar system. Along this 100-year journey, NASA has played a significant role in developing and supporting the technologies that have shaped the aviation industry.

  15. A laser-powered flight transportation system

    NASA Technical Reports Server (NTRS)

    Hertzberg, A.; Sun, K. C.; Jones, W. S.

    1978-01-01

    Laser energy transmitted from a solar-power satellite via a set of relay satellites is used to power a cruising air transport; i.e., a laser-powered airplane. The result is a nearly fuelless pollution-free flight transportation system which is cost competitive with the fuel-conservative airplane of the future. The major components of this flight system include a laser-power satellite, relay satellites, laser-powered turbofans, and a conventional airframe. The relay satellites are orbiting optical systems which intercept the beam from a power satellite and refocus and redirect the beam to its next target.

  16. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  17. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  19. Space Launch Flight Termination System initial development

    NASA Astrophysics Data System (ADS)

    Ratkevich, B.; Brierley, S.; Lupia, D.; Leiker, T.

    This paper describes the studies, capabilities and challenges in initial development of a new digital encrypted termination system for space launch vehicles. This system is called the Space Launch Flight Termination System (SLFTS). Development of SLFTS is required to address an obsolescence issue and to improve the security of flight termination systems presently in use on the nation's space launch vehicles. SLFTS development was implemented in a four phase approach with the goal of producing a high secure, cost effective flight termination system for United Launch Alliance (ULA) and the United States Air Force (USAF) Evolved Expendable Launch Vehicle (EELV). These detailed study phases developed the requirements, design and implementation approach for a new high secure flight termination system. Studies led to a cost effective approach to replace the High Alphabet Command Receiver Decoders (HA-CRD) presently used on the EELV (Delta-IV & Atlas-V), with a common SLFTS unit. SLFTS is the next generation flight termination system for space launch vehicles, providing an assured high secure command destruct system for launch vehicles in flight. The unique capabilities and challenges to develop this technology for space launch use will be addressed in this paper in detail. This paper summarizes the current development status, design and capabilities of SLFTS for EELV.

  20. 14 CFR 99.11 - ADIZ flight plan requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false ADIZ flight plan requirements. 99.11 Section 99.11 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES SECURITY CONTROL OF AIR TRAFFIC General § 99.11...

  1. X-1A in flight with flight data superimposed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    This photo of the X-1A includes graphs of the flight data from Maj. Charles E. Yeager's Mach 2.44 flight on December 12, 1953. (This was only a few days short of the 50th anniversary of the Wright brothers' first powered flight.) After reaching Mach 2.44, then the highest speed ever reached by a piloted aircraft, the X-1A tumbled completely out of control. The motions were so violent that Yeager cracked the plastic canopy with his helmet. He finally recovered from a inverted spin and landed on Rogers Dry Lakebed. Among the data shown are Mach number and altitude (the two top graphs). The speed and altitude changes due to the tumble are visible as jagged lines. The third graph from the bottom shows the G-forces on the airplane. During the tumble, these twice reached 8 Gs or 8 times the normal pull of gravity at sea level. (At these G forces, a 200-pound human would, in effect, weigh 1,600 pounds if a scale were placed under him in the direction of the force vector.) Producing these graphs was a slow, difficult process. The raw data from on-board instrumentation recorded on oscillograph film. Human computers then reduced the data and recorded it on data sheets, correcting for such factors as temperature and instrument errors. They used adding machines or slide rules for their calculations, pocket calculators being 20 years in the future. Three second generation Bell Aircraft Corporations X-1s were built, though four were requested. They were the X-1A (48-1384); X-1B (48-1385); X-1C (canceled and never built); X-1D (48-1386). These aircraft were similar to the X-1s, except they were five feet longer, had conventional canopies, and were powered by Reaction Motors, Inc. XLR11-RM-5 rocket engines. The RM-5, like the previous engines, had no throttle and was controlled by igniting one or more of the four thrust chambers at will. The original program outline called for the X-1A and X-1B to be used for dynamic stability and air loads investigations. The X-1D was to be used

  2. Flight telerobotic servicer

    NASA Technical Reports Server (NTRS)

    Haley, Dennis

    1990-01-01

    Viewgraphs on the Space Station Flight Telerobotic Servicer (SSFTS) are presented. Topics covered include: SSFTS design; SSFTS elements; FTS mission requirements; FTS general requirements; flight telerobotic servicer - telerobot; FTS manipulator; force-torque transducer; end effector changeout mechanism; flight telerobotic servicer - end-of-arm tooling; user interfaces; FTS data management and processing; control subsystem; FTS vision subsystem and camera positioning assembly; FTS workstation display assembly panel; mini-master hand controller; and FTS NASREM system architecture.

  3. Digital flight control research

    NASA Technical Reports Server (NTRS)

    Potter, J. E.; Stern, R. G.; Smith, T. B.; Sinha, P.

    1974-01-01

    The results of studies which were undertaken to contribute to the design of digital flight control systems, particularly for transport aircraft are presented. In addition to the overall design considerations for a digital flight control system, the following topics are discussed in detail: (1) aircraft attitude reference system design, (2) the digital computer configuration, (3) the design of a typical digital autopilot for transport aircraft, and (4) a hybrid flight simulator.

  4. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  5. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  6. [Utilization of methylphenidate(Ritalin) in France].

    PubMed

    Frances, C; Hoizey, G; Millart, H; Trenque, T

    2002-01-01

    Methylphenidate (Ritalin) is the only psychostimulant approved in France and indicated in attention deficit hyperactivity disorder in children over 6 years. It is under restricted prescription and distribution conditions. As such, it requires a hospital initiated prescription from either a neurology, psychiatry or pediatric specialist and it is covered by the "narcotics" schedule. The French Pharmacovigilance database spontaneous adverse drug reactions reporting, since it was approved in 1995, were analyzed. 21 adverse drug reactions were reported. In 16 cases, methylphenidate was suspected. They were generally non-serious, mild side effects and in most cases promptly resolved. These results do not suggest methylphenidate misuse in France or an overuse in between 1300 and 4000 treated children, to date. Until more information is available concerning the long-term effects of methylphenidate, and in order to limit misuse, inappropriate or overuse, the current prescription and dispensing regulation should be maintained in France, and could well be developed in other countries.

  7. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  8. Development and flight testing of the HL-10 lifting body

    NASA Technical Reports Server (NTRS)

    Kempel, Robert W.; Painter, Weneth D.

    1993-01-01

    The Horizontal Lander 10 (HL-10) lifting body successfully completed 37 flights, achieved the highest Mach number and altitude of this class of vehicle, and contributed to the technology base used to develop the space shuttle and future generations of lifting bodies. Design, development, and flight testing of this low-speed, air-launched, rocket-powered, lifting body was part of an unprecedented effort by NASA and the Northrop Corporation. This paper describes the evolution of the HL-10 lifting body from theoretical design, through development, to selection as one of two low-speed flight vehicles chosen for fabrication and piloted flight testing. Interesting and unusual events which occurred during the program and flight tests, review of significant problems encountered during the first flight, and discussion of how these problems were solved are presented. In addition, impressions of the pilots who flew the HL-10 lifting body are given.

  9. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each

  10. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of the structure, driven by aerodynamic forces and resulting in structural failure. The program used refined theoretical tools to predict at what speed flutter would occur. It then designed a high-response control system to counteract the motion and permit a much lighter wing structure. The wing had, in effect, 'electronic stiffness.' Flight research with this concept was extremely hazardous because an error in either the flutter prediction or control system implementation would result in wing structural failure and the loss of the vehicle. Because of this, flight demonstration of a sub-scale vehicle made sense from the standpoint of both safety and cost. The program anticipated structural failure during the course of the flight research. The Firebee II was a supersonic drone selected as the DAST testbed because its wing could be easily replaced, it used only tail-mounted control surfaces, and it was available as surplus from the U. S. Air Force. It was capable of 5-g turns (that is, turns producing acceleration equal to 5 times that of gravity). Langley outfitted a drone with an aeroelastic, supercritical research wing suitable for a Mach 0.98 cruise transport with a predicted flutter speed of Mach 0.95 at an altitude of 25,000 feet. Dryden and Langley, in conjunction with Boeing, designed and fabricated a digital flutter suppression system (FSS). Dryden developed an RPRV (remotely piloted research vehicle) flight control system; integrated the wing, FSS, and vehicle systems; and conducted the flight program. In addition to a digital flight control system and aeroelastic wings, each DAST drone had research equipment mounted in its nose and a mid-air retrieval system in its tail. The drones were originally launched from the NASA B-52 bomber and later from a DC-130. The DAST vehicle's flight was monitored from the sky by an F

  11. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  12. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  13. A flight test method for pilot/aircraft analysis

    NASA Technical Reports Server (NTRS)

    Koehler, R.; Buchacker, E.

    1986-01-01

    In high precision flight maneuvres a pilot is a part of a closed loop pilot/aircraft system. The assessment of the flying qualities is highly dependent on the closed loop characteristics related to precision maneuvres like approach, landing, air-to-air tracking, air-to-ground tracking, close formation flying and air-to air refueling of the receiver. The object of a research program at DFVLR is the final flight phase of an air to ground mission. In this flight phase the pilot has to align the aircraft with the target, correct small deviations from the target direction and keep the target in his sights for a specific time period. To investigate the dynamic behavior of the pilot-aircraft system a special ground attack flight test technique with a prolonged tracking maneuvres was developed. By changing the targets during the attack the pilot is forced to react continously on aiming errors in his sights. Thus the closed loop pilot/aircraft system is excited over a wide frequency range of interest, the pilot gets more information about mission oriented aircraft dynamics and suitable flight test data for a pilot/aircraft analysis can be generated.

  14. Flying the smoky skies: secondhand smoke exposure of flight attendants

    PubMed Central

    Repace, J

    2004-01-01

    Objective: To assess the contribution of secondhand smoke (SHS) to aircraft cabin air pollution and flight attendants' SHS exposure relative to the general population. Methods: Published air quality measurements, modelling studies, and dosimetry studies were reviewed, analysed, and generalised. Results: Flight attendants reported suffering greatly from SHS pollution on aircraft. Both government and airline sponsored studies concluded that SHS created an air pollution problem in aircraft cabins, while tobacco industry sponsored studies yielding similar data concluded that ventilation controlled SHS, and that SHS pollution levels were low. Between the time that non-smoking sections were established on US carriers in 1973, and the two hour US smoking ban in 1988, commercial aircraft ventilation rates had declined three times as fast as smoking prevalence. The aircraft cabin provided the least volume and lowest ventilation rate per smoker of any social venue, including stand up bars and smoking lounges, and afforded an abnormal respiratory environment. Personal monitors showed little difference in SHS exposures between flight attendants assigned to smoking sections and those assigned to non-smoking sections of aircraft cabins. Conclusions: In-flight air quality measurements in ~250 aircraft, generalised by models, indicate that when smoking was permitted aloft, 95% of the harmful respirable suspended particle (RSP) air pollution in the smoking sections and 85% of that in the non-smoking sections of aircraft cabins was caused by SHS. Typical levels of SHS-RSP on aircraft violated current (PM2.5) federal air quality standards ~threefold for flight attendants, and exceeded SHS irritation thresholds by 10 to 100 times. From cotinine dosimetry, SHS exposure of typical flight attendants in aircraft cabins is estimated to have been >6-fold that of the average US worker and ~14-fold that of the average person. Thus, ventilation systems massively failed to control SHS air

  15. Meteorological conditions during the summer 1986 CITE 2 flight series

    NASA Technical Reports Server (NTRS)

    Shipham, Mark C.; Cahoon, Donald R.; Bachmeier, A. Scott

    1990-01-01

    An overview of meteorological conditions during the NASA Global Tropospheric Experiment/Chemical Instrumentation Testing and Evaluation (GTE/CITE 2) summer 1986 flight series is presented. Computer-generated isentropic trajectories are used to trace the history of air masses encountered along each aircraft flight path. The synoptic-scale wind fields are depicted based on Montgomery stream function analyses. Time series of aircraft-measured temperature, dew point, ozone, and altitude are shown to depict air mass variability. Observed differences between maritime tropical and maritime polar air masses are discussed.

  16. [Foreign-born youth in France].

    PubMed

    Tribalat, M

    1996-12-01

    Data from an INED survey on migration and social integration (Mobilite Geographique et Insertion Sociale) carried out in France in 1992 are used to examine the process of assimilation of young people aged 20-29 in France. The results show that although there are many problems facing the young of foreign origin, and particularly those of North African origin, the situation concerning their integration into French society has improved significantly over the course of a generation despite the economic and social problems affecting the country that have made the process of assimilation more difficult.

  17. Thermal physiological ecology of Colias butterflies in flight.

    PubMed

    Tsuji, Joyce S; Kingsolver, Joel G; Watt, Ward B

    1986-05-01

    As a comparison to the many studies of larger flying insects, we carried out an initial study of heat balance and thermal dependence of flight of a small butterfly (Colias) in a wind tunnel and in the wild.Unlike many larger, or facultatively endothermic insects, Colias do not regulate heat loss by altering hemolymph circulation between thorax and abdomen as a function of body temperature. During flight, thermal excess of the abdomen above ambient temperature is weakly but consistently coupled to that of the thorax. Total heat loss is best expressed as the sum of heat loss from the head and thorex combined plus heat loss from the abdomen because the whole body is not isothermal. Convective cooling is a simple linear function of the square root of air speed from 0.2 to 2.0 m/s in the wind tunnel. Solar heat flux is the main source of heat gain in flight, just as it is the exclusive source for warmup at rest. The balance of heat gain from sunlight versus heat loss from convection and radiation does not appear to change by more than a few percent between the wings-closed basking posture and the variable opening of wings in flight, although several aspects require further study. Heat generation by action of the flight muscles is small (on the order of 100 m W/g tissue) compared to values reported for other strongly flying insects. Colias appears to have only very limited capacity to modulate flight performance. Wing beat frequency varies from 12-19 Hz depending on body mass, air speed, and thoracic temperature. At suboptimal flight temperatures, wing beat frequency increases significantly with thoracic temperature and body mass but is independent of air speed. Within the reported thermal optimum of 35-39°C, wing beat frequency is negatively dependent on air speed at values above 1.5 m/s, but independent of mass and body temperature. Flight preference of butterflies in the wind tunnel is for air speeds of 0.5-1.5 m/s, and no flight occurs at or above 2.5 m/s. Voluntary

  18. Surface tension dominates insect flight on fluid interfaces

    PubMed Central

    Mukundarajan, Haripriya; Bardon, Thibaut C.; Kim, Dong Hyun; Prakash, Manu

    2016-01-01

    ABSTRACT Flight on the 2D air–water interface, with body weight supported by surface tension, is a unique locomotion strategy well adapted for the environmental niche on the surface of water. Although previously described in aquatic insects like stoneflies, the biomechanics of interfacial flight has never been analysed. Here, we report interfacial flight as an adapted behaviour in waterlily beetles (Galerucella nymphaeae) which are also dexterous airborne fliers. We present the first quantitative biomechanical model of interfacial flight in insects, uncovering an intricate interplay of capillary, aerodynamic and neuromuscular forces. We show that waterlily beetles use their tarsal claws to attach themselves to the interface, via a fluid contact line pinned at the claw. We investigate the kinematics of interfacial flight trajectories using high-speed imaging and construct a mathematical model describing the flight dynamics. Our results show that non-linear surface tension forces make interfacial flight energetically expensive compared with airborne flight at the relatively high speeds characteristic of waterlily beetles, and cause chaotic dynamics to arise naturally in these regimes. We identify the crucial roles of capillary–gravity wave drag and oscillatory surface tension forces which dominate interfacial flight, showing that the air–water interface presents a radically modified force landscape for flapping wing flight compared with air. PMID:26936640

  19. X-43A Flight Controls

    NASA Technical Reports Server (NTRS)

    Baumann, Ethan

    2006-01-01

    A viewgraph presentation detailing X-43A Flight controls at NASA Dryden Flight Research Center is shown. The topics include: 1) NASA Dryden, Overview and current and recent flight test programs; 2) Unmanned Aerial Vehicle Synthetic Aperture Radar (UAVSAR) Program, Program Overview and Platform Precision Autopilot; and 3) Hyper-X Program, Program Overview, X-43A Flight Controls and Flight Results.

  20. X-31 in flight, Herbst maneuver

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International Palmdale, California, facility and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an aircraft with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack--with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the X-31 aircraft exhaust nozzle directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and thrust

  1. NASA hypersonic flight demonstrators—overview, status, and future plans

    NASA Astrophysics Data System (ADS)

    L. Moses, Paul; L. Rausch, Vincent; T. Nguyen, Luat; R. Hill, Jeryl

    2004-08-01

    NASA's Next Generation Launch Technology (NGLT) program is developing and maturing advanced propulsion and vehicle systems technologies and flight vehicle concepts to enable future development of safer and more economical launch systems. Within NGLT, NASA is developing advanced air breathing propulsion systems and demonstrating these systems in hypersonic flight vehicles. The flight demonstrations are necessary to fully validate these technologies for application to future space launch vehicles and other flight systems. NASA's Hyper-X Program (X-43A) began the effort to flight demonstrate hypersonic air breathing propulsion systems to provide technologies that will enable development of safer and more economic space access vehicles in the future. Following X-43A, NASA, in collaboration with the United States (US) Department of Defense (DoD), is developing additional, progressively more complex hypersonic X-vehicles that will demonstrate new air breathing propulsion systems, propulsion-airframe integration, and other vehicle systems technologies required for high speed flight up to Mach 15. These technologies will contribute to safer, more reliable and more economic future launch systems and hypersonic aircraft/missiles. This paper describes NASA's current hypersonic flight demonstration projects, status of the efforts, and plans for future vehicles.

  2. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  3. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  4. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  5. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  6. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  7. Health Hazard Evaluation Report HETA 85-307-1608, Frances Perkins Building, Washington, DC

    SciTech Connect

    Lee, S.A.

    1985-07-01

    Environmental and breathing-zone samples were analyzed for carbon dioxide and carbon-monoxide at the Frances Perkins Building, Washington, DC in May, 1985. The evaluation was requested by the employees who were concerned about the possible lack of fresh air and potential CO contamination in their offices from indoor parking garages and the nearby Interstate 395 tunnel. Ventilation specifications of the building were reviewed. The author concludes that there is no hazard from lack of fresh air or CO in the building. The author recommends monitoring indoor CO, especially during periods of stagnant weather during the summer months and adjusting the ventilation system to minimize CO concentrations if necessary.

  8. F-18 SRA in flight from below

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is using this early-model F-18 Hornet as a flying research platform to evaluate a number of emerging technologies in aircraft control and information systems. The Systems Research Aircraft, a pre-production two-seat version of the twin-engine tactical fighter aircraft, has been extensively modified for its research role. Among projects flown on the plane are experiments to evaluate fiber optics for flight-critical control systems, advanced air data acquisition systems, and electrically-powered flight control actuators which do not require connection to the aircraft central hydraulic system. The new technologies could lead to lighter and more efficient aircraft designs with higher performance and greater safety.

  9. 78 FR 49115 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-13

    ...-100-AD; Amendment 39-17285; AD 2012-25-04] RIN 2120-AA64 Airworthiness Directives; Eurocopter France... applies to certain Eurocopter France (Eurocopter) Model AS350B3 helicopters. The reference to Title...

  10. AGARD Flight Test Techniques Series. Volume 7. Air-to-Air Radar Flight Testing

    DTIC Science & Technology

    1988-06-01

    antenna in normally a high gain, vertically polarised, flat plate, slotted planar array . It may be driven by electromechanical servos or by a hydraulic...medium PR3 based on clutter levels and/or antenna elevation angle. This may allow alternating operation in low PR? and medium PR? in a multiple bar...such as the antenna , transmitter and waveguide where arcing might occur under low pressure conditions. A climatic evaluation will normally include the

  11. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward the desert floor under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  12. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA's X-38, a research vehicle developed as part of an effort to build an emergency Crew Return Vehicle (CRV) for the International Space Station, descends toward a desert lakebed under its steerable parafoil on its second free flight. The X-38 was launched from NASA Dryden's B-52 Mothership on Saturday, February 6, 1999, from an altitude of approximately 23,000 feet. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA

  13. Design and flight test of the Propulsion Controlled Aircraft (PCA) flight control system on the NASA F-15 test aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Edward A.; Urnes, James M., Sr.

    1994-01-01

    This report describes the design, development and flight testing of the Propulsion Controlled Aircraft (PCA) flight control system performed at McDonnell Douglas Aerospace (MDA), St. Louis, Missouri and at the NASA Dryden Flight Research Facility, Edwards Air Force Base, California. This research and development program was conducted by MDA and directed by NASA through the Dryden Flight Research Facility for the period beginning January 1991 and ending December 1993. A propulsion steering backup to the aircraft conventional flight control system has been developed and flight demonstrated on a NASA F-15 test aircraft. The Propulsion Controlled Aircraft (PCA) flight system utilizes collective and differential thrust changes to steer an aircraft that experiences partial or complete failure of the hydraulically actuated control surfaces. The PCA flight control research has shown that propulsion steering is a viable backup flight control mode and can assist the pilot in safe landing recovery of a fighter aircraft that has damage to or loss of the flight control surfaces. NASA, USAF and Navy evaluation test pilots stated that the F-15 PCA design provided the control necessary to land the aircraft. Moreover, the feasibility study showed that PCA technology can be directly applied to transport aircraft and provide a major improvement in the survivability of passengers and crew of controls damaged aircraft.

  14. Range Safety Flight Elevation Limit Calculation Software

    NASA Technical Reports Server (NTRS)

    Lanzi, Raymond J

    2014-01-01

    inputs of vehicle characteristics (e.g., thrust and aerodynamic data), nor does it require reams of turn data after the traditional fashion of the Air Force ranges. The program requires a nominal trajectory table (time, altitude, range, velocity, and flight elevation) and makes heavy use of it to initialize and model a failure turn.

  15. Murine Typhus, Reunion, France, 2011–2013

    PubMed Central

    Camuset, Guillaume; Socolovschi, Cristina; Moiton, Marie-Pierre; Kuli, Barbara; Foucher, Aurélie; Poubeau, Patrice; Borgherini, Gianandrea; Wartel, Guillaume; Audin, Héla; Raoult, Didier; Filleul, Laurent; Parola, Philippe; Pagès, Fréderic

    2015-01-01

    Murine typhus case was initially identified in Reunion, France, in 2012 in a tourist. Our investigation confirmed 8 autochthonous cases that occurred during January 2011–January 2013 in Reunion. Murine typhus should be considered in local patients and in travelers returning from Reunion who have fevers of unknown origin. PMID:25625653

  16. A Paradox in Physics Education in France

    ERIC Educational Resources Information Center

    Smigiel, Eddie; Sonntag, Michel

    2013-01-01

    This paper deals with the nature and the level of difficulty of teaching and learning physics in the first year of undergraduate engineering schools in France. Our case study is based on a survey regarding a classic and basic question in applied physics, and which was conducted with a group of second-year students in a post-baccalaureate 1…

  17. 75 FR 39277 - Sorbitol From France; Determination

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION Sorbitol From France; Determination On the basis of the record \\1\\ developed in the subject five-year review, the United States International Trade Commission (Commission) determines, pursuant to section 751(c) of the Tariff Act of 1930 (19...

  18. Frances Rauscher: Music and Reasoning. Interview.

    ERIC Educational Resources Information Center

    Snyder, Neal

    1995-01-01

    Reports on an interview with Frances Rauscher, a research psychologist and musician who has studied the effects of music on the brain. Maintains that students who have studied music have enhanced spatial reasoning. Recommends that music education begin at younger ages. (CFR)

  19. The emergence of cognitive science in France.

    PubMed

    Chamak, B

    1999-10-01

    A comparison between the development of cognitive science in France and the USA enables us to analyze some national differences linked to specific connections between the scientific, military, economic and political worlds. The influence of new practices and tools developed during World War II and the Cold War appears to be of crucial importance in understanding the development of this new field, as well as that of cybernetics, computer science, artificial intelligence and molecular biology. This paper can be considered as a study in how the differing contexts in France and the USA shaped the history of the construction of cognitive science in each of these two countries. In spite of various differences, some common aspects may be pointed out: in both cases, computer experts and psychologists using a computational modelling approach were those first engaged in the construction of cognitive science. If in France neuroscience-oriented cognitive science research was stronger than in the USA, it seems that the artificial intelligence orientation is also of growing importance in France.

  20. Haemovigilance and transfusion safety in France.

    PubMed

    Rouger, P; Noizat-Pirenne, F; Le Pennec, P Y

    2000-01-01

    The risks associated to red cell and platelet transfusions are essentially bound to the polymorphism of blood group antigens and to transfusion transmitted agents including virus, bacterias.... In France, the haemovigilance system and several investigations allowed to measure these different kinds of risks. We also developed analysis of failures in order to prevent errors and accidents to increase blood safety.

  1. World Foods. The Flavor of France.

    ERIC Educational Resources Information Center

    Calhoun, Helen; And Others

    This teacher's guide contains materials to be used in a study of France and its cuisine. Unit 1 provides an overview of French geographic, political, economic, social, and cultural characteristics. Unit 2 studies French food habits, nutrition, food preparation, and meal patterns. Each unit contains a list of objectives (e.g., identify the type of…

  2. Competence: Conceptual Approach and Practice in France

    ERIC Educational Resources Information Center

    Le Deist, Francoise

    2009-01-01

    Purpose: The purpose of this article is to analyse the conceptual approaches to competence and practice in competence management in France. Design/methodology/approach: Extensive literature review, discussion with academic experts in the French competence network of AGRH and interviews concerning developments following the 2003 national agreement…

  3. Flight Test Results on the Stability and Control of the F-15B Quiet Spike Aircraft

    NASA Technical Reports Server (NTRS)

    Moua, Cheng; McWherter, Shaun H.; Cox, Timothy H.; Gera, Joseph

    2007-01-01

    The Quiet Spike (QS) flight research program was an aerodynamic and structural proof-of-concept of a telescoping sonic-boom suppressing nose boom on an F-15 B aircraft. The program goal was to collect flight data for model validation up to 1.8 Mach. The primary test philosophy was maintaining safety of flight. In the area of stability and controls the primary concerns were to assess the potential destabilizing effect of the spike on the stability, controllability, and handling qualities of the aircraft and to ensure adequate stability margins across the entire QS flight envelop. This paper reports on the stability and control methods used for flight envelope clearance and flight test results of the F-15B Quiet Spike. Also discussed are the flight test approach, the criteria to proceed to the next flight condition, brief pilot commentary on typical piloting tasks, approach and landing, and refueling task, and air data sensitivity to the flight control system.

  4. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  5. 45. Communication equipment room, cable air dryer on left, motorola ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Communication equipment room, cable air dryer on left, motorola base station (vhf) at right, looking southwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  6. Air Force's First C-17 Flies into Retirement

    NASA Video Gallery

    The U.S. Air Force has retired its first C-17 transport after 21 years as a flight test aircraft and use in joint NASA-USAF propulsion research. NASA research pilot Frank Batteas, who was an Air Fo...

  7. Miscarriage Among Flight Attendants

    PubMed Central

    Grajewski, Barbara; Whelan, Elizabeth A.; Lawson, Christina C.; Hein, Misty J.; Waters, Martha A.; Anderson, Jeri L.; MacDonald, Leslie A.; Mertens, Christopher J.; Tseng, Chih-Yu; Cassinelli, Rick T.; Luo, Lian

    2015-01-01

    Background Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Methods Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Results Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median firsttrimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm–8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9–13 (odds ratio = 1.7 [95% confidence interval = 0.95–3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1–2.2]), as was risk with high physical job demands (2.5 [1.5–4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Conclusions Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure. PMID:25563432

  8. Les instituts universitaires de technologie en France. (The university institutes of technology in France)

    ERIC Educational Resources Information Center

    Pineau, Gaston

    1971-01-01

    In 1966 France passed legislation naming three types of technical training: two year postbaccalaureate, short-cycle for those without a bachelor's degree, adult education, for those already employed. (MF)

  9. A flight investigation of simulated data-link communications during single-pilot IFR flight. Volume 2: Flight evaluations

    NASA Technical Reports Server (NTRS)

    Parker, J. F., Jr.; Duffy, J. W.

    1982-01-01

    Key problems in single pilot instrument flight operations are in the management of flight data and the processing of cockpit information during conditions of heavy workload. A flight data console was developed to allow simulation of a digital data link to replace the current voice communications stem used in air traffic control. This is a human factors evaluation of a data link communications system to determine how such a system might reduce cockpit workload, improve flight proficiency, and be accepted by general aviation pilots. The need for a voice channel as backup to a digital link is examined. The evaluations cover both airport terminal area operations and full mission instrument flight. Results show that general aviation pilots operate well with a digital data link communications system. The findings indicate that a data link system for pilot/ATC communications, with a backup voice channel, is well accepted by general aviation pilots and is considered to be safer, more efficient, and result in less workload than the current voice system.

  10. Satellite remote sensing of hailstorms in France

    NASA Astrophysics Data System (ADS)

    Melcón, Pablo; Merino, Andrés; Sánchez, José Luis; López, Laura; Hermida, Lucía

    2016-12-01

    Hailstorms are meteorological phenomena of great interest to the scientific community, owing to their socioeconomic impact, which is mainly on agricultural production. With its global coverage and high spatial and temporal resolution, satellite remote sensing can contribute to monitoring of such events through the development of appropriate techniques. This paper presents an extensive validation in the south of France of a hail detection tool (HDT) developed for the Middle Ebro Valley (MEV). The HDT is based on consecutive application of two filters, a convection mask (CM) and hail mask (HM), using spectral channels of the Meteosat Second Generation (MSG) satellite. The south of France is an ideal area for studying hailstorms, because there is a robust database of hail falls recorded by an extensive network of hailpads managed by the Association Nationale d'Etude et de Lutte contre les Fleáux Atmosphériques (ANELFA). The results show noticeably poorer performance of the HDT in France relative to that in the MEV, with probability of detection (POD) 60.4% and false alarm rate (FAR) 26.6%. For this reason, a new tool to suit the characteristics of hailstorms in France has been developed. The France Hail Detection Tool (FHDT) was developed using logistic regression from channels of the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor of the MSG. The FHDT was validated, resulting in POD 69.3% and FAR 15.4%, thus improving hail detection in the study area as compared with the previous tool. The new tool was tested in a case study with satisfactory results, supporting its future practical application.

  11. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  12. 78 FR 75579 - Low Enriched Uranium From France

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-12

    ... COMMISSION Low Enriched Uranium From France Determination On the basis of the record \\1\\ developed in the... antidumping duty order on low enriched uranium from France would be likely to lead to continuation or...), entitled Low Enriched Uranium from France: Investigation No. 731-TA-909 (Second Review). By order of...

  13. Aging in France: Population Trends, Policy Issues, and Research Institutions

    ERIC Educational Resources Information Center

    Beland, Daniel; Durandal, Jean-Philippe Viriot

    2013-01-01

    Like in other advanced industrial countries, in France, demographic aging has become a widely debated research and policy topic. This article offers a brief overview of major aging-related trends in France. The article describes France's demographics of aging, explores key policy matters, maps the institutional field of French social gerontology…

  14. 77 FR 18965 - Airworthiness Directives; Eurocopter France Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-29

    ... Directives; Eurocopter France Helicopters AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice... Eurocopter France Model SA341G helicopters. This proposed AD is prompted by an analysis and tests performed... Civile (DGAC), which is the aviation authority for France, has issued French AD No. F-2004-070, dated...

  15. Space flight operations communications phraseology and techniques

    NASA Technical Reports Server (NTRS)

    Noneman, S. R.

    1986-01-01

    Communications are a critical link in space flight operations. Specific communications phraseology and techniques have been developed to allow rapid and clear transfer of information. Communications will be clear and brief through the use of procedural words and phrases. Communications protocols standardize the required information transferred. The voicing of letters and numbers is discussed. The protocols used in air-to-ground communications are given. A glossary of communications terminology is presented in the appendix.

  16. Flight experience with the Novacor LVAS.

    PubMed

    Pristas, J M; Lee, J; Wheeldon, D R; Portner, P M

    2001-01-01

    As Novacor LVAS recipients continue to be discharged from the hospital to await cardiac transplantation, an increasing number of patients either need or desire to use air transportation. To date, two test experiences have been reported with the Novacor LVAS operating in a mock circulatory loop during air travel. One involved the transport of a mock loop on a medical helicopter, and another preceded an international flight of an LVAS recipient from Japan to the United States. In each situation, the LVAS, connected to a water-filled mock circulatory loop, was placed on the aircraft and instrumentation was checked to verify that there was no adverse effect on the Novacor equipment, or on aircraft systems, during flight. Novacor LVAS recipients have also been reported to have flown more than 37 commercial air transports throughout Europe, in both rotary and fixed wing aircraft, without incident. Laboratory testing of electromagnetic emissions were also conducted to include specific frequencies utilized by aircraft instrumentation. These tests show that the Novacor LVAS is well below the International Special Committee on Radio Interference (CISPR 11) emissions limits; these data can be provided to an air carrier anticipating transport of a Novacor recipient. Details of the results from the mock loop field testing, as well as the laboratory testing of electromagnetic emissions pertinent to air travel, are presented. This experience suggests that that there has been no impact on aircraft electronics from the LVAS, nor has the aircraft instrumentation generated any interference with the components of the Novacor LVAS.

  17. Real-time data display for AFTI/F-16 flight testing

    NASA Technical Reports Server (NTRS)

    Harney, P. F.

    1982-01-01

    Advanced fighter technologies to improve air to air and air to surface weapon delivery and survivability is demonstrated. Real time monitoring of aircraft operation during flight testing is necessary not only for safety considerations but also for preliminary evaluation of flight test results. The complexity of the AFTI/F-16 aircraft requires an extensive capability to accomplish real time data goals; that capability and the resultant product are described.

  18. X-31 in flight - Herbst Turn

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls

  19. X-31 in flight - Double Reversal

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Two X-31 Enhanced Fighter Maneuverability (EFM) demonstrators were flown at the Rockwell International facility, Palmdale, California, and the NASA Dryden Flight Research Center, Edwards, California, to obtain data that may apply to the design of highly-maneuverable next-generation fighters. The program had its first flight on October 11, 1990, in Palmdale; it ended in June 1995. The X-31 program demonstrated the value of thrust vectoring (directing engine exhaust flow) coupled with advanced flight control systems, to provide controlled flight during close-in air combat at very high angles of attack. The result of this increased maneuverability is an airplane with a significant advantage over conventional fighters. 'Angle-of-attack' (alpha) is an engineering term to describe the angle of an aircraft body and wings relative to its actual flight path. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while he aircraft continues in its original direction. This can lead to loss of control and result in the loss of the aircraft, pilot or both. Three thrust-vectoring paddles made of graphite epoxy mounted on the exhaust nozzle of the X-31 aircraft directed the exhaust flow to provide control in pitch (up and down) and yaw (right and left) to improve control. The paddles can sustain heat of up to 1,500 degrees centigrade for extended periods of time. In addition the X-31 aircraft were configured with movable forward canards and fixed aft strakes. The canards were small wing-like structures set on the wing line between the nose and the leading edge of the wing. The strakes were set on the same line between the trailing edge of the wing and the engine exhaust. Both supplied additional control in tight maneuvering situations. The X-31 research program produced technical data at high angles of attack. This information is giving engineers and aircraft designers a better understanding of aerodynamics, effectiveness of flight controls and

  20. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.